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Abstract We study the low-energy effective theories of
photons and gravitons, matching them at one loop to a UV
completion with a massive spinning matter particle. The mat-
ter is allowed to have non-minimal electromagnetic and grav-
itational interactions. We construct the one-loop 4-photon
and 4-graviton helicity amplitudes with matter in the loop
carrying anomalous multipole moments, and we read off the
Wilson coefficients in the effective theory below the matter
particle mass. Much as in the case of minimal coupling, the
Wilson coefficients beyond the leading order turn out to be
confined to small islands in the much larger theory space
allowed by existing positivity constraints.

1 Introduction

Effective Field Theory (EFT) is a framework underlying
much of modern physics. The basic idea is to focus on
large-scale behavior where the heavy degrees of freedom,
not directly available in experiment, are integrated out. Their
effects are encoded in the Wilson coefficients of a series of
interaction terms of the light degrees of freedom, which are
organized in a systematic expansion according to some power
counting. The Wilson coefficients can be calculated via the
matching procedure, when the UV completion of the EFT is
known and is perturbative.

It is often advantageous to use EFT together with on-
shell amplitude techniques. The latter allow one to perform
practical calculations, arguably in a simpler and more trans-
parent fashion than the traditional techniques of quantum
field theory. In this approach, the basic building blocks are
3-particle on-shell amplitudes, which are very constrained
by the requirements of Poincaré invariance, locality, and lit-
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tle group covariance. Higher-point amplitudes can be boot-
strapped from these objects by making use of unitarity and
locality. Fruitful applications of on-shell techniques include
construction of EFT bases [1–6] or calculation of renormal-
ization group (RG) equations for the Wilson coefficients [7–
12]. The superiority of the on-shell approach is especially
striking when the EFT involves particles with higher spin,
such as e.g. the spin-2 graviton.

Two distinct EFTs (though sharing many similar features)
will be the focus of this article. Both are organized around the
principles of local symmetry and power counting based on
dimensional expansion. One, the so-called Euler-Heisenberg
(EH) EFT [13], provides a low-energy description of spin-1
photons and its Lagrangian takes the form

LEH = −1

4
FμνFμν + C1

16
(FμνFμν)(Fρσ Fρσ )

+C2

16
(Fμν F̃μν)(Fρσ F̃ρσ ) + · · · (1.1)

where Fμν = ∂μAν − ∂ν Aμ, F̃μν = εμναβFαβ , and Aμ

is a massless vector field representing the photon. The
Lagrangian is invariant under U(1) local transformations
acting on the vector field. The lowest order photon self-
interactions allowed by this symmetry occur at dimension 8.
Power counting sets the corresponding Wilson coefficients to
be of order C1,2 ∼ m−4, where 2m is the cutoff of the EFT
identified with the threshold for pair production of the lightest
charged particle in the UV completion.1 The dots stand for
operators of dimension 10 and higher, and their Wilson coef-
ficients are suppressed by correspondingly higher powers of
m. Here and in the following we assume parity conservation,
for simplicity.

1 If the Standard Model is the UV completion then m is the electron
mass, but we will allow for more general possibilities.
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The other EFT of interest here describes pure gravity, or
equivalently self-interactions of a spin-2 particle called the
graviton. The Lagrangian takes the form

LGREFT = √−g

{
M2

Pl

2
R + C3

3! Rμναβ Rαβρσ Rρσμν

+ C4,1

8
(Rμναβ Rμναβ)2 + C4,2

8
(Rμναβ R̃μναβ)2

+ · · ·
}
. (1.2)

Here, Rμναβ is the Riemann tensor built from the metric field
gμν representing the graviton. The symmetry principle is gen-
eral coordinate invariance, which is a local symmetry acting
on the metric. The first term, with MPl ≡ (8πG)−1/2 �
2.43×1018 GeV, is the familiar Einstein-Hilbert Lagrangian,
encompassing the theory of general relativity (GR). Higher
order interactions start at dimension six, with the interactions
term cubic in the Riemann tensor, and the power counting
C3 ∼ C̃3 ∼ m−2. We also highlighted dimension-8 oper-
ators with C4,1 ∼ C4,2 ∼ m−4. Once again the dots stand
for interactions of dimension 10 and higher. This effective
theory extension of GR is referred to as general relativity
GREFT [14].

The interest in these particular EFTs is twofold. On one
hand they are important tools to analyze a broad class of phe-
nomena relevant for experiment. EHEFT captures physics
of electromagnetic waves, from the longest wavelengths all
the way to gamma rays. The dimension-8 interactions lead
in particular to the phenomenon of vacuum birefringence
(polarization-dependent change of propagation speed of elec-
tromagnetic waves in a magnetic field background), which
has long been the target of many experiments [15]. The
dimension-6 and -8 interactions in GREFT affect in partic-
ular the black hole solutions in GR, leading to potentially
observable effects in gravitational waves emission during
inspirals and mergers [16,17]. On the other hand, there is
purely theoretical interest too. While the EFT Wilson coeffi-
cients may appear to be free parameters from the low-energy
perspective, they are in fact constrained in a subtle way given
broad assumptions about the UV completion [18,19], or often
by demanding absence of superluminal propagation in non-
trivial backgrounds [20–23]. This fact is often referred to as
positivity constraints, and EHEFT or GREFT provide sim-
ple and interesting laboratories to study these. For example,
the dimension-8 coefficients in Eq. (1.1) satisfy C1(2) > 0
[24,25], and similarly for the ones in Eq. (1.2), C4,1(2) > 0
[26]. Other coefficients may satisfy two-sided bounds [27–
29], as is the case of C3 in Eq. (1.2) [30] and certain higher-
order coefficients in Eq. (1.1) [25]. Determining the complete
shape of the allowed theory space of these and other EFTs
is subject to an ongoing and active research, see for example
Refs. [31–37].

From both of the perspectives mentioned above, it is inter-
esting to connect the Wilson coefficients of EHEFT and
GREFT to particular UV completions. On the phenomeno-
logical side, this allows one to translate the experimental
constraints on the EFT Wilson coefficients into constraints on
masses and coupling in the UV completions. On the theoret-
ical side, UV completions provide useful data to understand
the EFT theory space. In particular, some UV completions
may saturate the known bounds, proving that these bounds
are already optimal. For example, the tree-level UV comple-
tion of EHEFT comprising a dilaton and an axion fills the
entire positive quadrant of the C1–C2 plane. Conversely, it
is also interesting when some regions of the parameter space
allowed by positivity cannot be reached by known UV com-
pletions. This is the case for some higher-order coefficients in
EHEFT and, even more spectacularly, for the GREFT Wilson
coefficients. Indeed, it was argued in Ref. [38] that known
perturbative UV completions of gravity fill only small islands
in the much vaster space consistent with existing positivity
constraints. This suggests that stronger positivity constraints
can be derived, or that unknown UV completions exist (a pos-
sibility particularly fascinating in the gravitational context),
or both.

In this paper we extend the calculation of EHEFT and
GREFT Wilson coefficients to a larger class of UV comple-
tions. Namely, we integrate out at one loop particles up to
spin S = 1(2) that are non-minimally coupled to photons
(gravitons), with arbitrary multipole moments δn , n ≤ 2S.
This generalizes the calculations in Refs. [25,30], which
assume minimal couplings. In the electromagnetic frame-
work, this means we take UV completions to be EFT them-
selves, with the cutoff scale parametrically separated from
particles’ masses, � � m and setting the magnitude of
(anomalous) multipole corrections, δn ∼ (m/�)2S . For grav-
ity, the logic is similar, except in this case UV completions
with a finite number of matter particles are EFTs themselves,
with a finite validity range even for the minimal coupling. We
study how these UV completions fill the parameter space of
EFTs. For minimal coupling and a given spin and mass, inte-
grating out a single particle gives a point in parameter space.
In our case, multipole deformations allow one to migrate that
point in the theory space. Our focus is to quantify that migra-
tion, and compare it with existing positivity constraints. We
use on-shell methods and spinor helicity formalism together
with unitarity, which allows us to handle the computations
efficiently, especially for higher spins.

This paper is organized as follows. In Sect. 2 we introduce
the prerequisites for our calculation: the (gravi-)Compton
amplitudes describing scattering of a massive matter particle
with spin S ≤ 1(2) on a photon (graviton). Starting with a
general on-shell 3-particle amplitude describing matter cou-
pling to a photon or a graviton, and using the standard uni-
tarity bootstrap techniques, we obtain compact representa-
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tions of leading multipole corrections to tree-level Compton
amplitudes.

These amplitudes are an input for deriving one-loop ampli-
tudes of interest using generalized unitarity. First, 4-photon
scattering amplitudes are derived in Sect. 3. We lay out in
some detail our method to calculate the box, triangle, and
bubble coefficients as well as the rational terms of the 4-
photon amplitude, and provide a simple power-counting
argument why the tadpoles do not contribute for S ≤ 1.
Given the amplitude, it is straightforward to expand it in
powers of 1/m and derive Wilson coefficients at arbitrary
dimensions. This way we obtain linear multipole corrections
to well known minimal couplings results for the Wilson coef-
ficients. As we will explain, quadratic and higher-order cor-
rections in multipoles are not always calculable within our
EFT setup, and we give a succinct criterion for calculabil-
ity. The analogous program is then carried out for 4-graviton
scattering amplitudes in Sect. 4. One additional subtlety here
is that the tadpoles (and massless bubbles) do contribute, but
it can be shown that the resulting ambiguity does not affect
the Wilson coefficients we are interested in. Once again we
expand the amplitudes in powers ofm to calculateC3,C4,1(2),
and higher-order Wilson coefficients with linear quadrupole
corrections.

In Sect. 5 we discuss how the results we have obtained fit
into the known positivity constraints. In the EHEFT case,
integrating out particles with anomalous dipole moments
allows one to asymptotically approach the boundary C2 =
0 of the positive C1–C2 quadrant allowed by positivity,
although this happens in the regime where unknown cor-
rections from particles above � are expected to be signifi-
cant. For GREFT, the striking conclusion is that anomalous
gravi-quadrupole moments practically do not open any new
parameter space compared to minimal coupling. Instead, due
to a non-trivial conspiracy, the Wilson coefficients remains
in the small islands drawn up in Ref. [30].

