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Abstract

The magnetic polarisability of a selection of octet baryons and the pion
are calculated using lattice QCD and the background field method. Re-
sults are from 322 x 64 dynamical QCD gauge fields with 2 + 1 flavours
provided by the PACS-CS collaboration through the International Lat-
tice Data Grid (ILDG) . These use a clover fermion action and an
Iwasaki gauge action with f = 1.9 providing a physical lattice spacing
of a =0.0907(13) fm.

As the application of a uniform background magnetic field renders
standard gauge covariant Gaussian smeared quark operators inefficient
at isolating ground state hadron energy eigenstates at non-trivial field
strengths, Landau level quark propagator projection techniques are

created and utilised.

First the two-dimensional U(1) Laplacian eigenmodes are considered.
These describe the Landau levels of a charged particle on a finite periodic
lattice. Using this eigenmode projection technique, the neutron ground
state energy eigenstate is isolated and hence the magnetic polarisability
of the neutron calculated. These results are used to inform a chiral
effective field theory analysis to produce a prediction for the magnetic
polarisability of the neutron at the physical point. The chiral analysis

incorporates both finite-volume effects and sea-quark-loop contributions.

Wilson-like fermion actions are exposed to additive mass renormal-
isations; when a background magnetic field is introduced, the Wilson
term causes a field-dependent renormalisation to the quark mass. This
quark mass renormalisation is studied using the neutral pion mass.
Herein, the clover fermion action is investigated to determine the extent
to which the O (a) removal of errors suppresses the field-dependent

quark mass changes. We demonstrate how a careful treatment of the
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nonperturbative-improvement of the clover term is required to resolve
this artefact of the Wilson term.

Motivated by the success of the U(1) eigenmode-projected quark-
propagator technique, a new technique utilising eigenmodes of the SU(3)
x U(1) Laplacian is considered. Here both QCD and background
magnetic field effects are included in the quark propagator projection.
This technique is used to calculate proton, neutron, ¥+ and Z° two-point
correlation functions in a background magnetic field. From these, the
magnetic polarisability is calculated at several quark masses enabling
a chiral effective field theory analysis. The chiral effective field theory
techniques established for the neutron’s magnetic polarisability are
extended to the other baryons considered herein and the results are

compared.

Finally, using the analysis and methods of the SU(3) x U(1) quark
propagator projection technique and improved clover-fermion action,
the pion sector is investigated. Results for the magnetic polarisability of
both the charged and neutral pions are presented. For the first time, the

relativistic energy shift is used to determine the magnetic polarisabilities.
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Chapter 1.
Introduction

An understanding of the universe at the sub-nuclear scale is provided by the Standard
Model (SM) of particle physics. The three fundamental types of interactions described
by the SM are the strong, electromagnetic (EM) and weak (WI) interactions. The fourth
interaction that governs particle behaviour is the gravitational interaction which is not

addressed herein.

The forces governed by the SM are all formulated in terms of gauge field theories.
The strong interaction is felt by particles with colour charge such as the quarks and
gluons. The EM force is experienced by electrically charged particles while the weak
force acts upon the weak isospin of particles. Each force is mediated by a force carrier,
an exchange of gluons for the strong, the exchange of photons for the EM, and the W+
and Z° bosons for the WI.

The interactions of the standard model divide the elementary particles into two
categories: matter particles and force carriers. The matter particles are further divided
into the quarks which have colour charge and hence interact via the strong force and
the leptons which do not possess colour charge. The force carriers are the gluon for the
strong force, photon for the EM force and the W* and Z° bosons for the WI. The gluon
also self-interacts via the strong force. This gives rise to interesting features such as
confinement, a property where only colour neutral bound states can be observed at low
to moderate energies. An additionary elementary particle of the SM is the Higgs boson.
The Higgs boson is a scalar particle, related to electroweak symmetry breaking and mass

generation of the otherwise massless elementary particles |1-3|.

Quantum Chromodynamics (QCD) is the gauge field theory which describes the

strong force. This is a non-Abelian theory and as such, self-interactions of the gluon arise
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which lead to the non-perturbative nature of QCD at low energies. This non-perturbative
nature prompts two main approaches to calculations. The first is a continuum approach
where QCD is studied at high energies. The second, used in this thesis, is to formulate
an ab-initio non-continuum theory in which nonperturbative calculations are made and

then related to the physical, continuum limit.

This latter approach is lattice QCD where the path integral approach to QCD is
formulated on a finite, discretised lattice of space-time. The calculations involved are

computationally expensive requiring the use of supercomputing resources.

We present here lattice QCD calculations of hadron energies and electromagnetic
properties when a uniform, external magnetic field is applied to the simulation. This
grants access to the magnetic polarisabilities of octet baryons and mesons. Techniques to
improve the efficacy of extraction of these properties and improve the signal of the lattice
calculations are investigated. Ratios of two-point correlation functions are taken to form

energy shifts from which quantities such as the magnetic polarisability can be extracted.

A brief introduction to the essential components of QCD is presented in Chapter
2. Chapter 3 introduces lattice QCD and the background field method. The magnetic
polarisability of the neutron is calculated using a novel technique which improves the
signal quality in Chapter 4. An inexpensive solution to a problem of additive mass
renormalisation in Wilson fermions introduced through the introduction of the background
field method is proposed and shown in Chapter 5. This solution is used in Chapter 6
where an extension of the techniques and method in Chapter 4 for the neutron is used to
calculate the magnetic polarisability of the neutron, proton and a selection of hyperons.
The magnetic polarisability of the neutral and charged pions is considered in Chapter 7.

Finally in Chapter 8 conclusions and proposals for future work are presented.



Chapter 2.

Quantum Chromodynamics

2.1. Hadronic spectrum

Hadrons are strongly interacting composite particles |4]. While it is the elementary
quarks and gluons which strongly interact, it is more practical to consider the hadrons
due to the aforementioned confinement of quarks. A brief overview of the low-lying

spectrum of hadrons [5| will be a useful primer for this thesis.

This overview is not exhaustive and intended merely to familiarise the reader with

the low-lying hadronic spectrum considered in this work.

2.1.1. Quark model

A portion of the light hadronic spectrum can be characterised by a set of quantum

numbers
e Baryon number B,
e Charge @,
e Strangeness S,

where light means that only hadrons composed of the three lightest quarks; the up, down
and strange are considered. A full characterisation of the light hadronic spectrum requires

the additional spin, parity and (where applicable) G—parity quantum numbers |3, 7|.
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Table 2.1. Light quark properties. Masses from the Particle Data Group 2019 [3] and are
defined in the MS [6] scheme at p = 2 GeV.

Flavowr @ S B 1 I3 Y Mass(MeV)
up 2e 0 4 1L L o216(1)
o e 04 L am
strange —ie —1 1 0 0 -2 93(*})

Table 2.2. Properties of the scalar meson nonet depicted in Figure 2.1 from the Particle Data

Group |3].

Quark Content Meson Mass (MeV) Is; I S
ds K° 497.611 +£0.013 -1 11
us Kt  493.677 +0.016 : 3 1
ud at 139.57061 £0.0002 1 1 0
”&gﬂ 0 134.9770 + 0.0005 1 0 0
Mjg?s? n 547.862 £ 0.017 0 0 0
ngm n 957.78 4+ 0.06 0 0 0
du T 139.57061 4 0.0002 -1 -1 0
ST K- 493.677 £ 0.016 : 3 -1

The properties and quantum numbers of these three light quark species are described
in Table 2.1. Baryons have baryon number B = 1, the strangeness S describes the number
of strange valence quarks in the hadron. The label I defines the isospin of the quark
which is conserved during strong decay processes and associated with the up and down

quarks. The composite quantum numbers, isospin projection I3

13:9—(5”3), (2.1)

2

where e is the magnitude of the electrons charge, |e| = 1.602176 634 x 107! C [8|, and
hypercharge Y

Y =S+B, (2.2)

are introduced to aid in the classification of hadrons.
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Figure 2.1. Pseudoscalar meson nonet with JX = 0.
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Table 2.3. Properties of the baryon octet depicted in Figure 2.2 from the Particle Data

Group [3].

Quark Content Baryon Mass (MeV) Is 1 S

udd n 939.5654133 + 0.0000058 —1 1 0
uud p 938.2720813 £0.0000058 1 1 0
dds 2T 1197.45 £ 0.04 -1 1 -1
uds A 1115.683 £ 0.006 0 0 -1
uds 50 1192.642 + 0.024 0 1 -1
uus ¥t 1189.37 + 0.06 1 1 -1
dss = 1321.71 £ 0.07 -z 3 —2
uss =" 1314.86 +0.20 : 3 -2

Table 2.4. Properties of the baryon decuplet depicted in Figure 2.3 from the Particle Data

Group |[3].

Quark Content Baryon Mass (MeV) Is I S

ddd A~ 1232 £ 2 -2 2 0
udd A° 1232 £ 2 -5 3 0
uud At 1232+ 2 30
wuu ATF 1232 +2 s 20
dds D 13872405 -1 1 -1
uds 30 1383.74+ 1.0 0 1 -1
wus et 1382.80+035 1 1 -1
dss = 15352+08 -3 4 -2
uss =r0 1531.78 £0.34 -1 1 -2
sss Q- 167243+032 0 0 -3

The eight-fold way was introduced by Gell-Mann [9] and Ne’eman |10 and organised
these hadrons based upon their charge and strangeness. The strangeness S and isospin
projection I3 form the two axes of the hadron spectrum diagrams in Figures 2.1, 2.2 and
2.3. The walence quark content in the hadrons depicted herein is shown in Tables 2.2,

2.3 and 2.4 along with their masses.

A meson is a quark-anti quark pair ¢qq, corresponding to baryon number B = 0. The

pseudoscalar nonet depicted in Figure 2.1 have net spin zero as the quark and anti-quark
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are spin anti-aligned. These meson states also have a zero angular momentum state

making total angular momentum J = 0 and are of negative parity.

Baryons are hadrons which have baryon number B = 1; that is in this quark model,

they are bound states of three quarks ¢ qq. The baryon octet in Figure 2.2 have positive
1+
2

the parity. The quark spins are coupled such that the baryon is in the lowest energy

parity and JF = while the decuplet of Figure 2.3 has J' = %Jr, where P represents

state, resulting in a net overall spin of %

The baryons discussed thus far can be further divided into those with and without
strange valence quarks. Baryons with non-zero strangeness and no heavy quarks are

known as hyperons. Hyperons are investigated in Chapter 6.

2.2. Quantum Chromodynamics

Here we follow the discussion and notation of Refs. [11], [12], [13] and [14].

The Quantum Chromodynamics (QCD) Lagrangian density which describes the
dynamics of strongly interacting particles and provides a natural starting point for

investigations into the particle spectrum is

Laon(@) = (Vy),, (x) 3, {2 (") ag (D) (x) = mgbas 8| (1)} (2)

1 (G () (@) (@), (2.3

Here (¢ f); are four-component spinor fields representing the quarks with flavour f, colour
7 and Dirac index «, m is the diagonal bare mass matrix, the gamma matrices v* are in
ij

the Dirac representation and (D))" is the covariant derivative

(D) () =690, —ig (t*)7 Al(x). (2.4)

The QCD coupling constant is g and t* are the eight 3 x 3 Gell-Mann matrices which
are the generators of SU(3), displayed in Eq. (A.7). This can be written more compactly
by setting

D) = 0, —ig Aula). (2.5)
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Table 2.5. Summary of indexing conventions.

Index  Span Description

1,7, k1 1,2,3 colour index in fundamental representation of SU(3)
a,b,e 1,...,8 colour index in adjoint representation of SU(3)
f,g,h 1,...,n5oru,d,s,cbt flavour index

a, B, 1,....4 Dirac index

WV 1,....4 Lorentz index

for A,(z) = (%) Af(x) where colour indices have been suppressed. This will be useful in
later sections. The field strength tensor is

Gl (x) = 0, A5(w) = D, A5 + gf " Ay () Ap (), (2.6)
where f%¢ are the totally antisymmetric structure constants of SU(3) and Af, are Lorentz

vector fields representing the gluons. The indices in each of these equations are described
in Table 2.5.

The QCD Lagrangian, Eq. (2.3), is required to be invariant under local SU(3) gauge

transformations of the form

(V1) () = (), () = 09(@) (), (@), (2.7)
(), (@) = (), (@) = (b)), @ (x), | (2.8)
(t9)9 A% () — (1) A%(x) = QO (2) (1) A, () (271 (2) + g (8,9%(@)) (@)Y (2),
(2.9)

where QY (z) = e(“" @) is an element of SU (3) , with w(z) a phase factor at each
point in space-time. Henceforth we will suppress flavour, Dirac, colour and adjoint-colour

indices such that Eq. (2.3) may be written

Locp(z) = () [iy" D, (x) —m] ¢(z) — iTr (G(x) G* (x)) . (2.10)
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This may be written in terms of the fermionic and gluonic contributions

EQCD (l’) =Lp ($)+EG (33), (2.11)

for
Lr(z) =vY(z) [iy" D, (x) —m| ¢(z), (2.12)
Lo (@) = —i Tr (G () G* (). (2.13)

2.2.1. Observables in the path integral formalism

QCD is a quantum field theory and so observables can be calculated from vacuum expecta-
tion values using the Feynman path integral formalism. In this formalism, a path integral
over all possible field configurations, 1,1 and all possible gauge field configurations A,,

gives the vacuum expectation value of a time ordered operator (Q|T O[Q)
N 1 _ L _
QTO 0.5, 4,]10) = 5 [ Do) DU(w) DA (a) OeSecn bl (219
where () denotes the vacuum state and the QCD action is

SQCD [@D)Ja Au:| = /d4x£QCD($) = SF W,Ev A,u] +SG [waav A,u] ) (215)

for appropriately defined Sr and Sg. The partition function Z is

= / Di(z) Di(z) DA, (z) eSecn[#94], (2.16)

As a relevant example, consider the operator O to be the time ordered product of

(single flavour) quark field creation and annihilation operators, then

<Q|T¢(ﬂs1 (w2) ¥ (x )E( 2) |€0) =
z / Dy Aulw) (00) ¥ (2) (1) B () @SocrloP il (2.17)
As the fermion fields obey Grassman algebra |15], the Grassmanian integration over the

fermion fields produces a sum over all possible contractions of 1 (z;) ¥ (x;) Here, for

simplicity only four possible spatial locations are considered. These contractions each
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produce a quark propagator S (xi, x;)
M (2, 2;) S B (zi,25) =0 M Srg 0 (2 — 2;) . (2.18)

The fermion matrix has form iM = [iv" D,(z) —m]. Then Grassman integration

produces

/ Dip(x) DY(z) Y (21) ¥ (22) ¥ () ¥ (xh) €°F = det M (A,)

X [M_l (w1, 2h) M~ (29, 2h) + M~ (2, 2h) M~ (xg,x'l)} (2.19)
and so Eq. (2.17) may be written

(T (20) ¥ (0) B () 9 ()9 =5 [ Dadu(a) det M (4,065

X [M~ (zq,27) M7 (2, 0) + M ™" (2, 25) M~ (22,27)] . (2.20)

This expression, and that of the partition function Z are reminiscent of the partition
function of statistical mechanics [16|. Here though the exponent is imaginary rather
than negative, rendering statistical mechanics methods ineffectual. The solution is to

formulate the theory in Euclidean (rather than Minkowski) space-time where

i (2.21)

20 — —izy (2.22)
AY —iA, (2.23)
Sqcp = iS5en", (2.24)

and the gamma matrices are now in the Sakurai representation of Egs. (A.5) and (A.6).
This formulation has metric 6, = diag (+1, +1, +1, +1) and so no distinction between

contravariant (upper) and covariant (lower) indices is required [17].

The expectation value is then

(T (00) ¥ (a2) B (o) T (55) 1) = 5 [ DALw) det M (4,) 5
X (M~ (21, 27) M~ (o, 2h) + M1 (@, 25) M~ (20,2)] . (2.25)
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The formulation of the path integral in Euclidean time allows the vacuum expectation
value of Eq. (2.14) to be interpreted as a weighted average across all possible field
configurations of the operator. This set of field configurations are distributed with
probability [11]

P w07, AL o exp (=SEES" 01,0, 4 ) (2:26)
and the vacuum expectation value is then the average value across this sub-ensemble

QT O [¢, 9, A Z Oy, 4]. (2.27)

This expression can now be evaluated using a discretised, non-perturbative method

known as lattice QCD which will be discussed in the following chapter.
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Chapter 3.

Lattice QCD

Lattice QCD is the ab-initio method by which QCD can be studied at low energies non-
perturbatively. Here QCD is formulated on a finite, discretised lattice in Euclidean space
time. As alluded to earlier, the QCD Lagrangian can be separated into fermionic and
gluonic contributions. The discretisation of each of these components will be considered

separately.

The path integral on the lattice, quark propagators and the construction and properties
of two-point correlation functions are discussed in order to provide an introduction for
the concepts and calculations used in following chapters. More detailed overviews of
lattice QCD can be found in Refs. [15], [17] and [11]| which inspired the treatment herein.

The background field method, a technique that can be used within lattice QCD which

is the foundation of this thesis, is also discussed in this chapter.

3.1. Discretisation

The continuous space-time of the physical world z#, is replaced with a four-dimensional

grid of points in space-time known as a “lattice”. The transformation used is
=zt =ant, (3.1)

where n# is a vector of integers and a is the minimum distance between points on the
lattice called the “lattice spacing”. The spatial dimensions are typically taken to be

©w=1,23 and time to be p = 4. The vector n* has takes values in each dimension of

15
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>

Figure 3.1. Two-dimensional representation of the discretised segment of space-time. Link
variables U, lie in between lattice sites x while fermion fields ¢ are on the lattice
sites.

one to N, N, N., N, for pn = 1,2,3,4 respectively. Typically the spatial dimensions are

chosen to have the same extent, labelled V.

In the discretised theory, derivatives are replaced by finite differences

0, 9(w) = 5 (b (x+af) vz —ap), 3.2

where [i is a unit-vector in direction of y and integrals over Euclidean space-time are

replaced by sums over the lattice volume

/ d*z — a* Z = Z (3.3)

nt xH
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Then, recalling the transformation properties of fermion fields in QCD in Egs. (2.7)
and (2.8) where €2 () is now an element of SU(3) for each lattice site =, consider the
discretised derivative ¢ (x) 8, ()

o) 5 Wit ap) = —ai) 3
- [P0 () Qe+ af) v (a +af)
ST @) A —ap) g -ap)] . (34

This is not gauge invariant. Hence we introduce the gluon fields, represented by link

variables: parallel transport operators along the path from one lattice site to the next

U,(z) = P exp {—z’ g / o dzMAu(z)] , (3.5)

where P denotes the path ordering. A two-dimensional representation of this discretised
space is shown in Figure 3.1 where the link variable U, (z) in the y — v plane and a

fermion field 1 on a lattice site x are shown.

Under a local gauge transformation €2, these transform as

(2) Uu(2) Q' (x + afo), (3.6)

U”(x) %
% Q@+ ap) Ul(z) Qf (x). (3.7)

0
Ul(z) = Q

This is shown in Appendix B.1. The covariant derivative is then discretised as the

covariant finite difference operator

V) 0() = 5 (Uala) (et ap) ~Ule —af)o(e—ap)), (39

which transforms appropriately to produce the gauge invariant term required for the

fermion action as shown below

&(x) V() ) S
w($)2§: (z) [Q (z) Uu(l‘) Of (x4+ap) Qx+ap) P(x+ap)
Q) Ul (x—ap) Q' (z—ap)Q(x—ap) ¥ (z—ap)]
@)

> [Uu@) ¥ (z+ap) —Ul(z—app) ¥ (z—afp)]. (3.9)
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Uy ()

Figure 3.2. The simplest closed loop of link variables, the plaquette P, (x).

3.2. Gluonic Action

The gluonic term of the QCD action density in Euclidean metric is

56 (#) = 1 Tt (G () Gl (1) (3.10)

and recalling the link variable formulation of Eq. (3.5) we seek a gauge invariant expression
which in the continuum limit takes this form. We hence consider a closed loop of link

variables, as illustrated in Figure 3.2 for the 1 x 1 closed loop known as a plaquette
P (x) =Uu(x)Up(z + ap) Ul(z + ad) Ul(x). (3.11)
This plaquette has the value

P (z) =exp (iga’G(z) + O (a®)), (3.12)
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as shown in Appendix B.2. A simple Taylor expansion of P, produces

P;w(x) =I+ z'ga2GW(x) - %QQ a* Guu(x)Gw/(x> +0 (ag) (3.13)

We recognise now the gluonic action in the real part of the plaquette and take the trace

to obtain
3T (P (04 Pl 0) = T (1= 204G (0) G (1))
_3- %f T (G (2) G (2)) + O (a¥),  (3.14)

which has O (a?) errors [18,19]. The Wilson gauge action [20] is hence

=82 [1 -3 (P () + P,L(:r))} : (3.15)

T pu>v

Here 8 = 6/g° is the inverse lattice coupling, chosen such that in the continuum limit
a — 0, the continuum action is obtained. The sum over p > v is taken in order to avoid

double-counting of plaquettes.

In practice, improved lattice gauge actions with additional irrelevant terms are
used; the process of determining additional, irrelevant terms is known as Symanzik
improvement |21,22|. Additional terms are generated by introducing Wilson loops of
larger dimension, such as the 1 x 2 loop shown in Figure 3.3 with some relative coefficient

on the additional Wilson loops.

The approach used by the Iwasaki gauge action 23] is to formulate the renormalisation
group equations |24| on the lattice and hence set the coefficients of the irrelevant operators
such that they are as close as possible to the renormalised trajectory. The set of field
configurations, known as gauge field configurations which are relevant to this thesis are

supplied by the PACS-CS collaboration |25 and use an Iwasaki gauge action of the form

sk [0, =8 30 e (REM @) + (R () + T (L2 @) + (RE2) (2)]

x  pu>v

(3.16)

where R}Lﬁl is just the plaquette of Eq. (3.11) and R%Q is the 1 x 2 loop illustrated in
Figure 3.3. The coeflicients ¢y and ¢; are ¢y = 3.648 and ¢; = —0.331 respectively |25].
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Figure 3.3. Link variables for construction of R}j?
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3.3. Fermion Action

The fermionic term of the (Euclidean) QCD action is
Sp=v(x) V" Du(x) +m] (). (3.17)

Using the definition of the covariant finite difference operator defined in Eq. (3.8) this

may be written

Sp=a">_ P(x) (¥ Vu(x) +m] ()
=a* ) W) [igh+d+0(a®) +m] P(x), (3.18)

where the second line is shown in Appendix B.3. Hence it is clear that while this
discretisation process recovers the continuum case in the limit @ — 0, it also introduces
O (a?) errors into the fermion action. An unfortunate side effect of the naive fermion
action above is the fermion doubling problem, where in the continuum limit, this action

gives rise to 2 = 16 species of fermions rather than one.

The existence of fermion “doublers” can be observed through examination of the free,

massless fermion propagator. Suppose the fermion action is written

Sp=a" > (x) D (x,y) d(x), (3.19)
z,Y
where
D(x,y)=>_ " % [Uu(#)02+apy — Ul (@ = a ) 6p—apy] +m (3.20)

p=1
is the naive Dirac operator discussed above, in Eq. (3.18).

Consider the Fourier transform for the free (U, = I), massless fermion case . The
transform is applied separately to the two space-time indices  and y where the second

index y is transformed using the complex conjugate phase. Thus the Fourier transform
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of the free, massless version of Eq. (3.20) is

D(p.q) = ‘A% ; e'P D (x,y) €Y
1 A ! 1, . ) A i
— \A_| ; TP (; AH 5 (e+zq~(x+au) _ e—zq'(w—w))>
_ S it <24: L (et e—z‘qu))
|A| - o 2a

= 0pq D (), (3.21)

where |A| is the total number of lattice sites and

DDA A S (3.22)
Dp) =13 sin(p,). (323)

From Eq. (3.21) it is clear, that in this basis, that the Dirac operator D (p, ¢) is diagonal
in momenta. Hence the inverse of the Dirac operator in position space can be found by
calculating the inverse of the 4 x 4 matrix D (p) and then taking the inverse Fourier

transform.

To show the existence of the fermion doubling problem, it is sufficient to take the

inverse of this matrix using Eq. (A.10)

—ia Zizl y* sin (p,)

D™ (p) =
) Zi:l sin” (Pu)

(3.24)

This has poles when sin® (p,) = 0, i.e. when p, = 0 or 7. In the zone —7 < p, < 7 of
momenta available on the lattice, there exist 2* = 16 poles, of which all but the pole
corresponding to p, = (0,0,0,0) are unphysical. These unphysical poles give rise to the
unphysical quark species of the doubling problem.

3.3.1. Improved Fermion Action

It is clear that the naive fermion action of Eq. (3.18) isn’t fit for purpose. It doesn’t

accurately reproduce continuum physics when the continuum limit is taken. The first
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step to resolve this is to remove the fermion doubling problem. There are a number of
methods [26-30| through which to do this, the one used in this work and covered below

is the Wilson fermion action [20].

Wilson Action

The Wilson fermion action removes the unphysical “doublers” by introduction of an
irrelevant term into the action. This term vanishes in the continuum limit and works by
forcing the unphysical quark species to have extremely large energies, such that they are

suppressed.

Wilson proposed to remove the unphysical poles at p, = 7 by adding an extra term

to the (massive) momentum space Dirac operator

4

1

D(p)=m+ — ny sin (p,,) —|——Z (1 —cos(pu)) (3.25)
p=1 pn=1

Q

Eq. (A.10) can now be used to find the inverse Dirac operator

(m + % Zi:l (1 — cos (IM))) - é Zizl A sin (p,)
(m +1570 ) (1—cos (p,)))2 +% Zi=1 sin? (p,)

D™ (p) = , (3.26)

where the physical pole (m — 0,p, = 0) is maintained but the unphysical poles at p, = 7

are removed. The unphysical quark species acquire a mass

2
m— m+ —n, (3.27)
a

where n is the number of components where p,, = 7. In the continuum limit, these masses

become large and the “doublers” hence decouple from the theory
The Wilson term in position space is hence
1 N
—a Z 522 (Up(®) Ortapy — 200y + Ug (= ap) pany) - (3.28)
pn=1

This can be obtained from the free-field case (U, =I) by taking the inverse Fourier
transform of the additional term in Eq. (3.25) as shown in Appendix B.3.1. This position

space representation of the Wilson term can be seen to be the negative discretisation of
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the Laplace operator |31]

a
5 O Oy (3.29)
In removing the “doublers”, the discretisation error has increased from O (a?) to O (a) as
shown in Appendix B.3.1. As such, the Wilson term introduces an O (a) discretisation

error into the fermion action.

The full Wilson fermion action is the sum of Eq. (3.18) and r times Eq. (3.28) and

may be written

1 A
DY (z,y) = mb,,+ Z AH T (Uu(@) datapy — Ul (2 — af1) Guapy)
pn=1
4
T A

- Z % (Uu(x)5x+aﬂ,y -2 5:1:,1/ + Ul (33 — CLIU) 5Ifaﬂ,y)

pn=1
4
T. A
- 94 Z (7" = 1) Up(®) bzgapy — (" + 1) UJL ER ) ——
pn=1
4
+ (m + f) Oz,y- (3.30)

where 7 is the Wilson parameter, commonly set to r = 1.

The fermion fields are rescaled according to

Y

— ) 3.31
Y P (3.31)
for
1
= .32
2ma—+8r <33)

The Wilson fermion action can then be written

Y[, 0, U] =a Z e Y)Y (y), (3.33)
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where M is the Wilson fermion matrix

4
M<5E7 y) = 5x,y — R Z [(1" - VM) U,u(x) 5:p+aﬂ,y =+ (7“ + VM) U;JE (SC - a/l) 5x7aﬂ,y} .
p=1

(3.34)

The Wilson fermion action of Eq. (3.33) successfully removes the unphysical doublers
of the naive fermion action. The cost of this fix however is to increase the discretisation
errors to O (a) and to explicitly break chiral symmetry as Eq. (3.30) does not anti-

commute with 5.

The Nielsen-Ninomiya No-Go theorem |32-35| forbids the formulation of a discretised

Dirac operator D, which simultaneously satisfies

e D, has the correct continuum limit, lim, .o D, = Ip for D,, the continuum covariant

derivative,

e No fermion doublers; the non-continuum modes of D, decouple in the continuum
limit,

e D, is exponentially local; the norm of D,’s matrix elements decays exponentially as
|z — y| increases,

e D, does not explicitly break chiral symmetry, i.e. {D,, 75} = 0.

The No-Go theorem can be partially avoided using Domain Wall fermions [36-40| or
the overlap [26,27| quark formulation which impose a lattice deformed version of chiral

symmetry at the cost of increased computational expense.

Here however we use a numerically cheaper fermion action and thus we seek a further

improved fermion action which reduces the O (a) errors.

Clover Fermion Action

In order to provide O (a) improvement of the Wilson fermion action Sheikholeslami and
Wohlert 41| considered all scalar dimension five operators which obey gauge-invariance

and are also invariant under, parity and charge conjugation and the discrete rotations
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Figure 3.4. Link variables for construction of C,, (x).

available on the lattice. In particular the clover fermion term

Ol = W%m Eauu G/u/ l/J, (335)

is found to be the only dimension-five operator required to obtain O (a) improvement.

