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Abstract

The neutrino mass problem, which refers to the unknown origin of neutrino masses, strongly
motivates the need for new physics beyond that of the Standard Model (SM). A given
mass model, through quantum effects, generates a rich network of predictions deviating
from those of the SM. The enterprising physicist can use these to constrain the model,
and—in some cases—resolve experimental anomalies and offer solutions to other unsolved
problems.

This thesis is divided into two parts. In the first, I investigate whether high-precision
measurements of the cross section of the Higgsstrahlung process e+e− → Zh at a next-
generation electron-positron collider can be utilised to probe the Type-I and Type-III
Seesaw models. By employing an effective field theory approach, I compare the collider
reaches to constraints from electroweak observables, probes of lepton flavour universality,
and the existing and prospective bounds from searches for lepton flavour violation. I
find that while any appreciable correction to the Higgsstrahlung cross section is already
strictly constrained in the Type-I Seesaw model, effects of up to O(10%) are possible
within Type-III Seesaw.

In the second part of this thesis I investigate whether a high-scale realisation of the Zee
model of neutrino mass can be used to explain the observed baryon abundance of the
universe. In this realisation the baryon asymmetry is generated through the CP -violating
decay of a new singly-charged scalar with a mass of O

(
1012 GeV

)
. I find that the flavour

structure of the Zee model forces the scenario to be one of flavoured leptogenesis, which
turns out to be too restrictive to produce a sufficient asymmetry. This work is followed
up with a discussion of infrared divergences in the Zee model, where I demonstrate how
to achieve infrared-finiteness at zero temperature and discuss how this cancellation might
be extended to finite temperature.
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We’re gonna go paint your quarks a colour that’s
not stupid, and then we’re gonna throw your
Feynman diagrams in the trash!

Frank Reynolds,
in It’s Always Sunny in Philadelphia,

reimagined by Ryan Seelig
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The Standard Model is more what you’d call
guidelines than actual rules.

Hector Barbossa,
in Pirates of the Caribbean,

reimagined by Felix Lempriere

1
Introduction

The field of high-energy physics has come a long way in the last hundred or so years, with

the establishment of the dual pillars of relativity and quantum mechanics heralding great

advances in our understanding of nature, and culminating in the 1970s with the develop-

ment of the Standard Model of particle physics (SM). Capstoned with the discovery of the

Higgs boson in 2012 [3; 4], the SM beautifully categorises all known fundamental particles

and forces (sans gravity) and describes an extraordinarily broad class of phenomena with

equally extraordinary precision. It is not an exaggeration to call it a triumph of human

accomplishment.

But physics is not a finished science, for in spite of the SM’s myriad successes there

remains a stubborn enclave of unsolved problems hinting at the need for ‘beyond Standard

1
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Model’ (BSM) physics [5]. The mystery of dark matter, the unknown origin of the matter-

antimatter asymmetry of the universe, and of course, the eternal quest for a quantum

theory of gravity are among the most captivating of these problems, and for good reason.

Receiving less fanfare in the sphere of popular science, though arguably no less important,

are the hierarchy [6; 7] and strong CP problems [8; 9], which are of a more theoretical

nature. The problem pertaining to this thesis is that of neutrinos: treated as massless

by the SM, these weakly-interacting particles are now known to have a small but finite

mass, thanks most famously to the experimental efforts of the Super-Kamiokande [10] and

SNO collaborations [11; 12], who observed the flavour oscillation of atmospheric and solar

neutrinos, respectively. The importance of this feat was recognised with the 2015 Nobel

Prize in Physics, awarded to Takaaki Kajita and Arthur B. McDonald [13].

To be concrete, the neutrino mass problem refers to the unknown nature of neutrino

masses and the problem of accommodating them within the framework of the SM. In

looking to accomplish this the mainstream approach is to postulate the existence of so-

called ‘new physics’ (NP): a new set of particles (and sometimes symmetries) whose

interactions with the SM furnish the appearance of neutrino masses. From Seesaw to

Supersymmetric to Scotogenic, there are—for better or for worse—dozens of ways of going

about this, and so dozens of mass models (if not more) [14–43]. To distinguish these

models and ascertain which, if any, are realised in nature, it is necessary to investigate

their predictions beyond that of neutrino mass. Sometimes these predictions are smoking-

gun signals – for example, the direct detection of a new particle at the LHC or by a dark

matter detector such as LUX-ZEPLIN [44], XENONnT [45], PandaX [46], or ADMX [47]

would offer spectacular confirmation of new physics. Unfortunately, such detections have

so far been absent [48–67], meaning that any new particles must either be very heavy—too

heavy to be produced in terrestrial experiments—or interact very weakly with the SM. As

such, we must look towards more indirect probes of NP – experiments where deviations

from the SM’s predictions have (or have not) been observed, in which hints about the

nature of NP can be found. By systematically investigating each model’s predictions and

comparing to available experimental data, we can methodically set constraints on their

respective parameter spaces. When a measurement reports a value consistent with the SM,

2



it can act as a strong constraint against new physics; conversely, a measurement deviating

significantly from the SM’s prediction can present an opportunity for an NP model to

explain the discrepancy.

This theoretical program extends to proposed experiments in addition to present-day

ones. Of particular interest to this thesis, there are five proposals for next-generation

electron-positron colliders: CEPC [68–70], ILC [71–74], FCC-ee [75–78], CLIC [79–81],

and C3 [82–84], which—if approved—are optimistically anticipated to become operational

within two decades. Part of their proposed purpose is to function as ‘Higgs factories’ [85],

meaning they are to be run at centre-of-mass energies where Higgs bosons are copiously

produced via the Higgsstrahlung (‘Higgs radiation’) process, e+e− → Zh, in order to

study their properties. As this process centrally features both the Z boson—a carrier

of the weak force—and the Higgs, which commonly acquires couplings to neutrinos in

mass models, it has the potential to be particularly sensitive to BSM neutrino physics.

The Higgsstrahlung cross section is forecast to be measured with sub-percent precision at

these next-generation colliders, and therefore promises to function as a ‘uniquely powerful’

precision observable [86] which could be used to constrain corners of mass model parameter

space that have been left open by other probes.

This motivates the first part of this thesis, where in Chapter 4 I will investigate the extent

to which future measurements of the Higgsstrahlung cross section may be used to probe

the Type-I [14–18] and Type-III Seesaw [28] models of neutrino mass. By comparing

the collider reaches against present-day constraints from lepton flavour universality and

electroweak precision tests, as well as the existing and prospective bounds from the non-

observation of lepton flavour violation, we will see that Higgsstrahlung is indeed able to

cast new light on the nature of neutrino masses. In doing so, this work therefore adds to

the new physics discovery potential of next generation colliders, which may (in some small

capacity) contribute to the case for their construction.

In the second half of this thesis I will change gears and attempt to address a different

question: could the resolution to the neutrino mass problem be tied to that of other

outstanding problems? This is a familiar line of questioning to anyone in the field, where a

3
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model purporting to solve multiple problems at once is naturally lent more credence than

one that does not. Neutrino mass models are inarguably well-motivated starting points

when searching for a sufficiently versatile model, and many indeed offer potential answers

to other unsolved problems – for example, the Seesaw [87; 88] and Scotogenic [33; 39] class

of models each contain dark matter candidates. The secondary problem I will focus on

herein is that of the unexplained origin of the baryon asymmetry of the universe. In order

to explain why the universe today is composed entirely of matter [89; 90] as opposed to,

say, an equal amount of matter and antimatter, a theory needs to satisfy the Sakharov

conditions [91]: it must violate baryon number and the discrete charge (C) and charge-

parity (CP ) symmetries in sufficient amounts, and it must ensure that this violation

occurs out of thermal equilibrium during the early universe’s development.1 It is generally

accepted that the SM fails to meet these criteria [98–101], and that we therefore require a

BSM mechanism of baryogenesis (‘baryon generation’).

A popular approach to baryogenesis is known as leptogenesis [102–105], wherein one first

generates an excess of leptons over anti-leptons, and then transmutes it into an excess of

baryons. Leptogenesis commonly arises in neutrino mass models, where the new leptonic

physics introduced to give neutrinos mass often includes new sources of both lepton number

violation and CP violation. In Chapter 6 I will study the leptogenesis prospects of the Zee

model [23] of neutrino masses. A TeV-scale realisation of the Zee model has previously

been ruled out as a viable progenitor of the necessary lepton asymmetry [106; 107], so I

will focus on a high-scale realisation of the model, where the newly-introduced particles

are heavy enough to decouple almost entirely from the low-energy physics.

Now, it will turn out that the study of Zee model inevitably leads one to encounter infrared

(IR) divergences – a theoretical complication that tends to rear its head in calculations

1One might be able to circumvent these conditions by calling upon anthropic arguments
or supposing that the initial conditions of the universe contained an imbalance of matter and
antimatter; however, these explanations are disfavoured on account of their untestability.
Additionally, the hypothesised period of cosmic inflation would exponentially dampen
any initial baryon asymmetry [92–94]. The out-of-equilibrium condition may however be
circumvented if CPT is violated; see for example Refs. [95–97].
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involving massless particles. IR divergences in zero temperature quantum field theory

are well-studied, and the famous Bloch–Nordsieck [108] and Kinoshita–Lee–Nauenberg

(KLN) [109; 110] theorems are known to give conditions under which one may expect a

computation to produce a finite result. Recently, the work of Ref. [111] has strengthened

the KLN theorem and provided a practical algorithm for obtaining IR finiteness at any

fixed perturbative order. Unfortunately, no such theorem exists for finite-temperature

calculations (as are required for leptogenesis), though there are nevertheless a handful of

works, such as Refs. [112–121], that have demonstrated IR finiteness in specific situations

through explicit calculation. In Chapter 7 I will demonstrate the cancellation of IR diver-

gences in the Zee model at zero temperature and discuss the extension of the cancellation

to finite temperatures. The cancellation even at zero temperature is somewhat involved,

and requires the use of techniques that—despite their popularisation by Ref. [111]—are

not widely known.

This thesis follows in broad strokes a theory, original work, theory, original work structure.

I will begin in Chapter 2 by reviewing the Standard Model and the anatomy of neutrino

masses, and introduce the three mass models that will become the focus of this thesis.

Next, Chapter 3 contains a short overview of the topic of effective field theories (EFTs), as

well as an introduction to the two EFTs (namely SMEFT and LEFT) that will underlie

the study of Higgsstrahlung and the Seesaw models. Said study takes form as Chapter 4,

and is adapted (with edits) from the publication of Ref. [1]. Chapter 5 is another theory

chapter, containing an introduction to the topic of leptogenesis, the calculation of CP

asymmetries, and the construction of the relevant Boltzmann equations. Chapter 6 then

features the study of the leptogenesis scenario in the Zee model, and it is followed up

by Chapter 7, where I will discuss the problem of infrared divergences in the Zee model.

Finally, I will summarise and conclude in Chapter 8.
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Introduction

1.1 Conventions and Notation

Throughout this thesis I will work exclusively with natural units, with c = ~ = kB = 1.

Dimensionful quantities will be given in units of electronvolts (eV).

For the metric of spacetime I will use the mostly-minus signature, so that

gµν = gµν =


1

−1
−1

−1

. (1.1)

Spacetime indices are denoted with Greek letters, which run from 0 to 3. Repeated indices

are understood to be implicitly summed over.

For the first part of this thesis I will use the Roman letters i, j, k, l, running from 1 to 3,

to index fermion flavours, as in Li and eRi. The summation convention applies to these

indices unless otherwise noted. Starting in Chapter 5 this notation will be regretfully

usurped, where I will switch to using early-alphabet Greek letters α, β, γ, δ for the flavour

indices.

I will use boldface to denote three-vectors, such as p,k, and plain lettering for four-vectors,

such as p, k. For integrals over the phase space of a single particle I will use the shorthand

∫
[dp] ≡

∫ d4p

(2π)4 2πδ(p2 −m2)θ(p0) =
∫ d3p

(2π)32Ep
, Ep =

√
p2 +m2. (1.2)

For an n-body phase space I will write

∫
dΠn ≡

∫
[dp1] · · · [dpn](2π)4δ(4)(Q− p1 − . . .− pn), (1.3)

where Q sets the total four-momentum, and it should be clear from context which momenta

are being integrated over. When referring to a generic initial or final state with an

unspecified number of particles I will use uppercase letters to indicate the sum of their

momenta, writing for example
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∫
dΠf =

∫
[dPf ](2π)4δ(4)(Q− Pf ). (1.4)

Lastly, I will use the upright i to denote the imaginary unit in order to distinguish it from

i, which I will often use as an index.
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Oh pardon me Right-Handed Neutrino, if that is
your real name.

Comic Book Guy,
in The Simpsons,

reimagined

2
The Standard Model and Neutrinos

Contents
2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Neutrino Masses . . . . . . . . . . . . . . . . . . . . . . . . . . 20

In this chapter I’ll review some of the basic concepts and theory underpinning this thesis,

thereby setting the groundwork for all following chapters. Most, if not all, material

presented here can be found in any sufficiently modern text on Quantum Field Theory

and/or the Standard Model, such as Refs. [122; 123], and will undoubtedly be familiar to a

practitioner in the field. Other excellent references for select topics are Refs. [36; 124–127].
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The Standard Model and Neutrinos

Field SU(3)C SU(2)W U(1)Y

Gµ Adj. (8) 1 0
Wµ 1 Adj. (3) 0
Bµ 1 1 Adj. (1)
Qi 3 2 1

6

uRi 3 1 2
3

dRi 3 1 −1
3

Li 1 2 −1
2

eRi 1 1 −1
H 1 2 1

2

Table 2.1: The field content of the SM and their transformation properties under the SM
gauge group. The number in the SU(3)C and SU(2)W columns gives the dimension of the
representation, while the number in the U(1)Y column gives the charge of the representation.
Adj. (n) indicates that the gauge field transforms in the adjoint representation of the group,
which is n-dimensional.

2.1 The Standard Model

The Standard Model of particle physics (SM), though the language of quantum field

theory, provides a fully quantum description of all known fundamental particles—or rather,

fields—and their interactions through the strong and electroweak forces. It is a gauge

theory, meaning that all fields are defined to transform under a particular representation

of the SM gauge group,

G = SU(3)C × SU(2)W × U(1)Y , (2.1)

with a field’s representation controlling many of its properties. The SU(3)C subgroup

captures the strong nuclear force, alternatively called the colour force, and the SU(2)W

and U(1)Y subgroups together describe the unified electroweak (EW) force. The SM fields

and their transformation properties under G are tabulated in Table 2.1. For a single field,

say Li, it is common to write Li ∼ (1, 2,−1/2), which should be read as “Li transforms as

an SU(3)C singlet, an SU(2)W doublet, and with charge −1/2 under U(1)Y .”

The SM is specified through its Lagrangian, which reads

10



2.1.1 The Gauge Fields

LSM = −1
4G

a
µνG

aµν − 1
4W

a
µνW

aµν − 1
4BµνB

µν (2.2)

+Qii /DQi + uRii /DuRi + dRii /DdRi + Lii /DLi + eRii /DeRi

+ (DµH)†(DµH) + µ2H†H − λ(H†H)2

−
(
Y u

ijQiH̃uRj + Y d
ijQiHdRj + Y e

ijLiHeRj + h.c.
)
.

In the next four sections I’ll briefly outline and discuss the four respective lines of Eq. (2.2)

and the physics they represent.

2.1.1 The Gauge Fields

The first line in Eq. (2.2) contains kinetic terms for the gauge bosons Gµ, Wµ, and Bµ of the

three respective gauge subgroups. This thesis is primarily concerned with the electroweak

part of the SM, so I will not devote any attention to the gluon field Gµ.

The electroweak gauge bosons interact with the rest of the SM through the gauge-covariant

derivative

Dµ = ∂µ − ig2W
a
µT

a − ig1Y Bµ, (2.3)

where the hypercharge Y is read from the U(1)Y column of Table 2.1, and the SU(2)W

generators are

T a =


σa

2 when acting on an SU(2)W doublet

0 when acting on an SU(2)W singlet
, (2.4)

with σa, a = 1, 2, 3 the familiar Pauli matrices.

Due to the Higgs mechanism, to be elaborated on shortly, some of these fields acquire

masses. The mass eigenstates Zµ and Aµ, identified as the Z boson and the photon,

relate to the original gauge fields by the rotation

Zµ = cos θw W
3
µ − sin θw Bµ, (2.5a)

Aµ = sin θw W
3
µ + cos θw Bµ, (2.5b)
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where

θw = tan−1(g2/g1) (2.6)

is known as the weak mixing angle. It is furthermore useful to define the combinations

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ), (2.7)

referred to as the W± bosons, or simply the W boson for short. In terms of these fields

the gauge-covariant derivative takes on the new form

Dµ = ∂µ − ig2W
+
µ T

+ − ig2W
−
µ T

− − igZ(T 3 −Q sin2 θw)Zµ − iQeAµ, (2.8)

with

T± ≡ 1√
2

(T 1 ± iT 2), gZ ≡
√
g2

1 + g2
2, Q ≡ T 3 + Y, and e ≡ g1g2√

g2
1 + g2

2

. (2.9)

The massive W and Z bosons together mediate the weak force, and the familiar photon

mediates the electromagnetic force.

It it useful to have a sense for the size of the gauge couplings. Like most parameters, these

couplings depend on energy, renormalization scheme, and choice of input parameters, but

as a benchmark we have that [124]

g1 ≈ 0.36 and g2 ≈ 0.65 (2.10)

at the scale µ = mZ , which translates to sin2 θw ≈ 0.23, gZ ≈ 0.74 and e ≈ 0.31. The

more conventional value of e ≈ 0.30 is found at lower energies, µ < 1 GeV.
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2.1.2 The Fermions

2.1.2 The Fermions

The fermions, consisting of the leptons L, eR and quarks Q,uR, dR, make up the matter

content of the SM. They appear in three copies, called generations or flavours, which

are identical but for their masses.

Of the fermions, the SU(2)W doublets are composite objects whose components we identify

(in a preferred SU(2)W and flavour basis) as

Li =
(
νLi

eLi

)
: L1 =

(
νeL

eL

)
, L2 =

(
νµL

µL

)
, L3 =

(
ντL

τL

)
, (2.11)

and1

Qi =
(
uLi

dLi

)
: Q1 =

(
uL

dL

)
, Q2 =

(
cL

sL

)
, Q3 =

(
tL
bL

)
. (2.12)

The SU(2)W singlets contain the right-handed partners to these fields, with

eRi = {eR, µR, τR}, uRi = {uR, cR, tR}, and dRi = {dR, sR, bR}. (2.13)

The quark fields Q,uR, dR are additionally SU(3)C triplets, with the components designated

as different ‘colourings’ of the quark flavours.

The distinction between left- and right-handed fermion fields is an important one. Here

the handedness—or chirality—of a field refers at a technical level to its transformation

properties under the Lorentz group. Chirality only admits a simple physical interpretation

for relativistic fermions, in which limit a right-handed particle has its momentum and spin

vectors parallel, and left-handed one has them antiparallel. At a practical level we treat

chirality through use of the projection operators

1It is not possible to identify both the uLi and dLi with mass eigenstates; see Sec-
tion 2.1.4. Instead, it is more correct to write

Qi =
(

uLi

VijdLj

)
(‘up basis’) or Qi =

(
V †

ijuLj

dLi

)
(‘down basis’),

where V is the CKM matrix.
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PL = 1 − γ5

2 and PR = 1 + γ5

2 , (2.14)

where the chirality operator2

γ5 ≡ iγ0γ1γ2γ3 (2.15)

satisfies

{γµ, γ5} = 0, (γ5)2 = 1, and γ5† = γ5. (2.16)

In LSM the handedness of the fermions can be made overt by making the replacements

Q → PLQ, uR → PRuR, dR → PRdR, L → PLL, and eR → PReR, (2.17)

(which is a no-op since Q = PLQ, and so on), and the physics of chirality then emerges

through the appearance of these projectors in the Feynman rules and subsequently in

scattering amplitudes.

Though not intrinsic to the nature of chirality itself, it is of great phenomenological

importance that only the left-handed fields Qi and Li couple to the SU(2)W gauge fields.

As the interaction terms

g2√
2

(
νeL /W

+
eL + eL /W

−
νeL

)
⊂ Lii /DLi ⊂ LSM, (2.18)

when treated as operators, permit the W boson to interact with left-handed electrons e−
L

and right-handed positrons e+
R, but not right-handed electrons e+

R or left-handed positrons

e+
L , the weak interaction maximally violates both C-symmetry (which takes e±

L/R → e∓
L/R)

and P -symmetry (which takes e±
L/R → e±

R/L), though not the combined CP -symmetry.

2The gamma matrices are defined to satisfy {γµ, γν} = 2gµν and γµ† = γ0γµγ0, and
they appear in LSM through the conjugate fields ψ ≡ ψ†γ0 and the ‘slashed’ derivatives
/D ≡ γµDµ.
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2.1.3 The Higgs Field

(Actually, CP is violated by weak interactions with the quarks, which we will see when

introducing the CKM matrix, and later come to understand in great detail in Chapter 5.)

Interactions with the Z boson also violate C and P , though not as strongly.

2.1.3 The Higgs Field

The linchpin of the SM is the scalar SU(2)W doublet H, known as the Higgs field.

Its purpose is to enact the Higgs mechanism, whereby the electroweak SU(2)W × U(1)Y

symmetry is spontaneously broken by the vacuum expectation value (VEV)

〈H〉 = µ√
2λ

≡ v√
2
. (2.19)

Through a combined SU(2)W × U(1)Y gauge transformation the VEV can be placed in

the lower component of H,

H =

 0
v + h√

2

, (2.20)

and the remaining real degree of freedom h is called the Higgs boson. We refer to this

as unitary gauge. The surviving symmetry subgroup U(1)EM, generated by Q = T3 + Y

and with gauge field Aµ, is the one which preserves the form of Eq. (2.20). We note that

the full gauge symmetry remains extant in LSM; the only sense in which the symmetry is

broken is through our insistence on the use of unitary gauge.

Plugging Eq. (2.20) back into LSM, one observes after some algebra the appearance of the

mass terms

LSM ⊃ −1
2mhh

2 +m2
WW−

µ W
+µ + 1

2m
2
ZZµZ

µ, (2.21)

where [124]

15



The Standard Model and Neutrinos

mh =
√

2µ ≈ 125.1 GeV, (2.22a)

mW = 1
2g2v ≈ 80.4 GeV, and (2.22b)

mZ = 1
2

√
g2

1 + g2
2v = mW

cos θw
≈ 91.2 GeV, (2.22c)

while the photon field Aµ is of course massless. The VEV itself, as measured through muon

decays by proxy of the Fermi constant GF ≡ 1/
√

2v2, is v ≈ 246 GeV, and the original

parameters of the Higgs’ potential are in turn λ ≈ 0.13 and µ ≈ 88 GeV.

2.1.4 The Yukawa Sector

The final line of LSM contains the Yukawa interactions

LYuk = −
(
Y e

ijLiHeRj + Y u
ijQiH̃uRj + Y d

ijQiHdRj + h.c.
)
, (2.23)

where H̃ ≡ εH∗, with ε = iσ2 the two-index Levi-Civita symbol. When the Higgs ac-

quires its VEV these interactions turn into mass terms for the fermions with residual h

interactions,

LYuk → −
(

1 + h

v

)(
me

ijeLieRj +mu
ijuLiuRj +md

ijdLidRj + h.c.
)
, (2.24)

where the mass matrices are

me
ij ≡ v√

2
Y e

ij and so on. (2.25)

With no symmetries forcing them to take particular forms, these are in principle arbitrary

complex matrices which we can decompose by means of a singular value decomposition as

Y e = U eDeV e† and so on. (2.26)

Here U e and V e are both unitary and De is diagonal with non-negative real entries. By

redefining the fields
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Li → U e
ijLj and eRi → V e

ijeRj , (2.27)

which is nothing but a change of basis in flavour space, we are left with the diagonal

Yukawa interaction

LYuk ⊃ −De
ijLiHeRj + h.c., (2.28)

and in turn a diagonal mass matrix for the charged leptons. It is in this ‘mass basis’ that

we may then identify eR1 as the electron, eR2 as the muon, and eR3 as the tau, as in

Eqs. (2.11) or (2.13). We note that the matrices U e and V e are unphysical as the rest of

LSM is invariant under this change of basis:

Li /DL+ eRi /DeR → LU e†i /DU eL+ eRV
e†i /DV eeR (2.29)

= Li /DL+ eRi /DeR, (2.30)

where for readability I’ve suppressed the flavour indices and switched to a matrix multipli-

cation notation.

The situation is more complicated for quarks, where to diagonalise both Y u and Y d we

must apply

uL → UuuL, uR → V uuR and (2.31a)
dL → UddL, dR → V ddR. (2.31b)

Because Uu and Ud are in general different it is not possible to rotate the doublets via

Q → UQ =
(
UuL

UdL

)
(2.32)

to a basis in which both the up- and down-type quarks are mass eigenstates, and the

identifications in Eq. (2.12) should be made with this understanding. Nevertheless, we

can perform the separate rotations in Eq. (2.31) after electroweak symmetry breaking has

occurred and we have expanded out LSM in terms of uL and dL instead of Q. In doing
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this there is one place where, unlike the leptonic case, the matrices Uu and Ud do not

disappear: the W boson interactions, which couple the up- and down-type quarks. Indeed,

we can observe that

Qi /DQ ⊃ g2√
2

(
uL /W

+
dL + dL /W

−
uL

)
(2.33)

→ g2√
2

(
uLU

u† /W
+
UddL + dLU

d† /W
−
UuuL

)
(2.34)

= g2√
2

(
uLV /W

+
dL + dLV

† /W
−
uL

)
, (2.35)

where

V ≡ Uu†Ud, (2.36)

is called the Cabibbo–Kobayashi–Maskawa (CKM) matrix [128; 129]. The CKM

matrix captures the misalignment between the mass eigenstates and weak interaction

eigenstates, and any attempts to rotate it away will simply juggle it between the Wud

interaction and the quark Yukawas. It has four degrees of freedom, which in the so-called

standard parameterisation [130] take the form of three mixing angles θ12, θ13, θ23 ∈ [0, π/2]

and one CP -violating phase δ ∈ [0, 2π), and with the shorthands cij ≡ cos θij and sij ≡

sin θij it reads

V =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0
−s13e

iδ 0 c13


 c12 s12 0

−s12 c12 0
0 0 1

 (2.37)

=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

.
In Chapter 5 we will turn our attention to CP violation, and there the phase δ will

be of interest to us. A parameterisation-independent way of capturing the amount of

CP violation in the CKM matrix is through the Jarlskog invariant J [131], defined

via [122; 124]

Im(VijVklV
∗

ilV
∗

kj) = J
∑
m,n

εikmεjln, (2.38)
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Particle Mass [GeV] Particle Mass [GeV] Particle Mass [GeV]
e 0.511 × 10−3 u 2.2 × 10−3 d 4.7 × 10−3

µ 0.106 c 1.27 s 0.0935
τ 1.78 t 173 b 4.18

Charged Leptons Up-type Quarks Down-type Quarks

Table 2.2: Masses of the SM fermions [124]. For all quarks but the top quark the values
given correspond to MS masses, as pole masses are sensitive to non-perturbative infrared
effects in QCD.

with no summation over i, j, k, l; for example Im(VudVtbV
∗

ubV
∗

td) = J . In terms of the

standard parameterisation it equates to

J = c12c
2
13c23s12s13s23 sin δ, (2.39)

and we observe that it vanishes when any of the mixing angles are 0 or π
2 . Though it takes

more effort to see, the CP violation also vanishes if any of the quarks are massless (which

they are not).

From a recent global fit the magnitudes of the CKM matrix elements are [124]

|V | =

|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 ≈

0.974 0.225 0.004
0.225 0.973 0.042
0.009 0.041 0.999

, (2.40)

which corresponds to

sin θ12 ≈ 0.225, sin θ13 ≈ 0.004, sin θ23 ≈ 0.042, and δ ≈ 1.15, (2.41)

and the Jarlskog invariant is in turn

J ≈ 3.12 × 10−5. (2.42)

I lastly present the fermion masses in Table 2.2. As a final remark, we observe that the

Yukawa interactions have the interesting feature that particles couple to the Higgs boson

proportionally to their own mass. As the top quark is so much heavier than all other

leptons, with Yt ≡ Du
33 =

√
2mt/v ≈ 0.94 in the MS scheme [124], it is therefore common
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in many calculations to neglect contributions from all other particles. We will see one such

example of this in Chapter 6, where the top quark will provide the dominant contribution

to the thermal mass of the Higgs field.

2.2 Neutrino Masses

Owing to the fact that one has never been observed, right-handed neutrinos (RHNs) are

notably absent from the SM. Assuming they exist, it is easy to understand their non-

observation – neutrinos are electrically neutral and only interact with the rest of the SM

through the weak interaction, and the W boson only couples to left-handed particles. With

the gauge representation νR ∼ (1, 1, 0), an RHN would not even couple to the Z boson. In

this way, RHNs are often referred to as sterile neutrinos [87; 88; 132].

The exclusion of RHNs from the SM is however a problem, as SM neutrinos are massless

in the absence of right-handed partners. This stands in contrast to oscillation experiments

which definitively demonstrate that neutrinos are in fact massive [10–13; 133–151]. The

premise behind these experiments is straightforward: if neutrinos have mass then there

must be a leptonic analogue of the CKM matrix, and therefore a misalignment of the

weak interaction eigenstates νe, νµ, ντ and mass eigenstates ν1, ν2, ν3. This then means, for

example, that an electron neutrino νe—which is a superposition of ν1, ν2, ν3—may oscillate

into and be detected as a muon neutrino νµ, or vice versa. Neutrino oscillations are

then observed by measuring an under- or overabundance of differently-flavoured neutrinos

from a known source, such as the sun (solar neutrinos) [11; 12; 135; 136], cosmic rays

(atmospheric neutrinos) [10; 133; 134], accelerator beams (accelerator neutrinos) [139–143],

or radioactive sources (reactor neutrinos) [144–151].

One is tempted to declare the neutrino mass problem solved with the addition of RHNs and

suitable Yukawa interactions to the SM. This is however considered to be an unsatisfying

solution on two counts. The first is that it offers no explanation for why neutrinos, with

masses constrained to be below 1 eV [90; 124; 152; 153], are lighter than all other SM
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particles by many orders of magnitude. The second is that it ignores the possibility that

neutrinos are Majorana, which is to say their own antiparticle. Moreover, there is actually

a wide class of mechanisms for generating neutrino mass [35; 38], and without definitive

evidence favouring a particular one it would be irresponsible of us to not afford them due

consideration.

Let us therefore devote some time to a discussion on the anatomy of neutrino masses.

There are two types of fermion masses: Dirac and Majorana. Dirac masses feature both

left- and right-handed fields and take the familiar form

−mννLνR + h.c., (2.43)

where for simplicity I elide the flavour indices. With the two fields coupled the physical

neutrino field is the Dirac field ν ≡ νL + νR, which is described by the free Lagrangian

Lν = ν(i/∂ −mν)ν (2.44)
= νLi/∂νL + νRi/∂νR −mν(νLνR + νRνL). (2.45)

(This is familiar to us, as all other SM fermions combine into Dirac fields after electroweak

symmetry breaking, with ei = eLi + eRi, and so on.) As Dirac masses are not gauge

invariant they must be generated either through the Yukawa interaction

−Y νLH̃νR + h.c., (2.46)

or by more complicated means [38; 154].

Majorana masses, on the other hand, take the form

−1
2m

ννLν
c
L + h.c., (2.47)

where the conjugate field νc
L is defined as [155]

νc
L ≡ γ0Cν∗

L, (2.48)
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with C an antisymmetric unitary matrix defined to satisfy

C−1γµC = −(γµ)T . (2.49)

In this case the physical neutrino field is the Majorana field νM ≡ νL + νc
L, described by

LνM = 1
2νM (i/∂ −mν)νM (2.50)

= νLi/∂νL − 1
2m

ν(νLν
c
L + νc

LνL). (2.51)

Much like a Dirac mass, a Majorana mass term for νL is similarly not gauge invariant,

though in this case it may be generated by the Weinberg operator [156]

C5(LH̃)(H̃TLc) + h.c., (2.52)

whereupon mν = −v2C5. Unfortunately the Weinberg operator is of mass dimension five

and is therefore non-renormalizable, which indicates that it should be interpreted as an

effective operator for a UV-complete theory. Thus, a Majorana mass for νL requires BSM

physics.

What are the physical implications of Majorana masses? The most direct one is that

Majorana neutrinos are their own antiparticles, as νM = νc
M (which follows from (νc

L)c = νL)

implies that the particle and antiparticle creation operators in the mode expansion of νM

are the same [155]. Related to this is the fact that a Majorana mass for νL violates lepton

number U(1)L, an accidental symmetry of the SM in which

Li → eiθLi and eRi → eiθeRi, (2.53)

as

νLν
c
L → e−2iθνLν

c
L 6= νLν

c
L. (2.54)

Lepton number symmetry means that the total number of leptons minus anti-leptons
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n

n

p+

p+

e−

e−

W

W

νe

Figure 2.1: Neutrinoless double beta decay with a Majorana νe.

is conserved by every Standard Model process.3 A way to probe whether neutrinos are

Majorana is then to search for lepton number-violating processes such as neutrinoless double

beta decay [159], pictured in Fig. 2.1. (So far, it has not been observed [66; 160; 161].) One

may also leverage lepton number violation to attempt to explain the matter-antimatter

asymmetry of the universe through a mechanism called leptogenesis [102; 104], which we

will explore in Chapters 5 and 6.

Now, to diagonalise mν we must rotate

νL → UννL and νR → V ννR so that mν = UνDνV ν† (2.55)

in the Dirac case, and

νL → UννL so that mν = UνDνUνT (2.56)

in the Majorana case. The decomposition m = UDUT in Eq. (2.56), which is possible

because a Majorana mν is symmetric, is known as a Takagi factorisation; see for example

Refs. [162; 163]. In exact analogy with the quarks the matrix product

V ′ ≡ Uν†U e (2.57)

will appear in interactions with the W boson. Here it is conventional to remove the U e by

3Lepton number is actually violated anomalously by quantum effects [122; 157; 158],
though the combined baryon-minus-lepton number symmetry U(1)B−L, in which quarks
transform with charge 1

3 and leptons with charge −1, remains a symmetry even at the
quantum level if there are three RHNs.
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working in a basis in which the charged lepton masses have already been diagonalised via

Eq. (2.27);4 in this way

V ′ = Uν†, (2.58)

and in the mass basis the Weν interactions take the form

g2√
2

(
νLU

ν† /W
+
eL + eLU

ν /W
−
νL

)
. (2.59)

The matrix Uν , which I will henceforth simply call U , is known as the Pontecorvo–

Maki–Nakagawa–Sakata (PMNS) matrix [164; 165]. As it fulfils a similar role to the

CKM matrix it unsurprisingly admits the near-identical parameterisation

U =

1 0 0
0 c23 s23
0 −s23 c23


 c13 0 s13e

−iδ

0 1 0
−s13e

iδ 0 c13


 c12 s12 0

−s12 c12 0
0 0 1


eiα1 0 0

0 eiα2 0
0 0 1

 (2.60)

=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


eiα1 0 0

0 eiα2 0
0 0 1

.
In addition to the mixing angles θ12, θ13, θ23 ∈ [0, π/2] and the CP phase δ ∈ [0, 2π), the

PMNS matrix may also possess two Majorana phase degrees of freedom α1, α2 ∈ [0, 2π).

As the name suggests, these phases are physical only if neutrinos are Majorana, as they

can be rotated away in the Dirac case.

The PMNS matrix is measured by oscillation experiments, wherein the oscillation prob-

abilities depend on the mixing angles, the CP phase, and the mass squared differences

∆m2
ij ≡ m2

i − m2
j , though not on the Majorana phases [36; 124]. The mass squared

differences are important, and are measured to be [152]

∆m2
sol = ∆m2

21 ≈ 7.5 × 10−5 eV2 and |∆m2
atm| ≈ 2.5 × 10−3 eV2. (2.61)

The sign of ∆m2
sol is known because of the Mikheyev–Smirnov–Wolfenstein effect [166; 167]

4This is equivalent to replacing Uν → U eUν and correspondingly redefiningmν → U emν

(Dirac case) or mν → U emνU eT (Majorana case).
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in the sun, which alters the oscillation probabilities as neutrinos travel through the solar

matter. The unknown sign of ∆m2
atm allows for two possibilities: if it is positive then

the neutrino masses follow the normal ordering (NO) m1 < m2 < m3, and we identify

∆m2
atm > 0 with ∆m2

31. A negative ∆m2
atm, on the other hand, implies the inverted

ordering (IO) m3 < m1 < m2, in which case it is identified with ∆m2
32. The most recent

global fit, NuFit-6.0 [152], reports the values

sin θ12 ≈ 0.56, sin θ13 ≈ 0.15, and sin θ23 ≈ 0.72, (2.62)

with only a slight dependence on the ordering, while the CP phase is consistent with

virtually any value at 3σ (though the preferred value is substantially different for NO and

IO). This translates roughly to

|U | =

|Ue1| |Ue2| |Ue3|
|Uµ1| |Uµ2| |Uµ3|
|Uτ1| |Uτ2| |Uτ3|

 ≈

0.82 0.55 0.15
0.4 0.6 0.71
0.4 0.6 0.69

, (2.63)

with the understanding that there is considerable variance in the lower-left entries due to

the large uncertainty in δ. With the upcoming experiments JUNO [168], DUNE [169], and

Hyper-Kamiokande [170] seeking to measure the sign of ∆m2
atm and the value of δ with

much greater precision, it is expected that we will soon have a much clearer picture of |U |.

2.2.1 Mass Models

Now that we have a general understanding of neutrino masses, let us acquaint ourselves

with the mass models relevant to this thesis. These are the Type-I and Type-III Seesaw

models, to be studied in Chapter 4, and the Zee Model, to be studied in Chapters 6 and 7.

2.2.1.1 Type-I Seesaw

The Type-I Seesaw model [14–18] follows through with the idea of adding RHNs to the SM,

extending the SM particle content with nν right-handed sterile neutrinos νRi ∼ (1, 1, 0).

25



The Standard Model and Neutrinos

L L

H H

νR

(a) Type-I Seesaw

L L

H H

Σ0
R

(b) Type-III Seesaw

L L

Hi

Hj

eL

h− Hk

(c) Zee model

Figure 2.2: Neutrino mass diagrams for the three models studied in this thesis.

These sterile neutrinos participate in Yukawa interactions and—as they are not forbidden

by any gauge symmetry—additionally possess Majorana masses of their own, with

LνR = νRii/∂νRi −
(
Y ν

ijLiH̃νRj + h.c.
)

− 1
2
(
Mijνc

RiνRj + h.c.
)
. (2.64)

After electroweak symmetry breaking the Dirac and Majorana masses combine into the

form

Lν mass = −1
2
(
νL νc

R

)( 0 m
mT M

)(
νc

L

νR

)
+ h.c., (2.65)

where mij ≡ Y ν
ijv/

√
2, and the mass eigenstates are found by diagonalising this combined

mass matrix. A (3+nν)-by-(3+nν) unitary mixing matrix relates
(
νc

L νR

)T with the mass

eigenstates, which are all generically Majorana, and the PMNS matrix must be identified

with the 3-by-3 submatrix connecting νLi to the first three mass eigenstates. Unitarity of

the PMNS matrix is then no longer guaranteed, and PMNS unitarity tests offer a probe

of the existence of sterile neutrinos [171; 172].

In the limit that the eigenvalues of M are much larger than the entries of m the mass

matrix can be approximately block diagonalised into the form

(
−mM−1mT 0

0 M

)
, (2.66)

resulting in three light neutrinos and nν heavy ones. The terminology seesaw mechanism
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is then ascribed to the observation that as the heavy masses go up, the light masses go

down, and vice versa.

2.2.1.2 Type-III Seesaw

The Type-III Seesaw model [28] is very similar to Type-I, with the difference that the

fields introduced to fulfil the role of right-handed neutrinos are SU(2)W triplets instead of

singlets: ΣRi ∼ (1, 3, 0). These new fields similarly participate in Yukawa interactions and

have Majorana masses of their own, with [173; 174]

LΣR
= ΣRii /DΣRi −

(
Y Σ

ij LiΣa
Rjσ

aH̃ + h.c.
)

− 1
2
(
MijΣac

RiΣ
a
Rj + h.c.

)
, (2.67)

where a = 1, 2, 3. For a fixed triplet generation i, the eigenstates of electric charge are

given by the combinations

Σ±
Ri ≡ Σ1

Ri ∓ iΣ2
Ri√

2
and Σ0

Ri ≡ Σ3
Ri. (2.68)

The neutral component Σ0
R couples to neutrinos through the Yukawa interaction, and in

a manner completely analogous to Type-I Seesaw we obtain

Lν mass = −1
2
(
νL Σ0c

R

)( 0 m
mT M

)(
νc

L

Σ0
R

)
+ h.c. (2.69)

after electroweak symmetry breaking. The states Σ±
Ri instead mix into the charged leptons,

which leads to an enriched phenomenology compared to the Type-I model [173].