Below we summarize the conventions. We work with
the mostly minus metric ημν = (1,−1,−1,−1), and
the natural units h̄ = c = 1. The sign convention
for the totally anti-symmetric Levi-Civita tensor εμνρα

is ε0123 = 1. The Christoffel connection is defined as



μ
νρ = 1

2g
μα

(
∂ρgαν + ∂νgαρ − ∂αgνρ

)
, the Riemann tensor

is Rα
μνβ = ∂ν


α
μβ −∂β
α

μν +

ρ
μβ
α

ρν −

ρ
μν


α
ρβ , and the

Ricci tensor is Rμν = Rα
μνα . We use the all-incoming con-

vention for our on-shell amplitudes, unless otherwise noted.
For helicity spinors, we use the conventions of Ref. [39],
plus the usual shorthand notation: λα

p ≡ |p〉, λ̃α̇
p ≡ |p] for

massless 2-component spinors, α = 1, 2, and χα J
k ≡ |k〉J ,

χ̃ α̇ J
k ≡ |k]J for massive spinors, with J = 1, 2 encod-

ing polarization. In our conventions, 〈kl〉 ≡ λα
k λlα , [kl] ≡

λ̃kα̇ λ̃α̇
l , 〈k|p|l] ≡ λα

k [pσ ]αβ̇ λ̃
β̇
l , [k|p|l〉 ≡ λ̃kα̇[pσ̄ ]α̇β λ̃lβ ,

with σμ ≡ (1, 
σ), σ̄ μ ≡ (1,−
σ).

2 Compton amplitudes with multipoles

As we will detail in the next section, we employ unitarity
methods to match low-energy EFTs of photons and gravitons
to more fundamental theories containing in addition matter
particles. The main ingredient for this calculation will be
the Compton amplitudes. In this section we write down the
(gravi-)Compton amplitudes describing scattering of a pho-
ton (graviton) on a matter particle X of mass m and spin
S ≤ 1 (S ≤ 2). The matter is assumed to have non-minimal
couplings to photons and gravitons through general multi-
pole interactions. Such amplitudes can be computed start-
ing from their residues in each kinematic channel and find-
ing the unique amplitude constructable from those residues
[40,41]. Factorization properties required by unitarity allow
us to bootstrap the residues from the following set of on-shell
three-point amplitudes [40]:

M
(

1−
γ 2X3X̄

)
= −√

2qX
〈1|p2|ζ ]
m2S[1ζ ]

×
[
[32]2S +

2S∑
n=1

δn ([32] − 〈32〉)n [32]2S−n
]
,

M
(

1+
γ 2X3X̄

)
= −√

2qX
〈ζ |p2|1]
m2S〈1ζ 〉

×
[
〈32〉2S +

2S∑
n=1

δ̄n (〈32〉 − [32])n 〈32〉2S−n
]
,

M (
1−
h 2X3X̄

) = − 1

MPl

〈1|p2|ζ ]2

m2S[1ζ ]2

×
[
[23]2S +

2S∑
n=2

δn ([32] − 〈32〉)n [32]2S−n

]
,

M (
1+
h 2X3X̄

) = − 1

MPl

〈ζ |p2|1]2

m2S〈1ζ 〉2

×
[
〈23〉2S +

2S∑
n=2

δ̄n (〈32〉 − [32])n 〈32〉2S−n

]
. (2.1)

where qX ≡ QXe is the electric charge, and |ζ 〉 (|ζ ]) is a ref-
erence spinor that is not parallel to |1〉 (|1]). All momenta
in Eq. (2.1) are treated as incoming. We omit the sym-
metrization over massive little group indices, along with the
indices themselves. The first term in each square bracket
stands for minimal coupling, while non-minimal couplings
are parametrized by δn : the (anomalous) dipole coupling is
proportional to δ1, the quadrupole is proportional to δ2, etc.2

We will be interested in deriving Compton amplitudes up to
linear order in δn . The residues over the different kinematic
channels are computed by gluing together two 3-particle

2 Notice that, as shown in Refs. [41,42], the dipole term is absent in
gravity on general grounds.
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amplitudes through the exchange of a massive particle (or
eventually a graviton). Given the residues, the Compton
amplitudes can be reconstructed up to contact terms, which
we fix by requiring the softest possible asymptotic behavior
at E → ∞.

We start from the same-helicity Compton amplitude

M
(

1−
γ , 2−

γ , 3X , 4X̄

)
, found via the t-channel residue3

Rest→m2M
(

1−
γ 2−

γ 3X4X̄
)

= −M
(

1−
γ 3X → tX

)
M

(
2−
γ tX4X̄

)

= (−1)2S2q2
X 〈12〉2

m4S−2(u − m2)

2S∑
k=0

δk([4t] − 〈4t〉)k[4t]2S−k

×
2S∑
n=0

δn([t3] + 〈t3〉)n[t3]2S−n, (2.2)

and the u-channel one obtained from the above by t ↔ u.
In this context, δ0 ≡ 1. The convention for contracted little
group indices of |t〉 and |t] is that 2S leftmost carry the upper
index, and the 2S rightmost carry the lower index. Using
some spinor manipulations, in particular

[4t][t3] = m[43], 〈4t〉〈t3〉 = −m〈43〉,
[4t]〈t3〉 = −[4|pt |3〉, 〈4t〉[t3] = 〈4|pt |3], (2.3)

and the identity4

〈3|p1|4] + 〈4|p1|3] = − 1

m
〈3|p1 p2|4〉 − t − m2

m
〈34〉,

(2.4)

we reconstruct the same helicity Compton amplitudes

M
(

1−
γ 2−

γ 3φ4φ̄

)
= 2q2

Xm
2〈12〉2

(t − m2)(u − m2)
,

M
(

1−
γ 2−

γ 3ψ4ψ̄

)
= 2q2

Xm〈12〉2

(t − m2)(u − m2)[
[34] + δ1

([34] − 〈34〉)
]

+ δ1
2q2

X 〈12〉
m

[ 〈13〉〈24〉
t − m2 − 〈14〉〈23〉

u − m2

]
+ O

(
δ2

1

)
,

M
(

1−
γ 2−

γ 3V 4V̄
)

= 2q2
X 〈12〉2

(t − m2)(u − m2)

×
[
[34]2 + δ1

([34] − 〈34〉)[34]

3 In the passage between the first and second line we cross tX from an
outgoing to an incoming state, which yields a factor of (−1)2S .
4 The second term vanishes in the t-channel, where this relation is used.

+ δ2
([34] − 〈34〉)2 − δ2

m2

(〈3|p1|43]|p2|4]

+ 〈4|p1|34]|p2|3]
)]

+ 2q2
X 〈12〉
m2

(
δ1[34] + δ2

([34] − 〈34〉)
)

×
( 〈13〉〈24〉

t − m2 − 〈14〉〈23〉
u − m2

)
+ O

(
δ2
n

)
. (2.5)

The double plus Compton amplitudes can be obtained from
the above by

M
(

1+
x 2+

x 3
h3
X 4h4

X̄

)
=

[
M

(
(−1)−x (−2)−x (−4)−h4

X (−3)−h3
X̄

)]∗
,

(2.6)

where x = γ, h, which amounts to exchanging square and
angle brackets and conjugating complex parameters.

For the same-sign gravi-Compton amplitudes the princi-
ples are the same, with the additional complication due to a
non-vanishing s-channel residue:

Ress→0M
(
1−
h 2−

h 3X4X̄

)
= − M

(
1−
h 2−

h → s−h
)
M

(
s−h 3X4X̄

)

= m4−2S〈12〉4

M2
Pl(t − m2)(u − m2)⎡

⎣[34]2S +
2S∑
n=2

δn ([43] − 〈43〉)n [43]2S−n

⎤
⎦ ,

Rest→m2M
(

1−
h 2−

h 3X4X̄

)
= −M

(
1−
h 3X → tX

)

M
(

2−
h tX4X̄

)
= (−)2Sm4−4S〈12〉4

M2
Pls(u − m2)

×
⎡
⎣[t4]2S +

2S∑
n=2

δn([4t] − 〈4t〉)n[4t]2S−n

⎤
⎦

×
⎡
⎣[3t]2S +

2S∑
k=2

δk(〈t3〉 + [t3])k [t3]2S−k

⎤
⎦ , (2.7)

and the u-residue is obtained from the t channel by 1 ↔ 2.
We rewrite them making again use of Eqs. (2.3) and (2.4) so
as to reconstruct the double-minus gravi-Compton amplitude
up to linear quadrupole corrections:

M
(

1−
h 2−

h 3X4X̄

)
= m4−2S〈12〉4

M2
Pls(t − m2)(u − m2)

×
(
[34]2S + δ2

([43] − 〈43〉)2[43]2S−2
)

− δ2〈12〉2[43]2S−2

M2
Plm

2S−2

(
2〈13〉〈24〉〈23〉〈14〉
(t − m2)(u − m2)

+ 〈13〉2〈24〉2

m2(t − m2)
+ 〈14〉2〈23〉2

m2(u − m2)

)
+ O

(
δ2

2

)
,

(2.8)
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where δ2 is non-zero only if the spinning particle X has
S ≥ 1. Here, we present only the result involving quadrupole
corrections because in this paper we do not attempt to cal-
culate corrections to Wilson coefficients from higher multi-
poles. In Appendix B we also report linear octupole correc-
tions to the Compton amplitude.

