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Abstract: This paper presents new classes of exact radial solutions to the nonlinear ordinary dif-

ferential equation that arises as a saddle-point condition for a Euclidean scalar field theory in

D-dimensional spacetime. These solutions are found by exploiting the dimensional consistency of

the radial differential equation for a single massless scalar field, which allows it to transform into

an autonomous equation. For massive theories, the radial equation is not exactly solvable, but the

massless solutions provide useful approximations to the results for the massive case. The solutions

presented here depend on the power of the interaction and on the spatial dimension, both of which

may be noninteger. Scalar equations arising in the study of conformal invariance fit into this frame-

work, and classes of new solutions are found. These solutions exhibit two distinct behaviors as

D → 2 from above.

Keywords: quantum field theory; path-integral; vacuum decay; bounce; instantons; scale invariance;

conformal invariance

1. Introduction

Tunneling is a process allowed in quantum physics but not in classical physics. Tun-
neling amplitudes in quantum mechanics can be calculated approximately by using WKB
techniques [1–5]. In quantum field theory, the transition between a metastable (false)
vacuum state and the true ground state (vacuum) is a tunneling process. This process
can be studied in field theory in the spacetime dimension D by using the path-integral
representation of the Euclidean partition function Z . Here, we consider a field theory for a
scalar field ϕ for which Z is given by the path-integral

Z = N
∫

Dϕ exp(−S[ϕ]/h̄). (1)

In the semiclassical limit [6–9], Z is approximated by calculating fluctuations around the

classical solution ϕc of the equation of motion
δS[ϕ]
δϕ(x)

= 0 for the scalar field ϕ [10]. The usual

form of S[ϕ] is

S[ϕ] =
∫

d4x
[

1
2 (∂µϕ)2 + 1

2 m2ϕ2 + g
4 ϕ4
]

(2)

for which the equation of motion is

∂2ϕ − m2ϕ − gϕ3 = 0.

For the massless case m2 = 0, there is a well-known explicit solution to this equa-
tion known as the bounce [6,11–15], but, for nonzero m2, there are no known explicit
solutions (for D ̸= 1). This paper presents new classes of solutions for the case in which
the Euclidean spacetime dimension D is noninteger and the power of the scalar inter-
action may differ from four. Generalizing the power of the interaction is natural in the
context of the δ-expansion [16–18] approach to quantum field theory and in the field of
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PT -symmetric quantum field theory [19–26]. Thus, instead of action (2), we consider the
more general action

S [ϕ] =
∫

dDx
[

1
2 (∂µϕ)2 + 1

2 m2ϕ2 + λϕ2+ϵ
]

,

where ϵ is a real parameter. The equation of motion for this more general action is

∂2ϕ − m2ϕ − (2 + ϵ)λϕ1+ϵ = 0. (3)

This nonlinear partial differential equation cannot be solved in closed form. However,
in [27], the general partial differential equation

∂2ϕ − U′(ϕ) = 0 (4)

is considered in D-dimensional Euclidean space. For the class of real admissible functions,
U is assumed to have the following four properties:

1. U(ϕ) is continuously differentiable;
2. U(0) = U′(0) = 0;
3. U(ϕ) is not positive definite;

4. U(ϕ)− a|ϕ|α + b|ϕ|β ≥ 0, where a, α, b, and β are positive and α < β < 2D/(D − 2).

Apart from the trivial solution ϕ = 0, (4) has at least one monotone spherically
symmetric solution that vanishes at infinity. If the conditions above are satisfied, the
action for such a solution is less than that for any solution that is not spherically symmetric
and monotone.

