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Abstract 

It is shown that static purely electric or purely magnetic abelian 

field configurations in Yang-Mills theory are unstable when the electric 

or magnetic field strength is too large over too wide a region. The 

critical parameter is gEL2 (gBL2) where E (B) is a measure of the field 

strength, and L is a measure of the distance over which such field 

strengths extend. 

Submitted to Physical Review D 

* 
Work supported by the Department of Energy under contract number 
EY-76-C-03-0515. 



I 

-2- 

1. Introduction and Summary 

It was shown some time ago by Mandulal that the Coulomb solution 

to the Yang-Mills field equations in the presence of a static external 

99 source is unstable when 4a exceeds some critical value. Here g is the 

gauge coupling constant and Q is the total external charge. The method 

used in such a stability analysis is simply to linearize the Yang-Mills 

equations with respect to the small oscillations around the Coulomb 

solution and to see whether these small oscillations do or do not have 

eigenmodes which grow exponentially in time. 

In this paper, it is our purpose to show that the instability of 

abelian field configurations in Yang-Mills theory is quite a general 

phenomenon. We call a field configuration abelian if it is lined up 

everywhere in the same direction of isospin, or if it can be lined up 

in this way by a gauge transformation. In Sections II and III, we will 

consider respectively purely electric and purely magnetic static abelian 

field configurations and show that they are unstable under small pertur- 

bations when gEL2 (or gBL2 in the magnetic case) exceeds some critical 

value which depends on the shape of the configuration. Here E (B) is 

a measure of the electric (magnetic) field and L is a length character- 

izing the volume over which such a electric (magnetic) field 

extends and in which the small perturbations are applied. The in- 

stability of these field configurations arises because gluons can be 

"pulled out of the vacuum" which screen the initial electric or magnetic 

field by creating opposing color charge and color current densities. 

The instability of the Coulomb solution is a particular case of 

this general phenomenon. One should note in this regard that the critical 
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parameter gEL2, in the case of the Coulomb solution, is equivalent to 

the critical parameter g, since E = -$-$ for the Coulomb solution. 
r 

At any rate, the critical parameter is always the one dimensionless 

parameter available. Let us recall that g has dimension of (action) -s , 

Q has dimension of (action) % and E has dimension of (action) ' (length)-2. 

We study the stability of Yang-Mills field configurations indepen- 

dently of the sources that create these configurations, by choosing to 

consider small oscillations only in the region of space from which the 

sources are absent. In particular, we make it clear that the instability 

Mandula found for the Coulomb solution, exists independently of the way 

the external source is treated. 

II. .Stability Analysis of Abelian Electric Field Configurations 

Let us consider an abelian static electric field configuration which 

satisfies the Yang-Mills equations in a region R free of external sources: 

+a E = -sa3$Ao(;) , v2Ao =0 in R (2.1) 

(Here, as in the rest of the paper, we have taken for simplicity the gauge 

group to be SU(2). The generalization to larger gauge groups is a straight- 

forward.) We will show that if such an electric field is too strong 

over too wide a region, it becomes unstable under small perturbations. 

Let us thus consider small time-dependent deviations from our background 

field configuration: 

A: = 6 a3 Ao(;) , A; (xl = ai(g,t) (2.2) 

where the ai(z,t) vanish on the boundary of the space region R and are 
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small compared to A0 and to l8A gAo i 0' We have chosen to work in the 

gauge where the oscillations in the A0 field vanish. Neglecting terms 

which are quadratic or higher in the a: fields, we obtain for the field 

strengths: 

. 
E; = F;i = -ga3 aiAo + < - ge3abAo a: 

Ba = Fa 
ij ij = a.aa 

13 
- aj a: + o(a)2 

(2.3) 

(2.4) 

We use the dot over a field to indicate that the time derivative has 

been taken. The linearized Yang-Mills equations are: 

(D~F~')~ = (D~E~)~ 

. 
= ;;.PmgE 3ab[Ao($*sb ) + 2zb l ;;A01 = 0 

(D Fpj)a = 
u 

-(D~E~)~ + (DiBij)a 

- a.a.aa Jli 

+ 2ge 3abA ab 2 a3 2b - 0 g (~5~6~ - 6t)(Ao) aj = 0 

(2.5a) 

(2.5b) 

The oscillations along the 34 direction of isospin just obey the free 

Maxwell equations: 

;*i3 = 0 - 

1;3 -$X($Xg3)-a = 0 (2.6) 

These oscillations do not see the background field and do not produce 

any instabilities. This is of course identical to what happens in pure 

electromagnetism. On the other hand, the oscillations along the 1st and - 
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2a directions of isospin do see the background field. It is useful to 

introduce the complex field 3 = s1+d2, in terms of which Eqs. (2.5) 

for a=1 and 2, become: 

? l a + ig[Ao($ l z) + 2% *?A01 = 0 

. . 
-2 - $x ($xa) - 2igAo* + (gAo)2z = 0 

or, more compactly: 