We move to the opposite helicity Compton amplitude

M
(

1−
γ , 2+

γ , 3X , 4X̄

)
. These require to compute the residues

Rest→m2M
(

1−
γ 2+

γ 3X4X̄
)

= −M
(

1−
γ 3X → tX

)

M
(

2+
γ tX4X̄

)

= (−1)2S 2q2
X 〈1|p3|2]2

m4S(u − m2)

2S∑
k=0

δ̄k(〈4t〉 − [4t])k〈4t〉2S−k

×
2S∑
n=0

δn(〈t3〉 + [t3])n[t3]2S−n,

Resu→m2M
(

1−
γ 2+

γ 3X4X̄
)

= −M
(

2+
γ 3X → (−u)X

)
M

(
1−
γ (−u)X4X̄

)

= (−1)2S 2q2
X 〈1|p3|2]2

m4S(t − m2)

2S∑
k=0

δk(〈4u〉 + [4u])k[4u]2S−k

×
2S∑
n=0

δ̄n(〈u3〉 − [u3])n〈u3〉2S−n . (2.9)

Using in particular

〈1|p3|2]〈4|pt |3] = −m2 (〈13〉[24] + 〈14〉[23])
− (t − m2)〈14〉[23],

〈1|p3|2]〈3|pu |4] = m2 (〈13〉[24] + 〈14〉[23])
+ (u − m2)〈13〉[24], (2.10)

and

m
(〈13〉[24] + 〈14〉[23]) = [12]〈13〉〈14〉 − 〈1|p3|2]〈43〉

= −〈12〉[23][24] − 〈1|p3|2][43],
(2.11)

the residues can be brought to a form that allows one to
reconstruct the amplitudes for S ≤ 1

M
(

1−
γ 2+

γ 3X4X̄
)

= 2q2
X 〈1|p3|2]2−2S

(t − m2)(u − m2)[
(〈13〉[24] + 〈14〉[23])2S

+
2S∑
n=1

δn[12]n〈13〉n〈14〉n + (−1)n δ̄n〈12〉n[23]n[24]n
mn

× (〈13〉[24] + 〈14〉[23])2S−n
]

+ O
(
δ2
n

)
. (2.12)

Finally, the opposite sign gravi-Compton amplitude is
found through the residues

Ress→0M
(
1−
h 2+

h 3X4X̄
)

= −
∑
s′=±

M
(

1−
h 2+

h → ss
′

h

)
M

(
ss

′
h 3X4X̄

)

= 〈1|p3|2]4

M2
Plm

2S(t − m2)(u − m2)

×
[
〈34〉2S +

2S∑
n=2

δ̄n (〈43〉 − [43])n 〈43〉2S−n

]

[12]→0

= 〈1|p3|2]4

M2
Plm

2S(t − m2)(u − m2)

×
[
[34]2S +

2S∑
n=2

δn ([43] − 〈43〉)n [43]2S−n

]

〈12〉→0

Rest→m2M (
1−
h 2+

h 3X4X̄
) = −M (

1−
h 3X → tX

)
M (

2+
h tX4X̄

)

= 〈1|p3|2]4

M2
Plm

4S(t − m2)(u − m2)

×
[
〈t4〉2S +

2S∑
n=2

δ̄n(〈4t〉 − [4t])n〈4t〉2S−n

]

·
[
[3t]2S +

2S∑
k=2

δk(〈t3〉 + [t3])k[t3]2S−k

]
, (2.13)

and the u residue is obtained from the t residue by 3 ↔ 4
and multiplying by (−)2S . The same spinor manipulations
used for the previous case allow us to reconstruct for S ≤ 2

M (
1−
h 2+

h 3X4X̄
) = 〈1|p3|2]4−2S

M2
Pls(t − m2)(u − m2)

×
[
(〈13〉[24] + 〈14〉[23])2S + (−1)2S

2S∑
n=2

× δn([12]〈13〉〈14〉)n + (−1)n δ̄n(〈12〉[23][24]])n
mn

× (〈13〉[24] + 〈14〉[23])2S−n

]

+ O
(
δ2
n

)
. (2.14)

With the explicit form of the Compton amplitudes at
hand, it is straightforward to extract the high-energy behav-
ior of the amplitudes by simple dimensional inspection of
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Eqs. (2.5), (2.8), (2.12) and (2.14). Let us abbreviate MSS
x =

M[1±
x , 2±

x , 3X , 4X̄ ], MOS = M[1−
x , 2+

x , 3X , 4X̄ ] for x =
γ, h. Consider generic kinematics with s ∼ t ∼ u ∼ E2 and
take the limit E → ∞. Recall that in the limit δn → 0 one has
MSS

γ ∼ (m/E)2−2 S , MOS
γ ∼ E0, signaling that minimal

interactions of photons with matter of spin S ≤ 1 are renor-
malizable. In GR one finds MSS

h ∼ E2 S−2/(M2
Pl m

2 S−4),
MOS

h ∼ (E/MPl)
2, the latter hitting strong coupling at

E ∼ MPl, making GR an EFT with the cutoff MPl. Now,
in the presence of multipoles, the asymptotics change:

MSS
γ ∼δn

E2S

m2S
, MOS

γ ∼ δn
En

mn , S ≤ 1, 1 ≤ n ≤ 2S

MSS
h ∼δ2

E2S+2

M2
Plm

2S
, MOS

h ∼ δ2
E4

M2
Plm

2
, S ≤ 2. (2.15)

Note that this behavior cannot be softened by adding contact
terms to our Compton amplitudes, as those would induce
∼ E2S+2(E2S+4) or harder asymptotic behavior in the elec-
tromagnetic (gravitational) setting. It follows that the Comp-
ton amplitudes in the presence of multipoles hit strong cou-
pling at the scale �s ∼ m/δ

1/2S
n . Identifying the strong cou-

pling scale with the cutoff �, we can assign the power count-
ing

δn ∼ m2S

�2S (2.16)

to the multipole couplings in the electromagnetic theory, such
that MSS

γ ∼ (E/�)2S . We will use the same power counting
for quadrupole corrections in the gravitational theory, except
that in this case we set � = MPl for simplicity. Then MSS

h ∼
(E/MPl)

2S+2 and the strong coupling scale is identified with
the Planck scale. Note that, in the presence of multipoles,
the opposite-sign (gravi)Compton amplitudes have always
the same or softer behavior at E → ∞ compared to the
same-sign ones. The power counting in Eq. (2.16) will play
an important role in the following, allowing us to control the
contributions from rational terms and tadpoles to the Wilson
coefficients of EHEFT and GREFT.5

3 Wilson coefficients in Euler-Heisenberg EFT

In this section we match the Wilson coefficients of EHEFT to
the class of UV completion described in Sect. 2. Using uni-
tarity methods, we compute the one-loop amplitudes involv-
ing four photons with a massive spinning particle X inside
the loop. In particular, our method allows us to reconstruct
the relevant part of the amplitude (that is, box, triangle, and

5 Notice that, as argued in [43,44], for renormalizable UV complete
theories all information needed for matching is contained in cuts.

bubble coefficients) with only two-particle cuts6 in d = 4,
as opposed to the more familiar recursion requiring triple
and quadruple cuts as well. Effectively, cuts in just one or
two channels need to be calculated (depending on the helic-
ity configuration), the remainings being trivially obtained by
crossing.

We first decompose the loop amplitude in a basis of scalar
integrals:

M1-loop =
∑
i

ci� I i� +
∑
i

ci� I i� +
∑

2

ci◦ I i◦ + c�I + R,

(3.1)

where I i�, I i�, I i◦ are respectively box, triangle, and bubble
scalar integrals defined in Eq. (A.5), and �I is an eventual
combination of the tadpole and massless bubble contribu-
tions. We then compute the discontinuity over the normal
threshold of a Mandelstram invariant of both sides of the
decomposition:

DiscsM1-loop =
∑
i

ci�Discs I i� +
∑
i

ci�Discs I i�

+
∑
i

ci◦Discs I i◦. (3.2)

The discontinuities of the scalar integrals on the right-hand
side are listed in Appendix A, while the discontinuity of the
original loop amplitude is found by integrating the product of
two Compton amplitudes over the two-particle phase space.
Matching independent non-analytic structures on either sides
of Eq. (3.2), we are able to reconstruct all box, triangle,
and bubble coefficients. The rational terms and tadpoles can
be fixed by cancellation of non-physical poles and power-
counting arguments. Finally, taking the m → ∞ limit and
keeping the leading orders in 1

m , we match the amplitudes in
the UV completion to the four-photon amplitudes in EHEFT.
The latter, starting from Eq. (1.1), can be written as

M− = M
(

1−
γ , 2−

γ , 3−
γ , 4−

γ

)
= C−

(
〈12〉2〈34〉2 + 〈13〉2〈24〉2

+〈14〉2〈23〉2
)

, (3.3)

M+ = M
(

1−
γ , 2−

γ , 3+
γ , 4+

γ

)
= C+〈12〉2[34]2, (3.4)

M
(

1+
γ , 2+

γ , 3+
γ , 4+

γ

)
= C−

(
[12]2[34]2 + [13]2[24]2 +[14]2[23]2

)
,

(3.5)

where C± = C1±C2
2 . In the following we will illustrate in

some detail how the method works using the well-known
example of integrating out the massive scalar [47]. We then
report the results for the matching up to spin S = 1 with
only minimal interactions (which have also been long known
[48,49]). Finally, we discuss how the method can be adapted

6 In the massless context, similar approach was introduced in Refs.
[45,46].
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to the case of integrating out particles with S ≤ 1 and non-
minimal electromagnetic interactions.

3.1 Minimal coupling

We first consider the UV completion of EHEFT to be a scalar
particle charged under electromagnetic interactions. Let us
start by computing the double cut of the one-loop four-photon
amplitude. Beginning with the all-minus configuration M−,
we have

DiscsM− = i
∫

d�XYM
(

1−
γ 2−

γ (−Y)φ(−X)φ̄

)

× M
(

3−
γ 4−

γ XφYφ̄

)

= 4ie4m4〈12〉2〈34〉2∫
d�XY

(2p1 pX )(2p2 pX )(2p3 pX )(2p4 pX )
, (3.6)

where d�XY is the phase space element of the XY two-
particle state. Then, using the parametrization for the internal
momenta defined in Eq. (A.1), we find

DiscsM = − iq4
Xm

4〈12〉2〈34〉2

2πs2〈23〉2[13]2

×
∫

dα

α(1 − α)

1

α(1 − α) − 1
4ys

dz

2π i

× z

(z − zs−)(z − zs+)(z − z̃s−)(z − z̃s+)
,

(3.7)

where ys ≡ s
4m2 . The integral over z encompasses a unit

circle centered around the origin, and

zs± ≡ u

〈23〉[13]
α + xs(1 − α) ±

√
[α − xs(1 − α)]2 + xs

ys

2
√

α(1 − α) − 1
4ys

,

(3.8)

z̃s± ≡ − u

〈23〉[13]
xsα + (1 − α) ±

√
[xsα − (1 − α)]2 + xs

ys

2
√

α(1 − α) − 1
4ys

,

(3.9)

with xs ≡ t
u . One can show that zs− and z̃s− are always

inside the |z| < 1 integration contour, whereas zs+ and z̃s+
are always outside. Integrating over z picks the two former
residues, which yields, after some manipulation,

DiscsM− = − iq4
Xm

4〈12〉2〈34〉2

πs3u

∫ α+

α−
dα

(
1

α
+ 1

1 + α

)

× 1√
[α − x(1 − α)]2 + x

y

. (3.10)

Now, matching this to the dictionary in Appendix A.3, we
find

DiscsM− = 8q4
Xm

4〈12〉2〈34〉2

s2

(
Discs I st� + Discs I su�

)
,

(3.11)

from which we reconstruct the full amplitude up to a rational
term

M− = 8q4
Xm

4〈12〉2〈34〉2

s2

(
I st� + I su� + I tu�

) + R. (3.12)

Eq. (3.12) is the only solution that is consistent with
Eq. (3.11) and its analogous versions in other kinematic chan-
nels, straightforwardly found by crossing.7 Moreover, it is
symmetric under the exchange of any two photons, by con-
struction. Tadpoles cannot appear in Eq. (3.12) because they
would introduce divergences to the amplitude, which can-
not appear in a renormalizable theory as that would imply
introducing ∼ F4 counterterms to the Lagrangian.

