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We report on a novel phenomenon of particle cosmology, which features specific cosmological phase
transitions via quantum tunnelings through multiple vacua. The latter is inspired by the axiverse ideas,
and enables to probe the associated new physics models through a potential observation of specific
patterns in the stochastic gravitational waves background. Multiple vacua may induce the nucleation
of co-existing bubbles over the phase transition epoch, hence enhancing the overall process of bubbles’

nucleation. Our detailed analysis of semi-analytical and numerical solutions to the bounce equations
of the path integral in three vacua case has enabled us to determine the existence of three instanton
solutions. This new mechanism of cosmological phase transitions clearly predicts a possibly sizeable new
source of gravitational waves, with its energy spectrum being featured with particular patterns, which
could be probed by the future gravitational wave interferometers.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Cosmological phase transitions (PTs) offer an inspiring possibil-
ity to probe physics beyond the Standard Model (SM). If first-order
PTs took place at early cosmological times, gravitational waves
(GWs) spectrum can be induced, with crucial observational con-
sequences for current and future GW experiments [1-4]. Such a
scenario is traditionally considered in the hot cosmological plasma
characterized by a scalar-field effective potential accounting for
both the loop and thermal corrections. In such a thermal system,
the quantum tunneling is either ignored or only considered as hap-
pening between two vacua at a typical time scale of a given PT [5].
However, in order to realize strong enough first-order PTs, several
extended models of particle physics were considered that involve
more than two vacua in the effective potential due to the presence
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of more degrees of freedom. These are models with extra scalar
singlets [6-11] and doublets [12-16], as well as supersymmetric
models [17-19], and other SM extensions [20,21].

Nonetheless, new physics beyond the SM may arise for example
by invoking the axion, originally postulated in Refs. [22-24] to ad-
dress the strong CP problem in quantum chromodynamics (QCD),
as well as the axion-like particles or the string axiverse scenario
[25,26] realized in plenty of UV theories. The axion was recently
revitalized in the cosmological relaxation model, to dynamically ad-
dress the electroweak (EW) hierarchy problem [27-29], which also
naturally yields multiple vacua for a single scalar field. Inspired by
this innovative phenomenology, we propose in this Letter to study
quantum tunneling transitions, within the case of non-degenerate
multiple vacua in a simple model with a single axion-inspired
scalar field. Besides, we illustrate the possibility of probing new
physics scenarios of this type by analyzing the signals of the pri-
mordial GWs spectra generated by such transitions.

Instanton methods, initially developed in Refs. [30-32] to in-
vestigate quantum tunnelings in a gravitational environment, are
nowadays widely exploited in the community. Even the functional
Schrédinger equation, supplied with the WKB approximation, was
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established to gain further insights into fields’ potentials endowed
with multi-vacua [33-35]. The path integral over the quantum
field configurations is addressed in terms of the most probable es-
cape paths (MPEP), i.e. the instanton solutions given by the sta-
tionary phase approximation which dominates in the classically
forbidden region. In this Letter, we perform a complete analysis
of quantum tunnelings for the non-degenerate multi-vacua case,
which preserves the major characteristics of the cosmological re-
laxation, and can yield well-behaved approximate solutions to the
so-called bounce equations of the path integral. Around the reheat-
ing epoch,! multiple types of bubbles would run away in a cosmic
medium, and generate GWs that are expected to be examined in
various observational windows, including GW astronomy and cos-
mic microwave background (CMB) signals [40].

2. Multi-vacua quantum tunnelings

In the string axiverse scenario, the axion-inspired scalar field
¢ evolves into the classically stable but quantum metastable re-
gions where quantum fluctuations would become dominant in its
subsequent evolution. For simplicity, we illustrate the three vacua
case, assuming the decay through the four-vacua configuration in
a single transition to be exponentially suppressed. Capturing the
essence for multi-vacua quantum tunnelings, we consider the sim-
plest scalar potentials as

1 - _ o= - _

o Z(¢+ﬁm¢)2¢2_bl(¢+ﬁm¢) ‘<;3<0’
V=17 ] i (1)
30—V — (Vabiing +ba) |

where bar denotes the quantities rescaled by a certain energy scale
A. In Eq. (1), three parameters were introduced, my roughly de-
noting the effective mass of the ¢ field (in dimensionless units) at
its false and true vacua, while by and b, realize the energy differ-
ences among the three vacua. In our analysis, we impose matching
conditions, avoiding any discontinuities in the model.

