HELSINKI INSTITUTE OF PHYSICS INTERNAL REPORT SERIES

HIP-2016-03

Cosmological Constraints on
Higgs Portal Dark Matter

Tommi Tenkanen

Helsinki Institute of Physics
University of Helsinki
Finland

ACADEMIC DISSERTATION

To be presented, with the permission of the Faculty of Science of the University of Helsinki,
for public criticism in the auditorium E204 at Physicum, Gustaf Hallstromin katu 2A,
Helsinki, on the 16th of December 2016 at 12 o’clock.

Helsinki 2016



ISBN 978-951-51-1265-1 (print)
ISBN 978-951-51-1266-8 (pdf)
ISSN 1455-0563
http://ethesis.helsinki.fi
Unigrafia
Helsinki 2016


http://ethesis.helsinki.fi

Tahdista meihin hiipii

epatoivon ja innostuksen kummallinen rajamaa

— AW. Yrjana, Mechanema



T. Tenkanen: Cosmological Constraints on Higgs Portal Dark Matter,
University of Helsinki, 2016, 65 pages,

Helsinki Institute of Physics, Internal Report Series, HIP-2016-03,
ISBN 978-951-51-1265-1,

ISSN 1455-0563.

Abstract

Cosmic inflation, an era of rapid expansion in the early universe, and dark matter, an unknown non-
baryonic matter component exceeding the amount of the usual baryonic matter by a factor of five,
are known to play an important role in describing the physics of the early universe and in explaining
the contents of the universe we observe today. Yet the reason for the occurrence of inflation and for
the production of dark matter, or their properties, are not known.

In this thesis we study the observational consequences of a class of particle physics models related
to inflation and dark matter which are challenging to test by direct experiments, such as particle
colliders, but which can be tested by cosmological and astrophysical observations. In particular, we
concentrate on observational properties of self-interacting Higgs portal dark matter. Whenever a
model contains scalar fields which are light and energetically subdominant during cosmic inflation,
so-called 'spectator fields', they acquire large fluctuations which may leave observable imprints on
the Cosmic Microwave Background radiation.

Carefully investigating the spectator field dynamics during cosmic inflation, we solve for typical
initial conditions for post-inflationary dynamics and calculate the dark matter yield originating from
non-thermal decay of spectator condensates. As a result, we find a novel connection between the
energy scale of inflation and the dark matter abundance. We also study alternative thermal histories
of hidden sector dark matter and demonstrate how the usual dark matter production mechanisms may
not be sufficient to correctly describe the evolution of dark matter relic density from its generation
to the present day.

We show that even if the coupling between the hidden and visible sectors is almost negligible,
the scenario has observable consequences. Especially a positive observation of primordial tensor
perturbations would immensely affect not only models of inflation but also very weakly coupled dark
matter models, ruling out large portions of the otherwise viable parameter space. The derived bounds
are generic to most weakly coupled portal models with light scalar fields, and qualitatively similar
results are also expected to arise in other portal type extensions of the Standard Model of particle

physics.
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Chapter 1

Introduction

Cosmology is a discipline which studies the universe as a whole; it is the art of everything that exists.
In the course of history of mankind it has led to a worldview, where instead of being at the center
of the universe, we have been shown to live in a vast cosmos where our spatial location is in no
particular way special.

The cosmological principle, being a guiding philosophy rather than a fundamental law of nature,
states that we live in a spatially homogeneous and isotropic universe. Furthermore, at large scales the
universe is expanding, and we know that at least the observable part of our universe is not infinitely
old but was in a state of hot and dark plasma compressed into a tiny volume approximately 13.8
billion years ago. Ever since it has been expanding and cooling, evolving differently at different length
scales towards the state we observe today [4-7].

It is likely that even before the so-called Hot Big Bang state in the very early universe there were
events such as cosmic inflation [8-10], the primordial era of rapid expansion, but at the moment
we do not know that for sure. Likewise, we are not at the end of the cosmic history. The expansion
of the universe will continue, probably indefinitely [7], and eventually it will empty the universe we
observe today.

The crucial point in scientific research is reaching conclusions based on observations and exper-
iments. The above description can be claimed to be 'true’ because it is based on observations of
the large scale structure of the universe [11], the Cosmic Microwave Background [7], ratios of light
elements [12], and many other things which, when tested, criticized, tested again, and finally glued
together, form a coherent worldview which can be stated to be true to the best of our knowledge.

Yet there remain unsolved issues. They are related for example to the evolution, fundamental
matter content, and the very beginning of our universe. This thesis concentrates on a combination
of the latter two: on the nature of so-called dark matter and its role in the very early universe.

We study the observational consequences of a class of particle physics models which are challenging
to test by direct Earth-bound experiments, such as particle colliders, but which can be tested through
cosmological and astrophysical observations. Making predictions, deriving constraints for new models
from what we already know, and utilizing observations at all scales within our reach are important

to improve and sharpen our understanding of the universe we live in. This is what we intend to do
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in this thesis.

In particular, the contribution of this thesis is to provide an example of an extension of the
Standard Model of particle physics (SM) where new physics even with a tiny coupling to the SM can
be constrained by carefully investigating their dynamics both during and after cosmic inflation. We
hope this will not only provide information about this particular class of models but also motivate
other studies to take the advantage of what we know about the physics of the early universe today.

The thesis is organized as follows. In Chapter 1 we give a brief introduction to the so-called ACDM
cosmology, review the thermal history of our universe and the basis for cosmological perturbation
theory and inflation, and discuss the main observations made of the physics of the very early universe.
In Chapter 2 we concentrate on dark matter by presenting the current observational evidence for
its existence and discussing different production mechanisms and observational properties of very
weakly coupled particle dark matter. In Chapter 3 we focus on the phenomenology of scalar fields in
a curved background, discussing their role during and after cosmic inflation. In Chapter 4 we discuss
the observational need to extend the Standard Model of particle physics and present the Higgs portal
model together with its defining principles and particle content. In Chapter 5 we discuss the evolution
of different Higgs portal fields in the early universe and derive cosmological constraints on different

properties of this class of models. Finally, we conclude with an outlook in Chapter 6.

1.1 Friedmann—Robertson—Walker universe

The general theory of relativity is defined by the Einstein-Hilbert action [5]

5= /d4x\/jg (1(50 + cmat) (1.1)

where g is the determinant of the metric tensor g,,, R is the Ricci scalar, G is the Newton's
gravitational constant and L.+ denotes the Lagrangian density of the matter content of the universe.

Varying with respect to the metric g, leads to the Einstein field equations

1
R, — §9WR =81GT,, (1.2)

where R, is the Ricci tensor and T}, is the energy-momentum tensor. The Einstein equations
describe how the curvature of spacetime reacts to the presence of matter, and how in turn the
matter content evolves in the presence of spacetime curvature. In this sense, Eq. (1.2) is the
governing equation of cosmology.

Assuming a spatially homogeneous and isotropic universe, the spacetime metric takes the Robertson—
Walker (RW) form [5, 6]

dr?

2 _ 42 2
ds® = —dt +a(t)(1—Kr2

12 (d92 + sin? 9d¢2)> , (1.3)
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where a(t) is a time-dependent scale factor and K a real-valued parameter which describes spatial
curvaturel. Models based upon this metric are called Friedmann—Robertson-Walker models.

The evolution of a(t) is determined by the Friedmann equations

_ a_ &G g 14
3 P - 3 (p+ 3p), (1.4)

which can be derived by inserting the metric (1.3) into the Einstein equation (1.2) and assuming the

<a>2 K 8rG i 47 G
a

a

energy-momentum tensor takes the form of a perfect fluid, 7,,, = (p + p)U,U, + pg,,, where U,
is the fluid four-velocity in comoving coordinates. Here p and p are, respectively, the energy density
and pressure of the fluid.
Conservation of the energy-momentum tensor, V#T),,, = 0, implies

5:—3(1 —|—w)g, (1.5)
where w = p/p is the equation of state parameter of the fluid. There are three forms of cosmological
fluids: matter (dust), radiation, and vacuum energy. Matter consists of nonrelativistic particles
which have zero pressure, w = 0, and whose energy density, in case there are no interactions
between different particle species, falls off in an expanding universe as py, o a2 by virtue of Eq.
(1.5). Radiation may describe either actual electromagnetic radiation or massive particles moving at
relativistic velocities, and its equation of state is w = 1/3. The energy density of radiation therefore
falls off as p, oc a=*. Vacuum energy has an equation of state w = —1, and hence its energy density

remains constant, pp ad

, as the universe expands.

Equations (1.4) and (1.5) can be written either in the above form or in terms of the Hubble
parameter, H = a/a, which characterizes the rate of expansion of the universe. The measured
value of the Hubble parameter at the present epoch? is Hy = (67.8 & 0.9) km/s/Mpc [7], which is
sometimes written as Hy = 100h km/s/Mpc, where h ~ 0.68.

Defining the Hubble parameter allows us to write the Friedmann equation (1.4) as

K
di—1= el (1.6)

where Q; = p;/p. is the density parameter defined in terms of the critical density p. = 3HZ/(87G),
and where the sum runs over all the different matter components of the universe. Recent measure-
ments by the Planck satellite show that €, = 0.308 + 0.012, €, ~ 5 x 1075, Q, = 0.692 4 0.012
[7]. The measured values of the matter density parameters show that out of all possible values the
sum ) . €); is very close to unity, implying that K is very close to zero and space is essentially flat.
More accurately, Planck finds |Qx| < 0.005 [7].

! Alternatively, the parameter K can be normalized such that K = —1,0, and 1 refer to an open, flat, or closed
universe, respectively.

2Jt should be noted that there is more than a 20 discrepancy in Hy between local measurements and observations
of the Cosmic Microwave Background radiation [13,14] (see also [15]). The reason for this discrepancy has recently
been studied in e.g. [16].
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This scenario, where the spacetime metric is described by the flat RW form, (1.3) with K = 0,
and the matter content of the universe consists mostly of non-relativistic matter and vacuum energy,
is known as the ACDM model. Here CDM refers to cold dark matter, to be discussed first in Section
1.2.2 and then in more detail in Chapter 2. The ACDM model is also called the Standard Model of
cosmology for its prevalent role in explaining the cosmological matter content and evolution of our
universe [6,7]. In the remainder of this Chapter we will discuss the cosmic evolution of the different

components of the ACDM model.

1.2 Thermal history of the universe

The history of the universe is well understood down to the time of Big Bang Nucleosynthesis (BBN),
which took place at ¢t ~ 1s. The BBN describes successfully how and in what ratios light atomic
nuclei formed, and it is one of the cornerstones of modern cosmology [6]. Another cornerstone is
the formation of the Cosmic Microwave Background radiation (CMB) at ¢ ~ 4 x 10°y, when photons
decoupled from atomic nuclei and the universe became transparent for the first time. Therefore, the
CMB is the first light and can be described as the afterglow of the Hot Big Bang era.

