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1

Introduction

1.1 Physical background

The two great successes of physics in the last century were the discovery of General
Relativity by Einstein and the construction of the Standard Model. Both were
guided by what may be called the principle of symmetry. For Einstein this implied
that the laws of physics should be the same for all observers, whether they are
upside down or not, and standing still or accelerating [86]. For the Standard Model
it means that its predictions are invariant under a big set of transformations known
as SU(3)× SU(2)× U(1) [18].

Perhaps the great failure of physics of the last century has been the unsuccess-
fulness of combining the two into one single theory. This theory would ideally unify
the four forces of nature (the strong and weak interaction, electromagnetism, and
gravity) into one single description. Although not ultimately successful, one of the
more promising candidates for unification is string theory [39, 40]. The basic idea
of string theory is to replace the point-like particles of the Standard Model by one-
dimensional objects known as strings. All the known elementary particles should
then correspond to different vibrations of the string. The biggest attraction of string
theory, besides ‘smoothing out’ the infinities that are inherit to the framework of
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Type IIBType I

Heterotic
E8 × E8

Heterotic
SO(32)

D = 11
SUGRA

Figure 1.1: The limits of M-theory. The limits are known, M-theory is not.

the Standard Model, is that one of its vibrations gives rise to the graviton. As such,
string theory naturally incorporates gravity.

For a theory that combines all the forces of nature, you would expect there to be
only one. However, there is no one single unique string theory. Instead there are no
less than five self-consistent string theories. They go by the (not very poetic) names
of Type I, Type IIA, Type IIB, Heterotic E8 × E8, and Heterotic SO(32). They
all carry some degree of supersymmetry (a symmetry between bosons (forces) and
fermions (matter)), and all live in ten space-time dimensions. This did not bode well
for string theory, until it was realized that these five theories are related by some
form of symmetry, known as string dualities [46]. Furthermore, it was conjectured
that they were all some limit of a yet unknown theory in eleven dimensions, dubbed
M-theory [43]. Little was, and still is, known about M-theory. All we (think we)
know is its low-energy limit: the unique eleven-dimensional supersymmetric gravity
(supergravity) theory.

Like the theory itself, it remains a guess as to what its symmetries are. But
once they are known, the principle of symmetry may guide our search for a concrete
formulation of M-theory. One requirement of the symmetries of M-theory is that
they should at least contain the dualities that tie the five string theories together.
A further hint towards the symmetries of M-theory may come from supergravity:
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M-theory

supergravity
Kac-Moody
symmetries

Figure 1.2: The interrelations between M-theory, supergravity, and Kac-Moody symme-
tries. This thesis focuses on the bold arrow from Kac-Moody symmetries to
supergravity.

in certain lower-dimensional limits supergravity exhibits an infinite amount of sym-
metry [42]. These symmetries go by the collective name of Kac-Moody symmetries.
As they contain the duality symmetries of string theory [54], Kac-Moody symme-
tries may be conjectured to describe the symmetry of M-theory [23, 87]. However,
in this thesis we will not go that far (see also Figure 1.2). Instead, we will show that
Kac-Moody symmetries play a unifying role in supergravity, and consequently may
contain little bits and pieces of information on M-theory.

1.2 From symmetry to groups

Symmetry. Not only makes it our world round, but it’s also what makes it go round.
From the perfect circular wheels on our bikes and cars that deliver an enjoyable ride,
to the error-correction protocols that keep e-mails from turning into junk [64]; it’s
literally all around us. It’s also symmetry that dictates the laws of nature. On
the small scale the symmetry group SU(3)× SU(2)× U(1) of the Standard Model
controls the interactions in molecules, atoms, and nuclei. On the large scale gravity
is governed by Einstein’s symmetry principle of our space-time.

But what is symmetry exactly? Let us first consider the principle of symmetry in
physics. It can be formulated as the fact that a physical process remains a physical
process after it has been transformed by a symmetry. In Figure 1.3 person 1 is



12 Chapter 1 Introduction

1 2

(a) Normal time

1 2

(b) Reversed time

Figure 1.3: Person 1 throwing a ball to person 2 (a), and the other way around if we flip
the time (b). Both are valid physical processes.

throwing a ball to person 2. If we reverse the time direction, the process is altered:
it is now person 2 who’s throwing a ball to person 1. A different process, but a valid
one nonetheless. We can therefore say that Newton’s laws of physics have a time
reversal symmetry.

In the more mathematical sense, symmetry is an action on an object that, once
you’re done performing it, does not change that object. This is a very abstract
definition, but we can try to illustrate it with a simple equilateral triangle. The
triangle (see Figure 1.4a) has 6 symmetries. There are two different rotations (over
120◦ and 240◦), three reflections, and finally the action of doing nothing at all, called
the identity. After performing any of these actions you end up with the same triangle
in the same position.

What’s more, if we perform any two of these actions in a row, we will always
end up with a third action. This is known as closure of the symmetry actions. For
instance, if we rotate first over 120◦ and then over 240◦, the net result is the identity
operation. A concise way to write this is

a · b = e, (1.1)

where e is the identity, a and b are rotations over 120◦ and 240◦, respectively.
The result of all possible combinations of rotational symmetries are summarized in
Figure 1.4b.

In fact, the combined symmetry actions form a mathematical object known as a
group. A group G has four defining characteristics:

1. Identity element There exists an element e ∈ G, such that for all elements
a ∈ G, the equation e · a = a · e = a holds.

2. Closure For all a, b ∈ G, their product a · b is also in G.

3. Inverse For any a ∈ G there exists an element a−1 such that a · a−1 = e.

4. Associativity The equation (a · b) · c = a · (b · c) holds for any a, b, c ∈ G.
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Figure 1.4: The equilateral triangle (a) and the group multiplication table (b) of its rota-
tional symmetries. e is the identity, a and b are rotations over 120◦ and 240◦,
respectively.

We have already seen that closure holds for the triangle; it is not hard to see that the
other three properties also hold. But this is not only restricted to the symmetries of
the triangle. The importance of group theory lies in the fact that any symmetry you
can think of can be described as a group, and that conversely all groups describe a
symmetry.

1.3 From groups to algebras

If we examine the symmetries of the circle (see Figure 1.5), you will notice that a
rotation over any arbitrary angle leaves it invariant. This means that the circle has
an infinite amount of rotational symmetry. The mathematical object that describes
these symmetries is still a group, but no longer a discrete (i.e. finite) one. The
symmetry group of the circle is continuous: every angle between e.g. 120◦ and 240◦

corresponds to a symmetry. This is not so for the triangle: in that case there
are ‘gaps’ between the rotations. The symmetry of the triangle is therefore called
discrete.

Continuous groups are known as Lie groups. They contain an infinite amount of
elements. But because they’re continuous we can parameterize the elements in one
or more parameters. For the circle we can write any rotation R(θ) over an angle θ
as

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, (1.2)

which is the rotation matrix in two dimensions. With a bit of work it follows that

R(θ1) ·R(θ2) = R(θ1 + θ2). (1.3)

This is what you would expect if you were to perform two rotations in a row: namely,
the angles simply add up.
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Figure 1.5: The circle.

Because of this property, we can go from the identity to a rotation over an
arbitrary angle θ by repeatedly applying rotations over an infinitesimally small angle
dθ. In fact, the amount of change described by such a small rotation at the identity
encodes almost all the information we need to describe the full group. This particular
amount of change is encoded in a new object T :

T ≡ dR(θ)

dθ

∣∣∣
θ=0

=

(
0 −1
1 0

)
. (1.4)

Indeed, we recover all rotations by exponentiating T ,

R(θ) = eθT . (1.5)

We say that T generates the symmetry group of the circle. It is therefore also called
a generator. This single object captures almost all of the important properties of
the infinite symmetry group. It is not part of the group, but lives in the tangent
space at the identity, known as the Lie algebra of the group.

Now the group of rotational symmetries of the circle is a particularly simple one.
But every continuous group, even if it is horrendously complicated, has an associated
Lie algebra. Thus studying the Lie algebra of a particular symmetry is sufficient to
uncover most of its properties.

1.4 Infinite Lie algebras

The Lie algebras studied in this thesis, known as Kac-Moody algebras, are slightly
more complicated than the one described above. While the Lie algebra of the rota-
tional symmetries of the circle has only one generator, T , Kac-Moody algebras have
an infinite number of them. Bear in mind that every single generator ‘generates’
an infinite amount of symmetry by means of the exponential mapping (1.5). This
means that Kac-Moody algebras describe a symmetry that is infinitely many times
infinite.

It is then not so surprising that most of the interesting Kac-Moody algebras
are hard to describe in full. What one usually does is focus on a small portion (a
subalgebra), and see how the whole algebra behaves with respect to that.
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Figure 1.6: Two different projections of the same cylinder.

E10

Figure 1.7: Two different slices of the Kac-Moody algebra E10 produce two different pro-
jections.
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To illustrate the concept, take a look at for example a cylinder (Figure 1.6).
The cylinder can be thought of as a stack of circles on top of each other, and thus it
carries the symmetry of the circle. But rotating the circles is not the only symmetric
operation we can perform on the cylinder. We can also interchange the circles in the
stack. These two distinct symmetries can be thought of as two different projections
of the cylinder: one produces a circle, and the other a square. Both are aspects of
the full symmetry of the cylinder.

This is a simplification of what happens for Kac-Moody algebras. Because we
cannot describe their symmetry in full, we must resort to finite subalgebras and
‘slice’ with respect to those (see Figure 1.7). The resulting projections then tell us
something of what the full Kac-Moody algebra looks like.

Things get interesting when the subalgebras with respect to which we slice are
chosen such that they match symmetries of physical theories, namely supergravities.
Not only do the slicings then tell us something about the full Kac-Moody algebras,
they can then also be used to construct maps from the Kac-Moody side to the
physical side. The maps in question relate the various physical fields, for instance
the graviton, to sets of generators of the Kac-Moody algebra.

How to do these slicings, and the process of matching Kac-Moody algebras to
physical theories, is the main topic of this thesis.



2

Lie algebras

In this chapter the necessary mathematical concepts for describing infinite dimen-
sional Lie algebras will be introduced. For a thorough treatment on the subject,
see for example [35, 15, 50]. All the results are valid for both finite and infinite Lie
algebras, unless stated otherwise.

2.1 Lie algebras

2.1.1 Basic definitions

A Lie algebra g is a vector space with an additional bilinear operation [·, ·] that sends
two generic elements in g to another element in g:

[·, ·] : g× g 7→ g. (2.1)

This operation is called the Lie bracket. A defining feature of it is that the Lie
bracket of an element with itself vanishes,

[x, x] = 0 ∀x ∈ g. (2.2)
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Because of bilinearity the Lie bracket is automatically anti-symmetric, [x, y] =
−[y, x]. Besides the Lie bracket, the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 ∀x, y, z ∈ g. (2.3)

holds. The Lie bracket and the Jacobi identity are, as simple as they may appear,
enough to endow a vector space with the rich and complex structure of a Lie algebra.
In what follows, concepts and definitions indispensable to the study of Lie algebras
will be introduced.

For a fixed but arbitrary element x of g the adjoint action is given by

adx(y) = [x, y]. (2.4)

This is a map from g onto itself, adx : g 7→ g. For finite Lie algebra the Cartan-
Killing form is defined by taking traces over the adjoint action:

〈x|y〉 ∝ Tr(adx ady). (2.5)

The Cartan-Killing form is an inner product on the Lie algebra. It sends two generic
elements of g to a number:

〈·|·〉 : g× g 7→ F, (2.6)

where F is the field over which g is a vector space.
A subspace s ⊆ g of a Lie algebra g is called a Lie subalgebra if it is a Lie algebra

in itself. In particular, it must close onto itself:

[s, s] ⊆ s, (2.7)

which is a shorthand notation for [x, y] ∈ s for all x, y ∈ s. If we impose the stronger
condition

[s, g] ⊆ s (2.8)

then s is called an ideal of the Lie algebra g. Proper ideals and subalgebras are those
which are not equal to g or {0}.

A Lie algebra is abelian if its Lie bracket vanishes, [g, g] = 0. A simple Lie algebra
contains no proper ideals and is not abelian. Finally, a semi-simple Lie algebra is a
direct sum of simple ones.

The dimension d = dim g of the Lie algebra g is the dimension of g considered
as a vector space. Thus we can find a basis of g consisting of d linearly independent
elements tα, which are called generators of g. Expanding in terms of the generators,
the Lie bracket reads

[tα, tβ ] = f γ
αβ tγ . (2.9)

The numbers f γ
αβ are called the structure constants and characterize g completely.

But because the indices α,β, and γ run over the dimension of g, the structure con-
stants become quite untractable when dealing with infinite dimensional Lie algebras.



2.1 Lie algebras 19

Instead, one usually adopts a rather different approach, in which the Lie algebra is
completely defined by the so-called Cartan matrix.

Example 2.1: sl(2)

The Lie algebra gl(n) is the vector space of n× n matrices with Lie bracket

[x, y] = x · y − y · x, (2.10)

where · stands for ordinary matrix multiplication. In this case the Jacobi identity
is automatically satisfied.

If we restrict to the space of matrices with vanishing trace, the Lie algebra is
denoted by sl(n). The smallest non-trivial example of such a Lie algebra is sl(2).
One particular basis for it is

h =

(
1 0
0 −1

)
, (2.11a)

e =

(
0 1
0 0

)
, (2.11b)

f =

(
0 0
1 0

)
. (2.11c)

If we calculate the Lie brackets by means of (2.10), we find

[h, e] = 2e, (2.12a)

[h, f ] = −2f, (2.12b)

[e, f ] = h, (2.12c)

with all other brackets vanishing.

2.1.2 The Cartan matrix

A Cartan matrix A = (Aij) is a square n× n matrix with integer values, satisfying
the following conditions:

Aii = 2, (2.13a)

Aij ∈ Z≤0 for i 6= j, (2.13b)

Aij = 0⇔ Aji = 0, (2.13c)

detA > 0, (2.13d)

M(A) > 0. (2.13e)
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Here and in the following the indices i and j run over the size of the matrix,
i, j = 1, . . . , n. Note that the Einstein summation convention has been suspended;
Aii denotes the diagonal entries of the Cartan matrix, not its trace. In (2.13e) the
expression M(A) denotes all principal minors of A. A principal minor is the de-
terminant of a submatrix obtained by the simultaneous removal of the same set of
rows and columns. Conditions (2.13d) and (2.13e) together imply that A is positive
definite. If they are dropped, the Cartan matrix is called generalized.

The Cartan matrix is decomposable if it can be rewritten in the form

A =

(
A(1) 0

0 A(2)

)
(2.14)

by simultaneously reordering rows and columns. Furthermore, A is assumed to
be symmetrizable. This means there exists an invertible diagonal matrix D =
diag(ε1, . . . , εn) such that

A = BD, (2.15)

where B is a symmetric matrix.
We can associate a Lie algebra g = g(A) to the Cartan matrix A by considering

the 3n-tuple of generators {hi, ei, fi} subject to the relations

[hi, hj ] = 0, (2.16a)

[hi, ej ] = Ajiej , (2.16b)

[hi, fj ] = −Ajifj , (2.16c)

[ei, fj ] = δijhi, (2.16d)

and

(adei)
1−Ajiej = 0, (2.17a)

(adfi)
1−Ajifj = 0. (2.17b)

The hi form a maximal abelian subalgebra h ∈ g known as the Cartan subalgebra.
The ei and fi are called the Chevalley generators. Lastly, the equations (2.17) go
by the name of the Serre relations.

The rank of g is defined as the dimension of h. This in turn is equal to the size
of the Cartan matrix if it is non-degenerate:

rank(g) = dim h = n. (2.18)

The full Lie algebra g(A) is constructed by considering multiple commutators of
the form

[ei, [· · · [ej , ek]] · · · ], (2.19a)

[fi, [· · · [fj , fk]] · · · ]. (2.19b)
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These multiple commutators correspond to additional generators. Together with the
3n-tuple {hi, ei, fi} they form a basis of g. However, we must keep in mind that
the Serre relations (2.17) will put certain commutators to zero, and that others are
related to each other by the Jacobi identity (2.3).

A generic element of g that is not part of h is either a combination of multiple
commutators of the ei or of multiple commutators of the fi. Thus the Lie algebra g
possesses a triangular decomposition:

g = n− ⊕ h⊕ n+. (2.20)

The negative part n− consists of commutators of the form (2.19b), whereas the
positive part n+ consists of commutators of the form (2.19a). The negative and
positive parts Chevalley generators can be interchanged by means of the Chevalley
involution ω, which is defined as

ω(ei) = −fi, (2.21a)

ω(fi) = −ei, (2.21b)

ω(hi) = −hi. (2.21c)

The Chevalley involution can consistently be extended to the whole of g, exchanging
n+ and n−. It therefore suffices to study only one of the two.

In the Chevalley basis introduced above, the Cartan-Killing form (2.5) reads

〈hi|hj〉 = εiAij = εiεjBij , (2.22a)

〈ei|fj〉 = δijεi. (2.22b)

All other combinations vanish. Here εi is the ithdiagonal entry of the matrix D in
equation (2.15). The Cartan-Killing form can be uniquely extended by induction to
the whole of g by requiring that is is invariant, i.e. 〈[x, y]|z〉 = 〈x|[y, z]〉.

The relations (2.16) and (2.17) summarize the structure of g in a very compact
form, namely in the Cartan matrix A. The procedure of constructing the Lie algebra
from the Cartan matrix is known as the Serre construction. A Lie algebra g obtained
in this way is always finite and semi-simple. It is simple if the Cartan matrix A is
indecomposable. If conditions (2.13d) and (2.13e) are dropped, the Lie algebra may
become infinite. Although it is not immediately clear from the discussion here,
the argument also works the other way around: any finite simple Lie algebra can be
completely described in terms of a Cartan matrix. The task of classifying all possible
finite simple Lie algebras thus boils down to finding all possible indecomposable
matrices that satisfy (2.13). The result is the so-called Cartan classification. But
before stating it, it is useful to introduce the concept of a Dynkin diagram.
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Example 2.2: Serre construction

The simplest Cartan matrix is the one of rank 1:

A =
(
2
)
. (2.23)

The resulting Lie algebra has three generators, h, e, and f . This is in fact sl(2),
the same Lie algebra as in Example 2.1. If we inspect (2.16) more closely, we see
that the building blocks of every Lie algebra of rank n are n interconnected sl(2)
subalgebras.

A slightly more complicated Cartan matrix is

A =

(
2 −1
−1 2

)
. (2.24)

Because its rank is equal to two, the resulting Lie algebra now has at least six
generators, h1, h2, e1, e2, f1, and f2. But there are two brackets that are not
put to zero by the Serre relations, which correspond to additional generators:

e1+2 ≡ [e1, e2], (2.25a)

f1+2 ≡ [f1, f2]. (2.25b)

If we try to take further Lie brackets, we see that they are killed by the Serre
relations:

[e1, e1+2] = [e1, [e1, e2]] = (ade1)1+1e2 = 0, (2.26a)

[f1, f1+2] = [f1, [f1, f2]] = (adf1)1+1f2 = 0. (2.26b)

The Lie algebra is 8-dimensional, and isomorphic to sl(3).

Dynkin diagrams

The data contained in a Cartan matrix can be neatly visualized with the help of
Dynkin diagrams. A Dynkin diagram consists of a number of nodes that are con-
nected by lines. Given a Cartan matrix, the rules for drawing such a diagram are
simple:

• For every row of the Cartan matrix A, draw one node.

• Nodes corresponding to rows i and j (i 6= j) are connected if Aij 6= 0.

• The connection consists of max(|Aij |, |Aji|) lines.
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Lie algebra Dynkin diagram Cartan matrix

sl(3)

(
2 −1
−1 2

)

sl(4)

 2 −1 0
−1 2 −1
0 −1 2



Table 2.1: The Dynkin diagrams and Cartan matrices of sl(3) and sl(4).

• If |Aij | > |Aji|, the connection has an arrow pointing towards node i from
node j.

• If the connection has an arrow and if min(|Aij |, |Aji|) > 1, the connection has
an additional label indicating min(|Aij |, |Aji|).

Furthermore, a diagram and its associated Lie algebra are called simply laced if the
diagram contains no arrows, or equivalently, if the Cartan matrix is symmetric.

Two simple examples of Dynkin diagrams are given in Table 2.1. The complete
classification of all finite-dimensional simple Lie algebras [36] is given in Figure 2.1.
There are four infinite series: An, Bn, Cn, and Dn, where the n denotes the rank
of the algebra. The An series are isomorphic to the sl(n + 1) Lie algebras, which
we encountered earlier. The four series are infinite in the sense that the rank n can
take on any value, while the resulting algebra remains finite. Furthermore there are
five exceptional cases: E6, E7, E8, F4, and G2.

Besides these five isolated cases and the four infinite series, there are no other
finite-dimensional simple Lie algebras. However, if we relax the conditions (2.13d)
and (2.13e) and allow for generalized Cartan matrices, the range of options increases
dramatically. Lie algebras associated to generalized Cartan matrices are called Kac-
Moody algebras. When the Cartan matrix is not positive definite, they are infinite-
dimensional (see also chapter 4).

2.1.3 Roots

Thus far we have seen that a Lie algebra can be characterized either by all its
Lie brackets (or equivalently its structure constants), or by its associated Cartan
matrix. There is a third way of describing Lie algebras that is closely linked to both
previously described ways. The key object in this case is the root system.

A root α of a generator x ∈ g is the eigenvalue of x under the adjoint operation
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An

Bn

Cn

Dn

E6

E7

E8

F4

G2

Figure 2.1: Dynkin diagrams of all finite dimensional simple Lie algebras. The subscript
denotes the rank of the Lie algebra, or equivalently, the number of nodes.
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of a generic element h ∈ h:

[h, x] = αx(h)x. (2.27)

The root α is just a number. For a fixed element x ∈ g it also acts as a linear
function as αx : h 7→ F , sending an element of the Cartan subalgebra to F , the base
field over which g is a vector space. Thus roots are elements of the space dual to h,

α ∈ h∗ ≡ Φ. (2.28)

The space Φ will be called the root space. The root space is a vector space with
the same dimension as h, namely dim Φ = n. As a side note, the function α is only
called a root if it is non-zero. Thus the generators in the Cartan subalgebra do not
have a root αh associated to them.

If we have a specific basis hi of h, the simple roots αi are defined as

αi(hj) = Aij , (2.29)

where A is again the Cartan matrix. Inspection of (2.16) reveals that the simple
roots are the eigenvalues of the Chevalley generators ei under the adjoint action of
hj , that is, αi = αei . The simple roots also form a basis of the root space Φ. To be
a bit more precise, we can consider the root of a generic Lie bracket:

[h, [x, y]] =
(
αx(h) + αy(h)

)
[x, y]. (2.30)

This follows straightforwardly from the Jacobi identity (2.3). The roots add up:
α[x,y] = αx + αy. But because all generators are constructed of multiple brackets
of the Chevalley generators (see (2.19)), this means that all roots are linear integral
combinations of the simple roots:

Q =

n∑
i=1

Zαi. (2.31)

The lattice Q is called the root lattice. However, by courtesy of the Serre relations
(2.17), not all points on the root lattice are actual roots. The set of all proper roots
is called the root system and denoted by ∆ (⊂ Q ⊂ Φ).

