
1306 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 4, APRIL 2025

Qu-Trefoil: Large-Scale Quantum Circuit Simulator
Working on FPGA With SATA Storages

Kaijie Wei , Member, IEEE, Hideharu Amano , Life Member, IEEE, Ryohei Niwase , Member, IEEE,
Yoshiki Yamaguchi , Member, IEEE, and Takefumi Miyoshi

Abstract—Quantum circuits are fundamental components of
quantum computing, and state-vector-based quantum circuit
simulation is a widely used technique for tracking qubit behavior
throughout circuit evolution. However, simulating a circuit with
n qubits requires 2n+4 bytes of memory, making simulations of
more than 40 qubits feasible only on supercomputers. To address
this limitation, we propose the Qu-Trefoil, a system designed
for large-scale quantum circuit simulations on an FPGA-based
platform called Trefoil. Trefoil is a multi-FPGA system connected
to eight storage subsystems, each equipped with 32 SATA disks.
Qu-Trefoil integrates a suite of HLS-based universal quantum
gates, including Clifford gates (Hadamard (H), Pauli-Z (Z), Phase
(S), Controlled-NOT (CNOT)), the T gate, and unitary matrix
computation, along with HDL-designed modules for system-wide
integration. Our extensive evaluation demonstrates the system’s
robustness and flexibility, covering quantum gate performance,
chunk size, disk extensibility, and efficiency across different
SATA generations. We successfully simulated quantum circuits
with over 43 qubits, which required more than 128 TB of
memory, in approximately 3.72 to 13.06 hours on a single storage
subsystem equipped with one FPGA. This achievement represents
a significant milestone in the advancement of quantum computing
simulations. Furthermore, thanks to its unique architecture, Qu-
Trefoil is more accessible, flexible, and cost-efficient than other
existing simulators for large-scale quantum circuit simulations,
making it a viable option for researchers with limited access to
supercomputers.

Index Terms—State vector, quantum circuit simulation, quan-
tum computer, FPGA, Qulacs, HLS, Serial ATA.

Received 13 May 2024; revised 19 October 2024; accepted 17 December
2024. Date of publication 23 December 2024; date of current version 13
March 2025. This work was supported in part by the JST under Grant
JPMJPF2221/JPMJCR19K1, in part by the JSPS KAKENHI under Grant
JP21H04869/JP23K19979, in part by KIOXIA Corporation, and in part by
Tsukuba Innovation Arena (TIA). Recommended for acceptance by S. He.
(Corresponding author: Kaijie Wei.)

Kaijie Wei is with the Center for Sustainable Quantum AI, Keio University,
Minato City, Tokyo 108-0073, Japan (e-mail: wei@am.ics.keio.ac.jp).

Hideharu Amano is with the Systems Design Lab, The University of Tokyo,
Bunkyo-ku, Tokyo 113-0032, Japan (e-mail: hunga@dlab.t.u-tokyo.ac.jp).

Ryohei Niwase and Yoshiki Yamaguchi are with the Graduate School
of Systems and Information Engineering, University of Tsukuba, Tsukuba,
Ibaraki 305-8573, Japan (e-mail: niwase@lila.cs.tsukuba.ac.jp; yamaguchi.
yoshiki.ge@lila.cs.tsukuba.ac.jp).

Takefumi Miyoshi is with WasaLabo, LLC., Machida, Tokyo 194-0045,
Japan (e-mail: miyo@wasamon.net).

Digital Object Identifier 10.1109/TC.2024.3521546

I. INTRODUCTION

QUANTUM computing represents a revolutionary
paradigm that leverages the principles of quantum

mechanics to solve problems far beyond the capabilities of
classical computers. Unlike classical computing, where bits rep-
resent 0 or 1, quantum bits (qubits) can exist in superposition,
representing both 0 and 1 simultaneously. This characteristic
allows quantum computers to perform massively parallel
computations. Research on quantum algorithms, including
Shor’s algorithm [1], Grover’s algorithm [2], Quantum Phase
Estimation (QPE) [3], and others, has garnered worldwide
attention due to their exponential speedup, far surpassing
classical computing. According to the latest report from IBM,
it has unveiled an 1121-qubit quantum processor, Condor, and
plans to develop a 10,000-qubit quantum computer by 2029 [4].
However, handling such large-scale qubits remains highly chal-
lenging, even for IBM, which stems from issues like mapping
problems onto the machine’s topology and controlling all qubits
simultaneously due to noise and coherence time limitations.
On the other hand, quantum circuit simulation is critical for
developing and testing quantum algorithms because of several
limitations in the current state of quantum computers, including
noise, scalability, limited qubit connectivity, and others [5].

There are three primary types of quantum simulators: density
matrix [6], tensor network [7], and state vector (SV) [19]. Den-
sity matrix simulators can simulate mixed states and account for
noise and decoherence. On the other hand, tensor network sim-
ulators leverage the entanglement structure of quantum states
to reduce computational complexity, making them a favorable
option for handling larger circuits. Lastly, SV-based quantum
circuit simulators (QCSs) provide researchers with practical
tools for debugging and comprehending quantum circuits, as
they allow for an explicit representation of quantum states, a
popular method among researchers studying their algorithms.

Simulating large-scale quantum circuits using SV presents
significant challenges, particularly regarding resource require-
ments and simulation speed. Simulators become impractical as
the number of qubits increases due to the exponential resource
requirement of 2n+4 bytes for n qubits, where each state vector
is stored using double-precision floating-point complex num-
bers. The representations of double-precision floating-point are
especially critical for applications requiring long-term coher-
ence or involving highly sensitive calculations, such as quantum
error correction (QEC), phase estimation, and fault-tolerant

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information,
see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-3782-2177
https://orcid.org/0000-0002-9371-2060
https://orcid.org/0009-0001-6529-6127
https://orcid.org/0000-0001-9744-8271
https://orcid.org/0009-0009-0536-9644
mailto:wei@am.ics.keio.ac.jp
mailto:hunga@dlab.t.u-tokyo.ac.jp
mailto:niwase@lila.cs.tsukuba.ac.jp
mailto:yamaguchi.yoshiki.ge@lila.cs.tsukuba.ac.jp
mailto:yamaguchi.yoshiki.ge@lila.cs.tsukuba.ac.jp
mailto:miyo@wasamon.net
https://creativecommons.org/licenses/by/4.0/

WEI et al.: QU-TREFOIL: LARGE-SCALE QUANTUM CIRCUIT SIMULATOR WORKING ON FPGA WITH SATA STORAGES 1307

quantum computing, where even minor numerical errors can
accumulate and lead to incorrect results compared to single-
precision or fixed-point representations.

Moreover, simulating quantum circuits at the scale of state-
of-the-art quantum computers is infeasible on classical simula-
tors due to the exponential resource demands. The complexity
of such systems far exceeds what even the most advanced
classical supercomputers can handle, highlighting the growing
gap between classical hardware simulation capabilities and the
actual performance of modern quantum computers.

Despite these limitations, recent advancements in QCS on
supercomputers have made significant progress, targeting qubit
scales around 40 to 50, which are sufficient to capture the core
behavior and performance characteristics of algorithms like
Grover’s algorithm or the quantum approximate optimization
algorithm rather than requiring larger scales of over 100 qubits.
For example, the Fugaku supercomputer successfully simulated
48 qubits [8], and ARCHER2, which achieved 44 qubits using
QuEST [9]. In 2023, Nvidia Crop simulated 40 qubits on the
Selene supercomputer using Qiskit Aer with 256 NVIDIA DGX
A100s [10]. However, the simulated qubit scale for a Graphics
Processing Units (GPU) server like NVIDIA DGX H100 is
limited to 33 [11]. Therefore, while supercomputers and high-
performance computing (HPC) clusters equipped with multiple
GPUs dominate the simulation of quantum circuits with more
than 35 qubits, accessibility and investment remain significant
challenges for researchers, making large-scale simulations dif-
ficult to achieve for many academic and industrial institutions.

Field-programmable gate arrays (FPGAs) are known for their
flexibility and energy efficiency, but their limited memory ca-
pacity and bandwidth have hindered their further application
in quantum circuit simulation. Some FPGAs provide power-
ful High Bandwidth Memory (HBM)/HBM2 [12], [13]. How-
ever, the memory volumes are about 4GB∼32GB, encountering
memory issues for qubits over 35. Additionally, the quantum
simulation itself is not a computationally intensive job, and
most gate computations involve simple data interchange or
coefficient multiplication, which DSP modules are enough on
mid-range FPGA families [14], [15]. To address the challenge
of the platform, we propose a system working on a platform
directly connecting FPGA with Serial Advanced Technology
Attachment (SATA) disks named Tightly-coupled REconfig-
urable Fork Inter Link (Trefoil) [16].

Trefoil is a low-cost, energy-efficient FPGA-based storage
system designed for scalable storage and access performance
through parallel processing with multiple FPGAs, as illustrated
in Fig. 1. The main system, Virtex Ultrascale+XCVU13P, fea-
tures abundant computational resources connected to the stor-
age subsystems. Our proposed system, Qu-Trefoil, operates on
a storage subsystem connected to 32 SATA disks, each with 8
TB of storage.

On the other hand, to implement the Qu-Trefoil, we utilize
[17], a powerful Python/C++ library designed for simulating
large, noisy, or parametric quantum circuits. Qulacs supports
Central Processing Unit (CPU) and Graphics Processing Unit
(GPU) platforms, with optimization features such as SIMD and
OpenMP parallelization.

Fig. 1. Trefoil’s main system connecting to eight storage subsystems,
offering 1.2 Tbps network access, 192GB/s storage throughput, and a total
capacity of 2 PBytes using 8 TB SATA disks; Each storage subsystem
equipped with an embedded Qu-Trefoil system.

We summarize the existing challenges in integrating the
above two ingredients three-fold.

• The design of Qulacs does not consider the characteristics
of FPGA, let alone the customized storage subsystem.

• The limited on-chip resources pose a challenge: As more
SATA disks are involved, the resource utilization increases
proportionally. Therefore, it is crucial to weigh the trade-
off between on-chip resources and simulator performance.

• The slow data accessing speed of SATA disks comes to
be the most significant bottleneck, especially when juxta-
posed against the high-performance memory systems of
supercomputers.

To address these issues, we propose a reliable system, Qu-
Trefoil, that implements a set of universal quantum gates, al-
lowing the construction of any arbitrary quantum circuit. The
primary technical contributions of the proposed system are
summarized as follows,

• We propose an FPGA-based design to facilitate the simula-
tion scale over 40 qubits, which is the first practical attempt
to use FPGAs for SV-based quantum circuit simulation on
such a large scale, typically working on supercomputers-
scale platforms.

• We leverage the unique characteristics of SATA disks,
employing burst-mode data transfer within the system to
enhance data throughput and improve overall simulation
performance.

• We optimize the quantum gate implementations by utiliz-
ing high-level synthesis (HLS) techniques, carefully bal-
ancing the performance and resource utilization of the
target FPGA platform.

• We provide practical implementation details and a com-
prehensive simulator evaluation, including real-world per-
formance metrics such as runtime and resource utilization.

Besides, the Qu-Trefoil system control process unfolds
as follows,

1) The user loads a bitstream file onto a Trefoil storage sub-
system via the JTAG port, configuring the FPGA based
on the quantum gate and target qubit within the quantum
circuit;

2) The user inputs parameters, such as qubit scale and target
qubit, using a Python-based GUI on a Raspberry Pi3
connected to a target platform;

1308 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 4, APRIL 2025

3) The system then performs the quantum gate computation,
saving the results across 32 SATA disks;

4) Finally, the user retrieves the results from the SATA
disks and outputs them to the Raspberry Pi3 for data
visualization.

