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Abstract This research paper delves into examining the
Hayward black hole structure surrounded by quintessence
within the framework of Finsler geometry. Our focus centers
on the Finsler metric tensor development for black holes. This
newly derived metric introduces significant deviations from
regular black hole metrics found in general relativity due to
the Finslerian term y presence, thus shedding fresh insights
into the geometry and nature of black holes. Our findings
reveal that the metric structure aligns closely with known
Riemannian limits, affirming the congeniality of our model
with existing theories. Furthermore, we extended our analysis
to derive critical mass values and determine the normaliza-
tion factor for the Hayward black hole within the Finlserian
framework. The study encompasses a detailed description of
the horizons and extremal conditions of the Hayward black
hole surrounded by quintessence and the impact of the Finsler
parameter y on them. Specifically, we explore the case where
the quintessence state parameter is set to @ = —2/3. Our
analysis delves into the effective potential, providing insights
into null geodesics for various energy levels and examining
the behavior of horizons by utilizing the definition of the
effective potential. We also discuss the impact of y for the
same. We compute and analyze the radius of circular orbits,
the period, the instability characteristics of circular orbits,
and the force acting on photons with the newly introduced
parameter y within the quintessence field. We have thor-
oughly looked over the obtained results and discussed them.
Additionally, we explore the shadow of the black hole in this
context. Thereby, the validity and consistency of our Fins-
lerian model are strengthened. In addition to increasing our
understanding of black hole physics, this study paves the way
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for further research in the Finsler geometry domain and its
applications in astrophysics.

1 Introduction

The exploration of black holes immersed in quintessence and
the Finlserian parameter y, a form of dark energy with unique
properties, adds an intriguing dimension to our understand-
ing of the cosmos. In this study, we delve into the character-
istics of a black hole (BH) surrounded by quintessence and
the impact of Finsler parameter y, investigating its metric,
horizons, and geodesics for different cases of . The incorpo-
ration of y introduces novel features and complexities, influ-
encing the structure and behavior of the BH. Quintessence,
often described as a dynamic and evolving form of dark
energy, plays a significant role in cosmic dynamics, affect-
ing the universe’s expansion. When coupled with a BH, both
quintessence and y can alter its horizons, gravitational poten-
tial, and even the trajectories of test particles, such as pho-
tons. Despite the event horizon concealing the singularities
within the interior of BHs, it was predicted by Hawking years
ago that the radiation flux from BHs leads to their gradual
shrinkage until they eventually reach the singularity [1].

Researchers have proposed constructing a regular solu-
tion to address the singularity problem within BH solutions.
One such approach involves combining the theory of gen-
eral relativity with non-linear electrodynamics, where solu-
tions devoid of a singularity at the center have been success-
fully formulated [2—4]. Another strategy for generating reg-
ular solutions is based on the notion that a regular solution
should possess critical scale, mass, and charge parameters
constrained by specific values. These values depend solely
on the type of curvature invariant. This assumption is known
as the limiting curvature conjecture [5].
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Building upon the concept of the limiting curvature, Hay-
ward introduced a static spherically symmetric BH that
exhibits behavior near the origin reminiscent of a de Sit-
ter space-time [6]. The curvature invariants in this model
remain finite throughout and adhere to the weak energy con-
dition. Variations of this solution have been explored, such
as the rotating Hayward [7] and Hayward-charged BHs [8].
Numerous investigations have also delved into the proper-
ties of the Hayward BH. For instance, in [9], the interior
of the regular Hayward BH was examined using Painlev’e—
Gullstrand coordinates, while [10,11] focused on studying
the quasinormal modes associated with this BH.

Kiselev [12] introduced novel static spherically sym-
metric exact solutions to the Einstein equations, featur-
ing quintessential matter surrounding a BH. This model
has sparked various investigations, including [13], where
the quasinormal models of a Schwarzschild BH enveloped
by quintessence are explored. Additionally, [14] addresses
null geodesics for a Schwarzschild BH surrounded by
quintessence, while in [15] extends the study to Reissner—
Nordstrom BHs surrounded by quintessence. In [16], a spe-
cific focus is placed on investigating the thermodynamics
of a Hayward BH surrounded by quintessence. Recently, in
[17], the geodesic incompleteness of Hayward’s BH has been
investigated. Besides this, researchers have also shown inter-
est in examining the dynamics of the particles around a rotat-
ing BH and geodesic structures of regular BHs [18].

This research aims to unravel the intricacies of a BH
immersed in quintessence, shedding light on how the inter-
play of gravitational forces and dark energy manifests in
the vicinity of the event horizon. Through detailed analy-
sis of metrics, horizon settings, and null geodesics, we seek
to explain the distinctive properties and behaviors that arise
when considering quintessence. By examining the effective
potentials and the impact on null geodesics, we hope to con-
tribute to the broader understanding of BHs in the presence
of quintessence. In addition to deepening our understand-
ing of fundamental astrophysical phenomena, such research
paves the way for potential insights into the cosmic interac-
tion between dark energy and BHs.

Finsler geometry, a generalization of Riemannian geom-
etry with relaxed constraints on its metric [19-21], offers
a broader range of geometrical objects and incorporates
anisotropy, making it valuable for explaining small-scale
anisotropies in the universe. Researchers have explored
the universe through the lens of Finsler geometry, dis-
cussing gravity’s nature within this framework. Modifica-
tions to the Friedmann—Robertson—Walker (FRW) metric
reveal insights into the universe’s inherent anisotropic char-
acteristics. Extending the FRW model involves introducing
anisotropic field structures dependent on position and direc-
tion, achieved through the osculating Riemannian approach
to Randers spaces, portraying the universe within Finsler
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geometry. Thereby, research in Finsler geometry explores
diverse aspects of the universe, offering unique perspectives
distinct from Riemannian geometry and explaining a signif-
icant part of the observed universe through exact solutions
derived from Einstein’s field equations [22-24].

