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G W N e

Abstract: In this paper, we explore the behavior of a minimally coupled tachyonic scalar
field at an inflection point within an accelerating universe. We examine various cosmic
expansion factors, including power-law, exponential, and a hybrid form combining power-
law and exponential growth. For each of these scenarios, we derive the corresponding
potentials of the tachyonic scalar field. Subsequently, we calculate the inflection points of
the spatially homogeneous tachyonic scalar field for these potentials. To further analyze the
system, we employ dynamical system analysis techniques to identify equilibrium points
and assess their stability.

Keywords: inflection point; tachyonic scalar field; cosmic inflation

1. Introduction

Cosmic acceleration is now an established phenomenon. As supported by several
cosmological and astrophysical observations [1-10] our universe is in a phase of acceler-
ated expansion at the present stage. It is generally believed that, behind this accelerated
expansion, there is a mysterious component, with negative pressure dominating 70% of
the universe. A promising candidate to explain this acceleration is “dark energy” [11-15],
introduced as modified matter in Einstein’s field equations, that contributes to the energy—
momentum tensor. One of the remarkable features of dark energy is its negative pressure
and repulsive gravity characteristics led by the equation of state wy, = % On the other
hand, there are also alternative gravity theories accounting for this cosmic acceleration
by modifying the geometrical aspects of the field equation. Observational data from the
Planck 2018 CMB [7-10] suggest that 70% of the universe’s energy budget is in the form of
dark energy, while the remaining 30% of the energy budget of the universe is attributed
to non-relativistic baryonic and non-baryonic pressureless (p;; = 0) dust matter, with an
equation of state (EoS) of wy, = 0. In recent years, various candidates have been put forth
to elucidate the nature of dark energy, with the cosmological constant standing out as one
of the simplest models, embodying constant dark energy with an EoS of wy = —1. Despite
its alignment with observational data to a certain accuracy, the A CDM model grapples
with unresolved cosmological constant and coincidence problems [16-20]. In response to
these limitations, dynamical dark energy models, particularly those involving scalar fields,
have gained prominence [21-26], with scalar field serving as a candidate of dynamical
dark energy; it is dubbed as ¢CDM and has a dynamical EoS wy. Recent data [27-30] also
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suggest a dynamical form of dark energy. The nature of dark energy has been the subject of
several works in the literature. As alternatives to the cosmological constant, dynamic dark
energy models have been developed, in which the EoS varies with time. There are many
different dynamical dark energy models, such as quintessence fields [31-33], which possess
tracker behaviour, and late time accelerating solutions of modified Friedmann equations
lead by modification of gravity; other models include tachyon models, holographic dark
energy models, chaplygin gas, phantom, k-essence, pCDM, and w(z)CDM [34-47].

Tachyonic scalar fields, originating from string theory, provide a compelling alternative
to conventional scalar field dark energy models [48-50]. They represent the negative-mass
mode within the open string perturbative spectrum; while their application in the dark en-
ergy domain is primarily phenomenological, we have specifically examined the behaviour
of the scalar field near the inflection point. The study of scalar field dynamics in cosmology
has been important in studying both early and late acceleration; moreover, in particular, a
potential showing inflection can lead to an ultra slow-roll phase, sustaining the acceleration.
Similar mechanisms arise in other contexts, such as the interplay between quantum and
cosmological phenomena, where scalar fields play a significant role in bridging the gap
between fundamental physics and large-scale cosmic evolution [51-56].

Recent studies by various researchers have also investigated dark energy models incor-
porating inflection points, particularly in the context of inflation [55-74], where the scalar
field near an inflection point of the potential rolls slowly to produce inflation. Similarly, at
low redshifts, an inflection point in the potential can cause the scalar field to roll slowly
enough to explain cosmic acceleration. To study the dynamics and resulting behaviour
of any scalar field model, the potential V(¢) plays a pivotal role. A potential with an
inflection point allows the field to exhibit a smooth transition (due to its flatness) between
different cosmological phases by introducing a feature that facilitates slow rolling. When
attempting to achieve a current equation of state value of wy ~ —1, which could lead to
accelerated expansion, this slow-roll mechanism could be a key ingredient. By imposing
the approximation in which the kinetic term ¢ of the tachyon is significantly smaller
than unity, i.e., ¢*> << 1, we can position ¢ in an extremely flat region of the potential.
Potentials with an inflection point are good candidates for providing flat regions suitable
for the ultra slow roll approximation. We consider the late-time behaviour of the tachyon
scalar field in the accelerated expansion of the universe, which shares similarities with
early inflation. Numerous authors have examined the cosmic behaviour of tachyonic scalar
fields [49,75,76], discovering possibilities for both pure exponential growth and power-law
expansion. We try to investigate the possibilities based on the superposition of these forms,
because the current data have not yet determined the precise shape of the evolution of the
scale factor.