The success of BBN and the formation of the CMB in providing both theoretical understanding
and observational tools serves as a powerful way to test different scenarios of physics of the early
universe and cosmology in general, as we will see. Especially the spectra of small inhomogeneities or
temperature anisotropies of the CMB are particularly valuable.

What happened before BBN is less clear and more speculative. However, there exist good reasons
to argue that the universe might have undergone an era of rapid expansion, cosmic inflation, before
reaching a state which was suitable for nuclei and the CMB to form. We will discuss these aspects

further in the subsequent Sections.

1.2.1 The Standard Model of particle physics

We begin by discussing the non-relativistic matter content of today's universe which can be divided
into two parts: baryonic matter and non-baryonic or 'dark’ matter. The known baryonic matter
content is described by the Standard Model of particle physics (SM). A thorough presentation of the
SM symmetries, particle content, and interactions can be found in e.g. [6, 17], and here we only
review the core of the theory. Dark matter will be discussed briefly in the next Section and then
more thoroughly in Chapter 2.

The gauge symmetry group of the SM is SUc(3) ® SUL(2) ® Uy (1), where the factor SUc(3)
describes the strong interactions between quarks and the corresponding gauge bosons dubbed gluons.
The factor SUL(2) ® Uy (1) describes the electroweak interaction between leptons, quarks, and the
gauge bosons Z,W*, and 7. The latter symmetry is spontaneously broken by the only scalar field
in the theory, the Higgs field ®, which as a result of the symmetry breaking gives mass to all SM
particles except the photon v, the neutrinos, and the gluons. Despite the fact that only quarks
can construct baryons, in cosmological context the SM particles are often collectively referred to as



1.2 Thermal history of the universe 5

'baryonic matter’.

Being a quantum field theory, the SM exhibits many properties not present at classical or 'tree-
level'. In particular, radiative or thermal corrections to particle masses and interactions may have
major implications for particle dynamics in the early universe and for connecting dynamics at currently
achievable collider energies to the very high energy scales often encountered in cosmology. These
phenomena will be discussed more closely in the context where they are relevant.

The SM is not a complete theory. Most notably, it cannot accommodate dark matter [18] or
generation of matter-antimatter asymmetry [19], and it is therefore expected to be an effective
field theory which can be accurately used to describe particle dynamics only up to some currently
unknown energy scale. Above this scale, extensions of the SM are needed to correctly describe the

dynamics.

1.2.2 Other matter components

In Section 1.1 we presented the results O, ~ 0.31, Q) ~ 0.69 for the cosmological matter content
of the universe. Observations show that the baryonic components constitute only approximately one
sixth of the total non-relativistic matter content, 2, ~ 0.05 [7]. Most of the non-relativistic matter
content must therefore be in the form of non-baryonic and non-relativistic (cold) dark matter, whose
contribution is the rest, Qcpym =~ 0.26.

In today’s universe only photons are relativistic> and contribute to radiation energy density. How-
ever, the smaller and denser the early universe was, the more particle species were relativistic and
thus contributed to the energy density in the form of radiation. From cosmological observations we
know that even though there is more cold dark matter than baryonic matter in today's universe, the
dark matter component did not become to dominate the total energy density until t ~ 5 x 10%y
[7]. Thus the dynamics long before that were governed by the SM and other particles instead of the
non-relativistic dark matter component.

At the moment we do not know what constitutes the cold dark matter component and how it was
produced in the early universe. Overwhelming evidence for its existence and countless theoretical
models and stringent experimental constraints for both its properties and origin however exist. They
will be discussed in the subsequent chapters.

An even bigger mystery than dark matter is the component that constitutes the rest of the total
energy density, 24 ~ 0.69. Currently we have no conclusive evidence for whether this component
is the contribution of the vacuum energy density, dynamical dark energy, manifestation of our lack
of understanding of the deeper nature of gravity, or something else*. Despite playing the dominant
role in determining the eventual fate of today's universe — as the evolution of a depends mostly on
pa, see Eq. (1.4) —, this component played only a minor role in governing the dynamics of the early
universe, and will therefore be neglected for the remainder of this thesis.

30f the three neutrino generations, one may be massless and therefore constitutes radiation even today. The

relativistic neutrino contribution to € is however subdominant to photons [6, 7].
*An interested reader is referred to Refs. [20, 21].
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1.2.3 Thermal equilibrium

In the very early universe the different SM particle species were not only relativistic but in thermal

equilibrium with each other due to their relatively strong mutual interactions®

. This equilibrium is
manifested in the almost perfect blackbody distribution of the CMB, and further supported by the
success of BBN calculations.

Particle species in thermal equilibrium obeyed the distribution function

1

filk, T, p) = CE T L] (1.7)

where — and + refer to bosons and fermions, respectively, and where E; = (k* + m?)'/? is the
energy of particle species i, k is the corresponding momentum, and g the chemical potential. The

number and energy densities then took the form

where g; is the number of degrees of freedom of the particle species .

By writing the effective number of degrees of freedom at temperature 1" as

g(T)= > gﬁrg > g (1.9)

bosons fermions

the total energy density of all relativistic particles in thermal equilibrium can be written as

71'2 4

= —g. 1" 1.10
P= 359 (1.10)
These results will be used in subsequent chapters. Another result that we will use is the expression
for the total entropy density
p+p

=— 1.11
s=L1P (111)

which follows from the fundamental equation of thermodynamics. In the absence of heat transfer,
the conservation of entropy in a comoving volume, d(sa®) = 0, gives a useful relation between the
temperature and scale factor, T" g*_l/sa_l.

For successful BBN the SM has to be in thermal equilibrium and dominate the total energy density
of the universe at 7'~ 4 MeV [22, 23] (whereas the CMB was formed at 7'~ 0.3 eV [7]). It may
be that the SM had attained thermal equilibrium and governed the total energy density already
much earlier but it is equally possible that before BBN the universe was not in thermal equilibrium
at all, or that the evolution of the universe was governed by non-SM particle species, for instance
particles belonging to some unknown hidden sector which later decayed to comprise the SM heat

bath [24,25]. A third option is that the SM particles attained thermal equilibrium long before BBN

*During BBN and the formation of the CMB, as well as during the neutrino decoupling, the universe departed
from thermal equilibrium for some time. For most of the history of the early universe, however, the equilibrium was

maintained.
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and dominated the energy density, but there were also other matter components which were not in
thermal equilibrium with the SM particles and underwent their own thermal history.

The successful BBN allows only small deviations from the known particle content. The total
number of relativistic degrees of freedom at 7'~ 1 MeV is constrained to Neg = 3.15 £ 0.23 [7],
which is consistent with the SM value N.g = 3.046 [26]. However, there might still have been stable
non-SM non-relativistic components, namely dark matter, whose abundance becomes significant only
at later times. Such a scenario will be discussed in Chapters 3 and 5.

At the moment there is no conclusive evidence for how the thermal state was reached. It is,
however, necessary that the universe was not in thermal equilibrium at its earliest stages but attained

the thermal state only much later, as we will now discuss.

1.3 Cosmic inflation

In Section 1.1 we mentioned that the value of the sum )", €2; is very close to unity and as a result
space is essentially flat, by virtue of Eq. (1.6). At the time of BBN, 7' ~ 1 MeV, this requires
|K| <1076 [6], an extremely fine-tuned initial condition.

It is therefore appealing to investigate whether there could exist a dynamical origin for this value.
In fact, K is not the only parameter whose value at the time of BBN seems to require fine-tuning.
The others are related to the so-called horizon (or homogeneity) and unwanted relic problems [6].
As a possible solution to these problems, one can postulate an era that preceded the period when

the universe was in a thermal state: the cosmic inflation.

1.3.1 Dynamics of inflation

The main idea of cosmic inflation was first presented by the authors of [8-10]. Cosmic inflation is
defined as a state of accelerated expansion of the universe, @ > 0, and it is assumed to have taken
place in the very early universe, typically long before BBN. By virtue of Eq. (1.6), a growing @ quickly
drove K — 0, making the universe spatially flat. The longer the period of accelerated expansion
lasted, the flatter the universe became. At the same time, the expansion made the (observable)
universe nearly homogeneous and diluted the number density of unwanted relics.

As the requirement for accelerated expansion can also be expressed as p + 3p < 0 by Eq. (1.4),
it has become customary to assume inflation was driven by a single scalar field with w = —1. This

condition can be realized by imposing the slow-roll conditions

0] < [Hgl, @<V, (1.12)

for the scalar field ¢, dubbed the 'inflaton’, slowly rolling down its potential V. Inflation then ends
when the field gains speed and the slow-roll conditions (1.12) are no longer satisfied, and the universe
enters the Hot Big Bang era. This happens via a period called reheating, the process by which the
SM particles attained thermal equilibrium [27,28]. Dynamics similar to reheating will be discussed
in Chapter 3.
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In the literature there exist a great multitude of different inflationary models with different proper-
ties. Examples include chaotic inflation [29], hilltop inflation [30], natural inflation [31], Starobinsky
inflation [32] and its variants [33,34], and so on. Exhaustive analysis of different inflationary models
can be found in e.g. [35,36]. In this thesis we do not consider inflationary models as such but
concentrate on the so-called spectator fields. Their contribution to inflationary dynamics is assumed
to be negligible but they can anyway undergo dynamics whose consequences become important in
the post-inflationary universe, as we will show in Chapters 3 and 5.

The duration of inflation is characterized by e-folds, N = In(a(tenq)/a(t)), where a(tenq) is the
scale factor at the end of inflation and a(t) at some earlier time ¢. Typical estimates for the duration
of inflation vary between N =~ O(1)...10%¢ [35], and usually the horizon exit of the largest observable
scales is assumed to have taken place at N ~ 60 [6].

At the moment we do not know how inflation began or how many inflationary periods the uni-
verse has undergone. Therefore, the main success of inflationary model resides not in solving the
aforementioned fine-tuning problems, such as the flatness and homogeneity of the universe, but in

explaining the origin of small temperature anisotropies present in the CMB.

1.3.2 Primordial perturbations

During inflation the inflaton field(s) acquired large quantum fluctuations. On superhorizon scales

the two-point function of a single massless inflaton field froze to a constant value [6]

H2
(Pxow) = (2m)?5(k — k,)27k37

where the subscript k denotes different modes of Fourier decomposition of the inflaton field ¢. These

(1.13)

fluctuations became classical perturbations outside the horizon and generated the perturbations which
seeded the temperature anisotropies seen in the CMB [6].