Presently, Finsler geometry holds considerable sway as a
research domain. The intricate geometrical structures inher-
ent in the Finsler geometry encompass a lot of complex
objects, often necessitating significant time for computa-
tion. To mitigate these complexities, geometers have intro-
duced the concept of osculation, particularly in exploring
the universe using various models [26-28]. Hui-Ling Li et
al. [25] delve into the remnant and its phase transition near
the Planck scale within the framework of Finsler theory. Sim-
ilarly, Chowdhury et al. scrutinize the characteristics of the
non-commutative radiating Schwarzschild BH within Finsle-
rian spacetime. Their investigation elucidates three possible
scenarios for the BH: possessing two horizons, having a sin-
gle horizon, or lacking a horizon, corresponding to a minimal
mass state.

The outline of this paper unfolds in the following manner:
The second section provides an introduction to the Finsler
structure of the Hayward BH. In the third section, we discuss
the critical mass and critical normalization factors, and an
analysis of event horizons and extremal cases is provided.
Moving to the fourth section, we explore the properties of
the Hayward BH with quintessence, focusing on the case
w = —2/3 and the Finsler parameter y. In the fifth section,
we delve into the study of null geodesics associated with these
Finsler Hayward BH in the presence of quintessence, and we
have also studied proper time, stability of circular geodesics,
and force acting on photons, with examples showcasing dif-
ferent energy levels for various Finsler parameters. In the
sixth section, we analyze the geodesics of Finsler Hayward
BH for different values of y. Subsequently, in the seventh
section, a concise analysis of the shadow area of the Finsler
Hayward BH surrounded by quintessence and the relation
between the angular diameter 2 of the observed shadow
and the constraint of the free parameter y of a quintessence
Finsler Hayward BH with w = —% using the data from the
Event Horizon Telescope (EHT) for Sagittarius A* and M 87*
has been studied. Finally, the paper concludes with a sum-
mary of the findings in the last section.

2 Finsler structure of Hayward black hole
A Finsler metric, denoted by a real continuous function

F(x, ), is defined on the tangent bundle 7 M of a smooth
manifold M of n-dimensions with metric g;; defined as
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The Finsler structure, defined by the function F(x,y),
exhibits a property known as homogeneity, which is expressed
by the equation: F(x,ky) = kF(x,y) for k > 0. The
geodesic spray coefficients G', are expressed as follows

1 PF? dF?
G = -g'* — ) 2
<3x“8yky axk) @

1 8
The subsequent expression represents the geodesic equation
within a Finsler manifold

d>x!
dr?

The expression for the Ricci scalar (Ric) [19] is given by

+2G' = 0. 3)

o= R

RlC_Rj
1 2aGJ' ; 0°G/ . 32G1 aGT aG!
AN R T oyioyl  ayl oyl )

“

The geometric invariant denoted by Ric mathematically can
be represented as follows

Ric = g R;;. (5)

Akbar-Zadeh [29] proposed a formulation for the modified
Ricci tensor within the context of Finsler geometry. This ten-
sor, denoted by Ric;;, represents the curvature properties of
a Finsler manifold and can be mathematically represented as

9? (5F*Ric)

dyioy/ ©

Ricij =

Within this framework, the Finsler metric, represented as
F = F(x,y), is a function dependent on the coordinates
(x', y") within a standard coordinate system. To incorporate
angular coordinates, the following ansatz is employed, which
encompasses F2 (0, ¢, ye, y‘P). Finsler metric is of the form

—r2F2(0,4,5%, 7). 7

Here, we consider functions A = A(r) and u = wu(r) which
depend only on radial coordinates. Additionally, it is note-
worthy that F remains invariant with respect to the coordi-
nates y' and y”. Consequently, we can determine the coeffi-
cients of the Finsler metric using the following methodology.

gix = diag (¢, —e", —r*g,0) ®)

gik =diag (e_)‘, —e M, —r_zg“”> . )

]:2 — ekytyl _ euyryr

The metric components g,,, and g, derived from F, exhibit
a dependence on the angular coordinates 6 and ¢. Utilizing
the Finsler metric as defined in Eq. (7) and applying it to Eq.
(2), we can deduce the geodesic spray coefficients, expressed
as follows

1
Gf — z)\'/ylyr,

)\'/ / r _
G = Zek—uytyt + %yryr . ze—qu’

1. _.
G' = ;ylyr +G". (i=06,¢) (10)
In this context, G’ denotes the geodesic spray coefficient
derived from , and the prime notation indicates the deriva-
tive with respect to the radial coordinate . Upon substitut-
ing the geodesic coefficients from Eq. (10) into Eq. (4), the

resulting expression is as follows
- T2 1 ” N2\ A— A A— l /
RicF? = | 5 (4 6)?) 7 = 210 44
)\4/
+fek_“)} vy
,

1 )\(/ /
+ [— S (2 + @) + T )+ ie*l*]y’y’
r

2
+ I:Ric—e_“ +%e_“(u/—k/)] F2. (11D
The scalar curvature in Finsler geometry defined as
S = gikRicik
)\'/
= (/4 0)De T = S )
2 2 - 2
+=e " =) = SRic+ Ze ™. (12)
r r r

Pfeifer et al. [30] have investigated the gravitational dynam-
ics within Finsler space-time using an action integral for-
mulation on the unit tangent bundle. They observed that the
gravitational field equation in Finsler space remains unal-
tered by the connection. This is attributed to the fact that the
components G, are obtained from the Ricci scalar, which
fundamentally remains unaffected by the connections and is
solely dependent on the Finsler structure. Consequently, the
gravitational field equation in Finsler space can be expressed
as follows:

Gy =8npGTy,.