Since this axion-inspired scalar field ¢ was practically decou-
pled from any other SM fermions and bosons, while having sup-
pressed its scalar self-interactions, the bubble nucleation temper-
ature T, of early Universe would just provide the average kinetic
energy available for the scalar field, without any significant mod-
ifications to the potential barrier shape. On the other hand, it is
not always the case that we could find the temperature satisfy-
ing the thermal transition condition S3(T,)/T, >~ 0(100). Then,
the dominant contribution to the PTs will be realized by quan-
tum tunnelings with T, ~ 0. The small thermal fluctuations here
slightly reduce the energy difference in Eq. (1), thus leading to a
secondary effect compared to the quantum tunnelings. This model
typically corresponds to a moment right after inflation, but before
reheating, featuring small thermal corrections.

The profile of the potential is sketched in the upper panel of
Fig. 1 with ¢F, ¢y and ¢r to be the false, middle and true vacua,
respectively. Ignoring thermal perturbations, quantum tunnelings
originate from the homogeneous Universe in a false vacuum, and
eventually terminate at the homogeneous Universe in a true vac-
uum.

The semiclassical equation of motion can be solved both
numerically and analytically. With the functional Schrédinger
equation for A = [d3x( — 5Gam): + 3(V$)? + V (), namely

AW(¢(x)) = EW(¢(x)), and the WKB approximation W(¢) = Ae!S®,

1 Several scalar fields can be accounted for giving rise to cosmological PTs, not
only the inflaton. For instance, in the early Universe the curvaton may be taken into
account [36,37], requiring accordingly a curvaton reheating mechanism [38,39].
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Fig. 1. Upper: The potential V (¢) captured in Eq. (1). The colorful dotted arrows de-
pict the three MPEPs in our model. Lower: The three bubble profiles with parameter
choice: iy = +/2, by = 0.04, by = 0.06.

with S(¢) = S)(¢)+S)(¢)+-- -, one may derive the MPEP semi-
classical bounce equation

PPX.T) | V(X 1)

972 VX T) - B =0 <0’ 2)
’px.T) WV 1))
Tarr T VAR D =0|

where T is the parameter of MPEP, ranging from —oo to 400, with
the critical point, separating the classically forbidden region (t <
0) and the classically allowed region (t > 0), being fixed exactly at
T = 0. For cosmological PTs, the former equation can be recognized
to describe the bubble nucleation processes, while the latter one
drives the bubbles’ evolution, during which the energy-momentum
tensor of the field can evolve and generate GWs.

Following Ref. [41], the MPEP solutions to the first bounce
equation ought to obey the O(4) invariance and satisfy % 1=0=0
as well as ¢(t — —o0) = ¢r. The analytical solutions can be de-
rived through the variational method:

- 1- ﬁ1¢ _ _ 1-
¢>(p)=§¢F tanh(T(p—R1))+5¢p
_ (3)
L grtann(T2 (5 - Ro)) + 16
2¢>T 5 (P =Ry 5901

with p = /X2 + T2. Here, Ry, R, are the parameters representing
the bubble radii. Then, the Euclidean action can be expressed as

“+o00 —
SElp) =272 / ﬁ3[%(%)2+\7<@]dﬁ. (4)
0
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Numerical computation can be derived via the Runge-Kutta al-
gorithm for nonlinear ODE based on the package of CosmoTran-
sitions [42]. The process involving three vacua provides us with
a novel picture of tunneling transitions. In the previous literature,
authors considered only one solution to the bounce equation, i.e.
providing only one instanton solution. Our model can now lead to
three instantons at most. The first obvious one is that if we re-
quire ¢|T:0 = ¢m, We can get a trivial solution which is ‘Bubble3’
in the bottom panel in Fig. 1. This solution always exists as long as
we have at least two non-degenerate vacua, while the other two
solutions depend on the potential structure, especially the energy
difference between (¢f, ¢p) and (¢u, ¢7) configurations.