The CMB perturbations can be described by considering small perturbations around the RW
metric, g, = gf}}w) + 0guw. To first order in these perturbations, the perturbed metric takes the

form [37]

ds? = —(1 + 2A)dt? + 2aB;dtdz" + a* (1 — 2);; + 2E;;) da'da?, (1.14)

where a is the background scale factor and the functions A, B;,v, and E;; describe first order
perturbations around gf}l))w). The curvature perturbation in the so-called uniform density gauge can

then be written as

op
?7
and it can be shown that also this quantity, in the absence of isocurvature perturbations (see the

(=—¢—H (1.15)

next subsection), remains constant on superhorizon scales even in the case of a massive inflaton field
[6]. For Gaussian curvature perturbation ¢ the statistics are fully determined by the power spectrum

P¢, defined by the two-point function
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272 H? (H\?
— 3 I A Nl ~ 3 R AN el
(Gcie) = (28~ 1) - Pe() = (250 ~ K5 é) , (1.16)
where the latter equality holds for slow-roll inflation.
The results (1.13) and (1.16) allow us to write
H 2
Pe(k) = (¢) Psg(k), (1.17)

where Psy(k) = H}/(2m)? is the power spectrum of the inflaton field. Here Hy is the Hubble
parameter at the time the scale k exited the horizon. The result (1.17) is the most important feature
of the inflationary scenario, as it connects the random fluctuations of a scalar field during inflation to
spatial inhomogeneities observed in the CMB, and therefore strongly supports the idea that inflation
took place in the early universe.

The measured amplitude of the curvature power spectrum, P, = 2.2 x 1079 [38], is a stringent
constraint on inflationary models. While alternative ways to generate the primordial curvature per-
turbation exist, such as the curvaton model [39-41] and modulated reheating scenario [42, 43],
observations of the CMB are consistent with models where a single inflaton field generates the
observed curvature perturbation [38].

The amplitude of the curvature power spectrum is not the only parameter which characterizes
primordial dynamics. For example, the measurements of or constraints on the spectral index,
ns(k)—1 = dP¢/dInk, the tensor-to-scalar perturbation ratio, r = Pr /Py, different non-gaussianity
parameters, and the isocurvature power spectrum provide powerful means to describe both infla-
tionary and post-inflationary dynamics [35, 36]. In this thesis, we concentrate on isocurvature

perturbations.

1.3.3 Isocurvature perturbations

In this subsection, we follow Ref. [44] in reviewing the decomposition of a general perturbation of
the matter content into adiabatic and isocurvature perturbations.

The above discussion concentrated on adiabatic perturbations, which affect all cosmological fluids
such that relative ratios in the number densities between different fluid components, for example i
and j, remain unperturbed, 6(n;/n;) = 0. The adiabatic perturbation is therefore associated with

the curvature perturbation via Einstein's equation (1.2), and can be shown to satisfy

& 0
14w, 1+w;’

(1.18)

where 0, = dpg/pk is the density contrast and wy, the corresponding equation of state parameter of
the fluid component k£ = ¢, 7. The isocurvature perturbation between the two components i and j

can then be defined as departure from the adiabatic condition

_ 0 9;
Cltw 14wy

Sij (1.19)
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when there is no heat transfer between different fluid components. We evaluate all perturbations at
photon decoupling T' ~ 0.3 €V.

The physical content of the isocurvature perturbation can be understood as follows: because
there are several cosmological fluid components, it is possible to perturb the matter content of the
universe without perturbing the geometry of space. Therefore, isocurvature perturbations correspond
to variations in particle number ratios, §(n;/n;) # 0, without having an effect on curvature of space.

As in the case of adiabatic perturbations, we can define a matter isocurvature power spectrum.
We write it in terms of the adiabatic perturbation spectrum as

Ps=-" 1. (1.20)
- B
which defines the isocurvature parameter 3. For isocurvature modes uncorrelated with the adiabatic
perturbations observations indicate 8 < 0.05 [38], which shows that the observations of the CMB
are consistent with purely adiabatic perturbations. This further supports the treatment presented in
Section 1.3.2.

While the non-observation of isocurvature perturbations has provided no evidence for models
beyond the simplest scenario of a single-field inflation, the stringent upper bound on § provides an
invaluable resource for extracting information about different particle physics scenarios describing

also other than inflationary physics, as we will show in Chapters 3 and 5.



Chapter 2

Dark matter

In Section 1.2.2 we discussed the Planck observations which have revealed that there are roughly
six times more non-baryonic cold dark matter, Qcpmh? ~ 0.12, than ordinary baryonic matter,
Qph? ~ 0.02. In this chapter, we discuss further the evidence for the existence of dark matter,
different theoretical models for its production in the early universe, and the observational properties

of very weakly coupled particle dark matter.

2.1 Observational evidence

In this Section we briefly review the observational evidence for dark matter following Refs. [18, 45].

The idea of dark matter as an invisible matter component dates back to the 18th century, although
dynamical evidence was not to be found until the beginning of 1930’s, when Kapteyn and Oort studied
the motions of nearby stars and concluded that there must be an excess of gravitational pull to that
the bright stars are known to cause. Ever since, an extensive number of observations of different
astrophysical and cosmological targets including rotational velocities of spiral galaxies, dynamics of
galaxy cluster mergers, gravitational lenses, and primordial density perturbations have all confirmed
there are roughly 5 — 6 times more invisible matter than visible. Evidence for dark matter is thus
found to exist at all scales, both spatial and temporal. It seems therefore unlikely that, for example,
models with modified laws of gravity could explain the excess of gravitational acceleration at all these
different scales.

The first studies of dark matter assumed that the invisible matter content was mainly in the form
of faint stars. However, evidence from the growth of primordial density fluctuations — which dark
matter interferes with by modifying the so-called baryon acoustic oscillations — suggests that the
observed dark matter density must consist of non-baryonic forms of matter instead of the usual
baryonic matter.

What constitutes this non-baryonic matter component is, however, not known. Dark matter may
or may not be composed of particles, and its properties may or may not be within the reach of
current or near-future experiments. From cosmological and astrophysical observations we know that

dark matter must be cold, i.e. non-relativistic, and it must have dominated the total energy density

11
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of the universe from T' ~ 0.8 eV to the time when the vacuum energy density, pp, took over. Dark
matter must also be stable at cosmological scales, meaning that its lifetime must exceed tgec 2 10%5s.
While no conclusive dark matter signals have shown up in different experiments, they have placed
increasingly strong constraints on properties, such as masses and scattering cross-sections, of weakly
interacting dark matter particles.

In this thesis we assume dark matter consists of one or more new quantum fields. The most studied
particle dark matter candidates appearing in the literature include WIMP's (Weakly Interacting
Massive Particles), sterile neutrinos, axion-like particles, moduli, and many other both theory-based
and purely phenomenological models (for a recent review, see again [18]). Recently there has been
substantial interest in FIMP (Feebly Interacting Massive Particle) dark matter [46,47], which is the
model we will concentrate on from Section 2.2.2 onwards.

2.2 Dark matter production

As discussed in Section 1.2.3, for most of the history of the early universe, the SM particles were in
thermal equilibrium. Dark matter, on the other hand, may or may not have been part of the same
heat bath. In this Section, following [4,47], we present the two basic mechanisms for dark matter
production: thermal freeze-out and non-thermal freeze-in, which are the two main cases describing
scenarios where dark matter was or was not part of the SM heat bath, respectively.

To accurately solve the evolution of the dark matter relic density, one must follow the microscopic
evolution of particle phase space distribution functions f(k,t,u). The evolution is governed by
Boltzmann equations, which at the level of number densities, Eq. (1.8), can be written as [4]

dni . g d3k
L+ 3H; = (27r)3/C’[f]E, (2.1)

for particle species i. Here the 3Hn; term accounts for the dilution of n; due to the expansion of the
universe, and the term on the right-hand side accounts for interactions that change the total number
of particles. The accurate form of this so-called collision term depends on the processes relevant for
the context, and will be specified later.

In general, Boltzmann equations form a coupled set of integro-differential equations for distribution
functions of all particle species present, but if all but one species are assumed to be in thermal
equilibrium with each other, solving the dark matter abundance reduces to a single integro-differential
equation. Furthermore, once all interactions are known, solving Eq. (2.1) then gives the present-day
dark matter abundance.

A minimal requirement for any dark matter model is that the solution for the contribution of
particle species i yields Q;h% < 0.12. However, there exist important cases where knowing the final
abundance is not enough, but one has to solve the dark matter distribution function. In particular,
this is the case for studies on the effect of dark matter on structure formation [48]. In this thesis

we do not consider the dark matter yield at the particle distribution level but concentrate on solving
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the resulting abundance. We will, however, comment on the consequences of some particular cases

on structure formation in Section 3.2.2.

2.2.1 Freeze-out mechanism

Let us first concentrate on a widely-studied scenario: the freeze-out mechanism. In this case dark
matter! is assumed to have initially been in thermal equilibrium with the SM particles, and the
observed relic abundance is produced when the interactions between the dark matter and SM particles
cannot compete with the expansion of the universe any more.
In the simplest case where dark matter undergoing thermal freeze-out consists of stable particles
x with no initial asymmetry between particles and anti-particles nor large self-interactions, the abun-
dance can be solved simply by considering annihilation and inverse annihilation processes, xx <> SM,
as they are the only processes which can change the number of x's and X's in a comoving volume. For
asymmetric dark matter and the effect of large self-interactions, see [49] and [50, 51], respectively.
The evolution of the dark matter number density is governed by [4]
dny 2 eq\2
—X + 3Hny = —(oalv) (n2 = (n5)?), (2.2)
where (o 4|v]) is the thermally-averaged total annihilation cross-section times velocity, n, is the
actual dark matter number density and n{? is the equilibrium number density.
By defining the commonly used variables Y = n, /s and z = m, /T — where s is the entropy
density of the bath, Eq. (1.11), and m, is the dark matter particle mass — Eq. (2.2) can be cast in
the form

2
Y T Y
v d¥  Ta 1], (2.3)
Yoq dx H Yeq

where I' y = n{?(oa|v|) is the effective interaction rate between dark matter and bath particles.
AslongasI'y 2 H, equilibrium between the SM and dark matter particles is maintained. However,
because in an expanding universe I'y < H unavoidably occurs at some point, the annihilations will
eventually shut off. We define this to take place at © = xy, so that for x < x the dark matter
abundance follows the equilibrium number density, ¥ ~ Y., while for x pe xy the dark matter
abundance freezes out, Y (z 2 xf) = Yeq(z¢). This behavior is depicted in Figure 2.1, which shows
the evolution of dark matter number density for three different values of the interaction rate I' 4.
Once dark matter falls out of thermal equilibrium, its comoving number density remains constant,
Ny X a~3. This is true for scenarios lacking the so-called dark matter cannibalization phase where
number-changing interactions, such as xxx — X)X scatterings, modify the frozen-out abundance
[50]. In this Section, we neglect them for simplicity but turn back to this issue in Section 2.2.3.

In fact, the use of freeze-out mechanisms is not limited to studies on dark matter production. Neutrino decoupling

at T ~ MeV is an example of an early universe process where particle species underwent thermal freeze-out [4].