The structure of this article is as follows: Section II covers
the necessary background of quantum computers and the state-
of-the-art quantum simulator. Section III specifies the details of
the target platform. We elaborate on the design of Qu-Trefoil in
Section IV and evaluate the performance by exploiting the target
platform through various experiments described in Section V.
Finally, we conclude and discuss our work in Section VI.

II. BACKGROUND AND MOTIVATION

This section first introduces the fundamental concepts and
hurdles associated with quantum computers. Then, we provide
a comprehensive overview of the SV-based QCS, covering the
cutting-edge designs and the motivation of this research. Fi-
nally, we describe one of the representative ones in detail, the
base design of our system, Qulacs.

A. Quantum Computing

Quantum computers operate based on the principles of quan-
tum mechanism, which can revolutionize various fields, in-
cluding drug discovery, materials science, cryptography, and
more, by solving complex problems that currently challenge
classical computers [18]. Unlike classical computers, which use
bits as the fundamental unit of information (either 0 or 1),
quantum computers use qubits in a superposition of 0 and 1
states, allowing them to process vast amounts of information in
parallel virtually. However, several challenges still limit their
practical and widespread adoption. Fidelity is a persistent issue,
as quantum computers are susceptible to noise, decoherence,
and errors that can disrupt the fragile quantum states of qubits.
Scalability is another challenge because maintaining long-
range connectivity and minimizing crosstalk between qubits be-
comes increasingly tricky with an increasing number of qubits.
Finally, the challenge of hardware complexity and cost is ever-
present since building and operating quantum computers re-
quire advanced techniques and sophisticated cryogenic systems
to maintain ultra-low temperatures. Despite significant progress
made in recent years, realizing the full potential of quantum
computing in solving real-world problems will take time and
effort.

Therefore, QCSs have been crucial tools for developing,
testing, and understanding quantum algorithms and circuits,
allowing researchers to simulate quantum systems’ behaviours
without accessing the physical quantum computers.

B. Quantum Circuit Simulation

In recent years, the development of QCSs has made signifi-
cant progress. SV, density matrix, and tensor network have
been widely adopted for different purposes and applications
[19], [20], [21]. SV have taken notable positions in understand-
ing quantum circuits by explicitly representing quantum states.

Density matrix, on the other hand, allows the simulation of
mixed states and incorporates the effects of noises and deco-
herence despite the intensive computational complexity. Lastly,
tensor network is a practical tool for compactly representing
the entanglement structure while losing some detailed informa-
tion in the circuits.

We chose SV as the target method in our system because
it is the most accurate method for describing the details in a
quantum circuit with “ideal” noiseless qubits, making it supe-
rior to the other two methods in quantum circuit debugging.
In representing the superposition of these states,

|ψ〉= α |0〉+ β |1〉

denotes the state of a single qubit, where |0〉 and |1〉 are ket
notation to represent column vectors (0, 1) and (1, 0), respec-
tively. |α|2 and |β|2 represent the probabilities of the above two
kets, obeying the rule of |α|2 + |β|2 = 1. For a quantum circuit
with n qubits, the state can be expressed as:

|ψ〉=α0···00 |0· · ·00〉+α0···01 |0 · · · 01〉+· · ·+α1···11 |1· · ·11〉,

which represents a vector with 2n complex numbers, where the
amplitudes are stored as double-precision floating-point values.
Since each complex number requires 16 bytes (8 bytes each
for the real and imaginary parts), storing this state requires
2n × 16 = 2n+4 bytes of memory, as introduced in Section I.
Consequently, the exponential memory requirement becomes a
significant challenge as the number of qubits increases. On the
other hand, in an SV-based QCS, the fundamental operation
is the quantum gate, and a sequence of such gates forms a
quantum circuit. Applying a quantum gate to a quantum state
during simulation is equivalent to performing a matrix-vector
multiplication, which reflects how quantum operations alter the
state at each step.

C. State-Vector-Based Quantum Circuit Simulator

Concerning the simulator development, as one of the most
representative SV-based QCSs, Intel Quantum Simulator (IQS),
an open-source environment for HPC and cloud computing
infrastructures, presents impressive benchmarks for large-scale
simulations of up to 42 qubits employing 4096 processes, with
2048 nodes of the SuperMUC-NG system [22]. QuEST [23],
embodied as a C library, simulates circuits of up to 38 qubits
distributed over 2048 compute nodes, each with up to 24 cores
using the ARCUS Phase-B and ARCHER supercomputers. The
NVIDIA cuQuantum SDK [10] provides a GPU-accelerated
implementation, realizing a 40-qubit simulation with 128 GPUs
on the H100 cluster [11]. Finally, Qulacs [17], the base algo-
rithm of Qu-Trefoil, supports three modes, including OpenMP
mode for servers, SIMD mode for SIMD extension, and GPU
mode for GPU accelerators. We will discuss Qulacs further in
Section II-D correlating to our design. Despite the significant
progress in simulator designs, the costs and the accessibility
of target platforms to researchers impede the development of
quantum computing. Additionally, the simulation of quantum
circuits on a large qubit scale requires handling enormous mem-
ory capacity and data communication.

WEI et al.: QU-TREFOIL: LARGE-SCALE QUANTUM CIRCUIT SIMULATOR WORKING ON FPGA WITH SATA STORAGES 1309

TABLE I
IMPLEMENTED QUANTUM GATES

Gate Effect Matrix

H
Creating superposition

(halfway between the |0〉 and |1〉)
1√
2

(
1 1
1 −1

)

Z A phase flip to a qubit
(
1 0
0 −1

)

S A phase factor of i to |1〉
(
1 0
0 i

)

CNOT
Fliping the Target qubit
(Control qubit == |1〉)

⎛
⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠

T A phase factor of 1+i√
2

to |1〉
(
1 0

0 eiπ/4

)

Matrix 4× 4 unitary matrix on 2 qubits

On the other hand, from the aspect of the platform, GPUs
and CPUs are commonly adopted, as discussed previously.
Although there are many reports on implementing annealers or
Ising machines on FPGAs [24], [25], [26], these researches have
yet to delve into the topics of quantum gate simulation. On the
other hand, [27] and [28] have focused on the computational
aspects of quantum gates, using HDL description, but have not
discussed the memory system for storing SVs, which is a crucial
issue for FPGA implementation. Furthermore, in our earlier
reports [29] and [30], we presented preliminary results on small-
scale qubits without dedicated optimizations, demonstrating the
feasibility of the target system.

D. Quantum Gates Implementations on Qulacs

Qulacs is a highly regarded QCS known for its speed [17].
It is written in C and C++ and has a Python interface for
ease of use. Many researchers have used Qulacs to accelerate
their quantum computing research, including Fujitsu, who has
developed a distributed SV-based QCS based on Qulacs called
mpiQulacs. According to their report, they have evaluated up to
36 qubits on the Todoroki cluster, consisting of 64 nodes based
on A64FX [31] using mpiQulacs. The design emphasizes the
inter-node exchange using MPI.

As a vital component of the Qu-Trefoil design, we highlight
the implementation of a set of universal quantum gates, which
can form any other quantum gates, and a two-qubit opera-
tion called double_qubits_dense_matrix (Matrix) in Qulacs,
which involves unitary matrix multiplication and requires sig-
nificant computational resources. The set of universal quantum
gates includes Clifford gates such as Hadmard (H), Pauli-Z
(Z), Phase (S), and Controlled-NOT (CNOT), along with the
T and the Unitary Matrix (Matrix), as summarized in Table I.

III. HARDWARE PLATFORM: TREFOIL

Trefoil [32], a versatile FPGA platform manufactured by
Tokyo Electron Device, is a highly adaptable FPGA solution

Fig. 2. Trefoil’s storage subsystem phototype.

that can operate autonomously in Multi-access Edge Comput-
ing (MEC) and other edge computing environments without
relying on the host workstation. As discussed in Section I, the
system consists of a main system and eight storage subsystems.
This paper emphasizes the QCS implementations on the Trefoil
storage subsystem, which we will provide more details on the
target platform.

As the primary platform of Qu-Trefoil’s design, the Trefoil
storage subsystem can be adopted solely in edge computing
systems. In Fig. 2, we present the prototype of this storage
subsystem consisting of a subsystem FPGA platform and a
FireFly-SSD board.

When discussing the storage subsystem’s FPGA platform,
which utilizes the Xilinx Kintex Ultrascale+ XCKU15P (with
1,143K system logic cells and 70.6Mb of memory), the 8-port
FireFly connector facilitates data communication between the
FireFly-SSD board and the FPGA, while the 4-port 100Gbps
FireFly connector enables communication between the main
system and the storage subsystem. The FireFly-SSD board is
the primary interface between the SATA disks and the FPGA
platform within the storage subsystem. Additionally, as shown
in the top-left section of Fig. 2, a Raspberry Pi 3, functioning
as the processing system (PS) of the platform, is connected
for system control and data visualization, as introduced in
Section I.

Regarding the storage device, serving as the storage capacity
for the simulator, SATA Solid state drives (SSDs) perform sig-
nificantly faster than traditional hard disk drives (HDDs). The
Non-Volatile Memory Express (NVMe) standard [33] outper-
forms the SATA standard in transfer speeds, but it requires four
serial I/Os per NVMe SSD compared to only one for a SATA
SSD. This trade-off allows the SATA standard to accommo-
date a more extensive system capacity from the limited FPGA
I/Os standpoint. Opting for the SATA standard also leverages
the simplified circuitry achievable with FPGA, as it eliminates
the need for complex PCIe control required by NVMe SSDs,
thereby enhancing stability and other associated benefits.

Furthermore, SATA-based SSDs present a more economical
option. Consequently, following a thorough analysis, this paper
selected a storage system utilizing SATA SSDs. We adopt Sam-
sung 870 QVO 8TB [34] for storing SVs. In addition, although

1310 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 4, APRIL 2025

SATA disks read/write data at the unit of sector (512 bytes),
we can considerably enhance performance by leveraging burst
mode and the generations supported by the SATA interface [34],
which we will evaluate in Sections V-B and V-D.

Speaking of the storage subsystem, 32 SATA disks provide
256TB (32× 8TB) memory capacity for SV storage of up to
43 qubits, achieving storage access speed of up to 24GBps
(4× 8ch × 6Gbps). As illustrated in Fig. 1, the main system
can connect with eight storage subsystems. Thus, speaking of
a full-geared Trefoil system, 2PB (8 boards × 256TB) can be
available for 46-qubit simulation at the storage access speed of
192 GBps (8 boards × 4× 8ch × 6Gbps).

IV. HARDWARE IMPLEMENTATION FOR QU-TREFOIL

This section outlines the implementation process for Qu-
Trefoil on FPGA, which involves three distinct phases. Firstly,
we present the IP design, which takes charge of the data com-
munication between SATA disks and FPGA using LiteX. Then,
we discuss the intellectual property (IP) designs of the target set
of universal quantum gates, as introduced in Section II-D. We
use high-level synthesis (HLS) instead of hardware description
languages (HDLs) like Verilog or VHDL to ensure efficient pro-
totyping and maintenance of the simulator. Finally, we describe
the overall system design of Qu-Trefoil, considering SATA disk
access patterns in different scenarios of a target qubit.

A. SATA Disks ⇔ FPGA Data Communication

Since Xilinx does not provide open-source IP for disk con-
trollers, we can hardly realize the data communication between
SATA disks and the FPGA. To solve this backward, we use an
open-source tool, LiteX [35], to provide the disk controller for
Qu-Trefoil.