Expanding the scalar integrals in 1
m we find

M− = q4
X 〈12〉2〈34〉2

4π2s2 + R + · · · , (3.13)

where the dots have no kinematic singularities. To have a
consistent amplitude, the rational term must cancel the 1

s2

pole:

R = −q4
X 〈12〉2〈34〉2

4π2s2 . (3.14)

Now, the crucial point of this construction is that Eq. (3.14)
cannot contain any other pieces. In particular, it cannot
contain any terms contributing to C−. Indeed, by dimen-
sional analysis, such terms would have to be of the order

�R ∼ 〈12〉2〈34〉2

m4 , but that would make M− hit the unitarity
limit around E ∼ m, contradicting the renormalizability of
the theory.

With the rational term fixed as in Eq. (3.14), expanding
Eq. (3.12) yields

M− = q4
X

480π2m4

(
〈12〉2〈34〉2 + 〈13〉2〈24〉2 + 〈14〉2〈23〉2

)

+O
(
m−6

)
. (3.15)

We can then match C− in Eq. (3.5) as

C− = q4
X

480π2m4 = α2

30m4 , (3.16)

where α ≡ q2
X

4π
.

The matching of the minimally helicity-violating (MHV)
amplitude M+ is similar, but we will need to compute the

7 This is easily seen noticing that 〈12〉2〈34〉2

s2 = 〈13〉2〈24〉2

t2
= 〈14〉2〈23〉2

u2 .
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discontinuity of the loop amplitude over two different kine-
matic channels in order to fully reconstruct it. The s-channel
discontinuity is found exactly as before, yielding

DiscsM+ = 8q4
Xm

4〈12〉2[34]2

s2

(
Discs I st� + Discs I su�

)
.

(3.17)

We now need to compute the t-channel discontinuity as well,
as it cannot obtained by crossing the former in this case.

DisctM+ = i
∫

d�XYM
(

1−
γ 3+

γ (−Y)φ(−X)φ̄

)

× M
(

2−
γ 4+

γ XφYφ̄

)
== i〈12〉2[34]2

×
∫

d�XY X (0)

(2p1 pX )(2p2 pX )(2p3 pX )(2p4 pX )

(3.18)

with

X (0) ≡ 4q4
X

〈1|pX |3]2〈2|pX |4]2

〈12〉2[34]2 . (3.19)

Parametrizing the internal momenta analogously as in
Eq. (A.1) but crossing (2 ↔ 3), we can rewrite Eq. (3.18) as

X (0)(z) = t2
(

α(1 − α) − m2

t

) (
z(2α − 1)

[14]
[34]

+
√

α(1 − α) − m2

t

[
z2 〈23〉[14]

〈12〉[34] − 1

]⎞
⎠

2

,

DisctM+ = − ie4〈12〉2[34]2

π t3u

∫
dα

α(1 − α)

× X (0)(zt−)√
[α − xt (1 − α)2] + xt

yt

(3.20)

where8 zt− is defined from Eq. (3.8) by crossing. Now it is
straightforward to match this discontinuity to the ones of the
basis of scalar integrals using the dictionary in Appendix A.3,
leading to

DisctM+ = q4
X 〈12〉2[34]2

[
8m4

s2 (Disct I st� + Disct I tu� )

+ 4u2t2 + 16m2stu

s4 Disct I tu� −

−t
8tu + 16m2s

s4 Disct I t� − 4
t − u

s3 Disct I t◦
]

.

(3.21)

8 In order to find Eq. (3.20) we again used that only two of the z poles are
inside the integration contour, along with the property X (0)(zt− , α) =
X (0)(z̃t− , 1 − α).

The discontinuity in the u-channel is found by crossing this
result, and together with Eq. (3.17) they allow us to recon-
struct the full amplitude up to rational terms as

M+ = e4〈12〉2[34]2
[

8m4

s2 (I st� + I tu� + I su� )

+ 4u2t2 + 16m2stu

s4 I tu� −

−8tu + 16m2s

s4

(
t I t� + uI u�

) − 4
t − u

s3 (I t◦ − I u◦ )

]
+ R.

(3.22)

Notice that the form of the discontinuities in different chan-
nels provides valuable crosschecks for our computations, as
already noted in [30], since both s- and t-channel cuts must
yield the same st box coefficient.

The rational term R is fixed to cancel the non-physical
poles produced by the scalar integrals. The same argument
as before excludes any contributions of R to the Wilson coef-
ficients. Fixing R, expanding the scalar integrals, and match-
ing the result to Eq. (3.5) to identify the Wilson coefficient
C+, one finds

C+ = 2α2

45m4 . (3.23)

Combining this result with Eq. (3.16) we recover the result
of Refs. [47,50]:

CSQED
1 = 7α2

90m4 , CSQED
2 = α2

90m4 . (3.24)

The computation for spinning particles with S = 1/2, 1
is essentially equivalent to the scalar case. For the matching
of M−, the only difference with the scalar case is an extra
factor of

〈XY〉I1 J1〈YX〉J1 I1 · ... · 〈XY〉I2S J2S 〈YX〉J2S I2S

m4S

= (−)2S(2S + 1), (3.25)

where the little group indices Ik and Jk are implicitly fully
symmetrized. While matching M+, there are only two
changing factors. For the s-channel discontinuity, we have
to take into account the overall contraction

[XY]I1 J1〈YX〉J1 I1 · ... · [XY]I2S J2S 〈YX〉J2S I2S

m4S . (3.26)

For the t-channel discontinuity, the only changing structure
is the function X (S)(z) arising from the different Compton
amplitudes, and the consequent matching with the disconti-
nuities with the basis of scalar integrals. Here we just quote
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the final results for these amplitudes, listing the X (S) func-
tions in Eq. (B.7). For S = 1

2 , we find

M− = −16q4
Xm

4〈12〉2〈34〉2

s2

(
I st� + I su� + I tu� − 1

32π2m4

)
+ R,

M+ = −q4
X 〈12〉2[34]2

[
16m4 − 8m2s

s2 (I st� + I tu� + I su� )

+ 32m2stu − 4tu(t2 + u2)

s4 I tu� −

−32m2s − 8(t2 + u2)

s4

(
t I t� + uI u�

) − 8
t − u

s3

(
I t◦ − I u◦

)] + R,

(3.27)

leading, upon matching, to

CQED
1 = 8α2

45m4 , CQED
2 = 14α2

45m4 , (3.28)

in agreement with Refs. [48,50]. For S = 1 we find

M− = 24q4
Xm

4〈12〉2〈34〉2

s2

(
I st� + I su� + I tu� − 1

32π2m4

)
+ R,

M+ = q4
X 〈12〉2[34]2

[
8

3m4 − 4m2s + s2

s2 (I st� + I tu� + I su� )

+ 48m2stu − 4tu(4t2 + 4u2 + 5tu)

s4 I tu�

+ 8
4(t2 + u2) + 5tu − 6m2s

s4

(
t I t� + uI u�

)

−12
t − u

s3

(
I t◦ − I u◦

)] + R, (3.29)

leading to

CVQED
1 = 29α2

10m4 , CVQED
2 = 27α2

10m4 , (3.30)

in agreement with Refs. [49,50].

3.2 Multipoles

In the presence of multipole (dipole and quadrupole) cou-
plings of matter to photons, the computation of EHEFT Wil-
son coefficients roughly parallels the minimal coupling case.
There is one important difference though. Since the UV the-
ory is now itself an EFT, we cannot use the renormalizability
argument to harness the rational term and tadpole contribu-
tions to the 4-photon amplitude. Nevertheless, the argument
can be adapted here using the EFT power counting, due to
the fact that EFTs are renormalizable order by order in 1/�

expansion.
Consider a rational term in the 4-photon amplitude con-

tributing to a Wilson coefficient of dimension [C] =
[mass]−n and proportional to the multipole moment δ in
some integer power k. By dimensional analysis it has to
scale as C ∼ δk/mn . At large energies it will behave
as R ∼ δk En/mn and hit strong coupling at the scale

�s ∼ m/δk/n . Given the power counting in Eq. (2.16), this
is �s ∼ �(m/�)1−2Sk/n . If 2Sk ≥ n, such a rational term
reaches the unitarity limit at the scale � or above, and there-
fore it is perfectly allowed. Conversely, for

2Sk < n, (3.31)

such a rational term cannot appear in an EFT with a cutoff
�. The same argument works for the tadpole terms. Mul-
tipole corrections satisfying Eq. (3.31) are calculable with
our method, in the sense that they can be calculated from
the knowledge of the cut-constructible part of the amplitude
(boxes, triangles, and bubbles). This argument is equivalent
to requiring that the amplitudes in our EFT have a healthy
m → 0 limit.

Focusing on the Wilson coefficientsC1,2 in Eq. (3.31), cor-
responding to n = 4, we can see that for S = 1/2, effects up
to the cubic order in δ1 are calculable. For spin-1 particles, on
the other hand, only linear effects in δ1 and δ2 are calculable.
This may appear as a serious restriction of the method, but
from the EFT point of view it is not. The point is that O(δ4

1)

contributions for S = 1/2, or O(δ2
i ) ones for S = 1 are of

the same order as the L ⊃ C�F4 operators, which should be
anyway included in the theory with an unknown coefficient
C� ∼ �−4 according to the EFT power counting. Indeed, in
general we expect C� to be generated by the same physics
that generates the multipole couplings δi . In summary, our
method only captures IR contributions to the Wilson coeffi-
cients that are parameterically enhanced by powers of �/m
compared to those coming from unknown physics above �.
Note that, according to Eq. (3.31), calculability improves as
we go to higher and higher orders in Wilson coefficients.