14 Dark matter

107°

10_12';4

10—15

|
' 100

r=m/T

Figure 2.1: The two basic mechanisms for dark matter production: the freeze-out (solid coloured
lines) and freeze-in (dashed coloured lines), for three different values of the interaction rate between
the SM particles and dark matter. The arrows indicate the effect of increasing the rate for the two
processes. The black solid line is the dark matter equilibrium number density. The Figure is from
[47].

The standard approximate solution for the present-day abundance then becomes [4]

(n+1)z;GeV™!
V9=Mp(oalvl)

where Mp = (87rG)_1/2 is the reduced Planck mass, n = 0 for s-wave annihilation, n = 1 for p-wave

Q,h% ~ 1.07 x 10° (2.4)

annihilation, and so on. Here we assumed, for simplicity, that the freeze-out occurs when dark matter
is non-relativistic, x5 2 3. Indeed, the dark matter freeze-out typically occurs at x5 = 10...30 [47].
The solution (2.4) has an important feature: the present abundance is inversely proportional to

the dark matter annihilation cross-section?

. This can be understood by remembering that in the
freeze-out scenario dark matter particles are initially in thermal equilibrium with the SM particles,
and the stronger the interaction between them is, the longer the dark matter particles remain in
equilibrium, thus diluting their number density in an expanding universe. This can also be seen in
Figure 2.1.

Maybe the most studied frozen-out dark matter candidates are supersymmetric neutralinos. Today,
however, different models with frozen-out dark matter candidates (and supersymmetry in general)
are beginning to be strongly constrained by experiments [18], and therefore it is not only of academic

interest to start considering alternative scenarios for dark matter production.

3

2The fact that roughly a weak scale cross-section (o4 |v]) ~ 10726 cm®s ™ yields the observed dark matter abundance

is known as the "WIMP miracle’.
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2.2.2 Freeze-in mechanism

The above discussion was based on the assumption that the dark matter particles were initially in
thermal equilibrium with the bath particles. However, if the coupling between the bath particles and
dark matter particles is very small, interactions between them might not have been strong enough
for dark matter to reach thermal equilibrium. In that case, the observed dark matter abundance has
to be produced by the so-called freeze-in mechanism [1,2, 46, 47, 52-55], instead of the freeze-out
mechanism discussed above.

In the simplest case, the initial occupation number of dark matter particles is either zero or
negligibly small, and the observed abundance is produced by bath particle decays®, for instance
o — xx at T~ m,. Here o is a bath particle and x again the dark matter particle.

The freeze-in yield is active for T' 2 m, /10, and shuts off below this, as the number density of o
becomes Boltzmann-suppressed, n,  exp(—my/T). By virtue of Eq. (2.1), the comoving number
density of y then becomes a constant and the dark matter abundance is said to 'freeze in". This is
again depicted in Figure 2.1.

The dark matter abundance produced by decays of bath particles, ¢ — x, is given by

dn

7;( +3Hny = /dHOdHX1dHX2(27T)454(pa —DPxi — Pm)’/\/laaxxp (2.5)
X (fa(l + fX1)(1 + sz) - fX1fX2<1 * fo)) ’

where dIl; = d3k; /((27)32F;) is the phase space measure for particle i, M is the quantum mechan-

ical transition amplitude, and + (—) applies for bosons (fermions). The approximate solution for
(2.5) in the limit f, = 0is [47]

2 27 My Loy y
Qh” ~1.09 x 10 TmZ, (2.6)

where all quantities are to be evaluated at T' ~ m,. Taking m, < my and Iy, = /\gxma/(&r),
where A, is the coupling strength between x and o, the result (2.6) yields a parametric estimate

for the coupling sufficient to produce the observed dark matter abundance

1/2 1/2
vt [ <9*>‘°’/4 Mo (2.7)
= 0.12 102 my ' '

The implied small coupling value is compatible with the key assumption of the freeze-in scenario that

the dark matter particles have not thermalized with the bath particles above T' 2 m,,.
The required coupling values and assumptions of the initial abundance are not the only differences

between the freeze-in and freeze-out scenarios, as also the relation between the relevant mass scale

3Also scattering processes, such as AA — xx, where A is a bath particle, are known to contribute to the dark
matter yield and dominate over particle decays if m, < 2m,,. Also mechanisms like asymmetric reheating [56] and
decay of dark matter condensate [1,2] can contribute to the dark matter yield. Here we neglect these contributions

for simplicity but will include the effect of the latter process in Chapter 5.
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and the bath temperature at the time of dark matter production is different. In the freeze-out mech-
anism the relic abundance is produced at mx/T ~ 10...30, whereas for the freeze-in mechanism it
arises during the epoch m, /T ~2...5 [47]. Also the effect for freeze-in in increasing the interac-
tion rate between the SM and dark matter particles is contrary to the freeze-out scenario, where the
larger the interaction rate was, the smaller the final abundance turned out to be. This can be clearly
seen in Figure 2.1.

Moreover, because the x particles were not in thermal equilibrium with the SM particles in the
early universe, their production mechanism can be sensitive to initial conditions. This is again in
contrast to the freeze-out mechanism, where thermal equilibrium destroys all dependence on the
initial state of bath particles. This is an important feature of the freeze-in mechanism and we will
utilize it in Chapter 5.

Also similarities arise. As with frozen-out particles, in the freeze-in scenario the frozen-in particle(s)
may not be the particle(s) which comprise the final dark matter abundance: they may decay to actual
dark matter particles, for example to sterile neutrinos, at a later stage [57]. The dark matter sector
not being in thermal equilibrium with the SM particles may also accommodate complicated dynamics
in its own sector. This would modify the final dark matter abundance, as we will now discuss.

2.2.3 Dark freeze-out

In the first studies of the freeze-in mechanism the exact value of the dark matter self-interaction
coupling was considered to be irrelevant to the dark matter abundance [46, 47, 52, 53]. However,
today it is known to be of utmost importance in both determining the initial conditions for low energy
phenomena, as we will show in Chapter 5, and for cases where the dark matter particles interact with
themselves sufficiently strongly.

If the self-interactions are large, the dark matter particles may thermalize amongst themselves and
the final dark matter abundance becomes dominated not by the initial freeze-in but by a freeze-out
mechanism operating within the dark matter sector; the so-called 'dark freeze-out’ [3,50,51,58-61].
Indeed, if the number-changing interactions, for example the 2 — 4 scattering processes4, in the dark
matter sector are fast, they will lead to chemical equilibrium within the dark matter sector, reducing
the average momentum of the dark matter particles and increasing their number density. The dark
matter abundance may therefore change even though the coupling between the SM and dark matter
sectors has effectively been shut off.

It can be shown that thermalization of the hidden sector within itself will take place if the self-
coupling exceeds a critical value Acrit. = Acrit. (Aoy, Mo My)  [3, 50, 58], For A < Agit., the usual
freeze-in picture is sufficient. If the self-coupling is larger than the critical value, the dark matter
sector enters into thermal equilibrium with a hidden sector temperature T1y. The equilibrium is then
maintained until the 4 — 2 interaction rate drops below the Hubble rate and the number density
freezes out. The final relic abundance depends on the freeze-out temperature of the 4 — 2 scattering

rate similarly to the standard freeze-out discussed in Section 2.2.1.

“Here we assume the 2 — 3 process is forbidden by the global Zz-symmetry of the dark matter field.
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Figure 2.2: Left panel: The scalar self-coupling as a function of the scalar mass required to obtain
the correct relic abundance, for different values of the coupling between the SM and dark matter
sectors (the solid, dashed, dotted, and dot-dashed black lines, from smallest to largest value). In
the blue shaded region the dark freeze-out happens at a relativistic temperature, z; < 3; in the
red shaded region the method used in [3] gives no solutions that would yield the observed dark
matter abundance, and in the lower white region the dark matter abundance can be obtained via the
standard freeze-in scenario. Right panel: The Yukawa coupling as a function of the fermion mass
required to obtain the correct relic abundance. Below the solid, dashed and dotted red contours the
dark matter sector thermalizes via scalar self-scattering before the scalars have decayed to fermions,
for different values of the scalar self-interaction coupling, Ag, from largest to smallest. The Figure is
from Ref. [3]

Depending on the matter content in the frozen-in sector, different dynamics may arise. For
example, if the dark matter sector consists not only of a frozen-in scalar x but also of a fermion
1 with a (pseudo-)scalar Yukawa coupling g to x, either the scalar or the fermion may play the
role of dark matter, depending on the hierarchy of coupling and mass values in the dark matter
sector. Different scenarios are illustrated in Figures 2.2 and 2.3, where the latter further illustrates
the case where dark matter is fermionic and how, in that case, the frozen-in scalars may or may
not thermalize before their decay to ’s. If they do not, then a similar bound as for the scalar

self-interaction strength, A, can be obtained for the Yukawa coupling, gerit. [3]-
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Figure 2.3: Two examples of fermionic dark matter production, requiring m, > 2m,,. Upper panel:
If the coupling between x and ) is very small, the particle production is dominated by the dark
freeze-out and eventual decay of the scalar abundance (blue thick curve). In this case freeze-in
operating within the hidden sector (the 'dark freeze-in') provides only a subdominant contribution
to the final fermion abundance (red thin curve). Lower panel: For larger coupling values — but small
enough for the fermions not to thermalize with the scalars —, the final dark matter abundance is
given by the dark freeze-in. The Figure is from Ref. [3].

2.3 Observational properties of feebly coupled dark matter

For dark matter particles which interact relatively strongly with the SM particles, a large number of
observational properties exist. Recoil of dark-matter particles off target nuclei; decay or annihilation
signals which contribute to charged cosmic rays, photons, and neutrinos; missing energy in particle
colliders; and many other phenomena have not only constraining but also discovery potential [18].

For dark matter particles which interact only very weakly with the SM particles, such as FIMP's,
the observational properties are limited. However, the freeze-in mechanism also has observable
consequences, even if the dark matter experiments which focus on collider signatures or direct or
indirect detection would not be applicable for constraining properties of such frozen-in dark matter.

Studies on observational properties of frozen-in dark matter include the case of ultra-strongly
interacting dark matter [62]; cosmological, astrophysical and collider constraints on sterile neutrinos
[48, 63-66]; displaced signatures at colliders [67, 68]; and dark matter as the origin of the galactic
centre gamma ray excess [69]. Frozen-in dark matter has also been used to explain the disagreement

between structure formation in cold dark matter simulations and observations [70], and as an
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interpretation of a spectral feature at £/ ~ 3.55 keV observed in X-ray observations from several dark
matter dominated sources [71,72] in [73-81].

Particularly interesting is the scenario where dark matter particles have relatively strong self-
interactions, as in that case astrophysical observations of galaxy cluster mergers provide an upper
bound and cosmological observations of the CMB provide, in certain cases, a lower bound on dark
matter self-interactions [2, 3]. Assuming that all dark matter is self-interacting, the upper bound is
[82-87]

2

IOM 1 S0 (2.8)
mpwMm

The lower bound will be discussed in Chapter 5, together with other cosmological constraints on
frozen-in dark matter particles.