A generic root α can be expanded in terms of the simple roots as

α =

n∑
i=1

miαi. (2.32)

The numbers mi are collectively called the root vector. Because of the triangular
decomposition (2.20) they are either all non-negative (mi ≥ 0) or all non-positive
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(mi ≤ 0). In the former case the root is said to be positive, and in the latter it is
negative. Thus the root system ∆ splits into two disjoint sets,

∆ = ∆+ ∪∆−, (2.33)

where ∆+ contains all the positive roots, and ∆− contains all the negative roots.
Because of the Chevalley involution (2.21) it holds that ∆− = −∆+. It is therefore
enough to study either ∆+ or ∆−.

The root space gα of a root α is the set of generators of g that has α as an
eigenvalue under h. Thus:

gα =
{
x ∈ g | [h, x] = α(h)x ∀h ∈ h

}
. (2.34)

The dimension of this space is known as the multiplicity of the root, mult(α). It
is the same as the number of generators that share the same root α. For finite Lie
algebras the multiplicity is always equal to one, whereas for infinite Lie algebras the
multiplicity can degenerate. In section 2.3 we will deal with how to calculate the
root multiplicities.

By (2.30) the Lie algebra is graded by means of its roots. In particular, we have
for the root spaces

[gα, gβ ] ⊆ gα+β . (2.35)

The complete Lie algebra g can be decomposed into its root spaces as

g = h⊕
⊕
α

gα. (2.36)

The reason why the Cartan subalgebra appears separately in the direct sum is that
roots were defined to be non-zero.

The Cartan matrix not only specifies what the simple roots are, it also defines
an inner product between them. Because the simple roots are the basis vectors of
the root space Φ, the inner product acts on the whole root space:

(·|·) : Φ× Φ 7→ F. (2.37)

It is given by the following definition,

Aij ≡ 2
(αi|αj)
(αj |αj)

, (2.38)

from which we can deduce the actual root space metric B = (Bij):

Bij ≡ (αi|αj) =
Aij
εj
. (2.39)
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Here we have set εi = 2
(αi|αi) (compare equation (2.15)). From equation (2.22) it

is clear that the inner product on the root space corresponds to the restriction of
the Cartan-Killing form to the CSA. The inner product is unique, but only up to
normalization. This means we have the freedom to choose a norm α2

i = (αi|αi) of
one of the simple roots, after which all the others are fixed by

(αi|αi)
(αj |αj)

=
Aij
Aji

. (2.40)

If the Cartan matrix is decomposable, we have to fix the normalization once for
every indecomposable subpart.

In the mathematical literature it is common to fix the normalization such that
the simple roots have at most norm equal to 2, i.e. α2

i ≤ 2. However, I will adhere
to the convention that the simple roots have at least norm equal to 2, i.e. α2

i ≥ 2.
The reason is that in the latter case 1

εi
, and thus also the metric on the root space,

has only integer values. Note that if the Cartan matrix is symmetric to start with,
then it coincides with the root space metric. In that case the norms of all the simple
roots are equal, and the algebra is called simply laced.

The inner product between two roots α and β can easily be expanded in their
respective roots vectors mi and ni as

(α|β) =

n∑
i,j=1

Bijm
inj . (2.41)

For finite Lie algebras the Cartan matrix A and the root space metric B are positive
definite. This entails that root norms are always positive, α2 > 0. However, when
conditions (2.13d) and (2.13e) are dropped, A may become indefinite, allowing for
null and negative directions. This prompts us to distinguish between the following
cases:

(α|α) =


> 0 real root,

= 0 imaginary (null) root,

< 0 imaginary root.

(2.42)

Thus finite Lie algebras have only real roots, whereas infinite algebras also have
imaginary roots.
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Example 2.3: Root system of A1 and A2

The Lie algebra A1 is of rank one. This means it has only one simple root α
which is given by [h, e] = αe. The root system of A1 consists of just two roots,
namely α and −α, the latter belonging to the generator f . The root lattice is
the line of integers, as depicted in the following image.

0−α +α

The roots are indicated with big dots, whereas other points on the root lattice
that do not correspond to roots are indicated with smaller dots.

The root system of A2 is a bit more interesting. Being of rank two, it has
two simple roots α1 and α2. The root space is thus a two-dimensional vector
space, spanned by α1 and α2. There are six roots in total: the two simple roots
and their negatives, and the root of e1+2 and its negative (see Example 2.2). By
(2.30), the root of e1+2 is given by

[h, e1+2] = [h, [e1, e2]] = (α1 + α2)e1+2. (2.43)

The picture of the root lattice is as follows:

α1 α2

−α2 −α1

α1 + α2

−α1 − α2

The roots are again indicated with the big dots, while the other vertices corre-
spond to points on the lattice that are not roots. The small dot in the middle is
the origin.

You may have noticed that the angle between the simple roots is not 90◦, but

120◦. The reason is that the angle is fixed by the inner product (·|·) in the usual

way: cos θ = (α1|α2)√
α2
1α

2
2

= − 1
2
.
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2.1.4 Weights

In this section the so-called weights will be introduced. Their importance lies in the
fact they can be used to describe representations of Lie algebras (see section 2.2).
But before weights are discussed, it is convienent to associate to any root α a coroot
α∨ by

α∨ =
2α

(α|α)
. (2.44)

Amongst others, this simplifies the expression of the Cartan matrix in terms of the
inner product (2.38) a bit:

Aij =
(
αi|α∨j

)
. (2.45)

We are now in the position to define the fundamental weights Λi as the duals of the
simple coroots, (

Λi|α∨j
)

= δij . (2.46)

The fundamental weights span the weight space dual to the root space Φ, and its
elements are called weights. A generic weight λ can be expressed in terms of the
fundamentals weights as

λ =

n∑
i=1

piΛ
i. (2.47)

The coefficients pi are called the Dynkin labels of the weight. The lattice P on which
the Dynkin labels are strictly integers, i.e.

P =

n∑
i=1

ZΛi, (2.48)

is called the weight lattice and is dual to the root lattice, P = Q∗.

For convenience we can also introduce cofundamental weights Λ∨i as the duals
of the simple roots: (

Λ∨i|αj
)

= δij , (2.49a)

Λ∨i =
2

(αi|αi)
Λi. (2.49b)

The cofundamental weights are not as important as the fundamental weights; their
main use is to simplify certain notation.

When we compare equations (2.45) and (2.46) we see that the fundamental
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weights and the simple roots can be expressed in terms of each other as

Λi =

n∑
j=1

(
A−1

)ij
αj , (2.50a)

αi =

n∑
j=1

AijΛ
j . (2.50b)

It is often of interest to know what the Dynkin labels of a particular root are. To
that end, we can simply expand a root in both the simple root and the fundamental
weight bases, and equate the coefficients. Upon doing so, we see that the root vector
mi and Dynkin labels pi of a root α are related by

pi = (α|α∨i ) =

n∑
j=1

Ajim
j , (2.51a)

mi =
(
α|Λ∨i

)
=

n∑
j=1

(A−1)jipj . (2.51b)

Following [53], the root vector will be written as (m1, . . . ,mn) and the Dynkin labels
as [p1, . . . , pn] in order to distinguish between the different bases. Note that points
on the root lattice always lie on the weight lattice as well, because the Cartan matrix
contains only integers. However, the converse is not necessarily true, as the inverse
of the Cartan matrix may contain fractional entries.

The inner product on the root space can be extended by linearity to an inner
product on the weight space. Given two weights λ and µ with respective Dynkin
labels pi and qi, it can be computed to be

(λ|µ) =

n∑
i,j=1

Gijpiqj . (2.52)

Here G is the metric on the weight space, and is also called the quadratic form
matrix. A short calculation reveals that is related to the Cartan matrix by

Gij ≡
(
Λi|Λj

)
= 1

2 (A−1)ij (αj |αj) . (2.53)

Similarly to the metric on the root space, this expression simplifies when the algebra
is simply laced. Then the quadratic form matrix is just the inverse of the Cartan
matrix.
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Example 2.4: Weight lattice of A2

The Cartan matrix of the Lie algebra A2 is

A =

(
2 −1
−1 2

)
, (2.54)

which has an inverse given by

A−1 = 1
3

(
2 1
1 2

)
. (2.55)

By equation (2.50a), the fundamental weights are

Λ1 = 1
3

(2α1 + α2) (2.56a)

Λ2 = 1
3

(α1 + 2α2) (2.56b)

These two fundamental weights form the basis of the weight lattice, which is
drawn below. All the intersections of lines correspond to points on the weight
lattice, i.e. weights with integer Dynkin labels. Superposed on the weight lattice
are the roots of A2 (indicated with big dots) and the other points on the root
lattice (indicated with small dots). See also Example 2.3.

Note that not all points on the weight lattice coincide with points on the root

lattice. This is due to the fact that the inverse Cartan matrix has a factor 1
3

in

front, stemming from its determinant.
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2.1.5 The Weyl vectors and the highest root

Two distinguished elements of the weight space are the Weyl vector ρ and the dual
Weyl vector ρ∨. They can be defined as

(ρ|α∨i ) = 1, (2.57a)

(ρ∨|αi) = 1. (2.57b)

Expanded in the basis of fundamental weights, both read

ρ =

n∑
i=1

Λi, (2.58a)

ρ∨ =

n∑
i=1

Λ∨i. (2.58b)

The Dynkin labels of ρ are thus all equal to one. The Weyl vector will play an
important role in the analysis of representations. The dual Weyl vector on the other
hand has fractional Dynkin labels when the algebra is not simply laced. Its main
usage is to calculate the height of a root, which is simply the sum of the components
of its root vector mi:

ht(α) = (α|ρ∨) =

n∑
i=1

mi. (2.59)

Simple finite Lie algebras have a unique root θ that is the highest of all roots in the
root system ∆. This root is called the highest root . Similarly, −θ is the lowest root
of ∆. Infinite Kac-Moody algebras on the contrary do not have a highest root; their
root system ‘just goes on forever’.

The components of root vector of the (dual) highest root are called the (dual)
Coxeter labels, and are denoted by ai and a∨i, respectively:

θ =

n∑
i=1

aiαi, (2.60a)

θ∨ =

n∑
i=1

a∨iα∨i , (2.60b)

where θ∨ = 2θ
(θ|θ) . Their respective sums plus one are known as the (dual) Coxeter

number g of the Lie algebra,

g = 1 + (θ|ρ∨) = 1 +

n∑
i=1

ai, (2.61a)

g∨ = 1 + (θ∨|ρ) = 1 +

n∑
i=1

a∨i. (2.61b)
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2.1.6 The Weyl group

As is apparent from Example 2.3, the root systems of some of the simplest of Lie
algebras have already quite some symmetry. Not surprisingly, the amount of sym-
metry of the root system tends to increase with its size. This symmetry is captured
and described in what is known as the Weyl group W (∆) of the root system.

The Weyl group is a reflection group [52], generated by so-called Weyl reflections
wα. They are are defined as

wα(β) = β − (β|α∨)α. (2.62)

They are proper reflections in the sense that they square to the identity:

wα(wα(β)) = β, (2.63)

or more succinctly, w2
α = 1.

A Weyl reflection wα is a reflection with respect to a hyperplane perpendicular
to a fixed root α (see also Figure 2.2). For example, when a root gets reflected with
respect to itself, the result is the negative of that root: wα(α) = −α. By virtue of
the triangular decomposition (2.20) this is also a root. The same holds for any Weyl
reflection: the result always lies in the root system. Thus the orbit W (α) of a root,

W (α) =
⋃
w∈W

w(α), (2.64)

i.e. is its image under all the elements of the Weyl group, lies in the root system.
Moreover, any points on the root lattice between β and wα(β) are also roots:

β − qα ∈ ∆, q ∈ {0, . . . , (β|α∨)}. (2.65)

This fact yields an iterative procedure to construct the whole root system from just
the simple roots. First, consider the orbit of the simple roots. Next, consider the
orbits of the ‘gaps’ of the first orbit, and so on and so forth. This procedure truncates
at some point for the finite Lie algebras, but it does not for infinite algebras. In
the latter case the best one can do is to calculate the root system up to some given
height.

The size of the Weyl group can become rather large. For instance, the Weyl
group of An has (n + 1)! elements, which makes for difficult bookkeeping of every
single reflection when n increases. Luckily, any element w ∈W can be written as a
successive combination of fundamental reflections wi,

w = wi1wi2 · · ·wik . (2.66)

The length l(w) of a Weyl reflection is the minimal number of fundamental reflec-
tions needed to write w in the above form. The fundamental reflections are Weyl
reflections in the simple roots,

wi ≡ wαi . (2.67)
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α1 α2

−α2 −α1

α1 + α2

−α1 − α2

Figure 2.2: The action of w2 = wα2 on the root system of A2. The dashed line indicates
the hyperplane through the origin perpendicular to α2. The solid lines with
arrows depict the action of w2.

The whole Weyl group W is thus generated by just the fundamental reflections, of
which there are always the same number as n, the rank of the algebra. When we let
the fundamental reflections act on the simple roots, equation (2.62) becomes

wi(αj) = αj −Ajiαi. (2.68)

This means that for a generic root with root vector mj , the fundamental Weyl
reflections act as

mj wi−−→ mj − piδji , (2.69)

where pi are the Dynkin labels of the root. Thus a Weyl reflection wi increases the
height of a root if its corresponding Dynkin label pi is negative, decreases its height
if it is positive, and leaves it invariant if it is zero.

We can therefore introduce the set P−, which contains all roots and weights that
have non-positive Dynkin labels:

P− =

{
λ =

n∑
i=1

piΛ
i

∣∣∣∣ pi ≤ 0

}
. (2.70)

The subset P− ⊂ P of the weight lattice is called the fundamental Weyl chamber .
By equation (2.69), fundamental Weyl reflections on elements of P− never decrease
their height. Furthermore, the Weyl group acts transitively on P−. This means that
by acting with the Weyl group on all the roots in the fundamental chamber, one
obtains the full root system. P− is also a fundamental domain of W ; thus on the
Weyl orbit of a weight, exactly one point lies in P−.

The images of the fundamental chamber under the Weyl group are also called
Weyl chambers, albeit not fundamental. Their boundaries are hyperplanes perpen-
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(1, 0)
[2,−1]

(0, 1)
[−1, 2]

(0,−1)
[1,−2]

(−1, 0)
[−2, 1]

(1, 1)
[1, 1]

(−1,−1)
[−1,−1]

Figure 2.3: The Weyl chambers of the root system of A2. The fundamental chamber is
shaded in gray. The numbers (m1,m2) form the root vector, and [p1, p2] are the
Dynkin labels. The dashed lines are the hyperplanes perpendicular to roots.

dicular to roots through the origin. Figure 2.3 shows the Weyl chambers of the Lie
algebra A2.

As already might be apparent from the discussion above, the action of the Weyl
group can be extended by linearity from roots to weights. The Weyl reflections then
act on weights in a similar manner as on roots,

wα(λ) = λ− (λ|α∨)α. (2.71)

Here λ is a generic weight. The action of the Weyl group on weights will be used in
the analysis of representations.

2.1.7 A bound on root norms

In subsection 2.1.6 it was argued that the whole root system ∆ can be constructed
from the Weyl orbit of the simple roots, the orbits of the ‘gaps’ in the orbits of the
simple roots, and so on and so forth. This, together with that fact that all Weyl
reflections can be written as combinations of fundamental reflections, can be used
to derive a bound on the norm of all roots in the root system.

First note that the inner product is associative with respect to Weyl reflections,
i.e. (w(α)|β) = (α|w(β)). From this it follows that Weyl reflections preserve the
norm of roots:

(w(β)|wβ)) = (β|β) . (2.72)
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So we only need to worry about roots that lie on gaps of fundamental reflections.
Consider a root γ that lies in a gap between the root β and its ith fundamental
reflection:

γ = β − qαi, 0 < |q| < |pi|, (2.73)

where pi = (β|α∨i ) is the ith Dynkin label of β, and q has the same sign as pi.
Calculating the norm of γ, we find

(γ|γ)− (β|β)

(αi|αi)
= q2 − qpi < 0. (2.74)

As the norm of simple roots is always positive, (αi|αi) > 0, the norm of γ must be
smaller than that of β. Therefore all roots α ∈ ∆ satisfy

(α|α) ≤ α2
max (2.75)

where α2
max = max

(
(αi|αi)

)
is the norm of the longest simple root.

2.2 Representations

So far Lie algebras have been described as objects on their own, which describe
some form of symmetry. But the usefulness of describing this symmetry lies often
in letting it act on objects that are symmetric. The mathematical concept of acting
with a Lie algebra on another object is called a representation of the Lie algebra.

The object in question will be a vector space V . The fact that it carries symmetry
is captured in the set gl(V ), which contains all linear transformations that send V
to itself:

gl(V ) : V 7→ V. (2.76)

Then the precise definition of ‘acting on’ is that there exists a map ψ from the Lie
algebra g to gl(V ),

ψ : g 7→ gl(V ), (2.77)

which preserves the Lie bracket structure on V ,

ψxψy − ψyψx = ψ[x,y], (2.78)

for all x, y ∈ g. Strictly speaking, the map ψ is called the representation, and the
space V the representation space or g-module. But as is common in the literature,
the term ‘representation’ will refer to both in this thesis.

Concretely, a representation is a set of vectors {vλ, vµ, . . .} which by the action
of ψ get mapped onto each other:

ψxvλ = vµ. (2.79)
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The module V is the span of these vectors. Now, because the Cartan subalgebra h
is abelian, it is possible to find a particular basis for V on which the representations
of h act diagonally:

ψhvλ = λ(h)vλ. (2.80)

Here λ(h) is nothing more than a number, and is called the weight of the vector vλ.
For the elements in the basis of h, its specific value is given by

λ(hi) = (λ|α∨i ) = pi. (2.81)

Here pi are the Dynkin labels of the weight λ (compare equation (2.47)). Similar
to how the Lie algebra decomposes into a direct sum of root spaces (see equation
(2.36)), the module V splits up in a direct sum of weight spaces,

V =
⊕

λ∈P (V )

Vλ. (2.82)

The weight spaces Vλ are the sets of vectors in V that have λ as a weight under
the action of h. The object P (V ) is the collection of all weights of V , and is called
the weight diagram. It must not be confused with the weight lattice P (2.48). The
question of which weights are part of the weight diagram will be addressed in the
next section.

Lastly, the multiplicity of a weight is the dimension of its weight space, that is,
multV (λ) = dim(Vλ). It follows straightforwardly that the dimension of V is given
by the sum of weight multiplicities,

dim(V ) =
∑

λ∈P (V )

multV (λ). (2.83)

In section 2.3 we will see how to calculate weight multiplicities.

Example 2.5: Two common representations

One particularly simple representation is the one where all elements x ∈ g get
mapped onto zero:

ψx = 0. (2.84)

The underlying module is one-dimensional. This representation is the trivial or
singlet representation.

Another example is the representation where the module is taken to be g
itself, and the map ψ is the adjoint action:

ψx = adx . (2.85)

This representation is called the adjoint representation.
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2.2.1 Integrable lowest weight representations

All irreducible finite-dimensional modules of finite Lie algebras fall into the class of
so-called highest weight representations. Here instead I will discuss lowest weight
representations, which are identical in structure. The main difference from highest
weight representations is that they are not classified by their highest weight, but
lowest weight vector vΛ that satisfies

ψhvΛ = Λ(h)vΛ, (2.86a)

ψfivΛ = 0, (2.86b)

for all h ∈ h and all i = 1, . . . n. The lowest weight vector is thus annihilated
by the action of the negative Chevalley generators. It follows that any element of
n− annihilates it, ψ(n−)vΛ = 0. Because the representation map preserves the Lie
bracket, the weight increases with a simple root when we act on it with a positive
Chevalley generator:

ψh(ψeivΛ) ∝
(
Λ(h) + αi(h)

)
vΛ (2.87)

Hence Λ is indeed the lowest weight of the module. It uniquely characterizes the
module, which is therefore denoted by V (Λ). The whole module is generated by the
action of n+ on the lowest weight vector,

ψn+
vΛ = V (Λ). (2.88)

When the underlying Lie algebra is finite, the module V itself is finite. This implies
that besides a lowest weight it has also highest weight vector vΛ′ which is annihilated
by the positive Chevalley generators,

ψeivΛ′ = 0. (2.89)

Thus for finite Lie algebras every lowest weight representation is simultaneously a
highest weight representation. This is not the case for infinite Lie algebras, as their
lowest weight representations are not bounded from above.

A representation V (Λ) is integrable when the action of all positive and negative
Chevalley generators is locally nilpotent. That is, the repeated action of the same
step operator must yield zero at some point:(

ψei
)p
vλ = 0, (2.90a)(

ψfi
)q
vλ = 0, (2.90b)

for all vλ ∈ V (Λ) and for some finite positive integers p and q. A necessary and
sufficient condition for this is that the weight diagram of the representation lies on
the weight lattice P ,

P (V (Λ)) ⊂ P. (2.91)
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By equation (2.87) this condition simplifies to the requirement that the lowest weight
Λ lies on the weight lattice, because the roots do too. In the rest of this thesis the
prefix ‘integrable’ will often be dropped, because all lowest weight representations
discussed here will be integrable.

Let us now turn to the question of determining the weight diagram P (V (Λ)) of
a module V (Λ). It can be proven that P (V (Λ)) is invariant under the action of the
Weyl group, which provides us with sufficient tools to determine the actual structure
of P (V (Λ)).

First, it is convenient to define the height of a weight λ by the amount of simple
roots it differs from the lowest weight Λ:

htΛ(λ) = (λ− Λ|ρ∨) . (2.92)

By this definition, the lowest weight has height zero. But in order for it to be
truly a lowest weight, it has to lie in the fundamental Weyl chamber: then all Weyl
reflections increase its height. This is most easily seen when we look at the action
of a fundamental Weyl reflection on a generic weight:

wi(λ) = λ− (λ|α∨i )αi = λ− piαi, (2.93)

where pi are the Dynkin labels of λ. So indeed, when the Dynkin labels are all non-
positive, the height of the weight can only increase under Weyl reflections. Weights
that lie in the fundamental Weyl chamber are called dominant weights.

Having established that Λ is dominant, the full weight diagram can now be
constructed from Λ by considering its orbit under the Weyl group. Weights that lie
on this orbit belong to P (V (Λ)),

W (Λ) ⊆ P (V (Λ)). (2.94)

Moreover, weights that lie ‘in between’ reflections also belong to the weight diagram,
although not to the same orbit. Thus for a weight λ ∈ P (V (Λ)), the points on the
line between λ and wi(λ) that differ by a single simple root αi are part of the weight
diagram:

λ− qαi ∈ P (V (Λ)), q ∈ {0, . . . , (λ|α∨i )}. (2.95)

This is enough information to construct P (V (Λ)). First, consider the orbit of the
lowest weight. Next, consider the orbits of the ‘gaps’ in the first orbit, and so on
and so forth until the weight diagram closes. For infinite Lie algebras, one cannot
calculate the full weight diagram. There one has to be content to calculate it up to
a given height.
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Example 2.6: Weight diagrams of A2

Let’s have a look at some weight diagram of representations of A2. The smallest
diagram is that of the trivial or singlet representation. This is the representation
with zero lowest weight (i.e. all Dynkin labels are zero). This is also its only
weight. The weight diagram is thus as follows:

[0,0]

w1

w2

The lines with arrows depict the fundamental Weyl reflections, and the numbers
[p1, p2] are the Dynkin labels of a weight. w1 and w2 map the [0, 0] weight onto
itself, because all its Dynkin labels are zero. In the following, Weyl reflections
that leave weights invariant will not be drawn.