Given that discussion, the rest of the calculations proceeds
along the lines sketched in the previous subsection. Integrat-
ing out a Dirac fermion interacting non-minimally with the
photon we obtain the Wilson coefficients

C (1/2)
1 = q4

X

90π2m4 + O
(
δ4

1

)
,

C (1/2)
2 = q4

X

360π2m4

(
7 + 60δ1 + 150δ2

1 + 120δ3
1

)
+ O

(
δ4

1

)

(3.32)

Integrating out a massive vector with general dipole and
quadrupole electromagnetic interactions we obtain

C (1)
1 = q4

X

π2m4

(
29

160
+ 11δ1

12
+ 21δ2

12

)
+ O

(
δ2
i

)
,

C (1)
2 = q4

X

π2m4

(
27

160
+ 2δ1

3

)
+ O

(
δ2
i

)
. (3.33)

Since our method includes construction of complete
one-loop 4-photon amplitudes in the matter theory, it is
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straightforward to also extract Wilson coefficients of higher-
dimensional operators in EHEFT [25,51–53]. The results for
selected operators up to dimension 12 are summarized in
Table 2 in Appendix B.3.

3.3 Higher spins

When integrating out particles with higher spins, there is a
conceptual barrier that prevents our computation to work.
Namely, our results for the Compton amplitudes found in
Sect. 2, even for non-minimal interactions, are incomplete
for S > 1. In fact, for higher spins, a non-physical pole at
〈1|p3|2] → 0 appears, and we need extra terms to cancel it
[42,54,55]. The choice of how to deal with the spurious pole
is not unique (due to the usual ambiguity of contact terms),
but it always leads to the Compton amplitudes growing at
least as M ∼ q2

X (E/m)4S−2 at high energy [42,56]. This
signals that the higher-spin theory is always an EFT with

cutoff � ∼ m/|qX | 1
2S−1 . For a small enough qX it is possible

to arrange for � � m, leading to a non-trivial validity range
for the EFT. However, in this setting, nothing prevents the

tadpole and rational terms to display a
q4
X

mn behavior for some
n, and eventually contribute to the Wilson coefficients at the
same order as the cut-constructible terms. Since the former
are not calculable with our method, the Wilson coefficients
cannot be determined. At the same time, one expects the
contributions to the Wilson coefficients scaling with powers
of 1/m from the unknown UV completion of the higher-spin
theory above �, which would be of the same order or larger
as those from integrating out the higher-spin particle.

We remark however that there exists a compact expression
for the higher-spin contribution with arbitrary S to the Wilson
coefficient C−. That calculation depends only on the same-
sign Compton amplitude, which for minimal couplings takes
the simple form

M
(

1−
γ 2−

γ 3X4X̄
)

= 2q2
Xm

2〈12〉2

(t − m2)(u − m2)

[34]2S

m2S

+ contact terms, (3.34)

and does not exhibit any spurious poles for arbitrary integer
or half-integer S ≥ 0. Assuming the absence rational and
tadpole contributions and ignoring the contact terms one finds

C− = (−)2S(2S + 1)
α2

30m4 . (3.35)

This just counts the number of degrees of freedom of the
higher-spin particle. On the other hand, generic contributions
to C+ scale with higher powers of S. One then expects, given
our assumptions, that the higher-spin contributions to the
leading EHEFT Wilson coefficients approach the diagonal
C1 ≈ C2.

4 Wilson coefficients in general relativity EFT

Matching between the theory with a matter particle coupled
to gravity and the GREFT is conceptually equivalent to the
one carried out in the previous section. In particular, the
discussion of calculability in Sect. 3.2 is unchanged (with
� → MPl and the power counting δ2 ∼ (m/MPl)

2S), and
the condition for calculability of the quadrupole corrections
remains the one in Eq. (3.31). The most important technical
differences are

• Dipole corrections are absent in gravity, δ1 = 0.
• We are free consider matter particles up to spin two,

because the corresponding Compton amplitudes are free
of spurious poles.

• There exists the cubic operator R3 in GREFT that can be
matched to the matter EFT.

Concerning the last point, on-shell methods do not allow to
match three-point amplitudes, but the R3 operator contributes
to 4-point amplitudes, and can thus be detected from their
matching. One finds that the four-point graviton amplitudes,
including contributions from R3 and R4 operators, are given
by [38,57]

M[1−
h , 2−

h , 3−
h , 4−

h ] ≡ M− = C4,1 − C4,2

M4
Pl

(
〈12〉4〈34〉4

+〈13〉4〈24〉4 + 〈14〉4〈23〉4
)

+ 10
C3

M4
Pl

〈12〉〈34〉
s

〈12〉〈34〉

〈13〉〈24〉〈14〉〈23〉 (4.1)

M[1−
h , 2−

h , 3+
h , 4+

h ] ≡ M+ = 〈12〉4[34]4

[
1

M2
Plstu

+ C4,1 + C4,2

M4
Pl

]

(4.2)

M[1−
h , 2−

h , 3−
h , 4+

h ] = − C3

M4
Pl

〈12〉2〈23〉2〈31〉2

[4|p1 p2|4]2

stu
. (4.3)

Notice that the last amplitude is not needed for matching
of the C3 Wilson coefficient, which can be found from the
all-minus one, but it provides a useful consistency check.

Let us begin with minimal coupling and start from the all-
minus amplitude, which we can reconstruct in one go for all
spins S ≤ 2. We only need to compute the discontinuity in
one kinematic channel, as the others are obtained by cross-
ing. Iterating our methods to compute the discontinuities and
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reconstructing the amplitude yield

M− = (−1)2S(2S + 1)
2m8

M4
Pls

4

(
I st� + I su� + I tu�

) + R.

(4.4)

Cancelling spurious poles using the rational term, and
expanding amplitude in powers of 1/m, we are left with

M− = (−1)2S(2S + 1)

16π2M4
Pl

[
−〈12〉2〈34〉2〈13〉〈24〉〈14〉〈23〉

252sm2

+〈12〉4〈34〉4 + 〈13〉4〈24〉2 + 〈14〉4〈23〉4

3780m4

]

+ O
(
m−6

)
. (4.5)

Matching to Eq. (4.2)

C3 = − (−1)2S

16π2

(2S + 1)

2520m2 , (4.6)

C4,1 − C4,2 = (−1)2S

16π2

(2S + 1)

3780m4 . (4.7)

These results agree with Refs. [30,58]. Again, the results
make sense for arbitrary S > 2, with the understanding that
then there may be additional contributions from tadpoles and
rational terms. The matching to the amplitude in Eq. (4.3),
which is analogous and we omit, yields a consistent result
for C3.

Moving onto the matching of Eq. (4.2), we now need to
compute the discontinuities over the s- and t-channel sepa-
rately. The t-channel discontinuities have all the form

DisctM+ = i〈12〉4[34]4

×
∫

d�XY
X (S)(z, α)

(2p1 pX )(2p2 pX )(2p3 pX )(2p4 pX )
,

(4.8)

where the X (S)(z, α) functions are given in Eq. (B.8), and
they lead to the results

C (0)
+ = 1

16π2

1

3150m4 ,

C
( 1

2 )

+ = 1

16π2

29

25200m4 ,

C (1)
+ = 1

16π2

31

6300m4 ,

C
( 3

2 )

+ = 1

16π2

1257

37800m4 ,

C (2)
+ = 1

16π2

671

1260m4 . (4.9)

From these we compute the coefficients C4,1, C4,2, which
can be found in Table 1.

At this point we include the effects of the quadrupole cou-
pling of matter to gravity. According to Eq. (3.31), the linear
quadrupole contributions to C4,1 and C4,2 (n = 4) are calcu-
lable with our method for S = 1 and S = 3/2. On the other
hand, such contributions to C3 are never calculable beyond
minimal coupling. The actual computation is not different in
any way from the previous one, just slightly more involved.
In order to tackle this, we implemented a program in Math-
ematica that contracts massive or massless spinors through
xAct, with the package xSpinors [59,60]. Performing this
way the phase space integration and 1/m expansion allows
us to identify the contributions to Wilson coefficients sum-
marized in Table 1. There, for illustrative purpose, we also
display the calculated contributions that do not satisfy the
condition in Eq. (3.31). In these cases, highlighted in color,
it should be understood that the results assume the absence
of rational and tadpole terms contributions, and are expected
to be of the same order as the contributions from unknown
physics generating δ2. Once again, Wilson coefficients of
higher-dimensional operators can also be extracted from the
amplitudes we constructed, and selected results up to dimen-
sion 16 are displayed in Table 3 in Appendix B.3.

5 Positivity

In the previous sections we collected new data relative to a
class of UV completions for the theory of low energy photons
or gravitons. Given such data, it is interesting to see whether
these theories are in agreement with the existing positivity
bounds.9 Our discussion follows closely the lines of Ref. [25]
for EHEFT and Ref. [30] for GREFT.

Positivity bounds select regions in the space of all Wilson
coefficients of an EFT. The positivity program consists in
ruling out certain regions of this space using broad general
assumptions of unitarity, crossing, and polynomial bounded-
ness for the UV completion, while staying agnostic about all
of its other features. In the literature it is customary to con-
sider a space of ratios of couplings: there, the allowed points
in theory space are convex regions known as convex hulls.

