

High resolution spectroscopy of the “ ΣN cusp” by using the $d(K^-, \pi^-)$ reaction

Yudai Ichikawa^{1,}, Jungkeun Ahn², Sungwook Choi², Manami Fujita¹, Toshiyuki Gogami³, Shoichi Hasegawa¹, Takeshi Harada^{1,3}, Shuhei Hayakawa⁴, Shigeru Ishimoto⁵, Wooseung Jung², Byungmin Kang², Shinhung Kim¹, Koji Miwa⁴, Tomofumi Nagae³, Takuya Nanamura^{1,3}, Hiroyuki Sako¹, Susumu Sato¹, Shoji Suzuki⁵, Hirokazu Tamura^{1,4}, Kiyoshi Tanida¹, Mifuyu Ukai¹, Takeshi Yamamoto¹, and Seongbae Yang³*

¹ASRC, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

²Department of Physics, Korea University, Seoul 02841, Republic of Korea

³Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁴Department of Physics, Tohoku University, Sendai 980-8578, Japan

⁵High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan

Abstract. We present a new proposal, J-PARC E90, to measure a missing-mass spectrum near the ΣN threshold for the $d(K^-, \pi^-)$ reactions at $1.4 \text{ GeV}/c$. While many previous experiments support apparent enhancement near the ΣN threshold, the dynamical origin of this so-called “ ΣN cusp” remains yet unsolved. The enhancement suggests either a cusp structure or a weakly bound state. One of the keys to making it clear is improving the missing-mass resolution and statistics. Our new experiment can achieve the missing-mass resolution of 0.4 MeV in σ using the K1.8 beam line and S-2S spectrometers at J-PARC. Furthermore, we can suppress quasi-free background processes with the time projection chamber (HypTPC), which operated nicely for the H-dibaryon search experiment (J-PARC E42). The J-PARC E90 aims to extract the scattering length of the ΣN system with isospin $T = 1/2$ and spin-triplet channels.

1 Introduction

An enhancement near the ΣN threshold ($\sim 2.13 \text{ GeV}/c^2$) was clearly observed in the $K^- d \rightarrow \pi^- \Lambda p$ reaction at rest more than 50 years ago [1]. This enhancement is called as “ ΣN cusp”, while whether the “ ΣN cusp” is cusp (inelastic virtual state) or an unstable bound state has not been confirmed yet. The “ ΣN cusp” was measured by various experiments using $K^- d \rightarrow \pi^- \Lambda p$, $\pi^+ d \rightarrow K^+ \Lambda p$, and $pp \rightarrow K^+ \Lambda p$ reactions [2–8]. Recently, the “ ΣN cusp” has also been observed by the Λ - p femtoscopy [9]. At J-PARC, E27 collaboration reported a clear enhancement due to the “ ΣN cusp” in the inclusive missing-mass spectrum of the $d(\pi^+, K^+)$ reaction [10]. There exists a lot of experimental observations; however, the dynamical origin of the “ ΣN cusp” remains unclear as yet. One of the reasons is the insufficient resolution and statistics of the past experiments.

*e-mail: yudai@post.j-parc.jp

2 “ ΣN cusp” for the $K^- d \rightarrow \pi^- \Lambda p$ reaction

Theoretical work for the “ ΣN cusp” was performed by Dalitz and Deloff [11, 12]. The detail is also described in the J-PARC E90 proposal [13]. In the framework of Ref. [11], the “ ΣN cusp” is generated through the following two-step processes,

The reaction amplitude for the net process shown in Eq. (1) can be expressed by three factors as,

$$T(\bar{K}d \rightarrow \pi \Lambda N) \sim T(\bar{K}N \rightarrow \pi \Sigma) F_d(Q_\Sigma, k_\Sigma) T(\Sigma N \rightarrow \Lambda N). \quad (2)$$