The next simplest weight diagram is that of the Λ = −1Λ1+0Λ2 lowest weight
representation. The Weyl orbit of the lowest weight consists of three weights in
total:

[1,-1]

[0,1]

[-1,0]

w2

w
1

There are no gaps in the reflections, which means the weight diagram consists of
one single orbit. Note that reflection wi flips the sign of the ith Dynkin label.

A more involved weight diagram is that of the Λ = 0Λ1 − 2Λ2 lowest weight
representation:
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[2,0]

[-2,2]

[0,-2]

w
1

w2

[1,-1]

[0,1]

[-1,0]

w2

w
1

Here the w2 reflection brings the lowest weight [0,−2] to [−2, 2]. This is indicated
by the missing arrows on the [−1, 0] weight; the w2 reflection ‘passes through’
it. By equation (2.95), [−1, 0] is then also a weight of the diagram, although it
doesn’t lie on the same orbit. Hence this diagram consists of two Weyl orbits,
one of which is the [−1, 0] weight diagram.

Yet another example is weight diagram of the lowest weight representation
associated to the lowest root of A2, which is Λ = −θ = −Λ1 − Λ2.

[1,1]

[2,-1] [-1,2]

[1,-2] [-2,1]

[-1,-1]

w
1w2

w
1w2

w
1 w2

[0,0]

This weight diagram is identical to the root system of A2. This not a coincidence

of A2, but is actually valid for all finite Lie algebras if the lowest weight is taken

to be the lowest root. The resulting representation is then the adjoint.
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2.3 Multiplicities

So far we have studied the question which points on the root and weight lattice are
elements of the root system and weight diagram, respectively. What remains to be
done is to calculate their multiplicity, that is, the degeneracy of the root and weight
spaces.

A convenient way to store the final answer for lowest weight representations is
its character X ,

XV =
∑

λ∈P (V )

multV (λ) eλ. (2.96)

This is a sum over the formal exponents of all the weights in the weight diagram. It
can be shown [51] that the character satisfies the Weyl-Kac character formula

XV (Λ) =

∑
w∈W

ε(w)ew(Λ+ρ)−ρ

∏
α∈∆+

(
1− e−α

)multα
. (2.97)

Here the function ε is given by ε(w) = (−1)l(w), with l being the length of the Weyl
reflection. Not only do weight multiplicities follow from the Weyl-Kac character
formula, it can also be used to calculate root multiplicities. One then has to evaluate
it for the singlet representation, Λ = 0, whose character is equal to one. The result
is ∏

α∈∆+

(
1− e−α

)multα
=
∑
w∈W

ε(w)ew(ρ)−ρ. (2.98)

This is known as the denominator identity.
Although the denominator identity can in principle be used to calculate root

multiplicites, a shorter and faster way is to use the Peterson recursion formula [71],
which is derived from it. It reads

(α|α− 2ρ) cα =
∑

β,γ∈Q+

β+γ=α

(β|γ) cβcγ . (2.99)

The coefficient cα is given by

cα =
∑
k≥1

1

k
mult

(α
k

)
, (2.100)

and will be called the co-multiplicity of the root α. The factors in the co-multiplicity
for which α/k is not a root do not contribute to the sum, as their multiplicity is
zero. As indicated in (2.99), the factors β and γ of α do not have to be roots. But
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in order for them to contribute to the sum, they do need to be integer multiples of
roots. Otherwise their co-multiplicity would vanish.

Using the Peterson recursion formula, it is possible to calculate the multiplicities
of all roots. Starting from the simple roots, which have multiplicity one, you can
inductively work your way up in the root system. For higher and higher roots the
calculation will get more involved, as the number of contributions to the sum will
increase.

For the weight multiplicities a similar recursion formula can be deduced, this
time from the Weyl-Kac character formula [71]. It reads

multΛ(λ) =

2
∑
α∈∆+

mult(α)
∑
k≥1

(−α|λ− kα) multΛ(λ− kα)

(Λ− ρ|Λ− ρ)− (λ− ρ|λ− ρ)
. (2.101)

This is a generalization of the Freudenthal recursion formula for finite Lie algebras,
in which case the root multiplicities are all equal to one. Starting from the lowest
weight Λ, which has multiplicity one, all other weight multiplicities can be calculated
by induction on height.

Luckily it is not necessary to calculate the multiplicities for all roots and weights.
It can namely be shown that Weyl reflections preserve multiplicities:

mult(w(α)) = mult(α), (2.102a)

multΛ(w(λ)) = multΛ(λ). (2.102b)

It therefore suffices to calculate the multiplicity once for every Weyl orbit.
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Example 2.7: Weight multiplicities of the adjoint A2 representation

Recall that the weight diagram of the adjoint representation of A2 was as follows
(see Example 2.6):

[1, 1]1

[2,−1]1 [−1, 2]1

[1,−2]1 [−2, 1]1

[−1,−1]1

w
1w2

w
1w2

w
1 w2

[0, 0]2

The subscripts on the Dynkin labels are the multiplicities of the weight. By
definition the multiplicity of the lowest weight [−1,−1] is one. As Weyl reflections
preserve the multiplicity, all other weights on its orbit also have multiplicity one.

There is just one weight that does not lie on the orbit of [−1,−1], namely [0, 0].
Since this weight corresponds to the Cartan subalgebra of A2, its multiplicity is
bound to be equal to two. But let us invoke the Freudenthal recursion formula
(2.101) to prove it. First we need to determine for which roots and k the weight
λ− kα for λ = 0 still lies in the weight diagram. They are

0− α2 = Λ1 − 2Λ2, (2.103a)

0− α1 = −2Λ1 + Λ2, (2.103b)

0− α1 − α2 = −Λ1 − Λ2. (2.103c)

The integer k is one in all cases, as otherwise the resulting weight would lie
outside the diagram. The double sum in (2.101) simplifies to one that runs over
the roots α1, α2, and α1 + α2. The multiplicity of λ = 0 can then be evaluated
to give

mult−Λ1−Λ2(0) = 2
(α1|α1) + (α2|α2) + (α1 + α2|α1 + α2)

(Λ1 + Λ2|Λ1 + Λ2) + 2 (Λ1 + Λ2|ρ)

=
2(2 + 2 + 2)

2 + 4
= 2.

(2.104)
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2.4 Real forms

Up to this point the field F over which g is a vector space has not been specified.
In the classification of Lie algebras one assumes that F is algebraically closed, and
one usually takes the complex numbers, F = C. In that case, the Cartan matrix
A uniquely characterizes the Lie algebra g(A). However, the Lie algebras that pop
up in the context of supergravities (see chapter 5) are vector spaces over the real
numbers, R. As R is not algebraically closed, there can be multiple non-isomorphic
Lie algebras associated to one single Cartan matrix. These different real Lie algebras
are called the various real forms of the complex algebra.

A real form can be characterized by the signature of its Cartan-Killing form.
Note that this wouldn’t make sense for an algebra over the complex numbers, as
rescaling generators with a factor of i would effectively change the sign of their
norm. The generators of real forms can be classified by the sign of their norm:
compact generators have negative norm, and non-compact generators have positive
norm. Real forms of Lie algebras are often denoted by Xn(m), where X is the type
of algebra (A, B, . . . ), n is its rank, and m the difference between the number of
non-compact and compact generators.

It can be shown that the Cartan-Killing form pairs the root spaces of a root and
its negative in a non-degenerate manner:

〈gα|gβ〉 = 0 if α+ β 6= 0. (2.105)

The Cartan-Killing form on the full algebra in the triangular decomposition (2.20)
can therefore be written as

〈·|·〉 =

DBD 0 0
0 0 C
0 C 0

 h
n+

n−

. (2.106)

Here DBD is the Cartan-Killing form on h (see equation (2.22)), and C is a positive
diagonal matrix:

C = diag
(
〈y|yT 〉, . . . , 〈z|zT 〉

)
. (2.107)

The elements {y, . . . , z} are a basis of n+, and their transpose {yT , . . . , zT } a basis
of n−. The (generalized) transpose is defined by means of the Chevalley involution
(2.21),

xT = −ω(x). (2.108)

As the Cartan-Killing form on h has the same signature as the Cartan matrix A, we
only need to calculate the signature on the subspace n+ ⊕ n−. We can diagonalize
that part of the Cartan-Killing form by taking the combinations x+xT and x−xT ,
which results in

〈·|·〉 =

DBD 0 0
0 2C 0
0 0 −2C

 h
p	 h
l

. (2.109)
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The subspaces p and l are respectively the odd and even eigenspaces of g under the
Chevalley involution:

g = p⊕ l, (2.110)

where

p = {x ∈ g |ω(x) = −x}, (2.111a)

l = {x ∈ g |ω(x) = x}. (2.111b)

The space p is spanned by elements of the form x + xT , and l by elements of the
form x− xT .

From (2.109) we can easily read of the signature of the Cartan-Killing form. For
finite Lie algebras the Cartan matrix is always positive definite. Thus if we simply
restrict the field F to be R, then the signature is

(#non-compact,#compact) =

(
dim g + n

2
,

dim g− n
2

)
, (2.112)

where n is the rank of the finite algebra. This particular real form is called the
split real form or the maximal non-compact real form. The difference between the
number of non-compact and compact generators is always equal to the rank of the
algebra. The split real form of an algebra Xn can thus be denoted by Xn(+n).

The split real form is not the only real form of a Lie algebra. This can be seen
by inspecting the decomposition (2.110). The Lie brackets of the subspaces read

[l, l] ⊆ l, (2.113a)

[l, p] ⊆ p, (2.113b)

[p, p] ⊆ l. (2.113c)

Thus l is not just a subspace of g, but also a subalgebra. From (2.109) it is clear
that the Cartan-Killing form on l is negative definite. Because all the generators of
l are compact, it is called the maximal compact subalgebra of g. Real forms in which
all the generators are compact, are not surprisingly called compact real forms.

The split and compact real forms are the two ‘extreme’ real forms of a Lie
algebra. The former has the maximal number of non-compact generators, while the
latter has the maximal number of compact generators (namely all). In between these
two options there usually lies an array of other possibilities. However, in this thesis
we will only encounter the split real form and the compact real form.
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Example 2.8: Split real form of A2

Recall from Example 2.2 that the 8 generators of A2 are

h1, h2 ∈ h, (2.114a)

e1, e2, e1+2 ∈ n+, (2.114b)

f1, f2, f2+1 ∈ n−, (2.114c)

where e1+2 = [e1, e2] and f2+1 = [f2, f1]. To work out the Cartan-Killing form, we
can either explicitly calculate the adjoint action of all generators and take traces
(equation (2.5)), or extend it by invariance from h to the whole of g (equation
(2.22)). In either case, we get

〈·|·〉 =



2 −1 0 0 0 0 0 0
−1 2 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0



h1

h2

e1

e2

e1+2

f1

f2

f2+1.

(2.115)

The generalized transpose of the generators are

hT1 = h1, eT1 = f1, eT1+2 = −[ω(e1), ω(e2)]

hT2 = h2, eT2 = f2, = +f2+1. (2.116a)

Going to the basis (2.111) of the g = p ⊕ l decomposition, the Cartan-Killing
form becomes

〈·|·〉 =



2 −1 0 0 0 0 0 0
−1 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 −2



h1

h2

e1 + f1

e2 + f2

e1+2 + f2+1

e1 − f1

e2 − f2

e1+2 − f2+1.

(2.117)

The split real form A2(+2) of A2 thus has 5 non-compact and 3 compact gen-
erators. The subspace l is indeed a subalgebra, because its commutators close:

[e1 − f1, e2 − f2] = e1+2 − f2+1, (2.118a)

[e1+2 − f2+1, e1 − f1] = e2 − f2, (2.118b)

[e1+2 − f2+1, e2 − f2] = e1 − f1. (2.118c)
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2.5 Cosets and non-linear sigma models

Consider a real Lie group G and its maximal compact subgroup K(G) ∈ G. The
(left) coset is then defined as the set of equivalence classes of elements g ∈ G [30]

g ∼ g′ iff g′ = gk, (2.119)

with k ∈ K(G). That is, elements g and g′ of G are identified if they are related
by an element of the subgroup K(G). Thus the coset is a quotient space, and is
denoted by G/K(G). Its dimension is given by

dimG/K(G) = dimG− dimK(G). (2.120)

We can build a dynamical theory on the coset space as follows. Let φα be local
coordinates on the coset, and Gαβ(φ) the metric. In addition we have a ‘space-time’
manifold M with coordinates xµ and metric γµν . If we let φα = φα(x) be functions of
xµ, we can view them as maps from the space-time M to the target space G/K(G).
See also Figure 2.4. The dynamics of these mappings are governed by an action of
the form

S = −
∫
M

dx
√
γγµνGαβ(φ)∂µφ

α∂νφ
β . (2.121)

For historical reasons, this particular dynamical realization is called a non-linear
sigma model. In the analysis below we will consider the case when M is one-
dimensional and parameterized by the coordinate t. The action then simplifies to

S = −
∫
dt n(t)−1Gαβ(φ)∂φα∂φβ , (2.122)

where ∂ ≡ ∂t. The function n(t) =
√
γ ensures reparameterization invariance in the

coordinate t.
The action (2.122) can be constructed explicitly by introducing a t dependent

group element V (t) ∈ G that transforms as

V (t) −→ V ′(t) = gV (t)k(t), (2.123)

where g ∈ G and k(t) ∈ K(G). Dropping the explicit coordinate dependence, the
Maurer-Cartan form of the group element V reads

J = V −1∂V ∈ g. (2.124)

The Maurer-Cartan form is Lie algebra-valued. If g is the algebra of G, then the
algebra of K(G) is l, the maximal compact subalgebra of g. Hence J can be decom-
posed in a part that belongs to l, and a part that belongs to its complement, p (see
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G/K(G)M

φα(x)

Figure 2.4: The coordinates φα of the coset as maps from the space-time M to the coset.

equation (2.110)):

P = 1
2

(
J + JT

)
∈ p, (2.125a)

Q = 1
2

(
J − JT

)
∈ l. (2.125b)

Here the transpose ()T is the generalized transpose (2.108). The subspace p can
be interpreted as the ‘coset-part’ of the algebra g. The action (2.122) can then be
written as

S = −
∫
dt n(t)−1)〈P |P 〉, (2.126)

where 〈·|·〉 is the usual Cartan-Killing form on g. This action has a global (rigid)
G invariance and a local K(G) gauge invariance. The gauge invariance allows us to
parameterize V (t) as

V (t) = eφ
α(t)tα , (2.127)

where the generators tα only take values in the so-called Borel gauge (compare
(2.20)),

tα ∈ h⊕ n+. (2.128)

The Borel gauge is particularly convenient if we want to calculate the Maurer-Cartan
form (2.124) explicitly. This can be done with the help of some Baker-Campbell-
Hausdorff formulas,

e−A∂eA = ∂A+
1

2
[∂A,A] +

1

3!
[[∂A,A], A] + · · · , (2.129a)

e−ABeA = B + [B,A] +
1

2
[B,A] + · · · . (2.129b)

To illustrate the above analysis, we will conclude with two simple examples.
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Example 2.9: Non-linear realization of A1

The three generators of A1 were h, e, and f . Thanks to the Borel gauge, we only
need two of them to write down our group element:

V (t) = eψ(t)eeφ(t)h. (2.130)

This group element is related via a coordinate transformation to a group element
of the form eψ

′e+φ′h. We will use the former because in that case the Maurer-
Cartan form is easier to calculate. It reads

J = V −1∂V = h∂φ+ e exp (−2φ) ∂ψ. (2.131)

The coset element P becomes

P = 1
2
(J + JT ) = h∂φ+ 1

2
(e+ f) exp (−2φ) ∂ψ. (2.132)

Finally, the action is

S =

∫
dt n(t)−1

(
−2∂φ∂φ− 1

2
e−4φ∂ψ∂ψ

)
. (2.133)

In the next example we will treat the non-linear realization of A2. In that case
we could in principle use the same approach as in the previous example. However,
for future use it will be more convenient to tackle this problem in a slightly different
way.

Example 2.10: Non-linear realization of A2

In the adjoint representation the generators of A2 can be written as traceless 3×3
matrices. Specifically,

h1 = K1
1 −K2

2, e1 = K1
2, f1 = K2

1, [e1, e2] = K1
3, (2.134a)

h2 = K2
2 −K3

3, e2 = K2
3, f2 = K3

2, [f2, f1] = K3
1, (2.134b)

where the 3× 3 matrices Ka
b are given by

(Ka
b)
i
j = δaiδbj − 1

3
δab δ

i
j . (2.135)
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The indices a, b label the different matrices, and the i, j indices indicate the rows
and columns of the matrices. Both sets run from one to three. The Lie bracket
then reads

[Ka
b,K

c
d] = δcbK

a
d − δadKc

b, (2.136)

and the Cartan-Killing form becomes

〈Ka
b|Kc

d〉 = Tr (Ka
b ·Kc

d) = δadδ
c
b − 1

3
δab δ

c
d. (2.137)

The group element V can then be written as

V (t) = exp
(
ha

b(t)Ka
b

)
= ea

b(t)Ka
b, (2.138)

where ha
b is a generic traceless matrix, and ea

b = exp
(
ha

b
)

is its standard matrix
exponential. Hence, the latter has unit determinant. Because V transforms under
global G transformations from the left, and local K(G) transformations from the
right, the upper and lower indices of ea

b transform differently. To indicate this,
we write

V = em
aKm

a. (2.139)

The index m transforms under global G transformations, and the index a under
local K(G) transformations. Hence em

a behaves as a vielbein on the coset space.
With this distinction in place, we proceed to calculate the Maurer-Cartan form
and the coset element:

J = ea
m∂em

bKa
b, (2.140a)

P = ea
m∂em

bSab, (2.140b)

where ea
m is the inverse vielbein, and Sab the basis elements of the coset:

Sab = 1
2

(
Ka

b +Kb
a

)
. (2.141)

Note that here the generalized transposed is equal to the ordinary matrix trans-
pose. The inner product of the coset basis is easily evaluated to give

〈Sab|Scd〉 = δadδ
c
b − 1

3
δab δ

c
d. (2.142)

If we introduce the metric gmn = δabem
aen

b, the action reads

S = − 1
4

∫
dt n(t)−1 (gmpgnq − 1

3
gmngpq

)
∂gmn∂gpq

= − 1
4

∫
dt n(t)−1gmpgnq∂gmn∂gpq.

(2.143)

Here gmn is the inverse metric. The last step follows from the fact that, like the

vielbein, both the metric and its inverse have unit determinant.
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Visualizations

From time to time, it is convenient to draw a picture of a Lie algebra or one of its
representations. Besides from looking nice, a picture can display their structure at
a glance. For instance, both the symmetry of the root system and the height of the
roots of A2 are immediately clear from Figure 3.1, which displays the projection we
already encountered in chapter 2. In fact, Figure 3.1 preserves the structure of A2

exactly. This is possible because the root space of A2 is two-dimensional. When
the rank of the algebra is bigger than two, projections onto two dimensions of the
root or weight space loose some of the information. It is then no longer possible to
capture both the ordering in height and the full symmetry into one image. What
one can do, however, is do one projection that preserves the ordering in height, and
another that preserves (some part of) the symmetry. The former can be achieved
with a Hasse diagram, and the latter with a Coxeter projection.

3.1 Hasse diagrams

A Hasse diagram is a graph that displays the ordering between the different elements
of a set [12, 33], which in our case are the roots of a root system. An example of
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α1 α2

−α2 −α1

α1 + α2

−α1 − α2

Figure 3.1: The root system of A2.

a Hasse diagram is given in Figure 3.2. Below I will give the precise definition of a
Hasse diagram, and a procedure for drawing them.

The root system ∆ can be promoted to an ordered set (∆,≥) if we introduce the
following partial ordering. A root α is said to be bigger than β if their difference is
positive:

α ≥ β if α− β ∈ Q+. (3.1)

Thus α − β has to be a non-negative combination of simple roots. If it is not, the
two roots are incomparable. In addition to the partial ordering we need to introduce
a so-called cover relation. A root α is said to cover β if there is no root γ smaller
than α and bigger than β:

α � β if @ γ : α ≥ γ ≥ β. (3.2)

For roots this means that one root covers the other only if their difference is one
single simple root. With these two relations, a Hasse diagram of ∆ can now be
drawn according to the following rules:

• If α ≥ β the vertical coordinate for β is less than that for α.

• If α � β there is a straight line connecting α and β.

Because α ≥ β implies ht(α) > ht(β), the first criterion is satisfied if we assign
the vertical coordinate according to the height of the roots. The second criterion is
equivalent to drawing straight lines for every fundamental Weyl reflections, as these
are used to construct the root system in the first place (see subsection 2.1.6).

What remains to be done is to determine the horizontal coordinate for each root.
Although there are various algorithms with varying degree of complexity available
(see for example [33]), the following simple recipe works fairly well for root systems.
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(1,0) (0,1)

(1,1)

Figure 3.2: Hasse diagram of the positive roots of A2. The numbers (m1,m2) denote the
root vector.

The first step is to distribute the simple roots evenly on a horizontal line around
the origin. This is achieved by the following horizontal projection Px of the simple
roots αi:

Px(αi) =
i− 1

n− 1
− 1

2
≡ xi, (3.3)

where n is the rank of the Lie algebra. The horizontal position of a generic root
α = miαi can now be defined as

Px (α) = mi Px (αi) = mixi. (3.4)

Note that the explicit summation of the index i has been dropped. From now on,
any contracted index will be summed over. We can formalize the above a bit by
introducing a projection vector ϕ that satisfies

(αi|ϕ) = xi. (3.5)

Expanded in the basis of simple co-roots, the projection vector ϕ explicitly reads

ϕ = (A−1)ijxj α
∨
i . (3.6)

When we take its inner product with a generic root α, we see that it indeed gives us
the desired projection (3.4): (α|ϕ) = mixi. The complete projection P = (Px,Py)
can then be written as

Px(α) = (α|ϕ) , (3.7a)

Py(α) = (α|ρ∨) , (3.7b)

where the projection in the vertical coordinate y is just the height of the root.
Note that the horizontal coordinate (3.3) of a simple root αi strongly depends on

its number i. If the order of the simple roots is changed, the Hasse diagram changes
shape too. The best looking diagrams are produced when the ordering of nodes in
the Dynkin diagram (and thus the ordering of simple roots) matches the connections
between the nodes. See also Figure 3.3.
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(1,0,0,0)

(0,1,0,0) (0,0,1,0)

(0,0,0,1)

(1,1,0,0)

(0,1,1,0)

(0,0,1,1)

(1,1,1,0) (0,1,1,1)

(1,1,1,1)

1 2 3 4

(1,0,0,0)

(0,1,0,0) (0,0,1,0)

(0,0,0,1)

(1,1,0,0) (1,0,1,0) (0,1,0,1)

(1,1,1,0) (1,1,0,1)

(1,1,1,1)

3 1 2 4

Figure 3.3: Two Dynkin diagrams (below) and Hasse diagrams (above) of the same Lie
algebra, A4. The ordering of nodes in the left Dynkin diagram, indicated with
numbers below the nodes, is canonical. The ordering of nodes in the right
Dynkin diagram does not match the connections between them, resulting in a
Hasse diagram with crossing lines.