The fundamental tenets of General Relativity (GR), encom-
passing the gravitational interactions between matter and
energy, are succinctly encapsulated by the Einstein field
equations, which can be formulated as follows

, 1
Gik = Ricjy — zgikS =k Ti, (13)

where k = 87 Gy, Gy represents the Newton gravitational
coupling constant. We represent the non-zero component of
the energy-momentum tensor as

T =1/ =p, (14)
(15)

Here, p represents the system density, providing information
about the distribution of mass or energy within it. On the

1
1§ =Ty = — (1 +3w)p,
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other hand, w is the equation of state parameter, defining the
connection between pressure and density. Furthermore, the
dominating energy condition necessitates that [3w + 1| < 2
and T;, > 0. Without sacrificing generality, we impose the
condition u© = —A, where

n = —=In(f(r)). (16)

By implementing this condition and introducing the required
adjustments to Egs. (13) and (14), the following results are
obtained [31]

1 -
G =G = 3 (rf'(r)+ f(r) — Ric), (17)
1 /1

G)=Gj = - <§r2f”(r) + rf/(r)> : (18)
From the above hypothesis, the scalar curvature changes as

1 -
S = —2(r2f”(r)+4rf’(r)+2f(r)—2Ric). (19)

r

Incorporating the condition Ric = y = constant, the

derivation for the Finslerian gravitational field equation leads
as follows

1 /
-3 (rf'(r)+ f(r) —y) = kp,

1 1 2 o, / __1
- (7 £y rf (r)) = 30+ 3. (20)

Solving the set of differential equations (20) gives the solu-
tion for the Finslerian BH [31].

2M Y
f(V)ZV—T—m, 21

along with we obtain the energy density of quintessence mat-
ter as follows

3cw

Hayward proposed a model for the formation of BHs [6]
that combines the concept of limiting curvature conditions
with a minimal model. He formulated a regular, static, and
spherically symmetric space-time to describe this formation
process. Within this model, Hayward introduced a cosmo-
logical constant, denoted as A, into the Einstein tensor G;;,
particularly as » — 0, represented as G ~ —Ag. The value
of A is determined to be 6%, where € represents the Hubble
length, effectively encoding the central energy density. Cru-
cially, this cosmological constant € introduces a significant
effect, generating a repulsive force known as the repulsive
core. This core plays a pivotal role in preventing the forma-
tion of a singularity at the center of the emerging BH.

By imposing specific conditions related to the Hayward
BH [6] onto the spherically symmetric and static Finslerian
metric expressed in Eq. (7), a solution is derived and pre-
sented in Eq. (21). This solution furnishes a mathematical
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description of the Finsler Hayward BH metric, denoted as
(FH).

F = fur)y'y' - fwl(r) Yy = rty?y?
—rZsin?(/y0)y?y?, (23)

where,

fulr) =y — 217 c 24)

P34 2Me2 plotl”
The proved theorem in Ref. [32] shows that the two-
dimensional Finsler space F? (see more details in Ref. [33])
has only one independent Killing vector, like the “Finslerian
sphere” [32,34] that breaks isometric symmetry in Rieman-
nian space-time. It is worth mentioning that this metric is
a semi-definite Finsler space. As a result, we can use the
covariant derivative of the Riemannian space. The Bianchi
identities coincide with those of the Riemannian space (being
the covariant conservation of Einstein tensor). One can find
the gravitational field equations alternately [35]. Li et al. have
also proved the covariance-preserving properties of the ten-
sor G4, for the covariant derivative in Finsler space-time with
the Chern-Rund connection.

The Ricci scalar depends only on the Finsler structure F
and is insensitive to the connection. The gravitational field
equation in the Finsler space is insensitive to the connection
because the G}, are obtained from the Ricci scalar. Our paper
studies the Hayward BH in Finsler geometry, which involves
Riemannian geometry as a particular case. The Ricci scalar
contributes to the geometry of the Finslerian Hayward BH
structure. In our work, all the computations depend on. If
y = 1, the Finslerian Hayward BH structure reduces to the
Riemannian case. Therefore, Finsler geometry promises a
new way of analyzing the BH structure quite different from
Riemannian, and we can see various works related to this
metric in Refs. [36-39].

Within the Fpy metric, Ric = y = constant, the term
rwﬁ signifies the quintessence term. Here, M denotes the
mass of the Finslerian Hayward BH, € is a parameter linked to
the cosmological constant, w represents the state parameter
of the quintessence matter and ¢ serves as a positive normal-
ization factor utilized in the metric equation. These symbols
are employed to define and represent various parameters and
characteristics associated with the Finslerian Hayward BH
metric.

When ¢ = 0 in the derived metric (23), the result-
ing metric is linked to the Finslerian Hayward BH. Con-
versely, when € = 0, this metric characterizes the Finslerian
Schwarzschild (FSch) BH surrounded by quintessence mat-
ter [12,40]. Moreover, in the scenario where both ¢ = € = 0,
it exhibits behavior similar to the FSch BH [41], character-
ized by a single event horizon. It is essential to highlight that
a variety of solutions for BHs can be derived by choosing dif-
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ferent values for the parameter w. For instance, ® = —1/3
in the solution presented in Eq. (23) yields the Finslerian
Hayward BH. Similarly, when @ = 1/3 and ¢ = —Q?, this
solution corresponds to the charged Finslerian Hayward BH.
Specifically, the state parameter for quintessence lies within
the range where | < w < —1/3.

3 Event horizons of Finsler Hayward BH

The determination of horizons in the context of the Finsler
Hayward BH with quintessence (Finsler Hayward BH-w)
involves finding the positive roots of the Eq. f,(r) = O.
To facilitate analysis, we express key parameters such as the
BH mass, radial distance, and the parameter ¢ in units of
a constant €. This involves the transformations r — r/e,

rf («/g\/(?)aﬂrg + 12yw + 4y)ré‘+6“’ + 3wr3“’+3)

The mass parameter reaches an extremum at ¢..;;, as deter-
mined by

1
Corit = €2 = o (ir‘“’\/ (b — D?r2 + 12by

T — b2 4 6yr”) . 27)

The variable c..;; (27) exhibits extremal at specific r,;; val-
ues. Since ¢.rj; > 0, the function ¢.,j; (r¢ri;) must be pos-
itive within the range —2 < b < 0 because the condi-
tion is achieved when —1 < w < —1/3. By analyzing
Cerit(Terit), the extremum of ¢ iy = ¢4 is identified at the

Ferit = 40 | Grais> Where 8 = by — 662y — 11by +
VD22 = 2b + 17)(b + 3)2.