Consequently, we replace the differential Equation (3) with the spherically symmetric
ordinary differential equation

ϕ′′(r) + D−1
r ϕ′(r)− m2ϕ(r)− (2 + ϵ)λϕ1+ϵ(r) = 0. (5)

In this paper, we apply techniques taken from the theory of ordinary differential
equations to solve the massless version of the radial equation of motion (5) and discover
infinite numbers of new solutions. We discuss the limiting behavior of two classes of
these solutions as D approaches two from above. We clarify the role of scale invariance
in restricting the class of solutions with finite action. We also show how the notions of
boundary layer theory can be applied to justify the use of these massless solutions to
approximate the contributions of massive solutions.

2. The Role of Scale Invariance

Consider the Euclidean action Sm[ϕ] =
∫

dDx Lm[ϕ(x)] derived from the Lagrangian

Lm(ϕ) =
1
2 ∂µϕ∂µϕ + 1

2 m2ϕ2 − λm2+ϵ−ϵD/2ϕ2+ϵ, (6)

where λ is a dimensionless coupling constant. (In PT -symmetric models λ may be
complex [20].) Scale invariance requires that a solution ϕc(x) of the equations of motion satisfies

0 =
d

dη
S[ϕc/η]

∣

∣

η=1

= −
∫

dDx
(

[∂µϕc(x)]2 + m2ϕ2
c (x)

)

+ (2 + ϵ)λm2+ϵ−ϵD/2
∫

dDx ϕ2+ϵ
c (x). (7)

Hence,

(2 + ϵ)S[ϕc] =
1
2 ϵ
∫

dDx
[

∂µϕc(x)
]2

+ 1
2 ϵ m2

∫

dDx [ϕc(x)]2 . (8)
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Similarly, d
dη S[ϕc(ηx)]

∣

∣

η=1
= 0, which implies that

S[ϕc] =
1
D

∫

dDx
[

∂µϕc(x)
]2

> 0. (9)

Thus, assuming that S[ϕc] is finite, we deduce from (8) and (9) that

[(− 1
2 D + 1)ϵ + 2]S[ϕc] =

1
2 ϵm2

∫

dDx [ϕc(x)]2.

We conclude that, for ϵ = 4
D−2 , there are only solutions with m = 0.

3. The Role of Mass

Explicit massive solutions cannot be found for D ̸= 1. We redefine the field variable
as ϕc(x) = α φ(mx), where α = mD/2−1(2 + ϵ)−1/ϵλ−1/ϵ. In terms of this new field, the
classical equation of motion is

−φ′′(mx) + φ(mx)− φ1+ϵ(mx) = 0.

As noted earlier, the smallest-action solution is radially symmetric in the variable
r = |mx − mx0|, where x0 is an arbitrary point in Euclidean spacetime. The equation
of motion now reads

−φ′′(r)− D−1
r φ′(r) + φ(r)− φ1+ϵ(r) = 0.

This equation does not have solutions that obey the boundary conditions for a
bounce [6,28], but a solution may have a bounce-like core. Indeed, for an ϵ > 0 and
a small ϕ, and using dominant balance, we can solve the equation

−φ′′(r)− D−1
r φ′(r) + φ(r) = 0 (10)

for a large r, which has the independent solutions r(2−D)/2I(D−2)/2(r) and r(2−D)/2K(D−2)/2(r),
where I(D−2)/2(r) and K(D−2)/2(r) are modified Bessel functions of the first and second
kind [1]. We are interested in finite actions, so we choose K(D−2)/2(r) since it falls off
exponentially with r; the function I(D−2)/2(r) increases exponentially with r and will not
be considered. This large-r outer solution can be matched [1] with the small-r inner solution,
which we obtain in the massless approximation used in the next section. The scale of
the core of this solution in x is of the order 1/m. For a small r, the D−1

r
d
dr term in (10) is

large compared to the terms of the order one. Ignoring these smaller terms, we obtain the
massless equation considered in the remainder of this paper.1

The concepts used above originate in boundary layer analysis [1]. We treat the central
core of a soliton as the outer regions and the edges of the soliton as the boundary layer or
inner regions. In the inner regions, the soliton varies rapidly and decays exponentially to
zero on a scale determined by the mass term. In the core regions, the soliton is slowly
varying, and this regions makes the principal contribution to the action; in this core regions,
the mass term in the Lagrangian is neglected. For massless classical solutions, there are
quantum fluctuations that radiatively generate masses [6,29–31]. Consequently, massive
solutions may not have a dominant role in the physics of tunneling.