2.2.1.3 Zee Model

The Zee Model [23] is an example of a two-Higgs doublet model [175–177], extending the SM

with a second Higgs doublet H2 ∼ (1, 2, 1/2) and a charged scalar singlet h− ∼ (1, 1,−1).

The new Lagrangian terms relevant to neutrino masses are

27



The Standard Model and Neutrinos

L ⊃ −m2
hh

+h− +
(
µH̃†

1H2h
− − L̃fLh+ − L(Y †

1 H1 + Y †
2 H2)eR + h.c.

)
, (2.70)

where I employ a matrix multiplication notation for the coupling matrices Y1, Y2 (which

are defined with a dagger relative to our SM definition), and f . The second Higgs doublet

in principle also couples to the quarks, and the scalar potential is greatly enlarged with

interactions such as |H1|2|H2|2, |H†
1H2 |2, and |h−|2|Hi|2.

Though both Higgs doublets can acquire a VEV, it is convenient to rotate to the Higgs

basis [178; 179] in which v ≈ 246 GeV is placed in H1 alone, and Y1 is real, diagonal,

and positive. Due to Fermi statistics the coupling matrix f is necessarily antisymmetric,

f = −fT , and moreover it can be taken to be real by simultaneously rephasing L and eR,

so that Y1 remains unaffected. By rephasing h− we may also take µ to be real.

Majorana neutrino masses arise in the Zee model at the one-loop level, and in the so-called

decoupling limit are given by [179; 180]

mν
ij = − s2ϕ

16π2
v√
2

ln

m2
h+

2

m2
h+

1

(fY1Y2 + Y T
2 Y

T
1 f

T
)

ij
, (2.71)

where h+
1,2 are mass eigenstates produced by the mixing of h+ with the charged component

of H2, and

s2ϕ =
√

2vµ
m2

h+
2

−m2
h+

1

. (2.72)

Here the decoupling limit refers to the limit in which the CP -conserving neutral components

of H1 and H2 do not mix, resulting in an SM-like Higgs boson h [178; 179].

We note that lepton number is violated in the Zee model by the peculiar L̃Lh+ interaction.

One may attempt to enlarge the symmetry by assigning 2 units of lepton number to h−, in

which case it is then violated by the equally peculiar H̃†
1H2h

− interaction. It is therefore

unsurprising that the Majorana mass matrix is proportional to both µ and f .
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The most conservative form of the Zee model is the Zee-Wolfenstein realisation [23; 181],

in which a Z2 symmetry is imposed onto H2 as to forbid the appearance of the second

Yukawa interaction Y2. Though this realisation has been ruled out [182; 183], the more

general Zee model remains viable [179; 184].
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What if a particle is heavier than 1 TeV?
We ask it politely, yet firmly, to leave.

Bobby and Hank Hill,
in King of the Hill,

reimagined
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The general success of the Standard Model and the persistent non-observation of clear

signals of new physics (for instance, in searches by the ATLAS [55–60] and CMS [61–

65] experiments) indicates that new particles, if they exist, must be either very heavy

(M & 1 TeV) or very weakly coupled to the SM. If the former is the case then there is

a considerable gap between the electroweak scale v ≈ 246 GeV and the scale Λ = M of

new physics, and it should be possible to express the effect of such new physics as a well-
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defined expansion in powers of v/Λ and p2/Λ2. A powerful technique for systematically

constructing such an expansion is found in the framework of effective field theories

(EFTs), which is the topic of this chapter.

What follows is a review of well-known concepts and materials that largely cannot be

considered original. A partial exception to this is Section 3.2.1 on parameter shifts,1 which

resulted from considerable toil on my part towards understanding some seemingly-arcane

formulas presented in the literature (such as in Ref. [86]). Evidently the material of that

section is well-known by the wider community, and indeed a well-presented exposition can

be found in Ref. [185, Sec. 4] and references therein, though I regrettably only discovered

it while editing this chapter.

Excellent general references for effective field theories are Refs. [186–188], while the re-

cent review of Ref. [189] additionally provides a comprehensive coverage of Standard

Model Effective Field Theory (SMEFT). Good supplementary references for SMEFT are

Refs. [185; 190–192].

3.1 Constructing an EFT

Suppose we have a theory in which we can separate the field content into ‘light’ fields φi

and ‘heavy’ fields Φi, and the Lagrangian into

L(φi,Φi) = LIR(φi) + LUV(φi,Φi). (3.1)

An EFT for this theory is one containing only the light fields φi, with

Leff(φi) = LIR(φi) +
∑

n

CnOn, (3.2)

where the effective operators On = On(φi) and Wilson coefficients Cn capture the

1This section is adapted from the appendix of the publication Riding the Seesaw: What
Higgsstrahlung May Reveal about Massive Neutrinos [1], of which the main content forms
the next chapter.
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influence of the heavy fields. Formally these two theories are related through the path

integral representation

∫
Dφi exp

(
i
∫

d4xLeff

)
=
∫

DφiDΦi exp
(

i
∫

d4xL
)
, (3.3)

and the heavy fields are therefore said to have been integrated out. To compute Leff

there are two main methods available to us: functional and diagrammatic matching. The

functional approach requires carefully carrying out integral in Eq. (3.3) [193–197], while the

diagrammatic one involves drawing all possible diagrams in the full and effective theories

and insisting they agree, or rather, match, when computing physical observables. As it

is more readily interpretable and we are not too concerned with the finer details of the

procedure, we will restrict our attention to diagrammatic matching.

Example
To motivate a discussion of general features of EFTs it is helpful to study a simple

matching calculation. Our chosen example is the archetypal 4-Fermi theory, where

the W boson is integrated out from the SM to obtain effective four-fermion interac-

tions. To this end, let us consider the representative scattering process µ−νµ → e−νe,

which in the SM is due to the interactions

LUV ⊃ g2√
2

(
νµ /W

+
PLµ+ e /W

−
PLνe

)
+ h.c. (3.4)

and looks like

µ−

νµ

e−

νe

W = −g2
2
2 (vνµγ

αPLuµ) −igαβ

p2 −m2
W

(ueγ
βPLvνe). (3.5)

In an EFT without the W boson this process must instead originate from interactions

such as

Leff ⊃ CF (νµγαPLµ)(eγαPLνe) + h.c., (3.6)
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where it then takes the form

µ−

νµ

e−

νe

= iCF (vνµγ
αPLuµ)(ueγαPLvνe). (3.7)

Here and in the future we use a crossed dot to denote an effective vertex. To match

Eq. (3.7) onto Eq. (3.5) we make the important observation that the effective theory

can only stand a chance of reproducing the predictions of the full theory at energies

below the mass of the W boson, since at higher energies it is possible to create

physical W particles, which the EFT is incapable of describing. We must therefore

restrict ourselves to p2 < m2
W , which licenses us to expand the W propagator in the

full theory as

1
p2 −m2

W

= − 1
m2

W

(
1 + p2

m2
W

+ p4

m4
W

+ . . .

)
. (3.8)

The lowest-order term is reproduced by our effective operator if we set its Wilson

coefficient to

CF = − g2
2

2m2
W

≡ −4GF√
2
, (3.9)

where

GF ≡
√

2g2
2

8m2
W

= 1√
2v2 (3.10)

is the famous Fermi constant. The higher-order terms in the expansion match

onto the infinite tower of operators

O�n = (νµγαPLµ)�n(eγαPLνe), (3.11)

and the corresponding Wilson coefficients are evidently suppressed by additional
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powers of 1/m2
W . Correctly treating the W boson propagator in unitary gauge,

which requires replacing gαβ → gαβ − pαpβ/m
2
W , similarly leads to the generation

of additional subdominant operators.

So far we have considered only tree-level diagrams, and we have therefore performed

what is known as tree-level matching. A more accurate matching calculation will

seek to match the effective theory to the full theory at the loop level in what is called

one-loop matching, two-loop matching, and so on. Though loop-level matching is

naturally more involved, the general procedure is in essence identical to the one we

just undertook.

One might wonder why we bother with EFTs, as in the above example we appear to have

exchanged two interaction terms for infinitely many – an infinite increase in complexity!

However, our example also makes clear that in practice we will only need to consider

finitely many effective operators to achieve a reasonably accurate result, provided of course

that the relevant physical scales are sufficiently separated from the heavy scales. Muon

decay µ− → e−νeνµ, for instance, is described rather accurately by the single operator in

Eq. (3.6), as there p2 < m2
µ � m2

W .

In a general EFT we can usually assess the importance of an operator by its mass

dimension. The mass dimension of an object refers to its units as a power of mass (or

equivalently energy), and is denoted with square brackets – for example,

[E] = [m] = 1, [xµ] = −1, and [pµ] = [∂µ] = 1. (3.12)

In d-dimensional spacetime the mass dimension of a Lagrangian is [L] = d, which implies

that in four dimensions the mass dimension of bosonic and fermionic fields are respectively

[φ] = [Aµ] = 1 and [ψ] = 3
2 . (3.13)

From this we can deduce that our effective operators have dimension
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[(νµγαPLµ)(eγαPLνe)] = 6 and (3.14a)
[(νµγαPLµ)�n(eγαPLνe)] = 6 + 2n, (3.14b)

and to ensure [L] = 4 their respective Wilson coefficients must in turn have

[CF ] = −2 and [C�n ] = −2 − 2n; (3.15)

indeed,

CF ∝ 1
m2

W

and C�n ∝ 1
m2+2n

W

. (3.16)

Thus, higher-dimensional operators are generically suppressed by higher powers of a heavy

mass scale. It is common in the literature to make this suppression explicit by extracting

this scale from the Wilson coefficients and writing

Leff = LIR +
∑

n

Cn

Λ[On]−4 On, (3.17)

though we will not adopt this convention. In any case, it is often sufficient in EFT studies

to limit one’s attention to the lowest-dimensional effective operators.

A noteworthy feature of operators with [O] > 4 is that they are non-renormalizable, which

means that an infinite number of counterterms—and therefore parameters—are required

to remove all divergences in a theory with such operators present. While this would be

problematic for a theory that purports to be fundamental, it is of no concern for an EFT,

where infinitely-many operators are already expected. In practice, one deals with the

non-renormalizability of an EFT by truncating a given computation to a fixed order in

1/Λ, such that higher-order divergences and counterterms are ignored.

Lastly, it is worth remarking that a given collection of operators {On} may be redundant

in the sense that some operators—after possible application of Fierz identities, field re-

definitions, or integration by parts—can be realised as linear combinations of others – for

example [198],
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(Liγµσ
aLj)(Lkγ

µσaLl) = 2(LiγµLl)(Lkγ
µLj) − (LiγµLj)(Lkγ

µLl). (3.18)

To avoid double-counting contributions to physical observables it is desirable to work in

terms of a non-redundant operator basis. Fortunately, such a basis is known at dimension-

six for the EFTs considered in the next two sections [198; 199], so we will not need to

worry about this complication.

3.2 SMEFT

As indicated at the start of this chapter, there is convincing evidence that the SM should

be viewed as the low-energy remnant of a more fundamental theory, with a considerable

gap between the largest SM scale v and the scale Λ of new physics. This motivates the use

of an EFT approach to study such new physics, canonised as Standard Model Effective

Field Theory (SMEFT):

LSMEFT = LSM +
∑

n

CnOn. (3.19)

Per our discussion above, we are most interested in the lowest-dimensional effective opera-

tors, meaning dimension-five and -six. At dimension-five there is a single unique operator

compatible with the SM gauge group (up to a Hermitian conjugate) – the Weinberg opera-

tor [156]

O5,ij = (LiH̃)(H̃TLc
j). (3.20)

We encountered this operator in the previous chapter, where we saw that, if present,

it generates Majorana masses for neutrinos after electroweak symmetry breaking. At

dimension-six there are 63 additional operators (or 59 if we disallow baryon number

violation), and the most popular non-redundant basis for them is the so-called Warsaw

Basis [198]. A handful of Warsaw basis operators are presented in Table 3.1.
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OHW (H†H)W a
µνW

aµν OeH,ij (H†H)(LiHeRj)
OHB (H†H)BµνB

µν OHe,ij (H†i
↔
DµH)(eRiγ

µeRj)
OHW B (H†σaH)W a

µνB
µν O(1)

HL,ij (H†i
↔
DµH)(Liγ

µLj)
OeW,ij (Liσ

µνσaeRj)HW a
µν O(3)

HL,ij (H†i
↔
Da

µH)(Liσ
aγµLj)

OeB,ij (Liσ
µνeRj)HBµν OLL,ijkl (LiγµLj)(Lkγ

µLl)

OH (H†H)3

OH� (H†H)�(H†H)
OHD (H†DµH)∗(H†DµH)

Table 3.1: The dimension-six SMEFT operators in the Warsaw basis most relevant to this
thesis. Here σµν ≡ i

2 [γµ, γν ] and H†i
↔
Da

µH ≡ iH†σaDµH − i(DµH)†σaH.

The great advantage offered by SMEFT is that it provides a model-agnostic means of

performing phenomenological analyses. With it one can work out the physics once and for

all as a function of the Wilson coefficients, and then the study of a particular BSM model

becomes nearly as simple as matching onto SMEFT. With the advent of software packages

such as DsixTools [200; 201], wilson [202], SMEFTsim [185; 203], SmeftFR [204–206],

MatchMakerEFT [207], and Matchete [197] automating much of the required work, this

procedure is becoming increasingly painless with time. In principle, one could even conceive

of a global fit of the SMEFT parameters to all available experimental data, but this is

infeasible: at dimension-six there are 3045 such parameters (or 2499 if we restrict to baryon

number-conserving operators) [190; 199; 201] – far too many to optimise over. Though this

number can be reduced by assuming the SMEFT Wilson coefficients obey certain flavour

symmetries, it nonetheless remains prohibitively large [185].

Of course, SMEFT is not a silver bullet for all our BSM needs, as the load-bearing

assumption that all new fields are heavy is not borne out by all BSM models. To carry

out an EFT analysis in such models it is necessary to work with an expanded operator

basis constructed from SM fields and the new light fields, such as in νSMEFT [208; 209]

or the Dark Matter SMEFT (DSMEFT) of Ref. [210]. We will not pursue this.
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3.2.1 Parameter Shifts in SMEFT

An important but oft-overlooked effect of BSM physics is that it alters the relationship

between measured quantities and SM parameters, most often due to new loop contributions

from new particles. This means that the extraction of SM parameters from such quantities

should be modified, resulting in shifts to these parameters which then cascades to shifts in

all SM predictions. One might imagine accounting for these shifts in a given BSM model to

be a rather laborious task. Fortunately, we can systematically treat this effect in SMEFT.

Such a treatment requires that we distinguish two conceptually different contributions

from effective operators. The first type of contribution occurs at the Lagrangian level

due to operators featuring the Higgs field H. After electroweak symmetry breaking these

operators will contribute to the SM part of the SMEFT Lagrangian – for instance,

OeH,ij = (H†H)(LiHeRj) ⊃ v2

2 (LiHeRj) (3.21)

will directly add to the SM Yukawa interaction −Y e
ijLiHeRj , resulting in an effective

Yukawa matrix

Ȳ e
ij ≡ Y e

ij − v2

2 CeH,ij . (3.22)

The second type of contribution concerns the extraction of parameters from data, and is

dependent on one’s input scheme. An input scheme refers to a choice of input parameters,

and is necessary because many SM parameters are related algebraically. Of particular

relevance to us, the electroweak sector admits four independent parameters which we can

understand as originating from the gauge couplings g1, g2 and the Higgs’ self-couplings µ, λ,

though we often interface with many derived parameters such as mW ,mZ ,mh, v,GF , e,

and sin2 θw. In practice the (α,mZ , GF ,mh)2 and (mW ,mZ , GF ,mh) schemes are the most

commonly used, as these parameters are precisely measured and relatively unaffected in

SMEFT [211; 212]. I will opt to use the former scheme, abbreviated as (α,mZ , GF ), for

2Here α = e2/4π is the electromagnetic fine structure constant.

39



Theory: Effective Field Theories

the remainder of this thesis.

Let us now investigate these two contributions to the parameter shifts in detail. Our goal

is to obtain an expression for the shift in an observable,

∆σ = σSMEFT − σSM, (3.23)

due to these parameter shifts. In what follows we will work to leading order in (v/Λ)2,

where we recall that a factor of 1/Λ2 is implicit in every dimension-six Wilson coefficient.

Part 1: Effective Parameters The first step in this analysis is to examine how the SM

Lagrangian is altered after electroweak symmetry breaking by the presence of operators

featuring H. Such an examination can be found for instance in Refs. [185; 189–192]; here

I will summarise only the salient points.

To start, the operator OH = (H†H)3 changes the shape of the Higgs’ potential, resulting

in the VEV taking on the ‘true’ value

vT =
(

1 + 3v2

4λ CH

)
v. (3.24)

Next, the operators OHW ,OHB,OH�, and OHD contribute to the kinetic terms of the

gauge fields and the Higgs boson, which must be redefined to

W a
µ →

(
1 + v2

TCHW

)
W a

µ , (3.25a)

Bµ →
(
1 + v2

TCHB

)
Bµ, and (3.25b)

h →
(

1 + v2
TCH� − 1

4v
2
TCHD

)
h (3.25c)

to ensure they remain correctly normalised. (In these expressions we may interchange

v and vT freely since the difference is second-order in (v/Λ)2.) While the factors in the

redefinition of h are then carried to every interaction of it with other fields, the gauge

boson factors can be absorbed by correspondingly redefining the gauge couplings to
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g2 →
(
1 − v2

TCHW

)
g2 and g1 →

(
1 − v2

TCHB

)
g1. (3.26)

Finally, the operator OHW B introduces additional mixing between the mass eigenstates

Zµ and Aµ, which must then be re-diagonalised.

Once these redefinitions have been carried out and the dust has settled it is convenient

to introduce a barred notation, ḡ, for effective parameters that appear in place of their

unbarred form in the SMEFT Lagrangian. For example, the Z boson part of the gauge-

covariant derivative, which in the SM reads

Dµ ⊃ −igZ(T 3 −Qs2
w)Zµ, (3.27)

(where we abbreviate s2
w ≡ sin2 θw,) becomes in SMEFT

Dµ ⊃ −iḡZ(T 3 −Qs̄2
w)Zµ, (3.28)

where

ḡZ =
√
g2

1 + g2
2

(
1 + g1g2

g2
1 + g2

2
v2

TCHW B

)
and (3.29a)

s̄2
w = g2

1
g2

1 + g2
2

(
1 − g2

g1

g2
1 − g2

2
g2

1 + g2
2
v2

TCHW B

)
. (3.29b)

To denote the shifts of these parameters from their SM expressions we write

ḡZ = gZ + δḡZ where δḡZ

gZ
= g1g2
g2

1 + g2
2
v2

TCHW B, and (3.30a)

s̄2
w = s2

w + δs̄2
w where δs̄2

w

s2
w

= −g2
g1

g2
1 − g2

2
g2

1 + g2
2
v2

TCHW B. (3.30b)

Note that δḡZ/gZ = δḡZ/ḡZ at order (v/Λ)2 (and similarly so for every other parameter);

I will consistently opt to write the former.

To reiterate the notation and have a referenceable equation, the shift for a general parameter

g is written
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Symbol Relation Meaning
g, α — Original SM parameter appearing in LSM

ḡ, ᾱ ḡ = g + δḡ A ‘true’ parameter appearing in place of g in LSMEFT

α̂ α̂ = α+ δᾱ+ δα̂ Input parameter
ĝ ĝ = g + δĝ Parameter computed from the input parameters

Table 3.2: Summary of notation used for the different types of parameters.

ḡ = g + δḡ. (3.31)

There is one exception to this notational rule in vT , which should be written v̄ for consis-

tency, but isn’t by convention. In this case we have vT = v + δv̄.

Part 2: Input Parameters Let us refer to our chosen input parameters with the symbol

α, and use a hat to denote the measured value of these parameters, α̂. It is possible for

α̂ to differ from the Lagrangian value ᾱ due to the contribution of new diagrams to the

process through which α is measured; labelling this additional shift δα̂, we have

α̂ = ᾱ+ δα̂ = α+ δᾱ+ δα̂. (3.32)

Such diagrams typically arise at the loop order or at O
(
(v/Λ)4), which we neglect, therefore

leaving δα̂ = 0. The sole exception to this is the Fermi constant, which acquires tree-level

contributions to δĜF from the diagrams in Fig. 3.1, giving

δĜF = 1√
2

(
C

(3)
HL,11 + C

(3)
HL,22

)
− 1

2
√

2
(CLL,1221 + CLL,2112). (3.33)

For a parameter computed from the input parameters using the tree-level SM relations we

will also use a hat: ĝ ≡ g(α̂i). (One simple example would be computing the elementary

charge from the measured value of the fine structure constant via ê =
√

4πα̂.) For these

parameters we instead have

ĝ = g +
∑

i

∂g

∂αi
(δᾱi + δα̂i) ≡ g + δĝ. (3.34)
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µ−

νµ

e−

νe

W

C
(3)
HL,11

µ−

νµ

e−

νe

W

C
(3)
HL,22

µ−

νµ

e−

νe

CLL,1221, CLL,2112

Figure 3.1: The Fermi constant is obtained from measurements of the muon lifetime.
Pictured are muon decay diagrams with the effective operators contributing to δĜF .

By combining Eqs. (3.31) and (3.34) we see that

ḡ = ĝ + δḡ − δĝ (3.35)
≡ ĝ + δg,

and as will soon become apparent, we are most interested in this total shift,

δg ≡ δḡ − δĝ = δḡ −
∑

i

∂g

∂αi
(δᾱi + δα̂i). (3.36)

Example
To make this less abstract, let’s work out the shift in gZZh, which appears in the

SM Lagrangian as

LSM ⊃ 1
4g

2
ZvZµZ

µh ≡ 1
2gZZhZµZ

µh. (3.37)

In SMEFT this becomes

L ⊃ 1
4 ḡ

2
ZvTZµZ

µ
(

1 + v2
TCH� − 1

4v
2
TCHD

)
h+ CHD

1
2g

2
Zv

3
TZµZ

µh (3.38)

= 1
4g

2
Zv

(
1 + 2δḡZ

gZ
+ δv̄

v
+ v2

TCH� + 3
4v

2
TCHD

)
ZµZ

µh (3.39)

≡ 1
2 ḡZZhZµZ

µh, (3.40)

where OHD directly contributes a new ZµZ
µh term, and we recall from Eq. (3.25c)

that h is redefined with a new normalisation. From this we can read off
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δḡZZh

gZZh
= 2δḡZ

gZ
+ δv̄

v
+ v2

TCH� + 3
4v

2
TCHD (3.41)

= 2cwswv
2
TCHW B + v2

TCH� + 3
4v

2
TCHD + δv̄

v
. (3.42)

The δĝZZh part of the full shift depends on one’s choice of input parameters; in the

(α,mZ , GF ) scheme one has

ĝZZh = 25/4m̂2
Z

√
ĜF , (3.43)

which is a tree-level relation valid in the SM. In accordance with Eq. (3.34) we then

have

δĝZZh

gZZh
=
(
δm̄2

Z

m2
Z

+ δm̂2
Z

m2
Z

)
+ 1

2

(
δḠF

GF
+ δĜF

GF

)
. (3.44)

Plugging in the known shifts3

δm̄2
Z

m2
Z

= 1
2v

2
TCHD +2cwswv

2
TCHW B +2δv̄

v
,

δm̂2
Z

m2
Z

= 0, δḠF

GF
= −2δv̄

v
, (3.45)

and leaving δĜF /GF symbolic as it has the cumbersome expression of Eq. (3.33),

this evaluates to

δĝZZh

gZZh
= 1

2v
2
TCHD + 2cwswv

2
TCHW B + δv̄

v
+ 1

2
δĜF

GF
. (3.46)

Lastly, we bring it all together as per Eq. (3.36) to obtain

3One arrives at the shift δḠF by writing

ḠF = 1√
2v2

T

= 1√
2v2

(
1 − 2δv̄

v

)
.

δm̄Z is more involved, as m̄2
Z additionally receives a direct contribution from OHD and

an indirect contribution from OHW B due to the rediagonalisation of Zµ and Aµ. Lastly,
δm̂Z is zero as there are no tree-level diagrams at order (v/Λ)2 which contribute to the Z
boson’s self energy.
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δgZZh

gZZh
= δḡZZh

gZZh
− δĝZZh

gZZh
(3.47)

= v2
TCH� + 1

4v
2
TCHD − 1

2
δĜF

GF

= v2
T

(
CH� + 1

4CHD − 1√
2
δĜF

)
. (3.48)

Note that the dependence on δv̄ completely cancels. This is a general trend for all

shifts relevant to this thesis – thus, for our purposes, the replacement v → vT is

functionally unphysical.

Part 3: Shifts in Observables We now come to the climax of this exposition. Suppose

that SMEFT represents the ‘true’ theory, and that we wish to compute the correction

to a quantity such as a cross section which has been calculated under the mistaken

assumption that the SM was the correct theory: ∆σ = σSMEFT − σSM. In addition to

direct contributions from new operators, there will be an indirect contribution from the

shifts of the SM parameters.

To arrive at this conclusion carefully, convince yourself that the correct cross section should

be written in terms of the barred parameters, σ(ᾱi, ḡj), as—after all—these parameters

are the ones extant in the ‘true’ Lagrangian. In the SM, however, the distinction between

g, ḡ, and ĝ is meaningless,4 and one computes the cross section simply as a function of the

measured parameters, σ(α̂i, ĝj). Explicitly,

σSMEFT = σ(ᾱi, ḡj) + ∆σDirect and σSM = σ(α̂i, ĝj), (3.49)

and so

4Actually, it’s not strictly true that ĝi = gi, as there will be loop effects contributing
to the screening of gi even in the SM. This is however a separate shift to the one under
consideration and it can be independently dealt with, so we do not treat it here.
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∆σ = ∆σDirect + σ(ᾱi, ḡj) − σ(α̂i, ĝj) (3.50)

= ∆σDirect +
∑

i

∂σ

∂αi
(ᾱi − α̂i) +

∑
j

∂σ

∂gj
(ḡj − ĝj), (3.51)

or

∆σ = ∆σDirect −
∑

i

∂σ

∂αi
δα̂i +

∑
j

∂σ

∂gj
δgj . (3.52)

It is worth emphasising that Eq. (3.52) applies only when computing a correction to an

SM prediction, which we do in Sections 4.3.1 and 4.3.2 of the next chapter. However, as

in Sections 4.3.3 and 4.3.4, it does not apply when one is only interested in the SMEFT

prediction, σSMEFT.

3.3 LEFT

To describe processes at energies significantly below the electroweak scale—and more

pertinently, new physics contributions to these processes—it is better to use an EFT in

which the heavy W , Z, and h bosons, as well as the top quark t, have additionally been

integrated out. Such an EFT is known as Low-energy Effective Field Theory (LEFT)

or Weak Effective Theory. The operative symmetry in LEFT is SU(3)C × U(1)EM,

and the standard operator basis is the Jenkins–Manohar–Stoffer (JMS), or San Diego

basis [199]. The JMS basis consists of the dimension-three operator

Oν,ij = νc
LiνLj , (3.53)

which is a Majorana mass for νL; six dimension-five operators such as

Oeγ,ij = (eiσ
µνPRej)Fµν , (3.54)

known as dipole operators; and 89 dimension-six operators such as
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OV,LL
νe,ijkl = (νiγµPLνj)(ekγ

µPLel), (3.55)

which generalises the operator OF used in the 4-Fermi example earlier in this chapter.5

As the masses of the heavy particles W , Z, h, and t are all proportional to v we generically

expect the Wilson coefficients to scale with v, with for instance C ∝ 1/v2 for the dimension-

six coefficients. When LEFT is matched to SMEFT, however, it will inherit the scaling

against the new physics scale Λ from the SMEFT Wilson coefficients. For example, tree-

level matching onto OV,LL
νe reads [199]

CV,LL
νe,ijkl = − 2

v2
T

(
δil + v2

TC
(3)
HL,il

)(
δjk + v2

TC
(3)∗
HL,jk

)
+ CLL,ijkl + CLL,lkji + . . . (3.56)

= − 2
v2

T

δilδjk − 2δilC
(3)∗
HL,jk − 2δjkC

(3)
HL,il + CLL,ijkl + CLL,lkji + . . . . (3.57)

The first term reproduces the 4-Fermi result, Eq. (3.9), and exhibits the expected 1/v2

scaling, while the remaining terms shown all scale instead as 1/Λ2.

To match a BSM model onto LEFT it is typical to first match the model onto SMEFT and

then match SMEFT onto LEFT; in this way we can reuse known matching results without

needing to perform additional work. Doing this correctly however requires that we match

onto SMEFT at the high scale µ ∼ Λ and run the SMEFT parameters down to the scale

µ ∼ mZ before matching to LEFT. Fortunately for the practising researcher, the public

codes DsixTools [200; 201] and wilson [202] provide convenient automatic routines for

running and matching between SMEFT and LEFT.

The aforementioned running—short for renormalization group (RG) running—of a

theory’s parameters is important enough to warrant a brief word. As the name suggests,

it is a consequence of the renormalization procedure, and its origin can be traced to the

appearance of logarithms such as

5Though the form of OV,LL
νe may appear different to that of OF in Eq. (3.6), we can

apply a Fierz transformation to equivalently write OV,LL
νe,ijkl = (νiγµPLel)(ekγ

µPLνj).
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ln µ2

m2 or ln µ
2

p2 (3.58)

in loop calculations. Here µ is an unphysical scale introduced in dimensional regularisation,

in which divergent integrals are regulated by evaluating them in d = 4 − ε dimensions.

Its unphysicality critically implies that the renormalized couplings and Wilson coefficients

must also depend on µ in such a way that µ drops out of all physical observables:

d
dµσ(gi(µ), Ci(µ);µ) = 0. (3.59)

Eq. (3.59) leads to the renormalization group equations (RGEs), which can be solved

to determine gi(µ) and Ci(µ). Though µ is unphysical and gi(µ) and Ci(µ) are therefore

in principle meaningless functions, it is conventional to attempt to make contact with

physical reality by choosing µ to coincide with the relevant energy scale Q of a process.

The rationale behind this choice is that powers of ln
(
µ2/Q2) will appear in the perturbative

Dyson series, and the convergence—and therefore reliability—of this series is maximised

if these log factors were to vanish. Thus, the zeitgeist demands that when one wishes to

perform a calculation for a process using parameters measured (or otherwise extracted) at

a vastly different energy scale, it is necessary to run the RGEs to ensure the accuracy of

the result.

In SMEFT and LEFT the RGEs take the form [190; 213]

16π2µ
dCi

dµ = γijCj , (3.60)

and though this expression suggests otherwise, they are nonlinear. An important con-

sequence of the RGEs is that the effective operators mix into each other, meaning that

operators which do not arise from matching may still be induced by running from the

matching scale.

There is much more that can be said about RG running, but here is a good place to stop;

for more exposition in the EFT context I refer you to Refs. [186–188].
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In this chapter we’ll investigate if high-precision measurements of the cross section of the

Higgsstrahlung process
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e+e− → Zh

at a future electron-positron collider can be used to probe the Type-I and Type-III Seesaw

models (together referred to as the fermionic Seesaw models). Using an effective field

theory approach we’ll compare the collider reaches to constraints from electroweak ob-

servables and probes of lepton flavour universality, as well as the existing and prospective

bounds from searches for lepton flavour violation. At risk of ruining the suspense, it

turns out that a measurement of σ(e+e− → Zh) in agreement with the SM prediction

is necessitated in Type-I Seesaw, whereas a difference of up to O(10%) is possible with

Type-III Seesaw. In this way, we demonstrate that Higgsstrahlung promises to function

as a probe complementary to existing experiments.

This chapter is a taxidermied reproduction of a publication of the same name [1], with slight

alterations to the wording and exposition to ensure it flows well from the previous chapters.

My contribution to this work was significant, including the derivation of expressions for

shifts in SMEFT, the generation of all results and plots, and much of the discussion.1

4.1 Introduction

The discovery of the Higgs boson in 2012 [3; 4], while momentous, marked only the first

foray into the era of observational Higgs physics. Many of the Higgs’ properties remain to

this day only imprecisely determined, and rectifying this is a major goal in the proposed

program of next-generation lepton colliders. There are five proposals for so-called electron-

positron ‘Higgs factories’ [85]: the Circular Electron Positron Collider (CEPC) [68–70], the

International Linear Collider (ILC) [71–74], the Future Circular Collider (FCC-ee) [75–78],

the Compact Linear Collider (CLIC) [79–81] and the Cool Copper Collider (C3) [82–84].

The designation ‘Higgs factory’ mainly refers to the stage in which a future e+e− collider

1I also acknowledge the contributions of my coauthors Tobias Felkl and Michael Schmidt,
which I feel were equally significant.
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is run at a centre-of-mass energy of roughly
√
s = 240–250 GeV, where the integrated cross

section of the Higgsstrahlung process peaks and so dominates over all Higgs production

mechanisms. Other stages involve the operation as a ‘Z factory’ at
√
s = mZ , close to

the W+W− production threshold at
√
s = 2mW , and close to or at the tt̄ threshold for

√
s = 350–370 GeV, as well as potential upgrades for runs at even higher centre-of-mass

energies [214].

It should come as no surprise that physicists, being the enterprising lot that they are,

have sought to understand the extent to which these colliders can also be used to test

various BSM scenarios. Many studies, for instance, focus on the direct production of sterile

neutrinos in electroweak and Higgs production processes [215–223], and there are a number

of reviews on the observational prospects of heavy neutral leptons [224–227]. Electroweak

triplet fermions at colliders have similarly been studied for example in Refs. [228; 229]. The

anticipated high precision attainable at future lepton colliders also serves as a motivation

to consider virtual corrections [230] – for instance, Refs. [231; 232] study the contribution

of sterile neutrinos to the triple-Higgs coupling.

Here we will investigate whether we may exploit measurements of the Higgsstrahlung cross

section at a future collider to test the Type-I and -III Seesaw models of neutrino mass.

The anticipated sub-percent precision of these measurements is due to the so-called ‘recoil

method’, where Higgsstrahlung events are selected by measuring the four-momenta of

the decay products of the Z boson, which recoils against the Higgs boson. This method

is in principle applicable for any Higgs decay mode, allowing for a model-independent

reconstruction of the Higgs boson mass [85]. Moreover, Higgsstrahlung is well-understood

in the SM, with two-loop electroweak corrections to the SM cross section recently calculated

in Refs. [233; 234]; see also Refs. [235–241].

In what follows we will consider the process at two benchmark centre-of-mass energies,
√
s = 240 GeV and 365 GeV. As argued for in Ref. [242], the smaller cross section at

larger s can be partly compensated for by a higher instantaneous luminosity which scales

approximately linearly with s. Moreover, the additional boost of the Z and h bosons allows

for a better separation of the respective jets and therefore a more precise measurement of
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σZh × BR(h → X). Further advantages mentioned are the immediate access to top-pair

production as well as the e+e− → hνeνe process via W+W− fusion, which enables a precise

determination of the Higgs boson width as well as the offering the potential to measure

mh with a precision similar to that of
√
s = 240 GeV.

Now, for both models considered here the Seesaw relation

mν ' v2

M
Y 2 (4.1)

suggests that to accommodate sterile states with M = O(TeV) the neutrino Yukawa cou-

plings must be tiny, meaning lepton number-conserving processes will be suppressed [243–

245] and beyond the reach of the proposed lepton colliders. This restriction can however

be circumvented in symmetry-protected Seesaw models [173; 243; 246–255], where the im-

position of an (approximate) symmetry will allow us to entertain relatively light singlets

or triplets around the TeV scale without the need to assume tiny Yukawa couplings. This

symmetry permits some elements of the Dirac and Majorana mass matrices to be sizeable,

whereas the remaining ones must be comparatively suppressed (or zero in the exact limit).

The smallness of active neutrino masses is then guaranteed through their proportionality

to these small entries, and hence does not rely on overall suppression through a large mass

scale M . In addition, no fine-tuned cancellation between (a priori unrelated) elements of

the mass matrices are needed.

The remainder of this chapter is laid out as follows. After reviewing the relevant theory

in the next section, I will in Section 4.3 discuss the phenomenology of Higgsstrahlung and

other processes sensitive to the same parameters. The bulk of our time will be spent there,

as there is much that can be said about these processes and the constraints they place on

the parameter space of the Seesaw models. Finally, I will summarise the results and draw

conclusions in Section 4.4.
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4.2 Theory Framework

To save you from needing to flip back to the previous chapters, here I’ll offer an abridged

presentation of the relevant theory together with some additional contextual discussion.

Firstly, we remind ourselves of the SM Lagrangian, of which the electroweak and leptonic

parts are

LSM ⊃ −1
4W

a
µνW

aµν − 1
4BµνB

µν + (DµH)†(DµH) + µ2H†H − λ(H†H)2 (4.2)

+ Lii /DLi + eRii /DeRi − Y e
ij(LieRjH +H†eRjLi).

The gauge-covariant derivative post-electroweak symmetry breaking reads

Dµ = ∂µ − ig2W
+
µ T

+ − ig2W
−
µ T

− − igZ(T 3 −Q sin2 θw)Zµ − iQeAµ, (4.3)

and for later use it is convenient to assign the symbols

gL ≡ gZ

(
−1

2 + sin2 θw

)
and gR ≡ gZ sin2 θw (4.4)

to the ZeLeL and ZeReR couplings, respectively.

Since we will want to distinguish electrons, muons, and taus in this chapter, I will for its

duration exchange the notation ei for `i to avoid accidentally giving the impression that

I am only talking about electrons. In this way, `i = eLi + eRi, with `1 = e, `2 = µ, and

`3 = τ .

4.2.1 Effective Field Theory

4.2.1.1 SMEFT

We will use SMEFT, and later LEFT, as our means of studying the Type-I and -III Seesaw

models. The SMEFT operators that these models match onto are found in the subset

53



Riding the Seesaw: What Higgsstrahlung May Reveal about Massive Neutrinos

LSMEFT ⊃
[
C5,ij(LiH̃)(H̃TLc

j) + CeB,ij(Liσ
µνeRj)HBµν (4.5)

+ CeW,ij(Liσ
µνσaeRj)HW a

µν + CeH,ij(H†H)(LieRjH) + h.c.
]

+ C
(1)
HL,ij(H†i

↔
DµH)(Liγ

µLj) + C
(3)
HL,ij(H†i

↔
Da

µH)(Liσ
aγµLj),

and additional operators relevant to Higgsstrahlung, which will pick up non-zero coefficients

from RG running, are also listed in Table 4.2. In our convention the Wilson coefficients Ci

are dimensional, and so for later convenience let us also define the dimensionless variants

Ĉi ≡ Ci × TeV2 (4.6)

for the dimension-six coefficients.

4.2.1.2 LEFT

To describe low-energy processes our EFT of choice will naturally be LEFT. The relevant

part of the LEFT Lagrangian for purely leptonic transitions is

LLEFT ⊃ CV LL
ee,ijkl(`iγµPL`j)(`kγµPL`l) + CV RR

ee,ijkl(`iγµPR`j)(`kγµPR`l) (4.7)

+ CV LR
ee,ijkl(`iγµPL`j)(`kγµPR`l) +

[
Ceγ,ij(`iσµνPR`j)Fµν + h.c.

]
,

while for semi-leptonic neutral current transitions we will need

LLEFT ⊃ CV LL
eq,ijkl(`iγµPL`j)(qkγµPLql) + CV RR

eq,ijkl(`iγµPR`j)(qkγµPRql) (4.8)
+ CV LR

eq,ijkl(`iγµPL`j)(qkγµPRql) + CV LR
qe,ijkl(qiγ

µPLqj)(`kγµPR`l).

To obtain the LEFT Wilson coefficients for the Seesaw models we’ll use the software

package DsixTools [200; 201] to (i) run the SMEFT coefficients between the Seesaw scale

and the electroweak scale, µ = mZ , (ii) match the SMEFT and LEFT coefficients, and (iii)

run the LEFT coefficients to the low scale µ = 5 GeV, at which point it is unable to run

further. Below this scale the running is dominated by QCD effects, and as there are no
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Coefficient Type-I Type-III
C5,ij

1
2

(
YM−1Y T

)
ij

1
2

(
YM−1Y T

)
ij

C
(1)
HL,ij

1
4

(
Y (M †M)−1Y †

)
ij

3
4

(
Y (M †M)−1Y †

)
ij

C
(3)
HL,ij −1

4

(
Y (M †M)−1Y †

)
ij

1
4

(
Y (M †M)−1Y †

)
ij

CeH,ij 0
(
Y (M †M)−1Y †Y e

)
ij

CeB,ij
1

16π2
g1
24

(
Y (M †M)−1Y †Y e

)
ij

1
16π2

g1
8

(
Y (M †M)−1Y †Y e

)
ij

CeW,ij
1

16π2
5g2
24

(
Y (M †M)−1Y †Y e

)
ij

1
16π2

3g2
8

(
Y (M †M)−1Y †Y e

)
ij

Table 4.1: SMEFT Wilson coefficients obtained from matching the Type-I and Type-
III Seesaw models at the scale µ = M [256–258]. In order to properly account for the
stringent bounds from the non-observation of lepton flavour violation, the electroweak
dipole operators CeB and CeW are matched to one-loop order, while all other operators
are matched at tree level.

sizeable contributions to quark operators in the Seesaw models we may assume that this

procedure captures the main contributions from RG running in LEFT, and that further

effects at lower scales do not appreciably change the results. A more detailed discussion is

provided in the appendix of this chapter, Section 4.A.