From now onwards we denote the critical value ¢,y = ¢4+
of the quintessence parameter by c., ¢»i; by r. and the critical

mass M. = M (c,, r.) of the Finsler Hayward BH, in terms
of w and y are given by;

M, = — , (28)
(6w + 12)r2e3 + 2J§\/ (Bw?r? + 12yw + 4y)rito®
1
= (ﬁ\/(3w2r2 + 2y + 4y)rétée 4 330+ 4 6yr3“’+1) , (29)
V2 | @103 = 270? — 60w — 16)y + /(Bw + 1)2y2(9w? + 16)(4 + 3w)?
o = —= . (30)
6 (0 + DH?

M — M/e, and ¢ — c/eb, where b = 3w + 1. The event
horizons will be the roots of the equation

DMyt 3 oMyt 4 2Mc = 0. (25)

The existence and number of horizons are contingent on the
specific values chosen for the parameters w, ¢, y and M.
Notably, the inclusion of the quintessence term introduces
a novel horizon known as the cosmological (quintessence)
horizon. Consequently, while the Hayward BH typically pos-
sesses two horizons, the Finsler Hayward BH-w, with the
addition of quintessence, may exhibit three horizons.

We adopt the methodology employed in [42,43] to ascer-
tain the permissible range of values for the parameters M and
¢. This ensures that the line element describing the Finsler
Hayward BH with quintessence (24) corresponds to a valid
BH or an extremal BH.

Expressing the mass parameter as a function of r and ¢
based on Eq. (25), we aim to delineate the conditions under
which the solution represents a BH or an extremal BH.

= (yrb — c)

1
Mir.o =5 (r?*2 —yrb+¢)’

(26)

The behavior of the critical values ¢, and M, with respect
to w for different values of y, as depicted in Fig. 1, reveals that
with an increase in w, ¢ also increases, while M, decreases
for all the values of y as shown in the Fig. 1.

For values of ¢ < ¢, the Finlser Hayward BH with
exhibits diverse horizon configurations. It is noteworthy that
asw— —1,¢ — 21—4 for all y > O (Fig. 1a). Consequently,
for small w values, both ¢, and M, remain finite. On the other
hand,as w — —%, M, — Oforall y > 0 (Fig. Ib). This limit
implies that, in the presence of quintessence, the likelihood
of BH formation diminishes.

The extremal of the Finsler Hayward BH-w solution can
be determined by satisfying the condition f,,(r) = 0, where,

3

2
4b (5 + M) eI oMt — My

= 0.
(r3 +2M)?

d Ju—
dr Jor) =
(31)

By substituting the expression for M (r, ¢) from Eq. (26) into
Eq. (31), we derived the resulting condition.

y(r? =3 4 (b= Dr?2 +6y)r =33 =0. (32)

If certain values of w, y and ¢, are chosen, Eq. (32) can
yield two real roots denoted as r and r_. In such cases, then

@ Springer
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Fig. 1 Behaviour of ¢, and M, for different values of y with —1 < w < —1/3

the mass (26) takes the following form:

1 iyt —o

M(ry,¢) = = , 33

(ry. o) ) (r-lij-+2 _ J/r.li_ +o (33)
3¢.,.b _

M(@r_,c) = L relyr= = ¢ (34)

E(rfJr2 —yrb +c)’

The subsequent section provides an analysis illustrating the
behavior of Egs. (33) and (34) for various y values, specifi-
cally with ® = —2/3. The conditions corresponding to cer-
tain @ and y values are summarized in Table 1, depicting the
values of ¢, and M,. This Table clearly illustrates how both @
and y factors influences the horizons of the Finsler Hayward
BH-w. It is evident that on keeping y fixed at lower values
say y = 0.2, an increase in the w value leads to a decrease in
the critical values of normalization factor ¢., accompanied by
an increase in the corresponding critical mass values (M) of
Finsler Hayward BH. Similarly, for higher values of y with
y fixed at 0.8, an increase in w results in a decrease in the
critical values of normalization factor ¢, and a simultaneous
increase in the corresponding critical mass values (M.) of
Finsler Hayward BH. Therefore, it can be concluded that for
any positive y, an increase in the o (from —4/9 to —8/9)
values leads to a decrease in c¢. values and an increase in
the corresponding (M,) as shown in the Fig. 1. For a more
detailed analysis of the Finsler Hayward BH-w behavior with
quintessence, it is essential to select a specific w value. In
this context, we propose choosing w = —2/3, as it yields an
intermediate value of M.,.

4 Finsler Hyward black holes with o = —2/3

Our attention is now directed towards the specific case of
w = —2/3, allowing for a relatively straightforward exam-

@ Springer

Table 1 The values of ¢.,;; and M,;; are computed for various w and

y values
w 14 Cerit Myir
—4/9 0.2 0.14585 0.02874
0.4 0.25987 0.02874
0.6 0.36434 0.14934
0.8 0.46305 0.22993
—12 0.2 0.12212 0.04225
0.4 0.20538 0.11951
0.6 0.27837 0.21956
0.8 0.34540 0.33804
—5/9 0.2 0.10357 0.05336
0.4 0.16441 0.15093
0.6 0.21544 0.27728
0.8 0.26099 0.42690
—2/3 0.2 0.07753 0.06977
0.4 0.10964 0.19736
0.6 0.13429 0.36258
0.8 0.15506 0.55823
—-17/9 0.2 0.06081 0.08084
0.4 0.07662 0.22866
0.6 0.08771 0.42008
0.8 0.09653 0.64675
—8/9 0.2 0.04956 0.08853
0.4 0.05562 0.25042
0.6 0.05951 0.46006
0.8 0.06244 0.70831

ination of the characteristics of Finsler Hayward BH with
quintessence and along with the parameter y.