All numerical solutions to the bounce equation are shown in
the bottom panel of Fig. 1. The three tunneling processes can occur
simultaneously in the Universe, at an estimated rate per volume
I' ~eSE. In our case, ‘Bubble1’ and ‘Bubble2’ solutions driven
by quantum effects add two new instantons, which cannot ap-
pear in the classical case. Since the thickness of bubble walls is
small enough 6/l « 1, the solutions can be further simplified in
thin-wall approximation with the tanh function, in analogy with
the solution to the quartic potential with degenerate vacua. Addi-
tionally, we see that the two radii of non-trivial solution ‘Bubble1’
are nearly the same, which indicates that the false vacuum, un-
der certain condition, could directly tunnel to the true vacuum
without being significantly influenced by the mid-vacuum. In the
‘Bubble2’ case, the solution can be simply derived by summing
over the two instantons from the two vacua tunneling between
(¢F, ¢m) and (¢um, ¢7), but finished in a single step transition in
the three vacua case. Although we can also get more complicated
cases like nested and reoccurring [43] bubble profiles by only pre-
serving O(3) symmetry and solving both of the two equations in
Eq. (2) simultaneously, these solutions are not from pure quantum
effects, inconsistent with our main consideration. Note that the
Universe was extremely empty after inflation and before reheat-
ing. In this epoch, the plasma effect is negligible, and the bubbles
expand and collide with each other to reach thermal equilibrium.
Since both ‘Bubble1’ and ‘Bubble2’ trigger the tunnelings towards
¢, the whole Universe shall reach the final state represented by
the true vacuum, eventually.

Astonishingly, when the energy difference between (¢, ¢oym)
and (¢p, ¢r) captured by by, — by becomes small enough, ‘Bub-
ble1’ and ‘Bubble2’ will vanish at the same time, leaving ‘Bubble3’
the only solution. We name this novel phenomenon as “Two Step
Tunneling” (TST). This is the first time that someone realized TST
in cosmological PTs within the context of single field models.?
All the related results are summarized in Fig. 2. Phenomenologi-
cally, the radius R, decreases faster than Ry as b, — by decreases.
When b, — by reaches certain critical point, the non-trivial MPEPs
‘Bubble1’ and ‘Bubble2’ vanish simultaneously. Numerically, in the
given example, we scan the by — by parameter space from 0.014 to
0.043, below which ‘Bubble1’ and ‘Bubble2’ disappear. From the-
oretical point of view, the behavior of the Euclidean action Sg
determines all the phenomena related to these two solutions. It is
easy to find that the stationary solution ‘Bubble1’ corresponds to
the saddle point of Sg, while ‘Bubble2’ corresponds to the max-
imum point. For small energy difference between (¢r, ¢m) and
(ém, ¢1), the maximum point and the saddle point will coincide.
Thus for smaller b, — by, there will be no static point for any bub-
ble radius. In this case, ‘Bubble3’ is the only MPEP ensuring the
quantum decay. The false vacuum ¢r would first tunnel to the in-
termediate vacuum ¢y, and then experience a second tunneling to
reach the true vacuum ¢r.

2 We refer to [44] for the realization with a two-field model and [43,45] for more
exotic situations.
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Fig. 2. ‘Bubble1l’ and ‘Bubble2’ dependence of the parameter b, — b; after fixing
my = /2 and by = 0.06. The bubble radius parameters R; and R; for the two so-
lutions derived from variational methods are plotted in solid lines, with errors with
respect to the exact solutions shown in the colored shadow area. Dashed lines rep-
resent the values of Sg calculated in Eq. (4).