4.2.2 Seesaw Models

4.2.2.1 Type-I

The Type-I Seesaw model [14–18] augments the SM with nν right-handed sterile neutrinos

νRi ∼ (1, 1, 0), with

LνR = νRii/∂νRi −
(
YijLiνRjH̃ + 1

2Mijνc
RiνRj + h.c.

)
. (4.9)

After electroweak symmetry breaking the masses combine into the matrix form

Lν mass = −1
2
(
νL νc

R

)( 0 m
mT M

)(
νc

L

νR

)
+ h.c., (4.10)

where mij ≡ Yijv/
√

2 is referred to as the Dirac mass matrix, and M as the Majorana
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mass matrix. Matching this theory onto SMEFT at the scale µ = M yields the effective

operators collected on the left side of Table 4.1.

4.2.2.2 Type-III

The Type-III Seesaw model [28] extends the SM Lagrangian with nΣ right-handed weak

fermion triplets ΣRi ∼ (1, 3, 0), with

LΣR
= ΣRii /DΣRi −

(
YijLiΣa

Rjσ
aH̃ + 1

2MijΣac
RiΣ

a
Rj + h.c.

)
, (4.11)

and in an identical manner to the Type-I model, neutrino masses take the form

Lν mass = −1
2
(
νL Σ0c

R

)( 0 m
mT M

)(
νc

L

Σ0
R

)
+ h.c., (4.12)

where Σ0
Ri = Σ3

Ri is the electrically neutral component of the triplet. The charged eigen-

states Σ±
R = (Σ1

R ∓ iΣ2
R)/

√
2 instead mix into the charged leptons. Matching this theory

onto SMEFT at the scale µ = M yields the effective operators collected on the right side

of Table 4.1.

4.2.3 Conserved Lepton Number Symmetry

In this work we study symmetry-protected versions of the fermionic Seesaw models, wherein

a lepton number (LN) symmetry decouples the physics of neutrino masses from the phenom-

enology associated with the conservation of LN [173; 243; 253–255]. Without loss of

generality we may fix nν = nΣ = 2, with which we can generate two massive active neutri-

nos as required to explain the observed mass splittings from oscillation data. The heavy

fermion states are assigned 1 and −1 units of LN, respectively. After electroweak symmetry

breaking the Dirac and Majorana mass matrices may be respectively parameterised as

mij = v√
2

(
Y εY ′

)
ij

= v√
2

Ye εY ′
e

Yµ εY ′
µ

Yτ εY ′
τ


ij

, (4.13)

56



4.2.3 Conserved Lepton Number Symmetry

and

Mij =
(
µ1M M
M µ2M

)
ij

, (4.14)

where ε and µ1,2 are dimensionless parameters. The mixing of the SM neutrino νLi with

νRi (in Type-I) or Σ0
Ri (in Type-III) is captured by the dimensionless ratios

θi = mi1
M

= Yi√
2
v

M
, (4.15)

which are equal to the active-sterile mixing angles in the small-mixing approximation,

that is, if O
(
(v/M)3) effects are neglected. (Note that these are not the mixing angles

appearing in the PMNS matrix, as those angles instead parameterise the mixing among

the active neutrinos.) For simplicity, I’ll refer to θe as the ‘electron(-flavour) mixing angle’,

or just ‘electron mixing’ for short, and so on.

In this parameterisation light neutrino masses are proportional to ε and µ2, which break

LN:

mv = v2

2
[
µ2YM

−1Y T − ε
(
Y ′M−1Y T + YM−1Y ′T

) ]
. (4.16)

The limit µ2 6= 0 and µ1 = ε = 0 is referred to as inverse Seesaw [246; 259; 260], and ε 6= 0

and µ1,2 = 0 is commonly known as linear Seesaw [261; 262].

Here we’ll adopt the LN-conserving limit ε = µ1,2 = 0 – that is, we’ll assume the textures

Yij =

Ye 0
Yµ 0
Yτ 0

 and Mij =
(

0 M
M 0

)
(4.17)

for both models. This results in massless active neutrinos and a heavy Dirac neutrino of

mass M . In this way, we neglect the phenomenological implications of LN violation, and

instead focus on LN-conserving effects.2 That said, it is possible to relax the requirement

2Note that this also means that the parameters θi can be treated as independent. If data
on lepton mixing and the hierarchy of neutrino masses is to be properly accommodated,
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that µ1,2 = 0, and with the help of Table 4.1 one can check that—as long as the contribution

of the Weinberg operator to the dimension-six operators via RG running can be neglected—

the only change compared to the LN-conserving limit is

θ2
i → 1 + µ2

2
(1 + µ1µ2)2 θ

2
i (4.18)

for each mixing angle in all of our formulae. As this does not meaningfully impact the

phenomenology, we will maintain the exact limit.

One may add a further singlet or triplet with vanishing LN such that

Yij =

Ye 0 0
Yµ 0 0
Yτ 0 0

 and Mij =

 0 M 0
M 0 0
0 0 M ′

, (4.19)

which supports three massive active neutrinos if one departs from the LN-conserving limit.

Still, the additional state trivially decouples from the phenomenology.3

4.3 Phenomenology

We shall choose the benchmark value M = 1 TeV for the masses of the new interaction

states in our analysis. This is consistent with all performed direct searches for heavy neutral

leptons at colliders, see for instance Refs. [227; 265] for recent overviews. In Ref. [266], for

sterile neutrinos of a mass M ≈ 1 TeV the constraint |θe| ∼ |θµ| . O(1) was derived via

a search for the signature of three charged leptons with any combination of electron and

muon flavours. Ref. [267] reports the constraint |θµ|2 . O(0.1) for TeV-scale Majorana

neutrinos based on a search for same-sign dimuon final states; see also Refs. [245]. The

the θi exhibit non-trivial correlations [174; 263; 264].
3As is discussed in Ref. [173], the determinant of the full neutrino mass matrix also

vanishes in the (LN-violating) case µ1 6= 0 and ε = µ2 = 0, which however generally
guarantees only one massless active neutrino. One could also consider a vanishing Majorana
mass matrix and a completely general Dirac mass matrix, but this yields light Dirac
neutrinos and is not suitable for a study in SMEFT.
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bound MΣ0 ≥ 910 GeV was derived in a recent study [56] which focuses on leptonic final

states and takes into account earlier ATLAS results.

In our phenomenological discussion we’ll consider the following observables:

• the relative shift ∆σ/σ0 in the Higgsstrahlung cross section from its SM prediction,

• the effective leptonic weak mixing angle sin2 θlept
w,eff and the W boson mass mW ,

• the ratios gX
µ/e and gX

τ/µ of leptonic gauge couplings as probes of lepton flavour

universality (LFU), and the ratios R(K`3) and R(Vus), and

• the branching ratios of the lepton flavour-violating (LFV) processes µ → eγ, µ → 3e,

τ → eγ, τ → 3e, and the ratios of the µ− e conversion rates over the muon capture

rate in different target nuclei.

The theoretical expressions for these observables in the fermionic Seesaw models are listed

in Tables 4.4, 4.5, 4.6 and 4.7 as functions of the mixing angles θe, θµ, θτ , as defined in

Eq. (4.15), for a matching scale µ = M = 1 TeV. While these expressions hold for complex

Yukawa couplings, they evidently do not depend on the phases of the mixing angles, and

so nothing is lost by treating them as positive real numbers. If effects from RG running in

SMEFT above the matching scale are neglected, one may naïvely interpret the results also

for a larger mass after appropriately rescaling the couplings. That said, to facilitate a less

crude analysis the relevant expressions derived from matching at the scale µ = M = 10 TeV

are also provided and discussed in Section 4.3.5.

The following discussions are supported by plots in the θe–θµ plane, as well as plots in

the θe–θτ plane for the LFU and LFV observables. (As the main objective of this work

concerns Higgsstrahlung, we are most interested in phenomenological effects related to

electron flavour, and hence have no need to view the θµ–θτ plane.) The third mixing

angle is fixed to the benchmark values θτ = 10−2 and θµ = 10−6; these choices are

most transparently justified (at least for Type-III) by Fig. 4.7, which depicts the most

competitive constraints for both models. There are no appreciable changes to the resulting
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phenomenology if these values are tuned smaller or even zero, apart from the fact that the

LFV bounds become weaker and eventually vanish. The exclusion regions in each of these

plots either reflect the current bounds at 2σ for the electroweak and LFU observables, or

the upper limits on the LFV processes at 90% C.L.

4.3.1 Higgsstrahlung

4.3.1.1 SM Tree-Level Contribution

The tree-level differential cross section in the SM is well-known, and is given by [86; 268]

dσ0
dcos θ =

√
λ

32πs2 |M0|2, (4.20)

where unpolarised beams are assumed, with

|M0|2 = s

2(g2
L + g2

R)
(

gZZh

s−m2
Z

)2(
1 + λ sin2 θ

8sm2
Z

)
(4.21)

the spin-averaged invariant matrix element. Here gZZh = g2mZ/ cos θw, θ is the angle

between the incoming electron and outgoing Z boson, and

λ = (s−m2
Z −m2

h)2 − 4m2
Zm

2
h (4.22)

is the relevant Källèn function. The corresponding integrated cross section is

σ0 =
√
λ

32πs(g2
L + g2

R)
(

gZZh

s−m2
Z

)2(
1 + λ

12sm2
Z

)
. (4.23)

The dependence of σ0 on
√
s is depicted in Fig. 4.1. It peaks around a centre-of-mass

energy of
√
s ≈ 245 GeV.
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4.3.1 Higgsstrahlung

Figure 4.1: The tree-level cross section for the Higgsstrahlung process in the SM as a
function of the centre-of-mass energy

√
s.

4.3.1.2 Corrections in SMEFT

Including corrections from new physics gives

dσ
dcos θ =

√
λ

32πs2

(
|M0|2 + δ|M0|2 + 2 Re M∗

0M1

)
, (4.24)

where δ|M0|2 denotes the effect of parameter shifts in SMEFT to the tree-level cross

section, as discussed in Section 3.2.1 of the previous chapter, and 2 Re M∗
0M1 is the

interference term of the tree-level amplitude with corrections from new operators. The

explicit result reads

∆ dσ
dcos θ ≡ dσ

dcos θ − dσ0
dcos θ

=
√
λ

32πs2

[
2
(
δgZZh

gZZh
+ gLδgL + gRδgR

g2
L + g2

R

)
|M0|2 + gZZhv

2

5∑
i=2

diFi

]
, (4.25)

where the parameter shifts and coefficients di are presented below, and the form factors

Fi may be found in Ref. [86].

Integrating over cos θ, the full resulting fractional shift for the cross section is
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∆σ
σ0

= 2
(
δgZZh

gZZh
+ gLδgL + gRδgR

g2
L + g2

R

)
+ v

gZZh

5∑
i=2

difi. (4.26)

Here the parameter shifts in the (α,mZ , GF ) input scheme are

δgZZh

gZZh
= v2

T

(
CH� + 1

4CHD − 1√
2
δĜF

)
, (4.27a)

δgL

gZ
= 1

8(c2
w − s2

w)v
2
T

(
8swcwCHW B + CHD + 2

√
2δĜF

)
(4.27b)

− 1
2v

2
T

(
C

(1)
HL,11 + C

(3)
HL,11

)
,

δgR

gZ
= s2

w

4(c2
w − s2

w)v
2
T

(
4cw

sw
CHW B + CHD + 2

√
2δĜF

)
− 1

2v
2
TCHe,11, (4.27c)

with the shorthands sw ≡ sin θw and cw ≡ cos θw, and we recall that

δĜF = 1√
2

(
C

(3)
HL,11 + C

(3)
HL,22

)
− 1

2
√

2
(CLL,1221 + CLL,2112) (4.28)

from Chapter 3. The integrated form factors fi are

f2 = 12m2
Z

s(s+m2
Z −m2

h)
12sm2

Z + λ
, (4.29a)

f3 = −12em2
Z

gL + gR

g2
L + g2

R

(s−m2
Z)(s+m2

Z −m2
h)

12sm2
Z + λ

, (4.29b)

f4 = 2gL

g2
L + g2

R

(s−m2
Z), and (4.29c)

f5 = 2gR

g2
L + g2

R

(s−m2
Z), (4.29d)

and their corresponding coefficients di are

d2 = 4(s2
wCHB + swcwCHW B + c2

wCHW ), (4.30a)
d3 = −4swcwCHB − 2(c2

w − s2
w)CHW B + 4swcwCHW , (4.30b)

d4 = −gZ(C(1)
HL,11 + C

(3)
HL,11), and (4.30c)

d5 = −gZCHe,11. (4.30d)

The diagrams giving rise to the di’s are depicted in Fig. 4.2. Note that d1 and f1 are
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e−

e+

Z

h

Z

(d1), d2

e−

e+

Z

h

γ

d3

e−

e+

Z

h

d4, d5

Figure 4.2: Diagrams with effective vertices contributing to Eq. (4.26).

OHW H†HW a
µνW

aµν OH� (H†H)�(H†H) O(1)
HL,ij (H†i

↔
DµH)(Liγ

µLj)
OHB H†HBµνB

µν OHD (H†DµH)∗(H†DµH) O(3)
HL,ij (H†i

↔
Da

µH)(Liσ
aγµLj)

OHW B H†σaHW a
µνB

µν OLL,ijkl (Liγ
µLj)(LkγµLl) OHe,ij (H†i

↔
DµH)(eRiγ

µeRj)

Table 4.2: Dimension-six SMEFT operators in the Warsaw basis [198] which enter the
correction to the Higgsstrahlung cross section.

absent here, as unlike Ref. [86] I elect instead to absorb their contribution into δgZZh. The

dimension-six SMEFT operators which constitute these corrections are listed in Table 4.2.

We note that the di’s are zero at tree level in the Seesaw models, apart from d4 in Type-III.

4.3.1.3 Discussion

The programs of the proposed next-generation lepton colliders include runs as Higgs

factories at a centre-of-mass energy of
√
s = 240 GeV (CEPC, FCC-ee) or 250 GeV (ILC),

and as scans of the tt production threshold in the range
√
s = 350–380 GeV. Measurements

of the Higgsstrahlung cross section are foreseen at both stages for all collider proposals

we consider, apart from CLIC which is envisioned to directly run at
√
s = 380 GeV in its

initial stage. Therefore, we evaluate the relative shift ∆σ/σ0 of the Higgsstrahlung cross

section, as given by Eq. (4.26), at
√
s = 240 GeV and 365 GeV. Regarding the precision of

the measurement, we take the two benchmark values of 0.5% and 1.0% for
√
s = 240 GeV,

and 1.0% for
√
s = 365 GeV. This is representative of the results of several analyses of the

attainable precision, which are collected in Table 4.3.

The shifts in the cross section as functions of the mixing angles are listed for both Seesaw
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Collider Lint [ab−1] Z-decay final states
√
s [GeV] Precision

CEPC
20 `+`−, qq, νν 240 0.26% [70]
1 `+`−, qq, νν 360 1.4% [70]

FCC-ee
5 `+`− 240 0.5% [78]

1.5 `+`−, qq, νν 365 0.9% [78]

ILC
1.35 `+`− 250 1.1% [269]

0.115 (0.5) `+`− (qq) 350 5% (1.63%) [269; 270]
1.6 (0.5) `+`− (qq) 500 2.9% (3.9%) [269; 271]

CLIC 0.5 `+`−, qq 350 1.65% [242]

Table 4.3: Forecast (statistical) precision of measurements of the Higgsstrahlung cross
section at different proposed next-generation colliders. The third column gives the Z-
decay final states taken into account in the respective analysis; `+`− always implies both
Z → e+e− and Z → µ+µ−. For the results from Ref. [269] a polarisation (Pe− , Pe+) =
(−80%,+30%) is assumed; still, this changes the expected Higgsstrahlung event rate by at
most 50% compared to unpolarised beams [242; 270]. No polarisation is assumed for the
ILC precision for

√
s = 350 GeV and hadronic Z boson decays in Ref. [270], wherein an

attainable precision of 1.76% for polarised beams and an integrated luminosity of 0.35 ab−1

is reported as well.

Type-I Type-III
∆σ/σ0 (240 GeV) 0.95 |θe|2 + 1.10 |θµ|2 + 0.02 |θτ |2 27.59 |θe|2 − 1.08 |θµ|2 − 0.01 |θτ |2

∆σ/σ0 (365 GeV) 0.87 |θe|2 + 1.12 |θµ|2 + 0.04 |θτ |2 66.15 |θe|2 − 1.09 |θµ|2 − 0.01 |θτ |2

∆σ/σ0 (500 GeV) 0.80 |θe|2 + 1.14 |θµ|2 + 0.05 |θτ |2 126.39 |θe|2 − 1.10 |θµ|2 − 0.01 |θτ |2

Table 4.4: Shifts of the Higgsstrahlung cross section at different centre-of-mass energies in
terms of the mixing angles, when M = 1 TeV. For the sake of comparison, the shift for
the larger centre-of-mass energy

√
s = 500 GeV is also shown.

models in Table 4.4, and are depicted in Fig. 4.3. The red areas of the plots indicate

parameter regions where the shift ∆σ/σ0 is smaller than our precision benchmarks. To

stand a chance of observing a deviation from the SM prediction at a next-generation collider

we therefore require that the mixing angles lie outside these regions. The purpose of the

next sections, in which we analyse the constraints imposed by the electroweak observables

and probes of LFU and LFV, is to determine how much of these exterior regions are

available.

Before this, however, let’s take a moment to understand why these regions are the way
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Figure 4.3: Projected sensitivities of precision Higgsstrahlung measurements. The red-
ruled regions indicate |∆σ/σ| < 0.5% at

√
s = 240 GeV. The dot-dashed and dotted red

lines are the corresponding 1% contours at
√
s = 240 GeV and 365 GeV, respectively.

that they are. To aid in the following discussion, let us write

∆σ
σ0

≈

0.90 Ĉ(1)
HL,11 + 0.77 Ĉ(3)

HL,11 − 0.13 Ĉ(3)
HL,22 at

√
s = 240 GeV

2.09 Ĉ(1)
HL,11 + 1.96 Ĉ(3)

HL,11 − 0.13 Ĉ(3)
HL,22 at

√
s = 365 GeV

, (4.31)

where the Wilson coefficients are evaluated at µ =
√
s, respectively, and as a reminder,

the dimensionless Wilson coefficients are defined by Ĉ = C × TeV2. These approximate

expressions deviate from the exact results, presented in Table 4.4, by at most 5% in either

model.

As the couplings of the Z boson to charged leptons are not directly altered at tree level

in the Type-I Seesaw model, σ(e+e− → Zh) is predominantly modified via the shift in

the Fermi constant, Eq. (4.28), which enters through the shifts δgZZh, δgL, and δgR in

Eq. (4.27). While the contributions of electron and muon mixing are of fairly similar

magnitudes, ∆σ/σ0 turns out to be slightly more sensitive to the latter. This is due to a

partial cancellation of the coefficient d4 in Eq. (4.30c) (which acquires a non-zero value

from RG running) against the dominant contribution from the Fermi constant for electron

mixing. As the corresponding form factor f4 scales with s, the resulting sensitivity to
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electron mixing shrinks even further at higher energies. If sterile neutrinos are to be

searched for via precision Higgs measurements, we therefore do not expect running a

next-generation lepton collider at higher centre-of-mass energies to reveal much for Type-I.

On the other hand, the charged states Σ± in Type-III Seesaw induce the effective four-

point interaction `γµPL`Zµh at tree-level through their t-channel exchange, resulting in

a sizeable contribution to d4. This generates a very pronounced sensitivity of the ratio

∆σ/σ0 to electron mixing which approximately scales with s. Consequently, if enough

luminosity can be attained to compensate for smaller statistics, fermion triplets may well

be searched for in Higgsstrahlung measurements at larger centre-of-mass energies. While

the contributions from electron mixing could in principle be (partly) cancelled by large

muon mixing, we will however find that this scenario is tightly constrained by existing

phenomenological bounds. From Table 4.4 one can immediately deduce that if only electron

mixing is sizeable, a minimal shift of ∆σ/σ0 ≥ 1% for
√
s = 240 GeV requires |θe| & 0.019,

whereas |θe| & 0.013 is sufficient for a shift of 0.5%, or if
√
s = 365 GeV is considered

instead.

4.3.2 Electroweak Sector

When (α,mZ , GF ) are used as electroweak inputs, the W boson mass mW and the (squared

sine of the) weak mixing angle s2
w = sin2 θw become predicted quantities, and direct

measurements of them function as precision tests of the SM. The fact that mW and s2
w

receive shifts in SMEFT means that we may appropriate these measurements to place

constraints on the parameter spaces of the Seesaw models.

4.3.2.1 Weak Mixing Angle

In accordance with the parameter shifts recipe outlined in Section 3.2.1 of the previous

chapter, the weak mixing angle receives the modification (see e.g. Ref. [191])
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δs2
w = cwsw

c2
w − s2

w

v2
T

(1
2cwswCHD + CHW B +

√
2cwswδĜF

)
, (4.32)

where the shift in the Fermi constant δĜF is defined in Eq. (4.28). There are numerous

ways to extract the weak mixing angle from data; the most precise determination is that

of the effective leptonic weak mixing angle s2
w,eff ≡ sin2(θlept

w,eff) at LEP [272], achieved via

measurements of the left-right asymmetry factor

Af = g2
L − g2

R

g2
L + g2

R

= 2(1 − 4s2
w)

1 + (1 − 4s2
w)2 . (4.33)

Apart from the general shift in Eq. (4.32), we must also take into account the fact that

a modification of the Z couplings to charged leptons will directly affect the extraction of

s2
w,eff from Af . Incorporating the ‘direct’ shifts to these couplings,

δgdirect
L,ij = −1

2gZv
2
T

(
C

(1)
HL,ij + C

(3)
HL,ij

)
and δgdirect

R,ij = −1
2gZv

2
TCHe,ij , (4.34)

we find

s2
w,eff = s2

w,SM + δs2
w + 1

3
ds2

w

dA`

(
∂A`

∂gL

3∑
i=1

δgdirect
L,ii + ∂A`

∂gR

3∑
i=1

δgdirect
R,ii

)
(4.35)

≈ s2
w,SM + 0.020

(
Ĉ

(3)
HL,11 + Ĉ

(3)
HL,22

)
− 0.005

3∑
i=1

(
Ĉ

(1)
HL,ii + Ĉ

(3)
HL,ii

)
,

where the right-hand side is evaluated at the scale µ = mZ . Contributions from CHe are

not sourced at tree level in either Seesaw model, and so the shift is dominated by C
(1)
HL

and C
(3)
HL.

4.3.2.2 W Boson Mass

The shift incurred by mW in SMEFT is [191]

δm2
W

m2
W

= − 1
2(c2

w − s2
w)v

2
T

(
4cwswCHW B + c2

wCHD + 2
√

2s2
wδĜF

)
, (4.36)

67



Riding the Seesaw: What Higgsstrahlung May Reveal about Massive Neutrinos

Electroweak Sector
Observable SM prediction Measurement
sin2(θlept

w,eff) 0.231534 ± 0.000030 [273] 0.23153 ± 0.00026 [272]
mW [GeV] 80.356 ± 0.006 [274] 80.377 ± 0.012 [274]

Shift Type-I Type-III
δs2

w −0.157(|θe|2 + |θµ|2) + 0.003 |θτ |2 0.017(|θe|2 + |θµ|2) − 0.143 |θτ |2

δmW [GeV] 8.24(|θe|2 + |θµ|2) − 0.13 |θτ |2 −8.51(|θe|2 + |θµ|2) − 0.13 |θτ |2

Table 4.5: SM predictions for and current measurements of the electroweak observables
considered in this work, together with approximate expressions for their shifts in terms of
the mixing angles. The W boson mass listed by the Particle Data Group [274] corresponds
to the mass parameter in a Breit-Wigner distribution with a mass-dependent width. The
SM prediction for the effective leptonic weak mixing angle is taken from Table II in
Ref. [273]. The model predictions are obtained from matching onto SMEFT at the Seesaw
scale µ = M = 1 TeV and running to the electroweak scale µ = mZ .

which approximately evaluates to

mW ≈ mW,SM − 1.05
(
Ĉ

(3)
HL,11 + Ĉ

(3)
HL,22

)
GeV (4.37)

at the scale µ = mZ . With CHW B and CHD not induced at tree-level in the Seesaw models,

the largest correction to mW is due to the shift in the Fermi constant.

4.3.2.3 Discussion

The expressions obtained for δs2
w,eff and δmW in terms of the mixing angles are listed in

Table 4.5, and the constraints arising from these observables are illustrated in Fig. 4.4.

For Type-I Seesaw we immediately notice that the prospect of an observable shift to the

Higgsstrahlung cross section is in direct conflict with the determination of s2
w,eff, with a

0.5% shift at
√
s = 240 GeV suffering from a 2.9σ tension, and a 1% shift excluded at

∼ 6σ. While this tension can be reduced by turning up θτ (see the expression in Table 4.5),

LFU constraints discussed in Section 4.3.3 below preclude this from occurring. Thus, we

can already conclude that the Type-I Seesaw model is unlikely to be a viable minimal
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Figure 4.4: Current constraints from electroweak observables at 2σ, in comparison with
projected sensitivities of precision Higgsstrahlung measurements. The red-ruled regions
indicate |∆σ/σ| < 0.5% at

√
s = 240 GeV. The dot-dashed and dotted red lines are

the corresponding 1% contours at
√
s = 240 GeV and 365 GeV, respectively. For Type-I

Seesaw, the dashed orange line marks where the current experimental world average for
mW is exactly accommodated, and in the orange-ruled region the CDF measurement [275]
is explained at 2σ.

SM extension that can be probed in precision Higgs measurements, unless a significant

reduction of the statistical uncertainty of these measurements can be attained.

In Type-III Seesaw, the direct contributions to the leptonic gauge couplings largely cancel

against the shift from the Fermi constant in δs2
w for both the electron and muon flavour;

see Eq. (4.35). As a result, s2
w,eff acts as a rather weak constraint on the Type-III model,

and is in fact most relevant for tau-flavour mixing, implying |θτ | . 0.06 at 2σ.

The existing tension between the SM prediction for the W boson mass mW and the larger

experimental world average is however exacerbated in Type-III, leading to a much stronger

constraint. In contrast, as C(3)
HL is induced with equal magnitude but opposite sign in

Type-I, it offers to alleviate the existing tension; if uncertainties are ignored, the current

world average is reproduced for
√

|θe|2 + |θµ|2 ≈ 0.051, and the CDF measurement [275]

for
√

|θe|2 + |θµ|2 ≈ 0.097. A detectable shift in σ(e+e− → Zh) could in principle only be
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induced in the latter case.

Testing the Type-III Seesaw model via Higgsstrahlung measurements is generally compati-

ble with the current constraint arising from mW , though it disfavours a detectable shift due

to muon mixing, and preferring instead contributions from electron mixing. The bound

from mW can be expected to become more competitive when the CDF measurement is

included in the experimental average in the future.

4.3.3 Lepton Flavour Universality

In the absence of neutrino masses—and hence the PMNS matrix—in the SM, the W

boson couples with equal strength to each charged lepton and neutrino – a feature known

as lepton flavour universality (LFU). Since we know neutrinos do in fact have mass,

probes of LFU offer a fertile testing ground for BSM physics. These probes take the form

of ratios of decay rates such as

Γ(π → µνµ)
Γ(π → eνe) , (4.38)

which, if kinematical factors and subdominant loop corrections are accounted for and

removed, should be exactly equal to 1 unless LFU is violated.

LFU violation manifests in SMEFT through the operator O(3)
HL, which modifies the W`ν

coupling to

L ⊃ g2√
2

(
δij + v2

TC
(3)
HL,ij

)
`i /W

−
PLνj + h.c. (4.39)

In leveraging this against measured LFU ratios, we may place our second set of constraints

on the parameter spaces of the Seesaw models. The ratios we will consider are those

derived from the leptonic decays π → `ν, K → `ν, and τ → `νν, and from (semi-)leptonic

decays relating to the CKM matrix element Vus.
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4.3.3.1 Ratios of Leptonic Gauge Couplings

Our first LFU ratios are those of the leptonic gauge couplings [276; 277],

gX
µ/e ≡

(
gµ

ge

)X

≈ 1 + v2
TC

(3)
HL,22 − v2

TC
(3)
HL,11 ≈ 1 + 0.06

(
Ĉ

(3)
HL,22 − Ĉ

(3)
HL,11

)
, (4.40)

as extracted from4

gX
µ/e ↔


Γ(X → µν)
Γ(X → eν) X = W,π,K

Γ(τ → µνν)
Γ(τ → eνν) X = `

, (4.41)

as well as

gX
τ/µ ≡

(
gτ

gµ

)X

≈ 1 + 0.06
(
Ĉ

(3)
HL,33 − Ĉ

(3)
HL,22

)
, (4.42)

extracted from

gX
τ/µ ↔


Γ(τ → πν)
Γ(π → µν) X = π

Γ(τ → eνν)
Γ(µ → eνν) X = `

. (4.43)

The measured values and model predictions for these ratios are presented in Table 4.6,

with the exception of gW
µ/e, which is omitted as it leads to weaker constraints than the

other gµ/e ratios.

In our Seesaw models the predicted deviation of these LFU ratios from 1 is at leading order

proportional to ±(|θi|2 − |θj |2), with the sign depending on the model, and the derived

constraints therefore give rise to hyperbolic contours in the θi–θj planes. If the data favours

a ratio to be, say, smaller than 1, predicting it to be larger than 1 will clearly lead to a

tighter constraint. This then translates into one of the mixing angles being slightly more

4As the dominant BSM contribution to these decays is due to the interference with
the leading SM amplitude, we only need to consider final state neutrinos whose flavour
matches that of the charged lepton – that is, we only need the diagonal entries of C(3)

HL.
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Lepton Flavour Universality

Observable Measurement Model prediction

gπ
µ/e 1.0010 ± 0.0009 [278]

1 ± 0.48(|θe|2 − |θµ|2)
g`

µ/e 1.0017 ± 0.0016 [278]

gK
µ/e 0.9978 ± 0.0018 [278]

R(K`3) 1.001295 ± 0.002891 [279]

gπ
τ/µ 0.9965 ± 0.0026 [278]

1 ± 0.48(|θµ|2 − |θτ |2)
g`

τ/µ 1.0011 ± 0.0014 [278]

R(Vus) 0.98898 ± 0.00606 [274] 1 ± 0.47|θe|2 ± 8.80|θµ|2 ∓ 0.04|θτ |2

Table 4.6: Current constraints on and model predictions for the LFU ratios taken into
account in this work. For R(Vus), the given experimental value refers to the case of
Nf = 2 + 1 + 1 dynamical quark flavours in the lattice simulations from which the relevant
decay constants are extracted. The case of Nf = 2 + 1 quark flavours gives rise to a less
competitive bound [274]. The model predictions are obtained from matching onto SMEFT
at the Seesaw scale µ = M = 1 TeV and running to the electroweak scale µ = mZ . In the
rightmost column, the upper sign refers to Type-I Seesaw, and the lower sign to Type-III
Seesaw.

strongly bounded than the other one, with the roles reversed in the other Seesaw model.

As a result, if the contribution from a specific mixing angle accommodates the data well

in one model, the other model will necessarily increase the tension with the SM.

4.3.3.2 Light Quark Mixing

Our remaining LFU ratios are those of the CKM matrix element Vus extracted from the

semi-leptonic kaon decays Kµ3 ≡ K → πµν and Ke3 ≡ K → πeν, the leptonic kaon decay

Kµ2 ≡ K → µν, and nuclear beta decay β ≡ n → peν:

R(K`3) ≡ V
Kµ3

us

V Ke3
us

and R(Vus) ≡ V
Kµ2

us

V β
us

. (4.44)

The dependence of R(K`3) on new physics is identical to that of gπ
µ/e and gK

µ/e, of which

both can similarly be viewed as CKM ratios, with gK
µ/e being commonly denoted by R(K`2).

72



4.3.3 Lepton Flavour Universality

The ratio R(Vus), on the other hand, is a special case deserving of additional attention.

To understand it, we note that the decay rate for K → µν in the SM is

Γ(K → µν) = A|Vus|2G2
F , (4.45)

where A contains all other factors; the CKM element Vus is then extracted as

Vus =
√

Γ
AG2

F

. (4.46)

In SMEFT, the decay rate is modified to

Γ(K → µν) = A|Vus|2Ḡ2
F

(
1 + 2v2

TC
(3)
HL,22

)
(4.47)

= A|Vus|2Ĝ2
F

(
1 + 2v2

TC
(3)
HL,22 − 2δĜF

GF

)
, (4.48)

where the C(3)
HL,22 is due to the new direct contribution, Eq. (4.39), and in the notation of

the previous chapter (see Table 3.2 for a reminder), the Lagrangian parameter ḠF relates

to the measured value of ĜF by ḠF = ĜF − δĜF . This being the case, the extracted value

of Vus is actually5

V
Kµ2

us =
√

Γ
AĜ2

F

= Vus

(
1 + v2

TC
(3)
HL,22 − δĜF

GF

)
. (4.49)

Similarly, beta decay results in

V β
ud = Vud

(
1 + v2

TC
(3)
HL,11 − δĜF

GF

)
, (4.50)

and through unitarity of the Lagrangian CKM parameters, it translates to

V β
us =

√
1 − |V β

ud|2 − |Vub|2 ≈ Vus

[
1 −

(
Vud

Vus

)2
(
v2

TC
(3)
HL,11 − δĜF

GF

)]
. (4.51)

Bringing the two together then gives the ratio

5This result is reproduced by the general formula of Eq. (3.52) upon identifying
(Vus)SMEFT = Vus and (Vus)SM = V

Kµ2
us .
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R(Vus) = V
Kµ2

us

V β
us

= 1 + v2
TC

(3)
HL,22 − δĜF

GF
+
(
Vud

Vus

)2
(
v2

TC
(3)
HL,11 − δĜF

GF

)
(4.52)

≈ 1 − v2
T

[(
Vud

Vus

)2
C

(3)
HL,22 + C

(3)
HL,11

]
.

As is explained in Ref. [276], wherein the ratio was originally proposed, a crucial feature of

R(Vus) is the enhanced sensitivity to new physics due to (Vud/Vus)2 ≈ 20. Experimental

data favours the ratio to be smaller than 1 with a significance between 1σ and 2σ, depending

on the number of quark flavours assumed for the calculation of the relevant decay constant;

see Table 4.6.

4.3.3.3 Discussion

The constraints arising from LFU ratios are illustrated in Fig. 4.5. In Type-I Seesaw,

the prospects of an observational shift in the Higgsstrahlung cross section are once again

at odds with the data, with R(Vus) acting as an even stronger restraint on the available

parameter space than s2
w. The next-to-most competitive bounds on electron and muon

mixing respectively arise from gK
µ/e and gπ

µ/e.

In the case of Type-III Seesaw, the most important constraints stem from gπ
µ/e and R(Vus),

which demand |θe| . 0.04 and |θµ| . 0.05 at 2σ, respectively. In a vein similar to mW , the

bounds from gK
µ/e and R(Vus) both constrain muon mixing efficiently enough so that no

appreciable cancellations of the contributions to Higgsstrahlung from electron mixing can

occur.

As can be seen in Fig. 4.5b, LFU data constrains tau mixing to |θτ | . 0.06 for either

Seesaw model, which arises from g`
τ/µ in Type-I, and gπ

τ/µ for Type-III. These constraints

can in principle be weakened if |θµ| is more sizeable; still, large changes are only observed

for O(0.1) muon mixing, a scenario which is nonetheless excluded by other observables.

While the contributions to R(Vus) from electron and tau mixing may cancel, this does not

open up parameter space in Type-I, as tau mixing itself is too constrained.
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(a) LFU constraints in the θe–θµ plane.

(b) LFU constraints in the θe–θτ plane. To avoid clutter, subdominant constraints like the one
from R(K`3) are not drawn, but their locations may be inferred from the above plots.

Figure 4.5: Current constraints arising from LFU ratios at 2σ in comparison with projected
sensitivities of precision Higgsstrahlung measurements. The red-ruled regions indicate
|∆σ/σ| < 0.5% at

√
s = 240 GeV. The dot-dashed and dotted red lines are the correspond-

ing 1% contours at
√
s = 240 GeV and 365 GeV, respectively.
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Further LFU ratios not contained in Table 4.6 deviate from the SM prediction by close

to 2σ and thus present moderate anomalies in themselves, see Ref. [278]. Explicitly, gK
τ/µ

is measured to be smaller than 1, while g`
τ/e and gW

τ/e exceed the SM expectation. If the

models under consideration are to accommodate the data on gK
τ/µ, one requires |θτ | > |θµ|

for Type-I Seesaw, and vice-versa for Type-III Seesaw. The restriction |θµ| > |θτ | is

unlikely to be satisfied in Type-III for scenarios which are testable via Higgsstrahlung

measurements, as a large ∆σ/σ0 induced by electron mixing demands muon mixing to

be very small due to the bounds arising from LFV, as we will see in the next section.

Similarly, the other two ratios necessitate that tau mixing substantially exceeds electron

mixing in Type-III – a similarly unpromising scenario, particularly in light of the bound

on BR(τ → 3e).

4.3.4 Lepton Flavour Violation

For our next set of constraints we turn to a particularly potent probe of BSM physics: that

of lepton flavour violation (LFV). The premise behind LFV searches is found in the

fact that lepton flavour is conserved in the SM on account of the three U(1)Li symmetries,6

which take

Li → eiθiLi and eRi → eiθieRi, (4.53)

or equivalently

`i → eiθi`i and νLi → eiθiνLi. (4.54)

Much akin to LFU violation, the observed neutrino masses and mixings signal that these

symmetries are in fact violated, meaning it should in principle be possible to observe flavour-

violating decays such as µ± → e±γ or τ− → e−e−e+ (or τ → 3e for short), or the conversion

of muons to electrons in scatterings with nuclei. As is generically the case for models of

6Though these symmetries are anomalous [122; 157; 158], the consequent rate of flavour
violation in the SM is unobservably small [280]. The partial baryon-minus-lepton numbers
B/3−Li are better symmetries, but this strays beyond relevance to the present discussion.
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Lepton Flavour Violation

Observable
Experiment Model predictions

Current bound Future reach Type-I Type-III
BR(µ → eγ) 4.2 × 10−13 [282] 6 × 10−14 [283] 0.82 × 10−3 |θeθµ|2 1.27 × 10−3 |θeθµ|2

BR(µ → 3e) 1 × 10−12 [284] 1 × 10−16 [285] 0.14 × 10−3 |θeθµ|2 0.72 |θeθµ|2

CR(µ− e; Au) 7 × 10−13 [286] — 0.04 × 10−3 |θeθµ|2 27.1 |θeθµ|2

CR(µ− e; Al) — 2.6 × 10−17

8 × 10−17
[287]
[288] 0.15 × 10−3 |θeθµ|2 6.7 |θeθµ|2

CR(µ− e; Ti) 6.1 × 10−13 [289] O
(
10−18) [290] 0.18 × 10−3 |θeθµ|2 13.5 |θeθµ|2

CR(µ− e; Pb) 4.6 × 10−11 [291] — 0.02 × 10−3 |θeθµ|2 20.3 |θeθµ|2

CR(µ− e; S) 7 × 10−11 [292] — 0.21 × 10−3 |θeθµ|2 6.4 |θeθµ|2

BR(τ → eγ) 3.3 × 10−8 [293] 9 × 10−9 [294] 0.15 × 10−3 |θeθτ |2 0.23 × 10−3 |θeθτ |2

BR(τ → 3e) 2.7 × 10−8 [295] 4.7 × 10−10 [294] 0.02 × 10−3 |θeθτ |2 0.13 |θeθτ |2

Table 4.7: Current and projected constraints on the LFV observables taken into account
in this work, together with the model predictions. The current bounds hold at 90% C.L.
The future reach listed for BR(µ → 3e) refers to Phase II of the Mu3e experiment; an
initial sensitivity of BR(µ → 3e) . 2 × 10−15 is expected after Phase I. The upper (lower)
value listed for the future reach of CR(µ − e; Al) refers to COMET (Mu2e). The model
predictions are obtained from matching onto SMEFT at the Seesaw scale µ = M = 1 TeV,
running to the electroweak scale µ = mZ , matching onto LEFT and running to the low
scale µ = 5 GeV.

neutrino mass generation, the Seesaw models predict sizeable rates for these flavour-

violating decays and scatterings, and the to-date non-observation of these processes thus

imparts stringent bounds on their parameter spaces. These bounds will likely be further

refined in the near future due to several ongoing or upcoming experiments – see Table 4.7.

Since our focus is on the comparison with the sensitivities to the Higgsstrahlung process

at colliders, we restrict ourselves to observables involving electron-flavoured transitions.

A comprehensive investigation of LFV effects in the symmetry-protected Type-I Seesaw

model can for instance be found in Ref. [281].