The first factor, $T(\bar{K}N \rightarrow \pi \Sigma)$, is the T -matrix of the elementary process. The second one is the deuteron factor reflecting deuteron properties. The third factor, the T -matrix of $\Sigma N \rightarrow \Lambda p$ process, is an important term to describe the interaction of an intermediate Σ particle with the second nucleon of the deuteron target. $T(\Sigma N \rightarrow \Lambda N)$ can be expressed in terms of the ΣN ($T = 1/2$, 3S_1) scattering length $A_0 = (a + ib)$. Because the measured final state is Λp , the total isospin of ΣN system should be $T = 1/2$. Moreover, the amplitude of the elementary reaction $\bar{K}N \rightarrow \pi Y$ has no spin-flip component for the (K^-, π^-) reaction at 0° . Therefore, the YN states also are necessary to be in spin-triplet by reflecting the target-deuteron spin configuration, as 3S_1 .

The third factor of Eq. (2), $T(\Sigma N \rightarrow \Lambda N)$, can be expressed as,

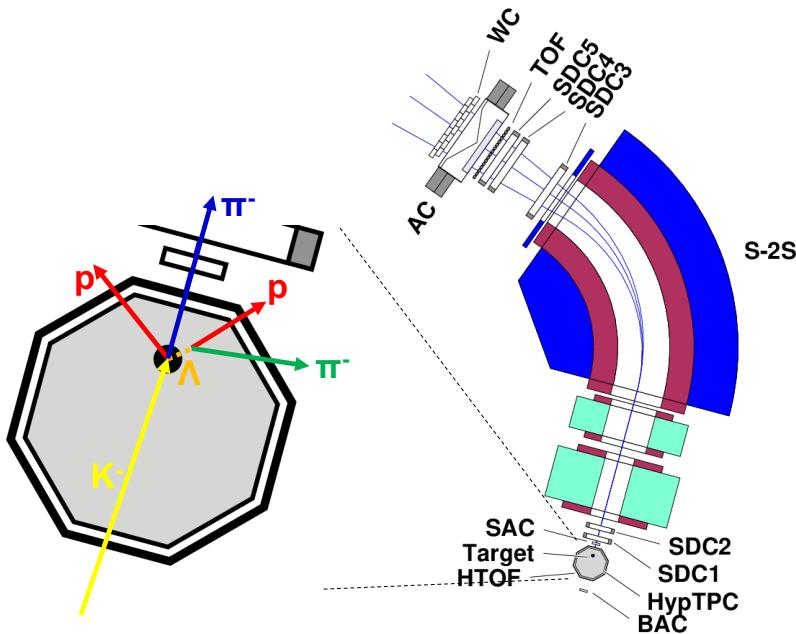
$$T(\Sigma N \rightarrow \Lambda N) \sim T_S^t(\Sigma N \rightarrow \Lambda N) = \frac{\beta_{\Sigma \Lambda}^t}{1 - ik_\Sigma A_0}, \quad (3)$$

where $\beta_{\Sigma \Lambda}^t$ is the $\Sigma N \rightarrow \Lambda N$ element of the reaction matrix and b is proportional to $(\beta_{\Sigma \Lambda}^t)^2$ (ΛN phase space). The k_Σ denotes the relative momentum of ΣN system in the final ΛN at rest frame. Note that it is clear that the reaction amplitude has a pole at $k_\Sigma = -i/A_0$.

Above the threshold, the reaction rate related to $T(\Sigma N \rightarrow \Lambda N)$ term can be expressed as,

$$R_S^t \sim (k_\Sigma \sigma_S^t(\Sigma N \rightarrow \Lambda N)) = \frac{4\pi b}{(1 + k_\Sigma b)^2 + (k_\Sigma a)^2}. \quad (4)$$

Below the threshold, k_Σ is replaced by $+i|k_\Sigma|$ due to the analytic continuation, and the corresponding reaction rate is given by