The clover fermion action is then

1ga Cow k1 —

SEW = S?/ - 4 ¢ Oy G;w @Z)7 (336)

where Cgw is the clover coefficient, a tunable parameter for removal of O (a) errors to
all orders in the gauge coupling g.

The lattice discretisation of the field strength tensor is encoded in the plaquette as

shown in Eq. (B.14). Hence an expression for GG, can be produced from the sum of the
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four 1 x 1 plaquettes in the u — v plane around any lattice site shown in Figure 3.4

1

G#,,(x) = W

C,(z) — CL, (1) — % Tr (C ) — Cl(@) |, (337)
where

U, (x+ajp) U:ﬂ(m—kaﬁ) Ul(x)
;(x+aﬁ—aﬂ) Ul (x —a?) U, (z —aji)

+U(:17
+Ul(:v ap) Ul(x—ap—ad) U, (x—afi—ap) U, (z—ab)
+Ul(x—ad) U, (x—ad) U, (z+af—ab) U);(IL’) (3.38)

G, is made traceless by subtracting 1/3 of the trace from the diagonal elements. This is
an improved lattice definition of the field strength tensor which removes the O (a) lattice

artefacts from the definition of the plaquette.

3.4. Expectation Values

We return now to the path-integral approach to expectation values considered in Chapter
2. As the fermion and gluonic terms of the QCD action in Euclidean space have been

discretised this path-integral is now calculable.

Considering first the quark propagator of Eq. (2.18) and returning to the fermion

correlation function of Eq. (2.14) for an appropriate quark bilinear operator O we write

(QO (z;,2) |Q) = /Dw ) DY) DU O (w;, ) e (SelVI+SE W) (3 39)
=2 / DU det M [U] =%Vl M, (3.40)
where M is associated with Eq. (3.36) and M is the set of fully contracted quark

propagators S (xl,x;) M is the i.e. traces discussed below, i.e. Eq. (3.50) as in
Eq. (2.25).
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Appropriate gauge invariant meson (M) and baryon (B , E) fields will take the form

(temporarily resuming colour, spin and flavour indices)

Mg! (2) = 85 ()], (2) (&), (2) (3.41)
BEFACh () = ey (), () ()] (2) () () (3.42)
B“f’ﬁg";h(a:):em( Op) @) (B,)] (@) (B1); (@) (3.43)

From these fields we construct appropriate meson and baryon operators which have the

correct quantum numbers to produce the desired states. We consider operators

MS] (2, @) = b (4),, (2) @7 ()] (2) (3.44)
BEO! (2, @) = eip (45), (x) ©F7 () (x) ©5° (¥n)¢ () (3.45)
B (2, @) = i (¥))) (x) @7 (& ) (v) @3¢ @h)];(‘r)’ (3:46)

where ®; and ®, specify the spin-flavour structure to give the physical states of interest.

An example of a mesonic operator is
MY (2, ®) =d(z) ivysu (), (3.47)
where flavour has been made explicit through
Uu (@) =u(z), va(z)=d(x) (3.48)
and ® =iv;. Eq. (3.47) is a 1 operator. Similarly for the neutron, we can write
BY%d (2, ®) = u(z) Cysd(z) Id(x), (3.49)

where ®; = C'v; and &3 = I. C' is the charge conjugation matrix and I the identity
matrix. An extensive list of possible spin-flavour operators ® can be found in Refs. [12]
and [43].

From these operators a gauge-invariant meson correlator can be written as

(M (z,®) M (2/,@")) = — (Tr (@S (z,2) &' S (2, 2))),,
+ (Tr (@S (x,2)) Tr (DS (2, 2"))), - (3.50)
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(a) Meson operator connected term. (b) Meson operator disconnected term.

', @ x, ®

(c) Baryon operator.

Figure 3.5. Meson and baryon quark flow diagrams.

The first term of this is illustrated in Figure 3.5a and the second in Figure 3.5b. The
subscript U signifies that this operator is constructed on a specified configuration of link

variables U, (x). Similarly the baryon operator

(B(z,®) B(a,®)) = Bape > (So (x,2') S5 (x,2') g (z,27)),, Phgrer (351
Wick

where flavour indices have been suppressed and the ® tensors describe the contractions

of the Dirac indices and hence specify the spin-flavour structure. The quark flow is

illustrated in Figure 3.5c. The sum over Wick represents the six possible sets of Wick

contractions of the quark fields 17,4/, and Ef, Jg/w- These are expanded generally in

Appendix B.4. The Wick contractions contribute a non-zero term only when v and v

are the same flavour. An explicit example of this for the neutron is

N (z,®) N (¢, @) = e | =S8 (2, 2") C s 5" (x,2") Cs S (2, )
—S% (z,2") Tr <C’ vs S¥ (x,2") C s S%" (x, x'))} "
(3.52)

for the baryon interpolator of Eq. (3.49) and where S, and Sy represent up and down

quark propagators respectively.

As these operators are dependent now only on the quark propagator, they are
calculated by constructing a set of N gauge fields {U;} which are distributed according to
Eq. (2.26). The continuous integral of Eq. (3.51) according to Eq. (3.40) is then replaced
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by an average of the operator on each gauge field in the set in an analogous way to
Eq. (2.27)

QB (z,®) B («',®") Q) ~ Z Dapc Y (S ) S (wa') Sg (x,2)), Pper
Wick
(3.53)

3.4.1. Fourier Projection

The hadron states constructed by the two-point correlation function must be states of
definite spatial momentum p. Thus the Fourier projection of the spatial correlation

function of Eq. (3.53) is taken

G, t) = Z eI QB (2, ®) B(a!, D) |Q). (3.54)

Note that the Fourier projection is over the spatial momenta p" and that this projection
has been performed only for the annihilation operator B (x, ®) while the creation operator

B (2, ®) remains in real space [11].

3.4.2. Hadronic level interpretation of correlation function

Inserting a complete set of states over energy, momentum and spin |a, p, s)

I= Z la, p, ) (v, p, $| (3.55)

a7p?8

into the two point correlation function G (¢, t) yields

=) ) e FQIB (2, D) o, p, s) (o, b, s|B(0,2) Q). (3.56)

7p7 €

Here « describes the state with mass M, and energy E, = 1/ M2 + p“. The sum over «,

is the sum over all possible states a with quantum numbers described by B, B.

Operator translation in Euclidean time allows us to write

B(z,®) =efte TR0, ) e Hteti? 7 (3.57)
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H is the Hamiltonian operator which has the properties

H[Q) =0, (3.58)
p12) =0, (3.59)
H |, p,s) = Eags |05, ), (3.60)
plo,p,s) =D |a,p,s). (3.61)

The identity

ST = (3.62)
can be used together with operator translation in Eq. (3.57) to simplify Eq. (3.56).

G(ﬁ,wzzze T QIB(0,®) |a, ) o P e (b s[B (0,8)]0)

:Ze o Z =) 7 (QIB (0, @) |, . s) (a, . 5B (0,9') Q)
= Ze_E (QB(0,®)|a,p, s) (a,p,s|B0,)|Q). (3.63)

It is clear that this expression offers access to the energy of state « as it is proportional
to exp (—FEazt).

If the states are specified, i.e. as positive parity nucleons, the matrix elements

describing the overlap of the interpolating fields B and B can be expressed as [44]

= N1/2+
<Q|B (O, (I)) |N1/2+7p S ZN1/2+ EN1/2+ w (364>
N
<N1/2+,p 5|B(0 o ) ) = N1/2+ = ¢ (3.65)
EN1/2+

=711
/
where ZN1/2+, A Ny jos

and 1 (p, s) and ¥ (p, s) are Dirac spinors. If the operators at the source and sink are not

are the couplings of the interpolators B and B to the baryon states

identical, i.e. differing levels of smearing have been performed, than Z§  and Z’ N N
1/2+ 1/2+

are not the adjoint of each other. As py, , is on-shell, py = N MJ2V1/2+ and the
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.. Mn
normalisation |/ =+ here produces
Nyjo4

Y (p,s) ¥ (p,s)=1.

The identity

— v-p+M
== 3.66
;mp,s)w(p,s) 7 (3.66)
along with Eqgs. (3.64) and (3.65) will be useful for simplifying Eq. (3.63) to
L _ vp+ My
o — —FEat —ip T 7o o 1/2+

G(p,t) = Z o Z L <—2 T ) . (3.67)

a,p,S T 1/2

For zero momentum (ﬁ = 6) it is shown in Appendix B.5 that the positive parity
signal considered here is contained within the (1,1) and (2,2) spinor components of the

correlation function.

The interpolating fields B and B also have overlap with negative parity states [12,44,45|.
Following a similar process to the positive parity sector, reveals that negative parity

states contribute in the (3,3) and (4,4) components of the correlation function |12].

Hence, in order to access a spin averaged positive parity baryon state, the spinor

trace of the correlation function with the positive parity projection operator

1
D=2 (L+), (3.68)

is used

G (0,t) =T (G (0.1))
spinor

- —FE.t 7a %
— Z e A e (3.69)

Similar arguments can be made for meson spectroscopy [43|.
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Figure 3.6. 7" projected two-point correlation function with (Anti) Periodic boundary con-
ditions in the time dimension. The source is at 5, = 1.
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Figure 3.7. X7 projected two-point correlation function with fixed boundary conditions in
the time dimension. The source location is at t5 = 16.
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3.4.3. Boundary conditions

We consider the convention where lattice sites are labelled from 1 to V.

Periodic boundary conditions are used in the spatial dimensions, i.e.

Uu (Nz + ]-7 na, N3, n4> - U/L (1a na, N3, n4)
Uu (nla Ny + ]-7 ns, 714) - Uu (nh 17 ns, n4)
U, (n1, ng, N, +1, ng) =U, (1, ng, 1, ng) . (3.70)

This preserves the discrete translation symmetry of the lattice. Gauge field generation
typically uses the same periodic boundary conditions in the temporal dimension as the
spatial |11, 15,25

U# (nl, N9, N3, Nt + 1) = UH (nl, Ng, N3, 1) (371)

The interpolating operators in Eq. (3.63) couple to states propagating both forward
and backwards in time. This means that the fermionic temporal boundary conditions
have a significant effect on the correlation function. The three most commonly used

options are described below.
e Periodic boundary conditions

When periodic boundary conditions are used, backwards propagating states travel
through the temporal edges of the lattice and have the potential to contaminate
the forward running signal. These backwards running states appear in the sum
of exponentials with opposite time dependence and, in the case of baryons, with

opposite parity, i.e. with exponential contributions
Gback p t Z e o (= ) (372)

where o now represents states with opposite parity to states labelled by « and
T = (N, + ts) where ¢, is the source location. This interference can be problematic
if the states under investigation are particularly light such as (near) physical mass

pions, or if the lattice has a short temporal extent.

e Anti-Periodic boundary conditions
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The backwards running state interacts here in a similar manner to when periodic
boundary conditions are used. However, this time the propagator changes sign at
the boundary. For mesons with two propagators, the effect cancels and generates a

correlator similar to that for periodic boundary conditions.

In this case the interference term can be isolated by simultaneously fitting to both
the backwards and forwards propagating states. An example of a simple suitable fit

is
Gt (6, t) =c, (e Pl BI0) (3.73)

where ¢, and F are fit parameters and it is assumed that only a single energy state
with energy E contributes to the correlation function. An example of a two-point
correlation function using anti-periodic boundary conditions is shown in Figure 3.6.
As this correlator is a meson it is also an example of periodic boundary conditions

for a meson.
¢ Fixed boundary conditions

The final of the three most commonly used boundary conditions is fixed boundary
conditions. Here the links in the time dimension at the boundary are set to zero,

1.e. set
U, (f, Nt) =0. (3.74)

Hence correlators do not travel around the temporal edges of the lattice to contami-
nate with the forward propagating signal. However boundary effects do extend from
the boundary and can contaminate the correlator. A solution to this is to place the
source location of the correlator at some finite time separation from the temporal
edge of the lattice. Such a solution is displayed in Figure 3.7 where the source is
located };Nt = 16 time slices away from the lattice boundary. This approach is
successful in preventing contamination provided that the state is sufficiently heavy.
As the lightest hadron with the longest correlation length, the pion is the natural

choice with which to investigate boundary condition effects.

Previous studies [45-47| have shown that the effects of a fixed temporal boundary
condition are only significant for the pion in approximately the first and last quarter

of time slices on the lattice. This region can be avoided by placing the source this



36 Lattice QCD

distance or more from the boundary. A nucleon or other baryon will have decayed

to noise by the time the correlator reaches this region.
e Open boundary conditions

Open boundary conditions are proposed as a method with which the critical slow-
down [48-50] typical to generation of gauge fields with extremely fine lattice spac-
ings can be avoided [51,52]. These boundary conditions describe both gluonic
and fermionic terms and can offer improved stability and efficiency for gauge field
generation but slightly complicate the physics analysis of the correlation functions

which are the focus of this thesis.

Fixed boundary conditions for the valence sector are used in this thesis unless otherwise
stated. As the fixed boundary conditions apply only to the valence sector and were not
used for gauge field generation, the result is a non-unitary mixed action theory. The

effects of this can be avoided by considering only the time regions far from the boundary.
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3.4.4. Effective Energy

From the parity projected two point correlation function of Eq. (3.69) the energy of the
ground state can be extracted in the infinite time limit. The decaying exponential nature

of > e Fot produces

o _ . —Eot 0 =70 —Eit 71 Tt
G (0, t) = eIy L DN, b Dy Dy, (3.75)
t—00  _—FEgt 70 710
= e 0 ZN1/2+ Z,N1/2+’ (3.76)

where Fy corresponds to the state with the smallest energy.

In this infinite time limit, the ground state energy can be accessed through the

effective energy, defined as

1 G (6, t)
Eop(t) = — log | ———7 _ (3.77)
ot G <6, t+ 5t>
i —0
B 1 e EOtZZQ/l/% Z/N1/2+
o—FEo (t+51) L D,
1 _E —Eo (t4+6
= [log (e="°") —log (e o (¢+ t))}
1
= —Fyot
5t "
— F, (3.78)

As the data is produced by Monte Carlo processes, the effective energy as a function of
lattice time will not be exactly equal at all times. Hence a correlated fit across a range
of time slices is performed. The method with which fits are performed is described in
Appendix B.6. For this work we require that the covariance-matrix x% s of these plateau
fits is < 1.2. This aids in ensuring that the long-time limit has been reached and that

the ground state energy has been isolated.

It follows from Eq. (3.69) that if the long-time limit has not been reached that there
will be remaining excited states with energies E, > E,,_1 > --- > E; > FE,. There
are a number of methods through which the ground and excited state energies can be
extracted |11,53| of which a few will be discussed briefly herein. Particular attention will

be on their applicability to the studies in this thesis.
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A naive approach would be to fit two or more exponentials to the two point correlation
function. This would enable a determination of excited state energies as well as improve
the ground state signal by removing higher order contaminations. This approach however
has been demonstrated to produce unreliable determination of energies and matrix
elements [11,54,55|, particularly for quantities which are highly sensitive to excited state
effects [55].

This difficulty prompted the use of the variational method [56-59| wherein the source
a

Nijoy
to each state. The resulting matrix of source and sink varied correlation functions is

and sink operators are systematically varied to alter the couplings Z]%l/2+ and 2’

then diagonalised in order to produce a new set of operators by solving the generalised

eigenvalue problems [60]

Gij (ﬁ, to + At) U’OAJ (ﬁ) e_Ea(ﬁ)At Gz’j (ﬁ, to) Ua,j (]7) s (379)
Vi (B7) Gij (D, to + A t) = e PPy (57) Gy (1, t0) - (3.80)

Here G;; is an element of the correlation function matrix with interpolating operators
B; Bj; Uq, U, are the eigenvectors which diagonalise the correlation matrix and provide
the weights to produce the new correlation functions which are optimised for a single

energy eigenstate

G (ﬁ7 t, Oé) = Vai (ﬁ) Gij (ﬁv t) Uq,j (ﬁ) . (381)

The variational analysis method works well [55,61,62| but is computationally expensive
requiring a separate fermion matrix inversion for each source used in the correlation
matrix. Extensions to non-zero momentum exist and are essential for correctly isolating
excited states at non-zero momentum [62|. Variational analysis relies upon a basis of
operators which couple to the energy eigenstates of interest. For pure QCD calculations,
this is usually accomplished by creating source operators of different widths, in analogy
to the different particle radii observed in nature and on the finite-volume lattice. These
source operators are not necessarily appropriate for calculations involving an external
background field. Similarly due to the small differences between the Landau energy
levels of a hadron, it is anticipated that the variational method will not prove useful to

isolating the lowest lying Landau level state [61].

An alternative approach; the Athens Model Independent Analysis Scheme (AMIAS)
|63| uses importance sampling methods to directly determine the number of distinguishable
states in Eq. (3.69). An advantage of AMIAS is that it can be applied to the correlation
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function at any time by allowing any number of states to contribute. This is in contrast
to the plateau fitting method where the long time-limit behaviour is required. This
freedom allows AMIAS to be performed at smaller times, before the onset of significant
amounts of noise in the correlation function. AMIAS has been applied to nucleon excited
states using a single operator 64| and a correlation matrix [63| as well as to meson

spectroscopy |65].

In this work the plateau fitting method is used through a linear least squares fit [31|
as discussed in Appendix B.6. This fit method allows the X?lof of the fit to be examined,
where it is important to note that the x3,, is determined via a consideration of the full
covariances matrix between the different Euclidean time slices in the fit region. An upper
limit of x3,, < 1.2 is set on all fits considered; this ensures ground state dominance for

successful energy extractions.

3.5. Smearing

In order to increase the overlap of the interpolating operators with a specific state a of
interest a number of approaches can be used [66-71|. As the ground state is the desired

energy eigenstate, gauge invariant Gaussian smearing |66| is used.

A smeared source or creation operator is created by distributing the fermion fields
over multiple lattice sites. The quark propagator is then formed by inverting the fermion

matrix against this distributed source rather than a delta function as in Eq. (2.18); i.e.

MR (2, 1)) Sijﬁ (2i,25) = 6" S5 8 (2 — ) 1 (2), (3.82)

«Q

where 7 (z) is the distributed source called the source vector. This source vector is
constructed using an iterative Gaussian smearing process. Starting with the delta

function source of Eq. (2.18) a smearing operator F' (z,z’) is iteratively applied
()" =>"F(x,a") n(z)"". (3.83)

Here the smearing operator is |66, 72|

/ € ~
F(z,2')=(1—¢€) 6y + G > Uu(@) b atap + Ul (# = afi) bwaap),  (3.84)

3
p=1
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where € is the smearing strength which determines the amount of smearing on each
application of the operator. The mean-field improvement factor wug |73, 74| represents the

average value of the gauge links U, and is defined by
1 i
Uy = <§ Tr (PW)> . (3.85)

The width of the smeared source vector depends on both the smearing strength ¢ and

the number of applications 1.

3.5.1. Link Smearing

The high frequency modes of a gauge field theory such as QCD can contaminate the lower
order behaviour responsible for much of the interesting physics [75-79|. This has the effect
of increasing the noise even for simple quantities such as the effective energy [80,81|. In
particular, this occurs when the operator is concerned with or involves substantial gluonic
effects [82]. To remedy this problem, the link variables are averaged or smeared. The
approach used in this work is stout link smearing |82|; here the gauge links are replaced
with a weighted average of the surrounding gauge links. The replacement process occurs

several times in an iterative fashion.

Link variable smearing can also significantly improve the lattice action used. Examples
are the Asqtad improved staggered quark action [83-85| and the fat link irrelevant clover
action |86,87].

3.6. Background Field Method

An external electromagnetic field can be applied to the lattice QCD simulation through
the background field method [88-90|. Such an approach was used in early lattice QCD
studies of nucleon magnetic moments through the calculation of the Zeeman splitting
induced by a classical magnetic field [91,92|. The electric polarisability of a neutral
hadron can be accessed through the quadratic Stark effect [93-96] with a background
electric field.

In the years since these early studies, the background field method and lattice

QCD have been extended to calculations of quantities such as the neutron electric
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dipole moment [97, 98|, baryon magnetic moments [99-102| and other more exotic

phenomena [103-105].

This is not a full formulation of Quantum Electrodynamics (QED) on the lattice
as a full formulation of QED is signficantly non-trivial due to the problems posed
by the long-range interaction nature of QED on the finite volume of the lattice [106].
Instead interactions exist only between the external field and the charged particles; no

electromagnetic inter-particle interactions exist.

The magnetic field induced using the background field method is the simplest means
through which to access purely magnetic quantities of the hadron on the lattice. It is

computationally simple to implement as discussed below.

3.6.1. Formulation

To introduce a background field on the lattice, first consider the continuum case. Here a

minimal electromagnetic coupling is added to form the covariant derviative
D, = D3P +igeA,, (3.86)

where ge is the charge on the fermion field and A, the electromagnetic four-potential.
This additional term is discretised in the same manner as the usual gauge fields in
Eq. (3.5). Hence, the equivalent modification on the lattice is to multiply the QCD gauge

links by an exponential phase factor [92]
Uy (z) — UL(:{;) = U/SB) (z) Uy(z) = etaaeAu(®) Uu(x), (3.87)

where U;(LB) (z) = e?@94u(®) These modified gauge links are used when performing the
lattice QCD calculation. Note that the coordinates in the U(1) gauge links are relevant
to the source position, such that the link is the identity at the source position. This does

not effect the quantisation discussion which follows.
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Quantisation

In the continuum, a uniform magnetic field along the Z axis can be obtained using

Maxwell’s equations [107|

B=V x A 3.88
(3.89)

That is
B, =8, A, — 8, A,. (3.90)

To give a constant magnetic field of magnitude B in the +2 axis, a potential
A, =—Buy, (3.91)

is used over the interior of the N, x N, x N, x N, lattice. It was shown earlier in Eq. (3.12)
that the smallest closed loop of gauge links, known as the plaquette encodes the field

strength tensor

P, (x) = exp (i ge a®F,(z)) . (3.92)
Here this equation is exact as the higher order terms involve derivatives of at least second
order which vanish in the case of a constant background field and we write F,,(x) to

emphasise this equation applies for a constant background field.

We can verify that Eqgs. (3.90) and (3.91) produces the desired field strength by
examing a general plaquette away from the edges of the lattice where periodic bound-

ary conditions are in effect. Such a plaquette is depicted in Figure 3.8 and gives
(setting A, = A, =0)

. . Y
e zaquye—i—zaqu(y-‘ra) — pla qu) (393)

as expected.

The spatial periodic boundary conditions of the lattice require a non-trivial potential
to ensure that the field is uniform over the entirety of the lattice. This can be observed

by examing a plaquette at the boundary where y = a (N,) as shown in Figure 3.9. This
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T

Figure 3.8. The simplest closed loop of link variables, the plaquette P, (z) with the values

of the background field links U,SB) (x) for a general plaquette away from the
boundary the lattice.
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Figure 3.9. The simplest closed loop of link variables, the plaquette P, (z) with the values

of the background field links U,SB) (z) for a plaquette at the edge of the lattice,
Yy =al,.
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Figure 3.10. The simplest closed loop of link variables, the plaquette P,,(x) with the values
of the background field links UL(LB) (z) for a plaquette at the edge of the lattice,
y = a N,. Here the boundary terms of Eq. (3.95) have been added to correct

for the discontinuity.

plaquette gives

e—zaquNyaezaqua:e—zaqu(Nya—a)’ (394)

which is clearly not the desired field strength. This failure is due to the periodic boundary
conditions on this boundary and can be corrected for by using the otherwise unused A,
term in Eq. (3.90). We set

N, Bz, a=N,,
D B vl v (3.95)

0, elsewhere.

The plaquette at the y = a IV, boundary using this additional term is depicted in Figure
3.10 and is

—tage BNya iaquNy(:era)eiaqua —tage BNy (z)

e e e = ¢l@taeB (3.96)
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Figure 3.11. The simplest closed loop of link variables, the plaquette P,,(x) with the values

of the background field links UL(LB) (z) for a plaquette at the corner of the lattice,

y = aNy and © = a N,. Here the boundary terms of Eq. (3.95) have been
added to correct for the discontinuity.

as is required.

The final plaquette considered in Figure 3.11 depicts the double boundary where
x = aN, and y = a V. This plaquette has form

s . . s . 2 s 2
e zaquNyaezaquNyae'Laquae tage BNy Nz a — pla que ia quNyNz’ (397>

which only results in the desired value if
e tatae BNy Ny — (3.98)

This requirement produces a quantisation condition on the magnetic field strength
192,101,108] a* ge B N, N, = 27 k such that

(3.99)
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where k is an integer governing the field strength for a particle of charge ge and a the

lattice spacing.

As the down quark is the particle with smallest (non-zero) charge considerered, we
consider the charge of the down quark to be gge. The up quark has corresponding charge
que = —2 X gqe and a charged hadron such as the proton or 7% charge ¢p,)e = —3 X gqe.

The integer governing the field strength of the hadron is then kg = —3 kj.

3.6.2. Hadron Energy

The energy of a hadron in an external magnetic field is the foundation of this work. The
energy contribution from quantities such as the magnetic moment, Landau levels and the
magnetic polarisability are what allows the background field method and lattice QCD

two-point correlation functions to calculate these quantities.

The relativistic energy of a hadron H with mass my in an external magnetic field B
along the Z axis is [90, 109-112]

E}..(B)=m¥ + (2n+1) |ge Bl +p2 + - B (2m,) — 47w my By |e B> + O (B?),
(3.100)

where /i is the magnetic moment of H in units of nuclear magnetons, m,, is the proton
mass, Oy is the magnetic polarisability and the hadron has momentum p, along the 2
direction. The momentum available on the lattice is quantised due to the discrete nature

of the lattice according to

2mn
2.2 12 z
a” p; = sin :
pz < NZ )
where n, is an integer and N, the number of lattice sites in the 2 direction [11]. The

Landau energy term proportional to |ge B| is discussed in more detail in Appendix C.

It is often sufficient to use the non-relativistic Taylor expansion of Eq. (3.100) [89,91,
92,101,104, 113

EH(B):mH+ﬁ.Bﬂ+M m

e P om TS Bu le BI” + O (B?) (3.101)
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where the lowest lying Landau approximation (n = 0) has also been taken. This non-
relativistic expansion is directly accessible using lattice QCD and the background field
method, in contrast to Eq. (3.100).

The validity of this Taylor expansion can be checked by considering
E%(B) = (E+my) (E —mg) +mi, (3.102)

and taking the (positive) square root

E%(B) = En(B) = \/(EH +mu) (BEx —mp) +my

2
my

+... (3.103)

where a first order Taylor expansion of the square root has been used. Eq. (3.103) is only
true, and thus the Taylor expansion valid if Fyg + my = 2my. This is the check on the

validity of the Taylor expansion. An alternate formulation of this condition is that

_2Mma__ g, (3.104)
Ey +mpy

At the higher field strengths considered herein, one might be concerned about the
validity of the energy-field expansion of Eq. (3.101). Checking the condition of Eq. (3.104),
quantity is found to be typically within a few percent of one for all but the largest field
strength. At the lightest quark mass considered herein, the deviation from one can
approach 10%; this is however small in the context of the current statistical uncertainities
at this lightest quark mass as well as the other systematic uncertainties discussed in this
thesis. This will be an important issue to consider as one moves toward the precision era
of background field method calculations in lattice QCD.

3.7. Simulation Details

The aforementioned PACS-CS 2 + 1 flavour dynamical gauge configurations [25| are

used throughout this thesis. These configurations span a variety of light quark masses,
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Figure 3.12. Kaon mass plotted against m2 on the PACS-CS ensembles using m;’al = 0.13640.
Kaon masses are from Ref. [25] and the dashed vertical line represents the
physical pion mass. The red star indicates the physical kaon mass. The
Sommer parameter has been used to set the scale on each ensemble to convert
to physical units. The model Mg+ = \/co + c2 m2 used to fit the kaon mass
yields c¢g =~ 0.276 and cs =~ 0.544. Uncertainties are plotted on each point.

allowing chiral extrapolations to be performed. The strange quark is fixed at its physical

mass, allowing the difference between strange and down quarks to be investigated.

The clover fermion action of Section 3.3.1 is used with Csyy = 1.715 while the gauge
fields are represented using the Iwasaki gauge action of Eq. (3.16). There are Ng = 32
points in each spatial dimension and N; = 64 in the temporal direction and the inverse
lattice coupling is = 1.90. The physical extrapolated lattice spacing is a = 0.0907 (13)
fm, set via an extrapolation of the Sommer parameter |114| to the physical quark mass.
Each ensemble considered can have the scale set independently by considering the Sommer

parameter for that ensemble only; this approach is used in this work.

The strange quark hopping parameter of the PACS-CS ensembles is ks = 0.13640
which does not accurately reproduce the physical kaon mass [115, 116]. This can be

observed in Figure 3.12 where the kaon masses from Ref. |25 are extrapolated to the
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Figure 3.13. Kaon mass plotted against m2 on the PACS-CS ensembles using m;’al = 0.13665.
Details as in Figure 3.12 with ¢y ~ 0.232 and ¢y ~ 0.549.

physical pion mass using a fit function of form

MK+ = \/Cy + C2 mfr, (3105)

which contains the leading terms of chiral perturbation theory.

The extrapolated kaon mass is too high by ~ 42 MeV compared to the physical value.
The strange quark hopping parameter can be recalculated to reproduce a physical mass
kaon by requiring the correct kaon mass at the lightest available quark mass through
the Gell-Mann-Oakes-Renner |117| relation. This process was performed in Ref. [116)]
and the hopping parameter for valence strange quarks found to be ' = 0.13665. This
value accurately reproduces the physical kaon mass for a physical light quark mass as

evident in Figure 3.13.