LiteX is an open-source FPGA system integration tool de-
veloped and maintained by Enjoy-Digital on GitHub [36].
The Python-based tool can generate HDL, constraint files,
and scripts for building, simulating, and debugging, providing
the target script that describes the system configuration and
platform script defining the FPGA vendor/parts/boards. More
specifically, the target script and circuit description of the IP
core provided by LiteX are written in Migen, an internal DSL
(Domain-specific Language) of Python, offering a higher ab-
straction level than HDL-based system design [37].

We use LiteSATA, an open-source SATA controller ac-
companying LiteX, as the IP core for controlling the data
communication between FPGA and SATA disks. To allow
multi-disk access, we have integrated a flexible framework
that enables changing the number of SATA IP cores imple-
mented on the FPGA and the number of data striping con-
nections by specifying the number of storage devices as the
build option from the command line. LiteSATA (tag: 2022.12)
supports the high-speed transceivers (GTHE3_CHANNEL and
GTHE4_CHANNEL) of Xilinx Kintex/Vertex Ultrascale(+),
and it operates at SATA II (3.0 Gbps) and SATA III (6.0 Gbps)
with 48-bit Logical Block Address (LBA) sector addressing. It
consists of “Frontend,” which includes the configurable cross-
bar, stripping module, etc., “Core” (LiteSATACore), combining

Fig. 3. Sample design for LiteSATA working on multiple LiteSATACores.

Fig. 4. User signal specifications for transceiver and receiver.

the physical layer with the data, transport, and command layers,
and “Phy” (LiteSATAPHY) for handling the physical layer and
SATA disks.

As illustrated in Fig. 3, our framework allows for simultane-
ous access to multiple LiteSATACore modules by designating
the SATA ports to use in the system, which LiteX does not
officially support. Moreover, we revised the initialization part
and automated the process for each module, enabling efficient
link-up detection and hot-swap functionality for multiple Lite-
SATACores.

The SATAcore design incorporates a system clock operating
at either 150MHz or 156.25MHz, depending on the SATA
generation, SATA II or SATA III. Fig. 4 demonstrates the
user signal format for both the transmitter (s_axi_tuser) and
receiver (m_axi_tuser). In the case of s_axi_tuser, the Count
signifies the number of sectors in a chunk transferred in the
burst mode, which can hold up to 64K sectors. The Sector
denotes the header sector address of a chunk, while Identify
returns the SATA device information. Read and Write bits are
used to control the operation of SATAcore. On the other hand,
m_axis_tuser indicates Failed for errors, End for the end of
a sector, and Identify, Read, and Write corresponding to the
signals presented in s_axi_tuser. These signals play a crucial
role in the upcoming quantum gate designs that will control the
behaviours of SATA disks.

B. IP Designs for Quantum Gates

In discussing the design of quantum gates, we focus on
implementing the set of universal quantum gates using the tool
of Vitis HLS 2022.2.2, as mentioned previously. This section
details HLS-based designs of referred quantum gates, utiliz-
ing the potential of quantum gates on FPGA and exploiting
the characteristics of SATA disks. In describing IP designs,
we explain the most representative H gate and highlight the
differences between other gate designs, especially their com-
putational logic.

WEI et al.: QU-TREFOIL: LARGE-SCALE QUANTUM CIRCUIT SIMULATOR WORKING ON FPGA WITH SATA STORAGES 1311

Fig. 5. Quantum state allocation in SATA disks.

TABLE II
COMMON PARAMETERS SETTINGS FOR QUANTUM GATES IN A SINGLE

SATA DISK

Categ. Parameter Function

Data

CHUNK Controlling the burst mode
CHUNK_INDEX Qubits available in a chunk
DIM_INDEX Qubits available in a SATA disk

SECTOR Number of sectors in a chunk

Input
dim Available SVs on a disk

target Index of target qubit
qread States saved in SATA disks

Output qwrite States after the gate processing

As illustrated in Fig. 5, in our proposed framework,
CHUNK represents the number of SVs in 512× SECTOR
bytes. A sector, which is 512 bytes, serves as the communica-
tion unit with SATA disks. SECTOR denotes the number of
sectors in a single CHUNK. Notably, a quantum state, rep-
resented by a double-precision floating-point complex number,
occupies 16 bytes, allowing 32 quantum states to fit into a single
sector. The formula expresses this relationship: CHUNK =
32× SECTOR.

Furthermore, we present the general parameters outlined in
Table II. These parameters encompass the predefined Data
utilized to regulate the burst mode and algorithmic behaviour,
as well as Inputs and Outputs for IP designs. Specifically,
CHUNK_INDEX , in the size of log2 CHUNK, gov-
erns the behaviour of algorithms referring to a SATA disk;
DIM_INDEX , in the size of log2 dim, primarily works for
the algorithm involving two separate SATA disks, with dim
serving as an input parameter indicating the available SVs on
a disk.

Finally, in the design of quantum gate implementations in the
Qulacs library [17], gate operations are categorized into two dis-
tinct cases depending on whether the target is 0 or not, which
is driven by data access optimization. Manipulating the least
significant bit in the binary representation of a quantum state
(target= 0) involves more frequent bit flips and interleaved
data processing, resulting in increased computational overhead.
To address this, a particular case where target= 0 is adopted
without negatively impacting the overall system optimization
for cases of nonzero target qubit. Following this approach,
the quantum gate design in Qu-Trefoil includes specialized
modules to efficiently handle the case of targe= 0, ensuring
optimized performance while managing the added complexity
associated with the least significant bit.

1) Hadamard Gate: As a fundamental quantum gate used in
quantum computing, the Hadamard gate plays a crucial role in
quantum teleportation, error correction, and search algorithms.

Algorithm 1: H_0 Design in Qu-Trefoil
1 if target is 0 then
2 for index← 0 to dim do

/* Sector of s_axi_tuser */
3 sect_ad← index� CHUNK_INDEX;

/* ① Data assignment to buffer */
4 user ← user_read(sect_ad, SECTOR);
5 for bufi← 0 to CHUNK do
6 state[bufi]← COMPLEX(qread[2 ∗

bufi], qread[2 ∗ bufi+ 1];
7 end

/* ② Quantum gate computation */
8 for bufi← 0 to CHUNK do
9 H_Comp_0(state);

10 bufi← bufi+ 2;
11 end

/* ③ Write result to SATA Disk */
12 user ← user_write(sect_ad, SECTOR);
13 for bufi← 0 to CHUNK do
14 qwrite[2 ∗ bufi]← state[bufi].real();
15 qwrite[2 ∗ bufi+ 1]← state[bufi].imag();
16 end
17 index← index+ CHUNK;
18 end

By applying the Hadamard gate to a single qubit, a user can
convert the basis states |0〉 and |1〉 into superposition states,
which are a combination of both basis states as demonstrated
in Table I. Specially:

H |0〉= 1√
2
(|0〉+ |1〉), and H |1〉= 1√

2
(|0〉 − |1〉).

Regarding the implementation of the H gate in Qulacs [17],
the design consists of two cases considering the location of
the target qubit: target is 0 or not. However, when it comes
to implementing the gate with SATA disks, there are four dif-
ferent situations to account for depending on the target qubit:
(1) target being 0 (H_0); (2) referred states within a chunk
(H_chunk); (3) referred states across chunks while within a
disk (H_disk); (4) referred states across disks (H_system).

Here are the algorithm details for H_0 in Algorithm 1. The
algorithm has three main parts: SVs assignment to buffer in
Chunk size (Lines 5-7), computation referring to adjacent states
(Lines 8-11), and output to SATA disks (Lines 13-16). Lines 4
and 12 are for the user signal setting, which controls SATA’s
read/write as introduced in Section IV-A. To ensure smooth
pipelining, we have intentionally isolated these two parts and
designated them as fixed protocol regions.

To boost the performance of the IP, we utilize HLS techniques
while ensuring the integrity of the algorithm’s logic. As pre-
sented in Fig. 6, we explore the on-chip resources by unrolling
the H_Comp_0 in different degrees. Furthermore, consider-
ing the SATA disks’ inefficient data transfer, we provide two
cases to optimize the system’s performance: (1) Pipelining the
reading part with computation as illustrated in Fig. 6 and (2)
Pipelining the writing part with computation, which we will
further assess in Section V-A1.

In the case of H_chunk, where target < CHUNK_
INDEX(log2 CHUNK), the H_comp of referred states re-
lates to mask, low, high, as defined in Lines 3 and 4 in Al-
gorithm 2. Due to the random data access involved in the

1312 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 4, APRIL 2025

Fig. 6. H_0 implementation with pipelining the reading and computation.

Algorithm 2: H_chunk Design in Qu-Trefoil
1 if target < CHUNK_INDEX then
2 loop_dim← dim

2
; /* Loop constrain */

3 mask ← 1� target;
4 low_M ←mask − 1, high_M ←∼ low_M ;
5 for index← 0 to loop_dim do

/* Sector of s_axi_tuser */
6 sect_ad← index� CHUNK_INDEX;

/* ① Data assignment to buffer */
7 user ← user_read(sect_ad, SECTOR);
8 for bufi← 0 to CHUNK do
9 state[bufi]← COMPLEX(qread[2 ∗

bufi], qread[2 ∗ bufi+ 1];
10 end

/* Quantum gate computation */
11 for bufi← 0 to CHUNK

2
do

/* ② Basis computation */
12 basis_0← (((index+ bufi) & low_M) +

(((index+ bufi) & high_M)�
1)) & (CHUNK − 1);

13 basis_1← (basis_0 +mask) & (CHUNK − 1);
/* ③ H gate computation */

14 H_Comp(state);
15 bufi← bufi+ 2;
16 end

/* ④ Write result to SATA Disk */
17 user ← user_write(sect_ad, sector);
18 for bufi← 0 to CHUNK do
19 qwrite[2 ∗ bufi]← state[bufi].real();
20 qwrite[2 ∗ bufi+ 1]← state[bufi].imag();
21 end
22 index← index+ CHUNK;
23 end

H_comp, complete pipeline processing is infeasible for this
case, as denoted Fig. 7. Thus, we emphasize the optimization of
the quantum gate computation of pipelining the process ② and
③ with unrolling the H_comp thanks to these four independent
processes as presented in ③ of Fig. 7 under the constraints of
on-chip resources.

In the case of H_disk, which CHUNK_INDEX ≤
target < DIM_INDEX(log2dim), referred states are in-
cluded in distinct chunks of a disk. Referencing Fig. 8, it is
necessary to read two chunks from a SATA disk sequentially by
setting different Sector in s_axi_tuser and load to separated
buffers, State_0 and State_1, which is quite different from
H_chunk. On the other hand, after the quantum gate compu-
tation, the results distributed in these two chunks have to be
written back to SATA disks successively. Thus, performance

Fig. 7. H_chunk optimization in a single chunk.

Fig. 8. H_disk design considering two chunks.

degrades due to the two additional disk accesses required com-
pared to H_chunk.

Finally, in the case of H_system, where the referred
two chunks are in two separate disks, we utilize two in-
put/output streams and user signals to accept/output chunks
from/to two distinct disks. With the expansion of N SATA
disks, the qubits simulation scale increases by log2N qubits.
The case of H_system is to handle the target qubit in
the [DIM_INDEX,DIM_INDEX + log2N). The mech-
anism of H_system is quite similar to the design of H_disk.
The main difference is the design of the input and output parts.

2) Pauli-Z Gate: As another fundamental single-qubit quan-
tum gate, the Z gate rotates the qubit state around the Z-axis
of the Bloch sphere, which leaves the state |0〉 unchanged and
introduces a phase of −1 to the state |1〉. Formally:

Z |0〉= |0〉 , and Z |1〉=− |1〉.