In the following, we will define higher-dimensional Wil-
son coefficients, for which the structure of the positivity
bounds is richer than for the ones we computed above. We
will show how ratios of such coefficients move within the
allowed regions as a function of the multipole coefficients.
We will see how multipole effects move non-minimal (posi-

9 In the EHEFT scenario, the multipole couplings can be UV-completed
into renormalizable models, ensuring the polynomial boundedness of
high-energy amplitudes necessary to derive positivity bounds. See e.g.
Refs. [61,62] for explicit examples in the case of spin-1/2 and spin-1
particles. Analogous constructions should be able to UV complete grav-
itational multipoles into a minimally coupled theory. See Ref. [37] for a
recent discussion of polynomial boundedness in gravitational theories.
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Table 1 Wilson coefficients C3,
C4,1, C4,2 from matching the
GREFT to UV completions with
spinning particles with
non-minimal gravitational
interactions, up to spin S = 2
and linear quadrupole terms.
Quadrupole corrections not
satisfying the calculability
condition in Eq. (3.31) are
highlighted in bold to mark that
other unknown corrections of
the same order in the EFT
expansion exist

S C3 C4,1 C4,2

0 − 1
16π2

1
2520m2

1
16π2

11
37800m4

1
16π2

1
37800m4

1
2

1
16π2

1
1260m2

1
16π2

47
151200m4

1
16π2

127
151200m4

1 − 1
16π2

1
1260m2 (1+231δ2) 1

16π2
1

4200m4 (12 + 245δ2)
1

16π2
1

12600m4 (26 − 175δ2)

3
2

1
16π2

1
630m2 (1−420δ2) 1

16π2
1

75600m4 (1217 − 4480δ2)
1

16π2
1

75600m4 (1297 − 11760δ2)

2 1
16π2

1
504m2 (−1+420δ2) 1

16π2
1

7560m4 (2018+9051δ2) 1
16π2

1
7560m4 (2008+10591δ2)

Table 2 Higher-order Wilson coefficients in EHEFT defined in Eq. (5.1) obtained by matching with a more general theory containing a massive
spinning particle of spin S interacting non-minimally with multipole coefficients δi

S = 0 S = 1/2 S = 1

f2
e4

480·π2 − e
240·π2

(
e3 + 20e2δ1 + 50eδ2

1 + 40δ3
1

) e
160·π2

(
e3 + 20e2δ1 + 140e2δ2

)
g2

e4

360·π2
e

720·π2

(
11e3 + 60e2δ1 + 150eδ2

1 + 120δ3
1

) e
240·π2

(
42e3 + 190e2δ1 + 210e2δ2

)
f3

e4

1008·π2 − e
2520·π2

(
5e3 + 84e2δ1 + 231eδ2

1 + 210δ3
1

) e
1680·π2

(
5e3 + 84e2δ1 + 336e2δ2

)
g3

e4

3360·π2
e

1260·π2

(
e3 + 7e2δ1 + 7eδ2

1 − 14δ3
1

) − e
10080·π2

(
47e3 + 168e2δ1 + 168e2δ2

)
f4

e4

30240·π2 − e
60480·π2

(
4e3 + 54e2δ1 + 135eδ2

1 + 108δ3
1

) e
20160·π2

(
2e3 + 27e2δ1 + 85e2δ2

)
g4,1

17e4

302400·π2
e

302400·π2

(
41e3 + 300e2δ1 + 270eδ2

1 − 600δ3
1

) − e
100800·π2

(
83e3 + 290e2δ1 + 270e2δ2

)
g4,2

e4

120960·π2
e

60480·π2

(
5e3 + 24e2δ1 + 72eδ2

1 + 96δ3
1

) e
40320·π2

(
69e3 + 304e2δ1 + 336e2δ2

)

Fig. 1 Positivity constraints on g2 − f2 = C1 (left) and g2 + f2 = C2
(right) in EHEFT, and points in theory space matching to UV comple-
tions including massive spinning particles interacting non-minimally,
displayed in units of 1/m4. Positivity is violated, in the red region. The

envelope around the curves corresponds to an uncertainty due to contri-
butions from degrees of freedom above the cutoff of the non-minimally
coupled theory
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Fig. 2 Positivity constraints on
dimension-10 and -12 Wilson
coefficients in EHEFT, and
points in the theory space
matching to UV completions
including massive spinning
particles interacting
non-minimally integrated out at
loop level. The blue hulls
corresponds to allowed theories.
Darker lines corresponds to
smaller multipole coefficients,
meaning that our analysis
including up to linear
corrections is more reliable
there. For reference we also
show tree level (minimal)
completions, which often lie at
the boundary of the allowed
region [25]
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tive) theories within the space, with a general trend of mov-
ing towards “more positive” regions. In the case of GREFT,
it was shown in Ref. [30] how known UV completions gen-
erate Wilson coefficients confined to islands that are much
smaller than the region allowed by the existing positivity con-
straints. We will then see how non-minimal deformations of
the theories are still strongly confined within such islands.

5.1 Constraints on EHEFT

Let us first define the higher-order Wilson coefficients. In
order to do so, we could add a set of independent operators at
each wanted order in the Lagrangian in Eq. (1.1). It is however
more practical and convenient to define these directly at the
amplitude level. To this end, we add in Eq. (3.5) and Eq. (3.5)
terms with higher powers of the Mandelstram invariants that
are invariant under the exchange of same-helicity bosons.
Following Ref. [25] we define

M− = M
(

1−
γ , 2−

γ , 3−
γ , 4−

γ

)
= 〈12〉2〈34〉2

s2

×
[
f2

(
s2 + t2 + u2

)
+ f3stu

+ f4
(
s2 + t2 + u2

)2 + . . .

]
,

M+ = M
(

1−
γ , 2−

γ , 3+
γ , 4+

γ

)
= 〈12〉2[34]2

×
[
g2 + g3s + g4,1s

2 + g4,2(s
2 + t2 + u2) + . . .

]
,

(5.1)

where the subscript k in each coefficient refers to a corre-
sponding 2k+4-dimensional operator with 2k derivatives in
the Lagrangian, and g2 = C+, f2 = C−. The values of the
Wilson coefficients defined above are collected in Table 2,
and they agree in the limit of minimal coupling with the val-
ues reported in Ref. [25].

Positivity constraints on dimension-8 coefficients read

g2 + f2 > 0, g2 − f2 > 0, (5.2)

and for the theories at hand they are shown, as a function of
the multipole coefficient, in Fig. 1.

We remark that the curves in Fig. 1 include terms up to
cubic order in δ1 for S = 1/2 and up to linear order in δ1

and δ2 for S = 1, because higher order terms are not cal-
culable. The plots are qualitatively showing that, for small
enough values of the multipole coefficients, where it is safe to
neglect orders beyond linear, positivity bounds remain satis-
fied. For greater values the positivity bounds may seemingly
be violated. But in this regime both higher-order effects in
δi and the contributions from the unknown UV completion
above � may easily push the curve back into the allowed
region. This is in fact evident for S = 1/2, where the (calcu-

lable) O(δ2
i ) make the curve asymptote toward the boundary

g2 − f2 = 0 of the allowed region. In Fig. 1 we illustrated the
uncertainty due to unknown higher-order corrections in the
EFT expansion by adding to the curves the error envolopes

scaling as 1/�4 with � ∼ m/δ
1

2S .
Next, we study positivity constraints on dimension-10

and -12 Wilson coefficients, found numerically in Ref. [25]
for minimal coupling, and shown in Fig. 2. In the case of
dimension-10 coefficients, we see how the bound on f2 tends
to get saturated (analogously to what is seen in Fig. 1), while
the ones on g3 and f3 are weakly affected by multipole inter-
actions. Dimension-12 Wilson coefficients also mostly move
along lines which are along the direction the border of the
hull.

5.2 Constraints on GREFT

In Ref. [30] it was shown that the Wilson coefficients arising
from several UV completions of the GREFT lie on islands
which are much smaller than the ones suggested by the sole
constraints of unitarity, crossing, and Regge boundedness.
The authors have explained the existence of these islands
with a new constraint, Low Spin Dominance (LSD). While
we refer to that reference for a detailed explanation, we here
show how deformations of the considered theories via non-
minimal quadrupole interactions remain confined to the same
islands.

First, we show in Fig. 3 how the dimension-8 Wilson coef-
ficientsC4,1 andC4,2 change as a function of the quadrupole.
Much as in EHEFT, these coefficients turn negative for large
values of |δ2| where the uncalcualable contributions become
significant.

Following Ref. [30], we now define higher order Wilson
coefficients, by parametrizing the contact part of the MHV
four-graviton amplitude as

M[1−
h , 2−

h , 3+
h , 4+

h ] = 〈12〉4[34]4

M4
Pl

∑
k≥ j≥0

ak, j s
k− j t j , (5.3)

where crossing gives relations among several ak, j parameters
and, in particular, a0,0 = C+. Positivity bounds constrain the
dimension-12 Wilson coefficients a2,k as10

− 90

11
≤ a2,1

a2,0
≤ 6, (5.4)

but all the minimal coupling data from Ref. [30] and the
deformations we provided lie in the much smaller region
shown in Fig. 4. All points lie within the LSD bounds, and
quadrupole corrections shift them only slightly. The largest
shifts happens to be in a direction where the bound is more
comfortably satisfied.

10 Notice that crossing relates a2,1 = a2,2.
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Fig. 3 Positivity constraints on the dimension-8 Wilson coefficients
C4,1 and C4,2 in GREFT, and points in theory space matching to
UV completions including massive spinning particles characterized by
anomalous contributions to the quadrupole gravi-magnetic moment pro-

portional to δ2. Positivity is violated in the red region. Darker lines cor-
responds to smaller quadrupole coefficients, meaning that our analysis
including up to linear corrections is more reliable there

Fig. 4 Points in the space of dimension-12 GREFT Wilson coeffi-
cients matching to UV completions with massive spinning particles
characterized by anomalous contributions to the quadrupole gravi-
magnetic moment proportional to δ2. Darker lines corresponds to
smaller quadrupole coefficients, meaning that our analysis including
up to linear corrections is more reliable there. The dashed line repre-
sents the LSD constraint derived in Ref. [30], while usual positivity
bounds constrain the coefficients to a region roughly five times larger.
For reference, we also display the points corresponding to string UV
completions, as described in Ref. [30]

The confinement to small islands is more spectacular for
dimension-16 Wilson coefficients. This is illustrated in Fig. 5

in the plane
[
a4,1
a4,0

; a4,2
a4,0

]
. The dashed region again refers to

the LSD constraint, and is much smaller than the one derived
using positivity constraints. All the data lies within the region.
Interestingly, the slope of the deformation approaches the
slope of the LSD region, 3

2 , for all spins.
Finally we show, in figure Fig. 6, how quadrupole correc-

tions move dimension-20 Wilson coefficients in the theory
space. Again, the coefficients are allowed to be deformed