4. Solutions of the Massless Equation

The massless field theory for a scalar field ϕ(x), where x ∈ R
D, is given by the Lagrangian

L(ϕ) = 1
2 ∂µϕ∂µϕ + λϕ2+ϵ. (11)
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The semiclassical evaluation of the path-integral

Z =
∫

Dϕ exp

[

−
∫

dDx L(ϕ)
]

(12)

requires the solution of the saddle-point equation

∂µ∂µϕ − (2 + ϵ)λϕ1+ϵ = 0. (13)

(The cases ϵ = −1, −2 are trivial and will not be considered.)
This equation is invariant under a translation of x by x0; in terms of r = |x − x0|, the

radially symmetric solution of (13) is found by solving

ϕ′′(r) + d
r ϕ′(r)− λ(2 + ϵ)ϕ1+ϵ = 0, (14)

where d = D − 1. Ordinarily, the boundary conditions used in studies of vacuum decay [6]

are
dϕ
dr

∣

∣

r=0
= 0 and limr→∞ ϕ(r) → ϕ0.

Note that (14) is dimensionally consistent; that is, it is invariant under a scale change
in r [1]. For dimensional consistency, we make a change of variable from ϕ(r) to f (r):
ϕ(r) = f (r)r−2/ϵ. This leads to an equidimensional equation (an equation that is invariant
under r → αr) [1]:

r2 f ′′(r) + (d − 4
ϵ )r f ′(r) + 2

ϵ2 [2 − (d − 1)ϵ] f (r)− λ(2 + ϵ) f 1+ϵ(r) = 0. (15)

We make the further change of variable r = et, which is equivalent to substituting
r d

dr = d
dt . This gives a second-order autonomous equation in which the independent variable

does not appear explicitly:

ϵ2( d2

dt2 − d
dt )u(t) + ϵ(dϵ − 4) d

dt u(t) + 2[2 − (d − 1)ϵ]u(t)− λϵ2(2 + ϵ)u1+ϵ(t) = 0, (16)

where u(t) ≡ f (r). Equation (16) is an autonomous equation in t. This suggests substituting
a new function F(u) such that

u′(t) = F(u), (17)

which reduces the order of the differential equation by one [1].
In terms of F(u), we rewrite (16) as

F(u)F′(u) + (d − 4
ϵ − 1)F(u) + 2

ϵ2 [2 − (d − 1)ϵ]u − λ(2 + ϵ)u1+ϵ = 0, (18)

which is a first-order equation.

5. Classes of Instanton Solutions

5.1. Solutions with Nonpolynomial F(u)

If d = 4
ϵ + 1, (18) is easy to solve:

F(u) = ±
√

2(2ϵ−2u2 + λuϵ+2 + c)1/2, (19)

where c is a constant. This leads to

(2ϵ−2u2 + λuϵ+2 + c)−1/2du = ±21/2dt. (20)

It is easiest to integrate (20) for c = 0; if c ̸= 0, one can represent the solution in terms
of elliptic functions. For c = 0, we find the class of solutions

ϕ(r) = a(r2 + ρ2)−2/ϵ, (21)
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where ρ is a scale that arises from a constant of integration and a ≡
[(

2ρ2
)

/
(

λϵ2
)]1/ϵ

. For
ϵ = 2, we recover the Fubini–Lipatov instanton [11,12], which has a finite action. For the
general case, we also have finite action, which is proportional to B = B1 + B2, where

B1 =
1

2

∫ ∞

0
dr rd (∂rϕ)2, B2 = λ

∫ ∞

0
dr rd ϕ2+ϵ. (22)