Furthermore, if opy/mp is close to its observational upper bound, Eq. (2.8), it might be possible
to explain the shift of the gravitational centers observed for Abell 3827 [88-90] and address the
so-called core-cusp [91-93], the missing satellites [94], and the too big to fail problems [95], which
are classical examples of observational properties of self-interacting dark matter. Indeed, even though
one would hastily conclude that a frozen-in sector would easily remain undetected, it is shown to have
observational consequences. We will discuss them further in Chapter 5 in one particular scenario, in
the so-called Higgs portal model, but the analysis can be easily generalized to other models of the

same type.
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Chapter 3

Scalar fields in the early universe

Extensions of the Standard Model of particle physics typically contain many new scalar fields on top
of the only scalar field in the SM, the Higgs field. In addition to the low energy phenomenology,
such as dark matter production, extended scalar sectors may have consequences for physics of the
very early universe.

As discussed in Section 1.3, an obvious consequence is the cosmic inflation driven by the inflaton
field(s) and the subsequent reheating process with or without modulating field(s). Even in the case
where the new scalar fields do not take part in inflationary dynamics, i.e. in case the new scalars are so-
called spectator fields, inflation sets non-trivial initial conditions for their post-inflationary dynamics.
For example, post-inflationary phase transitions [96, 97] and dark matter production [1, 2, 98-
101] are representative examples of scenarios where dynamics are sensitive to initial conditions set
by inflation. In this thesis, we show how these initial conditions can be utilized to constrain SM

extensions.

3.1 Quantum fields in de Sitter space

During cosmic inflation the Hubble parameter H = a/a remains constant, and as a result the universe
expands exponentially, a = exp(Ht). Such a space-time is called a de Sitter space!, and it possesses
several well-known properties. In the following we will study the behavior of quantum fields, in
particular the inflationary displacement of scalar fields from their vacuum state, in de Sitter space
without paying much attention to fine details of several quantum effects. An exhaustive description
of quantization and different quantum phenomena in de Sitter space can be found in e.g. Ref. [102].

1Or, in reality, a quasi-de Sitter space, as the Hubble parameter does not remain strictly constant during inflation

but evolves slowly.

21
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3.1.1 Inflationary fluctuations

We study the inflationary dynamics in a simple model described by the Lagrangian

1 1 : 2 5, Mo 4 Ao
Locaar = 50,0000 + 30,0000 + 2207 + Bog? 4 204t 4 Zogt 2r 22 (31

where both ¢ and o are scalar fields. By assuming the inflationary scale? is much larger than the scalar
masses, H, > 14, /lo, the quadratic terms in the Lagrangian (3.1) can be neglected in investigating
the scalar field dynamics during inflation. We also assume the total energy density of the scalar fields
is subdominant during inflation, V (¢, 0) < H2M3.

If the scalar fields are light during inflation, d2V/dp? < H?, B = ¢, 0, the mean fields will acquire
fluctuations proportional to the inflationary scale, 65 ~ H,. The dynamics can then be investigated
by using the stochastic approach [103], in which one decomposes a light scalar field ¢ into super-
and subhorizon parts as

_ d3k . ‘
d(x,1) = d(x,t) + / We(k — aH.) (axpe™™ + afgre ), (3.2)

where gz@k are the subhorizon mode functions and ¢ is the field smoothed over superhorizon scales and
which can therefore be regarded as a classical quantity. We assume there are no large non-minimal
couplings to gravity [104] or large couplings to inflaton or other fields [105, 106], and that the
Hubble rate remains constant during inflation.

The averaged field ¢ then obeys the Langevin equation

s V(9)
=— t 33
where the first term accounts for the classical motion and f is the stochastic noise term
GHE 3 A ik-x AT % —ikx
Fx,t) = o / d3ko(k — aH.,) (ak¢>ke +afte ) , (3.4)

with the two-point correlator (f(x,t)f(x,t")) = H3/(4x*)5(t —t').
A similar treatment can be used for the inflationary behavior of the o field. As a result, the average

behavior of the fields on superhorizon scales is controlled by the Fokker-Planck equation

OP(¢,0) H} &*P(p,0) 1 9 ( oV (¢, 0)>
— = — | P — 3.5
at Bzd)o' 871'2 8/82 + 3H* 8,8 (¢70—> 8,8 ) ( )
for their probability distribution P(¢, o).

As the system reaches equilibrium, the distribution becomes time-independent 0; Poq.(¢,0) = 0,
and the solution for the equilibrium distribution is given by

872V (¢, a)>

T (3.6)

Pey.(¢,0) = Nexp (—

2By the inflationary scale H., we mean the value of the Hubble parameter at the horizon crossing of the largest
observable scales, i.e. at the pivot scale ko = 0.002Mpc™" [7].
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where N is a normalization constant. For the equilibration time scale, see [107, 108].
Assuming the coupling Ags is small, gy < \/ApAs, we obtain for the root mean square values
Brms = (2)/? the result

H, H,
(Z)rms = O(Ol)W 5 Orms — 0(01)17/4 . (37)
(z) o}

The root mean square values characterize the typical magnitudes of the scalar condensates gener-
ated during inflation. They reveal the fields are generically not in their 7' = 0 vacuum state at the
end of inflation but the initial conditions for post-inflationary dynamics are given by the distribution
(3.6). What exactly was, for instance, the SM Higgs field value in our local patch at the onset of
post-inflationary era is not known, but we must rely on statistical analysis and assume that we do
not live in an atypical universe where (3, would significantly differ from the result (3.7). This is the

defining principle of our treatment in the remaining of this thesis.

3.1.2 Isocurvature limits

If the scalar fields ¢ and o belong to two sectors which never came into thermal equilibrium with
each other in the post-inflationary universe, the scalar condensate that was not in contact with the
SM heat bath comprises an isocurvature mode, as discussed in Section 1.3.3. This constrains the
energy density of the scalar condensate and its subsequent decay products to be very small. For
clarity, let us take ¢ to be the field which comprises an isocurvature mode.

It can be shown that the Planck isocurvature bound sets a stringent bound on the particle abun-

dance sourced by the ¢ condensate [2]

Q-(¢0)h2 ¢
—4 < 4. 10759 = )
01z S 5x 10 7 (3.8)

where ¢, is the primordial field value at superhorizon scales and ¢ denotes the condensate. The
bound (3.8) applies for m; = 1 €V regardless of the particle species i produced by the ¢ condensate.
Here we assumed that the inflationary fluctuations around the effective background field value ¢.
have the usual spectrum of a massless scalar, Psy = (H*/27r)2, which is uncorrelated with the
adiabatic perturbation spectrum, and that all other non-relativistic matter components carry adiabatic
perturbation spectra.

It should be noted that the isocurvature bound (3.8) is much tighter than the dark matter over-
closure limit, unless the value ¢, is much larger than the Hubble scale during inflation. Indeed,
in Chapter 5 we will use this bound to place stringent constraints on different Higgs portal model

parameters.

3.2 Post-inflationary relaxation

As shown in Section 3.1.1, scalar fields typically acquire large fluctuations during cosmic inflation

and are therefore displaced from their vacuum states at the onset of the post-inflationary era. After
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inflation, the fields start to relax towards their vacuum state both by getting diluted by the expansion
of the universe and by decaying into particles of different kinds. Recent studies on post-inflationary
evolution of such scalar condensates range from generation of the observed curvature perturbation
[43,109] or the matter-antimatter asymmetry [96, 97] to dark matter production [1,2,98,99,101],
and especially the SM Higgs field relaxation towards its vacuum state has been studied extensively
in the literature [110-116].

To study in more detail how and by which rate the scalars attain their vacuum values in different
scenarios, we extend the model (3.1) with a fermion ¢ with a pseudoscalar coupling to ¢ so that the

Lagrangian becomes

L= £sca1ar + QZ(Z& - mzp)lb + 29¢1/_1’Y5¢ 3 (39)

where Lcalar is the scalar field Lagrangian (3.1). While the model could in principle be accommodated
by any particle content and symmetry, we choose to work within this simple setup and discuss its
consequences as a representative model example. The analysis can then be easily generalized to
cover other interactions.

In the following we assume that the other scalar condensate, o, has already decayed at the time
the ¢g evolution begins, and that the evolution of oy does not therefore affect the decay of the ¢q
condensate. We also assume the inflaton field(s) decay instantaneously into SM particles at the end
of inflation and reheat the universe, so that the universe becomes radiation-dominated, pior o< a4,

right after inflation.

3.2.1 Field dynamics

Soon after the end of inflation the ¢q condensate becomes massive, d?V/d¢? > H?, and starts to
oscillate around the minimum of its potential with an amplitude diluted by the expansion of space,

as given by its equation of motion

o+ 3Ho + \pd + 2o = 0. (3.10)

The scalar field sees first an effectively quartic potential /\¢¢é > 12¢3, whereas at a later stage of
oscillations the quadratic mass term dominates the potential. The time of transition between these
regimes is given by the condition A¢Z(tuans) = p%. When the scalar ¢ sees an effectively quartic
potential its energy density scales as radiation, pg, a4, and when the quadratic mass term takes
over the energy density scales as non-relativistic matter, pg, a3,

The homogeneous condensate evolves in the quartic regime as

do(t) = @Y (1)en(0.857) *@o(t)t, 1/v/2), (3.11)
(4)

where cn is the Jacobi cosine, ®;” a time-dependent oscillation amplitude, and ¢ the cosmic time,

and the oscillations can be divided into multiple tones, whereas in the quadratic regime

do(t) = @82) (t) cos(pet), (3.12)
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and the condensate oscillates with one frequency only.

The oscillating background generates a mass term for ¢, o, and 1 particles

Mg = pi3 + 3Xg0(t)?,

Apo
Mg = g + =57 60(1)°, (3.13)
M7 =mj + g*o(t)?,

where thermal corrections may give additional contribution to mass terms, u; = p;(7) [117]. Here
the fermionic mass term is written in a real-valued basis which requires a chiral transformation
goysY — Gib(gs + igpys) with g8 + gi = g

The additional mass terms induced by the oscillating background condensate are of particular in-
terest, as time-dependent mass terms are known to induce particle production [118-121]. This opens
up a decay channel for the homogeneous background field and may have significant consequences

for post-inflationary dynamics, as we will now discuss.

3.2.2 Condensate decay and thermalization

Post-inflationary particle production from an oscillating background field has been studied to a great
extent both in the context of reheating the universe after inflation and in studies related to decay
of spectator fields. For example, scenarios include particle production due to parametric resonance
[122-125], fermionic preheating [126-129], and geometric or tachyonic reheating [130-132]. For
recent reviews, see e.g. [27,28].

