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Abstract

It is shown that static purely electric or purely magnetic abelian
field configurations in Yang-Mills theory are unstable when the electric
or magnetic field strength is too large over too wide a region. The
critical parameter is gEL2 (gBLZ) where E (B) is a measure of the field

strength, and L is a measure of the distance over which such field

strengths extend.
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I. Introduction and Summary

It was shown some time ago by Man.dula1 that the Coulomb solution
to the Yang-Mills field equations in the presence of a static external
source is unstable when %%—exceeds some critical value., Here g is the
gauge coupling constant and Q is the total external charge. The method
used in such a stability analysis is simply to linearize the Yang-Mills
equations with respect to the small oscillations around the Coulomb

solution and to see whether these small oscillations do or do not have

eigenmodes which grow exponentially in time.

In this paper, it is our purpose to show that the instability of
abelian field configurations in Yang-Mills theory is quite a general
phenomenon. We call a field configuration abelian if it is lined up
everywhere in the same direction of isospin, or if it can be lined up
in this way by a gauge transformation. In Sections II and III, we will
consider respectively purely electric and purely magnetic static abelian
field configurations and show that they are unstable under small pertur-
bations when gEL2 (or gBL2 in the magnetic case) exceeds some critical
value which depends on the shape of the configuration. Here E (B) is
a measure of the electric (magnetic) field and L is a length character-
izing the volume over which such a electric (magnetic) field
extends and in which the small perturbations are applied. The in-
stability of these field configurations arises because gluons can be
"pulled out of the vacuum" which screen the initial electric or magnetic
field by creating opposing color charge and color current demsities.

The instability of the Coulomb solution is a particular case of

this general phenomenon. One should note in this regard that the critical
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parameter gELz, in the case of the Coulomb solution, is equivalent to

the critical parameter-%%, since E = é%“fi for the Coulomb solution.

At any rate, the critical parameter is always the one dimensionless

parameter available. Let us recall that g has dimension of (action)_%,

Q has dimension of (ac:tion)l/2 and E has dimension of (,eau’:t:‘.on)l/2 (length)_z.
We study the stability of Yang~Mills field configurations indepen-

dently of the sources that create these configurations, by choosing to

consider small oscillations only in the region of space from which the

sources are absent. In particular, we make it clear that the instability

Mandula found for the Coulomb solution, exists independently of the way

the external source is treated.

II. Stability Analysis of Abelian Electric Field Configurations

Let us consider an abelian static electric field configuration which

satisfies the Yang-Mills equations in a region R free of external sources:

->
>3 a3v

B2 = -5 AO(SE) , v“A =0 inR (2.1)

(Here, as in the rest of the paper, we have taken for simplicity the gauge
group to be SU(2). The generalization to larger gauge groups is a straight-
forward.) We will show that if such an electric field is too strong

over too wide a region, it becomes unstable under small perturbations.

Let us thus consider small time-dependent deviations from our background

field configuration:
> a _ La,>
AT = § Ao(x) s Ai(x) = ai(x,t) (2.2)

where the a?(%,t) vanish on the boundary of the space region R and are



small compared to AO and to 1 9. A . We have chosen to work in the

gA, 10

gauge where the oscillations in the Ao field vanish. Neglecting terms

which are quadratic or higher in the ai fields, we obtain for the field

strengths:
g2 = 72 = 6235 4 432 o g0, P (2.3)
1 (o} R 1 1 o]
B2, = F%, = 3.a% - 2,ad + o(a)? (2.4)
ij ij i joi

We use the dot over a field to indicate that the time derivative has

been taken. The linearized Yang~Mills equations are:

(DuF“°)a = (DiEi)a

- VP gPra G 42T = 0 (2.5a)
(DuFuj)a = —(DoEj)a + (DiBij)a

= —a‘;‘ + aiaia‘;‘ - ajaiai

+ zgs3abAOé‘j’ - gz(ag‘sg - &3 (Ao)za‘J? = 0 (2.5b)

The oscillations along the 34 direction of isospin just obey the free

Maxwell equations:
7.2 - o0
Fx GxEH -2 = o (2.6)

These oscillations do not see the background field and do not produce

any instabilities. This is of course identical to what happens in pure

electromagnetism. On the other hand, the oscillations along the Ist and
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2d directions of isospin do see the background field. It is useful to

introduce the complex field 3 = 314-i§2, in terms of which Egqs. (2.5)

for a=1 and 2, become:
Ved+aga @B + 25941 = 0 (2.7a)
2 -Fx@xa) - Zingé + (,ng)z}E = 0 (2.7b)
or, more compactly:
X.03 -0 F-2) = 0 , (2.8a)
DD A+ ¥Tx@Tx3) = 0 (2.8b)

with Doz =3 + igAOE. For an eigenmode of frequency w, g(;,t) = g(g)elwt’

we have:
> > > >
(w + gAO) Vea+ 2ga -VAO = 0 (2.9a)
2> > > > > 2>
wa = Vx({¥ xa) - Zngma - (gAO) a (2.9b)

Gauss' law, Eq. (2.9a), is now superfluous since it follows from taking
the divergence of the equation of motiom (2.9b).