The indefinite integrals I1(r) and I2(r) for B1 and B2 are given in terms of hypergeo-
metric functions:

I1(r) =
ϵ

4(1 + ϵ)ρ4+8/ϵ
r4(1+1/ϵ)

2F1

(

2 +
2

ϵ
, 2 +

4

ϵ
, 3 +

2

ϵ
,− r2

ρ2

)

and

I2(r) =
ϵa2+ϵ

(4 + 2ϵ)ρ4+8/ϵ
r2+ 4

ϵ 2F1

(

2 +
4

ϵ
,

2 + ϵ

ϵ
, 2 +

2

ϵ
,− r2

ρ2

)

.

Both I1(r) and I2(r) are finite at r = 0 and r = ∞, so these generalized instantons
have finite action. In a PT -symmetric theory λ = giϵ, where g > 0, ϕ is complex in general.
For ϵ = 4, d = 2 (D = 3). For ϵ = 2, d = 3 (D = 4); the solution is real for a positive λ,
and it is the well-known bounce solution studied in false vacuum decay [6]. The bounce
solution for ϵ = 4, d = 2 is not typically discussed and, to the best of our knowledge, is
new. The general solution for ϵ = 4

d−1 is new. Here, d may be noninteger.

5.2. Solutions with Polynomial F(u)

If the linear term in F in (18) is present, the method above does not apply. However, a
different method of solution can be devised for a special family of d. This is an entirely new
family of solutions that can be considered as inner solutions for solitons.

The case ϵ = 2 in (18) leads to

F(u)F′(u) + (d − 3)F(u) + (2 − d)u − 4λu3 = 0. (23)

We substitute F(u) = a0 + a1u + a2u2 into (23).2 Matching powers of u, we obtain four
simultaneous equations:

a0a1 + (d − 3)a0 = 0,

a2
1 + 2a0a2 + (d − 3)a1 + 2 − d = 0, (24)

3a1a2 + (d − 3)a2 = 0,

a2
2 − 2λ = 0.

The key feature of these equations is that the number of equations exceeds the number
of variables. (Note that d = 3 is a special case discussed in Appendix A, so we consider
d ̸= 3.) Upon solving (24) in sequence, we obtain two solutions:

d = 0 with a0 = 0, a1 = 1, a2 = ±
√

2λ;

d = 3/2 with a0 = 0, a1 = 1/2, a2 = ±
√

2λ.

The case ϵ = 4 in (18) leads to

F(u)F′(u) + (d − 2)F(u)− 6λu5 + 1
4 (3 − 2d)u = 0. (25)
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We substitute F(u) = a0 + a1u + a2u2 + a3u3 into (25). Then, matching powers of u, we
obtain six equations in four unknowns:

(d − 2 + a1)a0 = 0,

1
4 (3 − 2d)− (2 − d)a1 + a2

1 + 2a0a2 = 0,

(d + 3a1 − 2)a2 + 3a0a3 = 0, (26)

(d + 4a1 − 2)a3 + 2a2
2 = 0,

5a2a3 = 0,

a2
3 − 2λ = 0.

The solution to these equations is

a0 = 0, a1 = 1
2 − d

4 , a2 = 0, a3 = ±
√

2λ.

From the second of these equations, we deduce that either d = 0 or d = 4
3 ; that is,

a1 = 1
2 or a1 = 1

6 . (We consider the cases ϵ = 6, 8 in the Appendix A.) In these examples,
there are always ϵ + 2 equations and ϵ

2 + 2 unknowns, so there are always more equations
than unknowns. It is remarkable that solutions to these coupled quadratic equations exist.
This is because these systems of equations are actually not independent. Perhaps this is
because these equations are related to the existence of an increasing set of conservation
laws in the theory of solitons as d → 1 or d = 0 [32].3 Validating this conjecture would be
difficult and is beyond the scope of this work [34,35].