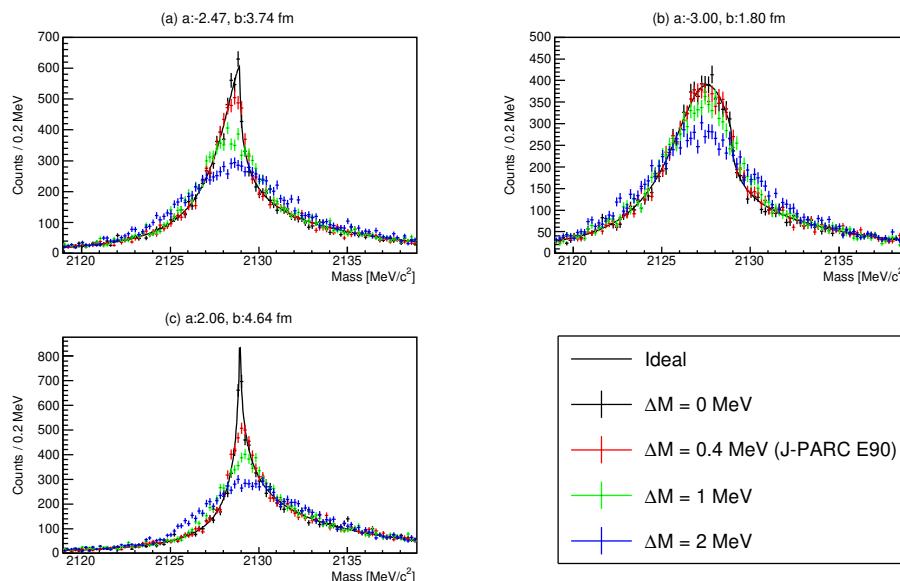

$$R_S^t \sim \frac{4\pi b}{(1 + |k_\Sigma|a)^2 + k_\Sigma^2 b^2}. \quad (5)$$

3 J-PARC E90 experiment

3.1 Experimental setup

The E90 experiment will be performed at the K1.8 beamline by using the S-2S spectrometer [14] and HypTPC [15]. Figure 1 shows the schematic view of the proposed experiment. The beam K^- will be measured by using the existing K1.8 beam-line spectrometer [16]. The design value of the momentum resolution is $\delta p/p = 3.3 \times 10^{-4}$ (FWHM) with the position accuracy of 0.2 mm in rms.

The scattered π^- in the (K^-, π^-) reaction are momentum analyzed by using the S-2S spectrometer [14]. The momentum resolution of S-2S will be $\delta p/p = 6.0 \times 10^{-4}$ in FWHM. Then, the total mass resolution 0.4 MeV in σ will be achieved, which is two times better than the past experiment (HIRES at COSY [7]).


Figure 1. The schematic view of the J-PARC E90 experiment.

In this experiment, we plan to install the Time Projection Chamber (HypTPC) to suppress the quasi-free background and improve the signal-to-noise ratio by requiring the charged multiplicity, $Mt = 3$. The detailed strategy to suppress the background by using HypTPC is described in J-PARC E90 proposal [13]. The liquid deuterium target will be installed inside the TPC volume to achieve the large acceptance. We plan to use the same liquid target system as J-PARC E45 experiment [17], which concerns the baryon spectroscopy using $p(\pi^{\pm}, 2\pi)$ reaction.

3.2 Expected result

The simulated missing-mass distributions are presented in Fig. 2. Here, 3 choices of the scattering length are shown to demonstrate different shapes, namely, the theoretical values of Jülich potential-A [18], ((a), shallow bound), Nijmegen model (D ((b), deeply bound) and F ((c), sharp cusp)) [19]. Note that there is no reason to select these three models by considering theoretical justification. The points with error bars are the smeared spectra with the experimental resolution of $\Delta M = 0, 0.4, 1$, and 2 MeV in σ shown by the different colors. In these plots, 1.4×10^4 events, corresponding to the statistics of the E90 experiment, are generated and the statistical errors are shown.