This change of hopping parameter for valence strange quarks causes the masses
of the strange valence and sea quarks to differ. This is an effect known as partial
quenching |118-122| and is formally a non-unitary theory [122|. Partial quenching effects
could be avoided by using quark mass reweighting 123, 124] to set the strange sea quark

hopping parameter, £5** to match that use for valence strange quarks.
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Table 3.1. Details of the PACS-CS ensembles [25] used in this work where m2™* the is pion
mass with the scale set in the physical limit while m, is the same but with the
scale set on each ensemble individually. Values for m, are from Ref. [13].

Kud RS gl mPYs (GeV) m, (MeV)  a (fm)  Number of configurations
0.13700 0.13640 0.13665 701.0(100)  623.2(91) 0.1022(15) 399
0.13727 0.13640 0.13665 569.8(83)  515.2(30) 0.1009(15) 400
0.13754 0.13640 0.13665 411.3(61)  390.5(55) 0.0961(13) 450
0.13770 0.13640 0.13665  295.7(52)  280.0(45) 0.0951(13) 400

The details of the ensembles used, including the number of gauge field configurations

in each ensemble, can be found in Table 3.1.

An important consideration is that the configurations used are electro-quenched; the
background field exists only for the valence quarks of the hadron. It is possible to include
the background field at configuration generation time |93| but this requires a separate
Monte Carlo simulation for each field strength and is hence prohibitively expensive. The
advantageous correlation between field strengths used when constructing correlation
function ratios in later chapters is also destroyed by separate Monte Carlo simulations.
An alternative is to use a reweighting procedure on the gauge-field configurations [95| for
the different field strengths B, but this is not performed here. Instead, we draw on chiral
effective field theory [125| to calculate these corrections. Drawing on the techniques
of partially quenched chiral perturbation theory, previous analyses have shown that

electroquenching effects are small for the magnetic polarisability [104, 125].

The smearing parameters used are € = 0.7 for the Gaussian smearing of Eq. (3.84).
The stout link smearing uses 10 sweeps at smearing fraction a« = 0.1. Time orientated

links are not smeared.
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Chapter 4.

U (1) Landau mode projection

The magnetic polarisability of a system of charged particles describes the response of
the system to an external magnetic field. The magnetic polarisability of the neutron is
of intense experimental and theoretical interest. Experimentally, measurement of this
quantity remains challenging with considerable uncertainties |126—128| although progress
has been made in recent years [129,130|. Lattice QCD can be used to make important

predictions in this area.

In this chapter, lattice QCD with a uniform background field will be used to determine
the magnetic polarisability of the neutron. A uniform background magnetic field is
introduced to the lattice QCD simulation as discussed in Section 3.6. This causes
an energy shift from which the magnetic polarisability can be determined using the
energy-field relation of Eq. (3.101)

. = lgeB| 4x
E(B) = .B -
(B)=m+ji-B+ Sy 5

B leB|* + O (B (4.1)

The |ge B| /2m term is the lowest Landau energy level for a charged hadron. There is in

principle an infinite tower of Landau levels as described in Eq. (C.14).

Naively it is simple to extract the magnetic polarisability by fitting the linear and
quadratic coefficients of the energy of the hadron in a uniform background magnetic
field (91, 113|. This is difficult in practice however as baryon correlation functions
exhibit a rapidly decaying signal-to-noise problem [131|. As such the extraction of the
magnetic polarisability using standard neutron operators is considerably challenging as
demonstrated by previous studies [89,92, 104,113 as it appears at second order in the

energy-field relation.

53
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Figure 4.1. Neutron zero-field effective mass from smeared source to point sink correlators

for various levels of covariant Gaussian smearing at the source on the m, = 411
MeV ensemble. The source is at ¢ = 16.

In pure QCD calculations, three-dimensional gauge-covariant Gaussian smearing on
the quark fields at the source and/or sink, as discussed in Section 3.5, is highly effective at
isolating the nucleon ground state |72|. The addition of a uniform background magnetic
field fundamentally alters the physics, breaking three-dimensional spatial symmetry and

introducing electromagnetic perturbations into the dynamics of the charged quarks.

To accommodate this altered physics, the quark level U(1) eigenmode projection

method sink is introduced.

4.1. Quark operators

Asymmetric source and sink operators are used to construct zero-momentum projected
correlation functions which have greater overlap with the energy eigenstates of the
neutron in a background magnetic field. The asymmetry allows the dominant QCD and

magnetic effects to be emulated separately.
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4.1.1. Gaussian smeared source

As Gaussian smeared sources are highly effective in pure QCD calculations, we use such a
source here to provide a representation of the QCD interactions. The physics associated

with the external magnetic field are captured at the sink.

In order to isolate the QCD nucleon ground state, the amount of source smearing is
varied at B = 0 with a point sink. We find that for m, = 411 MeV that 300 sweeps of
standard Gaussian smearing with a smearing fraction € = 0.7 is optimal as illustrated
in Figure 4.1. As a point sink is used in Figure 4.1, the source and sink operators are
different. This allows some states in the sum of Eq. (3.69) to have a negative weight,
this is responsible for the upward trend visible in Figure 4.1 for the smaller smearings.
As we choose to use 300 sweeps of covariant Gaussian smearing which has an early onset

of plateau behaviour, this is not an issue.

At each of the other quark masses considered; an identical process is followed producing
optimal smearings of N, = 150,175,300, 350 for masses m, = 702, 570,411,296 MeV

respectively.

4.1.2. U (1) Landau mode quark sink

When QCD interactions are present, the quarks will hadronise (in the confining phase)
such that the Landau energy corresponds to that of the composite particle. A relevant
example, the neutron has zero charge and thus the udd quarks must combine so that the

overall Landau energy vanishes.

This highlights that the QCD and magnetic interactions compete with each other in
the confining phase. Indeed, there is evidence that residual Landau mode effects remain
even at the quark level when the QCD interaction is turned on [101,105|. This physics is
captured using a quark level U(1) Landau mode projection at the sink. In Appendix C

the relevant Landau mode physics is discussed.

The Landau levels of a charged scalar particle correspond to the eigenmodes of the

2D lattice Laplacian as discussed in Appendix C.2

Af@:/ = 45575/ — Z UMB (f) (sgzﬂ)’f/ + UMBJr (f — ﬂ) (Sf,ﬂ@;/. (4.2)

n=1,2
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Figure 4.2. U(1) eigenmode probability densities at two different field strengths. The origin
is the centre of the z — y plane. Left: The eigenmode for the smallest field
strength. Middle and right: The two degenerate eigenmodes for the second
smallest field strength.

In the infinite volume limit, the degeneracy of the Landau eigenmodes is infinite; in
contrast the lattice Landau modes have a finite degeneracy dependent on the magnetic
field strength. Of particular relevance is the lowest Landau level which has a degeneracy

equal to the magnetic flux quanta |k| [105].

The eigenmodes of a particle on a three-dimensional lattice with a U(1) background
magnetic field are calculated. This lattice has the same dimension as the gauge fields
which are used in the lattice QCD calculations but there are no QCD effects present.
These eigenmodes are calculated at multiple field strengths as they are relevant to both
the field strength felt by the hadron as well as the individual quarks. We note again that
the magnetic field experienced by the hadron is related to that of the down quark by
kp = —3kqy.

The lowest lying Landau mode in the continuum, infinite volume takes a Gaussian
form, 15 (x,y) ~ o lae Bl(22+y?)

the lattice causes the form of the wave function to alter [113,132|. Depicted in Figure

/% In the finite volume of the lattice, the periodicity of

4.2 are the probability densities of the lowest lying Landau levels on a finite lattice at
two different magnetic field strengths. These probability densities have been shifted
such that the origin is at the centre of the x — y plane. It is clear that the periodic
boundary conditions distorts the probability density away from the symmetric form seen
in the infinite-volume continuum limit. In particular there is very little overlap between
the right-most probability density in Figure 4.2 and the standard spherically symmetric

Gaussian commonly used in Lattice QCD calculations.

This difference between the Landau eigenmode structure and the typical lattice QCD

source or sink structure reinforces the need for the U(1) Landau projection method.
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Using the U(1) Landau eigenmodes the individual quarks are projected at the sink. This

aids in isolating the ground state of the hadron.

We define a projection operator onto the lowest n eigenmodes |4, 5) of the 2D

Laplacian as
P, = Z Wi,1§> <¢i,§| ) (4.3)
i=1

where n = |3 gy kq| for the lowest Landau level. To project at the quark level, a coordinate-
space representation of this two dimensional projection operator is applied to the quark

propagators at the sink

S, (f,t; 0, 0) -3 P@7)S (:E’,t; 0, 0) . (4.4)

xT

As the U(1) Laplacian is not QCD gauge covariant, the gluon field is fixed to Landau
gauge [133,134| and the appropriate gauge rotation applied to the quark propagator
before projecting. Using a gauge fixed sink operator can only affect the overlap with the

ground state, not the ground state energy as this is gauge invariant.

One dimensional spatial modulation

The eigenmodes of the two-dimensional U(1) Laplacian have no dependence on the z
coordinate. This freedom allows a functional form which varies the spatial extent of
the U(1) Landau projection in the Z axis to be applied, an idea analogous to standard

Gaussian smearing.

The z dependence of the projected quark propagator is modulated using a normalised

Gaussian

80 (2) = ——exp (—ﬁ) , (15)

o2

where o is the width parameter controlling the spatial extent in the Z direction. The

gauge-fixed, U(1) Landau projected quark propagator is averaged over the z direction
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Figure 4.3. Anti-aligned effective energy of the neutron in the largest field strength, |k4| = 3,
for U(1) Landau projected sinks at m, = 411 MeV. Consecutive fits ending at
t = 29 where all effective masses agreed with X?l of < 1.2 are shown.

using the modulation function as a weighting
Sn,U (.'I', Y, z, t7 67 0) - Z ¢U (Z - Z/ ) Sn (I’, Y, ZI? t7 67 O) 3 (46>

where o = 0 is defined as the case where no z modulation is applied. This is equivalent
to defining that ¢,—o(2) = 0 (¢’ — z), such that S, o = 5.

The coupling to each of the energy eigenstates present is dependent upon the spatial
modulation used. The desired lowest lying level is dominant in the long Euclidean time
limit. Many choices of o are investigated simultaneously in order to determine which has

the greatest overlap with the lowest lying energy level [46].

The neutron spin polarisation and the magnetic-field orientation may be chosen
independently to be in the positive z or negative z directions. To efficiently extract the
magnetic polarisability, combinations of correlation functions with differing magnetic-field
and spin-polarisation alignments are used to create spin and magnetic field aligned and
anti-aligned correlation functions. As these are the correlation functions used to extract
the magnetic polarisability, these correlation function’s effective energies will be examined

in order to optimise the quark sink.
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Figure 4.4. Aligned effective energy of the neutron in the smallest field strength, |kq| = 1,
for U(1) Landau projected sinks at m, = 296 MeV. Consecutive fits ending at
t = 28 where all effective masses agree with X?l of < 1.2 are shown.

The optimal quark sink has the longest plateau when fitting backward in Euclidean
time from the point at which all correlators agree. In evaluating this extent, the X?lof
is determined via a consideration of the full matrix of covariances between different
time slices under consideration and an upper limit of 1.2 is employed. The spatially-
modulated, sink projected correlator that has converged the earliest is chosen. The
systematic error associated with the choice of ¢ is minimised by this process, which is
performed for each combination of field strength and aligned or anti-aligned energies.
Figure 4.3 shows an example of this process for the m, = 411 MeV neutron in the
largest magnetic field considered with |k4| = 3. All of the sink projections here agree
by t = 29 and o = 0.0, 1.0 both produce excellent fits which plateau early. This is in
contrast to Figure 4.4 which shows the aligned energies for the m, = 296 MeV neutron
in the smallest field strength where no clear longest plateau is seen. In such a case where
multiple spatial modulations are allowed by both length and Xzof, the full process for
calculating the magnetic polarisability is performed for each value of o. The resulting
magnetic polarisability values are averaged to give a combined statistical error as well
as a systematic error associated with the range of allowed o. This systematic error is
determined by taking half the difference between the polarisability values produced by

the allowed o values.
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Figure 4.5. Aligned (up arrows) and anti-aligned (down arrows) effective energies of the
mx = 411 MeV neutron using a U(1) , ¢ = 1.0 Landau mode sink projection.
Three non-zero field strength energies and the zero-field mass are illustrated.

In general, small o values, ¢ = 0.0, 1.0, 2.0 are preferred across multiple pion masses,
field strengths and aligned or anti-aligned combinations. These sink projections provide
a good representation of the neutron ground state in a background magnetic field. This
is evident in the clear plateau behaviour in the neutron energy shown in Figure 4.5.
Through consideration of a broad range of ¢ values, we have minimised the systematic
error associated with the choice of fit window by selecting a ¢ value which has the best

overlap with the ground-state.

For the first time, clear plateaus have been identified, a direct result of the consid-
eration of Landau modes at the quark level. This result is a significant advance in the

determination of magnetic polarisabilities.

4.2. Magnetic Polarisability

4.2.1. Formalism

Recalling the energy-field relation of Eq. (4.1), note that a combination of energies

at different field strengths and spin orientations can be used to isolate the magnetic
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polarisability term o (3

0E(B) = % [(E(B) = E4(0)) + (EL(B) = E(0))]

- _47”5 e B + O (BY) (4.7)

where as the neutron has overall charge ge = 0 the hadronic Landau energy term vanishes.

Here, the arrows denote the neutron spin polarisation along the 2 axis.

While this method of isolating the polarisability term is valid, it is much more effective
in practice to take ratios of appropriate spin-up (+s) and spin-down (—s) correlators
due to the cancellation of correlated fluctuations on a common ensemble of lattice gauge
configurations. An improved unbiased estimator is provided by averaging over both
positive (4+B) and negative (—B) magnetic-field orientations. Thus the spin-field aligned

correlator is defined by

Gy(B) = G(+s,+B) + G(—s,—DB) (4.8)
and the spin-field anti-aligned correlator by

Gy(B) = G(+s,—B) + G(—s,+B) (4.9)

The spin-field aligned and anti-aligned correlators, along with the spin-averaged zero-field

correlator, are used to form the ratio

R(B,t) = (4.10)
The product of the spin-field aligned and anti-aligned correlators yields an exponent that
is the sum of the respective energies ~ Ej + Ej, removing the contribution from the
magnetic moment term. Upon taking the effective energy, in an analogous way to the

effective mass of Eq. (3.78), the desired energy shift

1 R(B,1)
OB(Bt) =557 108 (R(B,t+6t))

t>>1:—477rﬁ leB)*+0(B"), (4.11)

is obtained. The magnetic field +B is that which is experienced by the neutron and is

hence related to the down quark magnetic field by a factor of —3.
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Figure 4.6. The magnetic polarisability effective energy shift at the largest field strength for
the neutron as a function of Euclidean time (in lattice units), using a smeared
source. A point sink (orange) and a U(1) Landau eigenmode quark sink (blue)
are illustrated.

Correlated QCD fluctuations between the finite field strength and zero-field energies
are significantly reduced by taking the ratio in Eq. (4.10). As Landau levels do not exist
at zero-field, the U(1) eigenmode projection technique is not applied for the zero-field
correlator. Instead a standard point sink is used, thus motivating the source tuning
process outlined in Section 4.1.1. By using a source optimised for the zero-field neutron
in the denominator of Eq. (4.10), the onset of plateau behaviour in the effective energies
occurs at an early Euclidean time. This improved method is particularly important to
the determination of the magnetic polarisability as it is at second order in B and hence
at these small field strengths, its contribution to Eq. (4.1) is small relative to the overall

energy and easily hidden by the statistical noise at large Euclidean time.

It is vital to have a precise determination of the polarisability energy shift. The
efficiency of the U(1) Landau eigenmode quark sink projection technique can be in seen
in Figure 4.6 where a comparison of the energy shift for a standard point sink and a U(1)
Landau mode sink projection is presented; the latter is seen to display better plateau

behaviour.
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Figure 4.7. The neutron magnetic polarisability effective energy shift for m, = 411 MeV
with truncated (n = 1) projection operator of Eq. (4.3).

Projection operator eigenmode number

The projection operator of Eq. (4.3) raises the natural question of how many of the lowest
n eigenmodes are required. This is particularly relevant as the eigenmodes are such that
the ¢ = 1 eigenmode most closely resembles the continuum Gaussian form and smeared

source considered herein.

To investigate this query, a truncated form of the projection operator in Eq. (4.3)
where n = 1 is examined. New correlation functions are calculated and the magnetic
polarisability energy shift of Eq. (4.11) compared with that of the untruncated projection
operator. This quantity is examined as it highlights the difference between the two
projection operators in an effective manner. This effectiveness is because the zero-field
mass term has already been removed using a point sink correlator; leaving only the

contributions from magnetic field dependent quantities.

The magnetic polarisability energy shift for the neutron with o = 1.0 spatial projection
at m, = 411 MeV and the two different projection operators is shown in Figures 4.7
and 4.8. It is clear that the untruncated projection operator in Figure 4.8 provides
superior access to the magnetic polarisability energy shift as the energy shifts display

better plateau behaviour.
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Figure 4.8. The neutron magnetic polarisability effective energy shift for m, = 411 MeV
with untruncated (n = |3 ¢y kq4|) projection operator of Eq. (4.3).

It is for this reason that all further calculations using a U(1) Landau projected sink

use the untruncated projection operator of Eq. (4.3).

4.2.2. Simulation Details

The 2 + 1 flavour dynamical gauge configurations provided by the PACS-CS [25| group
through the ILDG |[135] are used. These have degenerate up and down quark masses
and a physical strange quark mass, hence 2 + 1 flavour. The details are summarised in
Section 3.7.

Source locations were systematically varied to produce large distances between adjacent

source locations. An initial source location of (Z,t) = (6, 16) was varied three times
using additive shifts of <6, 16) for a total of four source locations. A further set of four

sources were produced using an initial source location of <1_6, 8) in an identical manner.
As such, a total of eight sources were used for each configuration in each ensemble.
By doing this, the effective number of configurations is increased while minimising the

correlations between simulations on the same gauge field.

Correlation functions at four distinct hadronic magnetic-field strengths are calculated.
Quark propagators at ten non-zero field strengths, eB = £0.087, +0.174, £0.261,
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Figure 4.9. The m,; = 411 MeV neutron magnetic polarisability effective energy shift as
a function of Euclidean time (in lattice units), using a smeared source and
o = 1.0 U(1) Landau eigenmode quark sink projection. Results for field strengths
kg = 1, 2, 3 are shown with the magnetic field strength increasing away from
zero. The selected fits and Xﬁo 7 are also illustrated.

+0.348, £0.522 GeV?, are required in order to achieve this. These correspond to
ke = £1, £2, 43, £4, 46 in Eq. (3.99). The zero-momentum projected correlation

functions calculated contain spin-up and spin-down components.

4.2.3. Fitting

Each field strength produces an energy shift of the form specified by Eq. (4.11) and as
such a quadratic fit is used. These neutron energy shifts for the magnetic polarisability
are illustrated in Figures 4.9 and 4.10 with a smeared source and U(1) Landau mode
quark sink projections. Clear plateaus are visible, a first for this difficult-to-obtain
quantity. In order to consider fitting further, a plateau must be present at each of the

non-zero field strengths.

For the m, = 411 MeV neutron in Figure 4.9 the plateau does not occur until eight
time-slices after the source at t = 24; this region is a common starting point at the heavier
quark masses. The primary cause of this late onset is the zero-field correlator used in

Eq. (4.10) as it has fundamentally different physics. As such any potential excited state
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Figure 4.10. The m, = 702 MeV neutron magnetic polarisability effective energy shift as
a function of Euclidean time (in lattice units), using a smeared source and
o =01.0 U(1) Landau eigenmode quark sink projection. Details are as in Figure
4.9.

behaviour of the zero-field correlator differs from that of the background field correlators.

Plateau onset is only evident once the ground state has been isolated for both correlators.

These results represent a breakthrough in the ability to construct ground state
neutron correlation functions in an external background field which display good plateau
behaviour at non-zero background field. This is evident with comparison to Refs. [101]
and |136| where a variety of source smearings were investigated in an attempt to produce
plateau behaviour for neutron and proton magnetic polarisability energy shifts, however
plateau behaviour was not evident. The lattice results presented in this chapter using the
U(1) Landau eigenmode projected quark sink technique typically display good plateau
behaviour in the region t € [24,31], and represent a significant improvement on the
results of Refs. [101] and [136].

The fit is performed as a function of kg4, the magnetic field experienced by the neutron

which is related to integer magnetic flux quanta in Eq. (3.99)

SE(kq) = o k3. (4.12)
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Here ¢, is the fit parameter and has the units of §FE(k,). As a further check as to the
validity of Eq. (4.1) and hence the energy shift in Eq. (4.11); a quadratic + quartic fit,
co k% + ¢4 k3 is also performed. The size of the quartic term provides an estimate of
the higher order corrections to Eq. (4.11). For the two heavier masses, m, = 702,570
MeV, it is found that the quartic term is indistinguishable from zero. For the next mass,
m, = 411 MeV the quadratic + quartic fit is disfavoured by the X?iof of the fit while the
fit for the lightest mass m, = 296 MeV allows a quartic term. The uncertainties for the
fit at this lightest mass are extremely large, suggesting that the fit is only possible due

to the larger uncertainties associated with lighter quark mass.

If the energy-field Taylor expansion were not valid, a remnant term proportional to
B should be evident in the fit to Eq. (4.11). Since it is possible to fit a purely quadratic
term as in Eq. (4.12) no such term is found to be present. As the higher order terms
have been considered and found to be negligible, the validity of Eq. (4.1) for the neutron

is confirmed for the field strengths considered.

This fit parameter ¢y is converted to the physical units of magnetic polarisability,
fm3 | by use of the background field quantisation condition, Eq. (3.99). The resulting

transformation is

27T/€d
Bl=-—""d

4 |B| N, N, a2’
1 27T/{3d

where gqe = (—1/3) e is the charge of the down quark. Hence consider

47
co ki = —75 le B|?
_Am1pg o o2m N,
e? 2 ¢3 \ N, N, a? &

2
o = 115( 27 ) (4.14)

" 2aq \N,N,a?

where o = €/ (47) = 1/137... is the fine structure constant. For ¢ with units of GeV

and a with units of fm, the magnetic polarisability in the physical units of fm? is

(4.15)

N, N,\? 1
27 0.1973 GeV fm’

B=-2caqa (
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The energy shifts used for the quadratic fitting process all used the same spatial
modulation of Eq. (4.5), parameterised by o. As discussed earlier using Figures 4.3 and
4.4, the spatial extent modulation changes the coupling to the mix of energy eigenstates
in a background magnetic field. It is hence important that the o value chosen is the
optimal choice. This was achieved using a simultaneous investigation of the spatial extent,
proportional to o and field strength. The selected spatial modulations must provide early
isolation of the eigenstate at each field strength. This early isolation is visible in the long

plateaus of Figures 4.3 and 4.4.

The sink projection choice is already significantly constrained but in order to determine
where energy shifts for the quadratic fit in k4 can be fitted, a further constraint is needed.
This constraint is produced by considering the constant Euclidean time plateau fits
to the energy shift at each non-zero field strength. By considering all possible fit
windows, fit windows where good plateau behaviour exists for all non-zero field strengths
simultaneously are selected. Good plateau behaviour is characterised by a X?iof <1.2.
This constraint dramatically reduces the number of possible fit windows. In particular it
is often difficult to obtain acceptable energy shift plateau fits for the largest field strength

considered.

The final constraint on the chosen fit comes from the quadratic fit itself. This fit
must also be acceptable, having a Xgof < 1.2. In the case where multiple possible fit
windows remain after this process, the fit window with the longer time extent and X?lof’s
closest to one are preferred. Once the specific quadratic fit has been chosen, the magnetic

polarisability, 3, is extracted from the quadratic coefficient of the fit using Eq. (4.15).

Using the U(1) sink eigenmode projection technique at each quark mass, it is possible
to extract magnetic polarisabilities from the fits to the constant energy shift plateaus as
a function of field strength which are illustrated in Figure 4.11. Results for the magnetic
polarisability of the neutron at each quark mass are presented in Table 4.1. Note that
for the m, = 570 MeV ensemble only o = 0.0 provided good access to the ground state
across all field strengths and hence no systematic error associated with the variation of o

is reported.
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Figure 4.11. Quadratic fits of the energy shift to the field quanta at each quark mass for the
neutron for a single o value each.

Table 4.1. Magnetic polarisability values for the neutron at each quark mass. Eight sources
are used for each quark mass. The numbers in parentheses describe statistical and
systematic uncertainties respectively.

ko ome (MeV) B (fm® x 1074) X3,
0.13700 702 151(21)(6) 021
0.13727 570 1.63(16) 0.4
0.13754 411 1.29(20)(11)  1.06
0.13770 296 1.14(25)(17)  0.91

4.3. Chiral Extrapolation

To connect lattice QCD results to the physical regime, chiral effective-field theory (YEFT)

is considered. This topic is revisited in Chapter 6 in more detail as is required there.

The analysis used here follows that of Ref. [125

and is summarised below.
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Figure 4.12. The leading-order pion-loop contribution to the magnetic polarisability of the
neutron.

n A n

Figure 4.13. Pion-loop contributions to the magnetic polarisability of the neutron, allowing
transitions to the nearby and strongly coupled Delta baryons.

4.3.1. Formalism

The chiral expansion considered is

B (m2) = 7N (m2) + B2 (m2) + ag + aym?. (4.16)
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The leading order loop contributions 8™~ (m?2) and 872 (m?) are depicted in Figures 4.12
and 4.13. These loop-integral contributions are evaluated in the heavy-baryon limit [137]

appropriate to a low energy expansion. The three-dimensional integral forms are [125|

2 1 k22 (k, A
o () = L [ PN (417
/BWA (m2) 26_2_ 1 XA/d3ku2(k, A)
T 47 28873 f2 ’
WA (Bwp+A) + k2 (8w%+9w,;A+3A2>

x 3
8wl§ (w,; + A)

: (4.18)

where w; = 4/ k2 + m?2 is the energy carried by a pion with three-momentum E, A is the
mass splitting between the Delta baryon and the nucleon, A = M — My = 292 MeV,
and the pion decay constant is taken as f; = 92.4 MeV. Here A is a renormalisation

scale introduced through the dipole regulator

1

u(k, A) = m,

(4.19)

which ensures that only soft momenta flow through the effective-field theory degrees of

freedom.

The loop integral of Eq. (4.17) for 7% (m?2) contains the leading non-analytic con-
tribution to the chiral expansion proportional to 1/m, [138|, while the loop integral of
Eq. (4.18) accounts for transitions to a Delta baryon and contributes a non-analytic

logarithmic contribution proportional to (—1/A)log (m,/A) to the expansion.

The coefficients ag and ay are residual series coefficients which are constrained by
the lattice QCD results after they are corrected to infinite volume. This process is
detailed in Chapter 6. These are combined with the analytic contributions contained
within the loop integrals [139] to form the renormalised low-energy coefficients of the
chiral expansion. Complete details of the renormalisation procedure are provided in the
Appendix of Ref. [139].

It is noteworthy that the lattice QCD results do not incorporate contributions from
photons coupling to the disconnected sea-quark loops of the vacuum which form the

full meson dressings of the YEF'T - they are electroquenched. It is hence necessary to
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model the corrections associated with these effects. This is done using partially quenched
YEFT. In this case, the standard coefficients for full QCD,

X~ =293, (4.20)
16
9
are modified to account for partial quenching effects [140| as explained in Ref. [125].

Thus when the lattice QCD results are fitted the coefficients used reflect the absence of

disconnected sea-quark-loop contributions

7

Xy =N =205 — (D= F)’ = = (D +3F)", (4.22)
16 2

Xa = X% = 362 - §c2. (4.23)

The standard values of g4 = 1.267 and C = —1.52 with g4 = D + F and the SU(6)
symmetry relation F' = 2 D are used [141-143].

The value A = 0.80 GeV is adopted in preparation for accounting for the missing
disconnected sea-quark-loop contributions in the lattice QCD calculations [144-148|. This
regulator mass defines a pion cloud contribution to masses [145|, magnetic moments |146|,
and charge radii [144|, which enables corrections to the pion cloud contributions associated
with missing disconnected sea-quark-loop contributions. This choice of regulator mass
defines a neutron core contribution which is insensitive to sea-quark-loop contributions
[149].

Finite-volume effects are considered by replacing the continuum integrals of the chiral
expansion with sums over the momenta available on the periodic lattice. Recalling our
use of the Sommer scale, we note that the lattice volume varies slightly across the four

lattice data points available but is ~ 3.0 fm for each lattice data point.

4.3.2. Analysis

The integrals of Eqgs. (4.17) and (4.18) are calculated in the finite volume of the periodic
lattice by replacing the continuum integrals of the chiral expansion with sums over
the momenta available. As the lattice QCD results do not include the contributions

of disconnected sea-quark-loop contributions, the coefficients of Eqgs. (4.22) and (4.23)
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Figure 4.14. Correction of the lattice QCD results (violet diamond) for the neutron magnetic
polarisability 8" to infinite volume and full QCD (blue square) as described in
the text. Extrapolations of 8" for a variety of spatial lattice volumes provide a
guide to future lattice QCD simulations. The infinite-volume case relevant to
experiment is also illustrated.

are used in Eqgs. (4.17) and (4.18). This calculation is performed for each quark mass

considered on the lattice.