In SMEFT, LFV manifests through the off-diagonal entries of Wilson coefficients such as

C
(1)
HL and C(3)

HL. Since the scales involved in the flavour-violating processes we consider are

far removed from the electroweak scale, it is however more appropriate to discuss them in

terms of LEFT operators. The explicit matching conditions between SMEFT and LEFT

used in this section can be found in Section 4.A in the appendix of this chapter.
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4.3.4.1 Radiative Charged Lepton Decays

The branching ratios for radiative flavour-violating charged lepton decays read [296]

BR(`i → `jγ) =
m3

`i

4πΓ`i

(
|Ceγ,ij |2 + |Ceγ,ji|2

)
, (4.55)

with the full decay width Γ`i
. With the matching of SMEFT onto LEFT and the RG

running accounted for, this approximately evaluates to

BR(µ → eγ) ≈ 7.117 × 106
∣∣∣ĈeB,12 − 0.55 ĈeW,12 +

(
1.77 Ĉ(3)

HL,12 − 0.48 Ĉ(1)
HL,12

)
10−6

∣∣∣2 and

BR(τ → eγ) ≈ 0.004 × 106
∣∣∣ĈeB,13 − 0.55 ĈeW,13 +

(
29.69 Ĉ(3)

HL,13 − 8.12 Ĉ(1)
HL,13

)
10−6

∣∣∣2
(4.56)

in the Seesaw models, where the SMEFT Wilson coefficients are evaluated at the elec-

troweak scale µ = mZ . In both models the one-loop matching contributions to the

electromagnetic dipole operator Oeγ from the electroweak dipole operators OeB and OeW

are of the same order of magnitude as the contributions from O(1)
HL and O(3)

HL which originate

from RG running; see also Eq. (4.63) in the appendix.

4.3.4.2 Trilepton Decays

The branching ratio for trilepton decays with identical flavours in the final state is given

by [297]7

BR(`i → `j`j`j) =
m5

`i

3(16π)3Γ`i

[
64
∣∣∣CV LL

ee,jijj

∣∣∣2 + 64
∣∣∣CV RR

ee,jijj

∣∣∣2 + 8
∣∣∣CV LR

ee,jijj

∣∣∣2 + 8
∣∣∣CV LR

ee,jjji

∣∣∣2
+ 256e2

m2
`i

(
ln
m2

`i

m2
`j

− 11
4

)(∣∣∣Cij
eγ

∣∣∣2 +
∣∣∣Cji

eγ

∣∣∣2) (4.57)

− 64e
m`i

Re
[ (

4CV LL
ee,jijj + CV LR

ee,jijj

)
Cji∗

eγ +
(
4CV RR

ee,jijj + CV LR
ee,jjji

)
Cij

eγ

]]
.

7See also Refs. [296; 298] for earlier work. In the case of τ decays, we should not expect
significantly stronger constraints if some of the final state electrons are swapped for muons.
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In Type-III Seesaw, these decays are dominated by the vector operators OV LL
ee and OV LR

ee ,

which receive large contributions in the tree-level matching onto SMEFT, and then onto

LEFT (see Section 4.A). By neglecting all Wilson coefficients apart from CV LL
ee,jijj and

CV LR
ee,jijj , we thus find

BR(µ → 3e) ≈ 1.2 × 10−4
[
64
∣∣∣0.27

(
Ĉ

(1)
HL,12 + Ĉ

(3)
HL,12

)∣∣∣2 + 8
∣∣∣0.49

(
Ĉ

(1)
HL,12 + Ĉ

(3)
HL,12

)∣∣∣2]
(4.58)

and

BR(τ → 3e) ≈ 0.2 × 10−4
[
64
∣∣∣0.27

(
Ĉ

(1)
HL,13 + Ĉ

(3)
HL,13

)∣∣∣2 + 8
∣∣∣0.49

(
Ĉ

(1)
HL,13 + Ĉ

(3)
HL,13

)∣∣∣2],
(4.59)

where the SMEFT Wilson coefficients on the right are evaluated at the scale µ = mZ . In

Type-I Seesaw, the above combinations of coefficients are zero at the matching scale, and

only depart from zero at µ = mZ due to RG running. In this case, the branching ratios

are relatively more sensitive to the contributions from the electromagnetic dipole operator

Oeγ , and the above approximations are only accurate to about 20%.

4.3.4.3 µ − e Conversion in Nuclei

Our third probe of LFV—the conversion between lepton flavours in scatterings with

nuclei—enters the murky world of nuclear physics, where many complicated effects become

important and the physics is often best expressed in terms of various form factors. For-

tunately for us, as the scalar and gluon operators are suppressed in the fermionic Seesaw

models, the µ− e conversion rate in nuclei takes the simple form [299; 300]

ωconv =
∣∣∣∣∣−Ceγ,12

2mµ
D + g̃

(p)
LV V

(p) + g̃
(n)
LV V

(n)
∣∣∣∣∣
2

+
∣∣∣∣∣−C∗

eγ,21
2mµ

D + g̃
(p)
RV V

(p) + g̃
(n)
RV V

(n)
∣∣∣∣∣
2

, (4.60)

where the overlap integrals D, V (p) and V (n) can be found in Refs. [299; 301], and the
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effective coupling constants are

g̃
(p)
LV = 2

(
CV LL

eu,1211 + CV LR
eu,1211

)
+
(
CV LL

ed,1211 + CV LR
ed,1211

)
, (4.61a)

g̃
(p)
RV = 2

(
CV RR

eu,1211 + CV LR
ue,1112

)
+
(
CV RR

ed,1211 + CV LR
de,1112

)
, (4.61b)

g̃
(n)
LV =

(
CV LL

eu,1211 + CV LR
eu,1211

)
+ 2

(
CV LL

ed,1211 + CV LR
ed,1211

)
, and (4.61c)

g̃
(n)
RV =

(
CV RR

eu,1211 + CV LR
ue,1112

)
+ 2

(
CV RR

ed,1211 + CV LR
de,1112

)
; (4.61d)

see Section 4.A for approximate matching expressions.

We are interested in the conversion ratio CR(µ → e), defined as the ratio of the µ − e

conversion rate ωconv over the muon capture rate ωcapt. Using the values for ωcapt given

in Refs. [299; 301], the conversion ratio in the Seesaw models approximates to

CR(µ → e) ≈
(
mµ

GeV

)5


5.87
1.16
21.54

× 105 (4.62)

×

∣∣∣∣∣∣∣
[
2
(
ĈV LL

eu,1211 + ĈV LR
eu,1211

)
+
(
ĈV LL

ed,1211 + ĈV LR
ed,1211

) ]
0.0396
0.0974
0.0161


+
[ (
ĈV LL

eu,1211 + ĈV LR
eu,1211

)
+ 2

(
ĈV LL

ed,1211 + ĈV LR
ed,1211

) ]
0.0468
0.146
0.0173


∣∣∣∣∣∣∣
2

,

where the Wilson coefficients on the right are evaluated at the low scale µ = 5 GeV, and

where the upper, middle and lower entry in the braces refers to a titanium (Ti), gold (Au)

and aluminium (Al) target, respectively. Though the predictions for the conversion ratios

for lead (Pb) and sulfur (S) are also featured in Table 4.7, we can infer that the current

bounds from these elements do not impose relevant constraints. As is reflected by the above

approximation, µ − e conversion is dominated by contributions from left-handed vector

operators in both Seesaw models. This is evident in Type-III where these contributions

are sourced at tree level, but also holds in Type-I. The electromagnetic dipole operator

Oeγ plays a subdominant role in both models.
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4.3.4.4 Discussion

The current and projected constraints due to the non-observation of LFV are pictured

in Fig. 4.6. For both Seesaw models, these constraints impose a pronounced hierarchy

between |θe| and |θµ| if we wish to have an observable shift in the Higgsstrahlung cross

section (though of course this is not so relevant for Type-I, where such a scenario has

already been ruled out by earlier considerations), as well as a slight hierarchy between |θe|

and |θτ |.

In Type-I Seesaw, the most competitive bounds currently arise from µ → eγ and τ → eγ.

Future measurements of BR(µ → 3e) and CR(µ − e) are expected to improve the θe–θµ

bound by two orders of magnitude, while more precise measurements of BR(τ → 3e) and

BR(τ → eγ) will likely improve the θe–θτ bound by less than an order of magnitude.

Interestingly, the LFV bounds for Type-I shuffle around when the Seesaw scale is raised

on account of the fine-tuned manner in which the model predictions depend on the RG

running of the SMEFT operators – for example, CR(µ− e; Au) is tremendously enhanced

when M = 10 TeV. A lucid discussion of this effect can be found for instance in Ref. [302],

and we will also have more to say in Section 4.3.5.

In Type-III Seesaw, the bounds from BR(µ → 3e) and CR(µ − e) are stricter than that

of BR(µ → eγ) due to tree-level contributions to the respective pertinent operators, and

τ → 3e is similarly more competitive than τ → eγ. (In fact, the projected sensitivities of

BR(µ → eγ) and BR(τ → eγ) cannot even be expected to supersede the current bounds.)

The strongest current bound on θe–θµ mixing, from µ− e conversion in gold, enforces the

hierarchy |θµ/θe| . 10−3 for an observable shift to Higgsstrahlung, and if µ → 3e and

µ− e conversion in aluminium are not detected by the Mu3e and COMET experiments,

respectively, then the required hierarchy may increase to |θµ/θe| . 10−5. In a similar vein,

the limit on |θτ | may be strengthened by an order of magnitude if τ → 3e is not observed

by Belle II, necessitating a hierarchy of |θτ/θe| . 10−1.
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(a) LFV constraints in the θe–θµ plane. To minimise clutter, only the most competitive bounds are
displayed. The PRISM/PRIME proposal [290] may even further extend the new-physics reach of
µ− e conversion.

(b) LFV constraints in the θe–θτ plane.

Figure 4.6: Current constraints from LFV observables depicted at 90% C.L., together with
their prospective future reaches, in comparison with projected sensitivities of precision
Higgsstrahlung measurements. The red-ruled regions indicate |∆σ/σ| < 0.5% at

√
s =

240 GeV. The dot-dashed and dotted red lines are the corresponding 1% contours at√
s = 240 GeV and 365 GeV, respectively. The bounds from tau-flavoured processes are

not shown in the θe–θµ plots, and vice versa. If included, they would appear as vertical
lines with positioning highly dependent on the choice of the third mixing angle, which
limits their relevance.
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Type-I Type-III
∆σ/σ0 (240 GeV) 0.74 |θe|2 + 1.11 |θµ|2 + 0.06 |θτ |2 26.30 |θe|2 − 1.07 |θµ|2 − 0.01 |θτ |2

∆σ/σ0 (365 GeV) 0.41 |θe|2 + 1.18 |θµ|2 + 0.12 |θτ |2 63.12 |θe|2 − 1.09 |θµ|2 − 0.03 |θτ |2

∆σ/σ0 (500 GeV) −0.05 |θe|2 + 1.26 |θµ|2 + 0.19 |θτ |2 120.66 |θe|2 − 1.11 |θµ|2 − 0.05 |θτ |2

δs2
w −0.151(|θe|2 + |θµ|2) + 0.005 |θτ |2 0.021(|θe|2 + |θµ|2) − 0.135 |θτ |2

δmW /GeV 7.95(|θe|2 + |θµ|2) − 0.24 |θτ |2 −8.44(|θe|2 + |θµ|2) − 0.24 |θτ |2

gX
µ/e 1 + 0.47(|θe|2 − |θµ|2) 1 − 0.47(|θe|2 − |θµ|2)
gX

τ/µ 1 + 0.47(|θµ|2 − |θτ |2) 1 − 0.47(|θµ|2 − |θτ |2)
R(Vus) 1 + 0.44 |θe|2 + 8.58 |θµ|2 − 0.07 |θτ |2 1 − 0.44 |θe|2 − 8.58 |θµ|2 + 0.07 |θτ |2

BR(µ → eγ) 0.80 × 10−3 |θeθµ|2 1.21 × 10−3 |θeθµ|2

BR(µ → 3e) 0.34 × 10−3 |θeθµ|2 0.66 |θeθµ|2

CR(µ → e; Au) 0.94 × 10−3 |θeθµ|2 24.7 |θeθµ|2

CR(µ → e; Al) 0.03 × 10−3 |θeθµ|2 6.1 |θeθµ|2

CR(µ → e; Ti) 0.15 × 10−3 |θeθµ|2 12.3 |θeθµ|2

CR(µ → e; Pb) 0.76 × 10−3 |θeθµ|2 18.5 |θeθµ|2

CR(µ → e; S) 0.01 × 10−3 |θeθµ|2 5.8 |θeθµ|2

BR(τ → eγ) 0.15 × 10−3 |θeθτ |2 0.23 × 10−3 |θeθτ |2

BR(τ → 3e) 0.06 × 10−3 |θeθτ |2 0.12 |θeθτ |2

Table 4.8: Contributions to the observables considered in the phenomenology study in this
work, but obtained from matching onto SMEFT at a Seesaw scale µ = M = 10 TeV.

4.3.5 Larger Seesaw Scale

Lastly, it is worth commenting on the scenario with a larger matching scale. The model

predictions for all observables considered in this chapter, given the increased Seesaw scale

M = 10 TeV, are collected in Table 4.8.

In the case of the Type-III Seesaw model, our discussed results appear to be fairly robust

under the raising of the triplet mass scale, at least to O(10 TeV) – that is, the numerical

coefficients entering the expressions for the considered observables typically change by less

than 20%. The only notable differences lie in the sensitivity of δmW and ∆σ/σ0 at larger

centre-of-mass energies to tau-flavour mixing, where the respective coefficients grow by

a factor of 2–5. Still, it is a subleading effect, as these observables remain much more

sensitive to electron- and muon-flavour mixing. Therefore, the results for the Type-III

Seesaw model discussed so far, for which M = 1 TeV is assumed, will also approximately

hold for (moderately) larger masses.
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In contrast, the observable phenomenology of Type-I Seesaw morphs somewhat nontrivially

upon raising the Seesaw scale to M = O(10 TeV). Most profoundly, the Higgsstrahlung

shift ∆σ/σ0 now experiences a crossing near
√
s = 500 GeV, whereupon the dependence on

the squared electron mixing angle |θe|2 reverses from positive to negative. Additionally, the

trilepton decay rates receive a relative numerical boost of 200%, and the µ− e conversion

rates are, in general, significantly altered. Specifically, µ− e conversion in gold and lead

increase substantially due to the fact that the effective left-handed vector couplings to

neutrons increase by a factor larger than 2, while the proton couplings and the dipole op-

erator remain largely unchanged, and thus the cancellations between the two are much less

efficient. Conversely, µ−e conversion in aluminium and titanium experience a suppression.

This implies in particular that the current bound arising from µ− e conversion in gold is

clearly stronger than the one from titanium, unlike the scenario with M = 1 TeV.

4.4 Summary

In this work we have computed the correction to the tree-level cross section of the Higgs-

strahlung process e+e− → Zh in the LN-conserving limit of the Type-I and Type-III

Seesaw models, and compared several benchmark sensitivities of next-generation lepton

colliders to existing and prospective constraints from electroweak precision measurements,

and LFU and LFV probes. Summary plots in the θe–θµ and θe–θτ planes are presented in

Fig. 4.7.

As a major result, we have found that existing data on the effective leptonic weak mixing

angle and LFU observables preclude substantial corrections to the Higgsstrahlung cross

section for Type-I Seesaw. The most likely signature of this model at a future lepton

collider is therefore the absence of a detectable deviation from the SM prediction, at least

if no further new physics modifying the electroweak and LFU sectors is introduced. For

Type-III Seesaw, the current constraints (at 2σ) leave genuinely viable parameter space

that can be probed at an e+e− Higgs factory. Fig. 4.8 provides a magnified view of this

region. Concretely, for a centre-of-mass energy
√
s = 240 GeV the largest permitted shift
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(a) Summary plots in the θe–θµ plane.

(b) Summary plots in the θe–θτ plane.

Figure 4.7: Summary plots featuring the most competitive current constraints as well
as future reaches considered in this work in comparison with projected sensitivities of
precision Higgsstrahlung measurements. The red-ruled regions indicate |∆σ/σ| < 0.5% at√
s = 240 GeV. The dot-dashed and dotted red lines are the corresponding 1% contours

at
√
s = 240 GeV and 365 GeV, respectively.
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Figure 4.8: Plots zoomed in on the viable parameter regions in the Type-III Seesaw
model. Only the most constraining observables are depicted. The red-ruled regions
indicate |∆σ/σ| < 0.5% at

√
s = 240 GeV. The dot-dashed and dotted red lines are the

corresponding 1% contours at
√
s = 240 GeV and 365 GeV, respectively.

in the Higgsstrahlung cross section is ∼5%; at
√
s = 365 GeV it is ∼12%. It is worth

noting, however, that the viability of this region is contingent upon the existence of at

least three sterile states, as oscillation data imposes |θe| . 10−2.3 at 2σ in the minimal

two-triplet scenario [174].

Assuming at least three sterile states, the viable region in Type-III is isolated by three main

considerations. Firstly, the non-observation of LFV tightly constrains any scenario with

sizeable mixing of heavy fermion singlets or triplets with two lepton flavours. These con-

straints are particularly strong for Type-III Seesaw, which induces tree-level contributions

to trilepton decays and µ− e conversion. Indeed, a detectable deviation in σ(e+e− → Zh)

already necessitates a sizeable hierarchy between θe and θµ which will become more pro-

nounced if signals of LFV remain elusive in the future. (The situation is similar for Type-I

Seesaw, where in the absence of contributions to LFV at tree level, the radiative decays

µ → eγ and τ → eγ are more important.) Secondly (and thirdly), both the W boson mass

mW and LFU data currently disfavour detectable corrections induced via muon mixing at

the level of 2σ, but leave room for visible effects due to electron-flavoured couplings, which
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together with the LFV constraints enforces a hierarchy |θµ/θe| . 10−3.

Focusing on the viable region in Fig. 4.8, the constraints arising from the LFU ratio gπ
µ/e

and mW are similarly competitive and provide the most stringent constraint on electron

mixing in the Type-III Seesaw model, with |θe| . 0.04 at 2σ. In the region of parameter

space where ∆σ/σ0 is detectable, tau-flavour mixing is more strictly constrained by the

current bound on BR(τ → 3e) than by measurements of the weak mixing angle or pion

decays. As is expected from Section 4.3.4, the most competitive upper limit on muon

mixing in this context currently arises from the non-observation of µ − e conversion in

gold, and will be further constrained by Mu3e as well as the searches for µ− e conversion

in aluminium at COMET and Mu2e. If an observation of these transitions remains elusive

in the future, the currently viable parameter space will retreat to |θµ| . 10−7.5. Similarly,

if τ → 3e is not observed at Belle II, tau mixing would need to be smaller than θτ = 10−2.

Since fermion triplets induce a tree-level contribution to e+e− → Zh which is not mediated

via the s channel as in the SM, deviations from the cross section induced via electron-

flavour mixing grow approximately with s. In that sense, if the drop in statistics can

be compensated by higher luminosity, the Type-III Seesaw model motivates precision

measurements of the Higgsstrahlung process at higher centre-of-mass energies as well,

whereas this is not indicated for Type-I Seesaw.

Overall, we have corroborated the expectation that a rich interplay of neutrino, Higgs,

electroweak and flavour physics is to be expected for Seesaw models at low energies, and

demonstrated the benefit of measuring the Higgsstrahlung cross section at multiple centre-

of-mass energies for the Type-III Seesaw model. One may extend the research conducted

in this work along two major avenues. Firstly, although the list of processes which we

have considered captures a wide range of phenomenology of the fermionic Seesaw models,

it is not exhaustive. In particular, taking into account observables sensitive to angular

distributions for Higgs physics [303] as well as a comprehensive global fit in the electroweak

sector should help to further differentiate between the low-energy signatures of Seesaw

models. Secondly, since we relied on the assumption of an exactly conserved LN symmetry

on the Lagrangian level, existing data on lepton mixing and the mass hierarchies in the
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neutrino sector was per definition not incorporated. While we expect the implications of

lepton number breaking for the induced low-energy phenomenology to be small (at least

when there are three or more sterile states [174; 264]), any viable model of neutrino mass

generation eventually needs to be tested against them. Lastly, similar studies for different

models of neutrino mass generation are left for future work.
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4.A Approximate Matching Conditions

From DsixTools we numerically obtain the matching condition

Ceγ,ij(µ = 5 GeV)
GeV ≈ 150.732CeB,ij − 82.394CeW,ij + 3.204C(3)

LeQu,ij33 (4.63)

+Aij

(
C

(3)
HL,ij − 0.27353C(1)

HL,ij

)

for the electromagnetic dipole operator, where the Wilson coefficients on the right-hand

side are evaluated at the scale µ = mZ , repeated indices do not indicate summation, and

Aij = 10−3

 − 0.2661 4.4758
0.0013 − −
0.0013 − −


ij

, (4.64)

with the dashed entries being irrelevant for our purposes.

My coauthors and I are conscious that the scales associated with the decays of taus and

muons are smaller than µ = 5 GeV. The largest contributions from RG running at lower

scales can be expected to originate from QCD. The only SMEFT operator which one may a

priori expect to yield a sizeable contribution to LEFT operators which involve quark fields

and mix into Oeγ is O(3)
LeQu = (LσµνeR)ε(QσµνuR). Still, this operator is not induced at

one-loop level in the Seesaw models under consideration [256–258], and it only yields a tiny

sub-percent contribution to Oeγ . Therefore, we do not expect to have missed any sizeable

effects from RG running below µ = 5 GeV.8 The same holds for the (semi-)leptonic vector

operators mediating trilepton decays and µ− e conversion; we have explicitly checked that

the contribution from quark operators is at most 1% in Eqs. (4.65) and (4.66) below.

For all the matching conditions listed in the following, the respective LEFT Wilson coef-

ficient on the left-hand side is given at µ = 5 GeV, while the SMEFT Wilson coefficients

8To paraphrase, even if the numerical factor multiplying C
(3)
LeQu(mZ) in Eq. (4.63)

changes appreciably upon further lowering the scale on the left-hand side to, say, µ = mµ,
C

(3)
LeQu(mZ) itself is so small for the fermionic Seesaw models that we do not expect the

resulting (relative) contribution to Ceγ(mµ) to become sizeable in any way.
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entering on the right-hand side are evaluated at the scale µ = mZ . For the operators

relevant to trilepton decays we find:

CV LL
ee,jijj ≈ −0.266C(1)

HL,ji − 0.271C(3)
HL,ji + 0.973CLL,jjji, (4.65a)

CV RR
ee,jijj ≈ 0.974Cee,jjji + 0.235CHe,ji − 0.006Ceu,ji33 + 0.003CQe,33ji, (4.65b)

CV LR
ee,jijj ≈ 0.4912C(1)

HL,ji + 0.4909C(3)
HL,ji + 1.018CLe,jijj − 0.012CLu,ji33, and (4.65c)

CV LR
ee,jjji ≈ −0.556CHe,ji + 1.018CLe,jjji − 0.015CQe,33ji + 0.011Ceu,ji33. (4.65d)

For µ− e conversion the matching conditions for the vector operators are

CV LL
eu,1211 ≈ 0.708C(1)

HL,12 + 0.734C(3)
HL,12 − 1.047C(3)

LQ,1211, (4.66a)

CV LR
eu,1211 ≈ −0.3172C(1)

HL,12 − 0.3170C(3)
HL,12 + 0.984CLu,1211, (4.66b)

CV RR
eu,1211 ≈ −0.321CHe,12 + 0.008Ceu,1233 − 0.005CQe,3312, (4.66c)

CV LR
ue,1112 ≈ 0.696CHe,12 + 0.017CQe,3312 − 0.014Ceu,1233, (4.66d)

CV LL
ed,1211 ≈ −0.856C(1)

HL,12 − 0.864C(3)
HL,12 + 0.987C(3)

LQ,1211, (4.66e)

CV LR
ed,1211 ≈ 0.1617C(1)

HL,12 + 0.1615C(3)
HL,12 + 1.006CLd,1211, (4.66f)

CV RR
ed,1211 ≈ 0.158CHe,12 − 0.004Ceu,1233 + 0.002CQe,3312, and (4.66g)

CV LR
de,1112 ≈ −0.867CHe,12 − 0.020CQe,3312 + 0.018Ceu,1233. (4.66h)
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As you may have noticed, the world around us happens to be made up of matter, and not

antimatter. In fact, this is almost certainly true for the whole universe, as quantified by

cosmic measurements of the baryon-to-photon ratio [90; 304]
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nb − nb

nγ
' nb

nγ
= (6.10 ± 0.4) × 10−10. (5.1)

Imagining for extreme simplicity that all photons were produced in the pair annihilation

of quarks and antiquarks, this ratio suggests an excess of one quark for every 3 × 108

quark-antiquark pairs in the primordial universe – a miniscule, yet clearly important

imbalance.

This observed matter dominance presents a rather delicious problem, for it turns out

that the Standard Model is incapable of explaining this observed baryon abundance [98;

99; 101], leaving us in need of a BSM mechanism of baryogenesis. In this chapter

we’ll explore one such method for tipping the cosmic scales: leptogenesis, in which a

lepton asymmetry is first generated before being converted to a baryon asymmetry. Good

overviews of baryogenesis and a selection of its myriad approaches can be found for instance

in Refs. [89; 100; 101; 304].

As far as theory chapters go, this is a rather long one. After a brief discussion on the

generalities of baryogenesis in the next section, I’ll review the topic of CP asymmetries

and the technique of Cutkosky cuts for evaluating them in Sections 5.2 and 5.3. Then,

in Section 5.4 I’ll establish the Boltzmann equation as the means of tracking the baryon

asymmetry as the universe evolves.

5.1 Ingredients

It is the law that anyone introducing the topic of baryogenesis must first mention Sakharov’s

conditions [91], and I don’t intend to make a criminal out of myself. These conditions

mandate that to generate a baryon asymmetry in the early universe, one requires

1. baryon number violation,

2. C and CP violation, and
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3. a departure from equilibrium.

These requirements can be understood quite intuitively: were the first not true, baryon

number would always be conserved and an asymmetry could never be generated from a

baryon-symmetric universe; were the second not true, matter and antimatter would be

treated on equal footing; and were the third not true, any process generating an asymmetry

would have the reverse process just as easily erase it.

In the SM these conditions are actually satisfied, as follows:

1. Baryon number, while a classical symmetry of the SM in which all quark fields

transform with charge 1/3, is violated at the quantum level by the ABJ triangle

anomaly [157; 158], also known as the chiral anomaly. While the probability of

baryon number violation due to this anomaly is unobservably small at zero temper-

ature [280], it is tremendously enhanced between T ≈ 130 GeV and T ≈ 1012 GeV

when electroweak sphalerons are in thermal equilibrium [305]. An electroweak

sphaleron is a topological quasiparticle [306–311] consisting of nine quarks and

three leptons, and baryon-plus-lepton number B+L is efficiently violated during the

period in which they are active.

2. C-symmetry is maximally violated in the SM by the weak interaction, and CP is

violated by the complex phase in the CKM matrix, as captured by the Jarlskog

invariant JCKM ≈ 3.12 × 10−5 [124]. The CP violation in the PMNS matrix is

currently constrained to be at most Jmax
PMNS ≈ 3 × 10−2 [152], though it is likely much

smaller than this bound. In principle CP is also violated by the strong CP phase θ

appearing in the topological QCD term L ∼ θGG̃, but measurements of the neutron

dipole moment constrain it to be very small, θ . 10−10 [9; 312].

3. A departure from equilibrium can occur during the electroweak phase transition

(EWPT), in which the SU(2)W × U(1)Y symmetry is broken by the Higgs’ vacuum

expectation value in isolated regions, or bubbles, which expand until they fill the entire

universe. During this time, particles inside the bubbles are unable to equilibrate
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with those outside, and CP -asymmetric scatterings against the bubble walls could

offer a means of generating the required particle number asymmetries [313–316].

More generically, the decay of any unstable particle can occur out of equilibrium

when the temperature drops below its mass and the inverse decay hence becomes

inefficient. Since none of the SM particles have baryon number-violating decays, this

is however a moot point.

Unfortunately, while these ingredients are present they are nevertheless inadequate when

put to the task of explaining the observed baryon abundance. For the EWPT to stand

a chance of achieving successful baryogenesis it needs to be strongly first-order, meaning

there must be a potential barrier between the broken and unbroken phases at the time

of transition, such that regions of the broken phase can nucleate with well-defined bubble

walls. This turns out to require a Higgs mass below 70 GeV [317; 318], and that this is

not the case means that the EWPT in the SM is rather of a crossover type, in which

the new phase instead smoothly permeates the universe. One may attempt to introduce

new physics to make the phase transition first-order, and this approach forms an essential

part of the scheme of electroweak baryogenesis; see for example Refs. [100; 101; 316; 319]

and [320–329]. Even if this is realised, however, the amount of CP violation in the CKM

matrix has been shown to be many orders of magnitude too small to generate the required

baryon abundance [98; 99], and so additional sources of CP violation are required.

This brings us to the idea of leptogenesis [102–105; 330]. The key premise behind this

approach is that the lepton number violation due to Majorana neutrino masses together

with the CP violation in the PMNS matrix (or elsewhere in a given mass model) could

lead to a significant lepton asymmetry, which can then transmute into a baryon asymmetry

through the action of electroweak sphalerons.1 Many leptogenesis scenarios achieve the

lepton number generation through the out-of-equilibrium decay of a heavy particle, most

often a sterile neutrino. The canonical example is the decay N → LH of a sterile neutrino

in Type-I Seesaw [102; 335].

1Leptogenesis is also possible without Majorana masses, in which case it is often referred
to as Dirac leptogenesis; see e.g. Refs. [331–334].
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In the next chapter we will investigate whether leptogenesis can be accomplished in the

Zee model of neutrino masses via the CP -violating decay of a new heavy scalar h−. As

the baryon number violation and out-of-equilibrium conditions are automatically met, we

therefore require only that there is sufficient CP violation.

5.2 CP Violation and the Cutting Rules

Let us begin by studying how CP violation comes to be. For a grounded definition, we

say that CP is violated when the rate of a process and its CP conjugate are unequal,2

Γ(i → f) 6= Γ(i → f). (5.2)

For us, it is more convenient to study this at the level of invariant matrix elements, so

we’ll instead say that we require

∆|M|2 ≡ |Mfi|
2 − |Mfi|

2 6= 0, (5.3)

where I use the shorthand Mfi ≡ M(i → f). In typical scenarios this asymmetry arises

from the interference of tree- and loop-level diagrams. To see how, let’s write

Mfi = c0A0 + c1A1 and (5.4a)
Mfi = c∗

0A0 + c∗
1A1, (5.4b)

where we decompose the tree- and loop-level amplitudes into their coupling constants c0,1

and so-called dynamical amplitudes A0,1. Then

∆|M|2 = |c0A0 + c1A1|2 − |c∗
0A0 + c∗

1A1|2

= |c0|2(|A0|2 − |A0|2) + |c1|2(|A1|2 − |A1|2) (5.5)
+ 2 Re(c∗

0c1) Re(A∗
0A1 − A∗

0A1) − 2 Im(c∗
0c1) Im(A∗

0A1 + A∗
0A1).

2Here I will use notation and terminology for decays, though the discussion in this
chapter applies equally well to scatterings.
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As it generically transpires that |A0|2 = |A0|2, |A1|2 = |A1|2, and A∗
0A1 = A∗

0A1 [104],

this reduces to the compact expression

∆|M|2 = −4 Im(c∗
0c1) Im(A∗

0A1). (5.6)

That is, CP violation requires the existence of a complex phase in both the coupling

constants and the dynamical amplitudes. (This immediately explains why, by the way, the

phase δ in the CKM matrix is referred to as its CP -violating phase.)

It is conventional to introduce the CP asymmetry parameter ε by wrapping Eq. (5.6)

up into a ratio of decay rates,

ε ≡ Γ(i → f) − Γ(i → f)
Γ(i → f) + Γ(i → f)

(5.7)

≈
∫

dΠf ∆|M|2∫
dΠf 2|c0A0|2

= − Im(c∗
0c1)

|c0|2

∫
dΠf [2 Im(A∗

0A1)]∫
dΠf |A0|2

, (5.8)

where the sum in the denominator is dominated by the tree-level contribution. In antici-

pation of what is to come I have left the factor of 2 where it is, rather than pulling it out

the front.

Example
To make this all concrete, let’s explore a specific example: the decay of the lightest

sterile neutrino, N1 → LH, in Type-I Seesaw. (Note that N1 = νR1 in the notation

of previous chapters.) Our Feynman rules are

Nβ

Hb

La
α

= iYαβεabPL and Nβ

Hb

La
α

= iY ∗
αβεabPR, (5.9)

where here α, β index flavours and a, b index SU(2)W components. At one-loop there

is a triangular vertex correction and a wavefunction renormalization correction, but
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for this example we will just look at the contribution of the triangle diagram:

iM(N1 → La
αH

b) = N1

Hb

La
α

P

p2

p1 + N1

Hb

La
α

La
γ

Hb

qNβ

= u(p1)(iY ∗
α1εabPR)u(P) (5.10)

+ (εab)3
∫ d4q

(2π)4u(p1)
(
iY ∗

αβPR

) i
/q −mβ

(
iY ∗

γβPR

) i
/p2 + /q

(iYγ1PL)u(P) i
(q − p1)2 .

We are working in the unbroken phase where L is massless but N still has a Majorana

mass, and we moreover neglect the mass of the Higgs doublet. To make sense of

the diagrams I have used the fermion flow rules for Majorana fermions developed

in Refs. [336; 337]. From the above we can identify

c0 = Y ∗
α1εab, (5.11a)

A0 = u(p1)PRu(P), (5.11b)
c1 = Y ∗

αβY
∗

γβYγ1(εab)3, and (5.11c)

A1 = i
∫ d4q

(2π)4u(p1)PR
1

/q −mβ
PR

1
/p2 + /q

PLu(P) 1
(q − p1)2 . (5.11d)

We naturally have some freedom in choosing which factors we lump in with the c’s

and which with the A’s; here and onwards I will choose to put only the coupling

constants (including possible minus signs) from the Feynman rules into the c’s, and

everything else (including all factors of i) into the A’s.

Summing over spins and carrying out the loop integral, we arrive at

A∗
0A1 = −1

2
m1mβ

96π2

[
6 + π2(1 + xβ) + 6 ln(−xβ) + 3(1 + xβ) ln(−xβ)2

+ 6(1 + xβ)Li2(1 + xβ)
]

(5.12)

=⇒ Im(A∗
0A1) = −m1mβ

32π

[
1 − (1 + xβ) ln

(
1 + xβ

xβ

)]
, (5.13)

where xβ ≡ m2
β/m

2
1, Li2 is the dilogarithm (which satisfies Im Li2(x) = −πln(x)),
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and the extra factor of 1
2 comes from averaging over the spin of N1. By plugging

into Eq. (5.8) and summing over all virtual flavours β, γ, and outgoing particles a, b,

we find that the asymmetry parameter is

ε = Γ(N1 → LH) − Γ(N1 → LH)
Γ(N1 → LH) + Γ(N1 → LH)

= 1
8π
∑

β

Im[(Y †Y )2
β1]

(Y †Y )11

√
xβ

[
1 − (1 + xβ) ln

(
1 + xβ

xβ

)]
, (5.14)

which is a well-known result [335].

If that example appeared straightforward it is likely because I skipped over the evaluation of

the loop integral. Such integrals are typically the most troublesome part of any asymmetry

computation, and they have the potential to become downright nasty if—as in the next

chapter—we have to deal with two- or higher-loop diagrams. Fortunately for us, there

exists a powerful technique to simplify asymmetry calculations: the cutting rules.

These rules, also called the Cutkosky rules [338], state that the imaginary part of an

amplitude arises from virtual particles going on-shell, via3

2 Im A(i → f) =
∑
cuts

A ≡
∑
X

∫
dΠX A(i → X)A∗(f → X). (5.15)

In words, we can compute Im A by:

(a) cutting the diagram for A in all possible ways to put any number of virtual particles

on shell,

(b) writing down the separate amplitudes A(i → X) and A∗(f → X), and

(c) taking their product, summing over the spins and integrating over the phase space

of the intermediate particles.

3The cutting rules are customarily formulated in a somewhat different manner; see for
example Ref. [339] for an excellent treatment. Eq. (5.15) however suffices for our purposes.
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If the amplitude A(f → X) does not permit cuts of its own (i.e. it doesn’t carry an

imaginary part), then A∗(f → X) = A(X → f), and the cutting rules reduce to the

slightly neater form

2 Im A(i → f) =
∑
X

∫
dΠX A(i → X)A(X → f). (5.16)

The simple way to gain intuition for the cutting rules is by noting that a propagator

becomes imaginary precisely when it is on-shell,

Im
( 1
p2 −m2 + iε

)
= −πδ(p2 −m2). (5.17)

In fact, an equivalent way to compute 2 Im A, assuming Eq. (5.16) is valid, is to take −iA

and make the replacement

i
p2 −m2 + iε → 2πδ(p2 −m2)θ(p0) (5.18)

for all cut particles.

Example
Let’s repeat the above calculation of the asymmetry parameter for Type-I Seesaw,

but this time using the cutting rules. There are in principle three possible ways to

cut the loop diagram:

(a) (b) (c)

One can systematically list all cuts by enumerating over all possible circlings of

vertices, where a line is cut if it connects a circled vertex to an uncircled one

[111; 339; 340]. The incoming external lines are treated as implicitly uncircled while

the outgoing lines are implicitly circled, and a circling configuration only generates

a valid cut if it completely partitions the diagram into a left side, containing only
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uncircled vertices, and a right side containing only circled vertices. It is okay for

one or both sides to have disconnected parts, but each side must contain at least

one vertex, so that it is not completely trivial. The use of circlings is overkill for

our triangle diagram, but the technique is increasingly useful for more complicated

ones.

Anyhow, cuts (b) and (c) vanish as they are kinematically impossible – cut (b), for

example, contains the disconnected subprocess NβL → H, which cannot simultane-

ously conserve energy and momentum. This leaves us with (a) as the only viable

cut, and as there are no more valid cuts Eq. (5.16) holds, which reads

2 Im A1(N1 → LH) =
∫

dΠ2 A(N1 → HL)A(HL → LH), (5.19)

or, diagrammatically (up to factors of i),

2 Im

 N1

H

L
 = N1

H

L

L

H

k1

k2

Nβ

p1

p2

. (5.20)

Since we are focusing on the amplitudes and not the coupling constants (which we

anyway already know from Eq. (5.11)), here I suppress the flavour and SU(2)W

indices for the H’s and L’s.

From the diagrams above we can read off

iA(N1 → HL) = u(k2)(iPL)u(P ) and (5.21a)

iA(HL → LH) = u(p1)(iPR) i
/p1 − /k1 −mβ

(iPR)u(k2); (5.21b)

multiplying the two and summing over the spin of the intermediate on-shell L gives

A(N1 → HL)A(HL → LH) = −u(p1)PR
1

/p1 − /k1 −mβ
PR/k2PLu(P ). (5.22)
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Eq. (5.19) now instructs us to integrate over the two body phase space of k1 and

k2, but—while doable—this is somewhat tedious as the four-vectors are not formed

into invariant combinations. Instead, remembering that the CP asymmetry is

proportional to

2 Im(A∗
0A1) = A∗

0
∑
cuts

A1, (5.23)

we multiply out by A0(N1 → LH)∗ = u(P)PLu(p1), which gives a closed spinor

chain that we can trace over. Upon summing or averaging over the appropriate

spins we end up with

A0(N1 → LH)∗A(N1 → HL)A(HL → LH)

= −1
2

Tr
[
(/P +m1)PL/p1PR(/p1 − /k1 +mβ)PR/k2PL

]
(p1 − k1)2 −m2

β

(5.24)

= m1mβ
p1 · k2

2p1 · k1 +m2
β

. (5.25)

This is a much friendlier expression. To carry out the phase space integral we

work in the rest frame of N1 and choose our z-axis to align with p1, so that

p1 · k1 = 1
4m

2
1(1 − cos θ) and p1 · k2 = 1

4m
2
1(1 + cos θ). Then

2 Im(A∗
0A1) =

∫
dΠ2

[
m1mβ

p1 · k2
2p1 · k1 +m2

β

]
(5.26)

= m1mβ

8π

∫ 1

−1

dcos θ
2

1
4m

2
1(1 + cos θ)

1
2m

2
1(1 − cos θ) +m2

β

(5.27)

= −m1mβ

16π

[
1 − (1 + xβ) ln

(
1 + xβ

xβ

)]
, (5.28)

where once again xβ ≡ m2
β/m

2
1. This agrees with Eq. (5.13), and so we recover the

same result for the asymmetry!

With practice, the cutting rules quickly become a very efficient way to compute asymmetries.

As in the above example it will almost always be easier to work out 2 Im(A∗
0A1) than

2 Im A1 directly. In the rare case that A0 contains an imaginary part—for instance, one
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might have an s-channel scattering where the tree-level mediator can go on-shell—we must

generalise to

2 Im(A∗
0A1) = 2 Re(A0) Im(A1) − 2 Im(A0) Re(A1) (5.29)

= Re(A0)
∑
cuts

A1 − Re(A1)
∑
cuts

A0.