The horizons are determined for @ = —2/3 by solving
Eq. (35) (i.e., setting f,,(r) = 0).
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Fig. 2 a The behavior of M as function of ¢ is shown for @ = —2/3 and y = 0.8. b The function metric f,, (r) for the values of M and ¢

2Mr? — yr3 + ot — 2My +2Mcr = 0. (35)

For a certain value of ¢ = ¢, = 0.15506, there exist three
real positive roots, namely iy, o4, and r,. Now, Eq. (32)
for o = —2/3 can be expressed as:

2er3 + (3¢ — y)r? — 6cyr = —3y2. (36)

Eq. (36) is a cubic equation and may exhibit two real positive
roots, and is given by,

1 1Ot 30y +9H 1

= — — (3 2 — ,
7 b +6c > 6c( -
(37
1 1 Ot +30yc+y%) 1
o1 1 (9" 4+ 30y¢ +y)——(3c2—y)
12¢ 12¢ > 6¢
13 1 (9t + 30y +y?)
- — — 13 38
12¢ Z+12c > V3 %)

where, 3 = (=27¢ — 135¢ty — 117y22 + 18y
VyOct +33y2 + y2)etyd) 3. Generally, the various roots
follow the relation r;, < r— < royy < ry < 14, where ry
represents the quintessence horizon.

Figure 2a illustrates the behavior of M as a function of
¢ for @ = —2/3. In regions I and II, the Finsler Hayward
BH-w features a single horizon, while in region III, there
are three horizons. The boundary between regions I and II
corresponds to the extremal Finsler Hayward BH-w (M (r4.)),
and the boundary between regions II and III corresponds to
the extremal Finsler Hayward BH-w (M (r_)). Additionally,
in Fig. 2b, the metric function f,,(r) is depicted for various
values of M and ¢ within regions I, II, and III, considering
M(ry) and M(r_).

Depending on the values of the parameters M, ¢ and y,
the number of horizons may decrease from three to one. The
cosmological (quintessence) horizon r, never vanishes, and
when only this singular horizon remains, the Finsler Hayward
BH-w describes a naked singularity. It is worth noting that the
introduction of the quintessence term, —c/ r3ot] Jeads to a
decrease in the critical mass, i.e., M. < M, as in Table 1. To
further enhance the understanding of the horizons of Finsler
Hayward BH-w, we supplement the analysis by examining
the behavior of M(r, ¢) Eq. (26) with w = —2/3.

1 3 (y —cr)

M,(r)=M(r,¢c)= <

2(cr +r2—vy)’ 39

It’s important to note that the function M, (r) — Oasr — 0.
Asr — oo, M,(r) — —oo, and there is a discontinuity
in M,(r) at r, = [\/¢Z +4y — ¢]/2. The behavior of the
function M,,(r) for a specific value of ¢ is illustrated in Fig. 3.

As depicted in Fig.3, two critical values, M, and
M ymax, emerge for the mass of the Finsler Hayward BH-
w, leading to distinct physical scenarios. Firstly, for M,, <
M ymin, a naked singularity is observed. When M, = M ,in
(or Mymax), a Finsler Hayward BH-w with two horizons is
present. For M, values between M i, and M ;a4 three
horizons are observed. For a specific M,, value, such as 1.5,
the Finsler Hayward BH-w features three horizons: the inner
horizon r;,, the event horizon r,,; (Where ry,; > ri,), and
the quintessence horizon r, (where r;, > ry,). When the
normalization factor ¢, is at its critical value of 0.15506,
the Finsler Hayward BH-w exhibits a single horizon, i.e.,
Yin = tour = Tq. These BHs are referred to as ultra-cold
BHs [44,45]. For values of ¢ > ¢., no BH exists for any M,,
value. Conversely, for the values ¢ < ¢., BHs may have two
or three horizons, but only for M,, values falling within the

@ Springer
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Fig. 3 The figure shows the horizons of the Finsler Hayward BH-w
with ¢=0.045 and y = 0.8

range of Mymin t0 Mymax. Here, Mypmin and M,y repre-
sent the minimum and maximum local values, respectively,
of the expression M, (r). When M,, = M 4x, the situation
corresponds to the Nariai BH, as discussed in Ref. [46].

3¢ — 2 4 30y¢2 +9¢* A
( y)+(y 4 )Jr

6¢ 6¢cA 6¢’
(40)

TFour =Tq = —

where, A = (y3 — 27¢% — 135¢*y — 117922 + 18y

7O £33y + y2)0)5.
When M, = Mymin, we get,

B —y) A (¥ 430y +9¢h

Fin = Tour = =g 12¢ 12¢A
2 2 4
_I«/§+I(y +30y¢® +9¢h). @D
12¢ 12¢cA

5 Null geodesics equation with = —2/3

In this section, we will obtain the null geodesics for the
Finsler Hayward BH-w. Considering spherical coordinates
x* = (¢t,r,0,¢). From Eq. (3), it can be proven that the
Finslerian structure F (x, d—;‘) along the geodesic is constant
[26,27]. The geodesic equations are expressed with this con-
dition as follows,

guu’u” = F?
where x* = % = uk. It is possible to consider 2L = F2,

and if F = 1, it corresponds to time-like geodesics, while

@ Springer

F = 0 corresponds to null geodesics. So, the motion of
test particles along geodesics is described by the Lagrangian
density £ = %)'c”fc > Where “dot” indicates the first derivative
with respect to the affine parameter 7. Utilizing the form of
the line element (23) and the expression of f,(r) given by
Eq. (24), the Lagrangian density can be expressed as:

2

1 . r . .
L= fori* - —r?6% — r?sin’( 9)¢2> ,
2 (#0725 v
(42)
The equation of motion is given by,
. oL
Myen — Pyl 0. (43)

Here, ITyn = % represents the momentum corresponding
i

to the coordinate x**. As the Lagrangian is independent of ¢

and ¢, two conserved quantities will arise:

M, = — fo(Ni=—E, (44)
My = r?sin’(y0)¢ = L, (45)

where E and L represent constants of motion corresponding
to energy and angular momentum, respectively.