The lines drawn in a Hasse diagram represent the Weyl reflections in the simple
roots. Say there is a root α projected to the point (x, y). Then the root α + αi
connected to it by the line of the fundamental Weyl reflection wi gets projected to
the point (x+ xi, y + 1). The line of a fundamental reflection is therefore drawn at
an angle φ given by

φwi = tan−1 1

xi
. (3.8)

Because xi is unique for all i, the n distinct fundamental reflections wi all are drawn
at different angles, and reflections in the same simple root are drawn parallel. To
distinguish between them even further they will get drawn in different colors, ranging
from blue (the first fundamental reflection) to red (the nth).

The Hasse diagram of the full root system is symmetric around the origin, because
of the Chevalley involution (2.21). It is therefore customary to draw only the positive
roots in a Hasse diagram.

Following the above procedure it is straightforward, though sometimes tedious,
to draw a Hasse diagrams of any root system. Figure 3.4 displays for example the
Hasse diagrams of various root systems.
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(a) (b) (c) (d)

Figure 3.4: Hasse diagram of the positive roots of (a) E8, (b) E7, (c) E6, and (d) D5.
The last three are subdiagrams of the E8 diagram. The colors of the Weyl
reflections are chosen such that they match their embedding within E8.
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ade1 ade2 ade3 ade4

(a) Legend

e1 e2 e3 e4[e1, [e2, e3]] [e2, [e3, e4]]

(b) Positive Chevalley generators

[e1, e2] [e2, e3] [e3, e4]

(c) Single commutators

[e1, [e2, e3]] [e2, [e3, e4]]

(d) Double commutators

[e1, e2] [e3, e4]

[e1, [e2, [e3, e4]]]

(e) Triple commutators

Figure 3.5: The Serre construction for A4.

3.1.1 Visualizing the Serre construction

Hasse diagrams can serve as a neat tool to visualize the results of the Serre con-
struction, the step-by-step construction of the full algebra from the Cartan matrix
(see Example 2.2). One then has to interpret the points in the diagram not as roots,
but as the generator they belong to. Furthermore, the lines can then be interpreted
as the adjoint action of the respective positive Chevalley generators. Starting at
the bottom, the vertical steps in the diagram then represent the steps of the Serre
construction.

Figure 3.5 displays the Serre construction for the Lie algebra A4. One starts
out with just the positive Chevalley generators (Figure 3.5b). The first step is to
take all (single) commutators [ei, ej ] of the positive Chevalley generators that are
consistent with the Chevalley relations (2.16), the Serre relations (2.17), and the
Jacobi identity (2.3), which results in Figure 3.5c. This procedure is then iterated
(Figure 3.5d and 3.5e) until it no longer yields new generators.

The analogy presented above is only valid up to a certain point. The Serre
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construction can give you all the Lie brackets of the algebra, whereas the Hasse
diagram does not contain this information. Also, if the multiplicity of a root α is
greater than one, Hasse diagrams do not distinguish between the different generators
of the root space gα.

3.2 Coxeter projections

Where Hasse diagrams try to visualize the ordering of the root system, Coxeter
projections try to visualize its symmetry. The problem is that the full symmetry of
a root system is only revealed in a space of dimension n, which is the rank of the
algebra. What one can do for finite-dimensional Lie algebras, however, is project
this n-dimensional space onto a carefully chosen 2-dimensional hyperplane such that
the projection preserves a part of the full symmetry. The hyperplane in question is
known as a Coxeter plane [47, 84, 16].

3.2.1 The Coxeter plane

The Coxeter plane can only be defined for finite-dimensional Lie algebras. In order
to introduce it, we must first define a distinguished element of the Weyl group,
known as the Coxeter element, wc. It is given by the product of all fundamental
Weyl reflections:

wc =

n∏
i=1

wi. (3.9)

The Coxeter element is not unique, but depends on the choice of basis of the root
system and the ordering of the above product. However, all Coxeter elements are
conjugate to each other in the Weyl group, which implies they share the same prop-
erties. In particular, the order of the Coxeter element is always equal to the Coxeter
number g of the Lie algebra (2.61a). Thus g is the smallest possible integer such
that

(wc)
g = 1. (3.10)

Furthermore, it can be shown that wc has exactly one eigenvalue equal to e
2πi
g [16].

The corresponding (complex) eigenvector will be denoted by z:

wc(z) = e
2πi
g z (3.11)

Recall that the inner product is associative with respect to Weyl reflections, that
is, (w(α)|β) = (α|w(β)). So upon considering the inner product between z and the
action of wc on a generic root, it follows that

(wc(α)|z) = (α|wc(z)) = e
2πi
g (α|z) . (3.12)
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Thus when projected onto z, the Coxeter element acts as ( 1
g )th of a rotation on all

roots. This leads us to the concept of a Coxeter plane C, which is spanned by the
real and imaginary parts of z:

C = Rxc + Ryc, (3.13)

where

xc = Re z, (3.14a)

yc = Im z. (3.14b)

A Coxeter projection is the projection of a root system onto its Coxeter plane. Its
horizontal and vertical components are respectively given by

Px(α) = (α|xc) , (3.15a)

Py(α) = (α|yc) . (3.15b)

Following [84] we will draw lines between roots that are nearest neighbors. That is,
we will draw a line between roots α and β if their distance (α− β|α− β) is minimal.
The coloring of the lines depends only on their maximal distance from the origin in
the projected graph.

Coxeter projections preserve the g-fold rotational symmetry of the root system,
which is generically only a small part of its complete symmetry. Nonetheless the re-
sulting graph can display a rich structure, as for example the E8 Coxeter plane does
(Figure 3.6). Note that the Coxeter projection is always mirror symmetric in the
origin, because the negative roots project as P(−α) = −P(α). This effectively dou-
bles the rotational symmetry from g-fold to 2g-fold for Lie algebras whose Coxeter
number is odd. For more Coxeter projections, see Appendix B.
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Figure 3.6: Coxeter projection of the roots of E8.
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Example 3.1: Coxeter projection of A2

When acting on a root vector mi, the Weyl reflections can be written as n × n
matrices. By equation (2.69), the two fundamental Weyl reflections of A2 are

w1 =

(
−1 1
0 1

)
, (3.16a)

w2 =

(
1 0
1 −1

)
. (3.16b)

The Coxeter element wc is the product of the two,

wc = w1w2 =

(
0 −1
1 −1

)
. (3.17)

We’re looking for an eigenvector of wc that has an eigenvalue of e
2πi
3 , since the

Coxeter number of A2 is g = 1 + (ρ∨|α1 + α2) = 3. The eigenvector z is

z =

(
1 + i

√
3

2

)
. (3.18)

Expanded in terms of components, the horizontal and vertical projections of a
root α with root vector mi then respectively read

Px(α) = Aijm
ixjc = 3m2, (3.19a)

Py(α) = Aijm
iyjc =

√
3(2m1 −m2). (3.19b)

Doing this projection for all roots of A2 results in the following picture:

α1

α2

−α2

−α1

α1 + α2

−α1 − α2

Not surprisingly, this is the same old picture of the root system we have seen

before, but now rotated over an angle of 60 degrees. The lines between the roots

indicate the nearest neighbour pairs.
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3.2.2 Projections to subalgebras

The discussion in subsection 3.2.1 is only valid for finite-dimensional Lie algebras.
Although the Coxeter element can be defined for infinite-dimensional Lie algebras in
a similar way, it no longer has the nice properties its finite-dimensional counterpart

has. For instance, it does not have an eigenvalue of e
2πi
g . One reason for this is that

the Coxeter number is ill-defined, because infinite Lie algebras do not have a highest
root. A notable exception are the affine Lie algebras: despite the fact that they are
infinite, one is still able to define a Coxeter number and do a Coxeter projection.
More on this in section 4.1.

However, it is possible to project the root system of an infinite-dimensional Lie
algebra onto the Coxeter plane of a finite subalgebra s. The finite subalgebra can
be specified by picking a subset αs (s = 1, . . . , n −m) of the simple roots αi such
that αs generate a finite root system. The Coxeter element of s, denoted by wsub

c ,
is then

wsub
c =

n−m∏
s=1

ws. (3.20)

Its order is equal to gsub, the Coxeter number of s. The rest of analysis follows the
same lines as that of subsection 3.2.1.

A projection onto a Coxeter plane of a subalgebra can be viewed as a level
decomposition of the whole Coxeter projection. For more on level decompositions,
see section 4.3. The resulting graph consists of Coxeter projections of representations
of the subalgebra, stacked on top of each other. This procedure is of course not
limited to infinite Lie algebras, but can also be done for finite cases. For example,
in Figure 3.7 the root system of E8 is projected onto the Coxeter plane of an A7

subalgebra. Subalgebra projections display the gsub-fold rotational symmetry of
the subalgebra. As g > gsub, the resulting picture is less symmetric than the full
projection.
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(a) The full subalgebra projection.

(b) Level 0 (c) Level 1

(d) Level 2 (e) Level 3

Figure 3.7: Projection of E8 onto the Coxeter plane of an A7 subalgebra, split into the
contributions of A7 representations at different levels.
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Kac-Moody algebras

A Kac-Moody algebra is a Lie algebra whose Cartan matrix A is generalized. That
is, A is not necessarily positive definite (see equation (2.13)). The algebra is finite-
dimensional when A is positive definite, and infinite-dimensional otherwise. This
chapter will treat special kinds of the latter case. Namely, we will consider the Kac-
Moody algebras that can be obtained by enlarging the Cartan matrix (or equiva-
lently, the Dynkin diagram) of finite Lie algebras in a particular way.

4.1 Affine algebras

An affine Kac-Moody algebra is a Kac-Moody algebra whose Cartan matrix A has
a vanishing determinant [34],

detA = 0. (4.1)

This a loosening of condition (2.13d), but condition (2.13e) remains intact: all its
principal minors should remain positive. Thus if we remove any node from the
associated Dynkin diagram, the remaining diagram should correspond to a finite Lie
algebra.

If A is an (n + 1) × (n + 1) matrix, its rank is n; it has one eigenvector whose
eigenvalue is zero, and is therefore positive semidefinite. The root space Φ thus has
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(1, 0) (0, 1)
(1, 1)

(2, 1) (1, 2)
(2, 2)

(3, 2) (2, 3)
(3, 3)

(4, 3) (3, 4)

(a)

[2,−2] [−2, 2]
[0, 0]

[2,−2] [−2, 2]
[0, 0]

[2,−2] [−2, 2]
[0, 0]

[2,−2] [−2, 2]

(b)

Figure 4.1: Hasse diagrams of the root system of A+
1 up to height 7. In Figure (a) the

labels are the root vectors, in Figure (b) the Dynkin labels.

one null direction, which is the reason the root system ∆ becomes infinite. Another
point of view is that an affine Lie algebra is infinite-dimensional because the Serre
construction does not terminate when A is not positive definite.

Besides the fact root systems of affine algebras are infinite, they are also highly
structured. Take for example the simplest affine algebra, known as A+

1 . Its Cartan
matrix is given by

A =

(
2 −2
−2 2

)
. (4.2)

The root system ∆ of A+
1 up to a given height is given in Figure 4.1. One feature

that is immediately clear is that it is repetitive, which is in fact common to all affine
Kac-Moody algebras. See for example also Figure 4.2. To be precise, there is one
element δ ∈ ∆ for which the following holds:

α+mδ ∈ ∆ ∀α ∈ ∆. (4.3)

Here m is the smallest possible non-negative integer for which the above statement is
true, and δ is the so-called null root, which will be defined below. Algebras for which
m is equal to one are known as untwisted affine algebras. Otherwise they are called
twisted . In the following we will assume that the affine algebra under consideration
is always untwisted.



4.1 Affine algebras 67

(a) (b) (c) (d) (e) (f)

Figure 4.2: Hasse diagrams of root systems of affine Kac-Moody algebras of increasing
complexity. From left to right we have: (a) A+

1 , (b) C+
2 , (c) D+

4 , (d) A+
8 , (e)

D+
7 , and (f) E+

7 .
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The null root δ and its dual δ∨ are given by

δ = aiαi, (4.4a)

δ∨ = a∨iα∨i . (4.4b)

The coefficients a∨i and ai are the (dual) Coxeter labels of the affine Kac-Moody
algebra. In contrast to finite algebras, they are defined as the left and right null
eigenvectors of the Cartan matrix. They are normalized such that their minimum
component is equal to one:

ajAji = 0 min(ai) = 1 = a0, (4.5a)

Aija
∨j = 0 min(a∨i) = 1 = a∨0. (4.5b)

This particular normalization ensures that δ lies on the root lattice. For convenience,
the index for which both ai and a∨i are minimal has been labeled 0. The full index
i then runs over i = 0, 1, . . . , n. From their definition it follows that the Coxeter
labels ai and a∨i satisfy

a∨i =
(αi|αi)
(α0|α0)

ai. (4.6)

It follows straightforwardly that the null root is related to its dual by

δ∨ =
2

(α0|α0)
δ. (4.7)

This is not the usual definition δ∨ = 2δ/ (δ|δ), as that would have been ill-defined.
δ is namely truly a null root in the sense of equation (2.42); its norm (δ|δ) is zero.

The null root of A+
1 is δ = α0 +α1. Studying Figure 4.1 in more detail, you may

notice that roots differing by δ share the same Dynkin labels pi,

pi = (α|α∨i ) = Ajim
j = (α+ δ|α∨i ) . (4.8)

The reason this happens is that the Dynkin labels of δ are all zero, because its root
vector is the null vector of the Cartan matrix. In order to lift this degeneracy of the
roots, we can add an additional Dynkin label p−1 that distinguishes between α and
α+ δ. For an arbitrary root α it is defined as

p−1 = (α|γ∨) , (4.9)

where γ∨ = 2 γ
(γ|γ) . We will call γ the root of derivation. It is an element of the root

space Φ that satisfies

(δ|γ∨) = −1. (4.10)
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This does the trick, as (α+ δ|γ∨) = (α|γ∨)− 1. Therefore the Dynkin label p−1 of
α + δ differs from that of α by −1. Because the zeroth Coxeter label a0 is always
equal to one, the inner product of γ∨ with the simple roots can be defined as

(αi|γ∨) = −δ0
i , (4.11)

With this definition γ satisfies (4.10). Note that γ cannot lie in the span of the
simple roots. If that were the case, its inner product with δ would be zero. We
therefore need to manually add γ to the root space,

Φ = span{α0, . . . , αn} ⊕ γ. (4.12)

Note that the root of derivation is not a member of the root system ∆, as all of the
roots in ∆ can still be expanded entirely in the basis of simple roots.

In principle the norm of the root of derivation is not fixed by the above analysis.
However, things simplify a bit when we choose (γ|γ) = (α0|α0). The above equation
then can be written as

(α∨i |γ) = −δ0
i =

(
−Λ0|α∨i

)
. (4.13)

Thus γ can be identified with minus the zeroth fundamental weight, Λ0. When the
Cartan matrix is non-degenerate, the fundamental weights can be given by means
of its inverse (see equation (2.50)). But when the Cartan matrix is degenerate, as
is the case for affine algebras, this is not possible. The fundamental weights can
be introduced for affine algebras only because the introduction of γ has lifted the
degeneracy of the Cartan matrix.

The Cartan matrix A can namely be extended to a bigger matrix, A′. The
extended Cartan matrix A′ has one extra row and column that correspond to γ:

A(−1)i = (γ|α∨i ) = (α∨i |γ) = Ai(−1). (4.14)

The introduction of γ has effectively added a generator h−1 to the Cartan subalgebra,
on which the action of the simple roots is (compare equation (2.29))

αi(h−1) = A(−1)i. (4.15)

The extended Cartan matrix reads in full

A′ =


2 −1 0 · · · 0
−1 A00 A10 · · · A0n

0 A10 A11 · · · A1n

...
...

...
. . .

...
0 An0 An1 · · · Ann

 . (4.16)

This matrix is indeed non-degenerate, as its rank is n + 2. The extended Cartan
matrix can be taken as the starting point in the Serre construction of affine Kac-
Moody algebras. However, one must then take some additional rules into account.
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Namely, there are no Chevalley generators e−1 and f−1 associated to the extension,
but only an extra generator h−1 for the Cartan subalgebra. The extra simple root
α−1 is also absent. If it were present it would correspond to γ, which is, as noted
above, not part of the root system. Lastly, the Weyl group is generated by the n+ 1
fundamental reflections w0, . . . , wn. The reflection w−1 does not exist.

Example 4.1: A+
1

Recall that the Cartan matrix of A+
1 is equal to

A =

(
2 −2
−2 2

)
. (4.17)

The normalized Coxeter labels are then ai = (1, 1), as ajAji = 0 and min(ai) = 1.
Because both Coxeter labels are equal to one, we have a freedom to choose which
index will be the zeroth. If we pick the first one, the extended Cartan matrix is

A′ =

 2 −1 0
−1 2 −2
0 −2 2

 . (4.18)

If we use the extended Cartan matrix to calculate the Dynkin labels of the roots
via pi = A′jim

j , Figure 4.1 becomes

(0, 1, 0) (0, 0, 1)
(0, 1, 1)

(0, 2, 1) (0, 1, 2)
(0, 2, 2)

(0, 3, 2) (0, 2, 3)
(0, 3, 3)

(0, 4, 3) (0, 3, 4)

[−1, 2,−2] [0,−2, 2]
[−1, 0, 0]

[−2, 2,−2] [−1,−2, 2]
[−2, 0, 0]

[−3, 2,−2] [−2,−2, 2]
[−3, 0, 0]

[−4, 2,−2] [−3,−2, 2]

The addition of the derivation γ to the root space, and its corresponding row and

column to the Cartan matrix, has achieved what it was supposed to achieve: the

Dynkin labels are no longer degenerate.
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4.1.1 Affine algebras as extensions of finite algebras

Besides being defined by means of Cartan matrices with vanishing determinant,
an affine Kac-Moody algebra g can also be obtained from a finite semi-simple Lie
algebra g. The Lie algebra g then features as a particular subalgebra of g whose
roots α all satisfy

(α|γ∨) = 0. (4.19)

The subalgebra g is called the horizontal subalgebra of g. The way g can be obtained
from g is as follows. If the Lie bracket of g reads

[T a, T b] = f c
ab T

c (4.20)

a loop algebra gloop can be formed by introducing a grading over Z:

[T am, T
b
n] = f c

ab T
c
m+n. (4.21)

Here the additional indices run over the integers: m,n ∈ Z. In order to turn the loop
algebra into an affine algebra we have to add two additional generators, the central
element K and the derivation D. With the inclusion of K and D, the complete Lie
bracket reads

[T am, T
b
n] = f c

ab T
c
m+n +mδm,−nη

abK, (4.22a)

[D,T am] = −mT am, (4.22b)

[K,D] = [K,T am] = 0. (4.22c)

The algebra g specified by the above bracket is said to be the affine extension of
g, and is often denoted by g+. The original Lie algebra g can be identified with
generators T am whose bracket with D vanishes. This is the same identification as in
equation (4.19).

The central element is unique up to normalization, and corresponds to the null
direction of the Cartan subalgebra:

K = a∨ihi. (4.23)

Inspection then shows that K indeed commutes with all Chevalley generators ei and
fi (see equation (2.16)), and thus also with all generators of g+.

The derivation D is identical to the extra generator h−1 of the previous section.
Like γ does for the roots, the derivation ‘measures’ the Z grading of the loop gener-
ators T am. It also crucially lifts the degeneracy of the Cartan-Killing form, which is
given by

〈T am|T bn〉 = 〈T a|T b〉δm,−n, (4.24a)

〈K|D〉 = −1, (4.24b)
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with all other combinations vanishing. As a consequence, the derivation also lifts the
degeneracy of the inner product on the root space. The root space is again defined
as the dual of the Cartan subalgebra, Φ = h∗, which can be given by

h = h⊕ span{K,D}. (4.25)

The root system ∆ then has the same structure as described in section 4.1. In
particular, the simple roots are given by

αs = αs, (4.26a)

α0 = δ − θ, (4.26b)

where θ is the highest root and αs are the simple roots of g. The index s runs over
the rank of g, that is i = {0, 1, . . . , n} = {0, s}. Note that the norm of α0 is the
same as that of θ, (α0|α0) =

(
θ|θ
)
.

By equation (4.26), the Cartan matrix A of the horizontal subalgebra g can be
recovered from that of g by deleting the zeroth row and column. Equivalently, one
can delete the zeroth node of the affine Dynkin diagram to retrieve the diagram of
the horizontal subalgebra. Conversely, the Cartan matrix of the affine algebra can
be obtained from A by adjoining a row and column whose entries correspond to the
Dynkin labels of the lowest root of g. Specifically, the row and columns to add are

A0s =
(
δ − θ|α∨s

)
= −atAts, (4.27a)

As0 =
(αs|αs)(
θ|θ
) A0s. (4.27b)

4.2 Over- and very-extended algebras

In section 4.1 we argued that the extended Cartan matrix (4.16) of affine Kac-
Moody algebras can serve as the starting point in their construction if one takes
certain rules into account. When those rules are forgotten, the resulting algebra is
not affine. Using the ‘ordinary’ Serre construction, the result is a so-called over-
extended Kac-Moody algebra. The nomenclature stems from the fact that an over-
extended algebra is an extension of an affine algebra g+, who in turn is an extension
of its horizontal finite subalgebra g. Over-extended algebras are denoted by g++.

By (4.16), their Dynkin diagram is obtained from that of affine algebras by
adding a node to the zeroth node of the affine diagram. In Figure 4.4 the over-
extended node is denoted by −1. As noted in section 4.1, the over-extended Cartan
matrix is non-degenerate. If its rank is n+ 2, it has one negative and n+ 1 positive
eigenvalues. The root space of over-extended Kac-Moody algebras has therefore a
Lorentzian signature, allowing for real, null, and imaginary roots.
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Example 4.2: A+
1 as the affine extension of A1

Recall from Example 2.2 and Example 2.3 that the Cartan matrix of the Lie
algebra A1 is given by

A =
(
2
)
. (4.28)

The highest root of A1 is its only positive root, θ = α1, whose Dynkin label is
equal to 2. By equation (4.27) the Cartan matrix A of the affine extension of A1

is thus given by

A =

(
2 −2
−2 2

)
. (4.29)

This is, not surprisingly, the same Cartan matrix as in equation (4.2). A+
1 is thus

truly the affine extension of A1. Its Dynkin diagram is given by

0 1

The node labels indicate their ordering. The black zeroth node has been ‘deleted’:
the remaining undeleted Dynkin diagram is that of the horizontal subalgebra A1.
If we again take a look at the root system of A+

1 , we can distinguish infinitely
many copies of the root system of A1 within it:

(−1,−2) (−2,−1)
(−1,−1)

(0,−1) (−1, 0)
(0, 0)

(1, 0) (0, 1)
(1, 1)

(2, 1) (1, 2)

The red lines have been thickened to indicate the A1 subalgebras. The middle

roots (0,−1), (0, 0), and (0, 1) form the horizontal root subsystem, as they all

satisfy equation (4.19).
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(a) (b)

Figure 4.3: Hasse diagrams of the root systems of (a) A++
1 and (b) A+++

1 up to height 22.
The number of roots of A+++

1 grows faster in height than that of A++
1 .