Regarding HLS design, the Z gate design closely resem-
bles the H gate in four cases. For the case of target is
0 (Z_0), the computation part (Line 9 of Algorithm 1) is
replaced with State[bufi]← State[bufi] ∗ (−1). While for
the Z_chunk, the computation part is similarly replaced,
but both State[bufi]← State[bufi] ∗ (−1) and State[bufi+
1]← State[bufi+ 1] ∗ (−1) are applied. Since the Z gate op-
erates on a diagonal unitary matrix, the phase shift is applied
to each state independently, making it unnecessary to reference
states in distinct chunks during computation. Consequently, in

WEI et al.: QU-TREFOIL: LARGE-SCALE QUANTUM CIRCUIT SIMULATOR WORKING ON FPGA WITH SATA STORAGES 1313

Qu-Trefoil’s design, Z_disk and Z_system do not exist. The
computational complexity of the Z gate is less demanding than
that of the H gate, meaning that optimization of the Z gate is
more closely tied to on-chip memory resources.

3) Phase Gate: The S gate introduces a phase shift of π
2

to the state of |1〉 while leaving the state |0〉 unchanged, as
introduced in Table I. When applied to a qubit, the S gate
induces the following effects:

S |0〉= |0〉 , and S |1〉= (e
iπ
2) |1〉 ,

where e
iπ
2 is a complex number corresponding to a π

2 phase
shift, as eθ = cos θ + i sin θ. For θ = π

2 , e
iπ
2 = i.

For the S gate’s HLS design, an additional parameter, phase,
is introduced to the system, distinguishing it from previous
designs. When the target is 0, the computation step is mod-
ified as State[bufi]← State[bufi] ∗ i, with the index start-
ing from 1 instead of 0 to manage the SV access across
all disks. For nonzero targets in the other three cases, the
computation is dominated by State[bufi]← State[bufi] ∗ i
and State[bufi+ 1]← State[bufi+ 1] ∗ i, which closely re-
sembles the nonzero target case of the Z gate. Since the
S gate, like the Z gate, operates on diagonal unitary matri-
ces, the S_disk and S_system components are not required
in the design. Based on the computational logic presented,
the independent processing allows for unrolling the compu-
tational loop, with the factor controlling resource utilization
effectively.

4) Controlled-NOT Gate: The CNOT gate is a fundamen-
tal two-qubit gate in quantum computing that performs a con-
ditional operation on the target qubit (the second qubit) based
on the state of the control qubit (the first qubit). The CNOT
gate flips the state of the target qubit when the control qubit is
in the state of |1〉, which has the following effects:

CNOT |00〉= |00〉 and CNOT |01〉= |01〉 ,
CNOT |10〉= |11〉 and CNOT |11〉= |10〉 .

Regarding the HLS design of the CNOT gate, in addition
to the parameters defined in Table II, another input control is
to indicate the index of the control qubit. Unlike the previous
gate implementations, the implementation cases consider the
position of both target and control qubits with specifying
the loop_dim ← dim

4 : (1) target being 0 (CNOT_0);
For control = 0 while target 	= 0, (2) Referred states being
available in the same chunk (target < CHUNK_INDEX)
(CNOT_C0_chunk), (3) Referred states in the distinct chunks
of a disk (CHUNK_INDEX ≤ target < DIM_INDEX)
(CNOT_C0_disk), (4) Referred states in the distinct
chunks from/to two disks (DIM_INDEX ≤ target <
DIM_INDEX + log2 N) (CNOT_C0_system); For
nonzero target and control, (5) Referred states in an identical
chunk (CNOT_C1_chunk), (6) Referred states in the distinct
chunks of a disk (CNOT_C1_disk), and (7) Data access of
the distinct chunks from/to two disks (CNOT_C1_system).

Despite the complex condition classifications, the gate de-
signs are similar to the previous designs, especially in data
assignment and write-back. In this part, we only depict the

TABLE III
MASKS FOR CNOT GATE

target_M 1� target min_M 1�min
control_M 1� control max_M 1�max

low_M min_M − 1 high_M ∼ (max_M − 1)
mid_M (max_M − 1)⊕ low_M

algorithm details in our design, which we can generally cat-
egorize into three cases: target= 0 (CNOT_0), control = 0,
while target 	= 0 (CNOT_C0), and target 	= 0 & control 	=
0 (CNOT_C1).

Regarding the computation parts, seven masks listed in
Table III are parameters for the above three cases, that min
is the minimum of target and control; max is the other. First,
for the case of CNOT_0, the referred data indexed by basis
is defined as follows,

basis←((((index+ bufi) & mid_M)
 1)+

(((index+ bufi) & high_M)
 2)+

control_M) & (CHUNK − 1),

where index is the outmost loop parameter for the iteration
of a disk, and bufi is the loop parameter for a chunk. The
data swap continuously happens to the neighbouring two states
indexed by basis and basis+ 1, which exits strong inter-level
data dependency. We can hardly optimize the target IP based
on such characteristics.

On the other hand, for the case of CNOT_C0, the data with
the index of basis_0 swaps with basis_1, which we present the
basis computation as follows,

basis_0←((index+ bufi) & low_M+

(((index+ bufi) & mid_M)
 1)+

(((index+ bufi) & high_M)
 2)+

control_M) & (CHUNK − 1),

basis_1← (basis_0 + target_M) & (CHUNK − 1).

Finally, for the nonzero control and target (CNOT_C1),
the basis computations are the same as the case of CNOT_C0.
However, there are four referred data in this case: basis_0,
basis_1, basis_0 + 1, basis_1 + 1, that the data of basis_0
swaps with basis_1 and basis_0 + 1 swaps with basis_1 + 1.

As the data swaps in these four cases operate independently,
we can leverage HLS techniques like pipelining or unrolling to
improve the CNOT gate computation’s performance. Thanks
to the CNOT gate not including any intensive computation
process with only data swapping, the target IPs are not sensitive
to computational resources. Our design should focus solely on
tailoring on-chip memory resources.

5) T Gate: The T gate, a non-Clifford quantum gate, is a fun-
damental single-qubit gate that leaves the |0〉 state unchanged
while applying a phase shift of π

4 to the |1〉 state:

T |0〉= |0〉 , and T |1〉= (e
iπ
4) |1〉 .

This is similar to the S gate, with the key difference being
the amount of phase shift. Since e

iπ
4 = 1+i√

2
, the π

4 phase shift

1314 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 4, APRIL 2025

Algorithm 3: Matrix_chunk Design in Qu-Trefoil
1 if target < CHUNK_INDEX then

/* Mask assignments */
2 min_index← 0; /* Fixing a target to 0 */
3 max_index← target, min_M ← 1�min_index;
4 max_M ← 1� (max_index− 1), low_M ←min_M − 1;
5 mid_M ← (max_M − 1)⊕ low_M ,

high_M ←∼ (max_M − 1);
6 mask_1← 1� 0, mask_2← 1� traget;
7 loop_dim← dim

4
; /* Loop constrain */

8 for index← 0 to loop_dim do
/* Sector of s_axi_tuser */

9 basis_0← (index & low) + (index & mid)�
1 + (index & high)� 2; /* Create index */

10 sect_ad← basis_0� CHUNK_INDEX;
/* ① Data assignment to buffer */

11 user ← user_read(sect_ad, SECTOR);
12 for bufi← 0 to CHUNK do
13 state[bufi]← COMPLEX(qread[2 ∗

bufi], qread[2 ∗ bufi+ 1];
14 end

/* Quantum gate computation */
15 for bufi← 0 to CHUNK

4
do

/* ② Basis computation */
16 basis_0← (((index+ bufi) & low) + ((index+

bufi) & mid)� 1 + (index+ bufi) & high)�
2 & (CHUNK − 1);

17 basis_1← (basis_0+mask_1) & (CHUNK−1);
18 basis_2← (basis_0+mask_2) & (CHUNK−1);
19 basis_3← (basis_1+mask_2) & (CHUNK−1);

/* ③ Matrix computation */
20 Matrix_Comp(matrix, state);
21 end

/* ④ Write result to SATA Disk */
22 user ← user_write(sect_ad, sector);
23 for bufi← 0 to CHUNK do
24 qwrite[2 ∗ bufi]← state[bufi].real();
25 qwrite[2 ∗ bufi+ 1]← state[bufi].imag();
26 end
27 index← index+ CHUNK;
28 end

results in the |1〉 state being multiplied by 1+i√
2

. Since the HLS
design for the T gate also operates on diagonal unitary matrices,
the design can largely follow the S gate. The main modification
involves changing the parameter phase from i to 1+i√

2
. Addition-

ally, the design considers only two cases: target= 0 (T_0) and
target 	= 0 (T_chunk).

6) Unitary Matrix: To demonstrate robustness in handling
quantum gates with intensive computation, we adopted a gen-
eral 4× 4 unitary transformation in quantum mechanics, re-
sulting in reversible quantum state transformations. Since this
quantum gate operates on two target qubits, we explicitly ad-
dress the four relevant states concerning chunk and disk. To
simplify our implementation, we fixed one of the target qubits
to 0, effectively applying the identity gate to qubit 0, while
the unitary transformation is applied to the other target one.
This design allows conditional operations on one qubit while
maintaining the other in a fixed state, thereby managing the
intensive computational complexity.

Regarding the implementation, in addition to parameters
set in Table II, there is one more Input named matrix, a
buffer with 16 complexes accepted as a quantum gate ma-
trix. Since we have simplified our designs, we discuss three

Fig. 9. Matrix_chunk implementation with a single chunk.

cases in the IP design: (1) referred states within a chunk
(Matrix_chunk); (2) referred states across chunks while
within a disk (Matrix_disk); (3) referred states across disks
(Matrix_system).

In discussing Matrix_chunk, as presented in Algorithm 3,
since the referred states are in the same chunk, the algorithm
consists of a single read/write from/to SATA disk combined
with basis and unitary matrix computation, which is similar to
H_chunk. Since the intensive complex data computation pre-
sented in Fig. 9 is independent, in optimizing the performance
of the computation part, we parallelized the ② and ③ using the
techniques of buffering and unrolling under the constraints of
on-chip memory.

Concerning the case of Matrix_disk, referred states exist in
two chunks in a disk, similar to the case of H_disk illustrated
in Fig. 8. Due to the two times we read/write, we have to
prepare two buffers to save two chunks, which severely burdens
computation and storage resources, and we will further evaluate
in Section V.

Finally, for the design of Matrix_system, whose target
lays in the range of [DIM_INDEX,DIM_INDEX +
log2N) as discussed in the case of H_system. State_
0[basis_0] and State_0[basis_1] read/write chunk from/to
one of the disks and State_1[basis_2] and State_1[basis_3]
from/to another with two times setting of the user signal for
read/write. Same as the optimization of Matrix_disk, the im-
plementation challenges the on-chip resources.

C. Overall System Implementation

In this section, we introduce the overall system implemen-
tation, emphasizing the block design in Vivado 2022.2.2 and
inspecting the details of designed IPs in the proposed simulator,
Qu-Trefoil. We divide our introduction into two parts: Quantum
gate IP referring to a single SATA disk, such as ∗_0, ∗_chunk
and ∗_disk; and IPs referring to two disks, such as ∗_system.
To support a Trefoil storage subsystem with 32 SATA disks
(N = 32), we must create an instance for each SATA disk to
ensure that the resource utilization of a quantum gate IP is kept
at around 3% when the system runs in full gear.

In Fig. 10, we present an overview of Qu-Trefoil’s system
design, which accesses a single disk per quantum gate IP. The
design includes the Qulacs IPs introduced in Section IV-B,

WEI et al.: QU-TREFOIL: LARGE-SCALE QUANTUM CIRCUIT SIMULATOR WORKING ON FPGA WITH SATA STORAGES 1315

Fig. 10. Qu-Trefoil system design of single disk access.