A spatially homogeneous, oscillating scalar field constitutes an effective potential for particles it
couples to. To derive the corresponding perturbative decay rates, it is convenient to write the field
and its square in Fourier series .

do(t) = Z Xneﬂwnt,

n=—oo

3.14
¢0(t)2: i Cnef2iumt, ( )

n=-—00
where w is the oscillation frequency of ¢g. The decay rate of the condensate energy density is given
by [1,2]

/ 11 dfj En| M *(27)*6 (pn + ipi — Sy [T TI(L £ £), (3.15)
P¢>on 1 zf 2FE; : ;

where

(3.16)
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is the energy density of the condensate, F,, = nw is the energy of the nth Fourier mode, p,, = (E,,0),
M,, is the amplitude® of the process i — f corresponding to the nth Fourier mode, fj are phase
space distribution functions, and + applies for bosons and — for fermions.

Specifically, the decay rates of the condensate energy density induced by the interactions /\¢d>0(t)2<b2,
Moo Po(t)?0?, and igdo(t)yse are given by [1,2,121]

IN2w & Mo\ 2

@ 2 ¢

r = 3 J1— (=2
bo— PP 87Tp¢0 n:1n|Cn| (nw) )

)\2 w X M 2
po 2 o
r co — 5 1— | — , .
P07 R D, nz::l il (nw ) (3.17)
3
w2 IMy\ 2\ 2 M\ 2
o= i St (3 (1 (22 - (B2)
by 47rp¢0n§::1"’><"‘ 95 — + g5 —

Finally, to account for the effect of time-dependent masses, we average all decay rates over one

oscillation cycle

1 27 [w
Conit) = 5= [ Tlt)a, (3.18)

where ¢ = ¢, 0,1. Similar decay rates of the condensate energy density can be derived for particle
decays induced by the condensate [1,2], but here we neglect them for simplicity. The effect of other
decay channels, such as ¢g — ¢¢p¢, are negligible.

The decay rates (3.17) provide not only a useful calculation method but also account for adiabatic
mass terms, (3.13), in contrast to the purely perturbative decay rates studied broadly in the literature
[121,133]. The approximation, however, lacks the accurate inclusion of the backreaction of produced
particles. For example, in the case of resonant, non-perturbative particle production the backreaction
is known to either quickly terminate the resonant decay of the condensate [125] or lead to explosive
particle production [114,115], depending on the interaction between the condensate and other fields.
The proper inclusion of particle backreaction within our semi-perturbative treatment is also expected
to have a similar effect on the decay rate of the condensate energy density but a detailed study is
beyond the scope of this thesis.

The evolution of the energy density of the condensate is determined by [1,2]

Poo +3H +w)psy = = ((Togs6) + (Tograw) + (T iu)) Poo (3.19)

where (I';) are the decay rates of the condensate, (3.17), averaged over one oscillation. The parameter
w = 1/3 if the condensate oscillates in the quartic regime and w = 0 if the condensate oscillates
in the quadratic regime. In quartic regime all decay channels are open, but the Iy, 7, decay rate
tends to be ineffective due to Pauli blocking [2]. In the quadratic regime the channel ¢9 — ¢¢ is

3In the quartic regime the system is conformal and the amplitude coincides with the Minkowski result. Also in
the quadratic regime we use the Minkowski metric, neglecting the small O(H/ue) curvature corrections during one

oscillation cycle.
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always kinematically blocked. The others can be blocked as well, depending on bare mass hierarchies
and possible thermal corrections in (3.13).
The solution to (3.19) is given by

Qosc 3(1+w) 1 dt <F¢ u)(t)
Pgo = P¢osc( a ) exp —5/7 Z %(t) ) (3:20)
=¢,0,%

where the subscript osc denotes the onset of ¢ oscillations in each regime (quartic/quadratic). The
decay channel for which the decay rate (I';) becomes equal to the Hubble scale H first will therefore
dominate and define the time of the condensate decay via (I';) (tgec) = H (tgec). Indeed, as seen from
(3.20), the decay processes have negligible effect on the condensate evolution until (I';) ~ H, and
up to this point the background dynamics is well described by the solutions (3.11) and (3.12). When
(I';) ~ H, the amplitude of the condensate starts to decrease exponentially and to a reasonable
accuracy we can model the process as an instant decay at (I';) = H.

After the condensate has decayed its decay products thermalize either with themselves or with
other particle species, provided that the interactions are sufficiently strong [134, 135]. The decay
products may then undergo different thermal histories depending on how they are coupled to other
particles, as discussed in Section 2.2.

The above results for the dominant decay channel and time of the decay are useful not only
in studying reheating dynamics or how initial conditions set by inflationary dynamics affect post-
inflationary phase transitions and dark matter production but also in constraining parameters of
decoupled hidden sector models, as we will discuss in Section 5. As we will show, the dependence of
abundance of the produced particles on the inflationary scale constitutes a very interesting example
of a scenario where new physics with a tiny coupling to the SM can be constrained by carefully
investigating its dynamics both during and after inflation.

Finally, let us discuss the possibility that the scalar ¢ is very weakly coupled to the SM particles
and enters the regime py, a3 before the matter-radiation equality at Teq ~ 0.8 €V. In that
case, its energy density may contribute to dark matter abundance in amounts which exceed the
overclosure limit. This is the well-known moduli problem [136-138]. More generally, depending
on the strength of the condensate’s interactions, the condensate may either completely decay into
particles as discussed above or survive, comprising a coherently oscillating dark matter component.
The two cases could have different ramifications for structure formation [139-142], and are therefore
in principle distinguishable. In the remainder of this thesis, we concentrate on a scenario where the

condensate completely decays into particles.
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Chapter 4

The Higgs portal model

As discussed in Section 1.2.1, the Standard Model of particle physics is not a complete theory.
Most notably, it lacks an explanation for the particle nature of dark matter or for the generation of
the matter—antimatter asymmetry. Therefore, the SM has to be extended, perhaps by invoking new,
rather complicated symmetries. These are then assumed to exhaustively describe particle dynamics at
scales higher than the range of validity of the SM, but lower than the Planck scale, where quantum
gravity is expected to play an important role. Alternatively, by writing down simplified effective
Lagrangians which are likely to be incomplete descriptions, one can hope to still encapsulate the
most important features of the underlying theory.

In this thesis we choose the latter option. We concentrate on a hidden sector model, where new
particles reside in a completely new sector which is very weakly coupled to the SM sector. If the
hidden sector consists entirely of SM singlets, the possible renormalizable interactions between the
SM and the hidden sector are mediated by ®T® (the Higgs portal [143-147]), B*” (the vector portal
[147,148]), or ®TL (the lepton portal [147,149]).

While all of these possibilities are equally well motivated and provide rich phenomenology both
at the very high energy scales probed by cosmological observations and at lower energies currently
within the reach of collider experiments, in this thesis we concentrate only on the Higgs portal model.
As we will show in Chapter 5, this simple but predictive model captures many interesting features
of the portal models and therefore works as a representative example of the wider class of portal

scenarios.

4.1 General aspects

As discussed above, the defining property of all Higgs portal models is that the new fields couple, at
tree-level, to the SM fields only via the ®T® portal. Therefore, the Higgs portal model is defined by
the Lagrangian density

L= Lsn + Lporial + f(5)0T D, (4.1)
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where Lg)p is the Lagrangian density of the visible SM sector, Lyorta1 is the Lagrangian density of the
hidden portal sector which may accommodate its own symmetry groups and field content different
from the SM sector, and f(s) is a function which ties the SM Higgs doublet to a portal sector scalar s
which we assume to be a singlet under the SM gauge interactions. In the most general renormalizable
case, f(s) = punss + AhsSZ, where A\ is a dimensionless and tns @ dimensionful coupling constant
determining the interaction strength between the SM Higgs doublet and the scalar s.

The hidden sector may consist of the scalar s only, or of any number of fields with their own
internal symmetries. For example, there exist studies of models with s only, with sterile neutrinos,
with gauge symmetries, and so on. For recent reviews, see e.g. [150, 151]. One model which we
do not discuss but which is worth mentioning is the so-called mirror model [152], where the hidden
sector is a replica of the visible sector with identical particle content and interactions.

While the mirror model is both predictive and testable [153], we will concentrate on a more simple
class of Higgs portal models and study their phenomenology from the effective field theory point of
view. Before discussing how the physics of the very early universe places stringent constraints on
these kind of beyond the SM scenarios, we review the Higgs portal phenomenology studied in the

literature.

4.2 Higgs portal phenomenology

The Higgs portal model is an appealing scenario because it exhibits many testable consequences.
If either of the couplings Aps, tns is large enough, some properties of the Higgs portal model can
be constrained by collider, direct and indirect detection experiments. For example, the coupling
MhsS2®T® allows both for the Higgs to decay invisibly into singlet scalars and for singlet scalars to
annihilate into SM particles, producing fluxes of highly energetic photons originating from distant
astrophysical sources. All these aspects and the constraints they impose on Higgs portal masses and
coupling values have been discussed in e.g. [150, 151].

The experimental tests can be used to constrain not only the properties but also the phenomenology
of the Higgs portal model; how Higgs portal fields could be responsible for various phenomena that
occured in the early universe, such as dark matter production or generation of the matter—antimatter
asymmetry.

4.2.1 Dark Matter

The Higgs portal scenario has been studied in the literature in the context of both the standard
freeze-out and freeze-in mechanism for production of dark matter. Studies range from the singlet
scalar only [46,144,145,154] to a more complicated field content and phenomenology [60,155,156],
and from ultra-cold to self-interacting dark matter [60, 157]. Because in this thesis we concentrate
on the freeze-in variant, we review here only the studies on this mechanism. For a broader overview,
an interested reader is again referred to Refs. [150, 151].

Earlier studies on frozen-in Higgs portal dark matter include the simple cases of the singlet scalar
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only [52,61] and a singlet fermion (sterile neutrino) [63-66, 77,158, 159]. A frozen-in Higgs portal
sector with a hidden SUx(2) gauge symmetry was studied in Ref. [60]. In the context of Higgs
portal dark matter, moduli fields (scalar condensates) were studied in Refs. [1,2,96].

The first studies on freeze-in production of dark matter assumed that the singlet scalar self-
interaction strength is unimportant in determining the region of the parameter space of the Higgs
portal model where the singlet scalar is a viable dark matter candidate. However, it was later shown
to be important both in calculating the initial conditions for freeze-in production [1,2,96] and the
final dark matter abundance [3, 60, 61], as discussed in Section 2.2.3.

In particular, dark matter self-interactions might modify the resulting abundance such that there
cannot be 'FIMP miracle’ — a scenario where dark matter is a self-interacting Higgs portal FIMP
with a scale invariant Lagrangian [46,55] —, as originally pointed out in [61]. However, because the
proposed scenario is both elegant and economical with possible observational consequences, we plan

to investigate it further in a future work.