The following pattern emerges and has been verified: For ϵ = 2n (n = 1, 2, 3, . . .), the
solutions to (18) require that either d = 0 or d = n+2

n+1 . For d = n+2
n+1 = ϵ+4

ϵ+2 , we have

F(u) = a1u + an+1un+1, (27)

where a1 = 1
n(n+1)

and an+1 = ±
√

2λ. For d = 0, we have a1 = 1
n and an+1 = ±

√
2λ. From

(17), for ϵ = 2n, we have

du

dt
=

{

1
n u ±

√
2λun+1 (d = 0),

1
n(n+1)

u ±
√

2λun+1 [d = (n + 2)/(n + 1)].
(28)

To summarize, for d = 0, a family of solutions is

u =

(

α exp(t)

1 +
√

2λ αn exp(t)

)1/n

, (29)

where the constant α > 0; the corresponding ϕ is given by

ϕ =

(

α

1 +
√

2λαn exp(t)

)1/n

. (30)

This has a finite action, as we see by evaluating B1 and B2 in (22). A corresponding set of
solutions arises if the negative sign is taken in (28). For d = n+2

n+1 , a family of solutions is

ϕ =

(

α exp
(

− nt
n+1

)

1 +
√

2λ n(n + 1)α exp
(

t
n+1

)

)1/n

, (31)

whose action is not finite. It is possible that such solutions could play the role of an outer
regions in a boundary layer analysis, as mentioned earlier. Note that d = 0 corresponds
to D = 1 [32] and (11) resembles quantum mechanics with a power potential. If n → ∞,
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this potential becomes a square well. The solutions above may have implications for strong
coupling behavior in quantum mechanics in unstable or PT -symmetric potentials.

Since d = n+2
n+1 corresponds to D = 2+ 1

n+1 , D approaches two as n → ∞. As discussed
below, such solutions for a large n are distinct from those leading to the singular limit
D = 2 in the context of conformal field theory.

5.3. Conformally Invariant Equations

The dilatation operator involved in scale invariance is part of the conformal group,
which is infinitely dimensional at D = 2. It is of interest to examine the approach to
D = 2 from above in terms of our solutions where D is noninteger. We first consider the
formulation of the action in terms of conformal invariance [36,37] and show that there are
two different families of solutions as we approach D = 2 from above. The conformally
invariant action [38] is

S =
∫

dDx
(

1
2 ∂µϕ∂µϕ − λϕ2+ 4

D−2

)

(32)

for D ̸= 2. For D = 4, we have a ϕ4 interaction, which is classically conformally invari-
ant [36,39]. We are interested in solutions to (14) as D → 2 from above. The classical
Lagrangian is conformally invariant in the dimension D ̸= 2. The scaling dimension [40,41]
of ϕ is 1

2 (D− 2) and S in (32) is invariant under the infinitesimal transformation ϕ → ϕ+ δϕ,
where

δϕ = vα∂αϕ + D−2
2D ϕ∂αvα; (33)

vα is the conformal Killing vector in flat space [39]. We use our earlier methods for solving
the radial form of the equation of motion for the action (32).

In our formalism, (32) represents a theory with ϵ = 4
D−2 , so, for the conformally

invariant equation

F(u)F′(u)− 1
4 (D − 2)2u + 2λD

D−2 u
D+2
D−2 = 0. (34)

This fits into our framework of nonpoynomial solutions. However, we find additional
solutions not covered by this case as D approaches two. For ϵ = 2n, we have D = 2 + 2

n
and, using the methods outlined above, we find that

u(t) = [2λn2 sinh2(t + β)]−1/(2n) , (35)

where β is a constant of integration and λ > 0.
We have thus found two new families of solutions as D approaches two from above.

One is through conformally invariant solutions, and the other is through solutions that can
be real or complex depending on the sign of λ and that are not conformally invariant. A
discussion of existence theorems of solutions for the Euler–Lagrange equation for (32) is
given in [42] and related works [43,44].