Fig. 5 Points in the space of dimension-16 GREFT Wilson coeffi-
cients matching to UV completions with massive spinning particles
characterized by anomalous contributions to the quadrupole gravi-
magnetic moment proportional to δ2. Darker lines corresponds to
smaller quadrupole coefficients, meaning that our analysis including up
to linear corrections is more reliable there. The dashed line represents
the LSD constraint [30], while the usual positivity bounds constrain
the coefficients to a much larger region that would cover all the space
shown. The slope of the fading lines is O (

10−4
)

away from the most
stringent LSD constraint, which collapses on the line with slope 3/2.
For reference, we also display the points corresponding to string UV
completions, as described in Ref. [30]

only along the region resulting from applying the LSD con-
straint. The allowed theory space shrinks along a line in this
higher-dimensional case as well. Once again, the quadrupole
corrections align perfectly within the narrow passageway
defined by the theory space in the limit of minimal coupling.
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Fig. 6 Points in the space of
dimension-20 GREFT Wilson
coefficients matching to UV
completions with massive
spinning particles characterized
by anomalous contributions to
the quadrupole gravi-magnetic
moment proportional to δ2.
Darker lines corresponds to
smaller quadrupole coefficients,
meaning that our analysis
including up to linear
corrections is more reliable
there. The yellow line represents
the LSD constraint [30], while
usual positivity bounds
constrain the coefficients to a
much larger region. Dashed gray
lines and colored fading lines on
top of them are projection of the
3D curve on each of the
displayed planes

Table 3 Higher-order Wilson coefficients in GREFT defined in Eq. (5.3) obtained matching with a more general theory containing a massive
spinning particle of spin S with an anomalous gravi-magnetic quadrupole moment parametrized by δ2

S = 0 S = 1
2 S = 1 S = 3

2 S = 2

a2,0
3

16·280280·π2
1

16·30576·π2
1009+11011·δ2
16·9459450·π2

13571−100100·δ2
16·25225200·π2

564792+2871869·δ2
16·75675600·π2

a2,1
1

16·1081080·π2
29

16·5405400·π2
433+2860·δ2

16·10810800·π2
503−2860·δ2

16·1081080·π2
25009+118690·δ2

16·2162160·π2

a4,0
127

4410806400·π2
2813

35286451200·π2
2249+28050·δ2
10291881600·π2

114551−938400·δ2
123502579200·π2

90853+453016·δ2
6175128960·π2

a4,1
1

653452800·π2
19

1871251200·π2
3963+23800·δ2
41167526400·π2

15577−80920·δ2
10291881600·π2

418909+1897812·δ2
8233505280·π2

a4,2
29

13722508800·π2
19

1286485200·π2
5939+35224·δ2
41167526400·π2

46933−243236·δ2
20583763200·π2

3139961+14231924·δ2
41167526400·π2

a6,0
331

245828943360·π2
227

64691827200·π2
31681+433048·δ2
3687434150400·π2

713133−6361124·δ2
22124604902400·π2

12964302+63328463·δ2
22124604902400·π2

a6,1
1

22348085760·π2
1

3047466240·π2
2561+14364·δ2

670442572800·π2
25451−125172·δ2
335221286400·π2

2128117+9399186·δ2
670442572800·π2

a6,2
1

12033584640·π2
677

938619601920·π2
43163+234612·δ2
4693098009600·π2

11605−56658·δ2
61751289600·π2

37100263+163721670·δ2
4693098009600·π2

a6,3
1

11587896320·π2
23

26072766720·π2
2687+14288·δ2

223480857600·π2
367−1784·δ2

1470268800·π2
16455419+72593528·δ2

1564366003200·π2

6 Conclusions

In this paper we have calculated the Wilson coefficients in the
low-energy theory of photons and gravitons, matching it at
one loop to another EFT with a spinning matter particle. The
novelty is that matter is allowed to have general electromag-
netic and gravitational interactions, including non-minimal
multipoles. The complexities of such a calculation can be
eased with a help of the on-shell amplitude formalism. Rely-
ing on the principles of unitarity and locality, we constructed
the one-loop 4-photon helicity amplitudes with up to spin-1
matter in the loop having an anomalous magnetic dipole and
quadrupole moment. In our approach, only two-particle cuts
in four dimensions are used to glue two Compton amplitudes
and reconstruct the box, triangle, and bubble coefficients of
the loop amplitude. Rational terms can then be uniquely fixed
in a number of cases by requiring absence of non-local poles.

The same approach was applied to the 4-graviton amplitudes
with up to spin-2 matter with the anomalous gravitational
quadrupole moment. The only technical difference is that in
this case tadpoles are also needed to cancel non-local diver-
gences, and that a divergent contribution corresponding to
renormalization of the Planck mass cannot be determined by
our method.

Expanding the analytic expressions for the amplitudes at
large values of the matter particle mass, one can efficiently
extract the EHEFT and GREFT Wilson coefficients at arbi-
trary dimensions. The results are summarized in Eqs. (3.32)
and (3.33) and Tables 2, 1 and 3. We also give a compact cri-
terion in Eq. (3.31) as to whether the multipole corrections to
the Wilson coefficients are calculable, that is whether they are
parametrically larger than generic effects induced by heavy
physics above the cutoff of the matter EFT.
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One goal of this exercise was to explore the theory space
of EHEFT and GREFT. In both cases, only the leading terms
in the Lagrangian (F2

μν and M2
PlR, respectively) have been

experimentally observed. There is an ongoing program to
pinpoint or constrain the subleading interaction terms in these
effective theories. Our results provide a more general bench-
mark to interpret the future findings. Another goal was purely
theoretical. In the recent years the program of inspecting
the parameter space of EFTs using the so-called positivity
constraints has received a lot of attention. For EHEFT and
especially for GREFT, it was found that the theory space
allowed by positivity is much larger than the regions acces-
sible by known UV completions [25,30]. Our results largely
confirm these conclusions, showing that multipole correc-
tions remain confined to small islands in the theory space.
This is perhaps most spectacularly seen in Figs. 5, 6, where
gravitational quadrupole corrections move the Wilson coeffi-
cients along narrow passageways determined by the previous
minimal coupling results.
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A Integrals

In this appendix we discuss the dictionary between two-
particle cut discontinuities of the one-loop amplitude and
the discontinuities of the standard basis of scalar integrals.

A.1 Parametrization

First of all, we define the variables used in Sect.?? to
parametrize the on-shell phase space of two-particle interme-
diate states in the cut 4-photon and 4-graviton amplitudes. In
the following, this parametrization is defined for s-channel
discontinuities; the one for the t-channel is straightforwardly
found by crossing (1 ↔ 3).

For s-channel cuts, the massive internal momenta pX , pY ,
p2
X = p2

Y = m2 are decomposed as

pX = αp1 + (1 − α)p2 −
√

α(1 − α) − m2

s
[zq + z−1q̄],

pY = (1 − α)p1 + αp2 +
√

α(1 − α) − m2

s
[zq + z−1q̄],

(A.1)

where p1, p2 are the incoming massless momenta, p2
1 =

p2
2 = 0. The other two basis momenta are defined as qσ =

|2〉[1|, q̄σ = |1〉[2|, such that q2 = q̄2 = 0 and 2qq̄ = −s.
The parameter α is in the range

α ∈ [α−, α+], α± =
1 ±

√
1 − 4m2

s

2
, (A.2)

and the other parameter is constrained to the unit circle, |z| =
1. In the limit m → 0 this reduces to the parametrization
introduced in Refs. [7,63] with α = cos2 θ , z = eiφ . In our
variables, the phase space element of the two massive particle
becomes

d�XY = dα

8π

dz

2π i z
. (A.3)

A.2 Scalar integrals

On general grounds, a one-loop amplitude can be decom-
posed as

M =
∑
i

ci◦ I i◦ +
∑
i

ci� I i� +
∑
i

ci� I i� + c1�I + R (A.4)

where I in are the tadpole, bubble, triangle, and box scalar
integrals, �I marks contributions of tadpoles I1 and massless
bubbles, and R stands for rational terms.

For our purposes we only need to consider scalar integrals
with propagators carrying the same massm. Thus, the basis of
scalar integrals we pick comprises the following ten integrals:

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


  154 Page 18 of 22 Eur. Phys. J. C           (2025) 85:154 

I1 =
∫

d4k

i(2π)4

1

[k2 − m2] , I
s◦ =

∫
d4k

i(2π)4

1

[k2 − m2][(k + p1 + p2)2 − m2] ,

I t◦ =
∫

d4k

i(2π)4

1

[k2 − m2][(k + p1 + p3)2 − m2] , I
u◦ =

∫
d4k

i(2π)4

1

[k2 − m2][(k + p1 + p4)2 − m2] ,

I s� =
∫

d4k

i(2π)4

1

[k2 − m2][(k + p1 + p2)2 − m2][(k + p1)2 − m2] ,

I t� =
∫

d4k

i(2π)4

1

[k2 − m2][(k + p1 + p3)2 − m2][(k + p1)2 − m2] ,

I u� =
∫

d4k

i(2π)4

1

[k2 − m2][(k + p1 + p4)2 − m2][(k + p1)2 − m2] ,

I st� =
∫

d4k

i(2π)4

1

[k2 − m2][(k + p1)2 − m2][(k + p1 + p2)2 − m2][(k − p3)2 − m2] ,

I su� =
∫

d4k

i(2π)4

1

[k2 − m2][(k + p1)2 − m2][(k + p1 + p2)2 − m2][(k − p4)2 − m2] ,

I tu� =
∫

d4k

i(2π)4

1

[k2 − m2][(k + p1)2 − m2][(k + p1 + p3)2 − m2][(k − p4)2 − m2] , (A.5)

where the superscripts denote in which kinematic channels
each integral has a discontinuity. The tadpoles and bubbles
are implicitly dimensionally regularized with d = 4 − 2ε.
The discontinuities of such integrals are to be matched, at
the integrand level, with the ones of the general four-bosons
loop amplitude. In order to do so, we show how such discon-
tinuities are computed with an example.

The box integrals are the most involved, so we’ll present
the case of I su� . Computing the discontinuity over the s-
channel cut is equivalent to putting the propagators that medi-
ate the s-channel exchange on the mass-shell:

Discs I su� =
∫

d4k

i(2π)2

δ[k2 − m2]δ[(k + p1 + p2)
2 − m2]

(2kp1)(2kp4)
.