Even though TST may happen in the currently considered sim-
ple model, it may not occur in a realistic background. For instance,
in the very early Universe, the curvaton could decay into radiation,
and hence raise the temperature of the Universe thus approaching
the reheating regime. In this case, a finite temperature correction
~ T2$? should be taken into account in the effective potential.
After its quantum decay into the intermediate vacuum ¢y, along
with the increase of the temperature, the true vacuum ¢r would
become degenerate with ¢y, and then even vanish. If one still re-
quires TST to occur in the specific example of Fig. 2, the reheating
temperature is expected to be constrained by T < 0.8,/by/mg, so
that ¢ and ¢ would not be degenerate. As in this Letter we fo-
cus on a preliminary analysis of quantum tunnelings via multiple
vacua, we leave to forthcoming studies more detailed investiga-
tions.

3. GW signals

After the detailed analysis for the phase transition process, we
give a preliminary consideration for its possible observational win-
dow which may interest future experiments. In the very early
Universe background, the energy stored in the walls of vacuum
bubbles during the expansion can effectively influence the curva-
ture of spacetime and thus may be transfered to the gravitational
radiation. In general, there exist three major sources for GWs from
cosmological PTs [46,47], which respectively are collisions of vac-
uum bubbles [48,49], sound waves [50,51] due to bubbles’ expan-
sions inside the plasma, and MHD turbulence [52,53] after colli-
sions. Concerning the PTs dynamics of our axion-inspired model in
the vacuum-dominated epoch, which is not significantly affected
by the thermal corrections as we have discussed, we naturally ex-
plore the bubble dynamics in the run-away regime, where it is well
known that contributions from MHD turbulence and sound waves
are negligible compared to collisional contributions [46,47]. As for
the GWSs production, it is sensitive to the temperature at reheating
due to those different types of bubble dynamics and cosmological
background. We assume that the GWs are produced in a thermal
bath at temperature T, which approximately equals the reheating
temperature T, ~ Trep.

Recall that, the observational constraint upon reheating temper-
ature is pretty loose, namely, the Big Bang Nucleosynthesis (BBN)
yields a lower bound T, > 1 MeV [54,55]. In this case, the GW
intensity €4 and the related peak frequency fs caused by ¢ can
be approximated as follows,
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Fig. 3. Upper: Contributions to GW spectrum from three bubbles in the given ex-
ample are plotted in dashed lines; their summed total spectra are plotted in solid
lines. Lower: GW intensity bands with different value choices of b, — by (which are
0.022, 0.018, 0.014, 0.01 and 0.006 respectively). The solid lines are for the maxi-
mum intensities achieved at fixed b, — by while leaving b, and my free, and the top
colored regions correspond to the expected sensitivities of space-borne GW experi-
ments including LISA [46], BBO, DECIGO [56], U-DECIGO [57], TAIJI [58] and TianQin
[59].
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with the two key parameters o and B. The former one, «, is
defined at the PT temperature T, by o = €(Ty)/0rad(Tn), and in-
troduces the ratio between the energy difference among two vacua
and the thermal energy density of the plasma p;adq(Tn) T,‘}. Con-
sidering the reheating background, the equation of state is w =
—1/3 which corresponds to H, = 1/t,. Then the rescaled bubble
nucleation rate parameter § can be captured by g = /H; ~ Sg.
Finally, k4 characterizes the fraction of the latent heat for the en-
ergy transfer.