5.3 A Detour: Results from Unitarity

Before proceeding onwards with our discussion of leptogenesis it is a good idea to take

a pit stop to review and explore some implications of S-matrix unitarity. We will first

derive a consistency condition on CP asymmetries, and then we will explore an alternative

unitarity-based approach to their computation. In doing so we will come to appreciate

some important nuances that will become relevant to us later.

Our starting point is of course the S-matrix itself, which can roughly be understood as

S = eiĤt, with Ĥ the Hamiltonian of our quantum field theory. Elements of the S-matrix

are denoted Sfi = 〈f |S|i〉. There are a number of subtleties associated with the S-matrix,

such as the precise definition of asymptotic states |i〉 and |f〉 and the treatment of unstable

and massless states. I will not go into a great amount of detail here – for this, one should

consult their favourite QFT textbook.

As we all know, it is conventional to define the T -matrix (also called the transition or

transfer matrix) to capture the nontrivial part of the S-matrix, via

S = 1 + iT. (5.30)

The familiar invariant matrix elements Mfi that we have encountered up to this point are

precisely the T -matrix elements up to an overall four-momentum conserving delta function,

iTfi = (2π)4δ(4)(pi − pf )iMfi. (5.31)
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Now, unitarity of S translates to two important conditions for T :

S†S = 1 =⇒ iT − iT † − iT †iT = 0, (5.32a)

and

S†S = SS† =⇒ T †T = TT †. (5.32b)

The former leads to powerful non-perturbative results such as the generalised optical theo-

rem—which is almost equivalent to the form of the cutting rules presented in Eq. (5.15)—and

also forms the basis of the so-called holomorphic cutting rules, to be introduced below.

The latter (which is actually implied by the former) leads to an important constraint on

CP asymmetries, which we will explore first.

5.3.1 The Total CP Asymmetry is Zero

Consider a diagonal entry of Eq. (5.32b), (T †T )ii = (TT †)ii, or in full

∑
f

∫
[dPf ] 〈i|T †|f〉〈f |T |i〉 =

∑
f

∫
[dPf ] 〈i|T |f〉〈f |T †|i〉 , (5.33)

where the resolution of identity involves a sum over a complete set of states f and an

integration over their phase space.4 At the M level this reads

∑
f

∫
dΠf |M(i → f)|2 =

∑
f

∫
dΠf |M(f → i)|2, (5.34)

where a common factor of V4 ≡ (2π)4δ(4)(0) has been removed from both sides. To proceed

we call upon the CPT theorem, which offers the corollary [341]

M(f → i) = M(i → f). (5.35)

4Recall that in my notation [dP f ] differs from dΠf by the absence of an explicit four-
momentum conserving delta function; see Eq. (1.4).
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Applying this to the right hand side of Eq. (5.34) gives

∑
f

∫
dΠf |M(i → f)|2 =

∑
f

∫
dΠf |M(i → f)|2, (5.36)

or more succinctly,

∑
f

∆Γ(i → f) =
∑

f

[
Γ(i → f) − Γ(i → f)

]
= 0 (5.37)

– that is, the total CP asymmetry must be zero, and moreover the total decay rate of a

particle and its antiparticle must be equal. This offers a very important cross check on

asymmetry calculations. If ever it does not appear to hold, something has gone awry.

Example
In our Type-I Seesaw example, this condition holds rather trivially since N1 is

Majorana:

∑
f

∆Γ(N1 → f) = ∆Γ(N1 → LH) + ∆Γ(N1 → LH) (5.38)

= Γ(N1 → LH) − Γ(N1 → LH) + Γ(N1 → LH) − Γ(N1 → LH)
= 0.

A more interesting case study would be
∑

f ∆σ(LH → f) (see Ref. [104]), but it

would present too much of a detour.

5.3.2 Holomorphic Cutting Rules

Let us now study the first unitary condition, Eq. (5.32a), where following Ref. [342] we

will derive an alternate formulation of the cutting rules. This will give us a powerful tool

for organising perturbative calculations, making results such as Eq. (5.37) evident at the

diagram level.

In this study the critical step is the first one, where we observe that we may use Eq. (5.32a)

to solve for T † in terms of T :
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iT † = iT (1 + iT )−1 = iT − (iT )2 + (iT )3 − (iT )4 + . . . . (5.39)

Component-wise this reads

iT ∗
fi = iTif − (iT )2

if + (iT )3
if − (iT )4

if + . . . , (5.40)

where (iT )n
if is understood as the sum over diagrams for f → i with n − 1 on-shell cuts.

This is a very useful relation, and it is worthwhile to work through an example to gain an

understanding of what it is telling us.

Example
Let us consider a fictional process at a fixed perturbative order,

iMfi =

i1

i2

f1

f2

g1 g2 = (ig1) i
p2 −m2 + iε(ig2), (5.41)

for which we can immediately read off

iM∗
fi = −ig∗

1g
∗
2

p2 −m2 − iε . (5.42)

The right-hand side of Eq. (5.40), which at O(g∗
1g

∗
2) only receives contributions from

the first two terms, reads at the M level

iMif − (iM)2
if =

f1

f2

i1

i2

g∗
2 g∗

1 −

f1

f2

i1

i2

g∗
2 g∗

1 (5.43)

= (ig∗
2) i
p2 −m2 + iε(ig∗

1) − (ig∗
2)2πδ(p2 −m2)(ig∗

1) (5.44)

= −ig∗
1g

∗
2

[ 1
p2 −m2 + iε + 2πiδ(p2 −m2)

]
, (5.45)
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where we recall Eq. (5.18) in realising the cut as a delta function. To reconcile this

expression with Eq. (5.42) we must call upon the Sokhotski-Plemelj identity

1
p2 −m2 + iε = P 1

p2 −m2 − iπδ(p2 −m2), (5.46)

where P denotes the Cauchy principal value. Then

1
p2 −m2 + iε + 2πiδ(p2 −m2) = P 1

p2 −m2 + iπδ(p2 −m2) (5.47)

= 1
p2 −m2 − iε , (5.48)

and we have agreement.

Thus, Eq. (5.39) is telling us that to conjugate M = cA we first mirror the diagram

and reverse the arrows, which conjugates the couplings5 c → c∗, and then subtract all

one-cut diagrams, add all two-cut diagrams, and so on, which amounts to conjugating

the dynamical amplitude, A → A∗. Through a slight abuse of notation we may

roughly express this as

i(cA)∗ = ic∗A − c∗(iA)2 + c∗(iA)3 − . . . , or (5.49)
iA∗ = iA − (iA)2 + (iA)3 − . . . , (5.50)

where we now understand (iA)n to mean iA with n− 1 on-shell cuts. Incidentally

this implies

2 Im A = −(iA)2 + (iA)3 − (iA)4 + . . . . (5.51)

Notice that we recover the simplified cutting rule of Eq. (5.16) when the (iA)3 and

higher terms vanish. When they do not we instead understand this result to be

5It also conjugates any spinor chains, 〈u|γµγν · · ·|u〉 → 〈u|γµγν · · ·|u〉†, which can result
in a complex conjugate if, for example, there appears a Tr

(
γµγνγργσγ5) = −4iεµνρσ. The

inclusion of spinor chains complicates our simple argument somewhat, as we treat the
them as part of A instead of c. Fortunately, though I don’t do so here, it isn’t too difficult
to generalise.
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equivalent to the more general form of Eq. (5.15).

The above example should kindle a greater appreciation for the role of the iε in propagators,

which are demonstrably important even at tree-level. Indeed, unitarity depends on their

inclusion. This will be of relevance to us in the next two chapters, where in one I will

explicitly argue away the imaginary part of some propagators, and in the other I will use

the imaginary part to demonstrate infrared finiteness.

Returning to the topic of CP asymmetries, we may use Eq. (5.40) in concert with the

CPT theorem to show that the asymmetry at the T -matrix level is

∆|Tfi|2 = |Tfi|2 − |Tfi|
2

= |Tfi|2 − |Tif |2

= −iT ∗
fiiTfi − (i ↔ f)

=
[
−iTif + (iT )2

if − (iT )3
if + . . .

]
iTfi − (i ↔ f) (5.52)

=
[
(iT )2

if iTfi − iTif (iT )2
fi

]
−
[
(iT )3

if iTfi − iTif (iT )3
fi

]
+ . . . . (5.53)

This result goes by the name of the holomorphic cutting rules [342–345], named so

because there are no surviving complex conjugates. These rules make explicit from the

outset the need for cutting through amplitudes, and unlike Eq. (5.6) their derivation did

not rely on the assertions |A0|2 = |A0|2, |A1|2 = |A1|2, and A∗
0A1 = A∗

0A1 that, while

easy to check for concrete examples, are difficult to prove generally.

Example
To confirm that the holomorphic cutting rules reproduce the result of the conven-

tional Cutkosky approach, let us return to our trusty Type-I Seesaw example for

one last time. In accordance with Eq. (5.53) we have that

∆|T (N1 → LH)|2 = N1

L

H

H

L

N1

︸ ︷︷ ︸
iTfi

︸ ︷︷ ︸
(iT )2

if

(5.54)
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− N1

H

L

L

H

N1 ,

︸ ︷︷ ︸
(iT )2

fi

︸ ︷︷ ︸
iTif

with no integration over the phase space of the final state LH, and where the

series terminates at the first term as there are no more valid cuts. By now we are

experienced enough to identify that the first line is equal at the M level to

c0c
∗
1

∫
dΠHL iA0(N1 → LH)iA(LH → HL)iA(HL → N1), (5.55)

while the second is

−c∗
0c1

∫
dΠHL iA(N1 → HL)iA(HL → LH)iA0(LH → N1). (5.56)

Because there are no further valid cuts the amplitudes are all individually real,

allowing us to use A(i → f) = A(f → i)∗ = A(f → i) to observe that the

amplitude factors in each line are in fact identical to each other, and moreover equal

to

∫
dΠHL iA0(N1 → LH)∗iA(N1 → HL)iA(HL → LH) = −2i Im(A∗

0A1) (5.57)

per the cutting rules in reverse. We therefore see that, up to delta function factors

found in transit between the T level and M level,

∆|T |2 = (c0c
∗
1 − c∗

0c1) × (−2i) Im(A∗
0A1) (5.58)

= −4 Im(c∗
0c1) Im(A∗

0A1), (5.59)

in exact agreement with Eq. (5.6).

A useful application of the holomorphic cutting rules is that they allow us to immediately

and easily see that the total CP asymmetry is zero:
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∑
f

∫
dΠf ∆|Tfi|2 =

∑
f

∫
dΠf

{[
(iT )2

if iTfi − iTif (iT )2
fi

]
−
[
(iT )3

if iTfi − iTif (iT )3
fi

]
+ . . .

}
=
[
(iT )3

ii − (iT )3
ii

]
−
[
(iT )4

ii − (iT )4
ii

]
+ . . .

= 0. (5.60)

By examining the terms

∑
f

∫
dΠf

[
(iT )2

if iTfi − iTif (iT )2
fi

]
=
∑
f,k

∫
dΠf dΠk

[
iTikiTkf iTfi − iTif iTfkiTki

]
(5.61)

more closely, we can pinpoint that the asymmetry due to i → k → f (that is, due to the

cut with intermediate state k in the process i → f) cancels against the asymmetry due

to i → f → k. This gives us an even stronger condition than Eq. (5.37), as it allows us

to identify the cancellation of asymmetries on a per-diagram basis. We will return to this

point in the next chapter, where it will turn out that the asymmetries in the BSM decays

h− → eLH → LL and h− → LL → eLH cancel within the Boltzmann equation for L, but

not in the way we might expect from this discussion.

5.4 Modelling Leptogenesis

It is not enough to say there exists some CP asymmetry in our theory – we would like to

quantitatively assess whether it is enough to reproduce the observed matter abundance.

To determine this we will ultimately need to model the evolution of the early universe and

carefully track the number of particles and antiparticles through a network of Boltzmann

equations [346]. This is in principle a rather difficult undertaking, but with the right

application of statistical methods and approximations it can be made manageable. General

references for this section and the remainder of this chapter include Refs. [89; 94; 104; 347;

348], with Refs. [104; 347; 348] offering more of a focus on the leptogenesis aspect. As

we have a lot of ground to cover I will defer many of the details to these references and

present only the important points. I apologise in advance for the impending overdensity
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of new definitions and notation, but it is regrettably unavoidable.

5.4.1 The Expanding Universe

The stage on which this drama plays out is that of an expanding universe, described by

the celebrated Friedmann–Lemaître–Robertson–Walker (FLRW) metric,

ds2 = dt2 − a2(t)
(

dr2

1 − kr2 + r2dΩ2
)
. (5.62)

The parameter a(t) is called the scale factor, and it captures the expansion of the universe,

with the normalisation a0 ≡ a(today) = 1. The other parameter, k, describing the spatial

curvature of the universe, is observed to be close to, if not zero [90].

The time evolution of the scale factor is governed by the Friedmann equations,

ȧ2

a2 = 8πG
3 ρ− k

a2 + Λ
3 and (5.63a)

ä

a
= −4πG

3 (ρ+ 3P ) + Λ
3 , (5.63b)

which are the form taken by the Einstein equations,

Gµν + Λgµν = 8πGTµν , (5.64)

when the matter content of an FLRW universe is modelled as a perfect fluid, Tµ
ν =

diag(ρ,−P,−P,−P ). Here ρ and P are respectively the energy and pressure densities of

the fluid. Baryogenesis is expected to have occurred during the radiation-dominated era of

the universe, where temperatures were large enough that most particles were relativistic,

contributing to the energy density and pressure budget with P = ρ/3, and dominating

over both k and the cosmological constant Λ. In this era the Friedmann equations then

imply

ρ ∝ a−4 and a ∝ t−1/2, (5.65)

110



5.4.2 Equilibrium Thermodynamics

and we may understand the first proportionality as stating that the energy density decreases

as a−3 due to the volume expansion of the universe, and additionally as a−1 due to the

redshifting of radiation. Often it will turn out to be more convenient to work in terms of

the Hubble rate6

H ≡ ȧ

a
=

√
8πG

3 ρ (in radiation domination), (5.66)

as we will shortly see.

5.4.2 Equilibrium Thermodynamics

With our backdrop in place, we turn to the study of the relativistic particles populating

the early universe. At early times these particles constitute a thermal plasma, rapidly

scattering and reacting in whichever way possible. To trace their physics—their thermal

history—one might think to input these interactions into a grand collection of Boltzmann

equations (to be introduced in the next section) and let it run, but this is overkill. Instead,

we recognise that as long as these interactions are suitably fast (meaning the interaction

rate Γ is much larger than the rate of expansion H), they will serve to drive the particles in

the plasma to a state of thermal equilibrium. We may therefore capture the effect of these

fast interactions simply by presupposing that the participating particles follow equilibrium

distributions.

There are two important forms of equilibria: kinetic and chemical. Kinetic equilibrium

is achieved through scatterings which do not change particle number, such as the gauge

scattering e±B → e±B.7 A particle species i in kinetic equilibrium follows the distribution

6Though it is more common to use the notation H for the Hubble rate, I will use H to
avoid confusing it with the Higgs field.

7Recall that B is the U(1)Y gauge boson. The electroweak phase transition is thought
to occur at around T ≈ 159.5 GeV [349], so at greater temperatures we should speak in
terms of B instead of photons.
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fi(p) = 1
e(Ep−µi)/T − ηi

, where Ep =
√

p2 +m2
i . (5.67)

Bosons have ηi = 1, in which case this distribution is known as the Bose-Einstein

distribution, and fermions have ηi = −1, with fi the Fermi-Dirac distribution. The

parameter µi is called the chemical potential of i, and a non-zero value captures an excess

(when µi > 0) or scarcity (when µi < 0) of particles. Chemical equilibrium is achieved

through particle number-changing processes, where a generic fast process ab . . . ↔ ij . . .

ensures that

µa + µb + . . . = µi + µj + . . . . (5.68)

In particular, the non-conservation of gauge bosons, for instance due to double Compton

scattering e±B ↔ e±BB, imposes µB = 0, and the annihilation process e+e− ↔ BB

therefore demands in turn that a particle and its antiparticle have opposite chemical

potentials:

µi = −µi. (5.69)

Fast gauge interactions with the SU(2)W gauge bosons similarly ensures that the two

components of an SU(2)W doublet have the same chemical potential, allowing us to treat

the doublet as a single species.

To achieve leptogenesis we will naturally wish to generate a non-zero chemical potential

for the baryons. The necessary value of µ will turn out to be small compared to the

temperature during leptogenesis, allowing us to expand around the distributions

f eq
i ≡ fi

∣∣∣
µi=0

= 1
eEp/T − ηi

. (5.70)

At zeroth order in µ/T the number density of a relativistic species i with gi internal degrees

of freedom is
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ni ≈ neq
i = gi

∫ d3p
(2π)3 f

eq
i (p) ≈ ζ(3)

π2 giT
3 ×

{
1 bosons
3
4 fermions

, (5.71)

where ζ(x) is the Riemann zeta function, with ζ(3) = 1.202 . . .; and its energy density is

ρi ≈ ρeq
i = gi

∫ d3p
(2π)3 f

eq
i (p)Ep ≈ π2

30giT
4 ×

{
1 bosons
7
8 fermions

. (5.72)

Plugging the latter into the Hubble rate, Eq. (5.66), then gives

H =

√
4π3G

45 g?T
2, (5.73)

where

g? ≡
∑

bosons
gi

(
Ti

Tγ

)4

+ 7
8

∑
fermions

gi

(
Ti

Tγ

)4

(5.74)

is known as the effective number of relativistic degrees of freedom. Above the electroweak

phase transition all SM particles are relativistic and g? = 106.75, while today only photons

and neutrinos remain so, and g?0 ≈ 3.36 [94]. It is common to express the Hubble constant

in terms of the Planck mass MP = (~c/G)1/2 ≈ 1.2 × 1019 GeV,

H ≈ 1.66√
g?
T 2

MP
, (5.75)

and it is usually this form that is used in back-of-the-envelope calculations of Γ/H to assess

whether a process is ‘fast’.

Now, in the absence of interactions the total particle number Ni = niV ∝ nia
3 is constant,

implying that the number density must dilute due to the expansion of the universe:

dNi

dt = 0 =⇒ dni

dt = −3Hni. (5.76)

It will be more convenient to work with a ‘comoving’ quantity that scales out this dilution.
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For this purpose we first consider the entropy density

s = ρ+ P

T
' 2π2

45 g?ST
3. (5.77)

Here the effective number of degrees of freedom in entropy

g?S ≡
∑

bosons
gi

(
Ti

Tγ

)3

+ 7
8

∑
fermions

gi

(
Ti

Tγ

)3

(5.78)

is for most temperatures equal to g?, differing only in the present day due to the decoupling

of neutrinos, with g?S,0 ≈ 3.91 [94]. The usefulness of s is derived from the fact that the

total entropy is conserved in equilibrium (and even to a good approximation in non-

equilibrium), sa3 = const, which one can demonstrate using the Friedmann equations and

basic thermodynamical arguments [94; 348]. From this it is straightforward to verify that

the entropy-normalised number density

Yi ≡ ni

s
, (5.79)

is what we are after:

s
dYi

dt = dni

dt − 3Hni = 0 (without interactions). (5.80)

Assuming there are no additional baryon number-changing interactions after baryogenesis

ends, the generated asymmetry YB ≡ Yb−Yb will therefore match exactly onto the measured

asymmetry today, with

YB(end of baryogenesis) = YB(today)
= nB,0
nγ,0

nγ,0
s0

= nB,0
nγ,0

45ζ(3)
2π4

gγ

g?S,0

≈ (8.68 ± 0.57) × 10−11, (5.81)

where we have used the observed baryon-to-photon ratio nB,0/nγ,0 = (6.10 ± 0.4) × 10−10

from the beginning of this chapter. If we are able to formulate the asymmetry generation
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in terms of YB, Eq. (5.81) is the target we must meet. Such a formulation is fortuitously

easy in the µ/T expansion, since for a relativistic species i we have at leading order

n∆i = ni − ni ≈ T 3

6 giζi
µi

T
, where ζi =

{
2 bosons
1 fermions

, (5.82)

and so we may use

Y∆i = 15ζi

4π2
gi

g?S

µi

T
(5.83)

to freely exchange µi/T for Y∆i. Note that because YB ∼ 10−10 and g?S is at most O(100),

we see that our expansion in small µi/T is justified (at least for baryons).

Before moving on we will lastly need to amend parts of the above discussion for non-

relativistic particles, which are of relevance to us because the leptogenesis scenario we will

consider involves the out-of-equilibrium decay of a heavy species. As these decays generally

occur when the temperature falls below the mass of the heavy species, we will take it to

follow the Maxwell-Boltzmann distribution

fi = e−(Ei−µi)/T ≡ f eq
i eµi/T , (5.84)

which arises from the Bose-Einstein and Fermi-Dirac distributions in the low-temperature

limit T � mi. A species following this distribution has the number density

Yi = 45
4π2

m2
i

T 2
gi

g?S
K2

(
mi

T

)
eµi/T ≡ Y eq

i eµi/T , (5.85)

where

Kn(z) ≡
√
π

Γ(n+ 1
2)
zn

2n

∫ ∞

1
(x2 − 1)n− 1

2 e−zx dx (5.86)

is the modified Bessel function of the second kind. Out of equilibrium we cannot assume

that µi = −µi, and the µ/T expansion instead takes the form

Yi

Y eq
i

= eµi/T ≈ 1 + µi

T
, (5.87)
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and moreover

Y∆i

Y eq
i

≈
µi

T
−
µi

T
. (5.88)

5.4.3 The Boltzmann Equation

Now that we have the infrastructure with which to understand a baryon asymmetry we are

ready to discuss our main tool for computing it. The Boltzmann equation (BE) governs

the non-equilibrium dynamics of our particles, dictating that the (entropy-normalised)

number density of a given particle species i evolves in accordance with

s
dYi

dt = dni

dt + 3Hni =
∑

a,b,j,...

[ab . . . ↔ ij . . .]. (5.89)

The rather compact notation of the right-hand side stands for

[ab . . . ↔ ij . . .] ≡ [ab . . . → ij . . .] − [ij . . . → ab . . .], (5.90)

where

[ab . . . → ij . . .] ≡
∫

[dpa][dpb] · · · [dpi][dpj ] · · · (2π)4δ(4)(pa + pb + . . .− pi − pj − . . .)

× |M(ab . . . → ij . . .)|2fafb · · · (1 + ηifi)(1 + ηjfj) · · · (5.91)

is the thermally-averaged reaction rate for the process ab . . . → ij . . .. Here |M|2 is summed

over all initial- and final-state spins, and the form in which the final state distributions

appear, 1 + ηifi, captures the Bose-enhancement of bosons and Pauli-blocking of fermions.

When all particles are in kinetic equilibrium we can relate the distributions appearing in

[ab . . . → ij . . .] and [ij . . . → ab . . .] by

fafb · · · (1 + ηifi)(1 + ηjfj) · · · = e(µa+µb+...−µi−µj−...)/T fifj · · · (1 + ηafa)(1 + ηafa) · · · ,
(5.92)
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which follows from the identity

1 + ηifi = e(Ei−µi)/T fi (5.93)

and conservation of energy. From the exponential factor in Eq. (5.92) we can see that the

Boltzmann equation acts to push the participating particles towards chemical equilibrium

– for example, if there are too many a particles then [ab . . . → ij . . .] > [ij . . . → ab . . .].

Note that if there is no CP violation, |M(ab . . . → ij . . .)|2 = |M(ij . . . → ab . . .)|2, and

the particles are in chemical equilibrium, we instead have [ab . . . ↔ ij . . .] = 0, and the

number density dilutes solely due to the Hubble expansion as claimed in the previous

section.

In practice, it is more convenient to parameterise the evolution as a function of temperature,

or better, the dimensionless variable

z ≡ m

T
, (5.94)

where m is a conveniently chosen mass scale. Using the conservation of entropy d
dt

(
sa3) ∝

d
dt

(
g?ST

3a3) = 0 and assuming that g?S remains constant during baryogenesis, it is then

not too difficult to show that the Boltzmann equation may be recast as

szHdYi

dz =
∑

a,b,j,...

[ab . . . ↔ ij . . .]. (5.95)

To completely bring the BE into the form of a system of equations in the variables {Yi(z)}

we must also finesse the right-hand side. As you might guess, this involves an expansion

in the chemical potentials µ/T around the equilibrium reaction rate

γ(ab → ij) ≡
∫

[dpa][dpb][dpi][dpj ](2π)4δ(4)(pa + pb − pi − pj) (5.96)

× |M(ab → ij)|2f eq
a f eq

b (1 + ηif
eq
i )(1 + ηjf

eq
j ),

where here and onwards I will drop the explicit ellipses and trust that the generalisation

to an arbitrary number of particles is clear. We then have
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[ab → ij] = γ(ab → ij) fafb(1 + ηifi)(1 + ηjfj)
f eq

a f eq
b (1 + ηif

eq
i )(1 + ηjf

eq
j ) (5.97)

(for which I stress that the ratio of distributions remains under the integral of γ(ab → ij)),

and the relevant expansion, assuming all particles are in kinetic equilibrium, is

fafb(1 + ηifi)(1 + ηjfj)
f eq

a f eq
b (1 + ηif

eq
i )(1 + ηjf

eq
j ) = 1 +

∑
I=a,b

µI

T
+

∑
I=a,b,i,j

ηIf
eq
I

µI

T
+ O

(
µ2

T 2

)
(5.98)

≡ 1 +
∑

I=a,b

Y∆I

2Y nor
I

+
∑

I=a,b,i,j

ηIf
eq
I

Y∆I

2Y nor
I

+ O
(
µ2

T 2

)
, (5.99)

where we have used Eq. (5.83) and defined the convenient quantity

Y nor
I ≡ 15ζI

8π2
gI

g?S
. (5.100)

If any of the particles are out of equilibrium we must instead use

fi

f eq
i

= Yi

Y eq
i

≈ 1 + µi

T
and 1 + ηifi

1 + ηif
eq
i

≈ 1, (5.101)

as per Eq. (5.87).

Example
In the next chapter we will attempt to achieve leptogenesis through the out-of-

equilibrium decay of a heavy scalar h− introduced in the Zee model. Applying the

above expansions to its decay into two lepton doublets, h− → LαLβ (which, for

now, we don’t need to know anything about other than the fact that it’s allowed),

we find

[h− → LαLβ] = γ(h− → LαLβ)
fh−(1 − fLα)(1 − fLβ

)
f eq

h−(1 − f eq
Lα

)(1 − f eq
Lβ

)

≈ γ(h− → LαLβ)
(

1 + µh−

T

)(
1 − f eq

Lα

µLα

T
− f eq

Lβ

µLβ

T

)
≈ γ(h− → LαLβ)

(
1 + µh−

T
− f eq

Lα

µLα

T
− f eq

Lβ

µLβ

T

)
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≈ γ(h− → LαLβ)
(
Yh−

Y eq
h−

− f eq
Lα

Y∆Lα

2Y nor
Lα

− f eq
Lβ

Y∆Lβ

2Y nor
Lβ

)

= γ(h− → LαLβ)
(
Yh−

Y eq
h

− f eq
Lα

Y∆Lα

2Y nor
L

− f eq
Lβ

Y∆Lβ

2Y nor
L

)
, (5.102)

which I have notationally simplified in the last line by writing Y eq
h− = Y eq

h+ ≡ Y eq
h

and Y nor
Lα

= Y nor
Lβ

≡ Y nor
L . For the inverse decay we similarly find

[LαLβ → h−] ≈ γ(LαLβ → h−)
(

1 + (1 − f eq
Lα

)µLα

T
+ (1 − f eq

Lβ
)
µLβ

T

)
≈ γ(LαLβ → h−)

(
1 + (1 − f eq

Lα
) Y∆Lα

2Y nor
L

+ (1 − f eq
Lβ

)
Y∆Lβ

2Y nor
L

)
. (5.103)

We note that the equilibrium distributions f eq
Lα

and f eq
Lβ

in Eqs. (5.102) and (5.103)

inconveniently remain under the phase space integrals of γ(h− → LαLβ) and

γ(LαLβ → h−), meaning that the parenthesised quantities still do not cleanly

factor out from the γ’s. Happily, this wrinkle will be (accidentally) resolved by our

forthcoming manipulation.

Because we are interested in asymmetry generation it is smarter to track the evolution of

the combinations

Y∆i ≡ Yi − Yi and YΣi ≡ Yi + Yi (5.104)

instead of Yi and Yi separately. Here the Boltzmann equation for Yi is

szH
dYi

dz =
∑
a,b,j

[a b ↔ i j], (5.105)

and using the fact that

γ(a b → i j) = γ(ij → ab), (5.106)

which follows from the CPT theorem and the identity Eq. (5.92), we may write
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[a b → i j] = γ(ij → ab)
fafb(1 + ηifi)(1 + ηjfj)

f eq
a f eq

b (1 + ηif
eq
i )(1 + ηjf

eq
j ) . (5.107)

Defining now the combinations

Σγ(ab → ij) ≡ γ(ab → ij) + γ(ij → ab) and (5.108a)
∆γ(ab → ij) ≡ γ(ab → ij) − γ(ij → ab), (5.108b)

as well as—for our own sanity—the abbreviated notation

fab,ij ≡ fafb(1 + ηifi)(1 + ηjfj)
f eq

a f eq
b (1 + ηif

eq
i )(1 + ηjf

eq
j ) and (5.109a)

fab,ij ≡
fafb(1 + ηifi)(1 + ηjfj)

f eq
a f eq

b (1 + ηif
eq
i )(1 + ηjf

eq
j ) , (5.109b)

we can now bring it all together, and after some straightforward algebra we find the

Boltzmann equations for the difference and sum of number densities to be

szHdY∆i

dz =
∑
a,b,j

[1
2Σγ(ab → ij)

(
fab,ij − fij,ab − fab,ij + f ij,ab

)
(5.110)

+ 1
2∆γ(ab → ij)

(
fab,ij + fij,ab + fab,ij + f ij,ab

)]

and

szHdYΣi

dz =
∑
a,b,j

[1
2Σγ(ab → ij)

(
fab,ij − fij,ab + fab,ij − f ij,ab

)
(5.111)

+ 1
2∆γ(ab → ij)

(
fab,ij + fij,ab − fab,ij − f ij,ab

)]
.

Example
To gain a handle on this form of the BEs, let us construct the equations for a fixed

lepton doublet flavour Lα using the decay h− → LαLβ from our previous example.

From Eqs. (5.102) and (5.103) we can read off
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fh−,LαLβ
= Yh−

Y eq
h

− f eq
Lα

Y∆Lα

2Y nor
L

− f eq
Lβ

Y∆Lβ

2Y nor
L

and (5.111a)

fLαLβ ,h− = 1 + (1 − f eq
Lα

) Y∆Lα

2Y nor
L

+ (1 − f eq
Lβ

)
Y∆Lβ

2Y nor
L

, (5.111b)

and using Y∆Lα
= −Y∆Lα

we may similarly write

fh−,LαLβ
= Yh+

Y eq
h

+ f eq
Lα

Y∆Lα

2Y nor
L

+ f eq
Lβ

Y∆Lβ

2Y nor
L

and (5.111c)

fLαLβ ,h− = 1 − (1 − f eq
Lα

) Y∆Lα

2Y nor
L

− (1 − f eq
Lβ

)
Y∆Lβ

2Y nor
L

. (5.111d)

Plugging into Eqs (5.110) and (5.111), we end up obtaining

szHdY∆Lα

dz =
∑

β

1
2Σγ(h− → LαLβ)

(
Y∆h

Y eq
h

−
Y∆Lα + Y∆Lβ

Y nor
L

)
(5.112)

+
∑

β

1
2∆γ(h− → LαLβ)

(
YΣh

Y eq
h

+ 2
)

and

szHdYΣLα

dz =
∑

β

1
2Σγ(h− → LαLβ)

(
YΣh

Y eq
h

− 2
)

(5.113)

+
∑

β

1
2∆γ(h− → LαLβ)

(
Y∆h

Y eq
h

+
Y∆Lα + Y∆Lβ

Y nor
L

+ 2
f eq

Lα
Y∆Lα + f eq

Lβ
Y∆Lβ

Y nor
L

)
.

(In principle there should be a factor of (1 + δαβ) under each of the sums to account

for the case where β = α, but it turns out that the decay rate vanishes when

the leptons are the same flavour, and so the factor is unnecessary.) But for the

second line of Eq. (5.113), there are no longer any f eq
Lα

factors, and the parenthesised

number densities all factor out from the γ’s. If we wanted to, we could however

justifiably neglect the second line of Eq. (5.113) as it is proportional to the product

of the CP -violating difference ∆γ(h− → LαLβ) and the number density differences

Y∆i, both of which are tiny.
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In fact, we may go one step further and drop Eq. (5.113) entirely: we are ultimately

interested only in modelling the asymmetry Y∆L, and since YΣL does not enter

into Eq. (5.112) it is not necessary for us to track its evolution. Evidently we will

however need to track both Y∆h and YΣh.

For the remainder of this section we will hijack the above example to motivate the discussion.

The first line of Eq. (5.112),

szHdY∆Lα

dz ⊃
∑

β

1
2Σγ(h− → LαLβ)

(
Y∆h

Y eq
h

−
Y∆Lα + Y∆Lβ

Y nor
L

)
, (5.114)

and more generally of Eq. (5.110), is known as the washout term. Its purpose is to work

against us, erasing any extant lepton number asymmetry. This is easy enough to see:

when we have an excess of lepton doublets or a deficit of h−’s, the term in parentheses is

negative and the inverse decay LαLβ → h− will act more quickly to reduce Y∆L.

The second line of Eq. (5.112),

szHdY∆Lα

dz ⊃
∑

β

1
2∆γ(h− → LαLβ)

(
YΣh

Y eq
h

+ 2
)
, (5.115)

and of Eq. (5.110), is known as the source term, and its purpose is to generate a lepton

asymmetry. However, there is a problem – when h− is in chemical equilibrium, meaning

YΣh = 2Y eq
h , we should expect the source term to be suppressed, but it is clearly not.

Where have we gone wrong?

It turns out that we have not so much erred as we have failed to account for all effects. The

fix comes from considering the scattering process LγLδ → LαLβ, which occurs through

an s-channel h− mediator. The critical insight is that this scattering process contains

the decay h− → LαLβ as a subprocess when the h− is exchanged on-shell, and so the

physical effect of the decay is double-counted in the Boltzmann equation. There are two

equivalent options available to us: we may remove the decay from the Boltzmann equation,

or we may subtract the on-shell piece from the scattering. It is more conventional to take

the latter approach, giving this procedure the name of real intermediate state (RIS)
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subtraction [346; 347; 350].

Let us therefore add to the Boltzmann equation the combination

[LγLδ ↔ LαLβ]off-shell = [LγLδ ↔ LαLβ] − [LγLδ ↔ LαLβ]on-shell, (5.116)

which, as you can check, contributes to Y∆Lα as

szHdY∆Lα

dz ⊃
∑

β

1
2
∑

γ,δ 6=α

1
2Σγ(LγLδ → LαLβ)off-shell

(
Y∆Lγ + Y∆Lδ

− Y∆Lα − Y∆Lβ

Y nor
L

)

+
∑

β

1
2
∑

γ,δ 6=α

1
2∆γ(LγLδ → LαLβ)off-shell × 4, (5.117)

where here the additional factor of 1
2 is to avoid double-counting the initial states, and we

exclude γ, δ = α from the sum over flavours because e.g. LαLδ → LαLβ does not change

the number of Lα particles. The first line, containing the off-shell scattering contribution

to the washout, is higher-order in the couplings than the washout from Σγ(h− → LαLβ)

in Eq. (5.114), and so it is usually acceptable to neglect it unless these couplings are O(1).

We may also drop the scattering asymmetry ∆γ(LγLδ → LαLβ) from the second line, as

it will similarly be higher-order than the decay asymmetry ∆γ(h− → LαLβ). This leaves

us with just the subtracted on-shell piece,

szHdY∆Lα

dz ⊃∼ −
∑

β

∑
γ,δ 6=α

∆γ(LγLδ → LαLβ)on-shell. (5.118)

To deal with this piece we use that

γ(LγLδ → LαLβ)on-shell = γ(LγLδ → h−)γ(h− → LαLβ)
1
2
∑

ρ,σ γ(h− → LρLσ)
(5.119)

—for which I’ll defer a proof to Section 5.A—and then in turn

∆γ(LγLδ → LαLβ)on-shell (5.120)

= Σγ(h− → LγLδ)∆γ(h− → LαLβ) − ∆γ(h− → LγLδ)Σγ(h− → LαLβ)∑
ρ,σ γ(h− → LρLσ) .

When inserted into Eq. (5.118), we notice (perhaps with some effort) that we can now
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extend the sums to include γ, δ = α since the additional terms either vanish or cancel

against each other. The complete sum then allows us to use

∑
γ,δ

Σγ(h− → LγLδ)∑
ρ,σ γ(h− → LρLσ) = 2 (5.121)

for the first term, and—to be demonstrated in the next chapter—

∑
γ,δ

∆γ(h− → LγLδ) = 0 (5.122)

for the second, leaving us at last with

szHdY∆Lα

dz ⊃ −2
∑

β

∆γ(h− → LαLβ). (5.123)

Adding this to Eq. (5.115), we finally obtain a source term with the correct equilibrium

behaviour, and the full corrected form of the Boltzmann equation for Y∆Lα is therefore

szHdY∆Lα

dz =
∑

β

1
2Σγ(h− → LαLβ)

(
Y∆h

Y eq
h

−
Y∆Lα + Y∆Lβ

Y nor
L

)
(5.124)

+
∑

β

1
2∆γ(h− → LαLβ)

(
YΣh

Y eq
h

− 2
)
.

In the future we will simply write down the Boltzmann equation(s) with the correct source

term(s) without explicitly carrying out the RIS subtraction procedure.

5.4.4 Evaluating the Equilibrium Rates

Let us now discuss how to evaluate the equilibrium reaction rates

γ(ab → ij) =
∫

[dpa][dpb][dpi][dpj ](2π)4δ(4)(pa + pb − pi − pj) (5.125)

× |M(ab → ij)|2f eq
a f eq

b (1 + ηif
eq
i )(1 + ηjf

eq
j ).

This is rather difficult to do on account of the distributions, which (1) have inconvenient

functional forms, and (2) spoil Lorentz invariance through their dependence on p, or rather
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Ep = p0 = p · u, with u the plasma velocity vector. Point (2) forces us to express the γ’s

with a careful set of angular integrals, and together with point (1) this means that we will

doubtless need to resort to numerics for their evaluation.

As is the physicist’s way, we may however regain some analytical purchase through the art

of approximation. The approximation we will use is

f eq
i ≈ e−Ei/T and 1 + ηif

eq
i ≈ 1 (5.126)

– that is, we will take the Maxwell-Boltzmann limit for all our distributions. Because this

limit is suitable only when T � mi (or more correctly T � Ei), this obviously does great

violence to the distributions of particles for which this is not satisfied, which in the context

of leptogenesis is typically everything but our heavy decaying particle. However, this is

not a problem: the kinematics of the relevant decay (e.g. h− → LαLβ) forces the energies

of the product particles to be of the same order as that of the heavy decaying particle, and

for such energies the Maxwell-Boltzmann approximation is acceptable. We may therefore

use this approximation with impunity as long as we are considering processes featuring at

least one heavy particle.

Now, applying Eq. (5.126) to γ(ab → ij) reduces it to

γ(ab → ij) ≈
∫

[dpa][dpb][dpi][dpj ](2π)4δ(4)(pa + pb − pi − pj)|M|2e−(Ea+Eb)/T , (5.127)

and by cleverly inserting a factor of 1 =
∫ d4Q

(2π)4 (2π)4δ(4)(Q− pa − pb) we obtain

γ(ab → ij) =
∫ d4Q

(2π)4 e
−Q0/T γ̂ab→ij(Q2), (5.128)

where

γ̂ab→ij(Q2) ≡
∫

[dpa][dpb](2π)4δ(4)(Q− pa − pb)︸ ︷︷ ︸
Lorentz-invariant initial state phase space

∫
[dpi][dpj ](2π)4δ(4)(Q− pi − pj)︸ ︷︷ ︸

Lorentz-invariant final state phase space

|M|2.