We examine the motion on the plane with § = 7/2, and
by utilizing Eqs. (44) and (45), the Lagrangian given in Eq.
(42) can be expressed as:

E2 ,‘.2 L2
2 =F= — - (46)
Jor)  fo(r)  rZsin®(/7%)
By solving the above equation for 72, we get,
LZ
PP =E = f,) | h+ 55— |- (47)
r=sin“(/y 5)

In this study, our focus will be solely on null geodesics
(h = 0). Hence, the equation describing null geodesics for
the Finsler Hayward BH-w is provided by:

P2 = E* = Vyy, (48)

or

dr  r?sin? (%)
i %,/W — Vesr. (49)

Here, V5 = fw(r)r2 (D)
for the Finsler Hayward BH-w with @ = —2/3 can be

expanded as:

The effective potential Vs

v L? ( 2Mr? ) 50)
= — —cr).
“Gf =2 sinz(ﬁ%) Y =53 +2Me?

Itis evident that Vs — 0 asr — oo. Figure 4 illustrates
the effective potential of null geodesics for various values
of y. Notably, the shape of the potential remains consistent,
regardless of the specific values of y. It can be noted that
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Fig. 4 The figure shows V. for different values of y with L =
20,M =1lande =1

as the parameter y increases for the Finsler Hayward BH-
o, the influence of the gravitational potential diminishes. In
Fig. 4, the potential exhibits maxima, indicating the presence
of unstable null geodesics with a radius of r.. Thus, three
distinct scenarios can be considered based on the values of
E for the motion:

e In the first scenario, E2 — orf = 0implies 7 = 0, lead-
ing to the existence of circular null geodesics. To deter-
mine whether these null geodesics are stable or unsta-
ble, certain conditions must be satisfied: Vé ff (re) =
Verr(rc) = 0, where r¢ is the radius of the circular orbit.
Here, the symbol ’7’ indicates the derivative with respect
to r. Additionally, for circular stable orbits, the condition

e’}f(rc) > 0 must be achieved, and Ve’}f(rc) < 0 for
unstable orbits. Generally, the conditions for obtaining
stable or unstable geodesics are:

E n 1 2Mrc(rg — 4M62) 172
— = —C .
L 2resin?(y5) | (i3 +2Me2)?

(D

For instance, it is conceivable to choose E = E¢, which
corresponds to the maximum value of V, s located at r¢.

e Inthesecondcase, £ 12 — Verr > Oforallr. This situation
corresponds to the energy value £ = E associated with
open null geodesics.

e In the third case, E% — Verr < 0O for all r. This scenario
corresponds to the energy value E = E» associated with
closed null geodesics.

It is worth noting that the effective potential Vs — 0 as
I = Tin, Tour» and r,. When two horizons coincide, the maxi-

Fig. 5 T; as a function of M for Finsler Hayward BH-w surrounded
by quintessence for different values of y with ¢ =0.1 and w = —2/3

mum of the effective potential becomes zero. In this study, we
will specifically focus on examining the behavior of photons
in the presence of non-degenerate horizons.

5.1 Proper time period

The period of circular orbits encompasses the time required
for a particle to complete one full revolution around the cir-
cular path. The formulas for calculating the period of proper
time 77 are derived from the equation provided by Fernando
in 2012 [14].

2mr,
T, = e

\/fw(r)'

The period for Finsler Hayward BH-w surrounded by
quintessence for different values of y is plotted in Fig.5.

From the Fig.5 it is found that proper time for Finsler
Hayward BH-w is highest at y = 0.29 when compared to the
other greater values of y, while it attain lowest at y = 0.95.
We can see that,

(52)

TH <13 <72 <1

5.2 Stability of circular geodesics

The Lyapunov exponent X serves as a metric for assessing the
stability or instability of circular geodesics. In cases where A
is areal value, it indicates the instability of the circular orbit.
The time scale for the instability of circular null geodesics is
quantified by the Lyapunov exponent X, and its computation
is determined by the equation provided by Cardoso et al. [47].

@ Springer



1276  Page 10 of 15 Eur. Phys. J. C (2024) 84:1276
M 207

008 " — Ayaty=0.8 I| ----- F:at',v-a.i'

\\ """ Ay aty=0.85 :' ——F ay=05
007 L\ AR il —— Pay=07

. \\\ == A,aty=095 F 104 :II -
~ -« .
0.06 N .
\\ &
0.05 \ \
N \ b 0 -
0.04 \ k 8
\ \
\ \
0.03 \ \
\ \ —10-
0.02 \\ ‘.\
| \
001 | i
| | —20
0 : : : : I ,
0 0.02 0.04 006 008 010

<

Fig. 6 Lyapunov exponent A as a function of ¢ for Finsler Hayward
BH-w surrounded by quintessence for different values of y with M =
12, L=4and w = -2/3

712 (53)

Lyapunov exponent A of Finsler Hayward BH-w surrounded
by quintessence for different values of y is plotted in Fig. 6.
According to Fig.6, it can be found that the instability of
the circular orbits of the Finsler Hayward BH at y = 0.9 is
the greatest compared to the other lower values of y for the
greater values of ¢, while the instability of the circular orbits
of Finsler Hayward BH at y = 0.8 is the lowest compared
to the other values of y for the greater values of ¢. From the
Fig.6 it is clear that,

_ \/ Vi O ulr)

A > A3 > A2 > Aq.