If we repeat the procedure and attach yet another node to the over-extended
node, the resulting diagram is that of a very-extended Kac-Moody algebra g+++.
Figure 4.4 lists all the Kac-Moody algebras that are very-extensions of simple Lie al-
gebras. In Figure 4.4 the very-extended node has been labeled −2. Similarly to over-
extended algebras, the Cartan matrix of very-extended algebras is also Lorentzian.
As opposed to affine algebras, their root systems do not grow linearly in height; both
over- and very-extended root systems grow faster. Figure 4.3 shows the root systems
of A++

1 and A+++
1 . Because of the extra very-extended simple root, the root system

of very-extended algebras grows faster than that of the over-extended algebras.

In contrast to affine algebras, the root systems of over- and very-extended Kac-
Moody algebras cannot (yet) be described fully in closed form. However, it is worth
noting that there is a class of Lorentzian Kac-Moody algebras for which one can
make general statements about the root system. These Kac-Moody algebras are
called hyperbolic, and they are characterized by the fact their Cartan matrix contains
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A+++
n

-2 -1 0

B+++
n

-2 -1 0

C+++
n

-2 -1 0

D+++
n

-2 -1 0

E+++
6

-2 -1 0

E+++
7

-2 -1 0

E+++
8

-2 -1 0

F+++
4

-2 -1 0

G+++
2

-2 -1 0

Figure 4.4: Dynkin diagrams of all Kac-Moody algebras that are very-extensions of finite
simple Lie algebras. Deleting node −2 results in all of the over-extended Kac-
Moody algebras g++, and also deleting node −1 in all of the extended (affine)
algebras g+. In all cases the subscript denotes the rank of the unextended
algebra.
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only positive definite or positive semidefinite submatrices. Thus upon removing any
node from their Dynkin diagram, we are left with a diagram of either a finite or an
affine algebra. Very-extended Kac-Moody algebras are not hyperbolic; removing the
very-extended node yields a Lorentzian over-extended algebra. In contrast, over-
extended algebras can be hyperbolic. The root system ∆ of hyperbolic algebras
consists of all the points on the root lattice whose norm is smaller than norm of the
longest simple root, α2

max [50]:

∆ =
{
α ∈ ∆

∣∣ (α|α) ≤ α2
max

}
. (4.30)

Unfortunately, this tells us nothing about the root multiplicities. Besides, we would
also like to analyze the root system of very-extended Kac-Moody algebras. So for
the general case one has to resort to methods that analyze the root system part by
part, such as the level decomposition.

4.3 Level decomposition

A level decomposition is a way to chop up a Lie algebra g in terms of one of its sub-
algebras s [23, 70, 53, 57]. More precisely, under a level decomposition the adjoint
representation of g branches into a number of representations of s. This is par-
ticularly useful for over- and very-extended Kac-Moody algebras, as their infinite
adjoint representation can be described in terms of finite representations of a finite
subalgebra. One can of course also perform a level decomposition of finite algebras;
see Figure 4.5 for a few examples.

The subalgebra s will always be chosen to be regular. That is, all simple roots of
s are also simple roots of g. Put differently, the Cartan matrix of s is obtained from
that of g by simultaneously deleting certain rows and columns. Equivalently, the
Dynkin diagram of s is a subdiagram of that of g and can be recovered by deleting
one or more nodes. The number of nodes that are deleted will be denoted by m. In
order to indicate which of the simple roots belong to s we will split the indices as
i = (s, a). They respectively run over

i, j, . . . : Rank of full algebra, n,

s, t, . . . : Rank of regular subalgebra, n−m,

a, b, . . . : Number of deleted nodes, m.

(4.31)

Any root α ∈ g can then be written as

α = miαi = msαs + laαa, (4.32)

where la ≡ ma are called the levels of a root. The algebra g then splits up into level
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(a) (b) (c)

Figure 4.5: Hasse diagrams of the root system of E8 branched with respect to different
regular subalgebras. The subalgebras are: (a) E7, (b) E6, and (c) A7. Compare
also Figure 3.4.
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spaces gla . They are direct sums of root spaces gα whose root is of level la:

gla =
⊕

(α|Λ∨a)=la

gα. (4.33)

The whole algebra g can then be written as

g = h⊕
⊕
la∈Zm

gla . (4.34)

Because g is graded by means of its roots (see equation (2.35)), the levels also induce
a grading on g:

[gla1 , gla2 ] ⊆ gla1+la2
. (4.35)

The roots of the regular subalgebra s all have level zero by construction. This implies
that the adjoint action of s on a level space cannot change the level,

[s, gla ] ⊆ gla . (4.36)

Owing to the triangular decomposition (2.20), a level space gla 6= s sits either in the
positive part (gla ∈ n+) or in the negative part (gla ∈ n−) of g. In the former case
the adjoint action of s on gla can never reach n−. The level space gla is therefore
bounded from below. This in turn implies there exist generators x ∈ gla that are
annihilated by the adjoint action of the negative Chevalley generators of s:

adfs x = 0. (4.37)

Comparing with equation (2.86), we see that the generators x are lowest weight
vectors in lowest weight representations of s. The level space is thus completely
reducible in terms of lowest weight representations. On the other hand, if gla ∈ n−
it is reducible in terms of highest weight representations. In the final case that
gla = s the level space is given by the adjoint representation of s. We will focus only
on the decomposition of n+, as the decomposition of n− follows from it using the
Chevalley involution (2.21).

As we saw in subsection 2.2.1, if x is a lowest weight vector of s its Dynkin labels
with respect to s are non-positive. By equation (2.51a) it can be easily checked if
this is the case. The Dynkin labels of any positive root α = miαi are

ps = Atsm
t +Aasl

a. (4.38)

Using the above equation, we can check every root to see if it is a lowest weight of
s. It can also be inverted to give

ms =
(
A−1

sub

)ts
(pt − laAat) , (4.39)
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where Asub is the Cartan matrix of s. This, together with the requirement that the
root norm is bounded from above (2.75), gives us an algorithm to scan for potential
lowest weights. The bound (2.75) can be written as

α2 = Gstsub

(
pspt −AasAbtlalb

)
+Babl

alb ≤ α2
max. (4.40)

Note that for this formula to be valid, we have to make sure that a long (or short)
root in the full algebra is also a long (short) root in the subalgebra, which in general
is not automatically the case. Luckily we are always free to choose a normalization
such that the root lengths match.

Assuming s is finite, the quadratic form matrix Gstsub of s only has positive entries.
Therefore α2 is a monotonically increasing function of |ps| at fixed levels la. The
number of distinct Dynkin labels ps that respect the bound is thus finite. Further-
more, the root vector associated to ps has to lie on the root lattice, implying that ms

should be non-negative integers. Hence equation (4.39) restricts the possible values
of ps even more. All in all, there are a finite number of subalgebra representations
at a given level if s is finite.

After scanning for possible valid Dynkin labels at fixed levels using equations
(4.39) and (4.40), we still have to determine whether the representation V (Λ) with
lowest weight Λ = psΛ

s actually occurs at level la. Let nla be the number of distinct
Dynkin labels found at level la using the above scanning technique. In principle
there could be nla distinct representations Vi at level la. Say a root α occurs as a
weight within the weight diagrams of some of the representations Vi. Then the sum
of its multiplicity as a weight in the different representations has to add up to its
multiplicity as a root:

mult(α) =

nla∑
i=1

µla(Vi) multVi(α). (4.41)

The number µla(Vi) counts how often the representation Vi occurs at level la, and is
called the outer multiplicity of the representation. If one calculates mult(α) by
means of the Peterson recursion formula (2.99) and multVi(α) by means of the
Freudenthal recursion formula (2.101), it is relatively straightforward to compute
the outer multiplicities.
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Example 4.3: Level decomposition of A2

Let us see how the root system of A2 splits up under the level decomposition
with respect to an A1 regular subalgebra. If we delete the first node, the Dynkin
diagram looks like

1 2

The simple root of the deleted (black) node will count the level. The root system
splits up according to

α = lα1 +mα2. (4.42)

Graphically, it looks like the following:

(1, 0)

(0, 1)

(0,−1)

(−1, 0)

(1, 1)

(−1,−1)

l = −1

l = 0

l = 1

The colored lines are Weyl reflections of the A1 subalgebra. The different colors
indicate the three levels -1, 0, and 1. From the above picture it is fairly obvious
which roots are lowest or highest weights of A1, but we can also employ the
scanning method to find them. Equations (4.39) and (4.40) simplify to

m = 1
2
(p+ l) (4.43a)

α2 = 1
2

(
p2 + 3l2

)
≤ 2. (4.43b)
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The last equation has no solution for l ≥ 2, so, as expected, we only have to look
at level -1,0, and 1. For l = ±1, the only allowed values are p = ±1. For l = 0 the
options are p = {−2, 0, 2} . Since we’re looking for lowest weights, the positive
values of p can be discarded. All in all, the different Dynkin labels we have found
are:

[0]

[−1]

[−2]

[−1]

l = −1

l = 0

l = 1

Each representation occurs with outer multiplicity one, including the singlet [0]
representation. The singlet corresponds to the Cartan subalgebra generator of
the deleted node, h1. Generically, for every deleted node there is one singlet
representation. The results of the decomposition can be collected in a table:

l −p mi α2 dim mult(α) µ

-1 1 -1 -1 2 2 1 1
0 2 0 -1 2 3 1 1
0 0 0 0 0 1 2 1
1 1 1 0 2 2 1 1

The rows in the columns are the various representations of the subalgebra A1

at the different levels. Here l denotes the level, p the Dynkin label, mi the root
vector of the lowest weight, dim the dimension of the representation, mult(α) the
multiplicity of the root of the lowest weight, and µ the outer multiplicity of the
representation.

To summarize, the level decomposition splits the adjoint A2 representations

into four A1 representations over three different levels. In terms of the dimensions

of the representations, we have made the following branching: 8→ 3+1+2+2.



82 Chapter 4 Kac-Moody algebras

4.4 Non-linear realizations

For infinite-dimensional Kac-Moody algebras one can in principle construct a non-
linear realization. But as there are an infinite amount of generators, the parameter-
ization of the group element V (t) (2.127) will contain an infinite amount of terms.
This makes it impossible to compute the Maurer-Cartan form (2.124) in full gener-
ality. What is possible, however, is to make a consistent truncation of the formally
defined action (2.126) for which the solutions of the equations of motion are also
solutions to the full model [24, 42]. This can be done by truncating not the group
element, but the Maurer-Cartan form either at a given root height or at a given
level of a level decomposition. These two methods are similar in spirit, and we will
discuss only the latter.

Recall that under a level decomposition the Lie algebra g splits into level gla

according to (4.34). The group element (2.127) can thus be written as

V (t) =
∏
la≥0

Vla(t) =
∏
la≥0

exp
(
φla(t) · Ela

)
. (4.44)

Here Ela denotes all the representations of the subalgebra that occur at level la. The
negative levels do not enter, as we can use the Borel gauge (2.128) to parameterize
V (t). Consequently, the Maurer-Cartan form splits as

J = V −1∂V =
∑
la≥0

Jla , (4.45)

where the summand schematically reads

Jla = Rla · Ela . (4.46)

The coefficients Rla contracting Ela can depend on scalar fields φl′a whose level is at
most la, i.e. l′a ≤ la. The exact form of Rla depends strongly on the graded structure
of g. Before truncating, the sum in the expansion of J is infinite for Kac-Moody
algebras. The truncated version can simply be cut off at any given level ta,

J̃ =
∑

0≤la≤ta
Jla . (4.47)

This truncated Maurer-Cartan form J̃ can then be used to calculate a (truncated)
coset element P̃ and its corresponding action.
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Example 4.4: Non-linear realization of A1 ⊂ A2

In Example 4.3 we decomposed A2 with respect to A1. In this example we
will show how to do a non-linear realization of the fields recovered in the level
decomposition. Recall that the results of the level decomposition were

l −p α2 dim mult(α) µ representation

-1 1 2 2 1 1 Fa
0 2 2 3 1 1 Ka

b

0 0 0 1 2 1 K
1 1 2 2 1 1 Ea

The representations introduced in the last column correspond to the various
generators as follows:

l = 0 : h1 = K1
1 + 2K2

2, e2 = K1
2, (4.48a)

h2 = K1
1 −K2

2, f2 = K2
1, (4.48b)

l = 1 : e1 = E2, [e1, e2] = E1, (4.48c)

l = −1 : f1 = F2, [f2, f1] = F1. (4.48d)

Like in Example 2.10, Ka
b are 2× 2 matrices, and Ea and Fb are vectors,

(Ka
b)
i
j = δaiδbj , (4.49a)

(Ea)i = δai, (4.49b)

(Fa)i = δai. (4.49c)

All indices run from one to two. As we already know the Cartan-Killing norm on
the generators from Example 2.8, we can straightforwardly cast it in the form

〈Ka
b|Kc

d〉 = δadδ
c
b − 1

3
δab δ

c
d, (4.50a)

〈Ea|Fb〉 = δab . (4.50b)

All other combinations vanish. A convenient parameterization of the group ele-
ment V is

V (t) = V1(t)V0(t), (4.51a)

V0(t) = eha
b(t)Kba , (4.51b)

V1(t) = eAa(t)Ea . (4.51c)
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The Maurer-Cartan form splits into a level 0 part J0 and a level 1 part J1,

J = J0 + J1, (4.52a)

J0 = ea
m∂em

bKa
b, (4.52b)

J1 = ea
m∂AmE

a, (4.52c)

where em
a is again the matrix exponential of hm

a and plays the role of the
vielbein, and ea

m is its inverse. The coset element splits in a similar fashion:

P = P0 + P1, (4.53a)

P0 = ea
m∂em

bSab, (4.53b)

P1 = ea
m∂AmS

a, (4.53c)

where the coset basis elements S are given by

Sab = 1
2

(
Ka

b +Kb
a

)
, (4.54a)

Sa = 1
2

(Ea + Fa) . (4.54b)

Note that Ea and Fa are each others transposeds. If we evaluate the Cartan-
Killing norm on the coset basis, we find

〈Sa|Sb〉 = 1
2
δab, (4.55a)

〈Sab|Scd〉 = δadδ
c
b − 1

3
δab δ

c
d. (4.55b)

Upon introducing the metric gmn = δabem
aen

b the action finally becomes

S = − 1
4

∫
dt n(t)−1

((
gmpgnq − 1

3
gmngpq

)
∂gmn∂gpq + 2gmn∂Am∂An

)
. (4.56)

This action should of course also follow from a direct reduction of the non-linear
sigma model action of a non-decomposed A2. If we recall from Example 2.10 that
action was

S = − 1
4

∫
dt n(t)−1GMPGNQ∂GMN∂GPQ, (4.57)

and the metric GMN was constrained to have unit determinant. The capital
indices run from one to three. It turns out that if we use the Ansatz

GMN =
1

det(gmn)1/3

(
gmn +AmAn Am

An 1

)
(4.58)

the action (4.57) exactly reduces to (4.56), just as expected.
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Supergravity

In the previous chapters we have described the generic theory and structure of Kac-
Moody algebras. In this chapter we will treat a class of theories known as supergrav-
ities in which these infinite-dimensional symmetries appear. For an introduction to
supergravity, see for example the lecture notes [89] and [31].

Supergravities are constructed by requiring that supersymmetry is a local sym-
metry of the theory. Very roughly, supersymmetry transforms bosons into fermions
and vice-versa:

δ(boson) = fermion, (5.1a)

δ(fermion) = translated boson. (5.1b)

Because supersymmetry is required to hold locally, spacetime translations must also
be a local symmetry of the theory. We therefore have diffeomorphism invariance,
and expect the theory to contain gravity. Hence the name supergravity, a term
which was coined even before the first theories were constructed [32].

The underlying symmetry of supergravity is captured in its superalgebra. A
superalgebra g is a Z2-graded generalization of a Lie algebra. It splits up in two
subalgebras, g = g0 ⊕ g1, where g0 is the even (bosonic) subalgebra and g1 the odd
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(fermionic) subalgebra. The Lie bracket of superalgebras is generalized from (2.1),
and reads

[x, y] = −[y, x] ⊆ g0 ∀x, y ∈ g0, (5.2a)

{x, y} = +{y, x} ⊆ g0 ∀x, y ∈ g1, (5.2b)

[x, y} = −{y, x] ⊆ g1 ∀x ∈ g0, y ∈ g1. (5.2c)

The bosonic subalgebra g0 thus constitutes an ordinary Lie algebra. Furthermore,
by equation (5.2c) the fermionic subalgebra g1 carries a representation of g0.

The superalgebra of supergravities is an extension of the usual Poincaré alge-
bra. Its bosonic subalgebra thus always contains Lorentz generators Mµν and the
generator of translations Pµ. The fermionic subalgebra contains a number of su-
persymmetry generators Qiα, which come in spinor representations of the Lorentz
algebra. The index i runs from 1 to N , the number of supersymmetry generators.
The number of supercharges, Q, is then defined as the total number of components
of all supersymmetry generators,

Q = N q ≤ 32. (5.3)

Here q is the number of components (i.e. the dimension) of a single irreducible spinor
representation. If Q > 32, acting with supersymmetry generators on the graviton
(which has spin 2) will give rise to fields with spin greater than two [65]. It is thought
that these fields cannot consistently couple to themselves or other fields, and hence
theories with Q > 32 are discarded. Supergravities that satisfy the bound in (5.3)
are called maximal supergravities.

As is clear from Table 5.1, D = 11 is the maximum number of space-time di-
mensions for a supergravity. We will take this theory as a starting point to see how
Kac-Moody symmetries emerge in it.

5.1 Maximal supergravity

Supergravity in eleven dimensions consists of the metric gµν , a rank three antisym-
metric gauge field Aµνρ (both bosons), and the gravitino ψµ (a fermion) [21]. The
latter carries 128 degrees of freedom, the same as the metric and 3-form combined
(44 and 84 d.o.f., respectively). In form notation, the bosonic part of the action
reads

S =

∫
?R− 1

2
? dA3 ∧ dA3 −

1

6
dA3 ∧ dA3 ∧A3, (5.4)

where A3 is the usual form-shorthand for 1
3!Aµνρdx

µdxνdxρ. This action carries
no global symmetry. When it is reduced on an n-torus, one expects the resulting
lower-dimensional supergravity theory to have at least a global GL(n) symmetry,
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D q Nmax

2 1 32
3 2 16
4 4 8
5 8 4
6 8 4
7 16 2
8 16 2
9 16 2
10 16 2
11 32 1
12 64 0

Table 5.1: The number of components of an irreducible spinor (q) in Lorentzian space-times
of dimension D, and the corresponding maximum number of supersymmetry
generators (Nmax). Modified from [31].

which is the symmetry group of the torus. In fact, it turns out that the actual global
symmetry is enhanced to the exceptional En series [19, 20]. The corresponding groups
are given in Table 5.2, and their Coxeter projections in Figure 5.1.

The 128 degrees of freedom of the D = 11 theory get upon reduction redistributed
over the metric, a set of scalars, vectors, and higher-rank p-forms (see also Table 5.3).
The generic form of the lower-dimensional Lagrangian is

S =

∫
?R− 1

2
Gαβ(φ) ? dφα ∧ dφβ − 1

2
MMN (φ) ? dAM1 ∧ dAN1 − · · · , (5.5)

with additional contributions of higher-rank p-forms. The scalars φα are described
by a sigma model on the coset space G/K(G), and thus transform non-linearly
under the global symmetry group G. The p-forms carry a linear representation
of G. For the vector fields this is always the fundamental representation of G,
whereas the higher-rank p-forms transform in representations that are formed by
taking appropriate tensor products of the fundamental representation.

The full G symmetry is only manifest when all the p-forms have been dualized
by means of Hodge duality to their lowest possible rank. Standard Hodge duality
relates p-forms to (D − p− 2)-forms through their field strengths. For abelian field
strengths, it reads for example

? dAp = dAD−p−2. (5.6)

So after dualizing all p-forms to their lower-rank duals, the action contains p-forms
whose rank is at most bD−2

2 c, where the brackets denote the integral part. In even
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D = 9: A1

D = 8: A2 ⊗A1

D = 7: A4

D = 6: D5

D = 5: E6

D = 4: E7

D = 3: E8

Figure 5.1: Coxeter projections of the hidden duality groups of maximal supergravity in
various dimensions.
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D G K(G) dim(G, K, G/K) diagram

11 1 1 0 0 0

10 R+ 1 1 0 1

9 GL(2) SO(2) 3 1 2

8 SL(3)× SL(2) SO(3)× SO(2) 11 4 7

7 SL(5) SO(5) 24 10 14

6 SO(5, 5) SO(5)× SO(5) 45 20 25

5 E6 USp(8) 78 36 42

4 E7 SU(8) 133 63 70

3 E8 SO(16) 248 120 128

2 E9 K(E9) ∞ ∞ ∞
1 E10 ? K(E10) ∞ ∞ ∞

E11 ? K(E11) ∞ ∞ ∞

Table 5.2: The global symmetry group G and its maximal compact subgroup K(G) of
maximal supergravity in D dimensions, as obtained from dimensional reduc-
tion. The group G is always over the real numbers and a split real form. The
Dynkin diagram for a particular dimension contains the node(s) on the same
horizontal axis, and all nodes above. Note that the D = 10 listed here is the
IIA supergravity; in D = 10 there is also the IIB supergravity theory that has
a global SL(2) symmetry. The IIB theory cannot be obtained from D = 11.

dimensions there can be a subtlety involving self-dual p-forms for which a Hodge
dualization does not change the rank. In those cases the full G symmetry cannot be
realized on the level of the action, but only on the equations of motion.

It is worth noting that there exists a formulation of supergravity in which all the
p-forms appear with their duals [9]. This is known as the democratic formulation of
supergravity. The highest rank forms in that case are the duals of scalars, which are
(D − 2)-forms.

Three is the lowest number of space-time dimensions for which the global sym-
metry group is still finite. In that case it is E8 [48, 61], the largest finite exceptional
Lie group, and the dimension of the coset space E8/SO(16) is exactly 128. This
matches the fact that all the degrees of freedom are contained in the scalars, as the
metric carries no propagating degrees of freedom in three dimensions.