Dynamical Setup

In this section, we present the mathematical framework on which the dynamics are
based. We choose GR to be the background theory. The cosmological principle is encoded
in the FLRW metric, which is expressed in terms of spherical co-moving coordinates,
as follows:

dr?
1 — Kr?

ds* = guvdxtdx’ = —dt? 4 a?(t) ( + r2d6* + 1% sin® 6d<p2> . (1)

Here, we have taken ¢ = 1. In the above equation, a(t) is the scale factor and the parameter
k is the spatial curvature, with the values K = —1,0,1 corresponding to spatially open,
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flat, and closed geometry, respectively. For our model, we have taken the effective four-
dimensional action for the tachyonic field, which is given as follows [77,78]:

0= g0 [ FOVIRS [ V@8 (kg g @

where V(¢) represents the potential, k> = ﬁ =1, and f(¢) = 1 under minimal coupling.
This action introduces a non-canonical scalar field with a modified (DBI) kinetic term, often
inspired by high-energy theories. The square-root structure resembles the DBI action from
string theory. The energy—-momentum tensor for Equation (2) can be written as follows:

(¢) V($)9upovgp
T v = - WV( ) 1+ “’Saa d (3)
p ot o9 290 T g Ponping gV () 1+ 8" oupdp

Einstein’s field equation for a spatially flat universe (K = 0) gives the Friedmann
equations as follows:
N 2
a 8nG
H= (=) === 4
(a) 30 @
and
i 4G
- , 5
p 5 (P +3p) ()

where H(t) = ¢ is the Hubble parameter and p = py + pyu and p = py + pm denote the
total energy and the pressure, respectively. In general, multiple components, such as matter,
radiation, and dark energy, can contribute to the energy—-momentum tensor, each with
a different equation of state. However, during early time periods, radiation dominated,
after which matter started dominating more effectively. At later time periods (z — 0),
dark energy dominated the universe, leading to cosmic acceleration. We are therefore
driven to focus on only two components: pressureless matter and dark energy. For cosmic
acceleration, we have p + 3p < 0. The continuity equation is given as follows:

p+3H(1+w)p=0. (6)
where
P=Pm + Py (7a)
and
p=pPm + Py (7b)

In Section 2, the investigation of the behaviour of the tachyonic scalar field is carried out
near the inflection point. We consider three different possibilities of cosmic behaviours; the
first two cases involve conventional power-law expansion and pure exponential growth, i.e.,
a(t) = at",a(t) = yeP!, respectively, and the third case is of quasi-exponential expansion of
the scale factor a(t) = 7t"eP!. For these three cases, we calculate the respective potentials
and then investigate the behaviour of that particular model near their respective inflection
points. In Section 3, dynamical analysis for the above two cases is carried out.

2. Inflection Point of Tachyonic Scalar Field

Using Equation (3) for a flat (K = 0) FRLW universe, the energy density and pressure
for the tachyonic scalar field are given as follows:
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0p = J%, ®)

pp = —V(¢)\/1-¢% ©)

Here, the overdot denotes the derivative with respect to time. V(¢) is the potential asso-
ciated with the tachyonic field that we have calculated in the upcoming subsections for
each case.