PTs driven by ¢ in our model are due to quantum mechani-
cal effects, implying T, ~ 0 and thus o — oo. In this limit, one
gets Qow ~ Q4, with k4 ~ 1 and v, ~ 1. We present the results
in Fig. 3. The total GW signals can be separated into three compo-
nents, corresponding to the contributions of three types of vacuum
bubbles. In the given example, for large energy difference between
(oF, om) and (o, o7), i.e. b — by > 0.035, the Euclidean actions
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for ‘Bubble2’ and ‘Bubble3’ are extremely enhanced and naturally
lead to the GW energy spectrum generated by these two bub-
bles being severely suppressed. That results in the fact that the
total spectrum is given by the ‘Bubble1’ contribution. On the other
hand, when b; — by is around 0.020, the ratio Sg1/Sg» is order of
unity. The related tunneling rates will be of the same magnitude,
giving rise to similar contributions from ‘Bubble1’ and ‘Bubble2’.
Generally, no matter which cases we are considering, the tiny dif-
ferences between these three contributions can only influence the
fine structure of the GW spectra, which could be examined thanks
to the expected data from the GW interferometers in the future.
Since Sg significantly depends on b, — by, the amplitude of GW
spectra can vary up to 0(102) for different model parameters in
the considered example. Although a similar shape of the primor-
dial GW spectrum may also be realized within thermal PTs [60],
we still emphasize that, the result predicted in our case is funda-
mentally different from the cosmological PTs of other types. For
instance, in the standard case of thermal PTs there are extra con-
tributions from sound waves and MHD turbulence, but all these
become secondary in our case, which indicates that our scenario
can be probed or falsified by the future high-sensitive GW inter-
ferometers.

4. Conclusions

In this Letter we put forward a novel mechanism to gener-
ate cosmological PTs via quantum tunneling transitions that may
arise due to new physics described in terms of axiverse scenario
with multiple vacua. Accounting for a specific solvable parameter-
ization of the field potential, we made first semi-analytical and
numerical analyses, providing an explicit solution involving three
instanton configurations, and calculating the quantum decay rates.
Our mechanism provides a platform for phenomenological investi-
gations of the rich structure of quantum tunnelings, namely, an in-
novative realization of the TST phenomenon within the single field
scenario. This process can lead to a spectrum of induced stochastic
GWs, of which the fine structure is uniquely predicted. Due to the
fact that its origin is different from that arisen from sound waves
and MHD turbulence, this newly proposed GW source is observa-
tionally distinguishable in the future GW astronomy.

We end by discussing several implications of the novel mecha-
nism that could inspire forthcoming studies. From theoretical per-
spective, our study illustrates that new physics beyond SM could
be accessible through cosmological PTs if multiple vacua are al-
lowed. This may be also related to the SM hierarchy problem,
through embedding into the relaxation model. Phenomenologi-
cally, the fruitful phenomena in such transitions may lead to fur-
ther considerations in stochastic GWs and PBH formations [61,62].
Also, we have neglected tunnelings along more consecutive vacua,
but this theoretical possibility deserves further investigations, as a
pathway to get better understanding of the new physics related to
axion(-like) particles. Furthermore, the physical picture of quantum
tunnelings can be also related to the inhomogeneous initial condi-
tions that arise because of primordial perturbations, which may
result in resonant tunnelings with higher decay rates. Although it
may be challenging to test the heuristic example we are focused on
within this Letter, with the resolutions of current GW experiments,
our study can either be extended to several theoretical scenarios,
or provide detection targets for the next generation of GW instru-
ments.
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Appendix A

In order to give a detailed analysis of tunneling in quantum
field theory, we need to specify the field theory version of WKB
approximation [33-35] analogous to the same approximation in
quantum mechanics.

The Hamiltonian of the scalar field ¢ (x) in Schrédinger picture
reads

H= /d3x<%¢2 + %(w)z + V(qb)) ) (7)

To quantize the scalar field theory, we notice that the commuta-
tor of ¢ and ¢ is given by [¢(X), (X)] = i3 (x — X/). Similar to
quantum mechanics, we replace ¢ by the operator —i8/8¢ (x) and
consider the functional Schrodinger equation

HY(¢) = EV(9) , ®)
where the Hamiltonian operator can be written as

Y 0 O Y A 2 1 2

H_/dx< 2(8¢(X)> +5 (V) +V(¢)>. 9)

Here, W(¢) should be interpreted as the wave function. It repre-
sents the probability of the occurrence of field operator ¢ in a
configuration ¢ (x). From here on, we talk about the scalar quan-
tum field theory in configuration space.