Fig. 11. Qu-Trefoil system design for two disks access.

Interfaces, and SATA controllers. The Interface handles com-
munication between the Qulacs IP and the SATA controller.
And SATA controller whose Verilog is generated by LiteX,
manages multi-SATA access, as demonstrated in Section IV-A.
Meanwhile, as shown in Fig. 2, the Trefoil storage subsys-
tem connects to a Raspberry Pi 3 via GPIO, functioning as
the processing system (PS) for user communication. Since the
Raspberry Pi 3 only accepts 32-bit data, the Interface plays
a crucial role in separating and concatenating bits, especially
when dealing with 64-bit or larger data sizes.

Regarding the case of system design for a Qulacs IP ac-
cessing two disks, compared with the previous design pre-
sented in Fig. 10, data communications between Qulacs IPs and
Interfaces are necessary for quantum gate computation when
referred states exist in two chunks from two disks as shown
in Fig. 11. Considering 32 disks of a storage subsystem, there
are five cases discussed in our design: disk accesses at the
interval of 1, 2, 4, 8 and 16, corresponding to the target being
DIM_INDEX , DIM_INDEX + 1, DIM_INDEX +
2, DIM_INDEX + 3, DIM_INDEX + 4, respectively.
Since these 32 SATA disks can be accessed simultaneously, as

TABLE IV
AVAILABLE RESOURCES ON TREFOIL STORAGE

SUBSYSTEM

LUT (K) 523 LUTRAM(K) 161
FF (K) 1045 BRAM 984
DSP 1968 GT 56

introduced in Section III, there is no variation in both perfor-
mances and resource utilization for these five cases.

V. EVALUATION

The Qu-Trefoil utilizes Xilinx Kintex Ultrascale+
XCKU15P; its available resources are in Table IV. We
have provided the resource utilization of each quantum gate
designed in Section IV-B, based on the reports generated
by Vivado 2022.2.2. We conducted all measurements on a
physical machine to ensure accurate results for simulation
speed. In the following sections, we will evaluate Qu-Trefoil’s
performance with different quantum gate IPs, explore the
impact of chunk size and SATA disk extension, and assess
the effects of SATA II and SATA III. Furthermore, we will
examine the Qu-Trefoil’s performance on large qubit scales.
Finally, we will compare our system with other top-tier designs
based on platform, performance, and costs.

A. Quantum Gates Evaluation

Regarding the performance of quantum gates in Qu-Trefoil,
we evaluate our designs as detailed in Section IV, where a
single quantum gate is applied to one qubit, impacting all
quantum states within the system. We configure the system
with CHUNK = 512 at SATA II, which supports 16 sectors
in burst mode. Considering both system evaluation efficiency
and the upper bound of HPC capabilities, we conduct a 35-
qubit simulation utilizing the fully loaded Trefoil storage sub-
system connected to 32 SATA disks. The resource utilization
and time consumption are illustrated in Fig. 12, where we fully
leverage the storage subsystem’s capacity to achieve optimal
performance.

1) Hadmard Gate Evaluation: Our evaluation of the H gate
includes four cases, as discussed in Section IV-B1. Due to the
pipeline of reading and computation in H_0, the time consump-
tion is mainly for the data communication between SATA disks
and FPGA. While H_chunk, H_disk, and H_system share
the same algorithm for H gate computation (H_comp), the
difference in their referred data sources results in a performance
discrepancy.

The H_chunk case has only a single chunk referred in
the out-most loop count of dim

2 , as indicated in Algorithm 2,
making it the fastest among the four cases. It achieves almost
twice the speed of H_0. However, H_disk and H_system
refer to two distinct chunks requiring two read/write operations
from/to SATA disks, resulting in system performance degrada-
tion. To address this, we parallelized the computations in these
two chunks using two buffers to accept states, which led to
an evident increase in DSP utilization compared to H_chunk.

1316 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 4, APRIL 2025

Fig. 12. Qu-Trefoil overall systems’ evaluation on resources and speed with simulating 35 qubits when SATA disks working at SATA II.

Fig. 13. Evaluations upon two strategies for optimizing 35-qubit H_0
implementation with pipelining.

Additionally, due to the time-consuming setup process of SATA
disks (requesting data ⇒ starting data transfer), H_system
requires a slightly longer time for separate disk accesses than
H_disk.

As mentioned in Section IV-B1, we propose two mechanisms
for accelerating H_0: pipelining the computation part with
reading (H_0_rc) or writing (H_0_cw). As shown in Fig. 13,
the two proposed strategies do not make a significant differ-
ence. According to the report from Vivado 2022.2.2, H_0_cw
results in a slight decrease in LUT utilization, which marginally
decreases the simulation speed. Thus, the upcoming evalua-
tion will adopt the complete pipeline design of reading and
computation.

According to the H gate’s on-chip resource utilization, the
implementations put tremendous pressure on memory and com-
putation resources, which is quite representative of the overall
system evaluation. It costs around 285∼ 506 sec to realize a
35-qubit H gate simulation.

2) Pauli-Z Gate Evaluation: As introduced in Sec-
tion IV-B2, only two cases are included in our design: Z_0
and Z_chunk. Since there is no intensive computation in the
algorithm of Z_0, computation resource DSP utilization keeps
0% in the design, according to the Vivado report. As presented

in the bar graph, we fully utilize Block RAM (BRAM) to
optimize the Z gate logic processing. Thanks to the pipeline
processing of reading and computation, we can see that the
simulation time is only for data transfer between SATA disks
and FPGA. Thus, for a 35-qubit simulation, Z_0 keeps almost
the same speed with H_0.

On the other hand, regarding Z_chunk, the running time of
Z_chunk is almost half of the Z_0 because of the decrease in
loop iteration. According to our evaluation, we can simulate a
35-qubit Z gate around 288∼ 487 sec.

3) Phase Gate Evaluation: Similar to the Z gate design,
only two IPs are implemented in Qu-Trefoil, with the rea-
soning explained in Section IV-B2. For the case of S_0, we
have successfully maintained DSP utilization at around 18% by
fully pipelining the reading and computation process. For the
nonzero target qubit, S_chunk, we partially unroll the quan-
tum gate computation to maximize the use of computational
resources (DSP) for performance optimization. As a result, the
time required for simulating a 35-qubit S gate is approximately
315∼ 489 sec.

4) Controlled-NOT Gate Evaluation: As the most compli-
cated quantum gate in Qu-Trefoil, we have to discuss seven
cases in our design, which we introduced in Section IV-B4.
Since the CNOT gate computation part works on quan-
tum state swapping, the designed IP does not consume any
DSP resource. Besides, as the 2-qubit gate, the overall loop
iteration is decreased to fracdim4. Thus, there is a dra-
matic decrease in time consumption compared with the above
three quantum gates. For CNOT_0, the data dependency in
the algorithm hinders our optimization, so there is no sig-
nificant resource consumption in our design. In discussing
the three cases of CNOT_C0 and CNOT_C1, the perfor-
mance varies according to the locations of referred states
evaluated in Section V-A1. The on-chip BRAM resources
eventually restrict the optimization of the CNOT_C0 and
CNOT_C1 cases, which we organically pipeline the compu-
tation and partially unroll the loop to boost the performance. It

WEI et al.: QU-TREFOIL: LARGE-SCALE QUANTUM CIRCUIT SIMULATOR WORKING ON FPGA WITH SATA STORAGES 1317

Fig. 14. Chunks extension from 256 to 8192 in burst mode working on 35-qubit H gate at SATA II.

consumes around 118∼ 280 sec to simulate a CNOT gate with
35 qubits.

5) T Gate Evaluation: As described in Section IV-B5, the
main difference between the implementations of the S and T
gates lies in the parameter setting for the phase shift, changing
from i to 1+i√

2
. As expected, this modification does not signifi-

cantly affect resource allocation, with only a slight decrease in
LUT and LUTRAM usage for both cases: T_0 and T_chunk.
Regarding processing speed, we observe that the T gate oper-
ates slightly faster than the S gate, with a time consumption of
approximately 311∼ 400 sec.

6) Unitary Matrix Evaluation: The IPs of 4× 4 unitary
matrix multiplication, shown to be the most computationally-
intensive design in Qu-Trefoil, discuss three cases to show
the capacity of our target platform, as we introduced in Sec-
tion IV-B6. As expected, four intensive double-precision com-
plex data computations hinder further optimization, so we
pipeline the computation part to boost the performance. Ac-
cording to the bar graph of the Unitary Matrix, we can notice an
exhaustive utilization of overall resources. Eventually, we can
simulate the result of 35 qubits in 185∼ 332 sec.

To summarize, for the ∗_0’s single-qubit quantum gate de-
signs, we achieve almost the same simulation speed in all
considered quantum gates since we pipeline the reading and
computation parts, taking advantage of the algorithms’ features.
Furthermore, for the CHUNK = 512 at SATA II, we can as-
sert that ∗_chunk < ∗_disk < ∗_system in time consumption.
The ∗_chunk’s one-time chunk read/write makes its perfor-
mance exceptional in simulation speed. Although both ∗_disk
and ∗_system have to read two chunks from disks, the time
consumption of data requests on separate disks degrades the
performance of ∗_system at the same resource consumption on
the target platform. Regarding two-qubit quantum gate designs
(CNOT and Matrix), the decrease in loop iteration results in
a swift simulation, as presented in Fig. 12.

B. Chunk Size Extension in Burst Mode

We adopt the H gate as our target to comprehensively
evaluate the burst mode performance of Qu-Trefoil. We
thoroughly use on-chip resources cooperating with the

CHUNK = 256, 512, 1024, 2048, 4096, 8192, corresponding
to 8, 16, 32, 64, 128, 256 sectors per transfer. As in previous
quantum gates evaluations, we evaluate the burst mode on
resource utilization and speed, as presented in Fig. 14. With
the increase of CHUNK size, the time decreases dramatically
in the four cases. Due to the pipeline processing of the reading
and computation parts in H_0, we did not notice any significant
increase in resource utilization. However, for the other three
cases, the optimization mainly works on the computation
part, which requires more BRAM to buffer the states with
the increase of CHUNCK size. Especially the H_chunk
with the CHUNK = 8192, there is a slight increase in time
consumption compared with the case of 2048 and 4096,
while an evident decrease in computation resources such as
lookup table (LUT), which is because we have to sacrifice
the performance for more memory space to fit the design of
the target platform. For H_disk and H_system, we capped
CHUNK size at 4096 because of the deficiency of memory
space on the Trefoil storage subsystem.

Specifically, according to Fig. 14, the sloop becomes more
and more gentle with the increase of CHUNK size, which
means the less effect of disk access speed to Qu-trefoil. In other
words, the time consumption of computation gradually domi-
nates the simulation, which further provides evidence for the
inconsistent results of H_chunk with the CHUNK = 8192.
On the other hand, with the increase of CHUNK size, the
time consumption of setting up a SATA disk for data transfer
becomes less and less, which results in an ideal result that
H_system’s speed is close to that of H_disk.

C. Disks Expansion for Flexibility

In this section, we evaluate disk expansion in Qu-Trefoil to
show the flexibility and robustness of the proposed system. We
adopt the H gate simulation, working on theCHUNCK size of
4096 for a fair evaluation. With increased SATA disks, we can
simulate more qubits thanks to parallel processing cooperating
with multiple SATA disks. Considering the exponential increase
of SVs with qubit scales, the SATA disks for SV storage must
also increase exponentially to correspond to such a nature.
Precisely, 2n disk corresponds to base+ n qubits, where base

1318 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 4, APRIL 2025

Fig. 15. H gate evaluation conducted with disk expansion ranging from 1 to 32 disks, simulating qubit scales from 30 to 35 at SATA II with CHUNK =
4096.