By using the following equation:

g:HerH (10)

and plugging Equations (8) and (9) into Equations (4) and (5) for the scalar field, we obtain
the following form of the second Friedmann equation:

i ©*V(¢) ( _3-2>

Now, for the accelerated expansion of the universe, we have ii > 0; thus, using Equation (11)
and ¢? < 2, the EoS (equation of state) for ¢ is given by the following equation:
P¢

wp =L = 1) 12

In terms of Hubble parameter, the equation of state wy can be written as follows:

2H
=-1—-—= 1
For cosmic acceleration, the possible range of the values of wy is —1 < wy < f% and
0<¢?< % Using Equations (8) and (9), one can easily find the equation of motion for this

tachyonic model, as follows:

é .14V
s +3H¢ Vi 0. (14)

Now, using Equations (4) and (5), ¢(t) and V(¢) can easily be written in the forms of H

o) = [ (/-2 (15)

and H, as follows:

Using the two equations above, we are able to find the potential and their respective
inflection point behaviour for the three cases discussed below.

2.1. For Case I: a(t) = at"

In this subsection, we consider the simplest model for describing the expansion of the
universe in certain cosmological scenarios, namely, the power-law form of scale factor; this
suggests that the universe’s expansion follows a simple power-law relationship with time.
ie., a(t) = at". Here, « is a constant describing the overall scale of the universe, and the
exponent n determines the rate of expansion—it has to be greater than 0 for the universe to
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experience accelerated expansion. For this kind of model, the Hubble parameter is in the
following form:
H= % (17)

Upon substituting this value of H into Equation (16) and using Equation (15), we obtained
the following form of the potential:

V($) = Vol(p — o) > (18)

where Vy = ,2(—’21 2 /11— 3%1 From the above Equation (18), we found there is no such inflection
point for this particular model; we can also see in Figure 1 that the curve shows no inflection,
but one can observe that the scalar field is rolling slowly along the potential. One can apply
slow roll approximation directly into Equation (14) using ¢*> << 1 = 1—¢* ~ 1 and
can find the evolution of the scalar field with respect to time, but, in this case, wy will be
very close to —1. However, in our case, we have calculated the evolution equation directly
from Equation (15), resulting in the following equation:

2
=/ = (2 £ 1
P(t) =[5 (2 = B) + 9o (19)
where t = tp when ¢ = ¢y, and the equation of state (Equation (13)) is as follows:

wy = —1+ % (20)
For n = 2/3, the scale factor evolves as a o t2/3, corresponding to a matter-dominated
universe, and as we can see from Figure 1 the potential corresponding to this case vanishes.
This, in return, leads to py = 0, which corresponds to pressureless fluid with wy = 0. For
n > 2/3, the equation of state satisfies wy > —1, indicating a quintessence-like behaviour.
If we set n > 1, then the equation of state satisfies wy < —1/3, which is a necessary
condition for late-time cosmic acceleration. This supports an expanding universe consistent
with observations of dark energy-driven acceleration.

T T T T T T T T T T T T T T T T T T T T3

0.7F 1
0.6 .
05F .
r — n=2/3
0.4F .
S E — n=0.8
> .
03F 1 =— n=1
02 - — n=1.1
0,1; 1 = n=2
0.0F ]
1 1 1 L 1 1 1
0 2 4 6 8 10

Figure 1. The plot shows the variation of ¢ with potential V(¢) for different values of the exponent
factorn (n =2/3,n =0.8,n =1,n = 1.1, and n = 2) for fixed value of ¢y = 0.1.
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In terms of cosmological redshift, we can also rewrite the above Equation (19) as

follows:
2 1 2/n 1 2/n
P +2) =\ 327 <(1+z> _(1+z0> )“L"’O @D

Here, the initial value of redshift is taken to be zg — 1100. Figure 2 shows the evolution of

¢ for different values of n. Also, « is a normalization constant and, for simplicity, is taken
to be unity. We examine the behaviour of a scalar field ¢ with respect to redshift z. As the
redshift z approaches zero, ¢(z) increases asymptotically with z — 0, corresponding to the
late-stage evolution of the universe. The field is characterized by a unique potential which
is derived from the scale factor; this potential governs its dynamics and the corresponding
impact on cosmic expansion. Here, the case n < 11is of interest, as it provides a smooth/slow
evolution of the scalar field ¢ at a late epoch, resulting accelerated expansion at a late stage.
This slow-roll regime results in the field behaving similarly to a cosmological constant,
with a near-constant energy density. As a consequence, the universe continues to expand at
an accelerating pace.

1.0- .

0.8 17 =— n=2/3
0 — n=0.8
o 0.6 y
e — n=1

0,4__ o n=1.1

I 1 =— n=2

0.2 .