In two dimensions the global symmetry group is enlarged to the affine extension
of the three-dimensional group. This was first noted for plain general relativity [38,
37], but it also holds for supergravity. For maximal supergravity the two-dimensional
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D gµν p = 0 p = 1 p = 2 p = 3 p = 4
11 44 × 1 84 × 1
IIA 35 × 1 1 × 1 8 × 1 28 × 1 56 × 1
IIB 35 × 1 1 × 2 28 × 2 70 × 1

2 1
9 27 × 1 1 × 3 7 × (1 + 2) 21 × 2 35 × 1
8 20 × (1,1) 1 × 7 6 × (3,2) 15 × (3,1) 20 × 1

2 (1,2)
7 14 × 1 1 × 14 5 × 10 10 × 5
6 9 × 1 1 × 25 4 × 16 6 × 1

2 10
5 5 × 1 1 × 42 3 × 27
4 2 × 1 1 × 70 2 × 1

2 56
3 – × 1 1 × 128

Table 5.3: The physical states of all 3 ≤ D ≤ 11 maximal supergravities. The p-columns
indicate which p-form potentials are present. All entries except p = 0 are of the
form ‘physical d.o.f. × G representation,’ where G is the duality group. For
p = 0 the entries read ‘physical d.o.f. × number of scalars.’ The factor 1

2
in

D = 4, 6, 8 ensures the correct counting of self-dual p-forms.

symmetry becomes E9 = E+
8 [49, 66, 69], the affine extension of E8.

Seeing as the rank of the group G increases with every step in the reduction, it
is tempting to conjecture that this also happens for the reduction to one space-time
dimension. The global symmetry group would then be G++, the over-extension of
the D = 3 group. In the case of maximal supergravity, this would be E10 = E++

8

[49, 63]. Taking the conjecture one step further, one can formally reduce to zero
dimensions and hope to obtain the very-extension E11 = E+++

8 [88, 87], which is
conjectured to be a symmetry of M-theory.

We will see later in chapter 6 how pieces of the conjectured E10 and E11 Kac-
Moody symmetries nicely tie in with the structure of supergravity. Surprisingly, it
turns out the Kac-Moody algebras encode information on possible gauge deforma-
tions of the supergravity theory. This is remarkable, as the ungauged theory was
the starting point for the conjecture. We will discuss gaugings of supergravity in
section 5.3, but first we will briefly touch upon half-maximal supergravity.

5.2 Half-maximal supergravity

Supergravities that have 16 superchargers are called half-maximal supergravities.
From Table 5.1 one easily deduces that the maximum number of spacetime dimen-
sions is 10 for a half-maximal supergravity. In contrast to maximal supergravity,
(ungauged) half-maximal supergravity is not unique in its highest dimension, nor in
lower dimensions. Besides the usual graviton multiplet, one can add an arbitrary
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D Mult. p = 0 p = 1 p = 2
10 GV n 1 × 1 8 × nnn 28 × 1

9 GV n+1 1 ×
(

1 + (1n+ 1)
)

7 × (nnn + 2) 21 × 1

8 GV n+2 1 ×
(

1 + (2n+ 4)
)

6 × (nnn + 4) 15 × 1

7 GV n+3 1 ×
(

1 + (3n+ 9)
)

5 × (nnn + 6) 10 × 1

6a GV n+4 1 ×
(

1 + (4n+ 16)
)

4 × (nnn + 8) 6 × 1

6b GTn+4 1 × (5n+ 25) 6 × 1
2 (10 +nnn)

5 GV n+5 1 ×
(

1 + (5n+ 25)
)

3 × (nnn + 11)

4 GV n+6 1 ×
(

(1, 2) + (6n+ 36, 1)
)

2 × (nnn + 12)

3 GV n+7 1 × (8n+ 64)

Table 5.4: The physical states apart from the graviton of all D = 10 − m half-maximal
supergravities coupled to m + n vector multiplets. The multiplet structures
are also given: G is the graviton multiplet, V the vector multiplet and T the
self-dual tensor multiplet. The physical states of the graviton can be found in
Table 5.3.

number of vector multiplets to the theory. We will describe both these multiplets in
turn.

The bosonic part of the graviton multiplet of D-dimensional half-maximal super-
gravity consists of a metric, m vector gauge fields (with m = 10 −D), a two-form
gauge field and a single scalar which is the dilaton. It has a global SO(m) symmetry,
under which the vectors transform in the fundamental representation.

The other possible multiplet in generic dimensions is the vector multiplet, which
contains a vector and m scalars. The effect of adding m+ n vector multiplets is to
enlarge the symmetry group from SO(m) to SO(m,m+n). The scalars parameter-
ize the corresponding scalar coset while the vectors transform in the fundamental
representation. In four dimensions the symmetry becomes SL(2,R)× SO(6, 6 + n)
while in three dimensions it is given by SO(8, 8 + n). In the latter case there is
symmetry enhancement due to the equivalence between scalars and vectors. The
entire theory can be described in terms of the corresponding scalar coset (coupled
to gravity).

The above multiplets belong to non-chiral half-maximal supergravity and are the
correct and complete story in generic dimensions. In six dimensions, however, the
half-maximal theory can be chiral or non-chiral, similar to the maximal theory in
ten dimensions. The non-chiral theory is denoted by D = 6a and follows the above
pattern. The chiral theory, D = 6b, instead has different multiplets. In particular,
the graviton multiplet contains the graviton, five scalars and five self-dual plus one
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anti-self-dual two-form gauge fields. The global symmetry is given by SO(5, 1).
The other possible multiplet is that of the tensor, which contains an anti-self-dual
two-form and five scalars. Adding 4 + n of such tensor multiplets to the graviton
multiplet enhances the symmetry to SO(5, 5 + n).

Upon dimensional reduction over a circle, the graviton multiplet splits up into a
graviton multiplet plus a vector multiplet. A vector (or tensor) multiplet reduces to
a vector multiplet in the lower dimensions. This was the reason for adding m + n
instead of n vector or tensor multiplets in any dimension; it can easily be seen that
n remains invariant under dimensional reduction. That is, a theory with a certain
value of n reduces to a theory with the same value of n in lower dimensions.

The bosonic physical states of the various half-maximal supergravities have been
listed in Table 5.4.

5.3 Gaugings

In this section we will quickly review gauge deformations of supergravity theories.
For a more in-depth review, see [80]. Besides the global symmetry G described in
the previous section, ungauged supergravities have a local symmetry U(1)n. Here n
is the number of vector fields of the supergravity. This local symmetry corresponds
to the abelian gauge symmetry of the vector fields:

δAM1 = dΛM0 , (5.7)

where ΛM0 = ΛM0 (x) is a coordinate-dependent 0-form parameter.
A gauging or gauge deformation of the supergravity turns this abelian local

symmetry into a non-abelian local symmetry. Another point of view is that it
promotes a subgroup G0 ∈ G to a local symmetry. This is achieved by introducing
covariant derivatives

∂µ −→ Dµ = ∂µ − gAMµ XM , (5.8)

where g is the gauge coupling constant, and XM are the generators of the subgroup
G0. All the possible choices of a consistent gauge group G0 are best described in an
object that is known as the embedding tensor [68, 67, 94, 95, 91].

5.3.1 The embedding tensor

Because the gauge group G0 is embedded within G, its generators are a linear
combination of the generators tα of G:

XM ≡ ΘM
αtα. (5.9)

The constant object ΘM
α is called the embedding tensor, and encodes the gauging

completely.
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D Linear constraint Quadratic constraint
7 15⊕ 40 5⊕ 45⊕ 70
6 144 10⊕ 126⊕ 320
5 351 27⊕ 1728
4 912 133⊕ 8645
3 1⊕ 3875 3875⊕ 147250

Table 5.5: The linear and quadratic constraint representations in various dimensions (D).
Adapted from [90].

The embedding tensor is a tensor with two indices that both take values in repre-
sentations of G. The first index, M , takes values in the fundamental representation
Rfund, and the second, α, in the adjoint representation Radj. The embedding tensor
therefore ‘lives’ in the tensor product of these two representations,

Θ ∈ Rfund ⊗Radj. (5.10)

If we take D = 4 maximal supergravity as a concrete example, the embedding tensor
a priori can take values in

Θ ∈ 56⊗ 133 = 56⊕ 912⊕ 6480. (5.11)

However, there are two sets of constraints that restrict the possible values of the
embedding tensor. The first comes from demanding that the gauging is consistent
with supersymmetry, although in almost all cases it can also be derived from purely
bosonic arguments [93]. Either way, it poses a linear restriction on Θ, and is therefore
called the linear constraint. Say Plin is an operator that projects onto the forbidden
components of Θ (i.e. those components that are inconsistent with supersymmetry).
Then the linear constraint can be written as

Plin ΘM
α = 0. (5.12)

The linear constraint is usually indicated by the allowed representations of the em-
bedding tensor. By the above equation, they live in the kernel of Plin. For D = 4
maximal supergravity, the linear constraint leaves only the 912 representation:

Θ ∈ 56⊗ 133 =��56⊕ 912⊕���6480. (5.13)

The linear constraint has to be worked out on a case-by-case basis, and some results
are collected in Table 5.5.

The second constraint restricting the possible values of the embedding tensor
even further comes from demanding that the gauge algebra is self-consistent. In
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particular Θ must be gauge invariant, or equivalently, the generators XM must close
into an algebra,

[XM , XN ] = −ΘM
α(tα)N

P
XP . (5.14)

This poses restrictions on the symmetric tensor product of Θ, and is therefore called
the quadratic constraint. Again, say Pquad is an operator that projects onto the

components of ΘM
αΘN

β that are inconsistent with the quadratic constraint. The
constraint itself can then be written as

Pquad

(
ΘM

αΘN
β
)

= 0. (5.15)

Therefore the allowed components of the symmetric tensor product of Θ live in the
kernel of Pquad. In contrast to the linear constraint, the quadratic constraint is
usually labeled by the representations in the complement of the kernel, i.e. those
components that are not allowed. For D = 4 maximal supergravity, the quadratic
constraint evaluates with the help of LiE [60] to

Θ⊗s Θ ∈ 912⊗s 912 =��133⊕ 1463⊕���8645⊕ 152152⊕ 253935, (5.16)

where the 133 and 8645 representations constitute the components of the symmetric
tensor product that are not allowed. The analysis of the components of the quadratic
constraints is a purely group-theoretical problem, and some results are listed in
Table 5.5.

Note that the embedding tensor formalism relies on the presence of vectors fields.
In D = 3 they are absent, as the only physical fields are scalars. In order to proceed,
one introduces vectors fields that are not independent but are related to the scalars
by a duality relation [68].

5.3.2 The tensor hierarchy

The implementation of the linear and quadratic constraints are necessary for a con-
sistently gauged supergravity. However, they are not sufficient. The introduction of
the embedding tensor also forces one to introduce a whole tower of anti-symmetric
p-forms that transform in specific representations of the global symmetry group G.
This tower is called the p-form hierarchy [90, 92], and we will briefly describe it
below.

Besides the gauge vectors AM1 transforming the fundamental representation of
G, the embedding tensor also requires the existence of higher-rank p-forms. The
whole set of p-forms can be denoted by

AM1 , A
dMNc
2 , A

dMdNPcc
3 , A

dMdNdPQccc
4 , A

dMdNdPdQRcccc
5 , . . . (5.17)

The tower truncates at D-forms, which are the anti-symmetric forms whose rank is
the highest possible in D dimensions. The G representations in which the p-forms
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live are tensor products of the fundamental representation Rfund. For instance, the
2-form carries indices MN that reside in the first symmetrized tensor product of the
fundamental representation:

MN : Rfund ⊗Rfund. (5.18)

The extra brackets dMNc indicate that the two-form does not take values in the
whole tensor product. Rather, it lives in a restricted subspace defined by some
projector P2 whose precise form depends on the embedding tensor,

dMNc : P2 (Rfund ⊗Rfund) ≡ R⊗2
fund. (5.19)

Here we have defined the representation R⊗pfund to be the representation of the p-form
in question. The same holds for the higher-rank p-forms: their G representation can
be evaluated by taking the tensor product of the fundamental representation with
the (p− 1)-representation, and projecting with the correct operator:

R⊗pfund = Pp
(
R⊗(p−1)

fund ⊗Rfund

)
. (5.20)

It turns out that if the various p-forms in the hierarchy are related by Hodge-duality,
then their G representations are each other’s conjugate. Thus the (D − 2)-forms
transform in the conjugate adjoint representation, the (D−3)-forms in the conjugate
fundamental representation, and so on and so forth. Furthermore, for these forms
one finds exactly the same representation as one would find in a supersymmetry
analysis (i.e. Table 5.3 plus their Hodge duals).

The (D − 1)- and D-forms are special in the sense that they do not have a
Hodge dual. Furthermore, they do not carry any propagating degrees of freedom.
For those two p-forms at the end of the hierarchy one finds that they transform in
the representation conjugate to the embedding tensor and conjugate to its quadratic
constraint, respectively. This suggest they may be employed as Lagrange multipliers,
enforcing the constancy of Θ and the quadratic constraint [90, 96]:

Lconstraints = gAM(D−1)α ∧QM
α + g2AMN

D αβ ∧QMN
αβ , (5.21)

where

QM
α = DµΘM

αdxµ, (5.22a)

QMN
αβ = Pquad

(
ΘM

αΘN
β
)
. (5.22b)

Upon adding Lconstraints to the action and varying with respect to AM(D−1)α, we

find that Θ should be a constant tensor. The linear constraint (5.12) is enforced
automatically by only letting those components of Θ enter the action that satisfy
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it. Varying with respect to AMN
D αβ tells us that Θ should also satisfy the quadratic

constraint (5.15).
Because the (D − 1)-forms couple to the embedding tensor, we will call them

deformation potentials. And, as the D-forms have the highest rank possible, we will
call them top-form potentials [1].

The remarkable property of the Kac-Moody algebra E11, and to a lesser extend
E10, is that it encodes all the representations of all the p-forms in a unified manner.
How this comes about exactly, we will see in the next chapter.



6

The comparison

In the previous chapter we described the spectrum of states of maximal and half-
maximal supergravity. In section 6.1 we will see how they can be obtained from
the Kac-Moody algebras E11 and D+++

8 , respectively. In section 6.3 we will try
to compare the equations of motion of supergravity to those obtained from a non-
linear sigma model of a Kac-Moody algebra. Note that for both the kinematical and
dynamical analysis we will only treat bosons; fermions have been discussed in for
example [28, 17, 26].

6.1 Kinematics

It was shown in [87, 81, 57] that the spectrum of physical states of the different
maximal supergravity theories can be obtained from the very extended Kac-Moody
algebra E11. This has been extended to the set of all possible deformation and
top-form potentials in [77, 1]. A similar analysis could be done for E10 [70, 23, 24]
except for the top-form potentials. In addition, non-maximal supergravity and the
associated very extended Kac-Moody algebras have been discussed in [57, 82, 2, 73,
56, 44]. We will first review how the the kinematics of maximal supergravity can be
obtained, and in subsection 6.1.2 switch to half-maximal supergravity.
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6.1.1 Maximal supergravity

The key idea is to decompose E11 with respect to subgroups that match the sym-
metry structure of maximal supergravity in various dimensions. The subalgebra
representations resulting from this level decomposition can then be matched with
the various supergravity fields. The valid decompositions for E11 are always of the
type G ⊗GL(D), where G is the duality group in D dimensions and GL(D) refers
to the space-time symmetries. Dynkin diagrams are a useful tool to visualize these
group decompositions: the decompositions correspond to ‘deleting’ certain nodes of
the diagram in order to obtain two disjoint parts. One of these disjoint parts is the
G duality group, and the other is the SL(D)⊗R+ = GL(D) gravity line. The extra
factor of R+ for the gravity line comes from the Cartan subalgebra generator of the
deleted node. Furthermore, the gravity line must always include the very-extended
node. All the valid 3 ≤ D ≤ 11 decompositions of E11 are listed in Table 6.1. Note
that the duality group G contains an extra R+ factor whenever there is a second
disabled node, stemming from the Cartan subalgebra generator of the disabled node.
This explains why the duality group of IIA supergravity is R+ and why those of IIB
and D = 11 supergravity do not have such a factor.

After the decomposition has been fixed, the generators of E11 can be analyzed
by means of a level decomposition (see also section 4.3). As the actual level decom-
position is quite cumbersome to do by hand, we have written a computer program
called SimpLie [5] to do the job. For more on SimpLie, see Appendix A.

The explicit results of the level decompositions of Table 6.1 can be found in sec-
tion C.1. The spectrum is obtained by associating to each generator a supergravity
field in the same representation. This leads to the following fields at each level. At
the lowest levels the physical states of the supergravity we started out with (see
Table 5.3) appear together with their duals. More precisely: corresponding to any
p-form generator we also find a (D−p−2)-form. In addition there is a (D−3, 1)-form
with mixed symmetries and possibly (D− 2)-form generators, which are interpreted
as the dual graviton [45, 87, 14, 10] and dual scalars, respectively. The duality re-
lations themselves are not reproduced by the level decomposition: in the absence of
dynamics these relations have to be imposed by hand. Beyond the level of the dual
graviton we find deformation potentials and top-forms, i.e. (D − 1)- and D-forms
respectively. At the same levels as the deformation potentials and top-forms, and at
higher levels still, there are the so-called ‘exotic’ generators. These exotic generators
have a space-time symmetric structure that does not have an obvious counterpart in
supergravity. Some of them may be interpreted as infinitely many exotic dual copies
of the previously mentioned fields [75, 73]. A schematic representation of the level
decomposition and the resulting tower of (physical) states can be found in Figure 6.1.

The (D−1)- and D-forms found from E11 are listed in Table 6.2. The interesting
thing is that they exactly match the representations of the embedding tensor and its
quadratic constraint as given in Table 5.5, save for an extra 248 representation in
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D G Grav. line E11 decomposition

11 1 GL(11)

IIA R+ GL(10)

IIB SL(2) GL(10)

9 GL(2) GL(9)

8 SL(3)× SL(2) GL(8)

7 SL(5) GL(7)

6 SO(5, 5) GL(6)

5 E6 GL(5)

4 E7 GL(4)

3 E8 GL(3)

Table 6.1: Global symmetry groups G of all 3 ≤ D ≤ 11 maximal supergravities embedded
in E11. The groups G can be read off from the decomposition of the Dynkin
diagram of E11; they correspond to the orange nodes. The white nodes together
with one scaling generator from a deleted node form the gravity line AD−1 ×
R+ = GL(D).
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Graviton & scalars

p-forms

Dual p-forms

Dual graviton & dual scalars

Deformation potentials

Top-forms

Exotic representations

level(s)

∞

Figure 6.1: Schematic Hasse diagram of E11 containing the hierarchy of subalgebra repre-
sentations common to all decompositions.
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(D − 1)-forms
D

p = 1 p = 2
D-forms

IIA 1 1⊕ 1
IIB 2⊕ 4
9 2⊕ 3 2⊕ 2⊕ 4
8 (3,2)⊕ (6,2) (3,1)⊕ (3,1)⊕ (3,3)⊕ (15,1)
7 15⊕ 40 5⊕ 45⊕ 70
6 144 10⊕ 126⊕ 320
5 351 27⊕ 1728
4 912 133⊕ 8645
3 1⊕ 3875 248⊕ 3875⊕ 147250

Table 6.2: E11 predictions for deformation- and top-forms in all 3 ≤ D ≤ 10 maximal
supergravities. These are representations of the respective duality groups G
given in Table 5.2. For the deformation-forms it is also indicated to which
type-p deformation they correspond (see section 6.2).

three dimensions. Furthermore, E11 predicts top-forms for IIB supergravity, which
were recently reconfirmed to exist in [8]. The single deformation potential for IIA
supergravity corresponds to Romans’ massive deformation thereof [78]. The fact that
Romans’ theory is not an ordinary gauged supergravity is reflected in the fact that
the deformation potential is of ‘type 2’, which will be explained in section 6.2.

6.1.2 Half-maximal supergravity

The analogy between gauged supergravity and very-extended Kac-Moody algebras
is not limited to maximal supergravity and E11. Half-maximal supergravity [2], cou-
pled to D−10+n vector multiplets, reduce to the scalar coset SO(8, 8+n)/SO(8)×
SO(8 + n) when reduced to three dimensions. In other words, the relevant groups
for supergravity theories with 16 supercharges are the B and D series in the above
real form. Of these, only three are of split real form, i.e. maximally non-compact,
which are given by n = −1, 0,+1. These correspond to the split forms of B7, D8

and B8, respectively.

We are interested in the decomposition of the very extensions of these algebras
with respect to the possible gravity lines. An exhaustive list of the possibilities
for the algebras of real split form is given in table Table 6.3. As can be seen from
this table, these correspond to the unique D-dimensional supergravity theory with 16
supercharges coupled to m+n vector multiplets with m = 10−D. The corresponding
duality groups G in D dimensions are also given in Table 6.3. Note that there is
no second disabled node and therefore no R+ factor in the duality group for the 6b
case and in D = 3, 4.
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D G Multiplets B+++
7 (n = −1)

10 R+ × SO(n) GV n −

9 R+ × SO(1, 1 + n) GV n+1

8 R+ × SO(2, 2 + n) GV n+2

7 R+ × SO(3, 3 + n) GV n+3

6a R+ × SO(4, 4 + n) GV n+4

6b SO(5, 5 + n) GTn+4

5 R+ × SO(5, 5 + n) GV n+5

4 SL(2)× SO(6, 6 + n) GV n+6

3 SO(8, 8 + n) GV n+7

Table 6.3: The decompositions of B+++
7 , D+++

8 and B+++
8 with respect to the possible

gravity lines. The duality groups G and the multiplet structures (where G is
the graviton, V the vector and T the self-dual tensor multiplet) are also given.
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D+++
8 (n = 0) B+++

8 (n = 1)

Table 6.3: Continued.
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(D − 1)-forms D-forms
D

p = 1, 2, 3. constraints on p = 1 other

10-8 1

7 1 1

6a 1 1 1

6b

5 1

4 (2, )
(
2,

)
(3, 1)

(
3,

) (
3,

)

3 1

Table 6.4: The representations of deformation- and top-forms in all half-maximal super-
gravities. The representations refer to the duality group G given in Table 6.3.
We also indicate which type p of deformations they correspond to (see also sec-
tion 6.2, and to which top-forms one can associate a quadratic constraint on
type 1 deformation parameters.

In section C.2 the result of the decomposition of the D+++
8 algebras with respect

to the different SL(D) subalgebras is given. It can be seen that these decompositions
give rise to exactly the physical degrees of freedom [57]. In addition there are the
deformation and top-form potentials in the Kac-Moody spectrum. In particular,
Table 6.4 summarizes our results for the deformation and top-form potentials for
half-maximal supergravity in D dimensions.