27. (Do;) - Do(? l 2) = 0 

DOD02 +isx (6x:) = 0 

(2.7a) 

(2.7b) 

(2.8a) 

(2.8b) 

. 
with Do2 = 2 + igAos. For an eigenmode of frequency w, b<S,t) = Z(Z) e iot , 

we have: 

(w + gAo) ;j*;:+ 2gt*TjAo = 0 (2.9a) 

2-t 2-t 
wa = bx (v'xg) - 2gAowz - (gAo) a (2.9b) 

Gauss' law, Eq. (2.9a), is now superfluous since it follows from taking 

the divergence of the equation of motion (2.9b). 
-t 

In Coulomb gauge, $0 a = 0, we have: 

m2; = -v*;;: 2+ 
- 2gAowz - (gAo) a (2.10) 

- 

The first term on the RHS of Eq. (2.10) is positive definite but becomes 

relatively unimportant when the size of the region R, in which the small 

oscillations are allowed, is large. The last term on the RHS of Eq. 

(2.10) is negative definite and proportional to the square of the back- 

ground E field. Consequently, Eq. (2.10) will in general have runaway 



solutions -- i.e., eigenmodes with imaginary w -- when the background E 

field is large enough over wide enough regions. 

As an illustrative example, we will consider a constant electric 

field in a cylindrical box of radius R and length 2L: 

Ao(p,W) = -Ez for P<R and -L < z c +L 

where p, 41 and z are the usual cylindrical coordinates. Equation (2.10) 

becomes in this case: 

2+ Wa = -v2; f 2gEzw: - (gEz)2;: (2.11) 

Let us use the ansatz: 

+ 
a = c X(P) Jlw (2.12) 

x(-p) must th en satisfy the Bessel equation of index one, and vanish at 

p=R. Thus 

where kn 'n = 7 and the 

83 =10.174,...). For 

9 3 

X,(P) = Jl(knd n= 1,2,3,... (2.13) 

8n are the zeros of Jl (Bl= 3.831, B2=7.002, 

a given n, Jl(z) must be solution of: 

Cw’ - (knIAl G(z) = - 2- + 2gEwz - (gEz)L $(z) 
az* J 

(2.14) 

with the boundary-condition: '4 c-2 =+L) = 0. It is useful to redefine: 

u=z 
L' v=wL and ~~ =knL, in terms of which Eq. (2.14) becomes: 

cv2 - (.Knj21 ‘$(U) = + zpvu - p2u2 
I 

J, (Id (.2.15) 

where p=gEL2 and with the boundary condition: $(u= 51) = 0. When the 
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parameter p increases beyond a certain critical value Pcrit, solutions 

to Eq. (2.15) with negative v 2 appear; these are unstable modes. Of 

course, the n= 1 modes will become unstable first. Pcrit is the value 

of p for which Eq. (-2.15) with n= 1, has its first eigenmode with v= 0. 

Thus Pcrit is determined by the condition that the solution of: 

-(Kl)2 $b> = 
a2 - - - PZrit u* 
au2 

(2.16) 

has its first zero (aode) at u=+l. The solutions of Eq. (2.16) are the 

parabolic cylinder functions. In Fig. 1, Pcrit is plotted as a function 
K1 of+- 

3.831 ' We find, of course, that Pcrit increases when R decreases. 

When R+m, Pcrit approaches -8.0. 

III. Stability Analysis of Abelian Magnetic Field Configurations 

Let us now consider an abelian static magnetic field configuration 

which satisfies the Yang-Mills equations in a region R free of external 

sources: 

BTj & = e3(aiAjG, - aj Ai(h 

with 

ai(ai Aj (z) - aj A&)) = 0 in R 

(3.1) 

(3.2) 

We will show that-such a B field configuration becomes unstable under 

small perturbations, when gBL2 exceeds a certain critical value. Here 

B is a measure of the magnitude of the magnetic field, and L is a measure 

of the spatial size of the region over which such a magnetic field extends, 

and in which the small perturbations are applied. The distance over which 
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the magnetic field extends in the transverse direction becomes unim- 

portant when it is larger than a few times l/G. The critical value 

of gBt2, where R is the distance over which the magnetic field extends 
2 

in the longitudinal direction, is then of order 7~ . 

Let us thus consider small oscillations around our background 

field configuration in Ao=O gauge: 

A0 = 0 

A;(&) = sb3Ai(;) + a: (g,t) (3.3) 

where the ai are small and vanish outside and on the boundary of R. TO 

first order in ab,, the electric and magnetic fields are: 

Bb = 
ij 

ab3(a A ij - ajAi) + a.ab - a.ab 
1J J 1 

- Ex 3bc(Aiar - Aj ai) 

The linearized Yang-Mills equations are: 

<3*z)b l 
= ;;.sb-gE 

3bc 2, $ = o 

(-DEEP + DiBijjb = -2; + ai ai ai - aj ai a: 

- g2(sb - sbs3)(A A a' - A A aC) 
C 3c iij jii 

+ ge 3bCC-(aiAi)ai + (aiai)Aj - 2AiaiaT 

+ 2aCa A - iij a: aj Ai + Ai aj afl 

(3.4) 