It proves useful to employ the WKB ansatz, W(¢) = Ae!S@),
S(@) = S©)(¢) + Sa)(¢) + ---, where A is a constant. Then we
could derive

2
/d&[%(%) + %(Vqﬁ)z + v<¢>} —E,

(10)
/d3x|: B i525(0)(¢) . ,950 @) 35(1)(¢)} o
52

8¢ 8¢

Similar to the formalism in quantum mechanics, we introduce the
potential U(¢) with the definition

1
U(p) = /d3x(§(w)2 + V<¢)> . (11)

Then the classically forbidden region is defined as the region
where U(¢) > E, while the classically allowed region corresponds
to E > U(¢). However, the difference from quantum mechanics is
that Eq. (10) is an infinite set of coupled nonlinear equations in
the field configuration space, which is extremely hard to solve. To
tackle this problem, the the most probable escape paths (MPEP) no-
tion is introduced, which tells us that the tunneling probability is
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dominated by the contribution from a discrete set of paths in the
configuration space. The nearby paths will only contribute through
certain quantum corrections. In the current first analysis, we are
only interested in the dominant contributions and ignore the quan-
tum corrections for our purposes. By the definition of MPEP, any
variation of Sy perpendicular to this path should vanish, and along
this path the variation of Sp is nonvanishing. If we parameterize
the path with 7, we get

3S(0) Lo}
— =C(t)—, 12
5y lpx,7) = C( )at (12)
350

—0, 13
5¢J_ |¢(x.r) ( )
where

-1
as ap 1>
C) = %(/d%[%} ) . (14)

Then, after a lengthy calculation and refining the path parameter,
we get the familiar Eq. (2). From another point of view, at the
quantum level, after choosing the stationary phase approximation
in the path integral formalism and doing the Wick rotation 7 =it,
we could get the amplitude (¢f|e~"7|¢;) = Ae=SE. Then, it is easy
to find that the first equation in Eq. (2) is exactly the stationary
condition for the Euclidean action, and thus gives the dominant
contribution to the path integral.

However, unlike quantum mechanics, there is no resonant tun-
neling in the scalar field theory with the homogeneous initial
conditions, i.e. false vacuum for any space point. In the current
framework, we can provide a proof of such no-go theorem. Sim-
ilar to what we know in quantum mechanics, in order for res-
onant tunneling to occur, we need to have a middle classically
allowed region, in which the classical Euler-Lagrangian equation
holds. Now, generally, we have three widely accepted conditions
for the resonant tunneling to occur:

o A middle classically allowed region:

E>U(¢); (15)
e Energy conservation during quantum tunneling with homoge-

neous initial condition:

¢ (T — —00) = ¢, (T > —00) =0; (16)

e The natural boundary conditions:
P(X— 00) =4, Volx—00 =0. (17)

Proof. Given the arbitrariness in the choice of the potential-zero
level, we set V (¢r) =0. Then we get the conserved energy E = 0.
Following Eq. (15), the two critical points 71, 72 at the connection
between the classically forbidden and allowed regions satisfy

¢ (T,X) _09(1,X%)

=0. 18
at ot (18)

=7 =Ty

Then it is instructive to construct another integral I(x), with the
definition

T2 2
1/9 1
1(x) :/dt |:V(¢) - E(a%b) - 5(v¢>)2} ) (19)

71

Making use of the Euler-Lagrangian equation, it is straightforward
to find that VI =0, which directly leads to I(x) = I(c0) = 0. Com-
bining this relation with E =0, we immediately see that
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It now follows that ¢ (X, 71 < T < 173) = ¢F. This is a trivial solu-
tion to the Euler-Lagrangian equation meaning that the path has
to be in the false vacuum which cannot describe any tunneling
process. O

|
o

(20)

However, in Ref. [63], it is also pointed out that if we abandon
the homogeneous initial condition constraint, we may realize the
resonant tunneling in certain models. Studies of cosmological con-
sequences of such a scenario would be an interesting project on its
own for a future work.
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