The mass resolutions of the past bubble-chamber experiments using in-flight $d(K^-, \pi^-)$ reaction were 2 MeV (“Braun” [2]) and 3 MeV (“Eastwood” [3]). As shown in Fig. 2, the original shapes are significantly distorted in the case of $\Delta M = 2$ MeV. The high mass-resolution is really important for the “ ΣN cusp”. Moreover, the statistics of these past experiments were poor as 603 events (“Braun”) and 217 events (“Eastwood”). By improving statics to 1.4×10^4 events and mass resolution to 0.4 MeV, we can deduce the scattering length with the statistical error $\lesssim 0.3$ fm.

Figure 2. The simulated mass distributions for three choices of the scattering-length, which are shown in the title of the plots. The solid black-lines show the original distribution given by Eqs. (2). The points with error bars show the smeared spectra with the experimental resolution of $\Delta M = 0, 0.4, 1$, and 2 MeV in σ and the statistic errors with 1.4×10^4 events.

4 Summary

We proposed the high resolution missing-mass spectroscopy of the “ ΣN cusp” by using the S-2S spectrometer and HypTPC. The mass resolution is a quite important key to investigate the nature of “ ΣN cusp”. We can achieve 0.4 MeV resolution in σ , which is twice better than the past COSY HIRES experiment [7]. Moreover, the in-flight $d(K^-, \pi^-)$ reaction is unique to derive 3S_1 spin contribution with low background. By fitting the measured mass spectra, we are able to deduce the ($T = 1/2, S = 1$) ΣN scattering length with good accuracy, statistical error of $\lesssim 0.3$ fm.

References

- [1] O.I. Dahl *et al.*, Phys. Rev. Lett., **6**, 3 (1961)
- [2] O. Braun *et al.*, Nucl. Phys. **B124**, 45 (1977)
- [3] D. Eastwood *et al.*, Phys. Rev. D **3**, 2603 (1971)
- [4] C. Pigot *et al.*, Nucl. Phys. **B249**, 172 (1985)
- [5] T.H. Tan, Phys. Rev. Lett. **23**, 395 (1969)
- [6] R. Siebert *et al.*, Nucl. Phys. **A567**, 819 (1994)
- [7] A. Budzanowski *et al.*, Phys. Lett. B **692**, 10 (2010)
- [8] S. Abd El-Samad *et al.*, Eur. Phys. J. A **49**, 41 (2013)
- [9] ALICE Collaboration, Phys. Lett. B **833**, 10 (2022)
- [10] Y. Ichikawa *et al.*, Prog. Theor. Exp. Phys. **2014**, 101D03 (2014)
- [11] R.H. Dalitz, Nucl. Phys. **A354**, 101, (1981)
- [12] R.H. Dalitz and A. Deloff, Czech. J. Phys. **B**, 32, (1982)

- [13] Y. Ichikawa *et al.*, *High resolution spectroscopy of the “ ΣN cusp” by using the $d(K^-, \pi^-)$ reaction*, J-PARC E90 proposal,
https://j-parc.jp/researcher/Hadron/en/pac_2201/pdf/P90_2022-03.pdf
- [14] T. Nagae *et al.*, *Proposal for the next E05 run with the S-2S spectrometer*,
http://j-parc.jp/researcher/Hadron/en/pac_1801/pdf/P70_2018-10.pdf
- [15] S.H. Kim *et al.*, Nucl. Instrum. Meth. A **940**, 359 (2019)
- [16] T. Takahashi (the Hadron Beamline Group and the K1.8 Experimental Group), Nucl. Phys. A **835**, 88 (2010)
- [17] Technical Design Report of the J-PARC E45 experiment
- [18] J. Haidenbauer and Ulf-G. Meißner, Phys. Rev. C **72**, 044005 (2005)
- [19] K. Miyagawa and H. Yamamura, Phys. Rev. C **60**, 024003 (1999)