(5.129)
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Having happily recovered Lorentz invariance, we may straightforwardly compute γ̂ using

standard zero-temperature techniques. For a 2 → n scattering process it relates to the

usual spin-averaged cross section

σ(s) = 1
sasb

1
2λ1/2(s,m2

a,m
2
b)

∫
dΠn |M|2 (5.130)

by

γ̂ab→ij...(s) = sasb
λ(s,m2

a,m
2
b)

4πs σ(s), (5.131)

where

λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz. (5.132)

For a 1 → n decay it relates to the decay rate

Γ = 1
sa

1
2ma

∫
dΠn |M|2 (5.133)

by

γ̂a→ij...(s) = 2πδ(s−m2
a) × 2masaΓ. (5.134)

Independent of the form of γ̂ we can write

γ =
∫ d4Q

(2π)4 e
−Q0/T γ̂(Q2) (5.135)

= 1
4π3

∫
d|Q| dQ0 |Q|2e−Q0/T γ̂(Q2), (5.136)

and changing integration variables from (Q0, |Q|) to (Q0, s = Q2), with8

d|Q| dQ0 = 1
2|Q|

ds dQ0 = 1
2
√

(Q0)2 − s
ds dQ0 , (5.137)

8A naïve reading of d|Q| = − 1
2|Q| ds gives the wrong sign if, as we are doing now, we

do not concurrently track how the limits of integration are altered under this change of
variables.
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gives

γ = 1
8π3

∫ ∞

smin
ds
∫ ∞

√
s

dQ0
√

(Q0)2 − se−Q0/T γ̂(s) (5.138)

= T

8π3

∫ ∞

smin
ds

√
sK1

(√
s

T

)
γ̂(s), (5.139)

where K1 is a Bessel function as defined in Eq. (5.86). Here smin depends on the kinematics

of the process; for a 2-to-2 scattering it is smin = max{(ma + mb)2, (mi + mj)2}. In the

special case of a decay or inverse decay we can plug in Eq. (5.134) to obtain

γ = T

8π3

∫
ds

√
sK1

(√
s

T

)
× 2πδ(s−m2

a) × 2masaΓ (5.140)

= T

2π2m
2
aK1

(
ma

T

)
saΓ. (5.141)

At last, we can now see that the reaction asymmetry ∆γ relates to the zero temperature

decay asymmetry

εij = Γ(a → ij) − Γ(ji → a)
Γ(a → ij) + Γ(ji → a) (5.142)

defined at the start of this chapter simply through

∆γ(a → ij) = εijΣγ(a → ij), (5.143)

where now

Σγ(a → ij) = T

π2m
2
aK1

(
ma

T

)
saΓ0(a → ij), (5.144)

with Γ0(a → ij) the tree-level decay rate.
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5.4.5 Spectator Processes and Conserved Charges

So far, we have made good progress: we are able to write down the Boltzmann equations

as a coupled system of relatively simple equations in the variables Y∆i(z) and YΣi(z) using

a very reasonable set of approximations. This puts us very close to our goal of computing

the predicted baryon abundance YB. In a leptogenesis scenario our final step is therefore

to determine exactly how a generated lepton asymmetry Y∆L transmits to YB. Though we

know this transmission will be due to electroweak sphalerons, we will obtain the correct

result only if we also consider the effect of all other so-called spectator processes.

A spectator process is any ‘fast’ reaction (meaning Γ � H) which does not directly enter

the Boltzmann equations, but instead serves to impose relations between the chemical

potentials of participating species. As we recall from Section 5.4.2, a generic spectator

process ab . . . ↔ ij . . . demands that

µa + µb + . . . = µi + µj + . . . . (5.145)

In particular, the effect of sphalerons, which can be understood to generate the interaction

operator [280; 351]

OSph ∼
∏
α

(QQQL)α, (5.146)

with α a generation index, is to enforce

∑
α

(3µQα + µLα) = 0. (5.147)

If we can list the constraints from all such processes and solve for µB, it seems our job will

be done. However, in doing this we will miss an important effect – the sphalerons should

also change the number of leptons, thereby altering Y∆L and µL. It therefore appears that

the only way to consistently account for the effect of sphalerons, and potentially other

spectator processes as well, is to include them in the Boltzmann equations too.

This conclusion is however too hasty, for there is a better way deal with this complication.
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Consider the partial baryon-minus-lepton number

∆α ≡ B

3 − Lα, (5.148)

for which9

Y∆α = 1
9
∑

β

(
Y∆Qβ

+ Y∆uRβ
+ Y∆dRβ

)
− Y∆Lα − Y∆eRα

. (5.149)

Owing to the fact that sphalerons obey the selection rule

1
3∆Qα = ∆Lα = ±1 (5.150)

(which we can read off from Eq. (5.146)), and therefore

1
3∆B = ∆Lα = ±1, (5.151)

they do not alter ∆α. This gives us our way out: if we track Y∆α instead of Y∆Lα then we

are immune to their interruption. In fact, since ∆α is conserved by every Standard Model

process,10 we can guarantee that the only processes we will need to include in the BE for

Y∆α are lepton number-violating ones of BSM origin.

This change of strategy now requires us to determine both YB and Y∆Lα as functions of

Y∆α , where knowing Y∆Lα is necessary to be able to re-express the source and washout

terms of the Boltzmann equations in the correct variables Y∆α . Doing this, subject to

the constraints imposed by spectator processes, has the potential to become quite tedious.

9Note that the lepton number Lα includes not just the number of left-handed lepton
doublets Lα, but also the right-handed lepton singlets eRα. Though this makes for an
unfortunate clash of notation, I will do my best to keep the following discussion free of
ambiguity.

10In principle ∆α is violated anomalously if there are no right-handed neutrinos [122],
but as the rate of violation is small and does not get enhanced by thermal effects we may
safely ignore it. The reason for the lack of enhancement is that B−L only has a U(1)3

B−L

anomaly, whereas the SU(2)2
W U(1)B+L anomaly allows B+L to be violated by topological

gauge configurations such as sphalerons [309; 311].
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Fortunately for us, a rather slick approach due to Ref. [352] (see also Ref. [353]) greatly

simplifies this task. The approach, termed the symmetry formalism, exploits the key

observation that Eq. (5.145) is of exactly the same form as the equations we would write to

determine the active U(1) symmetries at a given temperature. (Here and in what follows

I use the terminology ‘active’ to refer to a symmetry respected by all spectator processes.

An active symmetry may not necessarily be a symmetry of the full theory.) For example,

assuming U(1)Y is unbroken (which it is prior to the electroweak phase transition), the

hypercharges of all particles in a spectator process ab . . . ↔ ij . . . must satisfy

Ya + Yb + . . . = Yi + Yj + . . . , (5.152)

and more generally, their charges under an active U(1)X symmetry should obey

qX
a + qX

b + . . . = qX
i + qX

j + . . . . (5.153)

From this we may conjecture that the chemical potentials are given by

µi =
∑
X

CXq
X
i , (5.154)

where the sum is over all U(1)X symmetries, which I will shortly list, and the CX ’s are

yet-undetermined constants. With this ansatz, Eq. (5.145) is automatically satisfied for

all spectator processes as long as CX = 0 for all inactive symmetries (that is, symmetries

broken by at least one spectator process).

To determine the constants CX we first use Eq. (5.83) to write

Y∆i = 15ζi

4π2
gi

g?S

µi

T
= 15ζi

4π2
gi

g?S

1
T

∑
X

CXq
X
i , (5.155)

and then the charge densities YX in turn as

YX =
∑

i

qX
i Y∆i (5.156)

= 15
4π2g?S

1
T

∑
i

ζigiq
X
i

∑
Y

CY q
Y
i
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≡ 15
4π2g?S

1
T

∑
Y

JXY CY , (5.157)

where it is helpful to define the matrix

JXY ≡
∑

i

ζigiq
X
i q

Y
i . (5.158)

Inverting, we then obtain

CX = 4π2g?S

15 T
∑
Y

(J−1)XY YY . (5.159)

Note that when there are n active symmetries, and therefore n non-zero CX ’s, Eq. (5.157)

tells us that only n of the YX ’s are independent. We therefore can (and should) restrict J

to the n-by-n submatrix in the active symmetries before taking the inverse, and understand

Eq. (5.159) to be equivalent to

CX =


4π2g?S

15 T
∑
Y ′

(J−1)XY ′YY ′ X active

0 X inactive
, (5.160)

where I use a primed notation to indicate that the sum is over the active symmetries only.

Plugging this back into Eq. (5.155), we find that the number density of a species i is

Y∆i = ζigi

∑
X′,Y ′

qX′
i (J−1)X′Y ′YY ′ , (5.161)

and feeding this into Eq. (5.156) tells us that the baryon number asymmetry is therefore

to be computed as

YB =
∑

X′,Y ′

JBX′(J−1)X′Y ′YY ′ . (5.162)

As a sanity check, this equation reduces to YX = YX if we apply it to an active symmetry

instead of baryon number, as we should expect.
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u c t d s b e µ τ νe νµ ντ W−

∆e
1
9

1
9

1
9

1
9

1
9

1
9 −1 0 0 −1 0 0 0

∆µ
1
9

1
9

1
9

1
9

1
9

1
9 0 −1 0 0 −1 0 0

∆τ
1
9

1
9

1
9

1
9

1
9

1
9 0 0 −1 0 0 −1 0

Q 2
3

2
3

2
3 − 1

3 − 1
3 − 1

3 −1 −1 −1 0 0 0 −1
B 1

3
1
3

1
3

1
3

1
3

1
3 0 0 0 0 0 0 0

gi 6 6 6 6 6 6 2 2 2 1 1 1 3

Table 5.1: SM particles after the electroweak phase transition and their conserved charges.
As the Higgs boson, photon, Z-boson and gluons are real, they cannot carry a charge and
are hence excluded from the table. The degrees of freedom gi of the particles are also
shown for convenience.

Example
Equations (5.161) and (5.162) are admittedly somewhat impenetrable, so let’s ex-

plicitly use the latter to work out how YB relates to Y∆α in the SM. If we want to be

able to compare to the baryon abundance today it is imperative that we compute

this only when baryon number stops changing – i.e. when the electroweak sphalerons

freeze out. Lattice studies indicate that this occurs at T ≈ 130 GeV [305], after the

electroweak phase transition, which itself happens at TEWPT ≈ 160 GeV [349]. At

this point the only surviving symmetries from higher temperatures are ∆e, ∆µ, ∆τ ,

and Q (electric charge), and so the matrix J will be 4-by-4. Using the charges from

Table 5.1 we can then compute

J = 1
27


93 12 12 72
12 93 12 72
12 12 93 72
72 72 72 594

 (5.163)

and

JBX′ =
(

4
3

4
3

4
3 2

)
X′
. (5.164)

Inverting J and plugging into Eq. (5.162), we hence find

YB = 12
37(Y∆1 + Y∆2 + Y∆3) − 1

37YQ. (5.165)
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Since we do not violate conservation of charge during leptogenesis (and the universe

is moreover observed to be electrically neutral), we can set YQ = 0 to at last obtain

YB = 12
37YB−L, (5.166)

where YB−L ≡ Y∆1 + Y∆2 + Y∆3 is the total baryon-minus-lepton number density

at the time of sphaleron freeze out (which is in turn equal to YB−L at the end of

leptogenesis).

As an aside, I should comment that the top quark is non-relativistic at T = 130 GeV,

meaning ζt = 1 should strictly speaking be replaced by the more general expres-

sion [94]

ζt = 6
π2

∫ ∞

zt

dxx
√
x2 − z2

t

ex

(ex − ηt)2 ≈ 0.77, where zt = mt

T
and ηt = −1.

(5.167)

This slightly modifies YB from 12
37YB−L ≈ 0.324YB−L to 0.321YB−L.

If sphalerons instead freeze out before the electroweak phase transition (which could

conceivably happen in a given BSM model) then our fourth conserved charge is

hypercharge Y instead of electric charge Q, and repeating the calculation with the

particle content of Table 5.2 instead gives [354]

YB = 28
79YB−L ≈ 0.354YB−L. (5.168)

It is worth taking a moment to appreciate the ease with which we obtained the above

result. Even though—granted—I skipped over the working in obtaining J , we crucially

did not need to identify any spectator processes or solve any chemical constraint equations.

Using Eq. (5.161) or (5.162) to determine a number or charge density is as simple as listing

the active symmetries and then turning the crank, which is straightforward enough to be

easily automated with e.g. Mathematica.
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Q1 Q2 Q3 uR cR tR dR sR bR L1 L2 L3 eR µR τR H Tbr [GeV]
∆e

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9 −1 0 0 −1 0 0 0 —

∆µ
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9 0 −1 0 0 −1 0 0 —

∆τ
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9 0 0 −1 0 0 −1 0 —

Y 1
6

1
6

1
6

2
3

2
3

2
3 − 1

3 − 1
3 − 1

3 − 1
2 − 1

2 − 1
2 −1 −1 −1 1

2 TEWPT

e 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 × 104

u− d 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0 2 × 106

B3 +B2 − 2B1 − 2
3

1
3

1
3 − 2

3
1
3

1
3 − 2

3
1
3

1
3 0 0 0 0 0 0 0 107

u− s 0 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0 3 × 108

B3 −B2 0 − 1
3

1
3 0 − 1

3
1
3 0 − 1

3
1
3 0 0 0 0 0 0 0 9 × 108

µ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 109

u− c 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0 2 × 1010

u− b 0 0 0 1 0 0 0 0 −1 0 0 0 0 0 0 0 3 × 1011

τ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 × 1011

B 1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3 0 0 0 0 0 0 0 2 × 1012

u 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 × 1013

t 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1015

gi 6 6 6 3 3 3 3 3 3 2 2 2 1 1 1 2 N/A

Table 5.2: SM particles and their charges at temperatures above the electroweak phase
transition. As all gauge bosons are real, they cannot carry a charge and are hence excluded
from the table. Estimates for the breaking temperatures Tbr can be found in Ref. [356];
see also Refs. [104; 355]. The degrees of freedom gi of the particles are also shown for
convenience.

Our final job is therefore to more generally identify the U(1)X symmetries that are active

at any given temperature. There are up to sixteen such symmetries in the SM: one for each

of {Qα, uRα, dRα, Lα, eRα,H}, though in practice it is more convenient to use a basis such

as the one listed in Table 5.2.11 As the universe cools down more spectator processes will

enter equilibrium, breaking incrementally more symmetries until the only ones remaining

are ∆e, ∆µ, ∆τ , and Y (pre-EWPT) or Q (post-EWPT), which remain true symmetries of

the SM. If we can determine the temperatures at which the symmetries are broken, then

our work is done.

To this end, consider for example the symmetry τ = U(1)τ , under which τR = eR3 carries

the charge qτ
τ = 1 and all other particles are uncharged, qτ

i = 0. While this U(1)τ is

violated by the Yukawa interaction

11Other basis choices can also be made; see for example Ref. [355].
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L ⊃ −YτL3HτR + h.c., (5.169)

it remains an active symmetry as long as LHτ interactions are slow, Γ � H. Estimating

the reaction rate to be Γ ∼ Y 2
τ T by dimensional analysis (though actually, a better estimate

is Γ ' 5 × 10−3 × Y 2
τ T [357–359]) and comparing against the Hubble rate, Eq. (5.75), tells

us that U(1)τ is broken when

1 ' Γ
H

' 5 × 10−3 × Y 2
τ T

1.66√
g?

T 2

MP

=⇒ T ' 4 × 1011 GeV. (5.170)

I will not go into detail for the other symmetries in Table 5.2, as the breaking pattern of

the quark and baryon number symmetries is somewhat more complicated [356]. In brief,

t is first broken by the top Yukawa interaction at Tbr ≈ 1015 GeV, followed by one of the

quark symmetries, which we choose to be u, when the SU(3)C sphalerons

OSph, SU(3)C ∼
∏
α

(QQuc
Rd

c
R)α (5.171)

enter equilibrium at T ≈ 2×1013 GeV. Baryon number B is then broken when electroweak

sphalerons enter equilibrium at T ≈ 2×1012 GeV, and the sequence in which the remaining

quark symmetries are broken is due to the quark masses and CKM effects.

Example
Leptogenesis in the Zee model, through the decay of the scalar h−, will occur when

the h− particles exit equilibrium at T ∼ mh, and it will turn out that we will need

to take mh & 1012 GeV. To determine how Y∆Lα relates to Y∆α during leptogenesis,

as is needed for the Boltzmann equation, Table 5.2 tells us that we will need to

account for all the symmetries but B, u and t. There is however a catch – the Zee

model also introduces a second Higgs doublet (and we will later want to introduce

a third), and the Yukawa couplings of this second Higgs to the leptons will turn out

to be large enough that e, µ, and τ will be broken above 1012 GeV. This leaves us

in actuality with only ten active symmetries. Additionally, we should not forget to

include h− and the new Higgs doublet(s) when summing over all particles in the
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computation of J , though for practical purposes we can set ζh− = 0 as it drops out

of equilibrium.

The eventual result of writing out the 10-by-10 matrix J , inverting, and plugging

into Eq. (5.161) is

Y∆L1

Y∆L2

Y∆L3

 = 2
117

−35 − C 4 − C 4 − C
4 − C −35 − C 4 − C
4 − C 4 − C −35 − C


Y∆1

Y∆2

Y∆3

, (5.172)

where

C = 756
111 + 91nH

, (5.173)

with nH the number of Higgs doublets. The densities of the other seven charges

such as YY can be assumed to be zero as they are, after all, conserved and unbroken

during leptogenesis. When nH = 2, as in the minimal Zee model, this becomes

Y∆L1

Y∆L2

Y∆L3

 = 2
2637

−847 32 32
32 −847 32
32 32 −847


Y∆1

Y∆2

Y∆3

 ≈

−0.64 0.02 0.02
0.02 −0.64 0.02
0.02 0.02 −0.64


Y∆1

Y∆2

Y∆3

,
(5.174)

and when nH = 3 we instead get

Y∆L1

Y∆L2

Y∆L3

 = 1
144

−91 5 5
5 −91 5
5 5 −91


Y∆1

Y∆2

Y∆3

 ≈

−0.63 0.03 0.03
0.03 −0.63 0.03
0.03 0.03 −0.63


Y∆1

Y∆2

Y∆3

.
(5.175)

We will also end up needing expressions for the number densities of the Higgs

doublets, so while we’re here we can also compute

Y∆Hi
= − 112nH

111 + 91nH
(Y∆1 + Y∆2 + Y∆3) (5.176)

=
{

−224
293(Y∆1 + Y∆2 + Y∆3) nH = 2

−7
8(Y∆1 + Y∆2 + Y∆3) nH = 3

. (5.177)
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5.4.6 Summary

With the µ/T expansion, RIS subtraction, Maxwell-Boltzmann approximation, and spec-

tator effects fully accounted for, we have brought our main Boltzmann equation from its

original form

dnLα

dt + 3HnLα =
∑

β

[h− ↔ LαLβ] (5.178)

to the final incarnation

szHdY∆α

dz = −
∑

β

1
2Σγ(h− → LαLβ)

(
Y∆h

Y eq
h

−
Y∆Lα + Y∆Lβ

Y nor
L

)
(5.179)

−
∑

β

1
2∆γ(h− → LαLβ)

(
YΣh

Y eq
h

− 2
)
.

= −
∑

β

m3
h

2π2z
K1(z)Γ0(h− → LαLβ)

(
Y∆h

Y eq
h

−
Y∆Lα + Y∆Lβ

Y nor
L

)
(5.180)

−
∑

β

m3
h

2π2z
K1(z)εαβΓ0(h− → LαLβ)

(
YΣh

Y eq
h

− 2
)
,

where

z = mh

T
, εαβ = Γ(h− → LαLβ) − Γ(LαLβ → h−)

Γ(h− → LαLβ) + Γ(LαLβ → h−) , (5.181)

and

Y∆L1

Y∆L2

Y∆L3

 ≈

−0.64 0.02 0.02
0.02 −0.64 0.02
0.02 0.02 −0.64


Y∆1

Y∆2

Y∆3

. (5.182)

Assuming the additional Higgs doublets are non-relativistic when the electroweak sphalerons

freeze out, Eq. (5.166) still holds and the generated baryon asymmetry is equal to

YB = 12
37(Y∆1 + Y∆2 + Y∆3) = 12

37YB−L. (5.183)

To successfully explain the observed baryon abundance of the universe we therefore require
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that

YB−L ≈ 37
12 × 8.68 × 10−11 ≈ 2.68 × 10−10 (5.184)

at the end of leptogenesis. In the next chapter we will write down the Boltzmann equations

for YΣh and Y∆h, and extend Eq. (5.179) to include additional processes.
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5.A Further Details on Real Intermediate State Subtraction

Let’s try to convince ourselves of the relation

γ(LγLδ → LαLβ)on-shell = γ(LγLδ → h−)γ(h− → LαLβ)
1
2
∑

ρ,σ γ(h− → LρLσ)
, (5.185)

which was critical to the success of the RIS subtraction scheme in Section 5.4.3. This

is most easily achieved using the results derived in Section 5.4.4 by approximating the

distributions as Maxwell-Boltzmann, though it can be shown without doing so [347].

To begin, we have from Eq. (5.139) that

γ(LγLδ → LαLβ) = T

8π3

∫
ds

√
sK1

(√
s

T

)∫
dΠγδ dΠαβ |M(LγLδ → LαLβ)|2. (5.186)

The matrix element for this scattering is

iM(LγLδ → LαLβ) =

Lγ

Lδ

Lα

Lβ

h−
(5.187)

= iMID
i

s−m2 + imhΓh
iMD, (5.188)

where MID and MD are the (inverse) decay matrix elements, and we use the resummed

form of the propagator for the intermediate h−. To identify the on-shell part of this

scattering the conventional approach is to appropriate the narrow width approximation

∣∣∣∣∣ 1
s−m2

h + imhΓh

∣∣∣∣∣
2

≈ π

mhΓh
δ(s−m2

h), (5.189)

which holds in the limit Γh � mh, to write

|M(LγLδ → LαLβ)|2on-shell = |MID|2|MD|2 π

mhΓh
δ(s−m2); (5.190)
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the off-shell piece then contains the difference between this approximation and the unap-

proximated amplitude. Using this, Eq. (5.186) becomes

γ(LγLδ → LαLβ)on-shell = T

8π3mhK1

(
mh

T

)
π

mhΓh

(∫
dΠγδ |MID|2

)
︸ ︷︷ ︸

2mhΓ(LγLδ→h−)

(∫
dΠαβ |MD|2

)
︸ ︷︷ ︸

2mhΓ(h−→LαLβ)

= T

2π2m
2
hK1

(
mh

T

)Γ(LγLδ → h−)Γ(h− → LαLβ)
Γh

. (5.191)

To convert from the uppercase Γ’s to lowercase ones we recall from Eq. (5.141) that

γ(h− → LαLβ) = T

2π2m
2
hK1

(
mh

T

)
Γ(h− → LαLβ), (5.192)

and assuming that h− has no other decay modes, so that

Γh = 1
2
∑
ρ,σ

Γ(h− → LρLσ) (5.193)

(the factor of 1
2 is to avoid double-counting final states), we at last obtain

γ(LγLδ → LαLβ)on-shell = γ(LγLδ → h−)γ(h− → LαLβ)
1
2
∑

ρ,σ γ(h− → LρLσ)
, (5.194)

as claimed.

Some comments are in order. First, it is not correct to assume that h− has no other decay

modes – for instance, it can also decay into two Higgs doublets, h− → HH. While this

means Eq. (5.194) must be altered, it does not change the result of the RIS subtraction

procedure. The reason for this is that the additional RIS-subtracted scattering HH →

LL, which when added alongside LL → LL in the Boltzmann equation, results in an

overall factor that correctly cancels against the full decay rate in the denominator. Other

additional decay channels are handled similarly.

Next, it is worth acknowledging that RIS subtraction admittedly appears to be a somewhat

ad hoc prescription. The use of the narrow width approximation is moreover arbitrary,

and the eventual cancellation of the total decay rate Γh in the denominator suggests that
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there may be another way to execute the subtraction. Indeed, RIS subtraction can be

made to work using the principal value decomposition of a propagator,

1
p2 −m2 + iε = P 1

p2 −m2 − iπδ(p2 −m2), (5.195)

though care must be taken when squaring it to obtain sensible results [350; 360; 361]. All

that said, RIS subtraction can in fact be justified through use of the closed time path

(CTP) formalism for finite temperature quantum field theory; see for example Refs. [105;

120; 362–372]. The CTP formalism provides one with the means of deriving the evolution

equations for quantum correlators in a thermal background from first principles, and these

Kadanoff-Baym equations [373] can be shown to reduce to the Boltzmann equations under

the right set of approximations. Importantly, the Kadanoff-Baym equations automatically

imply RIS subtraction [365], and without going into detail, this is because propagators

in the CTP formalism include additional on-shell parts bearing distributional factors

representing the exchange of a particle with the thermal bath. For more details I refer

you to the above references, though I recommend Ref. [120] for a relatively gentle first

introduction to the formalism.

141



Theory: Leptogenesis

142



I am altering the model.
Pray I don’t alter it any further.

Darth Vader,
in The Empire Strikes Back,

reimagined

6
Leptogenesis in the Zee Model
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The time has come for us to apply what we have learnt in the previous chapter to the
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study of a concrete leptogenesis scenario – that in which a lepton asymmetry is generated

through the CP -violating decay of the singly-charged scalar singlet h− introduced in the

Zee model of neutrino masses. It will turn out that this scenario is unable to adequately

explain the observed baryon asymmetry of the universe, and so the Zee model will need

to be extended if it is to do so.

This chapter is representative of an ongoing work [2] and therefore does not form a complete

package. In particular, a thorough examination of the available parameter space from

present-day experimental constraints is absent, the flavour-covariant Boltzmann equations

are not presented, and the study of the minimally-extended variants of the Zee model is

yet to be performed. My largest sole contribution to this work is the calculation of the

CP asymmetries, though I have also had a hand in most other parts. All plots and figures

in this chapter were created by me.

6.1 Introduction

As we discussed somewhat exhaustively (and exhaustingly) in the previous chapter, the

SM falls short of explaining the observed baryon abundance of the universe [90; 304],

YB ≈ (8.68 ± 0.57) × 10−11, (6.1)

leaving us in need of a BSM mechanism of baryogenesis. A particularly appealing one is

that of leptogenesis, where the lepton number violation inherent to Majorana neutrino

mass models is leveraged to generate a lepton asymmetry which is transformed to a baryon

asymmetry by equilibrium sphaleron processes. Countlessly many leptogenesis scenarios

have been studied (see for example Refs. [102; 104–107; 331–335; 374–393]), and in this

wide berth of literature it is often observed that successful leptogenesis is generically more

difficult to attain in radiative mass models, where the lepton number-violating interactions

giving rise to neutrino masses have a tendency to erase any existing lepton (and therefore

baryon) asymmetry [38; 106; 107; 394; 395]. This is particularly true for O(TeV)-scale
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scenarios—which attract the most attention due to their testability at colliders and in

other terrestrial experiments—as the couplings required to explain neutrino masses are

typically orders of magnitude greater than what is required to satisfy the out-of-equilibrium

Sakharov condition [106; 107; 396].

One of the most well-known radiative mass models is the Zee model [23], where the

introduction of a second Higgs doublet H2 and a singly-charged scalar singlet h− is used to

generate neutrino masses at one-loop. For the reasons cited above, the model has been ruled

out as a viable progenitor of leptogenesis, at least at the 1–100 TeV scale [106; 107; 385]

where it is most likely to reside [179]. If we untether ourselves from naturality requirements,

however, it is possible to entertain a high-scale realisation of the model, where H2 and h−

almost entirely decouple from the low-scale phenomenology and their respective couplings

become nearly unconstrained.

The purpose of this chapter is to study this high-scale scenario, and in doing so determine

whether it is at all possible for the Zee model to successfully explain the observed baryon

abundance of the universe via leptogenesis. In this scenario a lepton asymmetry is generated

through the out-of-equilibrium CP -violating decays h− → LL and h− → eLH, with the

heavy charged scalar h− requiring a mass of O
(
1012 GeV

)
. Standing in the way of successful

leptogenesis are two main obstacles: first, the CP -violating interferences are two-loop

suppressed, and second, the total CP asymmetry of these decays is zero, necessitating the

intervention of flavour effects to preserve a net non-zero asymmetry.

The rest of this chapter is organised as follows. In Section 6.2 I will review the Zee model

and its CP -violating decays, giving a reasonably in-depth discussion of their important

features. This includes a brief qualitative overview in Section 6.2.4 of the ingredients

needed to maximise the asymmetry generated. Then, in Section 6.3 we will quantitatively

examine a promising benchmark scenario, before canvassing some minimal extensions

to the model in Section 6.4. Finally, I will summarise our findings in Section 6.5. A

more detailed examination of the CP -violating Cutkosky cuts is provided in the appendix

section 6.B, which is sandwiched between two other appendices on the Feynman rules and

Boltzmann equations for the model.
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6.2 The Zee Model

Let us begin by reintroducing the Zee model and reviewing its properties. The model [23]

extends the SM with a new charged scalar h− ∼ (1, 1,−1) and one new Higgs doublet

H2 ∼ (1, 2, 1/2), with the relevant Lagrangian terms

L ⊃ −m2
hh

+h− +
(
µH̃†

1H2h
− − L̃fLh+ − L(Y †

1 H1 + Y †
2 H2)eR + h.c.

)
. (6.2)

We will operate in the so-called ‘Higgs basis’, where H1 acquires a vacuum expectation value

v ' 246 GeV, and we have the freedom to rotate our leptons so that either Y1 or Y2 can be

made real, diagonal, and positive (the conventional choice is of course Y1). The coupling

matrix f is antisymmetric, f = −fT , and we may take it to be real by simultaneously

rephasing L and eR, so that the diagonal Yukawa matrix remains unaffected. By rephasing

h− we may also take µ to be real.

Notationally I will use a, b in superscripts to label SU(2)W indices, Greek letters in sub-

scripts for flavour indices, and i, j to index the Higgses – for example, I might write Ha
i ,

Lb
β, or eγ (in this chapter I will drop the R subscript from eR). I will use both subscript

and superscript placement for the Higgs indices based on a subjective sense of neatness,

so you may see e.g. Y i
αβ and Y †

j .

Now, the Zee model is foremost a model for neutrino masses, which arise at the one-loop

level, and are equal in the decoupling limit to [179]

mν
αβ = − s2ϕ

16π2
v√
2

ln
m2

h+
2

m2
h+

1

(
fY1Y2 + Y T

2 Y
T

1 f
T
)

αβ
, (6.3)

where the charged mass eigenstates are defined by

(
h+

1
h+

2

)
=
(
sϕ cϕ

cϕ −sϕ

)(
h+

H+
2

)
, with s2ϕ =

√
2vµ

m2
h+

2
−m2

h+
1

. (6.4)

For small mixing angles, ϕ � 1, we have h+
1 ≈ H+

2 and h+
2 ≈ h+, and for mh � mH2 the

mass matrix simplifies further to
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L

e

L

L

Hi Hk

h h

Hj

Figure 6.1: The two-loop vacuum diagram from which we derive our CP -violating interfer-
ences. It is non-planar, so some portals have been used to make it look nice.1At the same
order in the couplings we can construct another vacuum diagram by instead joining the
Higgs lines at the top and bottom, but this does not generate any CP asymmetries.

mν
αβ = µv2

16π2m2
h

ln
m2

H+
2

m2
h+

(
fY1Y2 + Y T

2 Y
T

1 f
T
)

αβ
. (6.5)

6.2.1 CP -Violating Decays

With the model established, our first task is to take stock of the CP -asymmetric decays

relevant to leptogenesis. Where possible, it is conventional to express these asymmetries

in the form of an asymmetry parameter

ε = Γ(h− → f) − Γ(h+ → f)
Γ(h− → f) + Γ(h+ → f)

= − Im(c∗
0c1)

|c0|2

∫
dΠf [2 Im(A∗

0A1)]∫
dΠf |A0|2

, (6.6)

where we recall from the previous chapter the decomposition M(h− → f) = c0A0 + c1A1.

All asymmetries we will consider originate from the vacuum diagram in Fig. 6.1, which

we must cut three times: once for the initial state, once for the final state, and once

1Though the use of colours is not faithful to the Portal franchise, I hope that this
choice of colouring is more intuitive to the average reader than the canonical one. The
portal graphic was sourced from Ref. [397].
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h−

Ha
i

Hb
j

(a)

eγ

La
δ

Hb
j

(b)

eγ

Lb
β

Ha
k

(c)

La
α

Lb
β

(d)

h−

h

Figure 6.2: A two-loop self energy diagram for h− obtained by cutting through an h line
in the vacuum diagram of Fig. 6.1. Shown in orange are all cuts relevant to the main text.
There are also two four-body cuts, shown in Fig. 6.7.

for the Cutkosky cut. For example, by cutting through an h line we arrive at the self

energy diagram in Fig. 6.2; cutting then through (d) gives us the final state LαLβ , where

everything to the left of cut (d) is the loop-level amplitude for h− → LαLβ, and to the

right is (the conjugate of) the tree-level amplitude. Lastly, the Cutkosky cut will then be

one of (a), (b), (c), (e), or (f), of which the latter two can be found in Fig. 6.7. Notice

that the vacuum diagram is four-loop, and that the loop-level amplitude for h− → LαLβ

is two-loop. There are no CP -violating interferences for this decay at one-loop in the Zee

model, so this is the leading order at which we should expect to find an asymmetry.

An important feature of the vacuum diagram is that it can only generate asymmetries

in L number. To understand this, note that when we construct the Boltzmann equation

(BE) for a particle, say eα, we must sum over the flavours of all other particles in the

diagram since they will either be virtual or spectators as far as the BE is concerned. From

the Feynman rules listed in Section 6.A, doing so leads to the combination of couplings∑
i µ

2(Yif
†fY †

i )αα, which, as the diagonal element of a self-adjoint matrix, has no imaginary

part and thus no asymmetry:

εeα ∝
∑

i

µ2 Im(Yif
†fY †

i )αα = 0. (6.7)
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It is only when leaving the flavour of the vertical L lines in Fig. 6.1 unsummed, with

εLα ∝
∑

i

µ2 Im(Y †
i Yif

†f)αα, (6.8)

that an asymmetry can arise. Note however that the total asymmetry, when summed over

all Lα flavours, is zero:

∑
α

εLα ∝
∑

i

µ2 ImTr(Y †
i Yif

†f) = 0. (6.9)

This forces us into a purely flavoured leptogenesis scenario [398; 399], meaning we are

dependent on flavour effects to obtain a net non-zero lepton asymmetry. In practice this

implies that we will need to protect the negative asymmetry in one flavour while washing

out the positive asymmetries in the remaining flavours.2

In the following subsections I will present and briefly discuss the results for the relevant

asymmetries. More details are provided in Appendix 6.B.

6.2.1.1 h− → LL

The most important decay channel for h− is h− → LL, for which the tree-level decay rate

is

Γ0(h− → LαLβ) = mh|fαβ|2

2π . (6.10)

Of the available Cutkosky cuts, there are only two that contribute a non-zero asymmetry

to this decay: cuts (a) and (b) in Fig. 6.2. Cut (a) produces the decay asymmetry

∆Γ(h− → LαLβ)(a) = π2 − (ln 4)2

512π4
µ2

mh

∑
i

Im
[
(Y †

i Yif
†)αβfβα + (Y †

i Yif
†)βαfαβ

]
. (6.11)

2Since sphalerons conserve ∆α = B/3 − Lα, a negative lepton asymmetry leads to a
positive baryon asymmetry.
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The asymmetry due to cut (b) cannot be expressed analytically—at least not easily—as

it features the IR-divergent three-body decay h− → eLH. However, it turns out that the

asymmetry from this cut cancels exactly against the asymmetry due to the complementary

cut h− → LL → eLH of the three-body decay in the Boltzmann equation Eq. (6.27) (see

Section 6.B for details), so we can ignore it without consequence.

Owing to the flavoured nature of leptogenesis in the model, the most useful CP parameter

we can define is

ε(a)
α ≡

∑
β ∆Γ(h− → LαLβ)(a)∑

β 2Γ0(h− → LαLβ) = π2 − (ln 4)2

512π3
µ2

m2
h

∑
i

Im(Y †
i Yif

†f)αα

(f †f)αα
, (6.12)

instead of a more conventional one in which all flavours are summed over. This isolates

the asymmetry contribution to a fixed flavour α.

6.2.1.2 h− → eLH

The second-most important decay channel is h− → eLH, whose tree-level diagram can be

found to the left of cut (b) in Fig. 6.2. This decay is IR divergent in the limit that h− is

much heavier than the product particles, whose masses we have—up to this point—been

neglecting. In Chapter 7 we will investigate how to cancel the divergence, but for now

it is more practical to regulate it by introducing thermal masses and decay widths to

these particles. Thermal masses arise from resumming interactions with the early universe

plasma, and are given by m2
i (T ) = ciT

2, where (see e.g. Refs. [104; 347; 369; 372; 400–402])

cH1 = 1
16(g2

1 + 3g2
2) + 1

6(6λ1 + 2λ3 + λ4) + 1
4Y

2
t , (6.13a)

cH2 = 1
16(g2

1 + 3g2
2) + 1

6(6λ2 + 2λ3 + λ4) + 1
12Tr(Y †

2 Y2), (6.13b)

cL,αβ = 1
32(g2

1 + 3g2
2)δαβ + 1

48
∑

i

(Y †
i Yi)αβ, and (6.13c)

ce,αβ = 1
8g

2
1δαβ + 1

24
∑

i

(YiY
†

i )αβ. (6.13d)
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6.2.1 CP -Violating Decays

When T < mh the h− particles no longer contribute hard thermal loops to the self-energies

of these light particles, and so there are no terms proportional to the couplings µ or f . In

cH1 we can neglect the contribution from Y1 as it is far smaller than the top quark Yukawa

entry Yt. In principle cH2 should receive contributions from its own quark Yukawas, but

for simplicity we will assume they are zero. The couplings λi appearing in cHi originate

from the scalar potential

V (H1,H2) = −µ2
1H

†
1H1 − µ2

2H
†
2H2 +

[
µ2

3H
†
2H1 + h.c.

]
+ λ1(H†

1H1)2 + λ2(H†
2H2)2 (6.14)

+ λ3(H†
1H1)(H†

2H2) + λ4(H†
1H2)(H†

2H1) + λ5
[
(H†

1H2)2 + (H†
2H1)2

]
.

Since the virtual Higgs doublet in the three-body decay can still go on-shell even after the

institution of thermal masses, we also require the widths

mHiΓHi = T 2∑
α,β

|Y i
αβ|2

λ1/2(cHi , ceα , cLβ
)

16πcHi

(cHi − ceα − cLβ
), (6.15)

arising from the decay H → eL and computed using the zero-temperature rates with the

thermal masses. With this the Higgs propagators are replaced by

i
p2 + iε → i

p2 −m2
Hi

+ imHiΓHi

, (6.16)

and the three-body decay rate must be evaluated numerically. Correctly accounting for

all thermal effects is a far more involved undertaking [347; 371; 372], but Eqs. (6.13) and

(6.15) are sufficient to capture the dominant ones. When this is done we obtain a tree-level

decay rate satisfying

Γ0(h− → eγLδHi)
Γ0(h− → LαLβ) = µ2

m2
h

|Y j
γδ|2

|fαβ|2
g(mh/T ), (6.17)

where j 6= i (meaning if i = 1 then j = 2, and vice-versa), and the function g(z) is plotted

in Fig. 6.3. For the parameter values we will want to consider, this leads to a washout

rate that is reasonably suppressed compared to that of the two-body decay, so it will be

acceptable for us to neglect it. Even though the decays with an H2 in the final state are
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Figure 6.3: A plot illustrating the magnitude of the three-body decay rate relative to the
two-body rate, given the benchmark values λ1 = λ2 = 0.1 and λ3 = λ4 = 0, and assuming
for simplicity that Y2 is proportional to the identity matrix with entries Y2 = {0.1, 0.5, 1.0}.
For consistency, the thermal mass corrections to the two-body rate are accounted for in the
ratio. The precipitous drop as z → 1, due to the final state masses growing comparable to
mh, is an unphysical feature which would not appear if we also accounted for the thermal
contributions to the mass of h−.

resonantly enhanced by the narrow width of the virtual H1, the overall proportionality of

the rate to |Y1|2 . 0.01 keeps it small.

Now, there are two non-zero Cutkosky cuts for this decay: cuts (c) and (d). Neither

cut permits an analytical expression, though as discussed above, cut (d) cancels in the

Boltzmann equation Eq. (6.27), leaving only the contribution from cut (c). Numerically

the asymmetry due to cut (c) is about 17% as large as the asymmetry due to cut (a) in

the 2-body decay, and of opposite sign (see Section 6.B for details):

∆Γ(h− → eLαH)(c) ≈ −0.17 × ∆Γ(h− → LαL)(a) (6.18)

= −0.17 × π2 − (ln 4)2

512π4
µ2

mh

∑
i

Im(Y †
i Yif

†f)αα. (6.19)

(Here, to declutter the notation, the absence of an index means it has been summed over.)