The loop-integrals are then numerically integrated in infinite volume and with the
full QCD coefficients of Eqgs. (4.20) and (4.21). The difference between the finite-volume
partially quenched result and this infinite volume full-QCD result at each quark mass
is used to correct the lattice QCD results to infinite volume and full QCD. Through
this method, both finite-volume and sea-quark loop contribution corrections have been
incorporated. These corrections are illustrated in Figure 4.14 by the (blue square) “Full-
QCD Infinite-Volume Results” next to the original (violet-diamond) “Lattice Results”.

The fit function of Eq. (4.16) is fit to the corrected lattice QCD results by modifying
the residual series coefficients, ag and as. Once these parameters are constrained any
volume can be considered. Figure 4.14 shows chiral extrapolations for a range of volumes
ranging from near that used in this study to much larger. These extrapolations provide
a guide to future lattice QCD simulations. At the physical pion mass, the 7 fm curve

still differs the infinite-volume prediction by 6%.
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Figure 4.15. The magnetic polarisability of the neutron, 8" obtained herein is compared
with experimental results. The uncertainties in the lattice results contain both
statistical and systematic errors simply added together. This is a conservative
approach to produce a reliable estimation. Experimental results from Kossert
et al. |126,127|, the PDG 3|, Myers et al. [129] and Griesshammer et al. [128]
are offset for clarity.
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The physical polarisability is obtained by considering the constrained fit function of
Eq. (4.16) with m, = mP" = 140 MeV. While the coefficients of the leading non-analytic
terms of the chiral expansion have been determined in a model-independent fashion,
the uncertainty in the higher-order terms of the expansion can be examined through
a variation of the regulator parameter A, which affects the sum of these contributions.
The broad range of 0.6 < A < 1.0 GeV considered provides a systematic uncertainty of
0.19 x 1072 fm? at the physical point. Thus the magnetic polarisability of the neutron is
found to be, 8" = 2.05(25)(19) x 1072 fm?® at the physical point. The uncertainties are
derived from the statistical errors of the fit parameters and the systematic uncertainty

associated with the chiral extrapolation respectively.

Figure 4.15 provides a comparison between this result and recent experimental data.
This result is in good agreement with a number of the experimental results, posing an
interesting challenge for greater experimental precision. Similarly, further progress in
experimental measurements would drive further lattice QCD and chiral effective-field

theory work.

As these results use a single lattice spacing it is not possible to quantify an uncertainty
associated with taking the continuum limit. However, as a non-perturbatively improved
clover action is used, the O (a?) corrections are expected to be small relative to the
uncertainties already presented. It is anticipated that due to the interaction of the
background field with the Wilson term in the fermion action that there is some degree of
additive quark mass renormalisation [111]. The extent to which this small effect remains

with the clover fermion will be discussed in Chapter 5.

4.4. Summary

Asymmetric operators at the source and the sink have been used to calculate the neutron
magnetic polarisability. The dominant QCD dynamics are encapsulated by gauge-
invariant Gaussian smearing at the source, while a gauge-fixed U(1) two-dimensional
eigenmode quark projection technique is used at the sink to encode the Landau level
physics resulting from the presence of the uniform background magnetic field. The
parameter space was explored systematically throughout to optimise the operators used
such that they couple efficiently to the neutron ground state in a magnetic field. This

use of the Landau mode projection at the sink has for the first time enabled the fitting
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of plateaus in the magnetic polarisability energy shift at light quark masses approaching

the physical values.

Calculations at several pion masses have enabled the lattice QCD results to be related
to experiment through the use of heavy-baryon chiral effective-field theory. This enabled
the theoretical prediction for the neutron magnetic polarisability of ™ = 2.05(25)(19) x
1073 fm?® . This prediction was founded on ab initio lattice QCD simulations, with
effective-field theory used to account for the disconnected sea-quark-loop contributions,
finite-volume of the lattice and to extrapolate to the light quark masses of nature. The
resulting value is in good agreement with current experimental measurements and presents

an interesting challenge for greater experimental precision.

To guide future lattice QCD simulations, a range of finite-volume extrapolations,
incorporating the contributions of sea-quark-loops, are performed in the framework of
chiral effective-field theory. It is found that extremely large box sizes are required in
order to produce a result at the physical pion mass which is close to the infinite volume

result.



Chapter 5.

Background field corrected clover

action

The background-field method is a useful tool with which to investigate magnetic field
effects when combined with lattice QCD. Recently, Bali et al. demonstrated that unphys-
ical changes in the fermion energy are introduced when the Wilson quark formulation is
used with the background field method [111,150]. This is an important problem with
the potential to effect all calculations made with Wilson style fermions (such as clover
fermions) and the background field method. The high degree of sensitivity required for

magnetic polarisability calculations renders this problem one that must be addressed.

In particular, Bali et al. determined the free-field limit of this unphysical change; the

mass of a Wilson quark is shifted by an amount § |ge B| to

mi (B) =m (0) + 5 lae Bl. (5.1)

where a is the lattice spacing, B the magnetic field strength and the Wilson quark
has charge ge and mass m (0). The notation introduced here is that subscript labels
in square brackets indicate a quantity which is affected by lattice background field
artefacts due to the fermion action. This notation will be used throughout this chapter
to distinguish quantities, particularly energies, which are and are not affected by the
additive background field mass renormalisation. An example would be the pion mass

Mz and m, respectively.

An alternative to the Wilson action, the overlap quark formalism [26,27| was shown
not to suffer from this problem of field-dependent mass renormalisation in Refs. [150]

and [151]. However the overlap fermion action is many times more computationally

77



78 Background field corrected clover action

expensive than the Wilson action, and thus the Wilson clover fermion action used in
Chapter 4 and described in Section 3.3.1 is investigated to determine its suitability with

respect to the additive mass renormalisation arising from the background field.

The clover fermion action is designed to remove O (a) lattice artefacts arising from
the Wilson term. The additive mass renormalisation appears at O (a) in Eq. (5.1) and
hence it is interesting to examine the extent to which it survives in the clover fermion
formulation. In this chapter, the clover fermion is studied in both the free-field limit
appropriate to Eq. (5.1) and full QCD to determine its efficacy in removing the unphysical

background field dependent Wilson fermion artefacts.

This study is performed using neutral pion correlation functions which are a natural

choice. Neutral pion correlation functions
e are free of hadronic magnetic moment contributions,
e provide precision at low computational expense,
e have no hadronic Landau level energy contribution,
e and offer insight into the difference between neutral and charged pions.

The lack of a hadronic Landau contribution is particularly helpful when investigating the

Wilson-term field-dependent additive mass renormalisation.

The free-field limit is investigated first, to begin formulating a solution without the
complications of QCD. When QCD interactions are present, the effects of the background
field and QCD are in competition, making isolating and understanding the additive
mass renormalisation due to the external magnetic field more challenging. Moreover, the
full QCD calculations use a non-perturbatively improved clover coefficient, C'syy, which

further complicates the transition from free-field to full QCD interactions.

5.1. Free-field limit

In the free-field limit, the quarks couple to the external magnetic field through their
electric charges but do not experience any QCD interactions. This is done by setting
the QCD gauge links U, to U, = I. The energy of a charged particle will contain a

Landau energy contribution proportional to the charge of the particle. A free quark in a
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background magnetic field along the 2 axis will have relativistic energy
E*(B)=m>+ (2n+1) |ge B| + p> + 25 qeB, (5.2)

where p, is the quark’s momentum in the Z direction, |§| = 1/2 and the quark has charge
ge. A Wilson fermion will have an additional energy contribution to the quark mass

according to Eq. (5.1), and thus a free-field energy
a 2 -
B2, (B) = <m +3 |qu|) +(2n+1) |ge B| +p? + 25 geB, (5.3)

as the mass renormalisation of Eq. (5.1) is the discretised lattice Laplacian, the mass
renormalisation term is the lowest lying Landau level as discussed in Appendix C.2. This
additional term vanishes in the continuum limit as a is the lattice spacing and it is hence

identified with field-strength dependent additive quark mass renormalisation.

The presence of this additive mass term is demonstrated using the free-field pion
mass. Both the charged pion energy, E, .+ and neutral, connected pion energy Eﬁﬁ/d are
considered. The neutral-connected pion contains only the wick contractions of Figure
3.5a rather than the disconnected loops of Figure 3.5b. Nonetheless, it is a useful tool in

this situation. The standard pseudoscalar interpolating operator

X=774q (5.4)

is considered, where the quark flavours are @u, dd or du, corresponding to 7%, 79 and 7"

respectively.

To determine the expected energies of each of these three pions, it is necessary to
consider the quark energies for each quark within the hadron. Consider first the wu
pseudoscalar. As this is a spin-zero state composed of two quarks with spin magnitude
|3] = 1/2, the two quarks must have opposite spin orientations. Similarly the quark and

anti-quark have opposite charges. Hence the lowest energy states for the u and u quarks
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in the wu pseudoscalar have energies

1
E[u (B,4) :< ’queB\) +(2n+1) \queB]—l—pZu—2§queB,
2
(mu+ |que B|> + 124 (5.5)
2 1
a 2 9
= (mﬂ_F 5 ’qgeB|> +pz,ﬂ7 (56)

where the lowest lying Landau level n = 0 assumption has been made and 1 / | represents
the spin orientation with respect to the orientation of the magnetic field, B. The zero

momentum, p, = 0, uu pseudoscalar will then have energy

a a
=My + 5 |que Bl + ma + o |gae Bl
=m0 +a |q.eB|. (5.7)

The lowest energy state is realised when the Landau level and quark spin-dependent

terms cancel. An identical argument can be made for the dd pseudoscalar meson.

For a charged pion the spin-dependent term does not cancel the Landau term for both
quark and anti-quark sectors. The lowest energy state of the charged pion is realised

when the terms cancel for the quark flavour with the largest magnitude of electric charge.

For the charged 7% meson comprised of du, the lowest energy state occurs when the
u quark is spin down, enabling the cancellation of the spin-dependent and Landau terms

as in Eq. (5.5). For p, = 0, the charged pion will hence have energy

Epx+) (B) = Ep (B, ) + Epg (B, 1),

2
=+ 5 yqueB\+\/(md+g gze BI) +2 lage B (5.8)

As QCD interactions are not present, no energy is required to displace the quarks from

each other and thus the magnetic polarisability, § contribution to the energy is absent.
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Figure 5.1. Pion energies from Wilson fermion correlation functions as a function of back-
ground magnetic field strength. The coloured curves are the expected energies
for Wilson fermions based on Egs. (5.7) and (5.8).

E =10.139 GeV

Figure 5.2. Pion zero-field correlator using (anti) periodic boundary conditions. The fit
region, fit using Eq. (3.73) and resultant energy fit parameter are also shown.
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Figure 5.3. Pion energies from clover fermion correlation functions as a function of background
magnetic field strength. The coloured lines are the expected energies in the
absence of the Wilson background-field additive mass renormalisation, constant
for the neutral pions and Eq. (5.9) for the charged pion.

It is useful to consider the absence of the Wilson background-field additive mass

renormalisation where the charged pion energy is given by

Er+ (B) = E, (B>~L> +EE(B>T)
=m, + \/m%+ 2 |qze B| (5.9)

Free-field numerical results for the charged and neutral pion energies in three non-zero
background magnetic fields are shown in Figure 5.1 for Wilson fermions. Here the
hopping parameter x of Eq. (3.32) has been set to k = 0.12400, relative to the bare
critical hopping parameter of k.. = 1/ (87), where r = 1. This is done in anticipation of
exploring full QCD where the PACS-CS Sommer scale provides a = 0.0951 fm where
this kappa value corresponds to a physical pion mass of approximately 140 MeV in the
free-field limit.

Due to the lack of QCD interactions, the pion correlator is free to wrap or reflect
around the temporal dimension of the lattice with only a gradual loss of signal. This

poses an issue for the fixed boundary conditions used in Chapter 4; the reflected state
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interferes with the standard forward propagating state used to extract the pion energy.
To remedy this, (anti) periodic boundary conditions are used in the time direction and
the fits accommodate both the forward and backward propagating states. The fit function
used is that of Eq. (3.73) and the corresponding fit displayed in Figure 5.2.

It is clear from the Wilson fermion energies in Figure 5.1 that the neutral pion energy
closely follows that described by Eq. (5.7), showing that the additive mass renormalisation
due to the Wilson term is correctly described by Eqgs. (5.1) and (5.7). The charged ="
energy further validates the additive mass renormalisation of Eq. (5.1) as it agrees with

the analytic expectation of Eq. (5.8).

5.1.1. Clover correction

The aforementioned clover fermion action removes the O (a) artefacts from the Wilson
action for QCD. The focus of this chapter is to determine the efficacy of clover fermions in

removing the O (a) field strength dependent term of Eq. (5.1) due to the Wilson action.

Recalling Section 3.3.1; the clover fermion matrix may be written

a
Dy=Y+5A—aca ) ouwFu+m, (5.10)

pu<v

for m the bare quark mass, a the lattice spacing, V the covariant finite difference operator
of Eq. (3.8) and A the Wilson term of Eq. (3.28). The clover coefficient is ¢, and the

clover term is

> 0w Fu, (5.11)

p<v

where the sum is restricted to avoid double counting and F),, is the clover discretisation
of the lattice field strength tensor shown in Eq. (3.37) and Figure 3.4.

It is often useful in QCD+QED calculations to consider the electromagnetic and

chromodynamic contributions to the field strength tensor separately [152|
cD EM
F =F2°P + FIM. (5.12)

Here, as all the QCD links are set to unity in the free-field limit, the QCD field strength

vanishes, F’ /g,CD = 0. As such we consider only the electromagnetic field strength in order
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to determine the appropriate value for the clover coefficient ¢. Using the definition of
the clover field strength tensor in Eq. (3.37) it is shown in Appendix B.7 that

1
EM _ ¥
FEM = L (G L)
—_— F12 — i <eia2qu o efia2q6B>
21
= sin (a” ge B) . (5.13)

For the background field only along the 2z axis the field strength tensor has only one

non-zero entry at Fy, = sin (a? ge B). As such the clover term is diagonal with

+sin(a® ge B) 0 0 0
—Cy ZOWFW = _% 0 —sin(a® ge B) 0 0
pu<v 0 0 +sin(a? ge B) 0

0 0 0 _ sin(a2 ge B)

(5.14)

This operator commutes with the lattice Laplacian of the Wilson term which is diagonal
in Dirac space. Hence, as both operators are Hermitian, it is possible to write a shared
eigenvector basis. In a uniform background magnetic field along the Z axis, the minimum

eigenvalue of this clover term is

~——a’qeB. (5.15)

For small field strengths where the Taylor expansion in the last line of Eq. (5.15) is
valid; it is clear that if the clover coefficient is set to ¢, = 1, the tree-level value, that the
clover term will cancel the Landau shift induced by the Wilson term which is described
in Eq. (5.1).

This cancellation is evident in Figure 5.3 for the clover improved 72 and 79 neutral
pions which do not show this additive mass renormalisation. The neutral pion energies
do not change as a function of field strength. Similarly, the charged pion results agree
with Eq. (5.9) for the charged pion energy in the absence of the Wilson background-field
additive mass renormalisation. The tree level clover term has removed the O (a) additive

mass renormalisation due to the Wilson term in a background magnetic field.
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5.2. Full QCD

The removal caused by the clover term in the free-field limit is highly encouraging and
necessitates a move to full QCD to understand the efficacy when QCD interactions are
present. There are a number of complications to be considered in this transfer; namely
the non-perturbatively improved clover coefficient, Csy, used with full QCD and the

additional energy terms which make isolating the additive mass renormalisation difficult.

To study the possible adjustments to the clover coefficient required to obtain the
correction observed in the free-field limit, the QCD and electromagnetic field strengths

are allowed to posses different clover coefficients
Cel — CSW FIE,CD + Cem Flf';M (516)

Here Cqy is the coefficient of the clover improvement term discussed in Section 3.3.1
for the QCD gauge field interactions and cgys the coefficient of the clover term which is

generated by the U(1) electromagnetic gauge field.

The QCD clover coefficient C'syy is renormalised by QCD and hence a non-perturbatively
improved coefficient C} is used. In order to determine the appropriate value for the
electromagnetic clover coefficient cg,/, the “naive” approach where cgy; = C’évmlj is consid-
ered. Here the clover terms for the electromagnetic and QCD field strengths are treated
in a uniform manner. Using this set up, the pion energy is investigated for the presence

of magnetic field strength dependent artefacts as was done in the QCD free-field case.

When QCD interactions are present, there is a complex interplay between the back-
ground field and QCD effects [105,132]. The pion has gained an internal structure and a
mass which is dependent on the mass of the quarks in a more subtle way [117,153| than
in Egs. (5.7) and (5.8).

Returning to the energy of a relativistic particle in a background field as in Eq. (3.100),
here note that the pion has no magnetic moment term and thus (additive mass renormal-

isation free) energy
Efm (By=m2+2n+1) |¢geB| +p*—47mm, 5, B+ O (B3) ) (5.17)

The fully relativistic form is used here as the Taylor expansion validity check of Eq. (3.104),
2myg/ (Ey + my) differs substantially from one for the largest field strength and lightest
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pion mass. Indeed at m, = 296 MeV, this difference is as much as 22% which is significant

in the context of highly precise pion correlation functions.

5.2.1. Energy shifts for Wilson fermions

The method with which to the effect of the nonperturbatively-improved clover coefficient
in the full QCD calculations is investigated is with the neutral pion energy. The lowest-

lying neutral pion energy in a background magnetic field is
E2 (B) =m2, — dnm, B B>+ O (B%). (5.18)

The additive quark mass renormalisation will have an effect on the pion mass. In QCD
this effect is described by the Gell-Mann-Oakes-Renner relation |11, 117

Qmu d _
m2o = — f2/ (Q|uu | Q)

Here Eq = —2 (Q|uu|Q) /f2, where f, is the pion decay constant and (Q|uu|Q) is
the chiral condensate. As m2 o m,, Eq has a relatively weak quark mass dependence
[154-156].

The background-field dependent pion mass is formed using the Wilson additive mass

renormalisation of Eq. (5.1)

mio) (B) = mpuq (B) Eo (B)

where the coefficient £ has been introduced to account for QCD effects modifying Eq. (5.1).
¢ can in principle be B-field dependent.

An example of these QCD effects can be seen in Ref. [111]. Bali et al. investigated the
Wilson fermion quark mass in full QCD by examining the change in the critical hopping
parameter, k.. as a function of background magnetic field strength. The mass shift is
an order of magnitude smaller than the free-field case for small external magnetic field
strengths; and for their smallest field strengths the sign of the observed mass shift is

opposite the free field case. The behaviour of Eq. (5.1) emerges at large magnetic field
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strengths as QCD effects become relatively small. The nonperturbatively-improved clover
fermion results presented in the following section also display this order of magnitude
suppression. The magnetic field strengths surveyed herein do not display the Wilson
fermion sign change in the mass shift. Thus it is sufficient to treat £ as a constant to be

determined.

As it has been indicated in previous studies [157, 158| that Fq changes only slowly in

an external magnetic field, the leading order approximation is considered
m? o (B) ~ ag Bl ) Eq (0
[70] | Myyd + 9 }QU/de } Q ( )
2 af

The zero-momentum neutral pion energy in an external magnetic field using Wilson

fermions is thus

Ef o) (B) = mio) — 4T myzo) fro B + O (B?)

~ M + % Eq (0) |quae B| = 47 B0 B? \/mfro - %5 Eq |qujae B|.  (5.22)

If the magnetic field dependence of Eq is linear in B, these terms can combined mul-
tiplicatively with the linear term “75 ‘qu /d€ B‘ due to the Wilson-term additive mass
renormalisation to provide a contribution proportional to B2. This is the same order as
the O (B?) signal used to extract the magnetic polarisability, B;r? 4- 1t is hence important

to ensure that this O (a) term is removed.

In order to determine the presence of additive quark mass renormalisation, consider

the quantity

a a
Ef o) (B) —m3o ~ ;EQ |qujae B| — 4w Bro B? \/mio + ;Eg |\qujae B].  (5.23)

This energy shift is constructed using a combination of correlator ratios and products

Ri (Bt) = G (B.t) G(0,1). (5.24)
R_(B,t) = Z%” ’tt)), (5.25)
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where G (B, t) is the zero-momentum projected two-point correlation function. Taking
the effective energy, as defined by Eq. (3.78), of Eq. (5.24) yields

Re (B.t) Y o (B.t) + mpo (1) | (5.26)
and Eq. (5.25)
R_(B,t) "% Eppoy (B.t) — myo (1). (5.27)

These effective energy shifts are multiplied together to form the E[27r 0] (B) — m2, energy
shift of Eq. (5.23). Correlated QCD fluctuations largely cancel in the ratio of Eq. (5.25),

an effect crucial to the isolation of B-dependent terms.

As Eq. (5.23) has leading order linear and quadratic terms in B, the fit function
E[Qwo} (ka) — m2o = 1 ka + c2 k3, (5.28)

where kg is the integer describing the field strength experienced by the down quark in
the pion from the quantisation condition of Eq. (3.99) and ¢y, ¢y are fit parameters. The
fit parameter ¢; can be estimated using Eq. (5.23)

o

cl =
a

Qu/a § Eq (0)

. 5.29
dd N:r Ny ( )

Recalling the Gell-Mann-Oakes-Renner relation at zero magnetic field provides Eq (0) =

m2,/mq, and the Wilson quark-mass relation of Eq. (3.32) which may also be written

1 /1 1 (5.30)
my=— - — — .
T 2a \k Ky )’

where k.. is the critical hopping parameter where the zero-field pion mass vanishes.

Eq. (5.29) can hence be written

Em2, /1 1\ !
=27 |q, (- — . 5.31
¢1 =27 |quja 44 o s (5.31)

The magnetic polarisability may be related to ¢, using Eq. (5.23) as

2 4 N:cN 2
B=—cyadil <—y) , (5.32)
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where myro) is as in Eq. (5.21) and o = 1/137 ... the fine structure constant. It is vital
to remove the O (a) error due to background field dependent mass renormalisation, as if
c1 # 0 magnetic field dependence of Eq in Eq. (5.29) will induce O (B?) contaminations

to Eq. (5.32), and hence the magnetic polarisability value extracted will be incorrect.

Mass degeneracy of the zero-field up and down quark propagators in the lattice
simulated allows neutral pion correlation functions with quark content wu or dd to be
considered as magnetic field strength offset versions of each other, i.e. Gy, (B) = G, (2 B).
As such, neutral pion correlation functions can be evaluated at a larger range of magnetic

field strengths than is possible for the 7+, using the same quark propagators.

5.2.2. Nonperturbatively-Improved clover fermions

The nonperturbatively improved clover fermion action used in the full QCD calculations
has a different clover coefficient C'sy, than that used in the free-field calculations. The
clover coefficient multiplies the O (a) clover term of the fermion action

o
0, G, (5.33)

where we return to G, to emphasise the presence of QCD interactions. The clover
term is discussed in more detail in Section 3.3.1. The full QCD calculations use the
nonperturbatively improved value Cgyy = 1.715 |25, 159] while the free-field simulations
use the tree-level value of Csyy = 1. The energy shift defined in Eq. (5.21) is used to
determine the extent which this changes the removal of the additive mass renormalisation

seen to occur in Figure 5.3.

The two energy shifts required are Ejo (B) —mgo and o) (B) + mgo. The first of
these is displayed in Figure 5.4 where excellent plateau behaviour is readily observed.
The second is shown in Figure 5.5 where correlated QCD fluctuations between field
strengths compound rather than cancel, hence it is difficult to fit constant plateaus. The
difficulty in fitting a constant plateau to Eq. (5.27) is problematic as common plateau
fits are required for both Epro) (B) — mgo and Ezo (B) + mgo. This substantially reduces

the fit parameter space available.

Finally, a fit window of ¢ = [28, 34] is chosen. This fit window provides good fits for
both energy shifts across each field strength considered, with acceptable x?2 F<12as
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Figure 5.4. Neutral pion effective energy shift Ej o) (B) — myo from Eq. (5.24) using a
nonperturbatively-improved clover fermion action on the m,; = 296 MeV ensemble.
The fit window selected is indicated by the shaded region. The fit window was
selected by considering the full covariance-matrix X?iof’ the extent of the fit
window and the desire to select the same fit window for all effective-energy shifts.
The three smallest field strengths are illustrated.

elsewhere in this thesis. This process minimises the systematics associated with a change

of fit window provided x3,; < 1.2.

Recalling Eq. (5.23), the fit function of Eq. (5.28) is considered and the energy
shifts fit as a function of field strength. First consider fixing ¢; = 0 and using a ¢, k2
quadratic-only fit function. This would be applicable to the complete removal of additive
quark mass renormalisation by the clover fermion term. However as illustrated in Figure

5.6, the quadratic-only fit does not fit the data well and has an unacceptable X(onf of

Using the full fit function, with allowance for a non-trivial ¢; coefficient produces a
fit with x7,; = 0.5 which describes the lattice simulation results well. The success of this
fit with a non-trivial ¢; coefficient indicates that the nonperturbatively-improved clover
fermion simulation suffers from the presence of external field strength dependent additive

mass renormalisation. The nonperturbatively-improved clover fermion action has not
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Figure 5.5. As described in Figure 5.4 but for the Ej o, (B) + myo energy shift produced by
Eq. (5.25).

removed the additive mass renormalisation in full QCD as the tree-level clover action
did in the free-field case.

A quadratic + cubic, ¢y k3 + c3 k3 fit is also considered. Such a fit is applicable to
higher order terms and explores the necessity of the O (a) term linear in the magnetic
field strength. However, this model produces unacceptably high X?lof values and does
not describe the lattice simulation results. Due to the mass degeneracy of up and down
quarks, a fit over four field strengths is able to be considered. Acceptable fits as a function
of field quanta to this require linear, quadratic and cubic terms. While a sufficient number
of higher order terms will clearly fit perfectly with as many terms as field strengths
considered, the addition of a linear term is a simpler model than adding multiple higher
order terms. Thus, the demand for an O (B) linear term associated with the presence of

additive mass renormalisation is robust.

5.2.3. Expected mass renormalisation

The results just presented indicate that the naive use and formulation of the clover term

is insufficient to removal the Wilson-like additive quark mass renormalisation. With a
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Figure 5.6. Fits of the magnetic-field induced energy shift to the magnetic-field quanta for
the nonperturbatively-improved clover fermion action. The full covariance-matrix
based X(Qiof provides evidence of a non-trivial value for the fit coefficient ¢;, asso-
ciated with the presence of unphysical Wilson-like additive mass renormalisation
in the nonperturbatively-improved clover fermion action.

view to the free-field results, the application of the nonperturbatively-improved clover
coefficient C3F = 1.715 to both the QCD and background field contributions to the
clover term has prevented the removal of the magnetic field dependent additive mass

renormalisation.

Recalling the discussion of Section 5.1.1, the tree-level value of CIr¢¢ = 1 is the value

required for the removal of O (a) errors. As such the nonperturbative value has over

compensated by an amount
DNP = Clree — OfF = 1.0 — 1.715 = —0.715, (5.34)
where this over compensation is relative to the standard Wilson action coefficient of
DV = C&ree = 1.0. (5.35)

In order to produce a prediction for the non-trivial value of ¢; using the nonperturbatively-

improved clover fermion action, the over compensation factor of Eq. (5.34) is incorporated
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into the expectations for Wilson-fermion of Section 5.2.1 through

DNP

fﬁfNP:D—W

§. (5.36)

Hence Egs. (5.31) and (5.36) can be used with the order of magnitude factor, £ = 1/10

to provide an estimate for the fit parameter c;.

For the 9 on the m, = 296 MeV ensemble, x4 = 0.13770 and k., = 0.13791 25|, this
produces ¢; ~ —3 x 1072 GeVZ2. The corresponding linear + quadratic, ¢; kg + ¢ k2 fit
provides ¢; = —2.8(9) x 1072 GeV?2. These results are close, and the simulation result

agrees with the expectation within statistical error.

This result is highly encouraging, and hence in the next section the clover terms for
the QCD and background fields are separated, such that CL7¢ can be applied to the
background field contributions while the QCD fields use C¥.

5.3. Background field corrected clover fermion action

Here a modified fermion action is formulated, where the QCD and background magnetic
field contributions to the field strength tensor, G, (z) of the O (a) clover term are
treated separately. This enables the nonperturbatively improved value of CX = 1.715
to be applied to the QCD contributions and the tree-level value cgy; = 1.0 to be
applied to the background magnetic-field contributions. As the background-magnetic
field is known analytically, its contributions are calculated analytically and added to the
QCD contributions. The modified fermion action will henceforth be referred to as the

Background Field Corrected Clover (BFCC) fermion action.

5.3.1. Additive mass renormalisation

Correlation functions and energy shifts are calculated and formed as described in Section
5.2.1 using the BFCC fermion action. The new effective energy shifts and fits are displayed
in Figures 5.7 and 5.8 for the m, = 296 MeV ensemble. The E o (B) 4+ m,o energy shift
remains challenging, but possible to fit. This is not-unexpected as no specialised sink is

used here as is done in Chapters 4 and 6.