5.3 Force acting on photons

Determining the force acting on photons can be achieved by

utilizing the definition of the effective potential, as outlined

by Fernando [14].
1dVeysyr
2 dr

From Fig.7, we can see that the force factor is more positive
at y = 0.9 and it is more negative at y = 0.3, i.e.,

a =

(54)

F}>F2>F)>FL

@ Springer

—30-

Fig. 7 F, behavior as a function of r for Finsler Hayward BH-w
surrounded by quintessence for different values of y with M = 0.5,
L=10,c=0.1and w=-2/3

6 Analyzing the geodesics of Finsler Hayward BH

To analyze the geodesic equation of motion (49), we aim
to simplify the study of orbits by introducing a change of
variable. Letting u = %, we can then express Eq. (49) as:

du\?
a0) = g(u), (55)
where g(u) corresponds to
E2sin*(/7%) ) T
gu) = sz —uy sin’ (V7 3)
2Mu? sin®(7'%) Lo T
oM + cu sin (\/75), (56)
or
i 02 b4
sin“ (/¥ 3) |: 25 12 2.2 4
u) = —2Me“uw’y L+ 2L"ce“u
80 = 2 amew) Y

+2M <E2€2 sinz(ﬁ%) + L2>u3 — L%’y
-+L2a4+»EzsnP(V67%a}, (57)

g(u) can be written as:
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Fig. 8 The geodesic have an unstable circular orbit at r = r¢. Here Ec = 1.00125, L =256, M =1,e =1,y =0.9and ¢ = 0.1

—2L*Me>y sin* (Y T) (u —un) (u — uz) (u — uz)(u — us)(u — us)

g) = L2 (1 +2ML%e%u3) y

; (58)

here, u; represents the roots of g(u), and ujusuzusus
E2sin((7%) Lo .
MR- The geometry of the null geodesics is contin-
gent upon the roots of the function g(u). It’s important to
note that, for any values of the parameters M, €, ¢, E, y

and L, the function g(#) — 00 as u — oo. Additionally,

whenu — 0, g(u) — M Consequently, g(u) has
three positive roots and two negative roots. The geometry of
the geodesics is intricately linked to the roots of the func-
tion g(u). By numerically solving Eq. (55) with appropriate
boundary conditions, one can discern the paths followed by
massless particles in the Finlser Hayward BH-w.

e When a test particle, such as a photon, approaches from
rp > rc, it experiences an unstable circular orbit at r = rc.
The associated motion is depicted in Fig. 8. Notably, when
considering the values of E = E¢, the function g () exhibits
a degenerate root uc = %, as illustrated in Fig. 8, where the
graph for g(u) displays four roots.

e When considering £ = Ej, the photons, for all val-
ues of r, exhibit a trajectory leading them into the BH, as
depicted in Fig. 9. In this scenario, the function g (u) features
two imaginary and three real roots, as illustrated in the graph
of g(u) in Fig. 9.

o If E = E», the test particle initiates its journey far from
the Finsler Hayward BH-w at up % It then falls until

Uoyr = # and subsequently moves away from the BH.
Figure 10 illustrates this situation, where g(«) has five real

roots.

7 The shadow of Finsler Hayward BH-o with w = —2/3

The shadow of a BH in the observer’s sky appears dark
when the light sources are situated anywhere in the universe
except between the observer and the BH. The shape of the
shadow can provide crucial information about the parame-
ters of the BH. As depicted in Fig.4, the behavior of the
effective potentials reveals the existence of photon spheres.
Given the spherically symmetric nature of the Finsler Hay-
ward BH-w, the shadow is circularly symmetric and depends
solely on the impact parameter, defined as b% é—z [48].
The impact parameter b¢ is related to the effective potential
by Verr(re) = é. The connection between the shadow area

and the impact parameter is expressed as 0 = nb%.
By combining Eq. (51) with the definition of the shadow
area, the impact parameter is given by:

(—c +
5(59)

Figure 11 illustrates the variation in the shadow area of the
Finsler Hayward BH-w, comparing it with different values
of y. It is significant that the introduction of the scalar factor
y and the quintessence state parameter w leads to an increase
in the shadow area. As we can see in Fig. 11, as the values of

1

N 2Mrc(rp — AMe?)
2re sin?(7'%)

(r3 +2Me2)?

2
bC
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Fig. 9 The geodesic have an unstable circular orbit at r = r¢. Here Ec = 1.30125, L =25.6,M =1,e =1,y =09and ¢ = 0.1

0.08 1 /

0.06

gln)
0.04 1

—0.04 1

—0.06 1

—0.08-

EE3
2

Fig. 10 The geodesic have an unstable circular orbit at = r¢. Here Ec = 0.70125, L =25.6,M =1,e =1,y =09and ¢ = 0.1

y increase, the Finsler Hayward BH-w shadow area becomes
greater.

This suggests that the shadow area expands as the factor
y increases. However, it is essential to note that the range
of r. decreases for lower values of y, signifying a broader
range of parameter combinations E, L, M, and € to achieve
photospheres with aradius of .. In 2016, Abdujabbarov et al.

@ Springer

[49] investigated the shadow of a rotating Hayward BH, and
Lopez et al. [10] discussed the shadow of a charged Hayward
BH.