Unlike the cut (a) asymmetry, this is not so easy to express as a ratio parameter since we

don’t have an analytic expression for the tree-level rate. Because the dominant contribution
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to the washout comes from the two-body inverse decay, however, we can instead define

ε(c)
α ≡

∆Γ(h− → eLαH)(c)
2Γ0(h− → LαL) ≈ −0.17π

2 − (ln 4)2

512π3
µ2

m2
h

∑
i

Im(Y †
i Yif

†f)αα

(f †f)αα
. (6.20)

As the two- and three-body decays enter the Boltzmann equation Eq. (6.27) with opposite

signs, the total relevant asymmetry parameter is therefore

εα ≡ ε(a)
α − ε(c)

α = 1.17π
2 − (ln 4)2

512π3
µ2

m2
h

∑
i

Im(Y †
i Yif

†f)αα

(f †f)αα
. (6.21)

6.2.2 Flavour Covariance

As was mentioned when introducing the Zee model, it is conventional to work in the

charged lepton mass basis, where Y1 is diagonal and real, and f is also made real. In this

basis the CP asymmetries become proportional to

εα ∝
∑

i

Im(Y †
i Yif

†f)αα = Im(Y †
2 Y2f

†f)αα, (6.22)

and Y1 does not contribute to the asymmetry at all. However, we could equally well rotate

to the diagonal basis of Y2, in which case

εα ∝ Im(Y †
1 Y1f

†f)αα. (6.23)

It appears we have an inconsistency, and a potentially important one at that, for this

distinction may mean the difference between an asymmetry large enough to explain the

observed baryon abundance and one that is not. The way to resolve this is to establish

flavour-covariant forms of the Boltzmann equations [104; 358; 359; 403–409], which are

constructed in such a way that the total asymmetry generated, Y∆1 + Y∆2 + Y∆3 , is

manifestly invariant under flavour rotations. At the time of this writing this remains an

ongoing work, so in the meantime we will need to make do with the Boltzmann equations

written in the next section.
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This being the case, the next best thing we can do is work in the basis that we expect should

most accurately represent the true physics. With the flavours distinguished predominantly

by their Yukawa interactions and thermal masses, the most suitable basis is the one that

diagonalises these [104]. Since the mass basis will be most closely aligned with whichever

Yukawa matrix is larger, this dashes our hopes of enlarging the asymmetry by choosing Y2

to be large. Nevertheless, it turns out that we will still want Y2 to be significantly larger

than Y1, and so we will use the diagonal basis of Y2.

To be concrete, it is helpful to note that under the unitary basis rotations

L → UL and e → V e, (6.24)

the coupling matrices transform to

f → U∗fU † and Yi → V YiU
†. (6.25)

Upon these rotations, which will be used to diagonalise Y2, the flavoured part of the CP

asymmetry parameter transforms in turn to

∑
i

Im(Y †
i Yif

†f)αα

(f †f)αα
→
∑

i

Im(UY †
i Yif

†fU †)αα

(Uf †fU †)αα
. (6.26)

6.2.3 Boltzmann Equations

Let us now drape our asymmetries in the appropriate Boltzmann equations. We will need

equations for the partial baryon-minus-lepton number densities Y∆α , as well as for YΣh

and Y∆h. The remaining particle number densities—namely those of the leptons Lα, eα

and the Higgs doublets Hi—are fixed by spectator processes, as discussed in Section 5.4.5

of the previous chapter. At leading order the equation for Y∆α is
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szHdY∆α

dz = 1
2

−
∑

β

∆γ(h− → LαLβ) +
∑
β,i

∆γ(h− → eβLαHi)

(YΣh

Y eq
h

− 2
)

(6.27)

−
∑

β

1
2Σγ(h− → LαLβ)

(
Y∆h

Y eq
h

−
Y∆Lα + Y∆Lβ

Y nor
L

)
,

where z = mh/T , and all other symbols are defined in Chapter 5. In principle there should

be a washout term from the three-body decay of the form3

∑
β,γ,i

(δαβ − δαγ)1
2Σγ(h− → eγLβHi)

(
Y∆h

Y eq
h

−
Y∆eγ

Y nor
e

+
Y∆Lβ

Y nor
L

+ Y∆Hi

Y nor
H

)
, (6.28)

as well as from other decay channels such as h− → eβLαHi, but as discussed above, they

are acceptable to neglect. Generically we should also prepend a factor of (1 + δαβ) to the

two-body decay, but since the rate vanishes when α = β due to the antisymmetry of f ,

such a factor is unnecessary.

The equations for the heavy scalar h± are

szHdYΣh

dz = −1
4

∑
α,β

Σγ(h− → LαLβ) +
∑
i,j

Σγ(h− → HiHj)

(YΣh

Y eq
h

− 2
)

(6.29a)

−

Σγ(h+h− → BB) +
∑

i

Σγ(h+h− → HiHi)

+
∑

f

Σγ(h+h− → ff)

( Y 2
Σh

4(Y eq
h )2 − 1

)
and

szHdY∆h

dz = −1
4
∑
α,β

Σγ(h− → LαLβ)
(
Y∆h

Y eq
h

−
Y∆Lα + Y∆Lβ

Y nor
L

)
(6.29b)

− 1
4
∑
i,j

Σγ(h− → HiHj)
(
Y∆h

Y eq
h

−
Y∆Hi

+ Y∆Hj

Y nor
H

)
.

The decays h− → LαLβ and h− → HiHj both include additional factors of 1/2 to avoid

3The Kronecker deltas here would be necessary because both L and e carry lepton
number. The reason for the absence of similar deltas in the source term of Eq. (6.27) is
that there is no asymmetry generated in e, as we have discussed.
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double-counting the final states. The annihilation processes appearing in the second and

third lines of Eq. (6.29a) are all mediated by the U(1)Y gauge boson B, and the sum f

runs over all SM fermions. Expressions for these processes are given in Section 6.C.

6.2.4 Qualitative Discussion

It is a good idea to now orient ourselves by discussing what we will need to maximise our

chances of achieving successful leptogenesis. As a reminder, the asymmetry parameter is

εα = 1.17π
2 − (ln 4)2

512π3
µ2

m2
h

∑
i

Im(Y †
i Yif

†f)αα

(f †f)αα
, (6.30)

meaning that the asymmetry generation for a flavour α is proportional to µ2 Im(Y †
i Yif

†f)αα,

while the washout in that flavour is proportional to (f †f)αα. Since this is a flavoured

leptogenesis scenario, we require f to be hierarchical in order to preserve the asymmetry

in one flavour – for example, |f12|, |f13| � |f23| in the diagonal mass basis will preserve

Y∆L1 while washing out Y∆L2 and Y∆L3 .

To obtain a large asymmetry the most direct thing we can do is increase µ, since—as

discussed in Section 6.2.2—increasing Y2 does not necessarily increase the asymmetry. The

limit on the size of µ is set by perturbativity, which requires µ .
√

4πmh. Ref. [179] argues

that µ . 15 TeV is needed to avoid a fine-tuned Higgs boson mass, but since this is not

a strict requirement we will ignore it (and likewise for the similar naturality bounds on

mh and mH2). An important point to consider is that the decay rate of h− → HH is

proportional to µ, so to avoid depleting the population of h− particles before they can decay

to leptons we will need Γ(h− → HH) ∼ Γ(h− → LL), which translates to µ/mh ∼ |f |.

Regarding mh, we generically expect a larger mass scale to fare better than a smaller one.

The reason for this is that the efficiency of the inverse decay,4

4Here we use that Γ(LL → h−) ' Γ(h− → LL)z3/2e−z for z > 1 [89, Ch. 6]. See also
Ref. [410] for an earlier work on the out-of-equilibrium condition for h− ↔ LL.
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Γ
H

≈ 105z7/2e−z
(110.75

g?

)1/2( |f |
1

)2(1012 GeV
mh

)
, (6.31)

scales inversely with mh, and so a larger value is preferred to ensure the out-of-equilibrium

condition Γ/H < 1 is more quickly satisfied. (The numerical factor of 105 here may appear

distressing, but it will largely cancel against the hierarchically small entries of f .) To see

how we might obtain a large mh we may consult the neutrino mass formula,

mν
αβ = µv2

16π2m2
h

ln
m2

H+
2

m2
h+

(
fY1Y2 + Y T

2 Y
T

1 f
T
)

αβ
. (6.32)

With mν and Y1 fixed, we see that increasing µ, f or Y2, or decreasing mH+
2

, will allow

us to raise mh. Increasing Y2 and µ/mh up to the perturbative limit of
√

4π is easily

done, though raising f is counterproductive since Γ/H ∝ |f |2 – that said, increasing f and

µ/mh proportionally in accordance with the demand µ/mh ∼ |f | leaves Γ/H unaltered.

The most stringent limits on mH+
2

are set by flavour physics searches, which, assuming

Y2 ∼ O(1), impose mH+
2
& 100 TeV [411]5; direct collider searches for charged Higgs decays

additionally imply the weaker bound mH+
2
> 3 TeV [124; 412; 413].

6.3 A Benchmark Scenario

In order to assess the general feasibility of successful leptogenesis within the Zee model it is

productive to study a benchmark scenario. To accomplish this we performed a numerical

scan over the parameter space of the model and collected a set of benchmark parameter

points that successfully fit the observed neutrino oscillation data [152] for both normal

ordering and inverted ordering. The result of this scan is shown in Fig. 6.4, where for each

point we have rotated to the diagonal basis of Y2, computed the asymmetry parameters

5The bounds shown in Fig. 5.1 of Ref. [411] must be appropriately rescaled since the
contributions to the pertinent Wilson coefficients are typically loop-suppressed. Though
the trilepton decays occur at tree-level in the Zee model, they are suppressed in proportion
to the charged lepton masses [179].
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(a) Normal ordering

(b) Inverted ordering

Figure 6.4: Benchmark parameter points fitting neutrino oscillation data, showing
εmin = min{ε1, ε2, ε2} (i.e. the largest negative asymmetry parameter) against εmax =
max{ε1, ε2, ε2} (i.e. the largest positive asymmetry parameter). The colour of a point
denotes the value of mh computed in the manner described in the main text, with the
exception of the most promising benchmark point between the two orderings, which is
indicated with an enlarged red dot.
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Figure 6.5: The result of running the Boltzmann equations in our benchmark scenario.
The oscillations in YΣh at large z are due to numerical instability, and are unphysical.

ε1, ε2, ε3, and positioned it based on its largest negative ε and largest positive ε. For

concreteness, mh is computed for each point by fixing mH+
2

= 100 TeV, µ/mh = 1, and

rescaling both Y2 and f so that their largest absolute entries are 1 in the original basis;

this leads to a spread of mh values from around 107 GeV to 1013 GeV. For each of these

values the mixing angle ϕ in Eq. (6.4) is indeed small, justifying the use of the simplified

mass formula, Eq. (6.5).

The most promising points for leptogenesis are those near the top of the plots in Fig. 6.4,

as these have a relatively large negative asymmetry (as is needed to generate a positive

baryon asymmetry), and a small positive asymmetry. To be as generous as possible to

the model, let’s take the highest benchmark point from Fig. 6.4b, for which the three

asymmetry parameters read

ε1 ≈ −3.10 × 10−7, ε2 ≈ 1.82 × 10−10, and ε3 ≈ −6.10 × 10−13, (6.33)

with mh ≈ 2.73 × 1012 GeV. The result of running the Boltzmann equations for this

benchmark scenario is shown in Fig. 6.5, where we can plainly see that the generated

baryon asymmetry YB = 12
37(Y∆1 + Y∆2 + Y∆3) falls short of reproducing the observed

asymmetry Y obs
B ≈ 8.68 × 10−11 by three orders of magnitude. Reducing the size of f

or increasing Y2 and µ/mh up to
√

4π, and correspondingly rescaling mh, does little to
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improve the result. We similarly do not expect a 103 enhancement to arise from running

the more correct flavour-covariant Boltzmann equations. Since all other benchmark points

have a worse outlook than this one, we may conclude that the Zee model is incapable of

explaining the observed baryon asymmetry of the universe, even in a high-scale leptogenesis

scenario.

6.4 Minimal Extensions

The failure of the Zee model to successfully achieve leptogenesis is somewhat disappointing,

so to avoid ending on a null result we are endeavouring to study the viability of minimal

extensions of the model with additional sources of CP violation. This part of the work is

presently ongoing, so for now I will simply present the extensions without discussing their

phenomenology or prospects for leptogenesis.

6.4.1 A Third Higgs Doublet

One possible way to extend the model is to introduce a third Higgs doublet H3 ∼ (1, 2, 1/2),

wherein the interactions relevant to this work generalise to

L ⊃ −m2
hh

+h− +
(1

2µijH̃
†
iHjh

− − L̃fLh+ − LY †
i HieR + h.c.

)
, (6.34)

where µij is antisymmetric and equal to µεij in the original model. Much like the original

Zee model, we can rotate to a lepton basis where one Yukawa matrix Yi is real and diagonal

and f is also real. Moreover, µij may also be made real by rephasing h− and the two Higgs

doublets with non-diagonal Yukawa matrices.

In this extended model the neutrino mass formula generalises to6

6To evaluate the loop diagrams we have used the results of Ref. [414]. If we drop the
contribution of the third Higgs doublet and parameterise U by U11 = −U22 = sinϕ and
U12 = U21 = cosϕ, then U21U

∗
11 = −U22U

∗
12 = 1

2 sin(2ϕ), and we recover Eq. (6.3).
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mν
αβ = 1

8π2
v√
2
∑
k 6=1

(G12,k +G23,k +G31,k)(fY1Yk + Y T
k Y

T
1 f

T )αβ (6.35)

with

Gij,k =
UkiU

∗
1im

2
h+

j

+ UkjU
∗
1jm

2
h+

i

m2
h+

j

−m2
h+

i

ln
m2

h+
i

m2
h+

j

, (6.36)

where U is the unitary matrix relating the charged scalar mass eigenstates h− to the

interaction eigenstates ĥ−: ĥ−
i = Uijh

−
j . Here ĥ−

1 is the singly-charged scalar and h+
i for

i = 2, 3 are the charged components of Hi.

The CP asymmetry factor similarly generalises to

εα ' 1.17π
2 − (ln 4)2

512π3

∑
i,j

Im

(µµ†)ij

m2
h

(Y †
j Yif

†f)αα

(f †f)αα


= 1.17π

2 − (ln 4)2

512π3

∑
i,j

(µµ†)ij

m2
h

1
2i

(Y †
j Yif

†f − f †fY †
j Yi)αα

(f †f)αα
, (6.37)

and the total asymmetry
∑

α,β ∆Γ(h− → LαLβ) is zero. Leptogenesis therefore remains

flavoured in this extension, and a hierarchical f is still required.

The main advantage to introducing a third Higgs doublet lies in the observation that

only one Yukawa matrix can in general be diagonalised at a time. If we then have, say,

|Y3| > |Y2| > |Y1|, the thermal lepton masses will be most closely aligned with Y3, and

so even when Y3 is diagonalised we may entertain the possibility of enhancing the CP

asymmetry through its proportionality to Y2, which may be much larger than Y1. That

said, it is unclear how well this advantage carries over in a more correct flavour-covariant

treatment of the asymmetry generation.
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Figure 6.6: The one-loop corrections to h−
1 → LL in the two singlet extension that generate

CP -violating interferences with the tree-level decay.

6.4.2 A Second Singly-Charged Scalar

Another way to extend the Zee model is to introduce a second singly-charged scalar7

h−
2 ∼ (1, 1,−1), with the relevant interactions

L ⊃ −m2
h1h

+
1 h

−
1 −m2

h2h
+
2 h

−
2 +

(
µiH̃

†
1H2h

−
i − L̃fiLh

+
i − LY †

i HieR + h.c.
)
. (6.38)

In this extension, CP violation in the decay h−
1 → LL can arise at one-loop through the

diagrams in Fig. 6.6, generating an asymmetry of the form

∆Γ(h−
1 → LαLβ) = Im

[
Tr(f †

1f2)f1
αβf

2∗
αβ

]
g1

(
m2

h2

m2
h1

)
+ Im

[
µ1µ

∗
2f

1
αβf

2∗
αβ

]
g2

(
m2

h2

m2
h1

)
, (6.39)

where g1(x) and g2(x) are presently-undetermined functions. The contribution of the first

term is zero when summed over flavours, leaving

∑
α,β

∆Γ(h−
1 → LαLβ) = Im

[
µ1µ

∗
2 Tr(f †

2f1)
]
g2

(
m2

h2

m2
h1

)
. (6.40)

This version of the model has the advantage that the asymmetry is only one-loop (instead

of two-loop) suppressed, and moreover it can be resonantly enhanced when mh2 ≈ mh1 .

The fact that the asymmetry is no longer purely flavoured additionally lowers the difficulty

7This extension was suggested by Eung Jin Chun. It is also mentioned in a footnote in
Ref. [107].
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barrier to generating a large net asymmetry. These considerations greatly improve the

prospects of this extension compared to the original Zee model.

A similar extension to this one has been studied in Ref. [107], featuring in addition three

right-handed sterile neutrinos NR ∼ (1, 1, 0) of mass 1 TeV. There the three-body decays

NR → eLL and NR → eHH mediated by h− generated the requisite lepton asymmetry.

Another related extension was studied in Ref. [385], where the authors additionally intro-

duced a third singly-charged scalar χ− ∼ (1, 1,−1) and three left-handed sterile neutrinos

NL ∼ (1, 1, 0), as well as a softly-broken U(1)B−L symmetry. The asymmetry generation

in their model then came from the decay h−
1 → eNL, with the spectator process ee ↔ LL

transmitting the symmetry to the left-handed leptons, and therefore the baryons.

6.5 Summary

In this chapter we have investigated the leptogenesis prospects of a high-scale realisation

of the Zee model of neutrino masses, in which a lepton asymmetry is generated through

the decays of the new scalar h− with a mass of O
(
1012 GeV

)
. Unfortunately, this scenario

is heavily marred by the fact that it is purely flavoured, and this compounded with

the two-loop suppression of the CP asymmetries and the difficulty in enhancing them

due to effects related to flavour covariance means that it fails to reproduce the observed

baryon asymmetry by at least three orders of magnitude even under the most optimistic

circumstances. This finding is complementary to previous works demonstrating the inability

of the model to successfully achieve leptogenesis at the TeV scale, and thereby corroborates

the claim that it is unachievable at any scale.

The Zee model must therefore be extended if it is to generate enough of a baryon asymmetry.

To this end, we have identified two minimal extensions of the model—one adding another

Higgs doublet and the other adding another charged singlet—that have improved prospects,

and the study of these extensions remains an ongoing part of this work. If successful

leptogenesis is indeed possible in either of these models, it will be interesting to see how far
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the new mass scales can be lowered, as well as if there are any low-scale observables (such as

the Dirac CP phase of the PMNS matrix in the upcoming JUNO [168], DUNE [169], and

Hyper-K [170] experiments8) that we can use to probe these scenarios. To ensure we do

not miss any important effects and that any conclusions drawn about these extensions are

therefore as robust as possible, we will want to carry out this study using a flavour-covariant

formulation of the Boltzmann equations.

8See for example Refs. [415–419] for discussions of the connection between the Dirac
phase and (Seesaw) leptogenesis, and Ref. [420] for a more general discussion of probes of
leptogenesis.
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6.A Feynman Rules

6.A Feynman Rules

As a reminder, the relevant part of the Zee model interaction Lagrangian consists of

L ⊃ 1
2µijH̃

†
iHjh

− − L̃fLh+ − LY †
i HieR + h.c. (6.41)

when generalised to an arbitrary number of Higgs doublets. This gives rise to the following

Feynman rules, which are each independent of prescribed fermion flow (see Refs. [336; 337]):

La
α

Lb
β

h = 2ifαβεabPL

La
α

Lb
β

h = 2if∗
αβεabPR

eα

La
β

Hb
i = −iY i

αβδabPL

eα

La
β

Hb
i = −iY i∗

αβδabPR

Ha
i

Hb
j

h = −iµijεab

Ha
i

Hb
j

h = −iµ∗
ijεab

The rules for the original Zee model are recovered by replacing µij → µεij .

6.B The Cutkosky Cuts in Detail

There are six possible cuttings of our two-loop self-energy diagram for h−, shown in Figs. 6.2

and 6.7, and labelled (a) to (f). We must consider all possible pairings of cuts, with one
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h−

h−(e)

(f)

h

Figure 6.7: The two additional four-body cuts, (e) and (f), not shown in Fig. 6.2. They
do not contribute to any CP asymmetries.

(a) (b) (c) (d) (e) (f)
h− → HH (a) PS 3 3 PS PS None 7

h− → eLH (b) PS 3 3 — PS L 3

h− → eLH (c) 3 3 PS PS — None 7

h− → LL (d) 3 3 PS PS PS L 3

h− → HLLH (e) PS — PS PS — L 7

h− → LHLH (f) PS PS — PS — L,L 7

Decay Cut Cutkosky cuts Imaginary
couplings? Asymmetry?

Table 6.1: Summary of cuts. A dash (—) means a cut is incompatible with that row’s
decay. “PS” means that a cut contains a phase space of vanishing measure, and so is zero.
The remaining non-zero pairings are ticked (3). A decay can generate an asymmetry if
it allows at least one non-zero Cutkosky cut and has imaginary couplings for at least one
final state particle.

functioning as the final state cut and one as the Cutkosky cut. Some pairings, such as (e)

and (f), are incompatible as they cross over each other and so cannot occur simultaneously.

Of the compatible pairings, most are trivially zero as they contain a phase space integral

with zero measure. For example, the combination of cuts (a) and (b) includes the process

H → eL as a disconnected subprocess, which has measure zero phase space when all

particles are treated as massless.

The non-zero cuts are marked with a tick in Table 6.1, contributing imaginary parts to the

loop-level amplitudes of the decays h− → HH, h− → eLH, h− → eLH, and h− → LL.

However, as discussed in Section 6.2.1, only the decays h− → LL and h− → eLH feature

imaginary couplings, and even then only when considering a final state lepton doublet of
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fixed flavour, Lα. We therefore only need to work out the asymmetries in these two decays.

Note that the phase space and imaginary couplings arguments no longer apply when we

institute thermal masses to Hi, L, and e, meaning we in principle should consider additional

cuts and decays. These new contributions will however be suppressed in powers of m/mh,

and can be safely neglected.

6.B.1 h− → LL

Common to all cuts for the decay h− → La
αL

b
β are the coupling constants

Im(c∗
0c1) = 4µijµ

∗
kjε

4
ab Im(fαβf

∗
δβY

i
γδY

k∗
γα ) + (α ↔ β, a ↔ b), (6.42)

obtained by using the particle indices of Figs. 6.2 and 6.8. The second term, labelled

(α ↔ β, a ↔ b), comes from the diagram where the final state lepton doublets are swapped.

To avoid exaggerating the differences between the original Zee model (where µ appears

simply as |µ|2) and the three-Higgs-doublet extension, I have assumed that we have

rephased our fields to make µ real so that it factors out of the imaginary part (though to

maintain some semblance of generality I have left the now-meaningless conjugate on µ∗
kj

in place).9 Summing over the SU(2)W indices a, b, virtual lepton flavours γ, δ, and virtual

Higgses i, j, k brings this to the form

Im(c∗
0c1) →

∑
i,k

8(µµ†)ik Im
[
(Y †

k Yif
†)αβfβα + (Y †

k Yif
†)βαfαβ

]
. (6.43)

In the Boltzmann equation for Y∆α we additionally sum over the flavour β, so the couplings

appear there as

Im(c∗
0c1) →

∑
i,j

8(µµ†)ij Im(Y †
j Yif

†f)αα, (6.44)

where I have relabelled k → j.

9The fully general form of Im(c∗
0c1), without assuming the reality of µ, can be found in

Eq. (6.37).
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h−

La
α

Lb
β

p1

p1

(a) Tree-level.

h−

Ha
i

Hb
j

(a)

La
αLb

β

k1

k2

q La
δ

q + p2 h

q + k1

eγ

p1 − q − k1

Ha
k

(b) Loop-level, with the two-body cut (a). This diagram is non-planar,
so for visual clarity the final state Lb

β line terminates in the centre
instead of exiting to the right.

Figure 6.8: Diagrams for the two-body decay h− → LL.

6.B.1.1 Cut (a)

For this cut,

h− → Ha
i (k1)Hb

j (k2) → La
α(p1)Lb

β(p2), (6.45)

which is shown in Fig. 6.8b, we have

2 Im(A∗
0A1)(a) =

∫
dΠ(k1, k2) 1

i

∫ d4q

(2π)4
1

(q + k1)2
1
q2

Tr[/p1(/q + /k1)/q/p2PL]
(q + p2)2 −m2

h

1
(p1 − q − k1)2 .

(6.46)

The loop integral can be carried out using e.g. Package-X [421], resulting in a somewhat

complicated—but finite—expression. Integrating then over the two-body phase spaces of

(k1, k2) and (p1, p2), the latter of which is trivial, leads to the remarkably simple result

∫
dΠf 2 Im(A∗

0A1)(a) = −π2 − (ln 4)2

(8π)4 ≈ −2 × 10−5. (6.47)

In accordance with ∆|M|2 = −4 Im(c∗
0c1) Im(A∗

0A1) (see Eq. (5.6)), the asymmetry in the

two-body decay h− → LαLβ due to cut (a) is therefore
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h−

eγ

La
δ

Hb
j

(b)

Ha
k

La
α

Lb
β

Ha
i

k1

p1

k2

k3
h

p2

Figure 6.9: The loop-level diagram for h− → LL with the three-body cut (b).

∆Γ(h− → LαLβ)(a) = 1
2mh

∫
dΠf (−4) Im(c∗

0c1) Im(A∗
0A1)(a)

= π2 − (ln 4)2

512π4

∑
i,j

(µµ†)ij

mh
Im
[
(Y †

j Yif
†)αβfβα + (Y †

j Yif
†)βαfαβ

]
. (6.48)

In the original Zee model, in which µij = µεij , this becomes the asymmetry given in

Eq. (6.11).

6.B.1.2 Cut (b)

This cut, which is shown in Fig. 6.9, reads

h− → eγ(k1)La
δ(k2)Hb

j (k3) → La
α(p1)Lb

β(p1), (6.49)

and it is IR divergent when all particles but h− are treated as massless. When regulated

with the thermal masses in Section 6.2.1.2, we have

2 Im(A∗
0A1)(b) = −

∫
dΠ(k1, k2, k3)

Tr
[
/p1/k1/k2/p2PL

]
(p2 − k2)2 −m2

h

(6.50)

× 1
(k1 + k2)2 −m2

Hi
+ imHiΓHi

1
(p1 − k1)2 −m2

Hk
+ imHk

ΓHk

.

Due to the imaginary widths this expression is no longer purely real, so we must modify
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it by taking the real parts of these propagators:

2 Im(A∗
0A1)(b) = −

∫
dΠ(k1, k2, k3)

Tr
[
/p1/k1/k2/p2PL

]
(p2 − k2)2 −m2

h

(6.51)

×
(k1 + k2)2 −m2

Hi

[(k1 + k2)2 −m2
Hi

]2 + [mHiΓHi ]2
(p1 − k1)2 −m2

Hk

[(p1 − k1)2 −m2
Hk

]2 + [mHk
ΓHk

]2
.

While necessary, this alteration is somewhat ad hoc, and we should attempt to justify it.

One way to do this is to note that in the absence of the widths, the propagators are equal

to

1
p2 −m2 + iε = Re

( 1
p2 −m2 + iε

)
− iπδ(p2 −m2). (6.52)

The imaginary part corresponds to an on-shell cut, and since all further cuts in combination

with (b) and (d) are zero (see Table 6.1), it vanishes, allowing us to replace each propagator

with its real part. Unfortunately, this argument does not straightforwardly carry over to

the resummed propagators since their imaginary parts have support at more than just

p2 = m2. This being the case, the correct approach is to resolve the cuts before resumming

the Dyson series, treating each self-energy insertion as a higher-order loop correction

to be cut through in accordance with the Cutkosky or holomorphic cutting rules; see

Refs. [342; 360].

In any case, we will soon see that Eq. (6.51) is of the exact same form as cut (d) in the

three-body decay, meaning they will cancel against each other in the Boltzmann equation

Eq. (6.27). This spares us from needing to evaluate it.

6.B.2 h− → eLH

Common to all cuts for the decay h− → eγL
a
δH

b
j are the coupling constants

Im(c∗
0c1) = 4µ∗

ijµkjε
4
ab Im(f∗

αβfδβY
i∗

γδY
k

γα). (6.53)

Summing over all indices and flavours but δ gives
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Im(c∗
0c1) →

∑
i,k

8(µµ†)ki Im(Y †
i Ykf

†f)δδ, (6.54)

which is of the exact same form as the couplings entering the h− → LL asymmetries,

Eq. (6.44), upon relabelling δ → α, i → j, and k → i. Note that Im(c∗
0c1) → 0 when all

indices but γ are summed over, meaning that this decay does not generate any asymmetries

in the number of eγ particles.

6.B.2.1 Cut (d)

Though our alphabetical sensibilities compel us to first study cut (c), let us discuss cut

(d) in order to relieve the suspense of the promised cancellation against cut (b) of the

two-body decay. This cut reads

h− → La
α(p1)Lb

β(p1) → eγ(k1)La
δ(k2)Hb

j (k3), (6.55)

and for it we find

2 Im(A∗
0A1)(d) = −

∫
dΠ(p1, p2)

Tr
[
/p1/k1/k2/p2PL

]
(p2 − k2)2 −m2

h

(6.56)

×
(k1 + k2)2 −m2

Hi

[(k1 + k2)2 −m2
Hi

]2 + [mHiΓHi ]2
(p1 − k1)2 −m2

Hk

[(p1 − k1)2 −m2
Hk

]2 + [mHk
ΓHk

]2
,

where the relevant diagram is very similar to the one in Fig. 6.9, and as before we take

the real parts of the resummed propagators. The integrand is exactly the same as that

of Eq. (6.51); the only difference here is that we are integrating over the phase space of

(p1, p2) instead of (k1, k2, k3). When computing the decay rate asymmetry this difference

disappears, as we must integrate over both phase spaces. Altogether, we then have

∆Γ(h− → eLαH)(d) = 1
2mh

∫
dΠf (−4) Im(c∗

0c1) Im(A∗
0A1)(d) (6.57)
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=
∑
i,k

8(µµ†)ki

mh
Im(Y †

i Ykf
†f)αα

∫
dΠ(p1, p2) dΠ(k1, k2, k3)

Tr
[
/p1/k1/k2/p2PL

]
(p2 − k2)2 −m2

h

(6.58)

×
(k1 + k2)2 −m2

Hi

[(k1 + k2)2 −m2
Hi

]2 + [mHiΓHi ]2
(p1 − k1)2 −m2

Hk

[(p1 − k1)2 −m2
Hk

]2 + [mHk
ΓHk

]2

= ∆Γ(h− → LαL)(b), (6.59)

where I use the absence of an index to indicate that it has been summed over. Since

these two cuts enter the Boltzmann equation Eq. (6.27) with opposite signs, they therefore

cancel against each other.

It is worth commenting on the consistency of this finding with the requirement that the

asymmetry from h− → eLH → LL and h− → LL → eLH should cancel when summed,

per the discussion following Eq. (5.61) in Chapter 5. The resolution to this apparent

inconsistency is found in noting that we have summed over different flavour indices in the

two decays, and that the asymmetries do in fact cancel when summed if we consider a

fixed selection of flavours. Using the notation ∆Γ(i → k → f) to denote the asymmetry

in Γ(i → f) due to the cut i → k → f , we can see from Eqs. (6.42) and (6.53) that10

∆Γ(h− → eγL
a
δH

b
j → La

αL
b
β) ∝ 4ε4ab Im(µijµ

∗
kjfαβf

∗
δβY

i
γδY

k∗
γα ) and (6.60a)

∆Γ(h− → La
αL

b
β → eγL

a
δH

b
j ) ∝ 4ε4ab Im(µ∗

ijµkjf
∗
αβfδβY

i∗
γδY

k
γα) (6.60b)

(where I have elided the identical Im(A∗
0A1) factors, and for maximum transparency

dropped the assumption that µ is real), from which we can immediately read off

∆Γ(h− → eγL
a
δH

b
j → La

αL
b
β) + ∆Γ(h− → La

αL
b
β → eγL

a
δH

b
j ) = 0. (6.61)

6.B.2.2 Cut (c)

For this cut,

10The +(α ↔ β, a ↔ b) term in Eq. (6.42) does not contribute here since the three-body
cut fixes the indices of all the couplings – see Fig. 6.2 to convince yourself of this.
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h−
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Hb
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k3
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i
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k1

(a) Tree-level.
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eγ

Ha
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β

(c)

eγ

Hb
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La
α

k1

k1

k4

k5

h

k3

k2

(b) Loop-level, with the three-body cut (c).

Figure 6.10: Diagrams for the three-body decay h− → eLH.

h− → eγ(k1)Lb
β(k4)Ha

k (k5) → eγ(k1)La
δ(k2)Hb

j (k3), (6.62)

which is illustrated in Fig. 6.10b, one finds

2 Im(A∗
0A1)(c) = −

∫
dΠ(k4, k5) Tr[(/k1 + /k5)/k4/k2/k1PL]

(k3 − k5)2 −m2
h

(6.63)

×
(k1 + k2)2 −m2

Hi

[(k1 + k2)2 −m2
Hi

]2 + [mHiΓHi ]2
1

(k1 + k5)2 −m2
Lα

.

This must be evaluated numerically, and doing so leads to Fig. 6.11, where the result of

this cut is plotted alongside the result of cut (a) in the two-body decay. We are interested

in the asymptotic value at large z, which is about 0.17 times as large as cut (a), and of

opposite sign (though the plot doesn’t show the sign). As the drop at low z is unphysical,

we can for our purposes treat this cut as constant and equal to

∆Γ(h− → eLαH)(c) ≈ −0.17 × ∆Γ(h− → LαL)(a)

= −0.17π
2 − (ln 4)2

512π4
µ2

mh

∑
i

Im(Y †
i Yif

†f)αα. (6.64)
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Figure 6.11: A plot illustrating the size of cut (a) in h− → LL (solid lines) and cut (c)
in h− → eLH (dashed lines) as a function of z = mh/T , given the benchmark values
λ1 = λ2 = 0.1 and λ3 = λ4 = 0, and assuming for simplicity that Y2 is proportional to
the identity matrix with entries Y2 = {0.1, 0.5, 1.0}. For consistency, cut (a) has also been
evaluated with the appropriate thermal masses; note that at large z it approaches the
zero-temperature value π2−(ln 4)2

(8π)4 ≈ 2 × 10−5. The drop as z → 1, due to the final state
masses growing comparable to mh, is an unphysical feature which would not appear if we
also accounted for the thermal contributions to the mass of h−.

6.C The Explicit Boltzmann Equations

To translate the Boltzmann equations in Section 6.2.3 to their explicit functional forms

one would need to trawl both through this chapter and the previous one in search of all the

relevant formulas. This is not anyone’s idea of fun, and while I imagine most readers are

not too interested in these forms anyway, I will nevertheless present them here in service

of the subset that is (which includes me).

Our Boltzmann equations are

szHdY∆α

dz = −1
2
∑

β

γD,αβ

[
εα

(
YΣh

Y eq
h

− 2
)

+ Y∆h

Y eq
h

−
Y∆Lα + Y∆Lβ

Y nor
L

]
, (6.65a)

szHdYΣh

dz = −1
4

∑
α,β

γD,αβ +
∑
i,j

γD,ij

(YΣh

Y eq
h

− 2
)

− γS

(
Y 2

Σh

4(Y eq
h )2 − 1

)
, and (6.65b)
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szHdY∆h

dz = −1
4
∑
α,β

γD,αβ

(
Y∆h

Y eq
h

−
Y∆Lα + Y∆Lβ

Y nor
L

)
− 1

4
∑
i,j

γD,ij

(
Y∆h

Y eq
h

− 2Y∆H

Y nor
H

)
,(6.65c)

where

szH = 4π7/2

135
√

5z4 g
3/2
?

m5
h

MP
, (6.66a)

Y eq
h = 45

4π4g?
z2K2(z), Y nor

L = 15
4π2g?

, Y nor
H = 15

2π2g?
, (6.66b)

γD,αβ ≡ Σγ(h− → LαLβ) = m4
h

8π3z
K1(z)4|fαβ|2, (6.66c)

γD,ij ≡ Σγ(h− → HiHj) = m4
h

8π3z
K1(z) |µij |2

m2
h

, (6.66d)

γS = m4
h

8π3z

∫ ∞

4
dx

√
xK1(z

√
x)
[
γ̂hh→BB(x) + γ̂hh→ff (x) + γ̂hh→HH(x)

]
, (6.66e)

εα = 1.17π
2 − (ln 4)2

512π3

∑
i,j

(µµT )ij

m2
h

Im(Y †
j Yif

†f)αα

(f †f)αα
, (6.66f)

with g? = 106.75 + 4(nH − 1), nH being the number of Higgs doublets, and

γ̂hh→BB(x) = g4
1

16π2
(x+ 4)

√
x− 4

x3/2 + g4
1

4π2
x− 2
x2 ln

(
1 −

√
1 − 4/x

1 +
√

1 − 4/x

)
, (6.67a)

γ̂hh→ff (x) = 10g4
1

96π2

(
x− 4
x

)3/2
, and (6.67b)

γ̂hh→HH(x) = g4
1

768π2

(
x− 4
x

)3/2
nH . (6.67c)

Included in γ̂hh→ff is a factor of
∑

f gfY
2

f = 10 from summing over the contribution of all

SM fermions. Accounting for spectator processes, we have

Y∆L1

Y∆L2

Y∆L3

 = 2
2637

−847 32 32
32 −847 32
32 32 −847


Y∆1

Y∆2

Y∆3

 and (6.68a)

Y∆H = −224
293(Y∆1 + Y∆2 + Y∆3), (6.68b)

when nH = 2, while for nH = 3 it is instead the case that
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Y∆L1

Y∆L2

Y∆L3

 = 1
144

−91 5 5
5 −91 5
5 5 −91


Y∆1

Y∆2

Y∆3

 and (6.69a)

Y∆H = −7
8(Y∆1 + Y∆2 + Y∆3). (6.69b)

These relations hold assuming T ∼ 1012 GeV, and should strictly speaking vary continuously

as we sweep through the relevant temperature region given by z ∈ [10−1, 102] due to more

spectator processes entering equilibrium; see Ref. [409, Sec. III.A]. This will be accounted

for in the final version of this work.
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We should take the divergence and
push it somewhere else!

Patrick Star,
in Spongebob Squarepants,

reimagined

7
IR Divergences in the Zee Model

Contents
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In the previous chapter we encountered the infrared (IR) divergent decay h− → eLH,

pictured in Fig. 7.1, which appeared both as an isolated process and as a subprocess in our

Cutkosky cuts. There we regulated the divergence, due to the virtual H going on shell,

by introducing thermal masses to e, L, and the H’s. In the case that mH < me +mL, it

became kinematically impossible for H to go on shell, whereas when mH > me +mL the
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h−

e

L

H

H

Figure 7.1: The IR-divergent decay h− → eLH in the Zee model.

H acquired a decay width, which when added to its propagator,

i
p2 −m2 → i

p2 −m2 + imΓ , (7.1)

prevented it from diverging when p2 = m2.

However, this is an unsatisfying solution. Though the divergence has formally been

removed, its spectre remains in the form of large logarithms such as ln(me/mh), which

threaten perturbativity. To banish this threat we should study how to cancel the divergence

properly. As guaranteed by the KLN theorem [109; 110], other processes which add to the

decay will generate a logarithm with the opposite sign, resulting in a well-behaved sum.

Our task, therefore, is to find these processes and evaluate them.

In this chapter I will chronicle my efforts in this direction in the hope that they may be put

to use in future works. We will find that we are able to eliminate the divergence at zero

temperature, but encounter difficulties at finite temperature preventing us from carrying

the analysis over. The entirety of this chapter is my own work, and I will provide detailed

computations here, as they are often skipped over in the literature.

7.1 What is an IR Divergence?

In case you are unfamiliar with IR divergences, allow me to briefly review them. As the

name suggests, these divergences are associated with low energies, and they tend to appear
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in theories with massless particles, or in high energy limits where the masses of particles

can be neglected.

To be concrete, let’s assign the momentum labels q and p to the outgoing e and L of the

three-body decay, so that the H propagator appears as

1
(q + p)2 = 1

2q · p
= 1

2EqEp(1 − cos θ) . (7.2)

This blows up when either Eq = 0, Ep = 0, or cos θ = 1. When the energy of a particle

is zero it is called ‘soft’, and the divergence a soft divergence. When cos θ = 1 the two

particles are travelling in the same direction and the divergence is termed a collinear

divergence.

There are a few ways to regulate an IR divergence, and I will demonstrate two: using a mass

regulator, and dimensional regularisation. It is also possible to regulate by considering a

finite energy window Eq, Ep > E0 and finite angular window θ > θ0, though this is of less

interest to us.

Example
Let’s first try using a mass regulator. This functions intuitively – by reintroducing

a small mass to one or both of e and L, it becomes kinematically impossible for the

virtual H to go on shell, and the divergence is avoided. Because it is simpler to

compute, I’ll elect to assign a mass me to e only.

Here the matrix element for the decay is

iM =
Q

q

p

k

= (−iµ) i
(q + p)2 + iεv(p)(−iY ∗PR)u(q), (7.3)

and its spin-summed square is in turn
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|M|2 = µ2|Y |2
Tr[/pPR(/q +me)PL]

|(q + p)2 + iε|2 (7.4)

= µ2|Y |2 2p · q
(q + p)4 , (7.5)

where we can drop the +iε as the pole of the propagator is never touched in the

presence of our regulator. In this chapter I’ll suppress all flavour indices, SU(2)W

indices, and Higgs indices, as here they are little more than distractions. To be max-

imally transparent I will not even implicitly sum over these indices, so all processes

and diagrams can be understood as involving only a fixed selection of particles.

Spins, on the other hand, will be summed over at every available opportunity.