In Coulomb gauge, 3'-3 = 0, we have:

W22 = %3 - 26h w3 - (ng)zi; (2.10)

The first term on the RHS of Eq. (2.10) is positive definite but becomes
relatively unimportant when the size of the region R, in which the small
oscillations are allowed, is large. The last term on the RHS of Eq.

(2.10) is negative definite and proportional to the square of the back-

ground E field. Consequently, Eq. (2.10) will in general have runaway
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solutions -- i.e., eigenmodes with imaginary w -- when the background E
field is large enough over wide enough regions.
As an illustrative example, we will consider a constant electric

field in a cylindrical box of radius R and length 2L:

Ao(p,¢,z) = ~Ez for p <R and -L < z < +L

where p, ¢ and z are the usual cylindrical coordinates. Equation (2.10)

becomes in this case:

Wl = V23 + 28 Ez0a - (gE2)% 3 (2.11)

Let us use the ansatz:

a = $x) ¥(z) (2.12)

¥ (p) must then satisfy the Bessel equation of index one, and vanish at

p=R. Thus

xn(o) = Jl(knp) n=1,2,3,... (2.13)

B

where kn = _E—{E and the Bn are the zeros of Jq (Bl= 3.831, 82=7.002,

By= 10.174,...). For a given n, Y(z) must be solution of:

2 82 2
fw’ - ()% ¥(2) = [~ 5 + 2gRuz - (gE2)” | ¥(2) (2.14)
oz

with the boundary conditiom: ¢(z=32L) = 0. It is useful to redefime:

u = -E—, v =wL and Kn=knL, in terms of which Eq. (2.14) becomes:
2 2 32 22 .
v - (.Kn) 1y = |-—5+ 2pvu — p u” | pu) (2.15)
Ju

where p= gEL2 and with the boundary condition: y(u=z1) = 0. When the
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parameter p increases beyond a certain critical value Pcrit’ solutions

to Eq. (2.15) with negative v2 appear; these are unstable modes. Of

course, the n=1 modes will become unstable first. Pcrit is the wvalue

of p'for which Eq. (2.15) with n=1, has its first eigenmode with v =0.

Thus Pcrit is determined by the condition that the solution of:
2 32 2 2
-(Kl) Yp(u) = (— ;;E - PCrit u ) ¥ (u) (2.16)

has its first zero (node) at u=+l. The solutions of Eq. (2.16) are the
parabolic cylinder functions. In Fig. 1, P is plotted as a function

crit
L !

of R =383

We find, of course, that Pc increases when R decreases.

1 rit
When R—+>w, PCrit approaches ~8.0,

ITI. Stability Analysis of Abelian Magnetic Field Configurations

Let us now consider an abelian static magnetic field configuration
which satisfies the Yang-Mills equations in a region R free of external

sources:
a ,~» _ a3 -+ >
Bij(x = § (BiAj(x) aj Ai(x)) (3.1)
with

ai(aiAj&) - 3, Ai(zc’)) = 0 inR (3.2)

We will show that such a B field configuration becomes unstable under
small perturbations, WhenAgBL2 exceeds a certain critical value. Here

B is a measure of the magnitude of the magnetic field, and L is a measure
of the spatial size of the region over which such a magnetic field extends,

and in which the small perturbations are applied. The distance over which
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the magnetic field extends in the transverse direction becomes unim-
portant when it is larger than a few times 1//§§. The critical value
of ngz, where & is the distance over which the magnetic field extends
in the longitudinal direction, is then of order wz‘

Let us thus consider small oscillations around our background

field configuration in A0==O gauge:

A =0

A?(;,t) = ab3Ai(§) + a‘; Z,t) (3.3)

where the a: are small and vanish outside and on the boundary of R. To

first order in ag, the electric and magnetic fields are:

E. = a,
i i
B = P3(.A, - 9,A) +0,a0 -3, a"
ij i i i i
3be c c
- g€ (Aiaj - Aj ai) (3.4)
The linearized Yang-Mills equations are:
. 4 -
G-BHP = T2 - gMCE 2 - o0 (3.5a)
(-D _E, +D.B..)b = —'ait.’+a.a.al?- 3.3, a’
o i7ij 3 ii7j joii

2,.:b b.3 c c
- - 2Ry - 838 (ag A Al - AA af)

A3bc c c c
+ ge [—(aiAi)aj + (Biai)Aj - ZAi 3 aj

(] [ o4 Cc
+ 2a; 3, Aj - a; aj Ay + A aj ai] (2.5b)

+b . iwt
Je

For an eigenmode of frequency w# 0, 2?(§,t) = a (x , Gauss' law



Eq. (3.5a) implies:

>
3'—5b—g3bCA 2% = 0 (3.6)

which can be used to simplify Eq. (3.5b) to:

b b 2,.b b
—aj+aiaiaj-g(‘6c 3 )AA aJ

+ ge I:—(E)]._A]._)aJ - 2A, 31 aJ

+ Zai(aiAJ. - aj Ai)] = 0 (3.7)
The modes along the 3d direction of isospin simply satisfy Maxwell's
equations:

V.32 = o0

23 Le¥B - ) (3.8)

They do not see the background B field and do not produce any instabilities.
On the other hand, the modes along the lst and 2d directions of isospin

do see the background field. It is useful to define the complex field:

2 0= by (3.9)

in terms of which the linearized Yang-Mills equations become:

$-Z+igz-z = 0 (3.10a)
—a+\72§—g (A) a
+;g[($-K)Z +28,0,3 - 2Bx3] = 0 (3.10b)
or more succintly:
B.-a =0 (3.11a)
w2+ = —Dkag + 2ig -};x; (3.11b)
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e d '
with Dk; = akZ + igAm.a. Equation (3.11b) is the equation for a massless

charged particle with spin 1 in a magnetic field. The kinetic energy
term is positive definite, but the interaction energy of the spin with
the magnetic field can have either sign. We will show, that because of
the latter, Eq. (3.11b) has in general solutions with negative wz, i.e.,
unstable modes.

To illustrate this effect, we will use the example of a constant

magnetic field oriented in the z-direction of space:
> . > 1 .
B = zB and A = 0 ¢pB (3.12)

where z, p and ¢ are the usual cylindrical coordinates. One obtains:

2
wa = —DkaaE - Zgr-:Bae
2 . o9 1 2.2 2
= [—V - igB 3¢+4 g" B p ZSgB] a_ (3.13)
where € = -1, 0, +1 and:
a, = 3, s a,; = a, + iay (3.14)

Because of the presence of a harmonic oscillator potential in Eq. (3.13),

it is useful to introduce the creation and annihilation operators:

_ 9 .1 + _ _ 9 .1
CX = 3% + 5 gBx s CX = Y. + 5 gBx
) 1 + 9 1
- 2 .1 = -2 4+ = 3.15
cy ay+2g13y , cy ay+2gBy ( )
which satisfy:
+ + _ + -
[CX,CX]—[Cy,Cy]—gB R [cx,cy]—[cx,cy] 0 (3.16)



and

1 + 1 +
c. = — (C_-1iC , = = + i
u . (c -1 y) C, - (o 1Cy)
1 + 1 -+ +
c, = — (C_+iC , = = (C_-1iC 1
a - (€ +1icy) C4 > (Cy-1C)) (3.17)

which satisfy similar commutation relations. We haver

2 2
_<_§_2_+__3__2_>+_11;_82B2 2 = C+CX+ C+C + gB
x- 9y X vy
+ +
= ¢cC, t cdcd + gB (3.18)
and
o oy 2 o Lo cte ot
LZ (-1i) 5 2B (CuCu Cdcd) (3.19)
Thus, Eq. (3.13) becomes:
2 32 +
wfa = |--*=+2cC + (1-2)gBla (3.20)
€ 8z2 uu €
whose solutions are:
_l_ngz
_ ikz , +n . +D0-m T4

for n=0,1,2,3,... and m=n, n-1, n-2,... with eigenfrequencies:

w2 = k2 + gB (1 - 2¢ + 2n) (3.22)

and eigenvalues of the z-component of angular momentum:

= 3.23
Lz Ze ; kym,m e ;s kyn,m ( )

We thus find that the ¢ =+1, n=0 eigenmodes are unstable for all values
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of m and small values of k. However so far, we have not yet made use of

Gauss' law Eq. (3.10a), which for our configuration Eq. (3.12) takes the

form:
sy a:::{ . 3:;? N aaazz + ig 9213_ (-sinp a_ + cosé ay)
- e er) B (Fede) M
= Ziz" +—;- (Cx-iCy) a, + % (—c:—ic;') a_y
. 2 Leta = o0 (3.24)

1
3z /-Z—Cua+1 - Ecua-l

It is clear that all the unstable modes (Eq. (3.21) with e=+1 and n=0)
do satisfy Gauss' law.
If we only allow small oscillations inside a box of length 2 along

. . . . ™ .
the direction of the magnetic field, we have k = PL where p 1s a non-zero

2
integer, and:
9 2“2
W = P_2—+gB (1-2e+2n) (3.25)
L
The unstable modes appear as soon as
ngz > 72 (3.26)

Note added

While this work was being written up, we received a preprint form

§.-J. Chang and N. Weiss3 in which similar calculations are performed.
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Figure Caption

Fig. 1. Plot of the critical value of gEL2 versus R/L, for a constant

electric field E in a cylindrical box of radius R and length

2L.
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