4.2.2 Other phenomenological aspects

Other important phenomenological aspects of the Higgs portal model include the generation of the
baryon asymmetry, phase transitions and the resulting production of a gravitational wave background,
cosmic inflation, reheating, and generation of the observed curvature power spectrum. The list of
phenomena and references we give below are not exhaustive but they are hoped to demonstrate the
variety of features studied within this generic scalar extension of the SM.

In the pure SM the electroweak phase transition is known to be only a cross-over rather than a
real phase transition [19,160]. However, in the singlet scalar extension it can be made strongly first
order [161,162], and as one of the necessary conditions for any successful baryogenesis scenario is
out-of-equilibrium dynamics, the Higgs portal model therefore provides for a testable platform for
studies on the matter—antimatter asymmetry produced by electroweak baryogenesis [163].

The order of the electroweak phase transition is interesting not only from the baryogenesis point
of view but also for the possibility of observing gravitational waves originating from a first order
phase transition either in the SM sector [164] or in the hidden sector [165]. Since future space-
based detectors like eLISA will have maximum sensitivity at the frequency range relevant for a first
order phase transition at the electroweak scale [166], one can hope to detect gravitational waves
originating not only from binary mergers [167, 168] but also from the early universe.

Other early universe phenomena studied in the Higgs portal scenario include cosmic inflation and
reheating. Inflation has been studied in e.g. [34,169-171], and even though these models typically
require a sizeable non-minimal coupling to gravity, &s2R, their inclusion is motivated also by the
analysis of quantum corrections in a curved background which have been shown to generate a term
of this form even if & is initially set to zero [102]. The generation of the observed curvature power
spectrum by the curvaton mechanism has been studied in the Higgs portal model in e.g. [172,173].
Hidden sector particle decays as a way to reheat the visible SM sector have recently been studied in
e.g. [24,25].
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An important feature of the Higgs portal model is that while the singlet scalar can account for the
observed dark matter abundance and lead to a strong first order phase transition, in light of present
constraints for the dark matter abundance and from direct search experiments, these aspects cannot
be realized simultaneously within the model without considerable fine-tuning [154, 174]. Cosmic
inflation, on the other hand, can be realized in the singlet scalar model simultaneously with the
generation of a strong first order phase transition [175] or the observed dark matter abundance
[34,170,171].

As SM extensions with one singlet scalar only either require fine-tuning or are incapable of simul-
taneously explaining all the observations listed above, it is likely that substantial modifications are
needed to produce a theory which could explain all phenomenology leading to the universe we observe
today. As discussed above, by studying even the most minimal SM extensions one can, however,
hope to still encapsulate the most important features of the underlying theory. With this in mind,

we turn to derive cosmological constraints on a very weakly coupled Higgs portal model.



Chapter 5

Cosmological constraints on Higgs
portal models

In order to make full use of the available constraints on new physics from collider experiments and
cosmological and astrophysical observations, it is crucial to study the phenomenology of beyond the
Standard Model scenarios not only at energy scales probed by current particle colliders but also at
the highest energy scales that we can probe by other means, such as the scale of cosmic inflation.

Inflationary dynamics, reheating, post-inflationary phase transitions, and dark matter production
are representative examples of such high energy model phenomenology, as discussed in Chapters 1,
3 and 4. Recently, the requirement of electroweak vacuum stability against inflationary fluctuations
[176, 177] has also aroused significant interest in inflationary dynamics, as it provides another way
to test spectator couplings. The stability conditions have been extensively studied recently in, for
example, [104, 105, 111, 113, 178-186] accounting both for the non-minimal curvature coupling
[104, 113, 184] as well as couplings to new physics [105, 180, 186].

In this chapter we concentrate on a Higgs portal scenario, where the hidden portal sector couples
so weakly to the visible SM sector that the two sectors never became in thermal equilibrium with
each other in the early universe. We study the initial conditions set by cosmic inflation and follow the
relaxation of scalar condensates down to their zero-temperature vacua. This allows us to investigate
what kind of model constraints arise when inflationary dynamics, dark matter production and the
subsequent evolution of its abundance, as well as the requirement of stability of the scalar potential,

are all combined.

5.1 The model

We assume the portal sector consists of a real singlet (pseudo-)scalar s and a fermion v, and that the
Lagrangian is invariant under the parity transformation (¢, z) — %4 (t, —x), s(t,z) — —s(t, —x)
to ensure both s and v can act as stable dark matter candidates. The fermionic part of the portal

sector is then
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Ly = (i —my ) + igsyse (5.1)

and the most general renormalizable scalar potential is given by

V. 5) = il 4 @) g gt e A
Here ® is again the SM Higgs doublet with the standard kinetic terms. In the unitary gauge
V2® = (0,v + h), where v = 246 GeV at T = 0. We assume p2 > 0 and m?2 = p2 + \ysv?/2 > 0,

so that the minimum of the potential is at s = 0 and my is the physical mass of s in the T' =0

diTds? (5.2)

vacuum. These imply an upper limit on the portal coupling, Ans < 2m2/v2. We also assume that
An > 0, Ag > 0, and A\ps > —2/ A\, guaranteeing that the tree-level potential is bounded from
below. Finally, we assume my, > 2my in all cases for simplicity.

AtT < Tgw =~ 160GeV [187] the Higgs vacuum expectation value gives an additional contribution
)\hsv2/2 to mg and 3\,v? to mﬁ At higher temperatures, interactions with the thermal bath very

quickly generate a thermal mass for the Higgs condensate [188]

1 /9 3 1
m? = u? + 3 (4g2 + Zg’2 + 3y2 4 6, + 2)\hs) T2, (5.3)

where T is the temperature of the SM heat bath and g, ¢’, y are the SM gauge SU(2), U(1), and
the top quark Yukawa couplings, respectively.

Because we assume the hidden sector was never in thermal equilibrium with the SM sector, requiring
|Ans| < 1077 [96], no similar thermal masses arise for the hidden sector particles s and 1. In addition,
the model evades current collider constraints: if |\ys| was larger, invisible decay of the Higgs boson
in the LHC and the LUX experiment, measuring dark matter scattering off nuclei, would constrain
the model properties [189-191], but for [Ans| < 1077 this does not happen.

5.2 Initial conditions for post-inflationary dynamics

As discussed in Section 3.1, cosmic inflation sets non-trivial initial conditions for post-inflationary
dynamics of scalar fields. Assuming the non-minimal curvature couplings &,h%R and &R are
negligible, | | < 1, we take the distribution of scalar field values at the end of inflation to be given
by Eq. (3.6).

For the Higgs field this is consistent with stability of the electroweak vacuum only for H, < 10!
GeV, and for H, > 10'! GeV stability requires &, > 0.1 [104]. This renders the Higgs effectively
massive and as a result no condensate is formed, h, = 0 (however, see also [113]). The stability
of the Higgs direction is not affected by the weakly coupled hidden sector fields and we may take
|€&s| < 1 irrespectively of the inflationary scale. A singlet condensate is then necessarily formed and
Sy 0.4H*/)\Sl/4 describes the typical initial field value for s after inflation, as given by Eq. (3.7).

However, the s-direction of the scalar potential may develop another minimum at a non-zero field

value as the pseudo-scalar coupling g to fermions gives a negative contribution to the running of
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Figure 5.1: In the blue regions \s becomes negative at the scale pax, as indicated by the bar to the
right of the plot. The axes show the values of As and g at the scale ;1 = myz. In the purple (gray)
region \s (g) has a Landau pole below the Planck scale. The Figure is from Ref. [2].

As. In the following, we restrict ourselves to the regime where the s = (0 vacuum is stable against
inflationary fluctuations, i.e. where the scale umax above which the coupling Ay becomes negative
is higher than the inflationary scale H,. This imposes a constraint between g and Ag as shown in
Figure 5.1.

We assume again that the inflaton field(s) decay instantaneously after inflation and generate a
thermal bath of SM particles. The Higgs condensate decays very rapidly at 7" ~ 0.017} [96], and all
physical processes below this temperature are insensitive to the non-vacuum initial conditions of the
Higgs field. However, for s the situation is different, because it never comes into thermal equilibrium
with the visible SM sector. The hidden sector may therefore accommodate dark matter which is
sourced by the sy condensate and by non-equilibrium decays of the SM particles, and which thus is

of non-thermal origin.

5.3 Higgs portal dark matter

In the scenario under consideration both the singlet scalar s and the singlet fermion v can be dark
matter. Singlet scalar particles are generated through the decay of the primordial singlet condensate
S0, as discussed in Section 3.2.2, and through the standard freeze-in mechanism dominated by decays
of Higgs particles at the electroweak scale, as discussed in Section 2.2.2. On the other hand, singlet
fermions can be generated through decays of either the sy condensate or singlet scalar particles

through the Yukawa coupling (5.1).
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The dark matter abundance sourced by the primordial s field is given by [2]

Qo2 » Mo s\
SIoMP” 5y )\1/4< )( ) 4
012 =34 0ATT G ) (Tottaev ) (5:4)

where typically s, ~ ().4H*/)\;/4, as given by Eq. (3.7). Here n = 1 if the primordial field decays
to s particles or if the primordial field does not decay before photon decoupling, and n = 2 if the
primordial field decays to fermions directly or via the process sy — 2s — 41). Whether the primordial
field decays to scalars or fermions depends on the coupling strengths. It should be noted that for
reasonable parameter values, )g, g > 1078, the sy condensate typically decays at temperatures above
the electroweak scale.

The standard freeze-in production at the electroweak scale is dominated by decays of Higgs parti-

cles. In this case the dark matter abundance produced by the freeze-in mechanism is [58]

eq
initial . 3nh Fh—>ss
=S ’

T=my,

(5.5)

where nﬁq is the Higgs equilibrium number density and the expression is evaluated when the temper-
ature of the SM heat bath is T" =~ my. Here the Higgs decay width into s particles is given by the
standard expression I'_ss = Aﬁsv2/327rmh at the limit mg <€ my,.

In the limit of small self-interactions, Ag,g < 1, the dark matter abundance sourced by Higgs
decays then becomes

Qf)ﬁlz/[hz 21 2 (MDM
= 5. 1 A :
DML 5310 ”hS<Gev>’ (5.6)

in accord with Eq. (2.6). Here again n = 1 for scalars and n = 2 for fermions. In this limit, one can

simply sum the yields from the scalar condensate, (5.4), and Higgs decay, (5.6) to obtain
QpM = QI()SK/} + Q]()ﬁlz/l (57)

In the standard freeze-in scenario the summation (5.7) indeed gives the final relic abundance that
diluted only with the scale factor after the production of dark matter through the so condensate and
Higgs particle decays had stopped. However, if the number changing interactions — i.e. the 2 <> 4
scattering processes in the hidden sector — are fast, they will lead to a chemical equilibrium within
the hidden sector, reducing the average momentum of the dark matter particles and increasing their
number density, as described in Section 2.2.3. Eventually, this will lead to dark freeze-out, where the
final dark matter abundance becomes determined by the freeze-out mechanism operating within the
hidden sector.