(A.6)

The numerator is proportional to the two-massive-particle
phase space element. Then, using Eqs. (A.1) and (A.3) we
get

Discs I su� = i

8πs〈23〉[13]
×

∫ α+

α−

dα

(1 − α)

√
α(1 − α) − m2

s

×
∫

dz

2π i

1

[z − zs+][z − zs−]
= − i

8πsu

∫ α+

α−

dα

(1 − α)
√

[α − xs(1 − α)]2 + xs
ys

,

(A.7)

where xs ≡ t/u, ys ≡ s/4m2, and zs± are defined in
Eq. (3.8), and in the last passage we computed the z-integral
using the residue theorem, noticing that that only zs− is inside
the unit circle. The integral over α can also be performed but
the result is not particularly revealing, and in fact it is much
easier to match discontinuities at the level of α integrands.

A.3 Dictionary

Using the methods described in Sect. 3, we are able to reduce
the s-channel discontinuities of one-loop amplitudes of inter-
est to a form

DiscsM = i
∫

dα

π

{
A1

α
√

[α − xs(1 − α)]2 + xs
ys

+ A2

(1 − α)
√

[α − xs(1 − α)]2 + xs
ys

+
∑
n≥0

Bnα
n√

[α − xs(1 − α)]2 + xs
ys

+ C1

α
+ C2

1 − α

+
∑
n≥0

Dnα
n
}
, (A.8)

where all integrals in this subsection are evaluated from α−
to α+. In order to translate that into a sum of discontinuities
of the scalar integrals in Eq. (A.5), we use the following
dictionary:
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i
∫

dα

π

1

α
√

[α − xs(1 − α)]2 + xs
ys

= −8suDiscs I st� ,

i
∫

dα

π

1

(1 − α)
√

[α − xs(1 − α)]2 + xs
ys

= −8suDiscs I su� ,

(A.9)

i
∫

dα

π

1√
[α − xs(1 − α)]2 + xs

ys

= 8uDiscs I s� ,

i
∫

dα

π

α√
[α − xs(1 − α)]2 + xs

ys

= −8tu

s
Discs I s�

− 8u(t − u)

s2 Discs I s◦ ,

i
∫

dα

π

α2√
[α − xs(1 − α)]2 + xs

ys

= 8tu(st − 2m2u)

s3 Discs I s�

+ 4u(6t2 + 2st − s2)

s3 Discs I s◦ , (A.10)

i
∫

dα

π

1

α
= i

∫
dα

π

1

1 − α
= −8sDiscs I s� , (A.11)

i
∫

dα

π
= 8Discs I s◦ ,

i
∫

dα

π
α = 4Discs I s◦ ,

i
∫

dα

π
α2 = 8ys − 2

3ys
Discs I s◦ ,

i
∫

dα

π
α3 = 2ys − 1

ys
Discs I s◦ ,

i
∫

dα

π
α4 = 1 − 12ys + 16y2

s

10y2
s

Discs I s◦ ,

i
∫

dα

π
α5 = 3 − 16ys + 16y2

s

12y2
s

Discs I s◦ . (A.12)

The t-channel dictionary can be obtained by crossing the
s-channel one.

B Supplementary results

B.1 Compton amplitudes

We present here more general results for the same-sign gravi-
Compton amplitudes involving a (complex) massive particle
X interacting non-minimally with the graviton. Up to linear

order in multipole interactions we can split the amplitude as

M (
1−
h 2−

h 3X4X̄
) = M0 + δ2M2+δ3M3+δ4M4+O(δ2

n).

(B.1)

We give the amplitude up to contact terms. In the limit of
minimal coupling

M0 = 〈12〉4[34]2S

M2
Plm

2S−4s(t − m2)(u − m2)
, (B.2)

which is valid for any S. The linear quadrupole corrections
for S ≥ 1 read

M2 = 〈12〉4[43]2S−2
([43] − 〈43〉)2

M2
Plm

2S−4s(t − m2)(u − m2)

− 〈12〉2[43]2S−2

M2
Plm

2S−2

{
2

〈13〉〈24〉〈14〉〈23〉
(t − m2)(u − m2)

+ 〈13〉2〈24〉2

m2(t − m2)
+ 〈14〉2〈23〉2

m2(u − m2)

}
. (B.3)

The linear octupole corrections for S ≥ 3/2 read

M3 = 〈12〉4[43]2S−3
([43] − 〈43〉)3

M2
Plm

2S−4s(t − m2)(u − m2)

− [43]2S−3

M2
Plm

2S−2

{
3〈12〉2〈13〉〈24〉〈14〉〈23〉([43] − 〈43〉)

(t − m2)(u − m2)

− 3〈12〉〈13〉2〈24〉2〈14〉〈23〉
m2(t − m2)

− 〈12〉2〈13〉2〈24〉2
(〈4|p1|3] + 〈3|p1|4]

)
m3(t − m2)

+ 3〈12〉〈14〉2〈23〉2〈13〉〈24〉
m2(u − m2)

+ 〈12〉2〈14〉2〈23〉2
(〈4|p1|3] + 〈3|p1|4]

)
m3(u − m2)

}
. (B.4)

The linear hexadecapole corrections for S ≥ 2 read

M4 = 〈12〉4[43]2S−4([43] − 〈43〉)4

m2S−4M2
Pls(t − m2)(u − m2)

− 4〈12〉2[43]2S−4〈13〉〈24〉〈14〉〈23〉(〈4|p1|3]2 + 〈4|p2|3]2)
m2SM2

Pl(t − m2)(u − m2)

+
( [43]2S−4〈13〉2〈24〉2

m2SM2
Pl(t − m2)

{
6〈14〉2〈23〉2

+ 4〈12〉〈14〉〈23〉
m

[
3〈4|p1|3] − 2〈4|p2|3] − 3〈3|p2|4]

]

− 〈12〉2

m2

[(〈4|p1|3] + 〈3|p1|4])2 + 16〈4|p1|3]〈3|p2|4]
]}

+ (1 ↔ 2)

)
. (B.5)
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Note that, in the presence of multipole corrections, the same-
sign amplitude behaves as M ∼ δn E2S+n/(m2S+n−2M2

Pl),
indicating the power counting δn ∼ (m/MPl)

2S+n−2.

B.2 X-functions

Here we give intermediate results for the calculation of t-
channel discontinuities of the MHV 4-photon and 4-graviton
one-loop amplitudes with minimally-coupled matter of spin
S in the loop. After some manipulations, they can be brought
to the following form

DisctM(1−
x 2−

x 3+
x 4+

x ) = i〈12〉2|hx |[34]2|hx |

×
∫

d�XY
X (S)(z, α)

(2p1 pX )(2p2 pX )(2p3 pX )(2p4 pX )
, (B.6)

where x = γ (h) and |hx | = 1(2) for photons (gravitons).
For photons we have

X (0) = 4q4
X (λ1 pXσ λ̃3)

2(λ2 pXσ λ̃4)
2,

X ( 1
2 ) = 4q4

X (λ1 pXσ λ̃3)(λ2 pXσ λ̃4)

×
{
t〈12〉[34] − 2(λ1 pXσ λ̃3)(λ2 pXσ λ̃4)

}
,

X (1) = 4q4
X

{(
t〈12〉[34])2

− 4t〈12〉[34](λ1 pXσ λ̃3)(λ2 pXσ λ̃4)

+ 3(λ1 pXσ λ̃3)
2(λ2 pXσ λ̃4)

2
}
, (B.7)

while for gravitons we have

X (0) = (λ1 pXσ λ̃3)
4(λ2 pXσ λ̃4)

4

M4
Plt

2〈12〉4[34]4
,

X ( 1
2 ) = (λ1 pXσ λ̃3)

3(λ2 pXσ λ̃4)
3

M4
Plt

2〈12〉4[34]4

×
{
t〈12〉[34] − 2(λ1 pXσ λ̃3)(λ2 pXσ λ̃4)

}
,

X (1) = (λ1 pXσ λ̃3)
2(λ2 pXσ λ̃4)

2

M4
Plt

2〈12〉4[34]4

×
{
t2〈12〉2[34]2 − 4t〈12〉[34](λ1 pXσ λ̃3)(λ2 pXσ λ̃4)

+ 3(λ1 pXσ λ̃3)
2(λ2 pXσ λ̃4)

2
}
,

X ( 3
2 ) = (λ1 pXσ λ̃3)(λ2 pXσ λ̃4)

M4
Plt

2〈12〉4[34]4

×
{
t3〈12〉3[34]3 − 6t2〈12〉2[34]2

(λ1 pXσ λ̃3)(λ2 pXσ λ̃4)

+ 10t〈12〉[34](λ1 pXσ λ̃3)
2(λ2 pXσ λ̃4)

2

− 4(λ1 pXσ λ̃3)
2(λ2 pXσ λ̃4)

2
}
,

X (2) = 1

M4
Plt

2〈12〉4[34]4

{
t4〈12〉4[34]4

− 8t3〈12〉3[34]3(λ1 pXσ λ̃3)(λ2 pXσ λ̃4)

+ 21t2〈12〉2[34]2(λ1 pXσ λ̃3)
2(λ2 pXσ λ̃4)

2

− 20t〈12〉[34](λ1 pXσ λ̃3)
3(λ2 pXσ λ̃4)

3

+ 5(λ1 pXσ λ̃3)
4(λ2 pXσ λ̃4)

4
}
. (B.8)

The numerical coefficients in the curly brackets in Eqs. (B.7)
and (B.8) are in one-to-one correspondence with the super-
symmetric decomposition of the amplitudes [30,64]. Given
this form, it is straightforward to apply the parametrization
in Appendix A.1 and evaluate the contour integral over z, as
described in more detail in Sect. 3.1. Then, using the dictio-
nary in Appendix A.3, one can express the t-channel discon-
tinuity as a sum of discontinuities of the master integrals in
Eq. (A.5). Together with the discontinuity in the u channel
trivially obtained by crossing, and that in the s channel com-
puted by similar means, this allows one to reconstruct the
box, triangle, and bubble coefficients in the decomposition
of the MHV amplitude.

B.3 Higher-order Wilson coefficients

We here report all the results for dimension-6 and -8 Wil-
son coefficients in EHEFT, and dimension-12, -16, and -20
Wilson coefficients in GREFT. The results for EHEFT are
shown in Table 2, while the ones for GREFT are in Table 3
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