Using the embedding tensor approach, an analysis of the linear and quadratic
constraints on the possible deformations has been explicitly carried out in D =
3, 4, 5 [83]. It turns out that the representations of the quadratic constraints exactly
coincide with the representations of the possible top-forms in these dimensions.
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6.2 Fundamental p-forms and type-p deformations

Recall from section 4.3 that a level decomposition always induces a grading on the
decomposed algebra g:

[gl1 , gl2 ] ⊆ gl1+l2 , (6.1)

where, for simplicity, we have assumed there is only one level. This grading implies
that all the higher levels can be recovered from the repeated adjoint action of the
level one generators on themselves:

[g1, . . . [g1, [g1, g1]] . . . ]︸ ︷︷ ︸
l times

⊆ gl. (6.2)

For the supergravity decompositions of Kac-Moody algebras considered in this chap-
ter, the subalgebra representations at level 1 always correspond to one or more p-
forms. We will call these level 1 p-forms fundamental p-forms. The fundamental
p-forms correspond to the positive simple roots of the disabled nodes in the Kac-
Moody algebra. From the decomposed Dynkin diagram one can thus deduce the
number and type of these fundamental p-forms: any disabled node connected to
the nth node of the gravity line (counting from the very extended node) gives rise
to a fundamental (D − n)-form. Furthermore, if the disabled node in question is
also connected to a node of the duality group the (D− n)-form carries a non-trivial
representation of the duality group.

The level 1 p-forms are fundamental in the sense that by virtue of (6.2) their
commutators generate the other p-forms in the decomposition. Say Ap is a funda-
mental p-form, and Aq is a p-form that occurs higher in the decomposition. The
latter can then be written as

[Ap, . . . [Ap, [Ap, Ap]] . . . ]︸ ︷︷ ︸
l times, lp=q

⊆ Aq. (6.3)

This allows us to distinguish between deformations potentials that correspond to
gauged and massive deformations as follows.

The most familiar class of deformed supergravities are the gauged supergravi-
ties. They are special in the sense that the deformations can be seen as the result of
gauging a subgroup G0 of the duality group G (see section 5.3). Not all deformed
supergravities can be viewed as gauged supergravities. In the case of maximal su-
pergravity there is one exception: massive IIA supergravity cannot be obtained by
gauging the R+ duality group [78]. The gauged supergravities can be seen as the
first in a series of type-p deformations. There is a simple criterion that defines to
which type of deformation parameter each deformation potential gives rise to. The
central observation is that to each (D − 1)-form AD−1 one can associate a unique
commutator

[Ap, AD−p−1] = AD−1 , (6.4)
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where Ap corresponds to a fundamental p-form. The deformation potential corre-
sponding to such a deformation generator gives rise to a type-p deformation param-
eter.

We observe that each type p deformation is characterized by the fact that a
fundamental p-form gauge field becomes massive. For p = 1 this leads to gauged
supergravities, in which a vector can become massive by absorbing a scalar degree of
freedom. Note that other non-fundamental gauge fields may become massive as well.
The case p = 2 entails a fundamental two-form that becomes massive by ‘eating’
a vector. The prime example of this is massive IIA supergravity in ten dimensions
[78]. Another example is the non-chiral half-maximal supergravity in six dimensions
[79]. An example of a p = 3 deformation is the half-maximal supergravity theory of
[85] where a fundamental three-form potential acquires a topological mass term.

As is evident from Table 6.2 and Table 6.4 the Kac-Moody algebras E11 and
D+++

8 correctly reproduce the type-p deformation potentials for known non-gauged
supergravity deformations in ten [78], seven [85], and six [79] dimensions.

6.3 Dynamics

Up to this point we have been concerned with matching the kinematics of (gauged)
supergravity and certain Kac-Moody algebras. We will now attempt to take the
correspondence one step further, and try to compare the dynamics, i.e. the equations
of motion.

6.3.1 E10 or E11?

There are two proposals for implementing Kac-Moody symmetries in supergravity
theories. In the case of maximal supergravity, one employs the very-extended Kac-
Moody algebra E11 [88, 87], while the other uses the over-extended E10 [23]. Both
use a non-linear realization to implement the infinite symmetry. The former ap-
proach realizes the E11 symmetry directly in the dimension of the corresponding
supergravity theory by including an infinite amount of coordinates [76, 74, 72].

In this thesis we will focus on the latter approach, which realizes the E10 sym-
metry by reducing the coordinate dependence to only time. This is inspired by the
behavior of gravity near a spacetime singularity, where the spatial points dynam-
ically decouple [7]. The equations of motion in that regime only depend on time,
and exhibit chaotic behavior [62] that may be interpreted as taking place in the fun-
damental Weyl chamber of a hyperbolic Kac-Moody algebra [25, 22]. For maximal
supergravity, the hyperbolic Kac-Moody algebra is E10.

In this approach, the idea is to compare a suitably reduced supergravity theory
to a dynamic model based on an over-extended Kac-Moody algebra. To compare
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Supergravity

1D model

Kac-Moody algebra

Sliced KM algebra

1D model
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Figure 6.2: Comparing supergravity with a Kac-Moody algebra. The former has to be
reduced to one dimension with an ADM-like split, and the latter has to be
sliced with a level decomposition and then realized as a non-linear sigma model.

both sides of this correspondence, on the one hand one has to truncate the super-
gravity fields and break spacetime covariance by choosing an ADM gauge [6] in
order to be amenable to a one-dimensional language. On the Kac-Moody side, on
the other hand, one has to perform a level decomposition and put the results on a
one-dimensional non-linear sigma model (see section 4.4). The correspondence has
been schematically depicted in Figure 6.2. Because the non-linear sigma model al-
ready provides the time dimension, the Kac-Moody target space has to provide the
spatial dimensions. Thus the gravity line to which to decompose the Kac-Moody
algebra must be GL(D − 1) for the D-dimensional decomposition. In order to get
the correct duality group, it is clear that the relevant Kac-Moody algebras are not
of the very-extended type, but must be over-extended. In particular, the correct
Kac-Moody algebra for a dynamical comparison in this particular way to maximal
supergravity is E10, and not E11 (see also Figure 6.3).

As one attractive scenario it has been suggested [23, 70, 24] that the higher
levels of the over-extended Kac-Moody algebra encode the spatial gradients of the
supergravity fields, and so by including all of these states one should finally recover
the full unrestricted supergravity in D dimensions (though in an ‘unconventional’
formulation). This is in contrast to the E11 approach, where, as already mentioned,
some of the higher level states can be interpreted as dual representations of lower
level states [75].

Instead we will interpret part of the higher levels (i.e. the deformation potentials
and top-forms) as deformations of pure maximal supergravity. In [55, 41] it has been
shown that Romans’ massive supergravity in ten dimensions [78], which deforms type
IIA supergravity with a mass parameter, is contained in the E10 model, upon taking
a certain 9-form representation into account. We will try to do the same for D = 3
maximal supergravity [3].
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(a)

(b)

Figure 6.3: Both E11 (a) and E10 (b) in a D = 3 E8 decomposition. For the very-extended
E11, the gravity line has to encode the space-time symmetries, and for the
over-extended E10 it has to encode the spatial symmetries.

6.3.2 The E10/K(E10) coset model

In this section we will focus on gauged supergravity in three dimensions. The ad-
vantage of this case is that E8 is the largest finite-dimensional duality group. As a
consequence, the E10 equations of motion truncated to level l = 0 already match un-
gauged supergravity reduced to a one-dimensional system. Thus, this model allows
a clear distinction between the ‘manifest’ aspects of the E10 conjecture at level l = 0
and the more speculative features related to higher levels, such as spatial gradients
or gauge couplings.

In order to make contact with three-dimensional supergravity we perform a level
decomposition of E10 with respect to the subgroup of spatial diffeomorphisms and
the duality group:

E10 ⊃ SL(2)⊗ E8. (6.5)

This corresponds to deleting the black node in the Dynkin diagram in Figure 6.3b.
The representations occurring in this level decomposition can be calculated using
the computer program SimpLie [5]. Up to level l < 3 we find the sl(2, R) ⊕ e8
representations in Table 6.5, where we indicated the corresponding generators with
their symmetries.

We denote by a, b = 1, 2 the fundamental indices of GL(2, R) and by A, B =
1, 2 . . . , 248 the adjoint indices of E8. The fields associated to the l = 0 generators
are the spatial zweibein and the coset scalars. The l = 1 fields can be interpreted as
gauge vectors. We will take the l = 2 fields to be the embedding tensor components
θ and Θ̃. At the negative levels we have the conjugate representations, i.e. the
transposed generators of those at the positive levels.

We will now construct the non-linear realization of E10/K(E10), in a similar
spirit in which the much simpler A2/K(A2) has been constructed in Example 4.4 in
section 4.4. Much of the details can be found in [3].



6.3 Dynamics 109

Level ` SL(2)⊗ E8 representation Generator Interpretation
0 (1⊕ 3,1) Ka

b metric
0 (1,248) tA scalars
1 (2,248) EaA gauge vectors
2 (1,1) E θ

2 (1,3875) EAB = E(AB) Θ̃MN
2 (3,248) EabA = E(ab)

A

Table 6.5: SL(2)⊗ E8 representations within E10 up to level 2.

The local K(E10) invariance allows us to choose a suitable gauge for the E10-
valued group element V . In the Borel gauge, we can write V as a product

V = VlV0 = eXeheH, (6.6)

where Vl and V0 are group elements corresponding to l > 0 and l = 0, respectively.
Thus we can expand the corresponding algebra elements in the basis of e10 as

X = Am
MEmM +Bmn

MEmnM +BE +BMNEMN + · · · , (6.7a)

h = ha
bKa

b, (6.7b)

H = HAtA, (6.7c)

where the dots stand for higher-level contributions. Here and in the following,
m,n, . . . = 1, 2 and M, N . . . = 1, 2, . . . , 248 denote curved GL(2) and E8 indices,
respectively. This means that they are ‘world’ indices indicating rigid transforma-
tions from the left, while A and a are flat indices.

The Maurer-Cartan form J can then be computed to give

J = V −1∂V = J0 + J1 + J2 + · · · . (6.8)

The dots stand for the higher-level contributions, which will be truncated. The
derivative is with respect to time, i.e. ∂ ≡ ∂t. The low-level contributions that will
be kept are

J0 = PAt
A + 1

2Pa
bKa

b, (6.9a)

J1 = Pa
AEaA, (6.9b)

J2 = PE + PABEAB + Pab
AEabA, (6.9c)



110 Chapter 6 The comparison

where the individual components read

Pa
b = 1

2 (ea
m∂em

b + eb
m∂em

a), (6.10a)

PA = 1
2 (E−1∂E)A, (6.10b)

Pa
A = 1

2ea
mEAMDAmM, (6.10c)

P = 1
2 (det e)−1DB, (6.10d)

PAB = 1
2 (det e)−1EAMEBNDBMN , (6.10e)

Pab
A = 1

2ea
meb

nEAMDBmnM. (6.10f)

Here we have introduced two ‘vielbeine’ exph and expH, which are group elements
of gl(2) and e8, respectively. We denote the components of these group elements
by em

a and EMA, and their inverses by ea
m and EAM. Furthermore, we have

introduced the ‘covariant derivatives’

DAm
M = ∂Am

M, (6.11a)

DBmn
P = ∂Bmn

P + 1
2fMN

PA(m
M∂An)

N , (6.11b)

DB = ∂B − 1
4ε
abηMNAm

M∂An
N , (6.11c)

DBMN = ∂BMN − 1
2ε
mnPPQMNAmP∂AnQ. (6.11d)

Here the PABCD projector projects onto the 3875 representation of E8. It reads [58]

PABCD = 1
7δ(A

CδB)
D − 1

56ηABη
CD − 1

14f
E
A

(CfEB
D). (6.12)

After computing the coset element P(t) = 1
2 (J + JT ), it can be plugged into the

action to give

S =
1

4

∫
dt n(t)−1〈P(t)|P(t)〉

=

∫
dt (L0 + L12) .

(6.13)

The ‘level zero’ and ‘higher level’ Lagrangians L0 and L12 can be written as

L0 = n−1PAPA + 1
4n
−1
(
Pa

bPa
b − PaaPbb

)
, (6.14a)

L12 = 1
2n
−1
(
Pa
APa

A + Pab
APab

A + PP + 14PABPAB
)
, (6.14b)

Note that the index A runs here only over the E8/SO(16) coset, and not over the
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whole of E8. The above Lagrangians can also be written out completely as

L0 = 1
16n
−1
(
∂gmn∂gpq(g

mpgnq − gmngpq) + 1
60∂G

MN∂GPQGMPGNQ
)
,

L12 = 1
8n
−1
(
gmpgnqGMNDBmnMDBpqN + gmnGMNDAmMDAnN

+
(
14GMPGNQDBMNDBPQ +DBDB

)
(det g)−1

)
. (6.15)

Here we have introduced the respective GL(2) and E8 metrics

gmn = δab ea
meb

n, (6.16a)

GMN = δAB EAMEBN . (6.16b)

6.3.3 Gauged supergravity in three dimensions

In this section we review gauged three-dimensional supergravity in a formulation
suitable for comparison with the E10 analysis of the preceding section.

The bosonic sector of ungauged maximal supergravity in three dimensions con-
tains 128 propagating scalars transforming in the coset E8/(Spin(16)/Z2) and a
vielbein eµ

α that carries no dynamical degrees of freedom [61]. The scalars can also
be described by an (internal) vielbein which we denote by EMA (which was denoted
VMA in [67]). We will use the ‘typewriter’ font for supergravity variables in order to
distinguish them from the corresponding E10 quantities. The inverses will be written
as eα

µ and EAM. The curved indices are written as Greek indices µ, ν, . . . = (t,m)
and the flat indices are α, β, . . . = 0, 1, 2.

The bosonic Lagrangian of three-dimensional maximal gauged supergravity is
[68, 67]

L = L0 + Lg, (6.17)

where the ‘ungauged’ part of the action L0 and the ‘gauged’ part Lg read

L0 = + e
(

1
4R− Pµ

APµA
)
, (6.18a)

Lg =− eV − 1
4gε

µνρΘMNAµ
M∂νA

N
ρ

− 1
12g

2εµνρΘMNΘPQf
MP

RAµ
NAν

QAρ
R, (6.18b)

with e = det(eµ
α). Since there is no kinetic term for them, the gauge fields Aµ

M

do not contain propagating degrees of freedom. The gauging also introduces an
indefinite scalar potential, which can be written in the form

V = 1
32g

2GMN ,KLΘMNΘKL, (6.19)

where [4]

GMN ,KL = 1
14G
MKGNL + GMKηNL − 3

14η
MKηNL − 4

6727η
MN ηKL, (6.20)
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with the metric GMN defined in (6.16), but here with respect to the supergravity
E8 vielbein EMA.

We now effectively reduce the three-dimensional gauged supergravity theory to
a one-dimensional time-like system. For this we perform the ADM-like split of the
vielbein

eµ
α =

(
N 0
0 em

a

)
, (6.21)

in which everything depends only on one coordinate x0 = t and we have split curved
indices as µ = (t,m) and flat ones as α = (0, a) (with signature (− + +)). Here
we have chosen a gauge with vanishing shift Nm, which turns out to be necessary
in order to match the E10 coset. As stressed before, gauge fixing is crucial for
comparing the E10 sigma model to supergravity. The field em

a denotes the internal
‘spatial’ vielbein, i.e. an element of GL(2, R)/SO(2).

For the reduction of the gauge fields we choose a temporal gauge

At
M = 0. (6.22)

The reduced Lagrangian (6.17) then reads

LD=1 = LD=1
0 + LD=1

g , (6.23)

with

LD=1
0 = + n−1Pt

APt
A + 1

4n
−1 (PabPab − PaaPbb) , (6.24a)

LD=1
g =− 1

8g
2egmn(GMN + ηMN )ΘMKΘNLAm

KAn
L − eV

+ 1
4gΘMN ε

mnAm
M∂tAn

N . (6.24b)

Here we have defined the quantities

n = N(det(em
a))−1, (6.25a)

Pab = −N−1e(a
m∂tem|b). (6.25b)

Furthermore, we have written the Lagrangian entirely in terms of the E8 ‘metric’
GMN . For this we have used the identity

EMAE
NA = 1

2

(
GMN + ηMN

)
, (6.26)

which follows from the fact that the Cartan-Killing metric ηMN differs from GMN

by a relative sign in the non-compact part.
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6.3.4 The correspondence

It is clear that the E10 ‘level zero’ Lagrangian (6.14a) has exactly the same form as
its supergravity counterpart (6.24a). We therefore focus on equating the E10 ‘higher
level’ Lagrangian L12 (6.15) and the supergravity ‘gauged’ Lagrangian Lg (6.18b),
or rather their equations of motion.

The first step is to eliminate the mixed-symmetry field Bmn
M on the Kac-Moody

side, as it has no obvious counterpart in supergravity. Similar mixed-symmetrical
objects have been found to be in a one-to-one correspondence with trombone gaug-
ings [59], but their space-time mixed symmetry lacks a solid understanding. We
therefore consistently truncate it by setting its covariant derivate equal to zero,

DBmn
M = 0. (6.27)

If we vary the action (6.13) with respect to the remaining level two fields, we obtain

0 = ∂(n−1(det g)−1DB), (6.28a)

0 = ∂(n−1(det g)−1GMPGNQDBPQ). (6.28b)

These two equations can be be integrated and identified with the 1 and 3875 com-
ponents of the embedding tensor:

c1gθ = n−1(det g)−1DB, (6.29a)

c2gΘ̃MN = n−1(det g)−1GMPGNQDBPQ, (6.29b)

where c1 and c1 are two arbitrary constants. The above equations can then be
subsequently used to write the equation of motion of Am

M from (6.13) as

∂
(
n−1gmnGMN∂AnN + gεmn

(
ηMN θ + Θ̃MN

)
An
N
)

= 0. (6.30)

Here we have already chosen the integration constants to be c1 = 2 and c2 = 1
14 .

This allows us to combine the 1 and 3875 components of the embedding tensor into
Θ, and integrate the above equation to

n−1gmnGMN∂AnN = gεmnΘMNAn
N + ΞmM. (6.31)

ΞmM denotes an integration constant. This integration constant cannot be set to
zero without breaking the symmetries. The situation is analogous to the integra-
tion leading to the embedding tensor ΘMN in (6.29), which generically breaks the
global E8 symmetry once ΘMN is constant. Correspondingly, the E10 shift sym-
metry leaves this first-order equation only invariant if the integration constant also
transforms as a shift,

δΛΞmM = −gεmnΘMNΛn
N , (6.32)
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which is consistent with the time-independence of Ξ. Thus, fixing it to any specific
value (as zero) breaks the symmetry, and in this sense supergravity may at best be
viewed as a broken phase of E10. After setting Ξ = 0 and contracting with ΘMN ,
(6.31) implies

gΘMN ε
mn∂An

N + g2eNGKLgmnΘMKΘNLAn
N = 0. (6.33)

This matches the duality relation obtained from the supergravity Lagrangian (6.23)
by varying with respect to Am

M, which reads

gΘMN ε
mn∂An

N + 1
2g

2e(GKL + ηKL)gmnΘMKΘNLAn
N = 0. (6.34)

Finally, we compare the ‘Einstein equations’ and the equations of motions for
the scalars on both side. For supergravity, they read

0 =
δL0

δgmn
+ 1

2egmnV

+ 1
16g

2e(GMN + ηMN )ΘMKΘNL
(
gmng

klAk
KAl
L − 2Am

KAn
L) ,
(6.35a)

0 =
δL0

δGMN
− 1

8g
2egmnΘMKΘNLAm

KAn
L

− 1
7·32eg

2GKLΘMKΘNL − 1
16eg

2ηKLΘMKΘNL, (6.35b)

whereas the equations of motion that follow from the E10 coset model are given by

0 =
δL0

δgmn
+ 1

8g
2eGMNΘMKΘNL

(
gmng

klAk
KAl

L −AmKAnL
)

+ 1
2g

2egmn

(
1
56G
MKGNLΘ̃MN Θ̃KL + θ2

)
, (6.36a)

0 =
δL0

δGMN
− 1

8g
2egmnΘMKΘNLAm

KAn
L − 1

56g
2eGKLΘ̃MKΘ̃NL. (6.36b)

By comparing (6.35) with (6.36) we observe that the equations are structure-wise the
same, but differ in the details. For one thing, on the E10 side we generically have just
GMN instead of 1

2 (GMN + ηMN ). Apart from that, the indefinite contributions to
the supergravity potential are not reproduced, but only the leading term quadratic
in GMN .

Summarizing, we find that the gauging appears exclusively as a consequence
of ‘switching on’ certain higher level degrees of freedom in the level expansion of
the Cartan form and the coset equations of motion. The embedding tensor appears
naturally in the coset model by integrating the one-dimensional equations of motion.
The same holds for duality relation between the scalars and vectors, and the scalar
potential. However, the latter is not fully reproduced by E10, but only the positive
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definite contributions. This is due to the fact that in supergravity the scalar potential
is indefinite [90], while the corresponding 2-forms appearing in the E10 coset model
necessarily enter with a positive definite kinetic term.





7

Conclusions

In this thesis we have shown that Kac-Moody symmetries play a unifying role in
supergravity. In particular, we have given evidence that certain over- and very-
extended Kac-Moody algebras are intimately related to gauged supergravity. Not
only do the Kac-Moody algebras correctly predict all the physical degrees of freedom
of the supergravities in all dimensions, but they also contain deformation- and top-
form potentials that correspond to all the known gaugings of those supergravities.
This is a promising unifying picture, although there are a few mismatches. First,
the Kac-Moody algebra E11 predicts more top-forms than there are quadratic con-
straints in the corresponding gauged maximal supergravity. Secondly, matching the
equations of motion succeeds only up to a certain level. Lastly, the infinite tower of
exotic representations in Kac-Moody algebras have no obvious counterpart on the
supergravity side.

The deformation potentials, or (D − 1)-forms, that follow from over- or very-
extended Kac-Moody algebras occur in precisely the same representations of the
global symmetry group as the embedding tensors of gauged supergravity. Also, the
way the (D − 1)-forms are reached by commutators of the fundamental p-forms
tells us whether they correspond to a ‘traditional’ gauged supergravity, or a massive
deformation.
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M-theory

supergravity

Kac-Moody
symmetries

gauged
supergravity

Figure 7.1: The interrelations between M-theory, (gauged) supergravity, and Kac-Moody
symmetries.

Furthermore, all the known quadratic constraints of the embedding tensor have a
top-form, or D-form, counterpart in very-extended Kac-Moody algebras. However,
in certain cases, such as the D = 3 or IIB case for E11, there are more top-forms
than quadratic constraints. For the IIB case it is known that these extra top-forms
can be interpreted to couple to D9-branes of Type IIB string theory [11]. A similar
scenario could be possible for the D = 3 case, but such an interpretation is currently
lacking.

As for the dynamic comparison, we have found that the equations of motion of
D = 3 gauged maximal supergravity adapted to a one-dimensional language can in
part be matched to the E10 equations, even though the latter have a priori a rather
different form. For one thing, the absence of gauge-covariant derivatives on the E10

side agrees with the supergravity expressions, once a gauge-fixing condition which
is inevitable for the comparison, has been imposed. Moreover, in spite of the fact
that on the E10 side all fields appear with a ‘kinetic’ term, the (truncated) duality
relation between vectors and scalars expected from supergravity naturally follows
via integrating the one-dimensional equations of motion. Finally, the embedding
tensor automatically appears as an integration constant in the right representation.
In this sense, none of the essential ingredients of gauged supergravity have to be
introduced by hand, but rather they naturally follow from the E10 sigma model.
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However, a mismatch occurs at higher levels: the scalar potential of gauged
supergravity is not fully reproduced by E10. This is somewhat reminiscent to a
discrepancy encountered in higher dimensions, once spatial gradients are introduced
as the duals of higher-level fields [23].