The dark freeze-out temperature, J:EO = mDM/TEO can be solved by invoking the fact that
after the Higgs decays have stopped and the hidden sector has reached equilibrium within itself
the entropies of both sectors are conserved separately, and hence the ratio of the entropy densities
X = s/sp remains constant. This can be cast as an equation for the dark freeze-out temperature in

terms of the dark matter abundance [50]



5.4 Cosmological and astrophysical constraints 37
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where, by energy conservation, x can be expressed in terms of the initial value of £ = Tp/T =

(g«pn/(pgen))/* at T = my /3.
On the other hand, the dark freeze-out temperature can be estimated as the temperature at which
the 4 — 2 interaction rate drops below the Hubble rate, resulting in [3]

9
1 1\2 CE2M,
250 = ~log <<> ¢ 1;0 5) , (5.9)
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where C' = \{/mj for scalars and C' = ¢®mj,/m\° for fermions. Here we assumed that in the

fermionic case the scalar self-scatterings are irrelevant for thermalization of the hidden sector.

Equating (5.8) with (5.9) and requiring the dark matter abundance match observations, Qpyh? =
0.12, yields a relation between the three parameters of the model, mg, As, Apg, if dark matter consists
of scalar particles, or between the five parameters my, ms, g, As, Aps, if dark matter consists of
fermions. This relation is an important feature of the dark freeze-out mechanism, as it provides a
powerful mean to extract information about sectors whose constituents are very weakly coupled to
the SM particles and whose properties would therefore be very hard to constrain by current collider
experiments.

This relation is not only of theoretical interest but can be connected to observations. As discussed in
Section 3.1.2, if the scalar s belongs to a sector which never reached thermal equilibrium with the SM
heat bath, it comprises an isocurvature mode. Dark matter production from the singlet condensate
is therefore strictly constrained by the limit (3.8), but the singlet particles can still constitute all
dark matter when most of the abundance is sourced by the standard freeze-in mechanism and only
a small fraction by decay of the primordial scalar field. This notion provides a unique way to place

both cosmological and astrophysical constraints on weakly coupled Higgs portal scenarios.

5.4 Cosmological and astrophysical constraints

In this last Section, we show how stringent constraints for hidden sector properties can be derived
even if the sector interacts very weakly with the SM particles.
By connecting the result (5.4) for dark matter abundance produced by decay of a primordial scalar

condensate to the isocurvature limit (3.8) and requiring that we do not live in an atypical universe!,

n\8/3 MM 8/3 H, 4
> | = T
AR (6) ( GeV) (1011Ge\/) ’ (5.10)

i.e. cosmological constraints imply a lower bound on the scalar self-interaction strength. If the

we obtain

value of Ag were smaller than this limit, the CMB would exhibit an excess of isocurvature modes.

'See Ref. [3] for a quantitative definition of 'atypical’.
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The result (5.10) applies for both scalar and fermion dark matter in the Higgs portal model under
consideration. For similar isocurvature constraints, see [192,193].

On the other hand, as discussed in Section 2.3, astrophysical observations provide an upper bound
on dark matter self-interactions, opn/mpym < lem?/g. In the limit mg < my, g2mw/mS < 1 the
scalar and fermion self-interaction cross-sections divided by the corresponding masses are

Os 92 Oy gtmy

ms  32wm3’ my  dmmd’

(5.11)

so that together the cosmological and astrophysical constraints imply

Me 8/3 H 4 Me 3/2
4x10°8 S * <A 0.2 S 5.12
% <1OMeV) (1011GeV) SRR <1OMeV) : (5.12)

if the scalar s comprises the observed dark matter abundance and

my 5.9 x 10%g=*(mg/GeV)4,

) 5.13
GeV ™ 3)\3/8(H*/1011G6V)_3/27 ( )

if the fermion 1 constitutes the dark matter relic density. Here the first limit on the fermion mass is
given by the dark matter self-interaction limit (2.8) and the second by the isocurvature bound (5.10).
A lower bound arises from Lyman-« forest data, which excludes warm dark matter with mass below
mpMm ~ 3 keV  [194]. For fermions, no lower bound on g can be imposed.

The lower bound on Ag, (5.10), implies that we can expect scalar dark matter to have sufficiently
large self-interactions. This has immediate consequences both for the process that determines the
generation of the observed dark matter abundance, and, on the observational side, on structure
formation, as discussed in Section 2.3. The imposed bounds on parameter space are depicted in
Figure 5.2 together with the relic abundance in different cases. The region to the right of the gray
contours is ruled out by the non-observation of isocurvature perturbations.

The isocurvature constraint (3.8) applies as such if the comoving number densities of the singlet
particles produced by the decay of the primordial condensate and via the freeze-in mechanism are
separately conserved. If the hidden sector thermalizes within itself, bounds similar to (5.12) and
(5.13) can be derived by comparing the energy density carried by the particles produced from the
primordial condensate to the energy density of the particles produced via the freeze-in mechanism,
at the time of the hidden sector thermalization [3]. The effect of this correction is to increase the
importance of the isocurvature constraint. Because thermalization of the hidden sector results in a
larger final abundance than in the standard freeze-in scenario, in order to produce the observed dark
matter abundance a smaller initial abundance of particles is needed. Thus, for given Ay, an initial
abundance produced from the decay of the primordial condensate will contribute a larger fraction of
the total dark matter relic density than it would in the standard freeze-in scenario. This is seen in
the shift of the gray contours above the red shaded region in Figure 5.2.

We emphasize that the formation of primordial condensates is a typical consequence in a theory

which contains scalar fields. Therefore, it is expected that qualitatively similar results constrain the
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log109

log1o(ms/GeV) log1o(my/GeV)

Figure 5.2: Left panel: The self-interaction bound and isocurvature constraints for the scalar
dark matter scenario. The self-interaction limit, opy/mpy < 1 cm2/g, is shown by the yel-
low shaded region in the top left corner together with the opy/mpy = 10,0.1 cm?/g con-
tours (dashed and dotted, respectively), and the isocurvature constraints by the gray contours for
H, =10'3,10"2,10",10'° GeV from left to right. The blue and red regions correspond to those in
Figure 2.2. The black contours show Aps = 1077, 10710, 10711, 1072 from left to right. Right panel:
Same as the left panel for the case of fermion dark matter. The red contour marks the thermalization
via scalar self-scattering for A; = 0.1. In this figure mg = 10m,,, and A = 0.01 for the isocurvature

contours. The Figure is from Ref. [3].

masses and couplings also in other, more generic portal type extensions of the SM.

As we have discussed, constraints of such cosmological origin arise by virtue of the non-ther-
malization of the hidden sector with the visible SM one. If the two sectors thermalize, all information
about initial conditions is lost and as a result no such constraints can be derived®. Even in that
case, the hope in investigating the properties of beyond the SM physics does not lie only in the
future success of different collider and direct and indirect detection experiments, but also in other
cosmological observables related not only to dark matter but also to cosmic inflation, gravitational
waves originating from early universe phase transitions [164,165], and, for instance, the large scale
structure of the universe [195,196]. The above results apply as such to weakly coupled dark matter
models only, but they show how information about particle physics models can be extracted from
cosmological observables even in the case where the connection between new physics and the known

SM sector is not within the reach of the current or near-future direct experiments.

2In this sense, the cosmological constraints arise not even with but because of their tiny coupling to the visible SM

sector.
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Chapter 6

Conclusions and outlook

In this thesis we have considered the observational consequences of a Higgs portal scenario where the
new physics interacts very weakly with the particle content of the Standard Model of particle physics.
In particular, we concentrated on the observational properties of self-interacting, initially non-thermal
Higgs portal dark matter. We showed that many of the cosmologically interesting features of portal
scenarios are captured already by the simplest effective model featuring a singlet scalar s coupled to
the SM Higgs via As>®T®. We also extended the model to cover fermionic dark matter.

These simple extensions of the SM have been proven to have interesting phenomenological and
observational consequences. The new dark matter candidates may originate not only from decays or
annihilations of the SM bath particles, but also from non-thermal production of particles from a pri-
mordial scalar condensate formed during cosmic inflation. Additionally, the non-zero self-interactions
may lead to thermalization within the hidden sector, resulting in a scenario where the observed dark
matter abundance is determined by a freeze-out mechanism operating within the hidden sector, the
'"dark freeze-out’, instead of the standard freeze-in or freeze-out scenarios.

Because typically part of the relic abundance originates from non-thermal particle production from
a primordial scalar condensate, we were able to derive a novel connection between the scale of inflation
and the dark matter abundance, Eq. (5.4), and use it to place stringent constraints on viable mass
scales and coupling values in SM extensions with a very weakly coupled hidden sector. Because
such a primordial condensate generically comprises an isocurvature mode whose contribution to the
observed dark matter abundance is strictly constrained by observations of the Cosmic Microwave
Background, the derived constraints are much stronger than the dark matter overclosure bound.
The bounds (5.12) and (5.13), together with the numerical results depicted in Figure 5.2, which
combine the isocurvature limits with astrophysical constraints can therefore be considered to be our
main results.

The dependence of Higgs portal dark matter on the inflationary dynamics therefore constitutes
an example of a SM extension where new physics even with a tiny coupling to the SM can be
constrained by carefully investigating its dynamics both during and after inflation. We emphasize
that the derived bounds are generic to most weakly coupled portal models with light scalar fields,

and that qualitatively similar results are expected to arise also in other portal extensions of the SM.
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The freeze-in mechanism we concentrated on is clearly falsifiable. It is, however, of key importance
to look for properties of different models which could also verify the scenario — if not by collider
experiments, by cosmological and astrophysical observations. Work remains to be done also in
further investigating frozen-in hidden sectors with even more structure, such as broken or unbroken
gauge interactions and different mass hierarchies.

The ongoing and planned CMB polarization experiments will probe the amplitude of primordial
tensor perturbations down to r < 1073 [197,198], corresponding to an inflationary scale H, ~ 10'3
GeV. As we have shown, a positive observation would affect not only models of inflation, but also
generic SM extensions which include light scalar fields that are very weakly coupled to the SM sector.
In addition, the forthcoming European Space Agency's satellite Euclid, with a launch date in 2020,
will provide new cosmological data in large amounts [199]. It will map the large scale structure and
the dark matter content of the universe, and is therefore expected to yield valuable new information
about dark energy and dark matter, and thus about the universe as a whole.

A careful investigation of the observational consequences of weakly coupled hidden sector models
could suggest powerful new tests of specific SM extensions. With the aid of the near-future missions
mentioned above, they might provide understanding of new physics at scales which exceed the current
particle collider energies by several magnitudes. This could play important role in connecting particle
physics to cosmology: linking the microscopic evolution at the smallest length scales to the evolution

of the cosmos itself.
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