94 Background field corrected clover action

S o o o ° A L S 4

< —0.01¢ §
Eqé f + ! g ! ! { {
ZI _O.OZE %
w —0.03] ¢ { H—T—{—}—}—}—{
LI Vo ¢
—0.04}
—0.05} ki =1, X4r =1.1, len =8 ka =3, X&r =0.21, len =8

ke =2, X&r =0.52, len =8
_0.0 1 1 1 1 N N N

6.|.6 18 20 22 24 26 28 30 32
t

Figure 5.7. Neutral pion effective energy shift E o0 (B)—m o from Eq. (5.24) using the BFCC
fermion action on the m,; = 296 MeV ensemble. The shaded region illustrates

the fit window chosen as in Figure 5.4.
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Figure 5.8. As described in Figure 5.7 but for the E_ o (B) 4+ m o energy shift produced by
Eq. (5.24).
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Figure 5.9. Fits of the magnetic-field induced energy shift to the magnetic-field quanta for the
BFCC fermion action. The full covariance-matrix based X?lof provides evidence
of the elimination of unphysical Wilson-like additive mass renormalisation in
the nonperturbatively-improved clover fermion action. Allowing for a non-trivial
value of ¢; produces a value consistent with zero.

Supposing now the absence of additive mass renormalisation, then Eq. (5.23) simplifies

to
EZ, (B) — m2o = —4 7 mgo B0 B>+ O (B?), (5.37)
and thus fit functions of the form
B2 (kq) —m2o = cr kg + co k3 + cs k3, (5.38)

are considered. Wilson-like additive mass renormalisation is allowed for by the linear
term proportional to ¢;. This term should not be required if the BFCC action has

removed the field-dependent additive mass renormalisation.

Fits to the three lowest £2, (kg) —m2, energy shifts using the fit functions of Eq. (5.38)
are displayed in Figure 5.9. Acceptable fits are obtained with the higher order fit coefficient
c3 constrained to zero. The success of the quadratic only ¢y k2 fit reflects the ability of

the BFCC action to fully remove the Wilson-like additive quark mass renormalisation
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Figure 5.10. Fits of the magnetic-field induced energy shift to the magnetic-field quanta
for the BFCC fermion action. The full covariance-matrix based X?lof provides
evidence of the elimination of unphysical Wilson-like additive mass renormalisa-
tion in the nonperturbatively-improved clover fermion action. Allowing for a
non-trivial value of ¢; produces a value consistent with zero.

and produce an energy shift matching Eq. (5.37). The ¢ kg + 2 k2 fit, which allows for
a non-trivial value of ¢; yields ¢; = (—=5.3 +8.7) x 107* GeV?, which is consistent with

Zero.

Due to the mass degeneracy of up and down quarks in the lattice simulation, the
full range of magnetic field strengths corresponds to k; = 1,2, 3,4,6. This full range is
considered in Figure 5.10. Here the fits require c3 # 0, indicating the presence of a O (B3)
term. The success of the BFCC is reconfirmed as the quadratic 4 cubic fit provides an
excellent description of the results without a non-trivial ¢; term. A linear 4+ quadratic
+ cubic fit which allows for a non-trivial value for ¢;, produces ¢; = (1.1 £9.0) x 10~

GeV?, consistent with zero.

Fits to the first four magnetic field strengths produces similar results. The BFCC
action lattice results do not require fits with a linear ¢; term and allowing for ¢; # 0
gives ¢; = (—6.2£8.2) x 107* GeV?, which is again consistent with zero. With only
four field strengths, a cubic term proportional to c3 is not required, but as the onset of

non-trivial O (B?) behaviour is clearly between the field strengths which correspond to
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ks = 4 and k; = 6; only the three smallest field strengths will be used when determining

the magnetic polarisability.

These results have shown that the BFCC fermion action removes the additive quark
mass renormalisation due to the Wilson term. The key modification is to use a tree level

value cgys = 1 for uniform background-field contributions to the fermion clover term.

5.3.2. Comparison to Bali et al.

In Ref. [111], Bali et al.demonstrated the existence of a background field dependent
additive quark mass renormalisation due to the Wilson term and proposed to account
for this effect by a field dependent tuning of the bare quark mass. A summary of this

method is presented below, drawn from the full details presented in Ref. [111].

While the neutral pion mass vanishes in the chiral limit, even at finite background
magnetic field strengths, electroquenching effects produce chiral logarithms [160, 161]
which make it difficult to use the neutral pion mass to determine the bare quark mass at
non-trivial field strengths. Instead the current quark mass m #, obtained from the axial
Ward-Takahashi identity (WI) is used. As the neutral Wls are unchanged from their

zero-field form, this gives

9 () (o) P/ (0))

2 (P7 (20) PT0)) (5:59)

amy (B) =

where x¢ # 0, (J A)f is the point-split axial current operator and P/ is the associated
pseudoscalar density for fermion fields of flavour f. Eq. (5.39) is considered separately

for both the 79 and 70 as earlier in this chapter.

The current quark mass is calculated for several values of the hopping parameter x
for each background field strength considered and a linear fit performed as a function of
1/k —1/kes (B = 0) where k. (B = 0) is the zero-field critical hopping parameter. The
bare quark mass in a background field will then vanish at a field and flavour dependent

critical hopping parameter k. ¢ (B)

fit

, (5.40)

ams(B)=0

/%iB>:(n&>‘mﬁé=o)
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where (1/(0) = 1/ke (B =0)) |/ (B)=0 is the value of 1/k — 1/k. s (B = 0) where the
a’mf =

linear fit crosses am;s (B) = 0. The bare quark mass can then be tuned at each field
strength to keep am 7 (B) constant and hence remove the field dependent additive quark

mass renormalisation. This process takes the form

1

1 1 1
Ry (B) /i(B = 0) N <f{/c7f (B) o Ke.f (B :0)) ) (5.41)

where x (B) is the new-field dependent hopping parameter and x (B = 0) is the zero-field

hopping parameter desired.

While the method described above and in Ref. [111] is successful in removing the
field dependent additive quark mass renormalisation due to the Wilson term, it is a
theoretically and computationally challenging process. It requires calculations at multiple
quark masses (k values) for each field strength, increasing the computational resources
required substantially. The point split axial current operator (.J. A)f is also non-trivial
to implement. Furthermore the quark mass retuning will need to be performed again if

O (a) improvement, i.e. from the clover fermion term is implemented.

The BFCC action in contrast includes O (a) improvement, does not require tuning, is
easy to implement and does not incur substantial additional computational expense as it
requires only a minor change to the fermion action. The BFCC action modifies the clover
term such that QCD contributions use a non-perturbatively improved clover coefficient

while the background field contributions to the clover term use a tree level coefficient.

5.3.3. Magnetic polarisability

As the Wilson-like additive quark mass renormalisation has been removed by the BFCC
fermion action, the magnetic polarisability can be determined from the B? term, now

free of the O (a) contamination discussed in Section 5.2.1.

The fits and energy shifts performed in Section 5.3 are used and the polarisability
extracted from the coefficient ¢y of the fit of Eq. (5.38). The magnetic polarisability is
then given by the conversion of Eq. (5.32) where mj,o is now just the mass mo rather

than the Wilson-mass.

The magnetic polarisability of the neutral pion using the O (a) improved BFCC

fermion action analysis for the three lowest magnetic field strength is reported in Table
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Table 5.1. Magnetic polarisability of the neutral pion from the O (a)-improved BFCC-fermion-
action analysis of the lowest three magnetic-field strengths. Correlation functions
with a smeared source and point sink are considered. Numbers in parentheses
represent statistical uncertainties.

Kud my (MeV) Bro (x10~* fm?)

0.13754 411 0.62(4)
0.13770 296 0.54(7)

5.1 on two gauge field ensembles. While the report in this chapter has discussed only the
ensemble with light-quark hopping parameter .4 = 0.013770 corresponding to m, = 296
MeV, results for x,4 = 0.013754 corresponding to m, = 411 MeV are also reported.

Only the three lowest field strengths and a single quadratic fit, oc cp k2 are used in these
results. This is to avoid the possibly complications of non-trivial O (B?) contributions
as discussed in the previous section. The inclusion of a fourth point for the m, = 296
MeV ensemble takes the magnetic polarisability from S0 = 0.54(7) to 0.52(5) x 1074
fm?. The small improvement in statistical uncertainty may be offset by an increase in
the systematic uncertainty associated with non-trivial O (B?) contributions and so only

the three smallest field strengths are used.

5.4. Summary

In this chapter, the pion in a uniform background field has been investigated. Particular
attention has been paid to the possibility of the existence of a field-strength dependent
additive quark-mass renormalisation associated with Wilson fermions. This existence was
confirmed and clover fermions examined to determine the ability of the clover fermion

action to remove these spurious contributions.

In the free-field limit, where no QCD interactions are present, the clover term with
a tree level clover coefficient removes the field-strength dependent additive quark-mass
renormalisation. To ensure the same when QCD interactions are present, a careful
treatment of the clover term of Egs. (3.35) and (5.33) is required. In order to remove O (a)
errors in QCD, the nonperturbatively-improved clover coefficient C2;7 = 1.715 is required;
while the background magnetic-field contributions require cgy; = 1.0. Separating this

treatment enables the clover term to remove the O (a) errors in QCD and also the O (a)
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errors associated with the background magnetic field. This modified fermion action is
referred to as the Background Field Corrected Clover (BFCC) fermion action.

Once the O (a) errors associated with the Wilson term of the fermion action have
been suppressed by the BFCC fermion action, the neutral pion magnetic polarisability is
determined using the fully relativistic energy shift for the first time. Results at two pion
masses are summarised in Table 5.1. The magnetic polarisability of the neutral pion,
ﬁﬂg is positive, hence the energy of a neutral pion in a magnetic field decreases. Such a
decrease and its extent is of interest |162,163] and these results indicate that the O (B?)

contributions may soften this trend.

Research presented in Chapter 7 will involve an extension to the charged pion, an
approach to the physical quark mass regime and an interface with chiral perturbation
theory [164,165]. The lattice simulations for this future work is performed in Chapter
7 using the formalism developed here and in Chapter 6. Sea-quark-loop interactions
with the background field are also important and not present in these results. They may
be incorporated by producing a separate Monte-Carlo ensemble for each field-strength
considered and is as such prohibitively expensive. Separate ensembles also removes the

advantageous QCD correlations between different magnetic field strengths.

An alternate approach to multiple Monte-Carlo ensembles is to separate the valence
and sea-quark-loops contributions to the magnetic polarisability in effective field theory
|125]. This process is discussed in detail in Chapter 6 for a general baryon, with the
proton as a specific example. Such separation would enable a calculation of sea-quark-
loop contributions to the magnetic polarisability of the pion and hence an accurate

extrapolation of current lattice QCD results to the physical regime.



Chapter 6.
SU (3) x U(1) eigenmode projection

The magnetic polarisabilities of the neutron, proton and a selection of hyperons are
calculated using the formalism developed in Chapters 4 and 5. A new eigenmode projected
quark sink, which encapsulates both QCD and Landau level physics, is introduced. As
demonstrated in Chapter 4 and previous studies [105,166| Landau physics remains relevant
even when QCD interactions are present. Thus it is anticipated that this sink will provide

good access to the energy shifts required to determine the magnetic polarisability.

6.1. Quark operators

As in Chapter 4, asymmetric source and sink operators are used to construct correlation
functions which have greater overlap with the energy eigenstates of the various particles

in a background magnetic field.

6.1.1. SU(3) xU(1) eigenmode quark projection

In a manner similar to the U(1) Landau eigenmode projected quark sink discussed in

Section 4.1.2, the low-lying eigenmodes of the two-dimensional lattice Laplacian

Npw =40z — Y Uy (T) Szrpw + UL (T — 1) 05, (6.1)

u=1,2

are calculated. Here, the gauge links U, (¥) contain the full SU(3) x U(1) gauge links as
applied in the full lattice QCD simulation. When the number of eigenmodes considered

101
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is truncated to some selected value, the completeness relation for the mode projection
I=) I4;5) (sl (6.2)
i=1

is truncated, giving rise to a finite-size, two-dimensional smearing of the quark propagator
sink by filtering out the high frequency modes. This smearing grows in size as more
higher order modes are truncated. It is important to quantify the effect of the truncation

when choosing an appropriate truncation level.
The factors considered when selecting this truncation value include

e Computational feasibility - Eigenmodes must be able to be calculated and stored.
This can be a significant problem with eigenmode files containing ~ 100 eigenmodes

being ~ 10 Gigabytes for a lattice of size 323 x 64.

e Plateau behaviour - Early onset of plateau behaviour in effective mass shifts is

required.

e Statistical uncertainty - The finite-size smearing of the quark propagator sink can

increase the statistical noise in the correlation function.

e Consistency with lowest lying Landau level - It is essential to only use the eigenmodes

which correspond to the lowest lying Landau level.

In the pure U(1) case considered in Section 4.1.2; the lowest Landau level on the
lattice has a degeneracy equal to the magnetic flux quanta |k|, which provides a natural
truncation level. As Eq. (6.1) introduces QCD interactions into the Laplacian via the
SU(3) component of the gauge links, the U(1) modes associated with the different Landau
levels become mixed. It is no longer possible to clearly identify the modes which are
associated with the lowest Landau level at small field strengths [105,167|. Instead a
number of modes n > |k| are projected. Here we investigate three levels of eigenmode
truncation, n = 32, 64 and 96. This spread was chosen such that both small and large

eigenmode number were considered.

As Eq. (6.1) is a two-dimensional Laplacian, we calculate the low-lying eigenspace
independently on each (z,t) slice. This allows us to interpret the four-dimensional

coordinate space representation of an eigenmode

(7.1 \ Vi) = Vs (@ yl1), (6.3)
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as selecting the two-dimensional coordinate space representation ¢, 5 (z,y) from the
eigenspace which belongs to the corresponding (z,t) slice of the lattice. The four-
dimensional coordinate space representation of the projected operator used to investigate

the appropriate eigenmode number is hence

Po(@:0) = > (Tt vy 5) (05| To) 0 B, (6.4)

i=1
where the Kronecker delta functions ensure the outer product is only taken between
eigenmodes from the subspace (and equivalently, that the projection operator acts trivially

on the (z,t) coordinates).

This is the same construction as the projection operator of Eq. (4.3) with the notable
difference of the eigenmodes used. As before, this projection operator is applied at the

sink to the quark propagator in a coordinate-space representation as
S, (:E‘,t; 0, o) =3 P(@ 6. 7.0) S (f’,t; 0, o) , (6.5)

where n is the number of eigenmodes and hence is either n = 32, 64 or 96.

The appropriate eigenmode number is guided by the properties of the relevant
correlation functions. While n = 32 eigenmodes is not effective in energy eigenstate
isolation due to statistical noise, both 64 and 96 eigenmodes produce qualitatively similar
results as is evident in Figure 6.1. A comparison of the magnetic polarisability energy
shift of Eq. (4.11) for three non-zero field strengths is presented in Figure 6.1. The
projected sink using n = 96 eigenmodes fulfils the requirements above with improved
signal isolation compared to n = 64 eigenmodes. Hence n = 96 eigenmodes are used for

the remainder of this work.

Distillation

The SU(3) x U(1) eigenmode projection technique introduced herein shares some similar-
ities with the distillation approach of Refs. [70], [168| and [169|. The distillation approach
calculates the low-lying eigenspace of the three-dimensional spatial Laplacian indepen-
dently on each time (¢) slice of the lattice. Distillation enables efficient construction
of all-to-all propagators |70, 170, 171| once the perambulators have been constructed by

inversion of the lattice Dirac operator against each eigenvector in the eigenspace of time
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Figure 6.1. Proton energy shift F (B) —m using 64 (orange diamond) and 96 (blue square)
eigenmodes in the projection operator of Eq. (6.5) on the m, = 702 MeV
ensemble.

slice (t). Hence, there is a significant initial overhead in constructing the perambulators,

but once this overhead has been paid the ability to access the all-to-all nature is a benefit.

In contrast, the approach herein utilises the two-dimensional Laplacian operator
defined in Eq. (6.1) which is calculated independently on each (z,t) slice. The three-
dimensional nature of the distillation approach is not suitable in the presence of a
background magnetic field along the Z-axis that explicitly breaks three-dimensional
spatial symmetry. Furthermore the Laplacian projector is applied to a standard point-to-
all propagator, avoiding the significant overheard required for the distillation approach.
The two-dimensional Laplacian projector used herein can be applied to any all-to-all

computational approach, including stochastic estimation such as in Ref. [171] or the
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Figure 6.2. Nucleon zero-field effective masses from three different smeared sources to SU(3)
xU(1) eigenmode projected sink correlation functions on the m, = 702 MeV
ensemble. The source is at ¢ = 16.

distillation method. Once the eigenmodees have been calculated, the computational cost
of including these quark operators is comparable to a typical QCD-only calculation using

the same technique.

The scaling behaviour of the required number of eigenmodes for the SU(3) x U(1)
projection technique as a function of lattice volume is worth investigation and may be
guided by the approach used in Ref. [70|. The notable difference is that in the presence
of a background field, the introduction of the lowest Landau level is likely to affect the

number of eigenmodes required.

6.1.2. Gaussian smeared source

The Gaussian smeared source provides a representation of the QCD interactions. The
QCD ground state is isolated through examination of a broad range of smearing levels
at zero field strength. The effective mass was investigated for each ensemble of gauge
fields considered and the smearing which produces the earliest onset of plateau behaviour

chosen.
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Figure 6.3. Nucleon zero-field effective masses from three different smeared sources to SU(3)
xU(1) eigenmode projected sink correlation functions on the m, = 296 MeV
ensemble. The source is at ¢ = 16.

For the ensemble with the heaviest quark mass considered, x,q = 0.13700, correspond-
ing to m, = 702 MeV, this choice is quite obvious as shown in Figure 6.2. The optimal
smearing of 150 sweeps produces the early onset of plateau behaviour while 100 and 200

sweeps do not plateau as early and approach from above and below respectively.

When the xk,q = 0.13770 ensemble is examined in Figure 6.3, the choice is not as
obvious. The three smearing levels reach agreement earlier and are less different than
for the k,q = 0.13700 ensemble in Figure 6.2. Hence, to fully understand and determine
the optimal smearing, correlation functions are run at each finite field strength to be
considered for each smearing and these results are examined. The k; = 2 proton anti-
aligned (as in Section 4.2) correlation function is shown in Figure 6.4 where a problem
with large amounts of smearing is clearly visible. The anti-aligned energy has spin and
magnetic field anti-aligned as in Eq. (4.9). This energy is examined in preparation for its

use in the energy shift ratio of Eq. (4.10).

The proton k; = 2 anti-aligned energy with 350 sweeps of smearing differs from that

produced by 250 or 300 sweeps. This difference corresponds to the difference between



SU (3) x U(1) eigenmode projection 107

1.6
+ 250
1.4 + 350
~1.3
S
(V]
Q1.2
o]
Wi
1.0
0.9
0.8 ; , , , :
16 18 20 22 24 26 28
t

Figure 6.4. Proton k; = 2 anti-aligned effective energy shifts of Eq. (4.9) from three different
smeared sources to SU(3) xU(1) eigenmode projected sink correlation functions
on the m,; = 296 MeV ensemble. The source is at t = 16.

Landau levels for the proton, i.e. for
E?>(B)~m*+|eB| 2n+1-a), (6.6)

where n = 0,1,2,3,... and « is the eigenvalue of ¢, which appears in the spin operator
as in Appendix C; the difference can be determined by considering the relativistic energy

difference

E} (B) - Ej (B) =2 |e B|
(E1(B) — Eo (B)) (E1(B) + Ey (B)) =2 |e B
AE\ (B) (E\ (B) + Ey(B)) =2 |e B
A Ey (B) (AEy(B)+2Ey(B)) =2leB],
AFE},(B)+2Ey(B) AEy(B)—2|eB| =0, (6.7)
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where A Ey (B) = Ey (B) — Ey (B) is what must be determined. Using the appropriate

values for Figure 6.4 of

EO (k’d = 2) ~ 0.9 GeV,
le B (kg = 2)| ~ 0.522 GeV?,

where we recall that the field strength experienced by the proton is related to that of
the down quark by kg = —3 kg4; the energy difference between these two Landau levels is
A Eig (kg =2) ~ 0.46 GeV. This is close to the difference between smearings in Figure
6.4.

The proton, with an excessively large source couples to the higher Landau levels
rather than the lowest. This is evident in how the effective energy for N, = 350 sweeps
differs from the other smearings of Figure 6.4 in both value and slope. Due to this
higher Landau level coupling, the optimal smearing level chosen is Ny, = 250 sweeps of

Gaussian smearing.

The source smearing is varied and examined on each of the ensembles considered.
The optimal smearings for ensembles with light quark hopping parameters k.4 =
0.13700, 0.13727, 0.13754, 0.13770 and corresponding masses m, = 702, 570, 411, 296
MeV are chosen to be Ny, = 150, 175, 300, 250 sweeps respectively.

6.1.3. U(1) hadronic projection

While the SU(3) xU(1) eigenmode projection technique is relevant to the quark level
Landau effects; charged hadrons, such as the proton and X1 also experience hadronic
Landau effects. The hadronic energy eigenstates constructed by the Fourier momentum-
projected two-point correlation function of Eq. (3.54) are no longer eigenstates of the
P, and p, momentum components due to the presence of the uniform background field
in the Z direction. Hence the x, y dependence of the two-point correlation function is
projected onto the lowest Landau level explicitly, and a specific value for the z component

of momentum chosen

n

G (p Bot) =30 Dt () 7= (@I () x (0.4) 19). (6.8)

r =1

Here a linear combination of the U(1) eigenmodes calculated in Chapter 4 are used at

the appropriate field strength for the hadron of charge qy and n = ny.x = 3 gy k4. The
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(a) i =1 eigenmode for kq = —6. (b) i = 2 eigenmode for kg = —6.

A

(c) i = 3 eigenmode for kg = —6. (d) i = 4 eigenmode for k; = —6.

(e) i =5 eigenmode for kg = —6. (f) ¢ = 6 eigenmode for kg = —6.

Figure 6.5. Lowest lying U(1) eigenmode probability densities of the lattice Laplacian op-
erator in a constant background magnetic field oriented in the Z direction are
plotted as a function of the x, y coordinates. The degenerate eigenmodes for the
sixth quantised field strength, relevant to the k; = 2 proton are displayed. The
origin is at the centre of the z — y plane.
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six degenerate eigenmodes for k; = —6, relevant to the proton with down quark magnetic
field quanta k; = 2 are shown in Figure 6.5. Noting that the n = 1 eigenmode in Figure
6.5a has the greatest overlap with the smeared source and also the continuum Landau
wave function; an eigenmode using just the n = 1 single mode is also examined. This
overlap is by construction; we perform an optimised rotation of eigenmodes to construct

this overlap.

A comparison of the three different types of hadronic projection is shown in Figure 6.6
for the 7+ on the m, = 296 MeV ensemble. The 7 is chosen to investigate this choice
due to the greater precision of pion correlation functions. The left column displays the
effective energy for each of the three non-zero field strengths and the zero-field correlator
while the right is the energy shift £ (B) —m of Eq. (4.11) required to access the magnetic
polarisability. The zero-field correlator uses the appropriate standard Fourier projection

method on each occasion.

It is clear that the single-mode eigenmode projection of Figures 6.6¢ and 6.6d produce
the cleanest plateau behaviour. This distinction is particularly obvious for this choice of
hadron and ensemble - the statistical uncertainty is such that a clear difference is seen.
For nucleons on this ensemble, the statistical error is greater [131] and distinction between
the all and single-mode projection methods is not present. Conversely on ensembles with
a heavier quark (hence pion) mass, both eigenmode projection methods converge for
the pion, and often for the nucleon. This convergence is evident in the pion energies

presented in Figure 6.7.

The single-mode projection is tuned such that it encapsulates the majority of the
overlap of the wave function; adding the additional modes of the sum does not change
the observed effective energy in the high statistics regime. This is evident in the success

of the n = 1 eigenmode projection.

The hadronic eigenmode projection is crucially important in isolating the ground
Landau state for a charged hadron [113| and hence construction of the energy shifts of

Egs. (4.11) and (5.37) required to extract the magnetic polarisability.
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A comparison of the three different hadronic projections for the charged pion on

the kyuq = 0.13770 ensemble with m,; = 296 MeV. The energy and energy shift as
a function of field strength are shown in the left and right columns respectively.
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Figure 6.7. A comparison of the three different hadronic projections for the charged pion on

the k,q = 0.13700 ensemble with m, = 702 MeV. The energy and energy shift as
a function of field strength are shown in the left and right columns respectively.
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Table 6.1. The number of sources per configuration used for each hadron type and ensemble.

Koud m. (MeV) Nucleons Hyperons Number of configurations
0.13700 702 5) 3 399
0.13727 570 4 — 400
0.13754 411 6 6 450
0.13770 296 7 400

6.2. Lattice Results

Here the results calculated using the smeared source and SU(3) xU (1) Laplacian projected
sink quark propagators are presented. Here we consider the two nucleon states and a
selection of hyperons. Using the source shifting strategy of Section 4.2.2; the number of

sources used for each ensemble is described in Table 6.1.

6.2.1. Magnetic polarisability formalism refresher

The magnetic polarisability can be extracted from the energy of a (spin-averaged) hadron
in a background magnetic field using the relativistic energy shift analogous to Eq. (5.37)

for the neutral pion
E*(B)—m®=(E(B)+m) (E(B) —m) = |ge B| —47mp |eB|*+ O (B%), (6.9)

or where it is not possible to fit constant plateaus to E (B)+m, using the Taylor expanded
energy shift, as in Eq. (4.11)
lgeB| 4w

SE(B,t) = —— — — B leB|’+ 0O (B"). 6.10
(B.) =22 ST g e B+ 0 (BY (610

To these energy shifts, an appropriate fit function as a function of field strength is
fitted and the quadratic coefficient used to extract the magnetic polarisability according
to the parameter relation of Eq. (4.15) or Eq. (5.32). This process is explicitly detailed
in Chapter 4.
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Figure 6.8. Neutron E (B) + M energy shift for m, = 570 MeV ensemble constructed using
Eq. (5.24).

6.2.2. Neutron

Due to the inherent noisiness of baryon correlation functions, it is not possible to
successfully fit plateaus to the F (B) + m energy shifts required to construct the fully
relativistic energy shift of Eq. (6.9). This is evident in Figure 6.8 for the neutron on the
Kua = 0.13727 ensemble with m, = 570 MeV. Hence the non-relativistic energy shift of
Eq. (6.10) is used. Relativistic corrections to the overall energy are estimated to be less
than ~ 10%.

Plateau fitting

As the non-relativistic energy shift is used, it is only necessary to fit Euclidean time
plateaus in the single energy shift given by the ratio of Eq. (4.10). This is done for each
of the four ensembles considered herein. The selected fits must display good plateau
behaviour and are required to have a x3,; < 1.2. These fits are illustrated in Figures 6.9
through 6.12 for k.4 = 0.13700, 0.13727, 0.13754, 0.13770 with m, = 702, 570, 411, 296
MeV respectively.
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Figure 6.9. Neutron effective energy shift for the m,; = 702 MeV ensemble. The shaded
regions illustrate the fit windows selected through consideration of the full
covariance-matrix X?lo 2 the extent of the window and the desire to select the
same fit window across all field strengths.

It is apparent in Figures 6.9 through 6.12 that the energy shift required to extract
the magnetic polarisability for the neutron is small compared to the mass of the neutron.
This necessitates the correlation function ratios developed in Eq. (4.10). The energy
shifts for the m, = 702 MeV neutron are illustrated in Figure 6.9 where good plateau
behaviour for the two smallest background magnetic field strengths is clearly evident.
The third energy shift is not shown as it compromises the fit windows required for the

first two energy shifts and is not required in order to do a polarisability fit.

The next ensemble considered in Figure 6.10 has light quark hopping parameter
Kua = 0.13727 and a pion mass of m, = 570 MeV. Here the plateau fits at each field
strength are allowed to monotonically vary such that they have the same end point. In
this way we account for the increased time before plateaus are formed for the larger

background magnetic field strengths.

The energy shifts depicted in Figure 6.11 for the m, = 411 MeV neutron are substan-
tially harder to fit plateaus to. They descend into noise earlier than in Figures 6.9 and
6.10. The fit windows chosen here are also substantially restricted by the necessity of
being able to perform the polarisability fits of Eqgs. (6.10) and (6.11).
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Figure 6.10. Neutron effective energy shift for the m, = 570 MeV ensemble. Details are as
in the caption of Figure 6.9.
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Figure 6.11. Neutron effective energy shift for the m, = 411 MeV ensemble. Details are as
in the caption of Figure 6.9.
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Figure 6.12. Neutron effective energy shift for the m, = 296 MeV ensemble. Details are as
in the caption of Figure 6.9.

For the remaining energy shifts for the m, = 296 MeV neutron depicted in Figure
6.12, only the energy shifts for the two smallest magnetic field strengths are shown. This
is as it is not possible to find constant plateau fits to the energy shift of the third field
strength.

Overall, the energy shifts and fits displayed in Figures 6.9 through 6.12 typically
display good plateau behaviour. This is directly due to the consideration of Landau-type
physics at the quark level through the SU(3) x U(1) eigenmode projection technique of
Section 6.1.