To determine the photon sphere and the impact parameter
for the quintessence Finsler Hayward BHs using the ray-
tracing method, we will consider the photon orbit occurring
at r = rc. Consequently, the conditions for these orbits,
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Fig. 11 The shadow area of Hayward BH-w with M = 1, ¢ = 1 and
€ = 1, for different values of y

derived from Eq. (47), are given by

Vers(re) = Eg, V)(re) = 0. (60)
Use of Eq. (50) leads to the following relation
rfo(r) = 2 fu(r) = 0. (61)

Substituting f,,(r) from Eq. (24) we obtain the following
equation for the photon sphere

yr6 —3Mr + 4M€2)/V3 + 4)/M2€4
3 2
—Se@+1) (2M62 + r3) pGoth _ ¢ (62)

The above equation lacks an analytical solution, so we numer-
ically determine its roots. For ¢ = € = 0, we find r¢c = 3M,
corresponding to the photon radius in Schwarzschild space-
time. When ¢ = 0 and € # 0, specifically for Finsler Hay-
ward BHs, which also lacks an analytical solution. However,
for Schwarzschild BHs in the presence of quintessence mat-
ter with ¢ # 0 and € = 0, there is an exact solution for
o= —%, given by:
1 —+/1—-6Mc

re=—— (63)
C

Moreover, the impact parameter of the photon sphere, defined
as bc = Lc/Ec, was given by [50]

be = —C (64)

NV folre)
Since the shadow is a distinct characteristic of the space-time
metric, it can be used to constrain the parameters of the space-
time geometry based on the observed shadow [51-56]. The
angular diameter 2 of the BH shadow, as seen by a distant
observer, can be defined as follows [51]

_ 2bc
))

Q , (65)

601

Sagittarius 4*

M87*
40

\ ——— M87*
304

§|xo
5

\ - - - - Sagittarius 4*

Fig. 12 The relation between the angular diameter 2 of the observed
shadow and the parameter y of a quintessence Finsler Hayward BH
with w = —%

where D is the distance between the BH and the distant
observer. The above equation can be rewritten as

Q) (6191165 x 1078  x bc 66)
was) b4 D/Mpc M)’

here x is the ratio of the BH to the Sun, and the impact
parameter of the photon sphere, b¢, is obtained from the Eq.
(64).

For quintessence Finsler Hayward BHs, one can obtain
constraints of the free parameters using the shadow diam-
eter estimated by the EHT observations. We consider the
quintessence Finsler Hayward BH (¢ = 0.9) with w = —%
and constrain the parameter y for both M87* and Sagittar-
ius A* in the Fig.12. Current observations correspond to
x = 4.14 x 10° and a distance D = 8.127 kpc for Sagittar-
ius A*, and x = 6.2 x 10° and a distance D = 16.8 Mpc
for M87*, respectively [57,58]. The yellow and blue regions
represent the shadow diameters of M87* (42 + 3uas) and
Sagittarius A* (51.8+£2.3uas) as reported by the EHT obser-
vations. Consequently, we constrain the parameter y of the
quintessence Hayward BH is constrained to 1.13866 < y <
1.1909 for M87*, and 1.17908 < y < 1.21421 for Sagittar-
ius A*.

Figure 12 represents the relation between the angular
diameter 2 of the observed shadow and the constraint of
the free parameter y of a quintessence Finsler Hayward BH
withw = — % The green (solid) curve corresponds to the the-
oretical shadow diameter predictions for M87*, and the red
(dashed) curve corresponds to the theoretical shadow diam-
eter predictions for Sagittarius A*. In essence, the plot visu-
ally demonstrates how the theoretical prediction of the BH
shadow diameters, influenced by the parameter y, align with
the empirical observations from the EHT, thereby constrain-
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ing the values of y to specific ranges for both M87* and
Sagittarius A*.

8 Results and conclusions

In this study, we investigate the metric of the Finsler Hayward
BH surrounded by quintessence matter. To analyze the hori-
zons of the new solution, we provide critical values for the
¢ (normalization factor) and M (mass) parameters in terms
of w and y. Additionally, considering the introduction of the
quintessence term and y, we identify the emergence of a
new horizon, and the conditions for a Finsler Hayward BH-
o extremal are also examined. The dependence of the mass
on the value of ¢ for different values of y is presented in the
analysis.

We investigate the null geodesics of BHs surrounded by
quintessence and analyze the influence of y on the null
geodesics of Hayward BHs. By examining the structure of
these geodesics, we extract several physical properties of this
BH. Initially, we provide a concise introduction and present
the structure of Finsler Hayward BH under consideration.
The horizons are determined using the methodology outlined
by Kiselev. Specifically, we apply this approach to quantify
the horizons for the parameter value of w = —2/3. This new
horizon is linked intricately to the parameter w. We delve into
the analysis of regions where the Finsler Hayward BH with
quintessence possesses one, two, or three horizons for some
y > 0, specifically in the case of @ = —2/3. Importantly,
it is observed that the cosmological (quintessence) r4 hori-
zon persists without vanishing. In this particular instance, the
Finsler Hayward BH with quintessence describes a naked sin-
gularity. Additionally, it is noteworthy that the critical mass
decreases with M, < M,.

Using the concept of the effective potential, we computed
various parameters such as the radius of circular orbits, the
period, the instability of circular orbits, and the force exerted
on photons in the presence of quintessence under the influ-
ence of y. Our analysis and discussions revealed several key
findings. Firstly, we observed that the effective potential for
higher values of y of the Finsler Hayward BH surrounded
by quintessence exhibited the highest value among the con-
sidered other lower values of y. Secondly, we found that the
radius of circular orbits and the period for lower values y of
the Finsler Hayward BH surrounded by quintessence is the
largest compared to other higher values of y. Furthermore,
it can be found that the instability of the circular orbits of
the Finsler Hayward BH for higher values y is the greatest
compared to the other lower values of y for the greater values
of ¢. Moreover, we determined that the force exerted on pho-
tons for the higher values y is the greatest compared to other
lower values of y of the Finsler Hayward BH surrounded by
quintessence.

@ Springer

To analyze the geodesic equation of motion, we employed
the variable change u = % The trajectories of photons can be
confined within the quintessence horizon. But if they extend
beyond the horizon r = r,,;, the photons plunge into the
BH, thus designating the quintessence horizon as an appar-
ent horizon. In conclusion, it is noted that the shadow area
increases with an increase in the factor y . We also constrained
the amount of the free parameter of the quintessence Finsler
Hayward BH with w = —% compatible with the EHT obser-
vations of Sagittarius A* and M 87* supermassive BHs.
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