The three-body phase space integral with one massive particle is [122; 422]

∫
dΠ3 = m2

h

128π3

∫ 1−β

0
dxk

∫ 1− β
1−xk

1−xk−β
dxp , (7.6)

where we define the energy fractions xi ≡ 2Ei/mh and the squared mass fraction

β ≡ m2
e/m

2
h. Then, using that

m2
h(1 − xk) = (Q− k)2 = (q + p)2 = m2

e + 2p · q, (7.7)

we may write

|M|2 = µ2|Y |2m
2
h(1 − xk) −m2

e

m4
h(1 − xk)2 = µ2|Y |2

m2
h

1 − xk − β

(1 − xk)2 , (7.8)

giving

Γ̂(h− → eLH) =
∫

dΠ3 |M|2 (7.9)

= µ2|Y |2

128π3

∫ 1−β

0
dxk

∫ 1− β
1−xk

1−xk−β
dxp

1 − xk − β

(1 − xk)2 (7.10)

= µ2|Y |2

128π3
1
2
[
−5 + 4β + β2 − 2(1 + 2β) ln β

]
, (7.11)

where to avoid needing to carry around factors of 1/2mh I define the un-normalised
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decay rate

Γ̂ ≡ 2mhΓ =
∫

dΠf |M|2. (7.12)

Expanding in small β, we find at the lowest order

Γ̂(h− → eLH) = µ2|Y |2

128π3

(
−5

2 − ln m
2
e

m2
h

)
. (7.13)

The divergence manifests in the logarithm, which blows up as we take me → 0.

We may alternatively regulate the divergence using the technique of dimensional regu-

larisation, whereby IR divergences are tamed by moving to a higher-dimensional space,

d = 4 + ε.

Example
In d dimensions the massless three-body phase space takes the form [423]

∫
dΠ3 =

∫
[dq][dp][dk](2π)dδ(d)(Q− q − p− k) (7.14)

= (m2
h)d−3

2(4π)d−1Γ(d− 2)

∫ 1

0
xd−3(1 − x)(d−4)/2 dx

∫ 1

0
y(d−4)/2(1 − y)(d−4)/2 dy ,

where the variables x and y are defined such that

(p+ k)2 = m2
hxy, (7.15a)

(q + k)2 = m2
h(1 − x), and (7.15b)

(q + p)2 = m2
hx(1 − y). (7.15c)

As µ and Y have the mass dimensions

[µ] = 1 + 4 − d

2 and [Y ] = 4 − d

2 , (7.16)

away from d = 4 we must also make the replacements

µ2 → µ2
(
µ̃2 e

γE

4π

)(4−d)/2
and |Y |2 → |Y |2

(
µ̃2 e

γE

4π

)(4−d)/2
, (7.17)
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where µ̃ is a new dimensionful scale and the other factors, including the Euler-

Mascheroni constant γE ≈ 0.577, are an MS-styled convenience. Ignoring for now

the iε in the propagator (which is not justified – see Section 7.A), we then have

|M|2 = µ2|Y |2 2p · q
(q + p)4 → µ2|Y |2

(
µ̃2 e

γE

4π

)4−d 1
m2

hx(1 − y)
, (7.18)

and

Γ̂ = µ2|Y |2
(
µ̃2 e

γE

4π

)4−d ∫
dΠ3

1
m2

hx(1 − y)
(7.19)

= µ2|Y |2
(
µ̃2 e

γE

4π

)4−d (m2
h)d−4

2(4π)d−1Γ(d− 2)
Γ(d−4

2 )Γ(d−2
2 )2

Γ(3d−8
2 )

(7.20)

= µ2|Y |2

128π3

(
2
ε

− 5 − 2 ln µ̃2

m2
h

)
, (7.21)

where the divergence manifests in the form of the 1
ε term. For reasons discussed in

Section 7.A, this form of the divergence is not very useful to us, and so I will use

the mass regulator for the remainder of this chapter.

One might be tempted to compare IR divergences with ultraviolet (UV) divergences, but

they could not be any more different. The latter emerge from the momenta of virtual

particles in loops being allowed to run to infinity, and are an unphysical artefact of

working with bare fields and couplings instead of renormalized ones.1 IR divergences, on

the other hand, are a result of the fact that it is difficult to define asymptotic states for

theories with massless particles, in the sense that a naïvely-defined single particle state

may not be physical [111; 426–428]. In view of this, these divergences are cured not

with renormalization, but by considering multiple processes together, whereby physically

sensible states are found in their sum. To borrow a textbook example, the scatterings

e+e− → µ+µ− and e+e− → µ+µ−γ are both IR divergent at O
(
e6), but finite when

summed together [122]:

1More rigorously, UV divergences arise because the product of distributions such as
1

p2−m2+iε
1

q2−m2+iε is ill-defined. In this view, the procedure of renormalization and the
choice of counterterms in fact amount to a choice of definition of this product [424; 425].
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σ(e+e− → µ+µ−) + σ(e+e− → µ+µ−γ) = finite. (7.22)

The implication of this is that the final states µ+µ− and µ+µ−γ only make sense when

considered together. Sometimes this is phrased in terms of distinguishability, where we

might say that a free muon is indistinguishable from one accompanied by one or more soft

photons. This isn’t too difficult to believe, as muons, being charged particles, carry at all

times a photon cloud.

To cancel a given IR divergence it is therefore necessary to consider a sufficiently inclusive

set of processes. Our ability to do so is guaranteed by the Kinoshita–Lee–Nauenberg

(KLN) theorem [109; 110] (or rather, the stronger version formulated in Ref. [111]), which

states that for a fixed initial state i we will obtain an IR-finite result when summing over

all possible final states, and vice-versa:

∑
f

σ(i → f) = finite and
∑

i

σ(i → f) = finite. (7.23)

The proof is rather straightforward to sketch, and follows entirely from unitarity of the

S-matrix:

∑
f

σ(i → f) ∝
∑

f

| 〈f |S|i〉 |2 (7.24)

=
∑

f

〈i|S|f〉〈f |S†|i〉

= 〈i|SS†|i〉
= 〈i|i〉 ,

which is finite up to a normalisation of the states. The proof for the initial state sum is

identical. The authors of Ref. [111] emphasise that the final state sum must include the

initial state i for the resolution of the identity to succeed, which means there may be some

situations where it is necessary to include the forward scattering i → i to achieve infrared

finiteness. I will return to this point when it becomes relevant to us.
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h− h−

e

L

H

(b) (b′)(a)

H H

Figure 7.2: The h− → h− forward diagram and its final state cuts.

Practically speaking, it is of course infeasible to sum over all possible initial or final states.

At a fixed perturbative order, however, there are only finitely many processes available,

and it turns out that we may easily enumerate them by cutting through an i → i (or

f → f) diagram. This is best illustrated with an example, so let’s apply this discussion to

our three-body decay.

Consider the diagram in Fig. 7.2, constructed by taking the three-body decay, mirroring

it across (a), and joining it with its reflection. This construction ensures two things. The

first is that by cutting through (a) we recover the three-body decay, with the two sides of

the cut corresponding to M(h− → eLH) and its conjugate, so that (up to factors of i)

M(h− → h−)cut (a) = MM∗ = |M|2. (7.25)

The second is that any other cut will necessarily be of the same order in the coupling

constants. Here there are only two other cuts, (b) and (b′), both of which share the final

state HH. This suggests that at O
(
µ2|Y |2

)
we should expect to find

Γ(h− → eLH) + Γ(h− → HH) = finite. (7.26)

This is indeed the case, which I will now demonstrate.
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7.2 Zero Temperature Cancellation

7.2 Zero Temperature Cancellation

7.2.1 Final State Sum

Let us evaluate the contribution to h− → HH as given by the cuts (b) and (b′) in Fig. 7.2.

Together these cuts proffer the interference between the tree-level amplitude and a loop

correction, viz.

|M0 + M1|2 = |M0|2 + M∗
0M1 + M0M∗

1︸ ︷︷ ︸
|M|2loop

+ |M1|2, (7.27)

with

|M|2loop =

H

H

k

k

k′

+ c.c. (7.28)

= µ2 i
k2 + iε iΣ(k2) + c.c. (7.29)

= −µ2Σ(k2)
( 1
k2 + iε + c.c.

)
, (7.30)

where I have added a shadow to one side of the cut to indicate that it is conjugated.

Explicitly, the self energy is

iΣ(k2) = (−1)|Y |2
∫ d4q

(2π)4
Tr[/q(/q − /k)PR]

[q2 −m2
e + iε][(q − k)2 + iε] , (7.31)

and it is UV divergent, requiring a renormalization of both the Higgs field and its mass.

We retain the electron mass me as an IR regulator, and with it the self energy is purely

real.
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This loop diagram is unusual, as we are taught that self energy corrections to external

particles are always amputated. As if to remind us why this is so, the virtual H is

automatically on shell, making the 1
k2 propagator a menacing presence. Nevertheless, the

diagram’s inclusion is vital in obtaining an IR-finite result; we must simply treat the

propagator with the respect it deserves – that is, as a distribution. This is a delicate

procedure, and so I’ll carefully walk us through all the steps in evaluating it.

Step 1: The first of these steps is to write out the quantity of interest—the (hatted) decay

rate—in full:

Γ̂(h− → HH)loop =
∫

dΠ2 |M|2loop (7.32)

=
∫ d4k

(2π)4
d4k′

(2π)4 2πδ(k2)θ(k0)2πδ(k′2)θ(k′
0)(2π)4δ(4)(Q− k − k′)|M|2loop.

With this we can immediately identify the on-shell delta function δ(k2) as the source of

our angst. Fortunately, we are saved by the distributional identity2 [111; 360]

δ(k2)
( 1
k2 + iε + c.c.

)
= − ∂

∂k2 δ(k
2) = −δ′(k2), (7.33)

and so

Γ̂loop = −µ2
∫ d4k

(2π)4
d4k′

(2π)4 2π
[
−δ′(k2)

]
θ(k0)2πδ(k′2)θ(k′0)(2π)4δ(4)(Q− k − k′)Σ(k2),

(7.34)

where I highlight this new distribution with magenta colouring. To handle the derivative

we must integrate by parts – however, doing so now is unhelpful since the derivative will

hit the other delta functions. We should resolve them first.

2An easy way to convince oneself of this identity is to recall

2πδ(x) = −2 Im
( 1
x+ iε

)
= i
x+ iε − i

x− iε ,

from which it is straightforward to see that

2πδ(x)
( 1
x+ iε + c.c.

)
= i

(x+ iε)2 − i
(x− iε)2 = −2πδ′(x).
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Step 2: Resolving the four-momentum-conserving delta function eliminates the integral

over k′, giving

Γ̂loop = −µ2
∫ d4k

(2π)4 2π
[
−δ′(k2)

]
θ(k0)2πδ((Q− k)2)θ(Q0 − k0)µ2Σ(k2) (7.35)

= −µ2

π

∫
dk0 d|k| |k|2

[
−δ′(k2)

]
θ(k0)δ((mh − k0)2 − |k|2)θ(mh − k0)Σ(k2), (7.36)

where it is convenient to proceed in the rest frame of h−, with Q = (mh, 0, 0, 0). The

remaining delta function may be used to eliminate either k0 or |k|. Arbitrarily choosing

|k|, we write

δ((mh − k0)2 − |k|2) = δ(|k| − (mh − k0))
2(mh − k0) (7.37)

(the negative root is outside the integration region as enforced by the step functions), and

Γ̂loop = −µ2

2π

∫ mh

0
dk0 (mh − k0)

[
−δ′(k2)

]
Σ(k2)

∣∣∣∣
|k|=mh−k0

. (7.38)

Step 3: We are now in a position to handle the −δ′(k2). Having set |k| = mh − k0 in the

previous step, we have k2 = 2mhk0 −m2
h, and so for some test function f(k0),

∫
dk0 f(k0)

[
− ∂

∂k2 δ(k
2)
]

=
∫

dk0 f(k0)
[
− 1

2mh

∂

∂k0
δ(2mhk0 −m2

h)
]

(7.39)

=
∫

dk0
1

2mh

∂f

∂k0
δ(2mhk0 −m2

h) (7.40)

=
∫

dk0
1

2mh

∂f

∂k0

δ(k0 − 1
2mh)

2mh
(7.41)

= 1
4m2

h

∂f

∂k0

∣∣∣∣
k0= 1

2 mh

, (7.42)

where in the second line we have integrated by parts. Thus,

Γ̂loop = − µ2

8πm2
h

∂

∂k0

[
(mh − k0)Σ(2mhk0 −m2

h)
]∣∣∣∣

k0= 1
2 mh

(7.43)

= µ2

8πm2
h

[
Σ(0) −m2

hΣ′(0)
]
. (7.44)

This is an interesting expression, and we can identify these two terms as representing the
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mass correction and LSZ reduction factor encountered in renormalization theory [360]. In

the MS scheme the self energy and its derivative are

Σ(0) = − |Y |2

16π2 2m2
e

(
1 + ln µ̃2

m2
e

)
→ 0 and (7.45a)

Σ′(0) = |Y |2

16π2

(
1
2 + ln µ̃2

m2
e

)
, (7.45b)

where µ̃ is the same new scale as introduced in Eq. (7.17), and so

Γ̂(h− → HH)loop = µ2|Y |2

128π3

(
−1

2 − ln µ̃2

m2
e

)
. (7.46)

Here we see that this loop correction is itself IR divergent, and it is perfectly primed to

cancel the divergence in the three-body decay. Indeed, adding this to Eq. (7.13) produces

the IR-finite sum

Γ̂(h− → eLH) + Γ̂(h− → HH)loop = µ2|Y |2

128π3

(
−3 − ln µ̃2

m2
h

)
. (7.47)

Success! The apparently negative decay rate may be startling, but it should be interpreted

as a correction to the leading order two-body rate:

ΓNLO = ΓLO

[
1 − |Y |2

16π2

(
3 + ln µ̃2

m2
h

)]
, ΓLO = 1

2mh

µ2

8π . (7.48)

7.2.2 Initial State Sum

Our excitement at having successfully cancelled the divergence is swiftly tempered upon

realising that while the two-body decay h− → HH enters the Boltzmann equation (BE)

for h−, it does not appear in the BE for e or L, as it features no leptons. Therefore, while

it stands a chance of cancelling the divergence within the former, we are forced to consider

the initial state sum for the latter ones.

To discover which initial states to use we proceed as before: by constructing a forward
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H

e

L

H

e

L

(a)(b) (b′)(c) (c′)

h
HH

Figure 7.3: The eLH → eLH forward diagram and its initial state cuts, including the
forward scattering cuts (c) and (c′).

diagram out of the three-body decay, but this time for eLH → eLH. This produces

Fig. 7.3, which proposes the initial states h− and HH. Unfortunately these two alone

do not lead to an IR-finite sum,3 which means that we must also include the forward

scattering eLH → eLH, suggestively indicated by cuts (c) and (c′). One might object that

because the forward scattering doesn’t alter any particle numbers, it should not enter the

BE. However, as generally argued by Ref. [429], we may treat it as both a production and

destruction process, including it twice with opposite signs so that its net contribution is

zero. In this light it should be possible to observe the cancellation without it, though we

will not pursue this.

For the following discussion it is convenient to work with the ‘inverted hat’ rates (or cross

sections),

Γ̌ or σ̌ ≡
∫

dΠi |M|2, (7.49)

defined much like the hatted rates Γ̂ but with an integral over the initial state phase space

instead of the final one. In the Boltzmann equation we must of course integrate over both

of these phase spaces, but here we only require the initial one to demonstrate IR finiteness.

Now, to accommodate forward scatterings the usual decomposition of the S-matrix into

3It would be too much of an unproductive detour to demonstrate this explicitly, so I
will decline to do so. Instead, I’ll offer a simpler argument for why this is so at the end of
this section.
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1 + iT must be superseded with [111]

Sfi = (2π)4δ(4)(pi − pf )iMfi. (7.50)

This allows us to draw the trivial diagram

p′

q′

k′

q

p

k

,

equal at the S-matrix level to

Sfi = 〈e(q)L(p)H(k)|e(q′)L(p′)H(k′)〉 (7.51)
= (2π)32Eqδ

(3)(q − q′)(2π)32Epδ
(3)(p − p′)(2π)32Ekδ

(3)(k − k′). (7.52)

Evidently there is no overall four-momentum conserving delta function in Eq. (7.52), so

we cannot so easily ascribe a value to this diagram at the M level. In view of this it is

slightly more transparent to write

σ̌ =
∫

[dPi]
|Sfi|2

V4
=
∫

[dq′][dp′][dk′] |Sfi|2

V4
, (7.53)

where V4 = (2π)4δ(4)(0), instead of Eq. (7.49).

The interference of the trivial diagram with the connected one in Fig. 7.3 is of O
(
µ2|Y |2

)
,

and is what promises to cancel the IR divergence. The connected diagram gives

k′

q′

p′

k

q

p

Q

= µ2|Y |2 i
(q′ + p′)2 + iε

i
Q2 −m2

h + iε
i

(q + p)2 + iε , (7.54)

× v(p′)PRu(q′)u(q)PLv(p)

and so the interference between the two, at the S-matrix level, is
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|S|2int =
[
µ2|Y |2 i

(q′ + p′)2 + iε
i

Q2 −m2
h + iε

i
(q + p)2 + iε + c.c.

]
(7.55)

× v(p′)PRu(q′)u(q)PLv(p)
× (2π)32Eqδ

(3)(q − q′)(2π)32Epδ
(3)(p − p′)(2π)32Ekδ

(3)(k − k′)
× (2π)4δ(4)(q′ + p′ + k′ − q − p− k).

In σ̌ the full initial state phase space is wiped out by the delta functions from the trivial

diagram, and the four-momentum conserving delta function, which comes from the con-

nected diagram, is reduced to (2π)4δ(4)(0) and cancels against the 1
V4

in Eq. (7.53). The

result is

σ̌(eLH → eLH)int = µ2|Y |2
( i

(q + p)2 + iε

)2 i
Q2 −m2

h + iε
(2q · p) + c.c., (7.56)

where I have additionally summed over the spins and taken the resulting trace.4

Having understood how the forward scattering contributes, we are now in a position to

observe the cancellation of the IR divergences. Unlike the cancellation between the two-

and three-body decays in the final state sum, we will do this schematically – that is,

without any explicit computations or references to divergent lnme terms. If this makes

you suspicious then you have good instincts, and in fact you may have already guessed the

result we are building towards. Nonetheless, we press on.

To uncover the cancellation we recall the identity

1
p2 −m2 + iε = P 1

p2 −m2 − iπδ(p2 −m2), (7.57)

which I will abbreviate as

∆p = Pp − iπδp. (7.58)

With this notation we may restate Eq. (7.56) as

4The initial state sum includes a sum over spins, so there are no averaging factors.
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σ̌(eLH → eLH)int = + c.c.

∝ i7∆2
q+p∆Q + c.c.

= −2πP2
q+pδQ + 2π3δ2

q+pδQ − 4πPq+pδq+pPQ, (7.59)

where in the proportionality I have dropped the couplings and the factor of 2q · p from the

spinor structure. The factor of i7, which I have made explicit, is due to the four vertices

and three propagators.

To obtain an analogous expression for the three-body decay we recall from Eq. (5.18) that

cutting through a line to put it on shell is equivalent to making the replacement

i
p2 −m2 + iε → 2πδ(p2 −m2). (7.60)

Thus,

Γ̌(h− → eLH) =

∝ (i3∆q+p)∗ × 2πδQ × i3∆q+p

= 2π|∆q+p|2δQ

= 2πP2
q+pδQ + 2π3δ2

q+pδQ. (7.61)

Both sides of the cut have two vertices and one propagator, and so three factors of i, and as

indicated by the shadow we conjugate the left side. I comment that the second term, which

contains the extremely dangerous square of a delta function, did not appear in our earlier

treatment of the three-body decay because the me regulator prevented the virtual H from

going on shell. If we were to apply a similar analysis to the two-body decay h− → HH,
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we would however find a similar term which tames the threat in the final state sum [360] –

see Section 7.A in the appendix of this chapter for details.

Lastly, with this recipe the two-to-three scattering is equally easy to express, giving

σ̌(HH → eLH) = + c.c.

∝ (i)∗ × 2πδq+p × i5∆q+p∆Q + c.c.
= 2π∆q+pδq+p∆Q + c.c.
= 4πPq+pδq+pPQ − 4π3δ2

q+pδQ. (7.62)

Summing Eqs. (7.59), (7.61), and (7.62), we observe the complete cancellation

Γ̌(h− → eLH) + σ̌(HH → eLH)int + σ̌(eLH → eLH)int = 0. (7.63)

This sum is certainly IR-finite, so we have succeeded in cancelling the divergence. That

there is no leftover finite part is something we should have expected, as it is a demand of

unitarity. To understand why, we can repeat the proof of the KLN theorem to obtain

∑
i

∫
[dPi] |Sfi|2 = 〈f |f〉 . (7.64)

As the right-hand side has no dependence on the coupling constants, the sum must nec-

essarily be zero at every order but O(1). A more explicit way to observe this is through

Eq. (5.32a),

iT − iT † − iT iT † = 0, (7.65)

which we recall expressed S-matrix unitarity in terms of the T -matrix. Sandwiching with

〈f | and |f〉 tells us that

(iTff + c.c.) +
∑

i

∫
[dPi] |Tfi|2 = 0, (7.66)
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which we can now understand as

(forward scattering) + (everything else) = 0. (7.67)

In retrospect we could therefore have written Eq. (7.63) without needing to perform any

of the busywork beforehand. That said, it is nonetheless satisfying to have observed the

cancellation play out in practice.

As a final comment I remark that the (everything else) in Eq. (7.67) is IR divergent only if

the forward scattering contribution is. One way to assess whether the forward scattering

is required, then, is to directly examine it: if it is divergent, it is needed. In our case it is

straightforward to see that eLH → eLH suffers from the same kind of soft and collinear

divergences as the three-body decay, and this is enough to conclude that

Γ̌(h− → eLH) + σ̌(HH → eLH)int = divergent. (7.68)

7.3 Finite Temperature Cancellation – a Discussion

With the cancellation of divergences at zero temperature fully understood, the next step

is to examine the finite temperature scenario. In the Boltzmann equation for, say, e, the

three-body decay appears as

s
dYe

dt ⊃ [h− → eLH] − [eLH → h−], (7.69)

where the thermally-averaged decay rate is

[h− → eLH] =
∫

dΠ |M|2fh(1 − fe)(1 − fL)(1 + fH), (7.70)

with

∫
dΠ =

∫
[dph][dpe][dpL][dpH ](2π)4δ(4)(ph − pe − pL − pH). (7.71)
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Based on our arguments at zero temperature, we might expect to be able to add to this

[HH → eLH] =
∫

dΠ |M|2fHfH(1 − fe)(1 − fL)(1 + fH) and (7.72a)

[eLH → eLH] =
∫

dΠ |M|2fefLfH(1 − fe)(1 − fL)(1 + fH) (7.72b)

(which have different M’s and dΠ’s) to obtain a finite result. Unfortunately, since each

process carries a different set of distributional factors, they no longer sum together directly

at the Γ̌ level and our previous analysis therefore fails to carry over. We can fix this when

the chemical potentials for all particles are zero and the Maxwell-Boltzmann approximation

holds for each distribution, in which case the interaction rates can be written as

[i → f ] ≈
∫ d4Q

(2π)4 e
−Q0/T

∫
dΠi dΠf |M|2 (see Eq. (5.128)) (7.73)

=
∫ d4Q

(2π)4 e
−Q0/T

∫
dΠf Γ̌, (7.74)

giving

[h− → eLH] + [HH → eLH] + [eLH → eLH] (7.75)

≈
∫ d4Q

(2π)4 e
−Q0/T

∫
dΠf

[
Γ̌(h− → eLH) + σ̌(HH → eLH) + σ̌(eLH → eLH)

]
= 0.

This special case is however too narrow to be useful, as the Maxwell-Boltzmann limit—

which holds when E � T—is completely unsuitable for soft particles and divergences.

To approach the cancellation more generally we might hope that there is a finite-temperature

equivalent of the KLN theorem, but we have no such luck. In spite of this, there are nev-

ertheless a number of works that have successfully demonstrated IR finiteness at finite

temperature in certain situations, such as Refs. [112–121]. Today, the most commonly-used

approach is to call upon the closed time path (CTP) formalism [105; 120; 363–372],

which I briefly touched on in Section 5.A of Chapter 5. To construct the Boltzmann

equation for a particle in the CTP formalism, one draws self-energy diagrams for that

particle and enumerates circling configurations of the internal vertices, as in Figs. 7.4 and
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e e

h

H

L

H H

Figure 7.4: The self energy diagram used to construct the Boltzmann equation for e at
O
(
µ2|Y |2

)
in the CTP formalism.

(a) (b) (c) (d)

Figure 7.5: The four circling configurations of Fig. 7.4 that give rise to processes with an
e in the final state, and the on-shell cuts they roughly correspond to. To obtain processes
with an e in the initial state the formalism requires that we uncircle the leftmost vertex
and circle the rightmost one.

7.5. Uncircled and circled vertices are labelled type ‘1’ and ‘2’ respectively, and a scalar

propagator i∆ pointing to a type a vertex from a type b vertex is replaced by i∆ab, where5

i∆11(p) = i
p2 −m2 + iε + 2πδ(p2 −m2)

[
θ(p0)f(p) + θ(−p0)f(−p)

]
, (7.76a)

i∆22(p) = −i
p2 −m2 − iε + 2πδ(p2 −m2)

[
θ(p0)f(p) + θ(−p0)f(−p)

]
, (7.76b)

i∆12(p) = 2πδ(p2 −m2)
[
θ(p0)f(p) + θ(−p0)(1 + f(−p))

]
, and (7.76c)

i∆21(p) = 2πδ(p2 −m2)
[
θ(p0)(1 + f(p)) + θ(−p0)f(−p)

]
. (7.76d)

From these expressions we can see that lines between circled and uncircled vertices are

‘cut’, and can represent either an initial- or final-state particle or antiparticle as long as

it is kinematically allowed. The circling configuration in Fig. 7.5b, for example, therefore

contains not only the three body decay h− → eLH, but also the three 2-to-2 scattering

processes pictured in Fig. 7.6. The peculiar configuration of Fig. 7.5d, which is proportional

5The CTP propagators for fermions are similar; see for example Ref. [120, App. A].
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h−

H

e

L

H

(a) h−H → eL

L

h−

e

H

H

(b) Lh− → eH

L

H

e

h+

H

(c) LH → eh+

Figure 7.6: The three 2-to-2 scatterings originating from the circling configuration in
Fig. 7.5b. Scatterings (b) and (c) are both IR divergent.

to the square of a delta function, cancels against similar squares found within the other

configurations [117]. Note that none of these CTP diagrams contain the scatterings

HH → eLH and eLH → eLH, as uncovering them would require being able to cut

through some lines twice – once to put a particle in the initial state, and again to put

it in the final state. It is rather curious that the processes we are lead to consider at

finite temperature are so different to the ones we needed to obtain IR finiteness at zero

temperature.

At the time of this writing, a full CTP analysis of the Zee model remains to be carried

out, and verifying that the IR divergences cancel at finite temperature is left to future

work. In aid of one who embarks on this work (who may well be me), I highlight Ref. [117]

for its particularly readable demonstration of a cancellation in a similar scenario, and

Ref. [120] for its pedagogical guide to making practical use of the CTP formalism. If

needed, Ref. [119] provides a similar presentation to Ref. [117], but it is a far more difficult

read. I comment that each of these works assumes zero chemical potential for all particles,

and to the best of my knowledge it is not clear that the cancellation can be extended to

more general equilibrium and nonequilibrium scenarios.

The cancellation of divergences within CP asymmetries presents another direction for

future work. Finiteness at zero temperature is guaranteed by the condition that the total

CP asymmetry is zero,

∑
f

∆Γ(i → f) = 0, (7.77)
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as well as its initial-state-sum counterpart

∑
i

∆Γ̌(i → f) = 0, (7.78)

which can be thought of as equivalents of the KLN theorem for asymmetries. At finite

temperature we once again have no such theorem, and CP asymmetries are moreover

generically more difficult to study than plain processes within the CTP formalism. The

recent theoretical developments of Refs. [121; 342; 430] however offer convenient means of

organising finite-temperature computations using zero-temperature techniques, and may

provide a promising avenue for future investigations in this direction.
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7.A Regulator Independence of the Final State Sum

It is worthwhile to verify that the sum

Γ̂NLO ≡ Γ̂(h− → eLH) + Γ̂(h− → HH)loop = µ2|Y |2

128π3

(
−3 − ln µ̃2

m2
h

)
, (7.79)

obtained with an electron mass regulator, is in fact regulator-independent. Our first thought

is to turn to dimensional regularisation, as we have already computed the three-body decay

in d = 4 + ε dimensions. Unfortunately, the expression we obtained is misleadingly wrong,

and moreover any attempt to calculate the loop correction to the two-body decay is ill-fated

if we are not careful. In what follows I will describe an approach due to Ref. [360] that

successfully navigates this problem. The basic idea is to combine the expressions for the

two decays into a common integral over k2, where they can then be treated together with

a judicious application of distributional identities.

Let’s begin by re-examining the two-body decay. Similar to the main text, it has the

squared matrix element

|M|2loop =

H

H

k

k

k′

+ c.c. (7.80)

= −µ2 · 2 Re
(

Σ(k2)
k2 + iε

)
(7.81)

= −2µ2
[
Re Σ(k2)P 1

k2 + Im Σ(k2)πδ(k2)
]
, (7.82)

where here we apply the principal value decomposition of the propagator, and in the

absence of a mass regulator we do not assume the self energy is real. In fact, without any

masses the self energy takes the simple explicit form
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iΣ(k2) = −|Y |2
(
µ̃2 e

γE

4π

)(4−d)/2 ∫ ddq

(2π)d

Tr[/q(/q − /k)PR]
[q2 + iε][(q − k)2 + iε] (7.83)

= i |Y |2

16π2k
2
[

2
4 − d

+ 2 + ln
(

− µ̃2

k2

)]
(7.84)

→ i |Y |2

16π2k
2
[
2 + ln

(
− µ̃2

k2

)]
in the MS scheme, (7.85)

for which we can read off

Re Σ(k2) = |Y |2

16π2k
2
(

2 + ln µ̃2

|k2|

)
and Im Σ(k2) = |Y |2

16π k
2θ(k2). (7.86)

When the Higgs is on shell, i.e. k2 = 0, the self energy vanishes, and it is tempting to claim

that this correction is zero.6 This would be premature. Instead, we may follow the same

sequence of steps as we did in Section 7.2.1 up to Eq. (7.38), resulting in

Γ̂(h− → HH)loop =
∫

dΠ2 |M|2loop (7.87)

= −µ2

2π

∫ mh

0
dk0 (mh − k0)δ(k2)2 Re

(
Σ(k2)
k2 + iε

)∣∣∣∣
k2=2mhk0−m2

h

; (7.88)

changing the integration variable from k0 to k2 gives

Γ̂(h− → HH)loop = − µ2

8πm2
h

∫ m2
h

−m2
h

dk2 (m2
h − k2)δ(k2)2 Re

(
Σ(k2)
k2 + iε

)
(7.89)

= − µ2

8πm2
h

∫ m2
h

−m2
h

dk2 (m2
h − k2)

[
2 Re Σ(k2)δ(k2)P 1

k2 + 2π Im Σ(k2)δ(k2)2
]
. (7.90)

To bring the three-body decay into a similar form we can use a two-body decomposition

of the three-body phase space, where for

6Such a claim is made in Ref. [117], where the authors considered the similar sum
Γ(N → LQU) + Γ(N → LH). With the loop correction to the two-body decay vanishing,
the authors instead—to the best of my understanding—cancelled the divergence in the
three-body decay against the vertex counterterm in the leading order two-body decay. In
a footnote, the authors repeated the calculation with a mass regulator, cancelling the UV
divergence from the loop against the same counterterm. I am not convinced that such an
approach is entirely legitimate.
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|M|2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k

q

p

k′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

= µ2|Y |2(2q · p)
∣∣∣∣ 1
k2 + iε

∣∣∣∣2 = µ2|Y |2k2
∣∣∣∣ 1
k2 + iε

∣∣∣∣2 (7.91)

we have [431]

∫
dΠ3(q, p, k′) =

∫ m2
h

0

dk2

2π

∫
dΠ2(k, k′) dΠ2(q, p) (7.92)

=
∫ m2

h

−m2
h

dk2

2π

∫
dΠ2(k, k′) dΠ2(q, p) θ(k2) (7.93)

=
∫ m2

h

−m2
h

dk2

2π · m
2
h − k2

8πm2
h

· 1
8πθ(k

2). (7.94)

Observe that the two-body phase space integral over q and p, when considered with the

|Y |2k2 terms from |M|2, is equal to

∫
dΠ2(q, p) θ(k2)|Y |2k2 = |Y |2

8π k2θ(k2) = 2 Im Σ(k2) (7.95)

– an identification which should not be surprising given our knowledge of the cutting rules.

Thus,

Γ̂(h− → eLH) =
∫

dΠ3 |M|2 (7.96)

= µ2

8π2m2
h

∫ m2
h

−m2
h

dk2 (m2
h − k2) Im Σ(k2)

∣∣∣∣ 1
k2 + iε

∣∣∣∣2. (7.97)

With both the two- and three-body rates now expressed as integrals over k2, we may

combine them to obtain

Γ̂NLO = µ2

8π2m2
h

∫ m2
h

−m2
h

dk2 (m2
h − k2) (7.98)

×
{

Im Σ(k2)
[∣∣∣∣ 1
k2 + iε

∣∣∣∣2 − 2π2δ(k2)2
]

− Re Σ(k2)
[
2πδ(k2)P 1

k2

]}
.
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The bracketed terms multiplying Re Σ and Im Σ must be treated distributionally, so we

call upon the identities [111; 360]

∣∣∣∣ 1
k2 + iε

∣∣∣∣2 − 2π2δ(k2)2 = − ∂

∂k2 P 1
k2 and (7.99)

2δ(k2)P 1
k2 = − ∂

∂k2 δ(k
2), (7.100)

which are easily verified after making the identifications

1
k2 + iε = k2

k4 + ε2︸ ︷︷ ︸
P 1

k2

− i ε

k4 + ε2︸ ︷︷ ︸
πδ(k2)

. (7.101)

As both identities result in distributional derivatives we must integrate by parts, giving

Γ̂NLO = µ2

8π2m2
h

∫ m2
h

−m2
h

dk2 (m2
h − k2)

{
Im Σ(k2)

[
− ∂

∂k2 P 1
k2

]
− Re Σ(k2)

[
− ∂

∂k2πδ(k
2)
]}

= µ2

8π2m2
h

∫ m2
h

−m2
h

dk2
{
∂

∂k2

[
(m2

h − k2) Im Σ(k2)
]
P 1
k2 (7.102)

− ∂

∂k2

[
(m2

h − k2) Re Σ(k2)
]
πδ(k2)

}
.

Plugging in Eq. (7.86) and carrying out the remaining integrals, we at last arrive at

Γ̂NLO = µ2

8π2m2
h

{[∫ m2
h

0
dk2 |Y |2

16π
m2

h − 2k2

k2

]
+ π

[
Re Σ(0) −m2

h Re Σ′(0)
]}

(7.103)

= µ2

8π2m2
h

|Y |2

16π

{
m2

h

(
−2 + ln m

2
h

k2

)
−m2

h

(
1 + ln µ̃

2

k2

)}∣∣∣∣
k2→0

(7.104)

= µ2|Y |2

128π3

(
−3 − ln µ̃2

m2
h

)
, (7.105)

which agrees with the sum obtained with the electron mass regulator. Observe that

Re Σ′(0) and the Im Σ(k2) integral are separately ill-defined, and finite only when summed

together as in the above. This is precisely why an attempt to compute the two-body decay

in dimensional regularisation is destined to have failed.
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Aw, a particle? I wanted new physics!
New particles are new physics.
Explain how!
Particles can be exchanged for forces and
interactions.

Homer and his brain,
in The Simpsons,

reimagined

8
Conclusion

Some closing words are due, so allow me to summarise the work of this thesis, offer some

personal thoughts, and muse on directions for future work. In all, this thesis was a tour of

some rather disparate topics tied together primarily by the common thread of neutrinos

and the need to consider quantum effects (i.e. loops) in the study of their mass models.

These effects took the form of effective operators in the first half, while in the latter half

they were considered explicitly and tamed using cutting techniques.

After beginning with a review of the necessary theory in Chapters 2 and 3, I investigated

in Chapter 4 the potential for measurements of the Higgsstrahlung cross section at a next-

generation collider to function as a precision probe of the Type-I and -III Seesaw models.

It was found that a measurement of σ(e+e− → Zh) deviating from the Standard Model
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prediction would place the Type-I model in severe tension with preexisting constraints

from (in particular) measurements of the weak mixing angle s2
w and the CKM ratio

R(Vus), while the Type-III model could accommodate a shift of up to ∼ 10% assuming a

pronounced hierarchy between the mixings of νe and νµ with the sterile states. Conversely,

a measurement of σ(e+e− → Zh) found to be in agreement with the SM prediction would

be compatible with both models, though it would place new constraints on the parameter

space of Type-III Seesaw. As such, precision measurements of the Higgsstrahlung cross

section can demonstrably complement existing experimental probes of neutrino mass

models, and if any of the proposals for next-generation colliders are approved, we will

certainly gain more insight into the nature of neutrino masses.

Having been conducted through the lens of effective field theories, the work of Chapter 4

is in principle extendable to the study of any new physics model admitting an EFT

description. Naturally, the parameterisation of the fermionic Seesaw models will not

carry over to a generic model, nor will the approximate expressions presented therein;

nevertheless, the general expressions remain applicable. In a different direction, the study

of the Seesaw models has room for further refinement, for instance by considering additional

observables (such as angular distributions of the Higgsstrahlung decay products), utilising

a comprehensive global fit of electroweak data, or relaxing the assumption of an exactly

conserved lepton number symmetry.

The second half of this thesis was by and large devoted to the topic of leptogenesis, which

began in Chapter 5 with a rather lengthy introduction to the relevant theory. In Chapter 6

I studied the prospects of achieving successful leptogenesis in the Zee model through the

out-of-equilibrium decays h− → LL and h− → eLH of the new scalar h−. This scenario

required the mass of h− to be O
(
1012 GeV

)
, at which scale it decouples from all low-scale

observables but neutrino masses and mixings. The CP asymmetries in the decays of this

scalar arose from two-loop interferences (at least in the case of the two-body decay), and

they had the property that the total asymmetry, when summed over lepton flavours, was

zero. This leptogenesis scenario was consequently purely flavoured, relying on hierarchical

couplings to protect the asymmetry in one flavour while washing out the asymmetry in the
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others in order to obtain a net non-zero asymmetry. Unfortunately, this made the scenario

too restrictive to reproduce the observed baryon abundance of the universe, even when

the relevant parameters were raised close to their perturbative limits. When considered

alongside prior assertions that leptogenesis is unachievable in TeV-scale realisations of the

model [106; 107], this therefore indicated that successful leptogenesis is not possible in the

Zee model, period.

In a continuation of this work we identified two minimal extensions of the Zee model

with improved leptogenesis prospects, the studies of which remain ongoing at the time of

this writing. To consistently account for flavour effects and ensure the analysis of these

extensions is free of ambiguities, it will be necessary to employ flavour-covariant forms

of the Boltzmann equations. This need is not unprecedented [358; 432], and an explicit

example of a model where it is important to treat flavour effects covariantly is Type-II

Seesaw [19–21], as shown by Ref. [408]. It will be good to additionally apply this treatment

to the original Zee model to confirm the conclusions reached in Chapter 5.

As an outgrowth of the study of the Zee model I was lastly lead to investigate the can-

cellation of infrared divergences in processes such as h− → eLH, and this formed the

contents of Chapter 7. The successful cancellation of these divergences at zero tempera-

ture was underpinned by the strengthened KLN theorem of Ref. [111], and it required the

consideration of some rather unconventional diagrams such as a self-energy correction to

h− → HH, and the forward scattering eLH → eLH. A careful distributional treatment

was needed to evaluate these diagrams, and in view of this I showed the full details of all

computations (which have a tendency to be skipped over in works encountering similar

processes, such as Refs. [111; 117; 360]). Extending the cancellation to finite temperature,

as would be needed to apply it to the leptogenesis study of Chapter 6, was deemed too

impractical to perform in an acceptable timeframe, so I have left it to future work. One of

the more well-worn approaches to achieving such a cancellation is found in the machinery

of the CTP formalism, as is demonstrated for example by Refs. [117; 119; 120]. That said,

I also find the techniques of Refs. [121; 342; 430] to be intriguing, and I would be curious

to see if they are also suitable for this task.
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All in all, the study of a new physics model can often be distilled down to two main

questions: what can we do for the model? (i.e. what observations can we use to constrain

it?) and what can the model do for us? (i.e. which of the SM’s deficiencies is it able to

resolve?). In this thesis I explored both sides of this symbiosis, first by examining the

potential of a next-generation collider to probe the fermionic Seesaw models, and then

by studying the capacity of the Zee model to explain the observed baryon asymmetry of

the universe (and along the way I elucidated some technicalities of IR divergences). The

systematic investigation of new physics models along these two general lines is among

our surest ways to gain insight into the fundamental workings of the universe, and it is a

tradition that I am proud to now (in some small way) be a part of.
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