The neutron magnetic polarisability energy shifts produced using the SU(3) xU(1)
generally display better plateau behaviour than those presented in Chapter 4 where a
U(1) Landau eigenmode quark projection technique is used. The early time behaviour of
these two sets of energy shifts is quite different. The energy shifts using the U(1) Landau
eigenmode projected quark sink approach their long-time behaviour slowly and from
below, while the SU(3) xU(1) eigenmode projection technique produces neutron energy
shifts which approach from above and typically display better plateau behaviour. While
the plateau behaviour of the SU(3) xU (1) eigenmode projected energy shifts only occurs

a few time slices earlier than for the U(1) projected energy shifts, this is significant in the
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Figure 6.13. Quadratic only fit of the magnetic-field induced energy shift to the magnetic-
field quanta for the neutron on the m, = 702 MeV ensemble using a smeared
source and SU(3) xU(1) eigenmode projected sink.

context of the onset of noise in our energy shifts. This is another area where the SU(3)
xU(1) eigenmode projection technique is superior, the onset of noise and loss of signal is
delayed by up to five time slices or = 0.45 fm in comparison to the results presented in
Chapter 4. It should be noted that the results in Chapter 4 used eight sources on each
gauge field configuration, compared to the maximum of seven in this chapter as detailed

in Table 6.1, making the observed improvement even more significant.

Polarisability fitting

Once the energy shifts have been determined, a field strength dependent fit is performed

in order to extract the magnetic polarisability.

As the neutron is a neutral particle, the fit function as a function of field-strength

has only a single quadratic term

SE(kq) = o k3. (6.11)
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Figure 6.14. Quadratic only fit of the magnetic-field induced energy shift to the magnetic-
field quanta for the neutron on the m, = 570 MeV ensemble using a smeared
source and SU(3) xU(1) eigenmode projected sink.

Table 6.2. Magnetic polarisability values for the neutron at each pion mass considered. The
numbers in parentheses describe statistical uncertainties.

m, (MeV) Kud B(x107%) fm?
702 013700  1.91(12)
570 013727 1.61(10)
411 013754 1.53(29)
206 0.13770  1.27(37)

The quadratic fits to the energy shift plateaus in Figures 6.13 through 6.16 are then
required to meet the same fit criteria as the plateaus. The quadratic fits in Figures 6.13,
6.14, 6.15 and 6.16 all describe the energy shifts well. For the lightest mass neutron

considered in Figure 6.16, the statistical uncertainty is larger but the quadratic fit still

works well.
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Figure 6.15. Quadratic only fit of the magnetic-field induced energy shift to the magnetic-
field quanta for the neutron on the m, = 411 MeV ensemble using a smeared
source and SU(3) xU(1) eigenmode projected sink.

Neutron lattice summary

The magnetic polarisability of the neutron has been calculated using the SU(3) x U(1)
eigenmode projection technique with an external background field. The resulting polaris-

ability values are presented in Table 6.2.

These results can be used to inform a chiral extrapolation to the physical regime, as

touched upon on in Section 4.3 and performed later in this chapter.
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Figure 6.16. Quadratic only fit of the magnetic-field induced energy shift to the magnetic-
field quanta for the neutron on the m, = 296 MeV ensemble using a smeared
source and SU(3) x U(1) eigenmode projected sink.

6.2.3. Proton

Here again the non-relativistic energy shift of Eq. (6.10) is used. As a charged particle,
the proton energy shift will have a Landau level term which is linear in the magnetic field
strength. This Landau term and the magnetic polarisability contribute to the energy
with opposite sign and as such the clear ordering of neutron energy shifts is not expected

here.

As the proton is a charged particle, the U(1) hadronic projection technique of Section
6.1.3 is used. For the heavier masses of m, = 702, 511 MeV in Figures 6.17 and 6.18, the
increased precision allows the all-mode projection, n = 3 qy k4, to be used interchangeably
with the single mode projection, n = 1. Similarly the increased noise at the lightest mass
in Figure 6.20 allows either projection to be utilised, and here n = 3 ¢y k4. It is at the
intermediate mass of m, = 411 MeV in Figure 6.20 that the projection operators differ
the most. It is found that the single-mode projection works best for the proton at this

mass.
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Figure 6.17. Proton effective energy shift for the m, = 702 MeV ensemble. Details are as in
the caption of Figure 6.9.

Plateau fitting

The proton energy shifts are illustrated in Figures 6.17 through 6.20. These energy shifts
are near degenerate across the different magnetic field strengths considered herein. This
is due to the competing effects of the magnetic polarisability and the Landau energy

term.

The fit region is again allowed to monotonically vary for the energy shifts in Figures
6.17 and 6.19. It should be noted that the fit regions inspected are not necessarily
the only monotonic fit regions possible, but are chosen such that the space of possible
monotonic fit regions is manageable. The selected fits are chosen in order to maximise
plateau length with out X?iof requirement of Xzof < 1.2 in accordance with fits elsewhere
in this thesis. These fits correspond to ensembles with k.4 = 0.13700 and 0.13754 for
m, = 702 and 411 MeV respectively. The remaining fits in Figures 6.18 and 6.20 do not

require this allowance.

As with the neutron, no constant plateau fit is possible to the third magnetic field
strength for the proton on the x,4 = 0.13770 ensemble with m, = 296 MeV and as such
it is excluded from Figure 6.20.
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Figure 6.18. Proton effective energy shift for the m, = 570 MeV ensemble. Details are as in
the caption of Figure 6.9.
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Figure 6.19. Proton effective energy shift for the m, = 411 MeV ensemble. Details are as in
the caption of Figure 6.9.
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Figure 6.20. Proton effective energy shift for the m, = 296 MeV ensemble. Details are as in
the caption of Figure 6.9.

The proton energy shifts depicted herein display excellent behaviour, beginning
around eight time slices (~ 0.7 fm) after the source, a point comparable to the neutron
results. These results are a first at these quark masses with previous results unable to fit
plateaus [101,136]. The U(1) Landau quark level eigenmode projection technique was
also unsuccessful at producing adequate proton energy shift plateaus at all the quark
masses required for a chiral extrapolation. Key to the improvement in this chapter is
the consideration of background field effects at both the quark and hadronic levels via
the SU(3) xU(1) eigenmode projection technique and the U(1) hadronic projection

technique respectively.

Polarisability fitting

As the proton is charged, the fit function of Eq. (6.11) is not appropriate; the Landau
term of Eq. (6.10) must be considered. An appropriate fit is

6E(kq) = c1 kg +co k2. (6.12)
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Figure 6.21. Constrained quadratic fit to the proton F (B) — m energy shifts of Figure 6.17.
The kyuq = 0.13700 ensemble has a pion mass of m,; = 702 MeV. The hadronic
Landau projection of Eq. (6.8) is used with the n = 3 k4 lowest eigenmodes.

However the free ¢; parameter allows the charge of the proton to differ from unity. As

the mass and charge of the proton are known, these are subtracted from the energy shift

to form the linear constrained energy shift
leB| 4w

E(B = ——
d () 2m 2

B le B> + 0 (BY), (6.13)

which is fit using a single quadratic term

e B
2m

SE(kq) — =c k2. (6.14)

This ensures that the proton has charge ¢ = 1 as required.

These fits are shown in Figures 6.21 through 6.24. These fits all provide acceptable
X0 s> signifying that the fit function of Eq. (6.14) is appropriate.
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Figure 6.22. Constrained quadratic fit to the proton F (B) — m energy shifts of Figure 6.18.
The kyuq = 0.13727 ensemble has a pion mass of m,; = 570 MeV. The hadronic
Landau projection of Eq. (6.8) is used with the n = 3 k4 lowest eigenmodes.

Table 6.3. Magnetic polarisability values for the proton at each quark mass. The numbers in
parentheses describe statistical uncertainties.

m, (MeV) Kud B(x107%) fm?
702 0.13700 1.90(19)
570 0.13727  1.87(18)
411 013754 1.98(21)
206 0.13770  1.93(22)

Proton lattice summary

At each pion mass considered, a constrained quadratic fit has been performed and the

magnetic polarisability of the proton extracted from the quadratic fit coefficient. These

magnetic polarisabilities of the proton at four non-physical pion masses can be found in

Table 6.3. These results are made possible by the combination of the consideration of

Landau effects at both the quark and hadronic levels.
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Figure 6.23. Constrained quadratic fit to the proton E (B) — m energy shifts of Figure 6.19.
The kuq = 0.13754 ensemble has a pion mass of m,; = 411 MeV. The hadronic
Landau projection of Eq. (6.8) is used with only the n = 1 lowest eigenmode.
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Figure 6.24. Constrained quadratic fit to the proton F (B) — m energy shifts of Figure 6.20.

The k,q = 0.13770 ensemble has a pion mass of m,; = 296 MeV. The hadronic
Landau projection of Eq. (6.8) is used with the n = 3 k4 lowest eigenmodes.
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6.2.4. Hyperons

Hyperons are baryons which are composed of three valence light quarks with non-zero
strangeness, that is hyperons have at least one valence strange quark. There are a
number of hyperons which could be investigated, as shown in Figures 2.2 and 2.3 with

composition shown in Tables 2.3 and 2.4.

The hyperons selected here to be examined are the ¥ and the Z°. The X+ closely
resembles a proton with the negative down quark replaced with a negative strange quark.

Similarly the Z° is a neutron with the two down quarks replaced by two strange quarks.

While experimental results for hyperon magnetic polarisabilities are very difficult to
obtain [3,172,173| calculations in several model approaches [172-175| are beginning to
produce similar results. A first principles approach such as lattice QCD has considerable
scope to aid in discriminating between these different model approaches and to provide a

guide for future experiments.

Previous lattice QCD calculations using the background field method for hyperon
polarisabilities |176] used a non-uniform background field, introducing a systematic error
into the calculation. Using the field-quantisation condition of Eq. (3.99) we maintain a
uniform field. Another improvement herein is our correct treatment of the Wilson-term
additive mass renormalisation induced by the background magnetic field, as discussed
in Chapter 5. Finally the effects of quenched valence quarks are resolved in chiral

extrapolations section.

In this first examination of hyperon polarisabilities the gauge fields with k.4 =
0.13700, 0.13754, 0.13770 corresponding to m, = 702, 411, 296 MeV are used. The
addition of a strange valence quark requires a separate quark propagator inversion, in
addition to that of the two light quarks, and the fourth ensemble is not available at the

time of writing,.

>+ baryon

The X7 is a charged hyperon with valence quark content (uwws). This resembles the
proton with the proton’s down quark swapped for a strange quark. Investigating the
magnetic polarisability of the X% will hint towards the sensitivity of the magnetic

polarisability to the presence of the heavier strange quarks.
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Figure 6.25. X1 effective energy shift for the m, = 702 MeV ensemble. Details are as in
Figure 6.13.

As a charged baryon, the hadronic Landau level projection of Eq. (6.8) is used. Here

only the lowest lying eigenmode n = 1 is chosen.

The non-relativistic energy shift is considered for the ¥* in Figures 6.25 through
6.27. Only the lowest two energy shifts are considered due to the difficulty in obtaining
constant plateau fits at the third field strength. This is a common theme across the
hyperons considered herein. It may be that the level of source smearing appropriate for

the nucleon, as used here, is not as effective for the larger mass hyperons.

The ordering of the two energy shifts in each of Figures 6.25 through 6.27 is different.
In Figure 6.25

SE(kg=1)>0E (kg =2), (6.15)
while for Figure 6.26
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Figure 6.26. X1 effective energy shift for the m, = 411 MeV ensemble. Details are as in
Figure 6.13.
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Figure 6.27. X7 effective energy shift for the m, = 296 MeV ensemble. Details are as in
Figure 6.13.
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Figure 6.28. Constrained quadratic fit to the X* E (B) — m energy shifts of Figure 6.25.

The kyuq = 0.13700 ensemble has a pion mass of m,; = 702 MeV. The hadronic
Landau projection of Eq. (6.8) is used with only the n = 1 lowest eigenmode.

and for the lightest mass considered in Figure 6.27
5E(l€d:1)<5E(k‘d:2). (617)

However this change in ordering is not concerning. The ordering is determined by a
combination of the Landau level term o |ge B| /2m and the magnetic polarisability term
which contributes to the energy shift with an opposite sign. The change in ordering is
monotonic as a function of pion mass, indicating a monotonic variation of the magnetic

polarisability as a function of mass.

The fits to the energy shifts for the ¥ are of the same form as for the proton, they
are the constrained quadratic fit of Eq. (6.14) to ensure a unitary charge X7. These fits
are shown in Figures 6.28 through 6.30 where good fit behaviour and x?lof < 1.2 are
present. The resulting magnetic polarisability values from the quadratic term conversion
of Eq. (4.15) are presented in Table 6.4. For the ¥, the magnetic polarisability has a

clear quark-mass dependence as anticipated from the energy shifts.
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Figure 6.29. Constrained quadratic fit to the X* E (B) — m energy shifts of Figure 6.26.

The kyuq = 0.13754 ensemble has a pion mass of m,; = 411 MeV. The hadronic
Landau projection of Eq. (6.8) is used with only the n = 1 lowest eigenmode.

Table 6.4. Magnetic polarisability values for the T at each quark mass. The numbers in
parentheses describe statistical uncertainties.

m, (MeV) Kud B(x107%) fm?
702 0.13700 2.46(25)
411 013754 2.06(26)
206 0.13770  1.48(26)

As the X7 is the octet hyperon which is closest in form to the proton, it may be
illustrative to compare lattice magnetic polarisability values for these two particles.
The values are most similar at the intermediate pion mass ensemble of x4 = 0.13754,
corresponding to m, = 411 MeV. This is perhaps in contrast to the expectation that they
would be most similar when they are closest in mass on the m, = 702 MeV ensemble.
The difference between the X1 and proton suggests that the magnetic polarisability also

depends on hadron structure, rather than just the quark mass alone.
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Figure 6.30. Constrained quadratic fit to the X% E (B) — m energy shifts of Figure 6.27.

The kyuqg = 0.13770 ensemble has a pion mass of m,; = 296 MeV. The hadronic
Landau projection of Eq. (6.8) is used with only the n = 1 lowest eigenmode.

=0 baryon

Similar to the ¥, the Z° baryon closely resembles the neutron with quark content (u s s).

The down valence quarks in the neutron have been replaced with strange quarks.

The =0 is overall charge-less and hence a hadronic Landau projection is not appropriate.
A standard Fourier projection used. The same E(B) — M energy shift of Eq. (6.10) is

considered for the Z° and indeed all hadrons considered in this chapter.

The Z° energy shift in Figures 6.31 through 6.33 appears to become more difficult
to extract at heavier pion masses. This is contrary to expectations and likely purely to
the differing number of correlation functions analysed. For the three ensembles, labelled
kua = 0.13700, 0.13754, 0.13770, the number of sources used was ~ 3, 6, 3 respectively.
It should be noted that the statistical uncertainty on this latter, lightest mass ensemble
is greater than that for the other two ensembles. This is evident in the differing scales of
Figures 6.32 and 6.33.
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Figure 6.31. =9 effective energy shift for the m, = 702 MeV ensemble. Details are as in
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Figure 6.32. =0 effective energy shift for the m, = 411 MeV ensemble. Details are as in
Figure 6.13.
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Figure 6.33. =9 effective energy shift for the m,; = 296 MeV ensemble. Details are as in

Figure 6.13.
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Figure 6.34. Quadratic only fit of the magnetic-field induced energy shift in Figure 6.31, to
the magnetic-field quanta for the Z° on the m, = 702 MeV ensemble.
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Figure 6.35. Quadratic only fit of the magnetic-field induced energy shift in Figure 6.32, to
the magnetic-field quanta for the Z° on the m, = 411 MeV ensemble.
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Figure 6.36. Quadratic only fit of the magnetic-field induced energy shift in Figure 6.33, to
the magnetic-field quanta for the Z° on the m, = 296 MeV ensemble.
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Table 6.5. Magnetic polarisability values for the Z° at each quark mass. The numbers in
parentheses describe statistical uncertainties.

m, (MeV) Kud B (x107%) fm?
702 0.13700 2.37(43)
411 0.13754 2.01(14)
296 0.13770 2.68(32)

Table 6.6. Lattice magnetic polarisability values for the baryons considered at each quark mass
in units of x10* fm®. The numbers in parentheses describe statistical uncertainties.

Kud my (MeV) o BZJr p" B=
0.13700 702 1.90(19)
0.13727 570 1.87(18)
0.13754 411 1.98(21)
0.13770 296 1.93(22)

The quadratic fits in Figures 6.34 through 6.34 use the single quadratic fit function
of Eq. (6.11). These all display good fit behaviour to the two field strengths considered

and have a x2, s less than our preferred limit of 1.2.

Magnetic polarisability values for the Z° are reported in Table 6.5 for the three
gauge-field ensembles considered here. These values are not close to those of the neutron
in Table 6.2, even at heavy up and down quark masses suggesting that the strange quark
mass plays a significant role, perhaps changing the light up-quark contribution through an
environmental effect. Future studies should examine individual quark sector contributions
through the introduction of neutrally-charged quark flavours. This suggestion agrees

with the behaviour seen for the X7 .

6.2.5. Lattice Magnetic Polarisability Summary

Table 6.6 summarises the magnetic polarisabilities for all the baryons considered at each
quark mass. Through this table, it is easy to compare the magnetic polarisability of each

baryon on each ensemble.
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> > >
B B B

Figure 6.37. The leading order meson, M, loop contributions to the magnetic polarisability
of the baryon B. These contributions have no baryon mass-splitting effects.

It is clear that the magnetic polarisability of the baryons considered are all of similar
magnitude and sign but that the magnetic polarisabilities of the hyperons considered
are not necessarily similar to their closest proton or neutron neighbour. It is interesting
that the X" and neutron magnetic polarisability values both decrease as the physical
up and down quark mass is increased while the proton and Z° magnetic polarisability is

approximately constant across the range of pion masses considered.

6.3. Chiral effective field theory

Chiral effective field theory (xEFT) is the tool used to connect lattice QCD results at
finite-volume and unphysical quark masses to the physical world. This analysis generalises

that of Ref. [125] where extensions arise from the baryons considered herein.
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B B’ B

Figure 6.38. Leading-order meson, loop contributions to the magnetic polarisability of the
baryon B; allowing transitions to nearby and strongly coupled octet or decuplet
baryons, B’ and octet-meson, M, pairs.

6.3.1. Formalism

The chiral expansion considered for the magnetic polarisability has the general form

B5 (m2) = ag (A) + az (A) mfr+z BYE (m2,A) + Z pM B (m2,A) + O (m2),
M M, B’

(6.18)

where ag (A) and ay (A) are the residual series coefficients [145] which are constrained
by infinite volume corrected lattice QCD results and A is a renormalisation scale. The
leading order loop contributions M ” (m2, A) and M B’ (m2, A) are shown in Figures
6.37 and 6.38 respectively. Here Figure 6.38 allows for transitions of the baryon B to
strongly coupled baryons, B’ which are nearby in energy, through a meson, M, loop.

This is in contrast to Figure 6.37 which does not encounter baryon mass-splitting effects.
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=

These leading-order loop contributions have integral forms 125 in the heavy-baryon

limit [137| appropriate for a low energy expansion

2 1 E2u? (k, A)
™ k, M
g8 (2 ) =L A
& A7 288 73 f2 ’

w%vMA <3w,;’M+A> 1 k2 (8w27M+9w,;7MA+3A2>
X

§ 3 , (6.20)
SWE,M (WE,M + A)

respectively. Here w; ,, = \/EQ + m3, is the energy carried by the meson M with mass
mys and three momenta E, fr =92.4 MeV is the pion decay constant, xp and xp: are
the SU(3) flavour coupling coefficients for B and B’ with the meson M and u (k, A) is a

dipole regulator

w(, Ay = — (6.21)

(14 F2/m2)’

The dipole regulator ensures that only soft momenta flow through the degrees of freedom
of the effective field theory.

The renormalised low-energy coefficients of the chiral expansion are formed from the
residual series coefficients ag (A), as (A) and the analytic A-dependent contributions of
the loop integrals [139]. The full details of the renormalisation procedure are provided in
the Appendix of Ref. [139].

The loop integral of Eq. (6.19) contains the leading non-analytic contribution propor-
tional to 1/mjy; while the loop integral of Eq. (6.20) accounts for transitions to nearby
strongly coupled baryons B’. For a finite B’ — B mass splitting, A = mp, — mp, this
integral provides a non-analytic contribution proportional to (—1/A) log (my;/A) to the

chiral expansion.

The standard full QCD coefficients, xp and yg: must be altered to account for the
electroquenching of the lattice QCD calculations. As the background field is only present
on the valence quarks of the lattice QCD simulation, the lattice results do not include
the contribution of photon couplings to disconnected sea-quark loops of the vacuum.

The full meson dressing of Y EF'T includes these disconnected sea-quark loops and it is
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(a) The down quark loop diagram where the  (b) The up quark loop diagram where the two

two photons can couple to valence-valence, photons can couple to valence-valence, sea-
sea-sea or valence-sea quarks. sea or valence-sea quarks.
U
U
U
U > > \ \ U
u > > u
d > d

(c) The quark-flow diagram where the two
photons can couple only to valence quarks.

Figure 6.39. Decomposition of the process p — pn into its possible one-loop quark-flow
diagrams. The configuration of the two photon couplings to the valence and/or
sea quarks determines the coefficients of partially quenched chiral perturbation
theory.

thus necessary to model the corrections associated with their absence in the lattice QCD

calculations.

Partially quenched chiral effective field theory

The loop coefficients for partially quenched chiral perturbation theory (PQxPT) can
be determined by considering the two photon couplings to the intermediate meson of
the loop diagrams. By constructing quark flow diagrams, the loop diagram contribution
is divided into “valence-valence”, “valence-sea” or “sea-sea’” contributions. These labels
describe whether the two photons of Figures 6.37 and 6.38 couple to valence or sea quarks
in the intermediate states available in these processes. Due to the electroquenched nature
of the lattice QCD calculation, no valence-sea or sea-sea contributions are present in the

lattice QCD results.
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As an example; consider the proton with p — N 7. As there is no mass splitting
between B and B’, i.e. between p and N, this is an example of Figure 6.37. Further
select the p — p7® channel and write all possible quark-flow diagrams without attaching
external photons to the meson, as shown in Figure 6.39. The quark-flow diagram of Figure
6.39¢ has only valence quarks, and hence contributes only to the valence-valence sector.
The diagrams of Figures 6.39a and 6.39b contribute to all three sectors as the photon
lines may be attached to the valence or sea-quark lines of the intermediate meson. The
contributions to each of these sectors is proportional to the quark charges, i.e. for Figure

6.39b, the chiral coefficients of the leading non-analytic term of the chiral expansion are

Xo—v X qi, (6.22)
Xo—s X 2 Gy Gz, (6.23)
Xs—s X q%, (6.24)

where the factor of two on the valence-sea contribution reflects the two orderings of

photon couplings available. The total contribution vanishes

Xe X (242G, ¢a+ ) = (qu+qa)” = 0. (6.25)

By replacing the up or down quark sea-quark loops with a strange quark, the SU(3)
flavour couplings for the isolated disconnected sea-quark-loop flow can be obtained [177].

For the diagram in Figure 6.39b the SU(3) flavour coupling is
Xy o Xeowe =2 (D = F)?, (6.26)

where D+ F = g4 = 1.267 and the SU(6) symmetry relation provides F' = 2 D [141,143].

The valence-sea and sea-sea contributions for Figure 6.39b are therefore

Xa 9™ = 24, qu X)o+ = 4quqa (D — F)? (6.27)
XPoh — 232 . =262 (D —F)°. (6.28)

The full set of channels and contributions for the proton can be found in Tables B.1
and B.3. The valence-valence component can be found by subtracting the valence-sea
and sea-sea contributions from the total contribution which is known from standard

chiral perturbation theory.
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Finite volume corrections

Due to the periodicity of the finite-volume lattice, only discrete momenta are possible.
These obey the relation [11]

271'717;

ki: )
L

(6.29)

where k; is the momentum, n; is the momentum quanta and L = a N is the lattice size.
The continuous meson loop integrals of Eqgs. (6.19) and (6.20) are transformed into a
sum over the discrete momenta available on the lattice. Hence, there is a finite-volume
correction which is the difference between the loop sum and its corresponding loop

integral. This difference should vanish for all integrals as m, L becomes large [178|.

The loop — sum transformation takes the form

/d3k:—>(2LL3) > (6.30)

The finite volume sums are thus
oy o [
TR a— @) () (6.31)
SUM T __117T 26%37T31f3 )(13 1;3 ng A4 ) .

2 3

MB' (2 e 1 (2m)
A)=— /

soar (s A) =7 28873 2 \P' LB

kzzkyvkz

Xw%’MA <3WE,M+A>+E2 (SWEM+9WE,MA+3A2>. (6.32)

Sw%M (w,;’M + A)

To correct the lattice polarisability results, 5% (m?2), which are finite-volume and have

FvVC

only valence-valence contributions to infinite volume 3V (m?2), the process used is

(mﬂ_ lat ( )

FvC
v—v

ﬁSUM m AFV Z ﬁSUM mi,AFV)>

M,B’

_%

AA

5 (m2, A"V) + > pME (m2, AFV)> : (6.33)

M, B’
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where we note that the coefficients used in evaluating these integrals and sums reflect
only valence-valence contributions. The regulator parameter dependence of the integral

and sums used in calculating the finite-volume corrections has been made explicit by
APV,

The finite-volume corrections should be independent of the the regulator parameter;
this was examined in Ref. |[179] where it was shown that choosing A"V too small suppresses
the infrared physics that the finite-volume corrections are attempting to describe and
furthermore that the results saturate to a fixed result for large A”V. As such we adopt
the value ATV = 2.0 GeV as in Ref. [179)].

Extrapolation

In order to extrapolate to the physical regime where the pion has mass m, ~ 140
MeV, the residual series coefficients ag (A) and ap (A) are constrained by fitting to the

infinite-volume corrected lattice results

0 () = D0 BT (ma A) = Y BY T (m3, A) = ao (A) + az (A) mZ, (6.34)

M M, B’

where again v — v denotes the electroquenched valence-valence only contributions of the

loop integrals. The regulator parameter A is allowed to differ from the finite-volume

value of AV,

The value used here is A = 0.80 GeV. This value is adopted in preparation for
modelling of the missing disconnected sea-quark-loop contributions in the lattice QCD
calculations [144-148|. A = 0.80 GeV models a pion cloud contribution to masses 145/,
magnetic moments |146|, and charge radii [144|, which enables the correction to the pion
cloud encountered in unquenching to be modelled. This choice of regulator mass defines

a baryon core contribution as the missing sea-quark contributions are added [149].

Once the residual series coefficients have been determined, the magnetic polarisability
can be reconstructed at any value of m?2 using the chiral expansion of Eq. (6.18). In order
to account for the valence-sea and sea-sea loop integral contributions when doing this
extrapolation, the coefficients used are for the “total” process. The physical extrapolation
is provided by setting m, = 0.140 GeV.

In a similar manner, the fitted ag (A) and as (A) values can be used to provide a

target or expectation for future lattice QCD experiments by using the valence-valence
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o (m2,ATV) and 5%5/ (m2, A*Y) where we can adjust the lattice size. Such a use

case is shown in Figures 6.41 and 6.42.

6.3.2. Results

The steps required for a chiral effective field theory for the magnetic polarisability are

now clear. To summarise they are

1. Calculate magnetic polarisabilities at several values of the pion mass using lattice

QCD,

2. Determine the valence-valence chiral coefficients by subtracting sea-quark-loop

contributions from the “total” loop contributions,

3. Correct lattice results to infinite volume using Eq. (6.33) with the valence-valence

coefficients,
4. Fit the residual series coefficients using Eq. (6.34),
5. Use the chiral expansion of Eq. (6.18) with “total” loop contributions.

Chiral expansions for the neutron, proton, X, and Z° are considered as lattice

magnetic polarisabilities have been determined for all of these in the preceding sections.

All the SU(3) flavour couplings required are detailed in Tables B.1 through B.5.

Neutron

The results of the separation of the loop contributions into total, valence-sea and sea-sea
contributions for the neutron are shown in Table B.2 where the valence-valence can be

found by subtracting the valence-sea and sea-sea from the total

Xow =X = Xoms — Xoese (6.35)

The chiral expansion, using a regulator parameter value of A = 0.80 GeV provides a
magnetic polarisability of 3" = 2.06(26) x 10~* fm?® at the physical point. The numbers
in parentheses here describe the statistical uncertainty. The systematic uncertainty in
the higher order terms of the chiral expansion can be examined through variation of the

regulator parameter A.
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Figure 6.40. The magnetic polarisability of the neutron, 8™ from our chiral effective field
analysis (YEFT Prediction) and lattice results (FV Corr. t) of this chapter
are compared with experimental measurements. The error bar at the physical
point reflects systematic and statistical uncertainties added in quadrature.
Experimental results from Kossert et al. [126, 127|, the PDG |[3|, Myers et
al. [129] and Griesshammer et al. [128] are offset for clarity.

To ensure a robust estimation of the systematic error associated with the choice of
A, the regulator parameter is varied over the conservative range of 0.6 < A < 1.0. This
provides a systematic uncertainty of (f%g) x 10~* fm®. The magnetic polarisability of

the neutron predicted is thus
A" =2.06(26) (*9) x 10* fm®.