Fig. 16. 35-qubit H gate simulation conducted with CHUNK = 4096 at
SATA II and SATA III.

Fig. 17. Scheduler for Qu-Trefoil without optimization.

TABLE V
35-QUBIT H_0 TIME ALLOCATION (SEC) WORKING ON

SATA II AND SATA III

① ② ③ ④ ⑤
SATA II 14.6 74.87 0.57 89.19 67.83
SATA III 13.61 61.54 0.36 89.29 52.81

is the number of qubits simulated on one disk. As presented in
Fig. 15, with the increase of SATA disks, we can simulate more
qubits without any cost in time consumption.

Regarding resource utilization, one Qulacs IP corresponds
to one SATA disk for parallel processing on Qu-Trefoil, as
introduced in Section IV-C. The one-chip resource utilization
increases exponentially with more SATA disks involved. From
these results, we ascertain the flexibility and robustness of
Qu-Trefoil targets on different budgets.

Fig. 18. Exponential increase in time consumption of Qu-Trefoil on H gate.

TABLE VI
TIME CONSUMPTION OF H GATE SIMULATION OVER 40 QUBITS ON

QU-TREFOIL

Time Consumption at SATA II (sec)
40 qubits 41 qubits 42 qubits 43 qubits

H_0 5051.75 10048.91 21045.13 50630.67
H_chunk 2322.65 4587.63 9145.81 18223.82
H_disk 5801.09 11601.45 23202.64 46443.4

H_system 5662.45 11288.67 22591.53 45236.68
Time Consumption at SATA III (sec)

40 qubits 41 qubits 42 qubits 43 qubits
H_0 3758.50 7522.95 17673.06 47017.42

H_chunk 1699.98 3157.74 6279.13 13379.05
H_disk 4421.22 8813.50 17606.29 35198.60

H_system 4249.35 8485.18 16911.20 33786.68

D. Comparison of SATA II and SATA III on Qu-Trefoil

As introduced in Section IV-A, the proposed system sup-
ports both SATA II and SATA II, which operate at the system
frequency of 150MHz and 156.25MHz, respectively. In this
section, we keep using the H gate as our target quantum gate
at the CHUNK size of 4096. According to the reports from
Vivado 2022.2.2, there is no variation in resource utilization
for these two generations. Furthermore, due to the speedup of
SATA III, we notice a noticeable decrease in time consumption
for a 35-qubit simulation.

However, according to the specifications of SATA II and
SATA III, these interfaces support up to 300MB/s and 600MB/s,

WEI et al.: QU-TREFOIL: LARGE-SCALE QUANTUM CIRCUIT SIMULATOR WORKING ON FPGA WITH SATA STORAGES 1319

TABLE VII
COMPARISON WITH STATE-OF-THE-ART SV-BASED QCSS

Simulator Algorithm Platform Performance Cost (M$) Energy (MJ)Qubits Time (sec)
[8] Qulacs Hadamard gate Fugaku 48 172.04 1,200 4,516
[9] QuEST Quantum Fourier Transform ARCHER2 44 285 102 431

[10] Qiskit Aer Quantum Phase Estimation Selene 40 35 85 1,330
[11] cuStateVec Hadamard gate NVIDIA DGX H100 33 3.57 0.27 0.036
Ours Qu-Trefoil Hadamard gate Trefoil storage subsystem 43 32345.44 0.042 0.4

Ours (estimated) Qu-Trefoil Hadamard gate Trefoil full system 46 < 40000 < 0.4 < 4

respectively. According to Fig. 16, H_0, H_chunk, H_disk
and H_system achieve the speedup of 24.64%, 29.07%,
22.08%, and 22.64%, respectively. To investigate the effects of
SATA II and SATA III on Qu-Trefoil’s operations, we target
H_0 gate IPs for our evaluation, containing just one-time chunk
read and chunk write for an iteration. For an appropriate eval-
uation of SATA II and SATA III, we cancel the optimizations
on the algorithm to completely isolate the processes of reading
and computation.

According to the timers set in our design, the time consump-
tion consists of five steps as presented in Fig 17:

➀ Request for the SV from SATA disks and wait for the data
➁ Read data in the size of a CHUNK
➂ End of the reading process
➃ Computation of the data
➄ Write the processed SVs back to disk.
In Table V, we present the time allocation of H_0 working

on 35 qubits. The data transfer dominates the simulation, which
takes 63.89% and 58.97%, respectively, not to say the case of
∗_disk and ∗_system with two-times chunk access. Compared
with SATA II, the SATA III accelerates the process of ② about
17.8% and ⑤ around 22.14% in the case of CHUNK = 4096.
On the other hand, we find out that the SATA generations do
not affect the ① and, of course, ④, which is primarily related
to the target FPGA.

E. Qu-Trefoil Working on Large-Scale Qubits Simulation

Till now, the SV-based quantum circuit simulation over 35
qubits primarily depends on supercomputers, as explained in
Section I. This section evaluates the Qu-Trefoil working on
qubit scales over 40. To comprehensively assess the designed
quantum gates, we still accept H as our target in this part. The
evaluation runs separately under SATA II and SATA III, setting
CHUNK = 4096.

As shown in Fig. 18, regardless of whether SATA II or SATA
III is used, the time consumption increases near-exponentially
with the number of simulated qubits due to the more significant
amounts of state vectors (SVs). The detailed time consumption
data is also provided in Table VI. Consequently, depending
on the position of the target qubit, the proposed simulator can
perform a 43-qubit simulation for the H gate in approximately
3.72 to 13.06 hours, with an average of 8.98 hours, which
includes the most time-consuming case of quantum gate simu-
lation referred to as H_system.

TABLE VIII
COST BREAKDOWN FOR THE TREFOIL PLATFORM

Trefoil Storage Subsystem
Amount Unit Cost ($) Total Cost ($)

Subsystem FPGA 1 12,616 12,616
8TB SATA Disk 32 689 22,048
SATA Connector 1 7,750 7,750

Trefoil Full System
Amount Unit Cost ($) Total Cost ($)

Storage Subsystem 8 42,414 339,312
Main System FPGA 1 21,612 21,612

F. Comparison With State-of-the-Art SV-Based QCSs

In Table VII, we present state-of-the-art implementations of
SV-based QCSs, highlighting the simulators used, platforms,
best-effort qubit scales, performance, costs, and energy con-
sumption. For a GPU server like the NVIDIA H100, the qubit
scale is still limited to 33 qubits due to memory constraints de-
spite the fast simulation speed of just 3.57 seconds for an H gate.
In contrast, only supercomputers such as Fugaku, ARCHER2,
and NVIDIA Selene can simulate qubit scales exceeding 35
qubits on much more complex quantum circuits, such as the
Quantum Fourier Transform and Quantum Phase Estimation.
However, these systems come with high financial costs and
energy consumption, requiring using the entire supercomputer
as a simulator, making them infeasible for most researchers.

In our design, while Qu-Trefoil cannot match the processing
speed of supercomputers or GPU servers, it offers an SV-based
QCS platform for large-scale qubit simulation that is more
accessible, flexible, and cost-effective than other simulators in
initial investment and long-term maintenance. Specifically, the
detailed cost breakdown in Table VIII provides a transparent
view of the system’s construction and highlights the flexibility
of Trefoil. As a multi-FPGA storage system, Trefoil allows
for modular component combinations, enabling users to con-
figure the system based on their budget constraints. It is an
appealing option for researchers and institutions with limited
access to HPC resources, such as supercomputers and GPU
clusters.

In terms of controlling the system, once the corresponding
bitstream for a quantum gate, generated using Vivado 2022.2.2
based on the quantum circuit design, is loaded, necessary pa-
rameters are input via a Raspberry Pi 3 to control the target
system. However, Qu-Trefoil requires reconfiguring the plat-
form for each gate in the circuit, with the resulting state vectors
saved to SATA disks after each reconfiguration. As outlined in

1320 IEEE TRANSACTIONS ON COMPUTERS, VOL. 74, NO. 4, APRIL 2025

Section I, Trefoil’s main system can connect directly to eight
storage subsystems, allowing it to handle simulations of up to 46
qubits without compromising performance speed at the current
scale.

VI. CONCLUSION

In this paper, we have proposed the world’s first large-scale
SV-based QCS, Qu-Trefoil, working on FPGA, targeting the
jobs that can only finished by supercomputers so far. By deli-
cately designing the quantum gates IPs using HLS, includingH ,
Z, S, CNOT , T , and unitary matrix, the proposed system can
construct any quantum circuit with quantum gates combination.
Because of the limited on-chip resources, we carefully allocate
the resources, taking the balance of resource utilization and
performance. Due to the restricted speed of SATA disks, we
utilize the pipeline in data processing to boost the system’s
performance.

In evaluating Qu-Trefoil, we comprehensively assess the pro-
posed system’s performance, including the designed quantum
gate IPs’ performance, chunk size extension in burst mode,
SATA disk expansion, and the SATA generation influence on
Qu-Trefoil. Finally, we conducted simulations on a qubit scale
exceeding 40 using the H gate on a Trefoil storage subsystem.
While we observed an exponential rise in time consumption
corresponding to the qubit size, we can further expand the qubit
scale by integrating with the main system without compromis-
ing speed, as explained.

From the perspective of further system optimization, we can
enhance performance through three approaches. First, regarding
bandwidth, we can improve system efficiency by employing
data compression techniques on state vectors (SVs) to increase
the adequate bandwidth of the SATA disks, as demonstrated in
our initial trial [38]. Additionally, we will explore the impact
of storing state vectors in 32-bit, 16-bit, and 16-bit bfloat (brain
floating-point) formats instead of the 64-bit double-precision
floating-point format on the QCS. Furthermore, in terms of
the hardware platform, according to PHISON’s announcement
[39], newly released NVMe SSDs offer over 100TB of storage
with significantly faster data access speeds, which suggests that
upgrading from SATA to an NVMe interface could enable Qu-
Trefoil to support larger-scale quantum circuit simulations with
vastly improved data communication efficiency. Finally, from
an architectural standpoint, computation-in-memory (CIM) us-
ing flash memory [40] is an emerging technology that may
help address limitations of unfavorable data access patterns
by embedding the circuit of generating addresses and creating
chunks. Furthermore, CIM also allows for the parallelism of
quantum gate operations across different memory cells, further
improving the performance of Qu-Trefoil.

REFERENCES

[1] P. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in Proc. 35th Annu. Symp. Found. Comput. Sci., 1994,
pp. 124–134.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. 28th Annu. ACM Symp. Theory Comput., 1996,
pp. 212–219.

[3] H. Ni, H. Li, and L. Ying, “On low-depth algorithms for quantum phase
estimation,” Quantum, vol. 7, Nov. 2023, Art. no. 1165, doi: 10.22331/
q-2023-11-06-1165.

[4] M. Swayne, “IBM reportedly partnering with Japan’s AIST to develop
10,000-qubit quantum computer,” thequantuminsider.com, 2024.
Accessed Sep. 12, 2024. [Online]. Available: https://thequantuminsider.
com/2024/06/18/ibm-reportedly-partnering-with-japans-aist-to-develop-
10000-qubit-quantum-computer/

[5] S. S. Gill et al., “Quantum computing: Vision and challenges,” 2024,
arXiv:2403.02240.

[6] A. D. Patel, “The quantum density matrix and its many uses: From
quantum structure to quantum chaos and noisy simulators,” J. Indian
Inst. Sci., vol. 103, no. 2, pp. 401–417, Apr. 2023, doi: 10.1007/
s41745-023-00406-4.