6. Conclusions

We have found many novel solutions to the saddle-point equations for scalar field
theories. The possibilities for fractional interactions allow for new deformations of Hermi-
tian field theories that could be relevant for nonpolynomial field theory [16] and also for
PT -symmetric field theory [19,20,22–25]. Furthermore, we have produced two different
limiting procedures toward D = 2. In principle, our solutions allow for semiclassical
evaluation of path-integrals for unconventional field theories where canonical methods are
cumbersome or impossible.
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Appendix A

In this Appendix, we briefly describe two more examples of exact instanton solutions.
These examples are an additional illustration that the result of (27) holds.4 The case ϵ = 6
in (18) leads to

F(u)F′(u) +
(

d − 5
3

)

F(u)− 8λu7 − 1
9 (3d − 4)u = 0. (A1)

We substitute F(u) = a0 + a1u + a2u2 + a3u3 + a4u4 into (A1), match powers of u, and
obtain eight equations in five unknowns:

a0a1 +
(

d − 5
3

)

a0 = 0,

a2
1 + 2a0a2 +

(

d − 5
3

)

a1 +
1
9 (4 − 3d) = 0,

3a0a3 + 3a1a2 +
(

d − 5
3

)

a2 = 0,

4a0a4 +
(

d − 5
3

)

a3 + 4a1a3 + 2a2
2 = 0, (A2)

(

d − 5
3

)

a4 + 5a1a4 + 5a2a3 = 0,

2a2a4 + a2
3 = 0,

a3a4 = 0,

a2
4 − 2λ = 0.

Solving (A2) in reverse order, we obtain a4 = ±
√

2λ, a2 = a3 = a0 = 0, a1 =
(

1
3 − d

5

)

.

From the second equation of (A2), we deduce that either d = 0 or d = 5/4.
The case ϵ = 8 in (18) leads to

F(u)F′(u) +
(

d − 3
2

)

F(u)− 10λu9 + 1
16 (5 − 4d)u = 0. (A3)

We substitute F(u) = a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5 into (A3) to obtain ten
equations in six unknowns:

(a1 + d − 3
2 )a0 = 0,

5 − 4d − 24a1 + 16a2
1 + 32a0a2 + 16da1 = 0,

a1a2 + a0a3 +
1
6 (2d − 3)a2 = 0,

a2
2 + 2a1a3 + 2a0a4 +

1
4 (2d − 3)a3 = 0,

a2a3 + a1a4 + a0a5 +
1

10 (2d − 3)a4 = 0,

a2
3 + 2a2a4 + 2a1a5 +

1
6 (2d − 3)a5 = 0,

a3a4 + a2a5 = 0,

a2
4 + 2a3a5 = 0,

a4a5 = 0,

a2
5 − 2λ = 0.
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The solution to these equations follows the pattern of the solutions for ϵ = 2, 4, 6 above:

a0 = a2 = a3 = a4 = 0, a5 = ±
√

2λ, a1 = 1
4 − d

6 .

Hence, either d = 0 or d = 6/5.

Notes

1 It was shown in [27] that massive solutions exist in our case for D < Dc = (4 + 2ϵ)/ϵ.
2 No new solutions are obtained by generalizing to Laurent polynomials. If F is a polynomial of degree p, the term F(u)F′(u),

which is of order 2p − 1, needs to be ϵ + 1 for F to satisfy (18).
3 A conformal field theory has an infinite number of conservation laws at d = 1 [33].
4 One should be aware of the 1-2-3-infinity fallacy in which one makes a general conclusion based on a few examples. A

nice example of small-n behavior giving an incorrect answer for a general n is provided by the integral
∫ ∞

0 dx fn(x), where

fn(x) = ∏
n
k=1 sin

(

x
2k−1

)/

x
2k−1 . The integrals

∫ ∞

0 dx fn(x) = π
2 for n ≤ 7, but this relation fails at n = 8. However, we have

carefully checked that there are no such problems with the solutions presented in this paper.
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