This result is in very good agreement with the neutron magnetic polarisability value
reported in Chapter 4 of 8" = 2.05(25)(19) x 10™* fm? using the U(1) Landau eigenmode
projection technique. This agreement highlights the success of both the U(1) Landau
projection approach and the SU(3) x U(1) eigenmode quark projection technique. Good

agreement is also seen with recent experimental measurements, as shown in Figure 6.40.

By using the fit coefficients ag (A), az (A) and the sum forms of the integrals 6%’1\34,

5%1@, predictions can be made for future lattice QCD calculations. The two figures



SU (3) x U(1) eigenmode projection 147

3.5 —— FV:3.0fmv-v —— FV: 7.0 fm v-v
FV: 4.0 fm v-v — Inf. Vol. v-v

—— FV: 5.0 fm v-v § Lattice Points
3.01 —— FV: 6.0 fm v-v # FV Corr. v-v

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
m?2 ( GeV? )

Figure 6.41. Finite volume extrapolations of 8" with valence-valence coefficients appropriate
for electroquenched lattice QCD simulations. The infinite-volume case is also
illustrated.

of Figures 6.41 and 6.42 show these predictions which are made for a range of lattice
volumes, 3.0 fm < L, < 7.0 fm. Figure 6.41 uses the valence-valence form of the
integral coefficient, these predictions are hence appropriate to a lattice QCD calculation
which is electroquenched. In contrast, Figure 6.42 uses the full QCD coefficients and is
appropriate for a simulation where the background field is present for the sea-quark-loops.
A conservative m, L, cut where masses are excluded if m, L, < 2.4 is applied to all
finite-volume extrapolation plots. It is interesting to note that even extremely large

lattice sizes such as Ly = 7.0 fm still differ from the infinite volume limit by ~ 6%.

The lattice data points are also shown in Figures 6.41 and 6.42 where they are slightly

it (m3)

of Eq. (6.34) or total (t) full QCD points, /Y (m2) are at the correct pion mass. These

“total” (t) corrected points are given by
PV ) = B (m2) — X (B2 (m, ) = 5117 (i, )

=30 (BYE (2, A) = B (2, 0)) (6.36)

M, B’

offset such that the finite-volume corrected (FV Corr.) valence-valence (v-v),
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Figure 6.42. Finite volume extrapolations of 5™ with total full QCD coefficients appropriate
for fully dynamical background field lattice QCD simulations. The infinite-
volume case relevant to experiment is also illustrated.

where v — v or t denotes the integral coefficients xpg, xp+ used.

Comparing Figures 6.41 and 6.42, one observes the effect of the inclusion of sea-quark-
loop contributions is similar in magnitude to the finite-volume corrections for the points

calculated on the lattice.

Proton

The analysis for the proton proceeds in an identical manner to that of the neutron,
excepting that the loop contributions are as in Table B.3. The chiral effective field theory

analysis produces a physical-value prediction of
AP =2.79(22) (113) x 107" fm®,

where the numbers in parentheses are statistical and systematic errors respectively.

A comparison to a selection of recent experimental results is shown in Figure 6.43.

Excellent agreement is observed between the result in this work and the experimental
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Figure 6.43. The magnetic polarisability of the proton, P, from the chiral effective field
analysis herein (yEFT Prediction) and lattice results of this chapter (FV
Corr. t) are compared with experimental measurements. The error bar at
the physical point reflects systematic and statistical uncertainties added in
quadrature. Experimental results from the PDG |3|, McGovern et al. [180],
Beane et al. [181], Blanpied et al. [182], Olmos de Ledn et al. [183|, MacGibbon
et al. |184] and Pasquini et al. [185] are offset for clarity.

results. This agreement validates our current understanding of QCD through the quark

projection technique and partially-quenched chiral effective field theory used herein.

In the same manner as the neutron, proton lattice QCD prediction plots are shown

in Figures 6.44 and 6.45. Here the 7.0 fm result still differs from the infinite volume by

~ 4%.
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Figure 6.44. Finite volume extrapolations of 5P with valence-valence coefficients appropriate
for electroquenched lattice QCD simulations. The infinite-volume case is also
illustrated.
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Figure 6.45. Finite volume extrapolations of 5P with total full QCD coefficients appropriate
for fully dynamical background field lattice QCD simulations. The infinite-
volume case relevant to experiment is also illustrated.
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Figure 6.46. The magnetic polarisability of the X, %", from the chiral effective field analysis
herein (xEFT Prediction) and lattice results of this chapter (FV Corr. t) are
compared with a set of model approaches. The error bars on our physical value
reflect systematic and statistical uncertainties added in quadrature. Results
from Gobbi et al. [174|, Aleksejevs et al. [172|, Deshmukh et al. [173| and
Tanushi et al. [175] are plotted without uncertainties at the physical point. A
previous lattice calculation from Lee et al. [176] ( Lattice: Lee ) is shown at the
appropriate pion mass.

>+ Baryon

We continue with the analysis methods of the previous sections. The loop integral
coefficients for each channel for the ¥ are presented in Table B.4 where we consider
M = 7, n for the integral of Eq. (6.19) with B = X. For the integral with a finite mass
splitting, A = Mg, — Mp of Eq. (6.20), we consider M = K, m, n with B’ = N, =, A

and =*.

The chiral effective field theory analysis herein predicts
B =1.82(26) (F1) x 107 fm®, (6.37)

at the physical point, a significant reduction from the proton’s polarisability of P =
2.79(22) (*13) x 107* fm®.
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Figure 6.47. Finite volume extrapolations of BZ+ with valence-valence coefficients appropriate
for electroquenched lattice QCD simulations. The infinite-volume case is also
illustrated.

A comparison to a selection of model calculations at a physical pion mass and a
non-physical mass lattice result is shown in Figure 6.46. The scatter in the model results
is large but there is qualitative agreement with the value predicted by Aleksejevs et

al. [172|. The previous lattice result by Lee et al. [176] also agrees.

Finite-volume predictions for both electroquenched and full QCD lattice simulations
are shown in Figures 6.47 and 6.48 for a range of quark masses. It is interesting to note
that a lattice of size L, = 7.0 fm now gets within 2.5% of the infinite-volume results,

compared to ~ 6% and ~ 4% for the neutron and proton respectively.

The result presented herein poses a challenge for both theoretical models and experi-

mental measurements of the magnetic polarisability of the T,
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Figure 6.48. Finite volume extrapolations of ,82+ with total full QCD coefficients appropriate
for fully dynamical background field lattice QCD simulations. The infinite-
volume case relevant to experiment is also illustrated.

=% Baryon

The chiral effective field theory analysis for the Z° is built upon the lattice QCD results

of Table 6.5. We consider 7, n and K-meson loop transitions to the =, 3, =5, =, ¥*

l+

5 comprised of three valence

and 2~ baryons. The =54 is an octet baryon with J© =

strange quarks, encountered in partially quenched xPT'.

The loop integral coefficients required are presented in Table B.5 and we henceforth

follow the analysis procedure already discussed.

The chiral effective field theory prediction for the magnetic polarisability of the =Z° at
the physical point is

A% =2.34(27) (F1) x 107 fm?, (6.38)

where the numbers in parentheses represent statistical and systematic errors respectively.
This time, the polarisability is similar to the neutron with 5" = 2.06(26) (*3;) x 10* fm?.
Figure 6.49 shows a comparison of this result to recent model and lattice calculations.

Qualitative agreement is seen with the Computational Hadronic Model (CHM) chiral
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Figure 6.49. The magnetic polarisability of the Z°, ,6’50, from the chiral effective field analysis
(xEFT Prediction) and lattice results of this chapter (FV Corr. t) are compared
with a set of model approaches. The error bars on our physical value reflect
systematic and statistical uncertainties added in quadrature. Results from
Gobbi et al. [174], Aleksejevs et al. [172] and Deshmukh et al. [173] are plotted
without uncertainties at the physical point. A previous lattice calculation from
Lee et al. [176] ( Lattice: Lee ) is shown at the appropriate pion mass.

perturbation theory (xPT) of Ref. [172| as with the 3. The lattice QCD result of
Ref. [176] for the =° does not agree with our result, in contrast to the X+ where good
agreement was observed. Clearly further progress in experimental and theoretical efforts

is required in order to fully understand the magnetic polarisability of the Z°.

Finite-volume predictions for the Z° at a range of pion masses to guide future lattice
QCD work are presented in Figures 6.50 and 6.51. Here the lattice with side length
L, = 7.0 fm reproduces the infinite-volume result to within 1%. Considering this same
difference for the neutron, proton and X% illustrates how weak coupling to the pion

suppresses finite-volume effects.
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Figure 6.50. Finite volume extrapolations of BEO with valence-valence coefficients appropriate
for electroquenched lattice QCD simulations. The infinite-volume case is also

illustrated.
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Figure 6.51. Finite volume extrapolations of 550 with total full QCD coefficients appropriate
for fully dynamical background field lattice QCD simulations. The infinite-
volume case relevant to experiment is also illustrated.
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Table 6.7. Predicted magnetic polarisability values for the octet baryons considered herein at
the physical pion mass and each quark mass considered using total full QCD coef-
ficients using the chiral effective field theory analysis of Section 6.3. The numbers
in parentheses describe statistical and systematic uncertainties respectively.

Kud my (MeV) o 5E+ B BEO
0.13700 702 1.91(19) 2.47(25) 1.92(12) 2.38(43)
0.13727 570 1.89(18) — 1.68(10) —
0.13754 411 2.03(21) 2.09(26) 1.58(29) 2.03(14)
0.13770 296 2.08(22 1.56(26) 1.42(37 2.73(32)

Physical 140 2.79(22) (*13)  1.82(26) (*I) 2.06(26) (*35) 2.34(27) (*3)

6.4. Summary

A smeared source and the SU(3) x U(1) eigenmode projected quark sink which encap-
sulates both QCD and Landau level physics have been used to calculate baryon octet
correlation functions in the presence of external magnetic fields. Correlation function
ratios are used to form energy shifts from which the magnetic polarisability of the hadron
can be extracted. A chiral effective field theory analysis is used to relate lattice QCD

results to the physical regime.

The SU(3) x U(1) eigenmode projected quark sink is crucial in isolating the energy
shifts required to extract the magnetic polarisability. A standard smeared or point
sink does not produce correlation functions which couple only to the lowest-lying energy
eigenstate in a background field. At the hadronic level, a Landau wave function projection
onto the proton and X1 two-point correlation functions assists in the isolation of these
states. This is as these hadrons are charged, and hence experience hadronic Landau
level physics in a uniform magnetic field. The combination of these techniques enables
constant Euclidean-time plateau fits in the magnetic polarisability energy shift of the five
baryons considered. This is the first time a single technique has been used to produce

magnetic polarisability energy shift plateaus for all of these baryons.

Heavy-baryon chiral effective field theory and lattice QCD simulations at several
pion masses have been used to connect to the physical regime. The resulting theoretical
predictions for the magnetic polarisabilities along with the infinite-volume total full QCD

corrected (FV Corr. t) lattice points are shown in Table 6.7. These corrected points
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Figure 6.52. Comparisons of 5P and ﬁEJr with total full QCD coefficients at each quark
mass and the extrapolated, physical point. FV Corr. t results of this chapter
are at the correct m2 value while lattice points are offset for clarity. The
infinite-volume cases relevant to experiment is also illustrated.

form our best evidence for the quark mass dependence of the magnetic polarisability of

each baryon in full QCD and may provide interesting tests for model builders.

Comparisons between the proton and X% where the singly represented down quark
is changed to a strange quark and the neutron and =Z° where the doubly represented
down quarks are changed to strange quarks are presented in Figures 6.52 and 6.53. The
physical predictions suggest that the change of the doubly represented down quark to a
strange quark as we examine n and Z° has a smaller effect on the magnetic polarisability
than changing the singly represented down quark in the proton to a strange quark in the
Y. This result informs the method by which the magnetic polarisability is manifest as
the chiral limit is approached; i.e. the magnetic polarisability is largely determined by
the singly represented quark. Examining the quark mass dependence of the magnetic
polarisability paints a more complicated picture. There is clearly a complicated quark
mass dependence visible in Figure 6.53 where despite the neutron and =% extrapolated
magnetic polarisabilities being similar, the largest difference at the three quark masses

investigated is at the lightest pion mass considered.
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Figure 6.53. Comparisons of ™ and BEO with total full QCD coefficients at each quark
mass and the extrapolated, physical point. FV Corr. t results of this chapter
are at the correct m2 value while lattice points are offset for clarity. The
infinite-volume cases relevant to experiment is also illustrated.

This quark mass dependence is a complicated challenge to model builders to provide
insight into the physics which underlies these observations. Lattice QCD is well placed
to examine the environmental sensitivity of the magnetic polarisability by considering
baryons with neutral and charged quarks. It is trivial to construct a X1 with neutrally

charged up quarks and a charged strange quark and the opposite.

These predictions are founded upon ab initio lattice QCD simulations using effective-
field theory techniques to account for the finite volume of the periodic lattice, disconnected

sea-quark-loop contributions and an extrapolation to the light quark masses of nature.

The nucleon polarisability predictions are in good agreement with current experimental
measurements and pose a challenge for greater experimental precision. An excellent
review of recent results in nucleon polarisabilities is presented in Ref. [130]. There are
few experimental results for hyperon magnetic polarisabilities and model calculations
are similarly diverse in results. The chiral extrapolation performed herein agrees well
with a subset of model approaches although further theoretical and experimental effort

is needed in order to fully understand hyperon magnetic polarisabilities.
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The lattice QCD simulation results presented in this chapter are electroquenched;
they do not directly incorporate sea-quark-loop contributions from the magnetic field.
Incorporating this effect would require a separate Monte Carlo simulation for each
magnetic field strength considered and as such is prohibitively expensive. The relativistic
energy shift used in Chapter 5 is another avenue for investigation; this would require
improvements in lattice precision in order to successfully fit the E' (B) + M energy shift

and hence construct the relativistic energy shift.
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Chapter 7.

Pion polarisabilities

Pion electric (o) and magnetic (5,) polarisabilities provide insight into the response
of pion structure to an electric or magnetic field and can be experimentally determined
using Compton scattering experiments. An example is the v 7 — 7 process [186-189)|

where the polarisabilities describe the scattering angular distribution [189-193].

The pion polarisabilities have a long history of study in various theoretical frameworks.
One of the most successful approaches used is chiral perturbation theory [165,194,195]
where good agreement with experimental results is possible [165]. Alternate methods
included the linear o model [196| and dispersion sum rules [197-199|. Calculations using
lattice QCD and the background field method exist [110,111] and we will advance these

using the novel techniques introduced in this thesis.

The introduction of the BFCC fermion action in Chapter 5 allows the magnetic
polarisability of the pion to be calculated using Wilson-type fermions. Previous studies
used the prohibitively expensive overlap action [110| and small volumes. In this chapter
the same 2 + 1 flavour dynamical gauge configurations provided by the PACS-CS
collaboration 25| are considered. Calculations are performed at several non-zero pion
masses in order to motivate a chiral extrapolation to the physical regime. Further
developments in chiral effective field theory are required in order to enable extrapolations

to the physical regime which incorporate finite-volume and sea-quark-loop corrections.

7.1. Interpolating operators

Recalling the meson octet of Figure 2.1, there are three pion species; the 7, 7= and 7°.

Here the 7+ and 7° are considered and the 7~ polarisability can be inferred from the 7+

161
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results. The standard psuedoscalar meson interpolating operator

X=774q (7.1)

is used for each of these, where the quark content is varied appropriately. For the 7,

the annihilation operator is
mt 3
X" =dysu, (7.2)
For the ° we consider the wu and dd contributions separately, defining
=Uvu and X =dvs (d) (7.3)

Due to the mass degeneracy of the lattice QCD simulation, these two neutral pion
operators differ only by the external magnetic field strength experienced by the quarks.
This degeneracy enables the 70 and 7Y to be considered as magnetic field offset analogues
of each other. The 7° interpolating operator of Eq. (7.3) contains both the connected
portion of the neutral pion correlator as shown in Figure 3.5a and the disconnected loops
of Figure 3.5b. As the flavour-diagonal and flavour-crossed quark-disconnected loop

contributions combine with relative signs, we focus on the connected contributions.

The same source smearings used in Chapter 6 are used here. In this way, QCD
excited state effects are minimised. The SU(3) x U(1) eigenmode projection technique
introduced in the previous chapter is used to provide a representation of quark level
Landau effects. This is particularly necessary for the neutral pion as no hadronic level
Landau wavefunction projection is appropriate. Such a hadronic projection is used for
the 7+, where in accordance with Figure 6.6, only the first of the degenerate eigenmodes
is used. The combination of these techniques, where appropriate, enable the formation

of the energy shift plateaus crucial for extraction of the magnetic polarisability.

7.2. Magnetic polarisability

The formalism and techniques of Section 5.3.3 are used to obtain the magnetic polar-
isability from the two-point correlation functions discussed above. Results and fits are

reported for both the charged and the neutral (79) pion.
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Figure 7.1. Charged pion effective energy shift (E (B) + m,+) from Eq. (5.24) on the m, =
702 MeV ensemble. The shaded regions illustrate the fit window selected. The
three smallest field strengths are illustrated.

Recalling the relativistic form of the energy-field relation of Eq. (3.100), we consider

the relativistic energy shift
E*(B) = (E(B) +mg+) (E(B) —mu+) = |ge Bl — A7 my, Be+ e B' + O (B?), (7.4)

where the lowest lying Landau level assumption has been made.

7.2.1. Charged pion

The charged pion takes advantage of the superior energy eigenstate isolation offered by
the hadronic Landau eigenmode projection. This enables the long energy shift plateaus
visible in Figures 7.1 through 7.8. It is particularly significant that it is possible to
fit plateaus to the (E (B) + m,+) energy shift of Figure 7.7. This is the lightest mass
considered, and the (E (B) 4+ m,+) energy shift of Eq. (5.27) compounds correlated QCD

fluctuations between the zero and non-zero magnetic field strength correlation functions.

The full range of (E (B) + m,+) and (E (B) — m,+) energy shift fits are presented

here in order to showcase the effectiveness of the SU(3) x U(1) quark level eigenmode
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Figure 7.2. Charged pion effective energy shift (E (B) — m,+) from Eq. (5.25) on the m, =
702 MeV ensemble. The shaded regions illustrate the fit window selected. The
three smallest field strengths are illustrated.
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Figure 7.4. Charged pion effective energy shift (E (B) — m +) on the m, = 570 MeV ensem-
ble. Details are as in the caption of Figure 7.2.
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Figure 7.5. Charged pion effective energy shift (E (B) + m,+) on the m, = 411 MeV ensem-
ble. Details are as in the caption of Figure 7.1.
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Figure 7.6. Charged pion effective energy shift (E (B) — m,+) on the m, = 411 MeV ensem-
ble. Details are as in the caption of Figure 7.2.
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Figure 7.7. Charged pion effective energy shift (E (B) + m,+) on the m, = 296 MeV ensem-
ble. Details are as in the caption of Figure 7.1.
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Figure 7.8. Charged pion effective energy shift (E (B) — m +) on the m, = 296 MeV ensem-
ble. Details are as in the caption of Figure 7.2.

projection technique when combined with a hadronic Landau wavefunction projection.
The isolation present in the energy shifts is a result of the detailed projection treatment of
the effects of the background field at the quark level. These results represent a substantial
improvement in our ability to fit constant Euclidean time plateau fits to these energy
shifts.

The fit performed to the 7 energy of Eq. (7.4) as a function of field strength could
take the from

E? (kg) —m? = c1 kg + o k3, (7.5)

where ¢; and ¢y are fit coefficients with units matching those of E? (B) as k, is the
unit-less minimal field quanta of Eq. (3.99). In the same manner as the proton and X
fits considered last chapter, this fit would allow the charge of the 7™ to differ from one.

As such the ¢ = 1 constrained energy shift is considered

E*(B) —m? — |ge Bl = A7 my B, le B + O (B%), (7.6)
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Figure 7.9. Constrained quadratic fit to the m, = 702 MeV (E2 (B) — m72r+) energy shift
formed from Figures 7.1 and 7.2. The shaded region indicates the 1o statistical
uncertainty through the Jackknife method.

and the appropriate fit function is

E? (ky) —m? — |qe B| = ez k3. (7.7)

This fit function is used for each of the four relativistic energy shifts formed from the
energy shifts of Figures 7.1 through 7.8 and the resulting fits for each of the four masses
considered are shown in Figures 7.9 through 7.12. Each of these fits describes the data

well with a x3,, beneath our limit of x3,; < 1.2 and close to one.

The resulting magnetic polarisability values are shown in Table 7.1. These values
are not in agreement with the current experimental value of 5.+ = —2.0+ 0.6 £ 0.7 X
107* fm3 [3| (where the standard o, = — 3, assumption has been made) but this is not

unexpected. The lattice calculations are performed with the standard limitations of
e Heavier than physical pion (quark) mass,

e Finite volume,
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Figure 7.10. Constrained quadratic fit to the m, = 570 MeV (E2 (B) — mi+) energy shift
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Table 7.1. Magnetic polarisability values for the charged pion 7" at each quark mass. The
numbers in parentheses describe statistical uncertainties.

my (MeV) Kud B(x1071) fm3
702 0.13700 0.255(56)
570 0.13727 0.275(54)
411 013754 0.355(62)
296 0.13770  0.35(11)

e Electro-quenching effects - the “sea” quarks do not experience the background

magnetic field.

All of these may have a significant effect on the magnetic polarisability value. The
chiral effective field theory calculations of Chapters 4 and 6 shown in Figures 4.14 and
6.42 for the neutron show a strong dependence of the magnetic polarisability on the
volume considered. Previous lattice QCD calculations [200,201| of the closely related
electric polarisability have shown a potential sign crossing for a,+ as a function of pion
mass so the pion mass may also have a strong effect on the magnetic polarisability

as we approach the physical regime. These results will serve as valuable input to a
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chiral effective field theory analysis incorporating finite-volume effects and accounting

for sea-quark contributions.

7.2.2. Neutral pion

In considering the neutral pion in lattice QCD one usually focuses on the connected
contribution of Figure 3.5a. The increased expense of computing the disconnected
diagram of Figure 3.5b, combined with the cancellation of terms for the pion, make the

disconnected contribution particularly challenging.

The magnetic polarisability of the neutral pion is difficult to extract experimentally
1202| but the combination (o + 3)_, has been extracted [197,203| with reasonable success.
The difference combination, (o« — ) o is more difficult. There also exists calculations in
different theoretical models [164|, with a two-loop chiral perturbation theory calculation

being particularly notable [204].

Earlier lattice QCD simulations have been performed in order to investigate the
magnetic polarisability of the neutral pion, 0 [110,111]. These results use only the
aforementioned connected diagrams and have only qualitative agreement with both the

experimental results and the chiral perturbation theory results of Refs. [164] and [204].

We fit using the fit process and method of Section 5.3.3 where here the fit function is
E? (kg) — m* = o k3, (7.8)

requiring the (E (B) + myo) and (E (B) — myo) energy shifts.

The (E (kq = 3) + myo) energy shift for the largest field strength considered is too
noisy to accurately fit on each of the four ensembles considered. As such only the two
lowest field strengths are used when extracting the magnetic polarisability for the neutral
pion. These energy shifts are displayed in Figures 7.13 through 7.20 where it obvious that
the (E (B) 4+ myo) energy shift is substantially harder to determine than (E (B) — mo).
This is due to the compounding rather than cancellation of correlated QCD fluctuations
in the ratios of Eqgs. (5.24) and (5.25). This is particularly obvious in Figure 7.19 which

is the lightest mass ensemble considered.

It is possible to fit a single quadratic to the B dependence of the E? (B) — mio energy
d

shift on each of the four ensembles considered. The success of the quadratic only fit for
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Figure 7.24. Quadratic only fit to the 7 m, = 296 MeV <E2 (B) — mfr()) energy shift formed
d
from Figures 7.19 and 7.20. Details as in Figure 7.9.
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Table 7.2. Magnetic polarisability values for the neutral pion 7° at each quark mass. The
numbers in parentheses describe statistical uncertainties.

my (MeV)  kyg BT (x107%) fm® g™ (x10~*
702 0.13700 0.900(17)
570 0.13727 0.872(16) 2.18
(33)
(35)

411 0.13754 0.766(33
296 0.13770 0.754(35

these highly precise pion correlation function energy shifts suggests that higher order
contributions in B are negligible. Each of the fits in Figures 7.21 through 7.24 fit the
data well,and have good x7,; values. These x3,, values are less than our limit of 1.2 and

are also substantially larger than zero.

The magnetic polarisability is extracted from the quadratic fit coefficient using the
relation of Eq. (5.32). The resulting magnetic polarisability values are reported in Table
7.2 in their physical units of x10~* fm®. Although these results are from the dd pion
correlation, we can relate these results to the full neutral pion correlator as the uu pion

is simply the dd pion in a field of twice the magnitude,
By (B/2) = Eqg (B) (7.9)
Considering the dd and Tu relativistic energy shifts
EZy (B) = m20 = —4mmy Be |B" + O (B?) | (7.10)
and
E2y (B) —m2 = —Ammg By |BI + O (B%) (7.11)

where we have allowed the Tu and dd pions to have differing magnetic polarisabilities

allows us to write

2

b +0(B?)

2 2 _
EL (—) — Mo = —4 T My fBro

1
= —4mme fry 5 |B|> + 0 (B?) (7.12)
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Hence

E2y (B) —mZ = —4Amwmz B9 | B + O (B°)

Ta

1
:_47Tm7rﬁ7r81 ‘BF—FO(B?’)’ (713>

where we have used Egs. (7.9) and (7.12). Thus

1
Z 571'3 = 57‘(‘8
- ﬂﬂg = 4ﬁ7r2. (7.14)

The magnetic polarisability of the full neutral pion is then the average of the wu and dd

polarisabilities

Bro = 5 (Bug+ B

(Bag+48) =

NN =
N | Ot

Brs-

0
d

(7.15)

This value is also reported in Table 7.2.

There is only a small amount of variation in the resulting magnetic polarisability
values as a function of pion mass. This is in contrast to the neutron. The 57r2 sit in
between the one-loop and two-loop results of Ref. [164]. The full neutral pion results,
using Eq. (7.15) are in good agreement with a number of the theoretical and experimental
approaches [202|. However it must be noted that we consider only the connected parts of

the neutral pion correlator here.

It is interesting that the 79 magnetic polarisability values in Chapter 5 do not agree at
the 10 level with the values found in this chapter on the same ensembles. This is because
the results in Chapter 5 used a point sink rather than the SU(3) x U(1) eigenmode
projected sink used in this chapter which better captures the physics associated with
an external magnetic field. The plateau isolation using the eigenmode projected sink is

much better than that using a point sink.
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Figure 7.25. Magnetic polarisability of the pion as a function of m2.

7.3. Summary

The neutral and charged pion magnetic polarisabilities have been calculated using lattice
QCD. These calculations are the first systematic study of pion magnetic polarisabilities
across a range of pion masses which used a fermion action free of contaminating magnetic-
field dependent mass-renormalisation effects. This fundamental step forward in our
understanding of this important property is made possible by the use of the SU(3) x
U(1) eigenmode quark-projection technique, Landau-wavefunction hadronic-projection
technique and the background-field-corrected clover fermion action. A comparison

Y results is presented in

between the charged 7", neutral pion 79 and neutral pion 7
Figure 7.25 as a function of pion mass where the precision granted by the SU(3) x U(1)

eigenmode projection technique and pion correlation functions is clear.

The charged pion magnetic polarisability differs quite substantially from its physical
value of BPWs=+ = —2.0F0.6F0.7x 10~* fm? (derived under the standard assumption that
ap++ P+ =0) |3
applicable to the results considered herein [179,205| necessitating the development of

. Existing chiral perturbation theory work [165] is not straightforwardly

improved chiral effective field theory methods. To connect the results herein to experiment,

one could formulate chiral effective-field theory in a finite-volume to determine the finite-
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volume corrections. Similarly, corrections due to the electroquenched nature of our
calculation can be addressed using the methods of partially quenched chiral effective
field theory.

Further investigation using lattice QCD could focus on doing the full neutral pion

correlator

1, _

Xe = s (@ (@) ysu(z) —d (@) 1 d(z)), (7.16)
including the disconnected loop of Figure 3.5b. The full correlation function requires the
x to x loop propagator. The standard method to calculate this is the same as for all-to-all
propagators, via stochastic estimation of inverse matrix elements. An introductory

discussion can be found in Refs. [170] and [171| and an application in Ref. |206].

Similarly the background field could be extended to the “sea” quarks of the simulation
at gauge field generation time. This requires a separate set of gauge fields for each field

strength and as such is prohibitively expensive as correlations are lost.
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Chapter 8.
Conclusions & Future Work

This thesis presents details of work performed to calculate the magnetic polarisabilities of
hadrons using numerical simulations of lattice Quantum Chromodynamics (QCD) with
the background field method. In Chapter 2, the basic properties of octet mesons and
baryons and the decuplet baryons are touched upon and the path integral approach to
QCD considered.

Chapter 3 details the methodology for lattice QCD calculations of observables. The
lattice spacing and finite-volume are responsible for unphysical lattice artefacts which are
controlled using a variety of improved methods. The methods used herein are discussed

in detail ahead of their implementation in Chapter 5.