[7] T. B. Wahl and S. Strelchuk, “Simulating quantum circuits using effi-
cient tensor network contraction algorithms with subexponential upper
bound,” Phys. Rev. Lett., vol. 131, Oct. 2023, Art. no. 180601, doi:
10.1103/PhysRevLett.131.180601.

[8] H. De Raedt et al., “Massively parallel quantum computer simulator,
eleven years later,” Comput. Phys. Commun., vol. 237, pp. 47–61,
Apr. 2019, doi: 10.1016/j.cpc.2018.11.005.

[9] J. Adamski, J. P. Richings, and O. T. Brown, “Energy efficiency of
quantum statevector simulation at scale,” in Proc. SC ’23 Workshops
Int. Conf. High Perform. Comput., Netw., Storage, Anal. (SC-W), New
York, NY, USA: ACM, Nov. 2023, doi: 10.1145/3624062.3624270.

[10] H. Bayraktar et al., “cuQuantum SDK: A high-performance library
for accelerating quantum science,” in Proc. IEEE Int. Conf. Quan-
tum Comput. Eng. (QCE), Los Alamitos, CA, USA: IEEE Comput.
Soc. Press, Sep. 2023, pp. 1050–1061. [Online]. Available: https://doi.
ieeecomputersociety.org/10.1109/QCE57702.2023.00119

[11] “cuQuantum Accelerate quantum computing research,” NVIDIA. Ac-
cessed: Feb. 5, 2024. [Online]. Available: https://developer.nvidia.com/
cuquantum-sdk

[12] Z. Wang, H. Huang, J. Zhang, and G. Alonso, “Shuhai: Benchmarking
high bandwidth memory on FPGAs,” in Proc. IEEE 28th Annu. Int.
Symp. Field-Programmable Custom Comput. Mach. (FCCM), 2020,
pp. 111–119.

[13] H. Huang et al., “Shuhai: A tool for benchmarking high bandwidth
memory on FPGAs,” IEEE Trans. Comput., vol. 71, no. 5, pp. 1133–
1144, 2022.

[14] “Ultrascale plus FPGA product selection guide,” Xilinx. Accessed:
Feb. 8, 2024. [Online]. Available: https://docs.xilinx.com/v/u/en-us/
ultrascale-plus-fpga-product-selection-guide/

[15] M. van der Zalm, “Intel Agilex® 5 FPGAs and SoC FPGAs are ideal
for midrange applications requiring higher performance, lower power,
and smaller form factors,” intel.com. Accessed: Feb. 8, 2024. [Online].
Available: https://www.intel.com/content/www/us/en/content-details/764
697/intel-agilex-5-fpgas-and-soc-fpgas-are-ideal-for-midrange-applica
tions-requiring-higher-performance-lower-power-and-smaller-form-
factors.html

[16] R. Niwase, H. Harasawa, Y. Yamaguchi, W. Kaijie, and H. Amano, “A
cost/power efficient storage system with directly connected FPGA and
SATA disks,” in Proc. IEEE 16th Int. Symp. Embedded Multicore/Many-
Core Syst.–Chip (MCSoC), 2023, pp. 51–58.

[17] Y. Suzuki et al., “QULACS: A fast and versatile quantum circuit
simulator for research purpose,” Quantum, vol. 5, Oct. 2021, Art.
no. 559, doi: 10.22331/q-2021-10-06-559.

[18] F. Bova, A. Goldfarb, and R. G. Melko, “Commercial applications of
quantum computing,” EPJ Quantum Technol., vol. 8, no. 1, 2021, Art.
no. 2, doi: 10.1140/epjqt/s40507-021-00091-1.

[19] B. Fang, M. Y. Özkaya, A. Li, Ü. V. Çatalyürek, and S. Krishnamoorthy,
“Efficient hierarchical state vector simulation of quantum circuits via
acyclic graph partitioning,” in IEEE Int. Conf. Cluster Comput. (CLUS-
TER), Los Alamitos, CA, USA: IEEE Computer Society, Sep. 2022,
pp. 289–300. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/CLUSTER51413.2022.00041

[20] A. D. Patel, “The quantum density matrix and its many uses:
From quantum structure to quantum chaos and noisy simulators,”
J. Indian Inst. Sci., vol. 103, no. 2, pp. 401–417, Apr. 2023, doi:
10.1007/s41745-023-00406-4.

[21] T. Nguyen, D. Lyakh, E. Dumitrescu, D. Clark, J. Larkin, and A.
McCaskey, “Tensor network quantum virtual machine for simulating
quantum circuits at exascale,” ACM Trans. Quantum Comput., vol. 4,
no. 1, pp. 1–21, Oct. 2022, doi: 10.1145/3547334.

http://dx.doi.org/10.22331/q-2023-11-06-1165
http://dx.doi.org/10.22331/q-2023-11-06-1165
https://thequantuminsider.com/2024/06/18/ibm-reportedly-partnering-with-japans-aist-to-develop-10000-qubit-quantum-computer/
https://thequantuminsider.com/2024/06/18/ibm-reportedly-partnering-with-japans-aist-to-develop-10000-qubit-quantum-computer/
https://thequantuminsider.com/2024/06/18/ibm-reportedly-partnering-with-japans-aist-to-develop-10000-qubit-quantum-computer/
http://dx.doi.org/10.1007/s41745-023-00406-4
http://dx.doi.org/10.1007/s41745-023-00406-4
http://dx.doi.org/10.1103/PhysRevLett.131.180601
http://dx.doi.org/10.1016/j.cpc.2018.11.005
http://dx.doi.org/10.1145/3624062.3624270
https://doi.ieeecomputersociety.org/10.1109/QCE57702.2023.00119
https://doi.ieeecomputersociety.org/10.1109/QCE57702.2023.00119
https://developer.nvidia.com/cuquantum-sdk
https://developer.nvidia.com/cuquantum-sdk
https://docs.xilinx.com/v/u/en-us/ultrascale-plus-fpga-product-selection-guide/
https://docs.xilinx.com/v/u/en-us/ultrascale-plus-fpga-product-selection-guide/
https://www.intel.com/content/www/us/en/content-details/764697/intel-agilex-5-fpgas-and-soc-fpgas-are-ideal-for-midrange-applications-requiring-higher-performance-lower-power-and-smaller-form-factors.html
https://www.intel.com/content/www/us/en/content-details/764697/intel-agilex-5-fpgas-and-soc-fpgas-are-ideal-for-midrange-applications-requiring-higher-performance-lower-power-and-smaller-form-factors.html
https://www.intel.com/content/www/us/en/content-details/764697/intel-agilex-5-fpgas-and-soc-fpgas-are-ideal-for-midrange-applications-requiring-higher-performance-lower-power-and-smaller-form-factors.html
https://www.intel.com/content/www/us/en/content-details/764697/intel-agilex-5-fpgas-and-soc-fpgas-are-ideal-for-midrange-applications-requiring-higher-performance-lower-power-and-smaller-form-factors.html
http://dx.doi.org/10.22331/q-2021-10-06-559
http://dx.doi.org/10.1140/epjqt/s40507-021-00091-1
https://doi.ieeecomputersociety.org/10.1109/CLUSTER51413.2022.00041
https://doi.ieeecomputersociety.org/10.1109/CLUSTER51413.2022.00041
http://dx.doi.org/10.1007/s41745-023-00406-4
http://dx.doi.org/10.1145/3547334

WEI et al.: QU-TREFOIL: LARGE-SCALE QUANTUM CIRCUIT SIMULATOR WORKING ON FPGA WITH SATA STORAGES 1321

[22] G. G. Guerreschi, J. Hogaboam, F. Baruffa, and N. P. D. Sawaya,
“Intel quantum simulator: A cloud-ready high-performance simulator
of quantum circuits,” Quantum Sci. Technol., vol. 5, no. 3, May 2020,
Art. no. 034007, doi: 10.1088/2058-9565/ab8505.

[23] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “Quest and high
performance simulation of quantum computers,” Sci. Rep., vol. 9, no. 1,
pp. 1–11, Jul. 2019, doi: 10.1038/s41598-019-47174-9.

[24] E. Forno, A. Acquaviva, Y. Kobayashi, E. Macii, and G. Urgese,
“A parallel hardware architecture for quantum annealing algorithm
acceleration,” in Proc. IFIP/IEEE Int. Conf. Very Large Scale Integr.
(VLSI-SoC), 2018, pp. 31–36.

[25] H. M. Waidyasooriya and M. Hariyama, “Highly-parallel FPGA accel-
erator for simulated quantum annealing,” IEEE Trans. Emerg. Topics in
Comput., vol. 9, no. 4, pp. 2019–2029, Oct./Dec. 2021.

[26] A. Mondal and A. Srivastava, “Ising-FPGA: A spintronics-based recon-
figurable Ising model solver,” ACM Trans. Des. Automat. Electron. Syst.,
vol. 26, no. 1, pp. 1–27, Sep. 2020, doi: 10.1145/3411511.

[27] Y. Jungjarassub and K. Piromsopa, “A performance optimization of
quantum computing simulation using FPGA,” in Proc. ECTI-CON,
2022, pp. 1–4.

[28] Y. Hong et al., “Implementation of a quantum circuit simulator using
classical bits,” in Proc. IEEE AICAS, 2022, pp. 472–474.

[29] R. Niwase, H. Harasawa, Y. Yamaguchi, W. Kaijie, and H. Amano,
“A cost/power efficient storage system with directly connected
FPGA and SATA disks,” in Proc. IEEE 16th Int. Symp. Embedded
Multicore/Many-Core Syst.–Chip (MCSoC), 2023, pp. 51–58.

[30] K. Wei, R. Niwase, H. Amano, Y. Yamaguchi, and T. Miyoshi, “A state
vector quantum simulator working on FPGAs with extensible SATA
storage,” in Proc. Int. Conf. Field Programmable Technol. (ICFPT),
2023, pp. 272–273.

[31] A. Tabuchi et al., “mpiqulacs: A scalable distributed quantum computer
simulator for arm-based clusters,” in IEEE Int. Conf. Quantum Comput.
Eng. (QCE), vol. 1, 2023, pp. 959–969.

[32] N. Umezu, Y. Yamaguchi, and T. Boku, “An FPGA-based storage
control with load balancing,” in Proc. IEEE Int. Conf. Cluster Comput.
(CLUSTER), 2021, pp. 791–794.

[33] Y. Son, H. Kang, H. Han, and H. Y. Yeom, “An empirical evaluation
of NVM express SSD,” in Proc. Int. Conf. Cloud Autonomic Comput.,
2015, pp. 275–282.

[34] “870 QVO data sheet version 1.1,” Samsung Electronics Co., Ltd.,
2020. Accessed: Sep. 10, 2024. [Online]. Available: https://download.
semiconductor.samsung.com/resources/data-sheet/Samsung_SSD_870_
QVO_Data_Sheet_Rev1.1.pdf

[35] F. Kermarrec, S. Bourdeauducq, J. L. Lann, and H. Badier, “LiteX:
An open-source SoC builder and library based on Migen Python DSL,”
2020, arXiv:2005.02506.

[36] F. Kermarrec, “LiteX: An open-source SoC builder and library based
on Migen Python DSL,” GitHub. Accessed: Sep. 6, 2024. [Online].
Available: https://github.com/enjoy-digital/litex

[37] S. Bourdeauducq, “Migen: A Python toolbox for building complex
digital hardware,” GitHub. Accessed: Sep. 6, 2024. [Online]. Available:
https://github.com/m-labs/migen

[38] K. Wei, H. Amano, R. Niwase, and Y. Yamaguchi, “A data compressor
for FPGA-based state vector quantum simulators,” in Proc. 14th Int.
Symp. Highly Efficient Accelerators Reconfigurable Technol. (HEART),
Porto, Portugal, JL. Josipovic, P. Zhou, S. Shanker, J. M. P. Cardoso,
J. Anderson, and S. Yuichiro, Eds., New York, NY, USA: ACM, 2024,
pp. 63–70, doi: 10.1145/3665283.3665293.