(3.5a) 

(2.5b) 

For an eigenmode of frequency ~$0, zb(z,t) = Zb(Z)e iwt , Gauss' law 
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Eq. (3.5a) implies: 

iiGb - gE 3bc ;;. zc = 0 (3.6) 

which can be used to simplify Eq. (3.5b) to: 

-ii + a.a.a': - 
== J 

6: 6:) A.A.af. 
==J 

+ gE 3bClI-(aiAi)ai - 2Ai ai aJ' + 2aT(a. A. - aj Ai)1 = 0 (3.7) 
1 J 

The modes along the 36 direction of isospin simply satisfy Maxwell's 

equations: 

-a + V2Z3 = 0 1;3 
(3.8) 

They do not see the background B field and do not produce any instabilities. 

On the other hand, the modes along the 1st and 2fi directions of isospin - 

do see the background field. It is useful to define the complex field: 

3 +l a = a + iZ2 (3.9) 

in terms of which the linearized Yang-Mills equations become: 

. . 
-2 + v2;: - g2(;t)2z 
- 

+ igC($*Z)Z + 2AiaiZ - 2ZxZl = 0 

or more succintly: 

E; .: = 0 

2-t + 
wa = -DkDkz+ 2ig Bxz 

(3.10a) 

(3.10b) 

(3.11a) 

(3.11b) 
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with Dkz = akz + igAkz. Equation (3.11b) is the equation for a massless 

charged particle with spin 1 in a magnetic field. The kinetic energy 

term is positive definite, but the interaction energy of the spin with 

the magnetic field can have either sign. We will show, that because of 

the latter, Eq. (.3.11b) has in general solutions with negative w2, i.e., 

unstable modes. 

To illustrate this effect, we will use the example of a constant 

magnetic field oriented in the &direction of space: 

-t 
B = SB and ;r = +$PB (3.12) 

where z, p and I$ are the usual cylindrical coordinates. One obtains: 

2 wa = E -DkDkae - 2gsBae 

= -V2 - igB 1222 a+bgBp 
a4 

- 2cg B as 1 (3.13) 

where E = -1, 0, +l and: 

a = a +ia (3.14) 
0 Z 

, a+1 = "x Y 

Because of the presence of a harmonic oscillator potential in Eq. (3.13), 

it is useful to introduce the creation and annihilation operators: 

cx = @x , c;: = - & + + gBx 
- 

C , (3.15) 
Y = ay 

a + 3 gBy c; = - -?- + + gBy 
ay 

which satisfy: 

CC C+l = KY, C;l = gB x' x , ccx , cyl = cc;, cyl = 0 (3.16) 
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and 

C 
U 

=Jz: x 

-!- (C -icy> , C: = 

Cd = $ (Cx+iCy) , Ci = 

which satisfy similar commutation relations. We have: 

1222 
+cg B = C;Cx + $Cy + gB 

+ + 
= CuCu + CdCd + gB 

(3.17) 

(3.18) 

and 

LZ 

. a = (-1) g = 5 (c), - c&j 

Thus, Eq. (3.13) becomes: 

2 a2 ua = -- 
E az2 

+ 2~3, + (l- 2~) gB 
I 

aE 

whose solutions are: 

(3.19) 

(3.20) 

(3.21) 

for n=O,1,2,3,... and m=n, n-l, n-2,... with eigenfrequencies: 
2 

2 w = k2 + gB (1 - 2~ + 2n) (3.22) 

and eigenvalues of the z-component of angular momentum: 

Lz a e;k,n,m = m a~ ;k,n,m 
(3.23) 

We thus find that the e= +l, n=O eigenmodes are unstable for all values 
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of m and small values of k. However so far, we have not yet made use of 

Gauss' law Eq. (3.lOa), which for our configuration Eq. C3.12) takes the 

form: 

+ aa aa aa 
D*: = *+-y+yjf 

ay + ig sin$ax + cosOay) 

aao =- az 
. "+1 - a-l "+1 + a-l + 

2 -?- + $ gBx 
ay 2 

aaO = a,+$ (cx- icy) a+l + + (-c;- iCc) a-1 

=-+LCa aaO 

az 
-L C+a 

fi u +l - fi u -1 = 0 (3.24) 

It is clear that all the unstable modes (Eq. (3.21) with s=+l and n=O) 

do satisfy Gauss' law. 

If we only allow small oscillations inside a box of length R along 

the direction of the magnetic field, we have k = y where p is a non-zero 

integer, and: 

a2 = 2Ff + gB (1-2c+2n) (3.25) 

The unstable modes appear as soon as 

gBL2 > 7r2 (3.26) 

Note added 

While this work was being written up, we received a preprint form 

S.-J. Chang and N. Weiss3 in which similar calculations are performed. 
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Figure Caption 

Fig. 1. Plot of the critical value of gEL2 versus R/L, for a constant 

electric field E in a cylindrical box of radius R and length. 

2L. 
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