The magnetic polarisability of the neutron is calculated in Chapter 4. We demonstrate
how the inclusion of Landau level physics at the quark level through the U(1) Landau-
eigenmode quark-propagator-projection technique enables the production of the effective
energy shifts required to calculate the magnetic polarisability. These effective energy
shifts plateau early and are easily fit. Higher order contributions in the energy-field
relation were taken into account when fitting the effective energy shifts as a function of
external magnetic-field strength and found to be negligible in comparison to existing
statistical uncertainties. A chiral effective field theory analysis, incorporating finite-
volume and sea-quark-loop effects is used to predict the magnetic polarisability of the
physical neutron to be " = 2.05(25)(19) x 1073 fm? where the numbers in parantheses
represent statistical and systematic errors respectively. This prediction is in agreement

with a number of experimental measurements.

In Chapter 5, a field-dependent additive quark-mass renormalisation is examined.

This lattice artefact is introduced when a background magnetic field is used with a fermion
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action containing the Wilson term. This problem is shown in the free-field limit. We then
demonstrate how a tree-level clover term removes the additive mass renormalisation due
to the Wilson term in this limit. In the transition to full QCD, the clover coefficient is
renormalised away from the tree-level value. We show how this prevents the cancellation
of the Wilson and clover field-dependent quark mass renormalisations. By separating the
QCD and the analytically known background field contributions to the clover term, the
field-dependent mass renormalisation due to the Wilson term is removed. Free of this
issue, the magnetic polarisability of the neutral pion is investigated using a point sink

and the relativistic magnetic-polarisability energy shift.

Inspired by the success of the U(1) Landau eigenmode projection method, in Chapter
6, we consider the eigenmodes of the SU(3) x U(1) lattice Laplacian. These eigenmodes
are used to project the quark propagator. Neutron, proton, X+ and Z° effective energy
shifts are calculated. The effective energy shifts for each of these baryons plateau, such
that is possible to find constant Euclidean time fits. For the charged baryons, a lattice
Landau-eigenmode projection is utilised at the hadronic level. This takes the place of
the Fourier projection to definite momenta and is crucial in isolating the lowest-lying
Landau level energy eigenstate of the baryon. From the determined energy shifts, fits as
a function of field strength are performed and the magnetic polarisability of each of these
baryons determined. The chiral effective field theory analysis of Chapter 4 is extended to
account for the baryons considered herein and predictions of the magnetic polarisability of
the neutron, proton, ¥ and =% at the physical point are made. These predictions are the
first calculations using lattice QCD and the background field method combined with an
extrapolation which accounts for finite-volume effects and sea-quark-loop contributions.
The hyperon magnetic polarisabilities in particular, serve to guide future experimental

and theoretical efforts to understand the underlying dynamics.

Finally, we return to the pion. Using the techniques assembled in the preceding
chapters, the magnetic polarisabilities of the charged and neutral pions are calculated.
This calculation is the first systematic calculation using Wilson fermions free of magnetic-
field dependent quark-mass renormalisation across a range of pion masses. This is a
fundamental step forward in our understanding of pion polarisabilities which is made
possible by the use of the SU(3) x U(1) quark-propagator projection technique. The
energy eigenstate isolation present in the effective energy shifts required for the relativistic
energy shift is directly due to the consideration of Landau physics at both the quark and
the hadronic level. The neutral pion magnetic polarisability results presented herein agree

well with chiral perturbation studies and both neutral and charged pion polarisabilities
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at all pion masses considered are provided to motivate future chiral extrapolations to the

physical regime addressing finite-volume and sea-quark contributions.

Overall the calculations performed in this thesis have been successful. A unified
method for isolating the lowest-lying energy eigenstate for both charged and neutral
hadrons in a background magnetic field has been developed. This, along with the removal
of the field-dependent additive-mass renormalisation due to the Wilson term has enabled
the first systematic study of octet baryon and pion magnetic polarisabilities using lattice
QCD across a range of pion masses. The range of pion masses enables a chiral effective
field theory analysis to produce physical predictions for the magnetic polarisabilities of

the neutron, proton, ¥+ and =°.

In the future, we see a number of avenues for improvement and further development of
these calculations. One such avenue is the inclusion of disconnected contributions in the
neutral-pion correlation function; as the down and up quarks in an external magnetic field
are no longer degenerate, these contributions have the potential to be substantial. The
hyperon polarisability calculations hint at an environmental sensitivity of the magnetic
polarisability contributions; this sensitivity could be further examined and understood
by considering partially charged baryons. Here only the singly-represented or doubly-
represented quarks would experience the external magnetic field rather than all three
quarks. Simulations over a range of lattice volumes to fully account for finite-volume
effects and calculations at lighter pion masses are also desirable. Research aimed at
understanding the structure of hadronic excitations can also benefit from the techniques
developed herein. Using an eigenmode projected quark propagator and the variational
method one may be able to determine magnetic moments and polarisabilities of excited

states.



186



Appendix A.

Gamma Matrices

Drawing from Ref. [15] a brief discussion of the Pauli, gamma and Gell-Mann matrices

follows.

A.1. Pauli Matrices

The Pauli spin-matrices satisfy

0; 0k :5jk+i6jklal,

010203 :7:,

for 7, k, [ =1,2,3 and are

The Pauli matrices are often written as ¢ = 0, 2,3.

A.2. Gamma Matrices

The gamma matrices satisfy the anti-commutator relation

{7/17 YW= 20, (A.2)
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A 2 ® 2 block notation is usually used to represent the gamma matrices; here the gamma

matrices in the Dirac representation are

0 I o ~ 0 &
v = , 7= (A.3)
0 —I —ad 0
The last gamma matrix, -5 is
; 0 t 01
Y5 =1 V123 = Vs T I o (A4)

In the Pauli representation, the gamma matrices are Hermitian

I 0 . 0 —icd
Y4 = ) Y= ) (A5>
0 —-I 1id 0
and s is
0 T 0 I
Vs =MV =V = — - (A.6)

This is also known as the Sakurai representation of the gamma matrices |207| and is the

form used in calculating the correlation functions of this thesis.
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A.3. Gell-Mann matrices

The eight 3 x 3 Gell-Mann matrices are |9]

010 0 -1 0 1 0 0
thb=|(1 0 0| t2=11 0 O0]ts=1]0 —1 0
000 0 0 0 0 0 0
0 01 00 —1 000
lg=10 0 0| ts=]10 0 0 |t6=]0 0 1
100 10 0 010
1
00 O 7 0 0
_ — 1
tz=10 0 —1]ts=1] 0 7 0 (A.7)
-2
01 0 0 0 e
A.4. Useful Identities
A number of useful identities are presented.
d¢b=a-b—ioc" a"b” (A.8)
ot = —g" (A.9)

The inverse of linear combinations of gamma matrices is (a,b,) € R is [11]

4 -1 4
. al—iy>, ;7"
(a]l—l—z E y“bﬂ> = a”ZZ L m - (A.10)
p=1 p=1 "p
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Appendix B.

Lattice Appendix

B.1. Link variable gauge transformation

The gluon fields are represented by link variables which are parallel transport operators

U,(z) = P exp {—z’ g / o dzﬂAN(z)] .

We now apply the gauge transformation property of A, of Eq. (2.9) to this to obtain

Uu(2) 55 P exp {—z’ g / o <dz,@ (2) Au(2) Q1 (2) +§ (0,0(2)) O (z)>] (B

A path ordered exponential of a function a(¢) may be written

N—o0

t
P [— / dt’a(t’)] = lim [t ATzl | ouin A1 (B.2)
0

where t; =0, ty =t and ¢ = 1,..., N such that the integral range is partitioned into
. _ tn—ti ¢
equal slices of length At = =2 = &

Also useful is the relation

exp [i g Q (z) Au(z) QY ()]

=Q(z) 9@ Qf (2), (B.3)
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Now using Eqs. (B.2) and (5.3); Eq. (B.1) can be written

Q : 7 z z T(z z
Un() S lim O (z1) 6040 f (2)) o0 2010

X (25) €94G2) OF (2) o W=D M) A2

X (zy) 94N OF (2y) el Qzn)) O (2n) A 2 (B.4)

where here zy =z and zy =z + a1 for Az:%.

We now use the definition of the parallel transport operator for exp [(8, Q (z;)) QF (z;) A 2]
over the path A z

QT (Zz) e(au QT(zz)) Qf(z) Az _ QT (Zi—i-l) 7

which neatly eliminates all the internal gauge transformations in Eq. (B.4). This then
reduces to
Un() 2 Q () Up(2) Q' (z+a ), (B.5)

which is the desired gauge transformation property of U,,.

B.2. The plaquette

The plaquette has form
Po(w) = Unlw) Ul + a ) Ul(w +a2) UL (@), (B.6)
Each of these terms can be written as, i.e.

U (x+ap)=exp(—iga A, (x+aj)), (B.7)

and hence the Baker-Campbell-Hausdorff identity [208|
1
exp(A) exp(B) = exp (A + B+ 5 [A, B] + - ) : (B.8)

may be used. A and B are arbitrary matrices and the dots indicate higher powers of

matrices which are omitted here. Applying Eq. (B.8) to Eq. (5.6) with the expansion of
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Eq. (B.7) gives

2

1
+iga A, (x+av)+iga A (x) — EQQaQ A, (x+av), A (x)]

+ 392 a® (A, (), Ay (z+av)] + %92 a? [Au(r), Ay ()]

1 1
+-g*d® [A, (zr+ap),A, (v +ad)]+=g*d® [A, (z+afp), A (x)] +O

2 2
(B.9)

1
P (z) = exp (—z’ga Au(x) —iga A, (z+ap) — = g°a® [Au(x), A, (z + a )]

Now perform a Taylor expansion for gauge fields with shifted arguments, i.e. A, (x 4+ a f1);

we set |11]
Ay (z+ap)=A(z)+ad, A (z) + O (a?). (B.10)

Consider now the non-commutator terms only of Eq. (5.9) (omitting the exponential for

the moment)

—iga Ay (x) —iga A (x+ap)+igaA,(r+av)+iga A(z)
=iga (—Au(z) — Ay(z) —ad, Ay(z) + Au(z) + a0, Au(z) + Ay(z) + O (a°))
=iga’ (0,A,(x) — 9,A,(x)) + O (a’). (B.11)

The five commutators of Eq. (5.9) with shifted gauge fields, give respectively

Au@), A, (@ + a )] = [A,(2), A, (@)] + a [A,(2), 8,4, (x)] + O ()
A (e +a9) A (2)] = [Au(2), A @) + a [0,Au(2), A(2)] + O (a?)
[Aulw), Au (& + a)] = [Au(2), Au@)] + a [A,(@), 8, A,(0)] + O ()
A, (@4 af), Ao+ ad)] = [A2), Au@)] + a (0,4, (), Au(@)] + a [A,(2),0,A,(2)] + O (a?)
A (o +a i) Ayfe)] = [A(2), A0)] +a [0,A(0). A (2)] + O (). (B12)

Noting that A,,, A, are Hermitian and the (continuum) definition of the field strength

tensor

G () = 0 A, () = 0, Au(x) + i g [Au(x), Ay ()], (B.13)

@)).
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and reassemble and substitute all these back into Eq. (B.11), keeping only terms up to
(and including) O (a?).

P, (x) =exp (—iga2 (0, A, (x) —0,A,(x)) +2 % g*a* [A,(x), Au(z)] + O (a3)>
xp (—iga® (0,Au(x) — 0uAu(z) —ig [Ay(x), Au(@)]) + O (a*))
xp (iga? GW )+ O (a?)). (B.14)

B.3. Naive Fermion Action

Using the following expansions about z for the gauge links and fermion fields

Uu(z) ~1—igaA,(z)+ O (a®) (B.15)
Uy(z+ap)~1—igad,(z)+ O (a®) (B.16)
Y (z+ap) =)+ ad,(z)+ O (a°) (B.17)
U@ —a ) = ¥() - ad, vx) + O (a?) (B.13)

where the second line uses Eq. (B.10); the covariant finite difference derivative operator
of Eq. (3.8) can be written

V,(2) b(x) = i [(1—igad,(x) +0 () (@) +ad,(z) + O (a?))
—(1+igaAu(:1:) ( )) (w(x)—aauw(x)—l—(’)(az))]
= o [000) + 00,0 (w) — g a Au()0(@) — iga ® Aule) B, (x) + O ()

— ((2) —ad,v( +zgaA (2)(x) —iga? Au(x) uv(x) + O (a))]
= (0, —igAu(z) + O (a®)) ¥ (B.19)

This is the continuum covariant derivative operator in the limit a — 0.



Lattice Appendix 195

B.3.1. Wilson Fermion Action

The additional Wilson term in momentum space is shown in Eq. (3.25) and is

ISHIIEN

Il

Q| =
VR
—_
|

VS
=
=

+
©)

=
T
SN—
~~

pn=1
Z. 4
2DV (p) = p > (26—
pn=1
i 4
= - (2 — e (o) _ giv-(zmai)y B.20
s e'? e ) (B.20)

Taking the Fourier transformation as in Eq. (3.21) yields

2 DV (n,m) |A| Ze”’ 2DV (p) et ™

peA

‘A| Z ip* nz elP ‘(ztap) zp'(xfa;l)) e~ip m
pGA

Z Z 9emip (M=) _ gip"n (mip (m—(e+ai) _ g=ip: (m—(z=ai)))

~ 1
pEA w=

1 4
g Z (5x+aﬂ,m - 5:chaﬂ,m> ) <B21>

p=1

|A|

where /NX is the total available momenta. The Wilson term in position space is hence
DY (z,y) ==a Y = (Uu(®) bprajiy — 200y + Ul (& — aft) 6pajy) .  (B.22)

where the gauge links U, are necessary to maintain gauge invariance.
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Errors

Considering the Wilson term of Eq. (3.28), write

(a4 —2f()+ f (2 —6). (B.23)

Now Taylor expand f (x + ¢) and f (x — €) as

2

[le+e)=f@)+ef @) +5 /(@) +0 (&)
Jle—e)=f()=ef @)+ 5 [(x)+ O ()

and so

2% (fx+e)=2f(@)+ f(z—€)=f"(z)+0(), (B.24)

which has O (e) errors.

B.4. Baryon Wick contractions

The wick contractions for a baryon operator as in Eq. (3.51) are explicitly shown below.

Consider B (z,®) B (z, ®) from Eqs. (3.45) and (3.46), suppressing location, colour and

spin structure write

BEOC%,N Eg/ Eh’ V5 g V. (B.25)
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Counsider now the Wick contractions here

Ef’ Eg’ Eh’ wf ¢g 2/jh X 5? 5;(];/ 6h/
D Dy O g g by, o 8%, 31 8,
Ef’ Eg’ Eh’ wf d}g djh X 5ng/ 55;/ 5h/

—F =

Ef’ Eg’ Eh/ wf wg wh X 5‘?/ 65/ 55/

[ I
¢f/ ¢gl ¢h’ ¢f ¢g /wh XX 5?/ (55/ 5{;

[ I 1
wf’ wg’ wh/ wf wg wh X 6?/ 6gf/ 62/ <B26>

What is immediately clear from Eq. (B.26) is that only contractions between quark fields
of the same flavour produce a non-zero contribution. In practice this limits the number
of contractions required. For example the neutron operator of Eq. (3.49) has only two

contributing Wick contractions.

B.5. Baryon correlation function spin structure

The baryon two-point correlation function described in Section 3.4.2 is a 4 X 4 complex
matrix in Dirac spinor space. In particular we want to show that the positive parity

signal is in the (1,1) and (2,2) components of the correlation function Eq. (3.67)

o - —ip Ty 7% vp+ My
Gp.t) = Z o et Z e '? ZN1/2+ Z/N1/2+ <WB+) : (B.27)
— B+

a,p,s z

—

For the zero-momentum correlation function (ﬁ = O), then

Y P =1 ps= "Y1 Mp+, (B.28)
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and so

’)/4MB+ +MB+
XX .

T

(B.29)

Using the definition of 74 in Eq. (A.5) it is easy to see that the (1, 1) and (2, 2) components

give

2MB+

G(p,t) x =1+#0 (B.30)
while all other indices produce G (p',t) « 0. In particular components (3,3) and (4, 4)
result in

—Mp+ + Mp+

G(p,t) x 2 M = 0. (B.31)

The positive parity components of the correlation function are hence only in the (1,1)
and (2,2) components. For completeness, a similar argument for the negative parity

baryon can be found in Ref. [12].

B.6. Least squares fitting

Fits in this thesis are performed via a linear least squares minimisation procedure [31].

The x? per degree of freedom

XI\D
I
g
g
=
=

i) = T(t:) €M (i ty) (y(ty) — T (1)), (B.32)

is minimised. Here y(¢;) is the dependent variable at t;, the theoretical fitted value is
T(t;), C'(t;,t;) is the covariance matrix and N, is the total number of data points being

fitted to. The covariance matrix is estimated via the jackknife method |74,209|

Cltnty) = 5= > (alt) ~7(6) (Tt~ 5(2,)
= 2D S ) )~ T 3t (.33
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where N, is the number of data points being averaged at each Ny, T, (;) is the jackknife
ensemble average of the system at ¢; after the my, data point has been removed and 7(t;)

is the average of all the jackknife ensemble averages, given by

B(t) = > Tlto) (B.34)

¢ m=1

B.7. Magnetic section of clover term

As the field A, (z) = 0 for all x in the middle of the lattice, the clover plaquette term of
Eq. (3.38) simplifies to

Cuv () :Uu(:c)UJ(ac—i—aﬁ)—l—Ul(:c—i—aﬁ—a/l) U,(x —ap)
+ Ul (z—ap) Uy(x—ap—ad)+ U, (z—ad) Ul(z). (B.35)

This may be written in a form which is clearer for the potential A, = —By as

Ciz (z, y) = Uu(z, y) UIL (x,y+a)+ Ul (x+a,y) U, (v —a,y)
+ U:ﬂ (x—a,y) U, (z—a,y—a)+U,(z,y—a) UZ(x, Y), (B.36)

where
U, (z,y) =e @18y, (B.37)

The clover plaquette then becomes

C,Lw (I, y> _ e—zaquyezaqu(y+a) + ezaqu(y+a) e—zaquy
+ ezaquye—zaqu(y—a) + e—zaqu(y—a) e—zaquy

— 4t 1eB+0(e%) (B.38)

where the Baker-Campbell-Hausdorff identity [208| has been used in the last line.
The clover fermion definition of the field strength tensor is given by

1 1 1

Fiu (@)= g: — (cw (2) = Clu () 5 T (Cuu () — €L, <x>)) . (5.39)
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Thus the magnetic section of the clover term is

1 1
Flo= — (0 —CT)
27 Rigea? TP 12

_ 8i 1 - <4eia2qu+(’)(a3) . 4e—ia2qu+O(a3)>
1 gea
11,

= Yiged (sin (a*ge B)), (B.40)

as in Eq. (5.13).

B.8. Chiral effective field theory coefficients

The partially quenched chiral effective field theory discussed in Section 6.3 requires
separating the loop diagram contribution into valence-valence, valence-sea, sea-sea and
of course the sum or total contribution. This is done in Table B.2 for the neutron, Table
B.3 and Tables B.4 and B.5 for the T and the =° respectively. These contributions were

determined using the process outlined in Section 6.3.1.

B.8.1. Numerical coupling coefficient values

The SU(3) flavour coupling coefficient numerical values for each of these contributions
are derived by considering the appropriate chiral Lagrangian. These numerical values
can be found in Table B.1 [125,173,177,210|.

The coefficients of the processes in Refs. [173] and [210| may be related to those in
Table B.1 by squaring then multiplying by %. An example is the X*° 7+ coupling. In the

above referenced works it is

1
X507+ - = —%C,
1
Yoot 5o = = C? (B.41)

6

which clearly matches x2, y.o = gCQ if multiplied by %.
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Table B.2. Chiral coefficients for the leading-order loop integral contributions for the neutron.
Process Total Valence-sea Sea-sea
n— N
n—nm 0 2 (20udwXier o +2000z (Xoso + Xioa))  § (@ XG5 + @ (Xioso + Xion))
n—nn 0 b (2000 X5 5 + 20007 (Keoso + X)) § (6 XGern + 05 (Xioso +XFon)
n 6 \4%ufu Xg+y- dd 9q \X'goxo T Xkop 6 \uXk+x- T 47 \Xgoxo T Xkop
n—pm Xwﬂlw 2qaqu AXWAO s0 T meo >v QW AXWAO w0 T meo\/v
n—n-mwt 0 2 qu @3 X+ - Qw Xk+ 5
n— XK
n— (3, A) KO 0 24205 (X2oso + X0 a5 (Xkoxo + Xko)
n— X" K~ XWA.T - 2 qu 9s XWA.T - Qw XWA.T -
n— AT
n— A%70 0 m AMQ:QmXW?MT +m§§xwom*ov m AQMXw?rmT +QWXWOM*DV
n— A%y 0 ¢ (20utaXier go- + 2000350 50) § (@ X%+ - + @G XGoxeo)
n— APy 0 2 (2quda Xies se- + 20207 X50500) 3 (B X Germem + & XFo500)
n— AT~ XW\ A+ 2 qd 9u meo %0 QW mec »*0
n— A"t Xota- 2Gug X g 0 Xic+ 5 -
n—X*K
n— $*0 KO 0 2 44 s X505+ % Xioseo
n— Y KT Xw?mT MQ:QwXWQMT QwXW?MT
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Table B.4. Chiral coefficients for the leading-order loop integral contributions for the X+.

Process

Total
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Table B.5. Chiral coefficients for the leading-order loop integral contributions for the Z°.
Process Total Valence-sea Sea-sea
=S Ex
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Table B.6. Zero-field baryon effective masses used to determine the magnetic polarisability
in the relation of Eq. (4.15).

Baryon K my (GeV) Source smearing sweeps Mass (GeV)  Fit window  x3,;
Nucleon 0.13700 0.702 150 1.407(7) 19-27 0.43
0.13727 0.570 175 1.284(8) 19-24 0.95

0.13754 0.411 300 1.133(3) 18-33 1.05

0.13770 0.296 350 1.072(11)  19-24 0.66

=0 013700 0.702 150 1.468(4)  22-34 1.10
0.13754 0.411 300 1.351(6) 22-32 0.87

0.13770 0.296 250 1.331(5) 21-34 0.88

A 013700 0.702 150 1.430(4)  19-34 1.11
0.13754 0.411 300 1.228(6) 22-32 0.94

0.13770 0.296 250 1.183(5) 20-30 0.97

¥ 0.13700 0.702 150 1.438(4) 19-35 1.10
0.13754  0.411 300 1.276(7)  23-32 1.14

0.13770 0.296 250 1.238(5) 18-26 0.91

B.9. Baryon masses

The baryon masses used for the determination of the magnetic polarisability £ in the
fit-polarisability ratio of Eq. (4.15) are determined from the zero-field effective mass of
the appropriate correlation function. These masses are presented in Table B.6 for each

baryon considered in Chapters 4 and 6.



Appendix C.

Landau levels

A charged scalar particle in a uniform magnetic field will have an associated Landau
energy proportional to its charge. In the non-relativistic limit, the Landau energy
spectrum is equivalent to that of a harmonic oscillator, F,, = (n + %) w where w is the
classical cyclotron frequency; w = |ge B|. Here the magnetic field is oriented along the

z-direction and the particle has charge ge.

C.1. Continuum, infinite volume formulation

The relativistic form of the Landau levels can be derived [109| by considering the Dirac
equation for a point-like particle with charge ge which has been modified by a minimal

(classical) electromagnetic coupling
Oy — 0, —iqge, A, (C.1)
The Dirac equation is then
(i@ +qe A —m) ¢(x) =0. (C.2)

By splitting v# into 7%, 4 and rearranging this can be rewritten

0 i
ZVO%:(V pi — qe' Ai — qen’ Ag +m) 4. (C:3)
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In the Dirac representation of the gamma matrices define

I 0 [0 7

B(=1") = , d(=") = : (C4)
0 —1I o 0
Multiply both sides by ~°
L0 S oz @
ZW—(ap—qea-A—qug—l—Bm)w. (C.5)
. ¢ .
Separating v — ¢ = , we form the coupled equations
X
0o, (= -
igy =0 (p—qu) X+ (—geAg+m) ¢
(C.6)
za—X =0- <5—qeg> ¢+ (—qge Ag —m) x
at 0

The choice made for the electromagnetic potential is the same as that for the background

field method; A° = A% = AY = 0, A* = Bux is chosen in order to give a constant magnetic
ioe (9
X

field B in the 2 direction. Taking a stationary solution of energy F, 1) = e~

Eq. (C.6) becomes

Combining these allows x to be eliminated and an equation for ¢ obtained
- . N2
(B2—m?) ¢ = |5 (p _ qu)] &
= N .
= <]3—qu) —qe&VB} [0)

= 52+(qe)2 B?z?> —qeB (0z+2xpy)} o

— _52 + (¢qe Bx — py)2 + quaZ] 0. (C.7)
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Eq. (C.7) is the Hamiltonian of a harmonic oscillator. All of p,, p, and o, commute

with the right hand side and so the particle can be constrained to the x — y plane by

setting p, = 0 for simplicity. We seek solutions of the form
¢(x) = €'Y f(x)

for f(z) satisfying

d2
dx?

Auxiliary variables w, a are defined for ge B > 0

Dy
— \/ae B _
v ac (aj qe B)

E? —m?
a=— -,

qe B

which enables Eq. (C.9) to be written as

If f is an eigenvector of o, with corresponding eigenvalues o« = £1 then

f= S , fora =1
0
0

f= for a = —1,
J

then f, satisfies

(m o az) folw) = —(a+a) fulw), a=21

This has a solution which is expressed in terms of a Hermite polynomial H,,(w)

fo = ce W/ H,(w),

——— + (ge Bz — p,)’ —quOz} f(z) = (E* =m?) f(z).

(C.8)

(C.9)

(C.10)

(C.11)
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ifat+a=2n+1forn=20,1,2,.... The energy levels are then

E*=m?’+q¢B (2n+1—a)

B
E:m\/l—i-qe 2n+1—a).

m2

Using a small = expansion of v/1+ z with z = €2 (2n 4+ 1 — )

1 2?2 a8 4
the energy expansion is
eB eB e B)?
E:m+q2—m(2n+1)—a(12m —(qgm3> 2n+1—a)?
e B)® e B)!
+((18m5> (2n+1—a)3+(9<(qm7) ) (C.13)

The second term is the energy due to the Landau levels while the first is the mass of the
particle. The third term is due to the magnetic moment as it is proportional to «, the
eigenvalue of ¢, which appears in the spin operator. Higher order terms can be safely
ignored for ge B < m. We have shown that the Landau levels for a particle of charge ge

and mass m in a magnetic field B are given by

B
ELandauzq;;m(2n+1) forn=0,1,2,3.... (C.14)

C.2. Discretised, finite volume formulation

Consider a second order equation for a Dirac spinor v

(P —m?) =0, (C.15)
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where ) = v D, = 4 (9, +ige A,) as in Eq. (C.1). Next using a useful identity from
Appendix A.4 this can be written as

(D —m?) v = (D'D—%(((?M—l—iquu) o (0, + ige A))

+ (0, +ige A,) 0" (0, +ige A,)) — m2) . (C.16)
Consider

(0, +ige A,) o (0, +ige A,) ¥
=o' (0, +ige A,) (0, +ige A,) ¥
= 0" ((0,0,) ¥ + (Duige Ay) ¥ +iqe A, 9,00 +iqe Ay 0, — ¢*e® A, A, ) . (C.17)

Similarly use Eq. (A.9) to write

(0, +ige A,) o (0, +ige A,) ¢
= —gh ( (0,0,) ¥+ (0, ige A,) ¥ +ige A, 0y +ige A, O, — g?e’ A, A, zp) )

(C.18)
Using these; Eq. (C.16) can now be simplified to
(]ﬁ]D — m2) ) = (D-D — 50’“”’ ((0ige Ay) — (Ovige Ay)) — m2> )
_ <D2 i % o F,, — m2> WV, (C.19)

as F, =0,A, —0, A, With a constant background magnetic field B=VxA (and in

an appropriate spinor representation), Eq. (C.19) can be written

) G-B 0 )
D* + qe |+m* | ¢v=0. (C.20)
0 o¢-B

For B = B2 and spin-polarisation factor e = 1 the equation for each spinor component

Py is

(D*+ age B4+ m?) ¢, =0, (C.21)
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(

where av = (—1) ™1 The eigen-energies are a function of the mass, m, field strength, B,

spin-polarisation, «, and momentum in the Z direction, p, and are given by [109]
E*(B)=m?=|ge B| 2n+1—a) + p?, (C.22)

where n is an integer describing the quantised energy level; the relativistic Landau energy.

The important point is that the eigenmode basis of the operator (D? + « qe B + m?)
is independent of the two constant terms (o ge B, m?) and depends only on the covariant
Laplacian operator D? = D#D,,. This is in contrast to the eigen-energies which depend

on the spin-coupling term.

The Landau modes on a discrete lattice for a charged Dirac particle in a uniform
magnetic field oriented along the z axis, B=B: correspond to the eigenmodes of the

two-dimensional U(1) gauge-covariant lattice Laplacian

Npar =40z — > U (Z) Sarpar + UPT (& — 1) S5, (C.23)

pn=1,2

where U7 (Z) is the same U(1) gauge link as used in the full lattice QCD calculation and
discussed in Section 3.6.1. In contrast to the infinite degeneracy of the infinite volume
the lattice Landau modes exhibit a finite degeneracy dependent on the product ge B
of the charge and magnetic-field strength. The lowest Landau level on the lattice, in
particular has a degeneracy equal to the magnetic flux quanta |k| defined in Eq. (3.99).
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