In total we are led to conclude that further insights, like those of [27, 29], are re-
quired in order to understand the precise relation between supergravity theories and
the E10 sigma model. It would be interesting to see whether modifications and/or
extensions of the E10 model are possible to compensate for the present mismatches.
We note that mismatches already occur before comparing to gauged supergravity
and so an ultimate resolution of the present discrepancies must await a better un-
derstanding of the basic picture.

It is therefore too soon to claim that the Kac-Moody symmetries of E11 or
E10 are truly the symmetries of M-theory, or are the fundamental symmetries of
nature. One might conjecture that one of the missing pieces of the puzzle, the
infinite tower of exotic representations, might encode some M-theory degrees of
freedom. In the same direction it is thought that some of the gauge deformations of
supergravity also encode M-theory degrees of freedom [96]. As E11 somehow ‘knows’
of the gauged deformations via deformation and top-form potentials, one might argue
that it indirectly contains information on M-theory (see also Figure 7.1).

To conclude, the Kac-Moody symmetries provide an elegant unifying framework
for the symmetries of supergravity, although the correspondence is not perfect. Fu-
ture work might lift the discrepancies, and hopefully allow a sneak peak into the
structure of M-theory.





A
SimpLie

In this chapter we will briefly discuss SimpLie [5], a Java program that has specifically
been written for the level decompositions of Kac-Moody algebras. However, that is
not the only trick it can do. At the moment of writing, it is amongst others capable
of the calculation of:

• Root systems

– Root multiplicties

– Level decomposition w.r.t regular subalgebras

• Highest weight representations

– Weight multiplicities

– Tensor products

– Branchings w.r.t. regular subalgebras

• Visualizations

– Hasse diagrams

– Coxeter projections

There are other computer programs that also perform some of SimpLie’s func-
tions, and usually a whole lot more. A list of Lie algebra related programs is for
example given in [35], of which perhaps one of the most famous is LiE [60]. How-
ever, none of the programs of which the author is aware of are capable of handling
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Figure A.1: Schematic work flow of SimpLie

Kac-Moody algebras with an arbitrary Cartan matrix. This is exactly what SimpLie
was designed to do from the ground up: the user can enter any Dynkin diagram he
or she likes, irrespective of the fact whether the resulting algebra is finite, affine,
over- or very-extended, or even more exotic. Based on the Dynkin diagram alone,
SimpLie can then calculate any of the quantities given above.

A schematic flowchart of the inner workings of SimpLie is given in Figure A.1.
Note that this picture has been simplified rather dramatically from how SimpLie
actually works. Interested readers may be redirected to the source code, which is
freely available online [5].

Besides being able to perform level decompositions, SimpLie has been written
with the idea that it should be:

1. Multi-platform,

2. Easy to extend and adapt,

3. Easy to use.
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The first two goals justify Java as a choice of programming language. Java is
by design multi-platform, and its object-oriented nature automatically steers one
towards a modular design. Whether the third goal is achieved is a more subjective
matter, and is best evaluated by trying out SimpLie for one’s self.

A.1 User manual

This section contains a short user manual. It is not exhaustive, as SimpLie’s features
and appearance will most likely change in the future. We will discuss the different
windows of SimpLie in turn.

Algebra Setup (Figure A.2) This is the main window of Simplie. Within the white
Dynkin diagram panel of the Algebra Setup tab one can interactively ‘click’ a Dynkin
diagram together. The relevant commands are:

• Left mouse-click: Add a node. Hold shift to automatically add a connection
to the previous node.

• Middle mouse-click or alt-left: Toggle a node to be deleted / normal.

• Right mouse-click: Bring up the context menu. From the context menu, you
can:

– Add/remove a node if the mouse is on an empty location.

– Add/remove a connection if the mouse is over a node.

– Left click on a second node to finish the action.

– Toggle a node.

– Remove a node.

A decomposition is specified by toggling one or more nodes to be ‘deleted’. The
deleted nodes are black and will indicate the levels for the level decomposition.
However, when one or more deleted nodes do not have lines connecting them to the
undeleted nodes, they will become so-called ‘internal nodes’. The internal nodes are
orange, and the regular subalgebra nodes (i.e. those that are not deleted) remain
white.

By default, the subscripts of the nodes indicate the node ordering. Using the
radio buttons on the right it is possible to display to (dual) Coxeter labels. If the
Coxeter labels differ from their duals, the Coxeter labels get displayed in bold below
the dual. The default ordering on of the nodes is from bottom to top. Using the
radio buttons on the right it is possible to change it to from top to bottom.
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Algebra Info (Figure A.3) This window gives some basic information about the
Lie algebra of the previously entered Dynkin diagram. You can select whether to
view the information for the full algebra, the regular subalgebra, or for the internal
algebra. You can either view the Cartan matrix, the quadratic form matrix, or the
metric on the root space. It also possible to display a list of positive roots up to a
given height.

Representations (Figure A.4) This window contains the following three tabs:

• Representation info. Here it it is possible to enter Dynkin labels for a repre-
sentation and calculate its dimension and weights down to a given depth.

• Tensor products. Here one can enter two sets of Dynkin labels, and calculate
their tensor product in terms of irreducible highest weight representations.

• Branching. After entering one set of Dynkin labels, its branching can be calcu-
lated with respect to the decomposition entered in the algebra setup window.

Level Decomposition (Figure A.5) In this window a level decomposition of the
Dynkin diagram as given in the algebra setup window can be calculated. The column
headers of the table containing the decomposition results indicate the following:

• l : Level(s).

• p_r : Dynkin labels of the regular subalgebra part.

• p_i : Dynkin labels of the internal part.

• vector : Root vector.

• a^2 : Root norm.

• d_r : Dimension of the regular subalgebra part.

• d_i : Dimension of the internal part.

• mult : The root multiplicity.

• mu : The outer multiplicity of the representation.

• h : The height of lowest / highest weight.

Note that these column headers are similar to the ones in Table C.1.
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Visualization (Figure A.6) In this window any Lie algebra can be visualized: either
a Coxeter plane projection can be made, or a Hasse diagram can be drawn of the
root system of the algebra. When choosing the Coxeter plane projection, the full
algebra gets projected with respect to its regular subalgebra as specified in the
Dynkin diagram.

A.2 List of papers

SimpLie has been used for calculations in the following papers: [1, 2, 3, 73, 56, 13,
44].
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Figure A.2: SimpLie’s Algebra Setup window.

Figure A.3: SimpLie’s Algebra Info window.
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Figure A.4: SimpLie’s Representations window.

Figure A.5: SimpLie’s Level decomposition window.
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Figure A.6: SimpLie’s Visualization window.



B
Hasse diagrams and Coxeter

projections

This section contains Hasse diagrams and Coxeter projections of various finite and
infinite Lie algebras and representations of finite algebras. All the images are gen-
erated with SimpLie [5]. All the Coxeter projections of E11 are done up to height
100 in the root system. The subalgebras of E11 with respect to which the Cox-
eter projections have been performed are indicated in Dynkin diagrams below the
Coxeter projections, except for the first projection, Figure B.2. For that particular
projection, the subalgebra embedding is given in Figure B.1.

In Figures B.9, B.10, B.11, and B.12 Coxeter projections of representations of
various finite Lie algebras are given. The Dynkin labels of the representations are
indicated in the Dynkin diagram below the Coxeter projection.

Figure B.1: The E8 ⊂ E11 embedding for the Coxeter projection of Figure B.2.





Figure B.2
E11 projected onto an E8 Coxeter plane.
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Figure B.3: E11 projected onto an E6 Coxeter plane.
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Figure B.4: E11 projected onto an A4 Coxeter plane.



134 Appendix B Hasse diagrams and Coxeter projections

Figure B.5: E11 projected onto an A9 Coxeter plane.
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Figure B.6: Coxeter projection of D10.
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Figure B.7: Hasse diagram of E10 up to height 60, rotated over 90◦.
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Figure B.7: Continued.
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Figure B.8: Coxeter projection of B19.
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3 0 0 0 0 0

Figure B.9: Coxeter projection of the [300000] representation of B6.
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0 4 0 0

Figure B.10: Coxeter projection of the [0400] representation of A4.
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0 4 0 0 0

Figure B.11: Coxeter projection of the [04000] representation of A5.
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4 0 0 0 0 0 0 0

Figure B.12: Coxeter projection of the [40000000] representation of A8.



C
Decomposition tables

C.1 E11 decompositions

Here we list the output of SimpLie [5] at low levels, using the various decompositions
of E11 as in Table 6.1. The regular subalgebra splits into a part belonging to the
gravity line An (the white nodes) and a part belonging to the internal duality group
GD (the grey nodes).

In the following tables we respectively list the levels l, the Dynkin labels pgrav and
pG of respectively An and GD, the root labels m, the root length α2, the dimensions
dgrav and dG of the representations of respectively An and G, the multiplicity of the
root mult(α), the outer multiplicity µ, and the interpretation as a physical field. The
deformation- and top-form potentials are indicated by ‘de’ and ‘top’, respectively.
When the internal group does not exist, we do not list the corresponding columns.
In all cases the Dynkin labels of the lowest weights of the representations are given.
All tables are truncated at the point when the number of indices of the gravity
subalgebra representations exceed the dimension. The order of the levels, Dynkin
labels, and root labels as they appear in the tables are determined by the order of
the node labels on the Dynkin diagram of Figure C.1.

The interpretation of the representations at level zero as the graviton is, unlike
the p-forms at higher levels, not quite straightforward. The graviton emerges when
one combines the adjoint representation of An with a scalar coming from one of the
disabled nodes, see [23]. We have indicated these parts of the graviton by ḡµν and
ĝµν , respectively.
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Column header Meaning
l Level(s) at which the representation occurs.

−pgrav Gravity line part of negative Dynkin
labels of lowest weight representation.

−pG Global symmetry group part of negative Dynkin
labels of lowest weight representation.

m Root vector of the lowest weight.
α2 Norm of the lowest weight.

dgrav Dimension of the gravity line
part of the representation.

dG Dimension of the global symmetry
group part of the representation.

mult(α) Root multiplicity of the lowest weight.
µ Outer multiplicity of the representation.

fields Interpretation as supergravity fields.

Table C.1: Legend to the decomposition tables.

11 10 9 8 7 6 5 4 3 2

1

Figure C.1: Dynkin diagram of E11 indicating the ordering of Dynkin labels and root vec-
tors in the tables of this section. They are ordered from high to low according
to the labels of the nodes.
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C.2 D+++
8 decompositions

In this section we list similar tables as in section C.1, only now for the Kac-Moody
algebra D+++

8 . The corresponding Dynkin diagram decompositions can be found
in Table 6.3. The column-layout is the same as in the preceding section (see also
Table C.1). The Dynkin diagram of Figure C.2 indicates the ordering of the Dynkin
labels and root vectors.

11 10 9

2

8 7 6 5 4 3

1

Figure C.2: Dynkin diagram of D+++
8 indicating the ordering of Dynkin labels and root

vectors in the tables of this section. They are ordered from high to low ac-
cording to the labels of the nodes.
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ḡ µ
ν

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
1
1

1
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,ĝ
µ
ν

1
0

1
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

2
5

1
1

1
p

=
1

0
1

1
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

0
0

2
5

1
0

1
1

p
=

1
1

1
0

1
0

0
0

0
0

0
1

0
1

0
0

0
0

1
1

0
0

0
2

1
0

1
0

1
1

?
(p

=
1
)

0
2

0
1

0
0

0
0

0
0

0
1

0
1

2
2

2
2

1
0

0
0

2
1
0

1
1

1
?

(p
=

1
)

1
2

0
0

1
0

0
0

0
1

0
0

1
0

0
0

1
2

2
1

0
0

2
1
0

4
5

1
1

?
(p

=
0
)

1
2

1
1

0
0

0
0

0
0

0
1

1
1

2
2

2
2

1
0

0
0

2
4
0

1
1

1
?
g µ
ν

1
2

0
0

1
0

0
0

0
0

0
1

1
1

2
2

2
2

2
1

0
0

0
1
0

1
8

1
?

(p
=

0
)

2
2

0
0

0
1

0
0

0
1

0
0

2
0

0
0

1
2

3
2

1
0

2
5

4
5

1
1

d
e

2
2

1
0

1
0

0
0

0
0

0
1

2
1

2
2

2
2

2
1

0
0

2
4
5

1
1

1
1

3
0

0
0

1
0

0
1

0
0

0
1

0
0

1
2

3
3

2
1

0
2

5
1
2
0

1
1

d
e

1
3

1
0

1
0

0
0

0
0

1
1

1
1

2
2

2
3

2
1

0
0

2
4
5

1
0

1
1

1
3

0
0

0
1

0
0

0
0

1
1

1
1

2
2

2
3

3
2

1
0

0
5

1
0

8
1

d
e



158 Appendix C Decomposition tables
2

3
1

0
0

1
0

0
1

0
0

0
2

0
0

1
2

3
3

2
1

0
2

2
4

1
2
0

1
1

2
3

0
0

0
0

0
0

0
1

1
0

2
0

0
0

1
3

4
3

2
1

2
1

3
2
0

1
1

to
p

2
3

0
1

1
0

0
0

0
0

1
1

2
1

2
2

2
3

3
1

0
0

2
7
5

1
0

1
1

2
3

0
0

0
0

0
0

1
0

0
0

2
0

0
1

2
3

4
3

2
1

0
1

1
2
0

7
1

to
p

2
3

1
0

0
1

0
0

0
0

1
1

2
1

2
2

2
3

3
2

1
0

0
2
4

1
0

8
2

2
3

0
0

0
0

0
0

0
0

1
1

2
1

2
2

2
3

4
3

2
1

-2
1

1
0

4
3

2
to

p
1

4
1

0
0

1
0

0
0

1
0

1
1

1
2

2
3

4
3

2
1

0
2

2
4

4
5

1
1

1
4

0
0

0
0

1
1

0
0

0
0

1
0

1
2

3
4

4
3

2
1

2
1

2
1
0

1
1

to
p

1
4

0
0

0
0

0
0

0
1

0
1

1
1

2
2

3
4

4
3

2
1

0
1

4
5

8
1

to
p

1
4

0
1

1
0

0
0

0
0

0
2

1
2

4
4

4
4

3
1

0
0

2
7
5

1
1

1
1

4
1

0
0

1
0

0
0

0
0

2
1

2
4

4
4

4
3

2
1

0
0

2
4

1
8

1
1

4
0

0
0

0
0

0
0

0
0

2
1

2
4

4
4

4
4

3
2

1
-2

1
1

4
5

1
to

p

T
a

b
le

C
.1

9
:
D

6
⊗
A

1
⊗
A

3
re

p
re

se
n
ta

ti
o
n
s

in
D

+
+

+
8

(D
=

4
)

l
−
p

g
ra

v
−
p
G

m
α

2
d

g
ra

v
d
G

m
u
lt

(α
)

µ
fi
el

d
s

0
0

0
0

0
0

0
0

0
1

0
-1

0
-1

-2
-2

-2
-1

0
0

0
0

2
1

6
6

1
1

p
=

0
0

1
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

-1
-1

-1
2

1
5

1
1

1
ḡ µ
ν

0
0

0
0

0
2

0
0

0
0

0
0

-1
0

0
0

0
0

0
0

0
0

2
1

3
1

1
p

=
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

1
1
1

1
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Nederlandse samenvatting

De twee grote mijlpalen van de natuurkunde in de vorige eeuw zijn Einsteins ont-
dekking van de Algemene Relativiteitstheorie en de constructie van het Standaard
Model van de deeltjesfysica. Voor beide gevallen geldt dat ze tot op zekere hoogte
geleid zijn door wat men het principe van symmetrie zou kunnen noemen. Voor
Einstein leidde dit tot het inzicht dat de wetten van de natuur hetzelfde zouden
moeten zijn voor alle waarnemers, of ze nou rechtop staan of ondersteboven hangen,
of stil staan of juist versnellen. Voor het Standaard Model houdt het in dat zijn
voorspellingen onveranderd blijven onder de symmetrietransformaties van SU(3)×
SU(2)× U(1).

Het grote falen van de natuurkunde in de vorige eeuw was wellicht het onver-
mogen om de Algemene Relativiteitstheorie en het Standaard Model te combineren.
Deze gecombineerde theorie zou idealiter alle vier krachten in de natuur (te weten
de sterke en zwakke kernkracht, het elektromagnetisme en de zwaartekracht) samen
brengen onder één noemer. Een van de meest veelbelovende kandidaten voor deze
allesomvattende theorie is, alhoewel het tot op heden niet in dit doel slaagt, de
snaartheorie. Het uitgangspunt van de snaartheorie is om de puntdeeltjes van
het Standaard Model te vervangen door eendimensionale objecten, de zogenoemde
snaren. Het idee is dat alle bekende elementaire deeltjes overeen komen met ver-
schillende vibraties van de snaren. De kracht van de snaartheorie, naast het feit
dat het de oneindigheden van het Standaard Model ‘gladwrijft’, is dat één van deze
vibraties het zwaartekrachtsdeeltje is. De zwaartekracht komt dus op natuurlijke
wijze voort uit de snaartheorie.
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Men zou misschien verwachten dat er slechts één enkele unieke theorie is die alle
krachten van de natuur tegelijk beschrijft. Helaas voor de snaartheorie zijn er maar
liefst vijf verschillende consistente snaartheorieën. Deze vijf theorieën worden Type
I, Type IIA, Type IIB, Heterotische E8 × E8 en Heterotische SO(32) snaartheorie
genoemd. Ze hebben allemaal een zekere mate van supersymmetrie (een symmetrie
tussen krachtdeeltjes en materie), en ‘leven’ allemaal in tien ruimte-tijd dimensies.
Dit zag er niet goed uit voor de snaartheorie, totdat de ontdekking werd gedaan
dat de vijf verschillende theorieën verbonden zijn door zogenaamde dualiteitssym-
metrieën. Daarnaast werd het vermoeden geopperd dat ze allemaal een limiet zijn
van een tot op heden onbekende theorie in elf dimensies, M-theorie genaamd. Over
M-theorie is vrij weinig bekend. Een van de weinige aanwijzingen die er zijn is
de veronderstelde lage energie limiet: de unieke elfdimensionale supersymmetrische
zwaartekracht (superzwaartekracht) theorie.

Net als de theorie zelf zijn de mogelijke symmetrieën van M-theorie een raadsel.
Maar als ze bekend zouden zijn, dan kan het principe van symmetrie ons helpen in
de zoektocht naar een duidelijke omschrijving van M-theorie. Een van de eisen van
de symmetrieën van M-theorie is dat ze op zijn minst de dualiteiten tussen de vijf
verschillende snaartheorieën moeten bevatten. Een bijkomende aanduiding volgt
uit de superzwaartekracht: in bepaalde lage-dimensionale limieten laat de super-
zwaartekracht een oneindige symmetrie zien. Deze oneindige symmetrieën worden
collectief Kac-Moody symmetrieën genoemd. Aangezien ze ook de dualiteitssymme-
trieën bevatten, kan men het vermoeden poneren dat ze daadwerkelijk de symmetrie
van M-theorie zijn. Echter, dit proefschrift zal geen van dergelijke sterke uitspraken
bevatten. Het zal zich toeleggen op de unificerende rol van de Kac-Moody symme-
trieën voor de verschillende superzwaartekracht theorieën.

De Kac-Moody symmetrieën laten zich wiskundig beschrijven in een zogenaamde
Lie algebra. Het mooie van Lie algebras is dat ze zich kort en bondig laten samen-
vatten in een object dat hun structuur volledig vastlegt. Dit object wordt de Cartan
matrix genoemd, en is niets meer dan een simpele matrix. In de vergelijking met een
computerbestand is de Cartan matrix de ingepakte versie van het volledig uitgepakte
bestand. De vergelijking loopt alleen wel scheef doordat de ‘uitgepakte’ Kac-Moody
algebra daadwerkelijk oneindig is en op geen enkele harde schijf zou passen, terwijl
de Cartan matrix ruim genoeg heeft aan een enkele kilobyte.

Alhoewel het goed begrepen is hoe het ‘uitpakken’ van de Kac-Moody algebra in
zijn werk gaat, is de procedure omslachtig en in de praktijk niet tot in het oneindige
door te voeren. Bovendien geeft het weinig inzicht in de volledige structuur van de
Kac-Moody algebra, die tot op heden dan ook in nevelen gehuld is. Het beste wat we
op dit moment kunnen doen is een klein deel van het oneindige object construeren,
en dat vervolgens in stukjes hakken die we wel begrijpen. Dit proces is enigszins
analoog aan hoe men een vierdimensionale hyperkubus kan begrijpen door hem te
beschrijven in termen van driedimensionale kubussen, net zoals de kubus op zijn
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beurt is opgebouwd uit een aantal vierkanten. De Kac-Moody algebras kunnen op
vele verschillende manieren in stukjes worden gehakt, maar het interessantst zijn
de gevallen waarin de resulterende stukjes overeenkomen met structuren die ook
voorkomen in de superzwaartekracht theorieën. Eén enkele Kac-Moody algebra, E11

genaamd, beschrijft op deze manier de symmetrieën van de superzwaartekrachten
met de meeste supersymmetrie in drie tot en met elf dimensies.

Bovendien, zo blijkt uit dit proefschrift, lijkt E11 daar bovenop ook nog eens
alle mogelijke ijkdeformaties van de superzwaartekrachten te bevatten. Deze ijkde-
formaties zijn van femenologisch belang doordat ze een deel van de supersymmetrie
breken, en ze een effectieve kosmologische constante invoeren. Maar afgezien daarvan
introduceren ze vrijheidsgraden die niet af te leiden zijn uit de unieke elfdimensionale
superzwaartekracht theorie. Deze vrijheidsgraden zou men kunnen interpreteren als
restanten van M-theorie, en in die hoedanigheid lijkt E11 informatie over M-theorie
te bevatten.

Alhoewel de Kac-Moody algebras op elegante wijze de verschillende superzwaarte-
kracht theorieën unificeren, zijn er ook een paar punten die niet geheel blijken te
werken. Ten eerste voorspellen ze meer beperkingen op de ijkdeformaties dan dat
er uit de analyse aan de kant van de superzwaartekracht volgen. Ten tweede komen
de bewegingsvergelijkingen die volgen uit de Kac-Moody algebra slechts tot op een
bepaalde hoogte overeen met die van de superzwaartekrachten. En tenslotte zijn de
Kac-Moody algebras oneindig, wat inhoudt dat ze naast de bekende structuren uit
de superzwaartekracht oneindig veel meer exotische structuren bevatten, die niet te
relateren zijn aan aan ons bekende fysische theorieën.

Daarom is het dan ook te voorbarig om te stellen dat E11 daadwerkelijk de
symmetrie van M-theorie is, laat staan de fundamentele symmetrie van de natuur.
Veel stukjes van de puzzel passen perfect, maar het zijn de resterende niet-passende
stukjes die ons doen vermoeden dat de Kac-Moody symmetrie E11 wellicht niet het
hele verhaal is.
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