[39] C. Robinson, “Phison Pascari D200V PCIe Gen5 NVMe SSD
with 122.88TB of capacity announced,” ServerTheHome. Accessed:
Sep. 12, 2024. [Online]. Available: https://www.servethehome.com/
phison-pascari-d200v-pcie-gen5-nvme-ssd-with-122-88tb-of-capacity-
announced/

[40] Y. Halawani and B. Mohammad, In-Memory Computing Using FLASH
Memory. Cham, Switzerland: Springer-Verlag, 2024, pp. 123–125, doi:
10.1007/978-3-031-34233-2_7.

Kaijie Wei (Member, IEEE) received the M.E. and
Ph.D. degrees in engineering from Keio University,
Japan, in 2020 and 2023, respectively. Currently, he
is a Project Assistant Professor with the Center for
Sustainable Quantum AI (SQAI), Keio University.
His research interests include concern computer
architecture and system optimization, particularly
reconfigurable devices.

Hideharu Amano (Life Member, IEEE) received
the Ph.D. degree in electrical engineering from Keio
University, Tokyo, Japan, in 1986. Currently, he
is a Senior Fellow with the Systems Design Lab
(d.lab), The University of Tokyo. His research inter-
ests include parallel architecture and reconfigurable
computing.

Ryohei Niwase (Member, IEEE) received the
M.Eng. degree in 2022 from the Graduate School of
Science and Technology, Tsukuba University, Japan,
where he is currently working toward the Ph.D.
degree. He has worked in signal processing and
instrumentation engineering. His research interest
includes numerical computing with FPGA clusters.

Yoshiki Yamgauchi (Member, IEEE) received the
Ph.D. degree from the University of Tsukuba, in
2003. He joined the University of Tsukuba in 2005
as an Assistant Professor. He progressed to an
Associate Professor and a Professor in 2015 and
2024, respectively. Since 2011, he has contributed as
a Collaborative Fellow with the Center for Compu-
tational Science, University of Tsukuba. He has also
been a Professor with the Research and Education
Center for Semiconductor and Digital Technologies,
Kumamoto University since 2023.

Takefumi Miyoshi received the B.E., M.E., and
D.E. degrees from Tokyo Institute of Technology, in
2003, 2005, and 2007, respectively. Since 2010, he
has been an Assistant Professor with the Graduate
School of Information Systems, UEC. His research
interests include compiler techniques, many-core
processor architecture, and hardware and software
co-design. He is a member of the ACM, IEICE,
and IPSJ.

http://dx.doi.org/10.1088/2058-9565/ab8505
http://dx.doi.org/10.1038/s41598-019-47174-9
http://dx.doi.org/10.1145/3411511
https://download.semiconductor.samsung.com/resources/data-sheet/Samsung_SSD_870_QVO_Data_Sheet_Rev1.1.pdf
https://download.semiconductor.samsung.com/resources/data-sheet/Samsung_SSD_870_QVO_Data_Sheet_Rev1.1.pdf
https://download.semiconductor.samsung.com/resources/data-sheet/Samsung_SSD_870_QVO_Data_Sheet_Rev1.1.pdf
https://github.com/enjoy-digital/litex
https://github.com/m-labs/migen
http://dx.doi.org/10.1145/3665283.3665293
https://www.servethehome.com/phison-pascari-d200v-pcie-gen5-nvme-ssd-with-122-88tb-of-capacity-announced/
https://www.servethehome.com/phison-pascari-d200v-pcie-gen5-nvme-ssd-with-122-88tb-of-capacity-announced/
https://www.servethehome.com/phison-pascari-d200v-pcie-gen5-nvme-ssd-with-122-88tb-of-capacity-announced/
http://dx.doi.org/10.1007/978-3-031-34233-2_7

<<
	/CompressObjects /Off
	/ParseDSCCommentsForDocInfo false
	/CreateJobTicket false
	/PDFX1aCheck false
	/ColorImageMinResolution 200
	/GrayImageResolution 300
	/DoThumbnails false
	/ColorConversionStrategy /sRGB
	/GrayImageFilter /DCTEncode
	/EmbedAllFonts true
	/CalRGBProfile (Adobe RGB \0501998\051)
	/MonoImageMinResolutionPolicy /OK
	/AllowPSXObjects false
	/LockDistillerParams true
	/ImageMemory 1048576
	/DownsampleMonoImages true
	/ColorSettingsFile (None)
	/PassThroughJPEGImages true
	/AutoRotatePages /None
	/Optimize false
	/ParseDSCComments false
	/MonoImageDepth -1
	/AntiAliasGrayImages false
	/GrayImageMinResolutionPolicy /OK
	/JPEG2000ColorImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/ConvertImagesToIndexed true
	/MaxSubsetPct 100
	/Binding /Left
	/PreserveDICMYKValues false
	/GrayImageMinDownsampleDepth 2
	/MonoImageMinResolution 400
	/sRGBProfile (sRGB IEC61966-2.1)
	/AntiAliasColorImages false
	/GrayImageDepth -1
	/PreserveFlatness false
	/OtherNamespaces [
		<<
			/IncludeSlug false
			/CropImagesToFrames true
			/IncludeNonPrinting false
			/OmitPlacedBitmaps false
			/AsReaderSpreads false
			/Namespace [
				(Adobe)
				(InDesign)
				(4.0)
]
			/FlattenerIgnoreSpreadOverrides false
			/OmitPlacedEPS false
			/OmitPlacedPDF false
			/SimulateOverprint /Legacy
			/IncludeGuidesGrids false
			/ErrorControl /WarnAndContinue
		>>
		<<
			/IgnoreHTMLPageBreaks false
			/IncludeHeaderFooter false
			/AllowTableBreaks true
			/UseHTMLTitleAsMetadata true
			/MetadataTitle /
			/ShrinkContent true
			/UseEmbeddedProfiles false
			/TreatColorsAs /MainMonitorColors
			/MetricUnit /inch
			/RemoveBackground false
			/HonorBaseURL true
			/ExpandPage false
			/AllowImageBreaks true
			/MetadataSubject /
			/MarginOffset [
				0.0
				0.0
				0.0
				0.0
]
			/Namespace [
				(Adobe)
				(GoLive)
				(8.0)
]
			/OpenZoomToHTMLFontSize false
			/PageOrientation /Portrait
			/MetadataAuthor /
			/MobileCompatible 0.0
			/MetadataKeywords /
			/MetricPageSize [
				0.0
				0.0
]
			/HonorRolloverEffect false
		>>
		<<
			/IncludeProfiles true
			/ConvertColors /NoConversion
			/FormElements true
			/MarksOffset 6.0
			/FlattenerPreset <<
				/PresetSelector /MediumResolution
			>>
			/DestinationProfileSelector /UseName
			/MultimediaHandling /UseObjectSettings
			/PreserveEditing true
			/PDFXOutputIntentProfileSelector /UseName
			/BleedOffset [
				0.0
				0.0
				0.0
				0.0
]
			/UntaggedRGBHandling /LeaveUntagged
			/GenerateStructure false
			/AddRegMarks false
			/IncludeHyperlinks false
			/IncludeBookmarks false
			/MarksWeight 0.25
			/PageMarksFile /RomanDefault
			/UntaggedCMYKHandling /LeaveUntagged
			/AddPageInfo false
			/AddBleedMarks false
			/IncludeLayers false
			/IncludeInteractive false
			/AddColorBars false
			/UseDocumentBleed false
			/AddCropMarks false
			/DestinationProfileName (U.S. Web Coated \050SWOP\051 v2)
			/Namespace [
				(Adobe)
				(CreativeSuite)
				(2.0)
]
			/Downsample16BitImages true
		>>
]
	/CompressPages true
	/GrayImageMinResolution 200
	/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
	/PDFXBleedBoxToTrimBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/AutoFilterGrayImages false
	/EncodeColorImages true
	/AlwaysEmbed [
]
	/EndPage -1
	/DownsampleColorImages true
	/ASCII85EncodePages false
	/PreserveEPSInfo false
	/PDFXTrimBoxToMediaBoxOffset [
		0.0
		0.0
		0.0
		0.0
]
	/CompatibilityLevel 1.7
	/MonoImageResolution 600
	/NeverEmbed [
]
	/CannotEmbedFontPolicy /Error
	/PreserveOPIComments false
	/AutoPositionEPSFiles false
	/JPEG2000GrayACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
	/EmbedJobOptions true
	/JPEG2000ColorACSImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/MonoImageDownsampleType /Bicubic
	/DetectBlends true
	/EmitDSCWarnings false
	/ColorImageDownsampleType /Bicubic
	/EncodeGrayImages true
	/Namespace [
		(Adobe)
		(Common)
		(1.0)
]
	/AutoFilterColorImages false
	/DownsampleGrayImages true
	/GrayImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/AntiAliasMonoImages false
	/GrayImageAutoFilterStrategy /JPEG
	/GrayACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/ColorImageAutoFilterStrategy /JPEG
	/ColorImageMinResolutionPolicy /OK
	/ColorImageResolution 300
	/PDFXRegistryName (http://www.color.org)
	/MonoImageFilter /CCITTFaxEncode
	/CalGrayProfile (Dot Gain 15%)
	/ColorImageMinDownsampleDepth 1
	/PDFXTrapped /False
	/DetectCurves 0.0
	/ColorImageDepth -1
	/JPEG2000GrayImageDict <<
		/TileHeight 256
		/Quality 15
		/TileWidth 256
	>>
	/TransferFunctionInfo /Remove
	/ColorImageFilter /DCTEncode
	/PDFX3Check false
	/ParseICCProfilesInComments true
	/DSCReportingLevel 0
	/ColorACSImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/PDFXOutputConditionIdentifier (CGATS TR 001)
	/PDFXCompliantPDFOnly false
	/AllowTransparency false
	/UsePrologue false
	/PreserveCopyPage true
	/StartPage 1
	/MonoImageDownsampleThreshold 1.5
	/GrayImageDownsampleThreshold 1.5
	/CheckCompliance [
		/None
]
	/CreateJDFFile false
	/PDFXSetBleedBoxToMediaBox true
	/EmbedOpenType false
	/OPM 1
	/PreserveOverprintSettings true
	/UCRandBGInfo /Preserve
	/ColorImageDownsampleThreshold 1.5
	/MonoImageDict <<
		/K -1
	>>
	/GrayImageDownsampleType /Bicubic
	/Description <<
		/ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
		/GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
		/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
		/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
		/HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
		/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
		/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
		/CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
		/ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
		/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
		/JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
		/SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
		/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
		/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
		/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
		/ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
		/RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
		/HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
		/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
		/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
		/TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
		/POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
		/HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
		/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
		/RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
		/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
	>>
	/CropMonoImages false
	/DefaultRenderingIntent /Default
	/PreserveHalftoneInfo true
	/ColorImageDict <<
		/QFactor 0.76
		/HSamples [
			2.0
			1.0
			1.0
			2.0
]
		/VSamples [
			2.0
			1.0
			1.0
			2.0
]
	>>
	/CropGrayImages false
	/PDFXOutputCondition ()
	/SubsetFonts false
	/EncodeMonoImages true
	/CropColorImages false
	/PDFXNoTrimBoxError true
>>
setdistillerparams
<<
	/PageSize [
		612.0
		792.0
]
	/HWResolution [
		600
		600
]
>>
setpagedevice