0 2 4 6 8 10

1+z

Figure 2. The plot shows the evolution of ¢ with cosmological redshift z for different values of the
exponent factor n (n = 2/3,n = 0.8, n = 1, n = 1.1, and n = 2), with the normalization constant
« =1 (for simplicity) and ¢y ~ 0.1.

2.2. For Case IT: a(t) = ~yeP*

For this particular case, we take the simplest exponential form of the scale factor
a(t) = yePt, where 4 and B are the constants. B determines the overall rate at which
the scale factor changes and can have two possibilities for its values, as follows: the first
possibility is f > 0, which implies the exponential growth of the universe, i.e., an expanding
universe; the second possibility is B < 0, which implies exponential decay, i.e., a contracting
universe. As we know, during early epochs the universe experienced expansion, so we
can discard the second possibility. Now, the second constant 7y is a normalization factor
that sets the overall scale of the universe at a particular time ¢, and H for this exponentially
expanding universe is proportional to the constant below:

H=p (22)

Now, using this value of H in Equations (15) and (16), we obtain the following form
of potential:

2
v(g) =P (23)

K2
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Therefore, for this particular model, there is no inflection point because the potential
is revealed to be constant; this is consistent with the quintessence model, if the same
calculations are carried out for the quintessence model with the same scale factor. Using
Equations (14) and (23) and after applying the slow roll approximation, the scalar field ¢ is
also revealed to be a constant.

2.3. For Case III: a(t) = yt"eP!

For this case, we consider the universe to be the mixed form of the scale factor given
by a(t) = yt"eP!, i.e., the product of power-law and exponential terms, where 7, n and
are the constants determining the overall rate at which the scale factor changes. For this
model, the Hubble parameter is obtained as follows:

H=7+p (24)

Using Equations (15), (16), and (24), we can derive the following form of potential and the

scalar field, in terms of ¢, as follows:

_ 3(n+pt)? 2n

V= ap ' 32 2

Now, using Equation (15), the evolution of the scalar field with respect to cosmic time can
be written as follows:

1 /2n
Pp(t) = ﬁ\/;loghl +pt|+C (26)

where C is some integration constant. We assume that, at some ¢ = ty = 0, the scalar field is
¢ = ¢p; thus, the above equation can be rewritten as follows:

1 /2
o) =5 ;llog(”j;ﬁf)w 27)

Figure 3 shows the scalar field is increasing with cosmic time ¢ for all set of values of n

as mentioned in plot and for fixed § = 0.1. Now, the equation of state (Equation (13)) for
this case follows:

wp(t) = —1+ 3 2 (28)

(n+pt)?
which is dynamic and varies with cosmic time t. Figure 4 shows the variation in equation
of state with respect to cosmic time, which is in Gyr. Within the plot, the straight dotted
black line shows today’s cosmic time. One can observe from the figure that the equation of
state varies with time and that wy — 1 at a late time period (a point to remember here is
that wy has both dark energy and matter components).

Equation (27), in terms of ¢, can be rewritten as follows:

n n 3
t= *B+Bexp <5\/;(¢¢0)> (29)

Upon substituting Equation (29) into (25), we obtain the following form of potential V(¢),
which depends on the scalar field ¢, as follows:

3B exp (2,3\/5(4’ - 4’0)) - >
- W RSy

Vi) =

e (exp (5@(4)—%»—1)2

(30)
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g i = n=1/2
I | — n=2/3
S 4r 7
5 | | =— n=0.8
I — n=1
2r 1 — n=1.1
I — n=2
0 |
0 2 4 6 8 10 12 14

t

Figure 3. The plot shows the evolution of ¢ with cosmic time ¢ for different values of n, § = 0.1, and

¢o =0.1
0.0
—0.2-
i — n=1/2
-0.4r — n=2/3
Zs sl — n=0.8
I — n=1
0.8 — n=1.1
10- — n=2

Figure 4. The plot shows the evolution of wy with cosmic time ¢ (Gyr) for different values of 7,
B =0.1,and ¢y = 0.1.

Using binomial expansion and simplification, Equation (30) can be rewritten as follows:

Vo) — 3;%2 exp<2ﬁ\/§(4>—¢o)> - 1/3:
(eXP (5 o (¢ — <Po)> - 1)

where, for the simple case, we use the following assumption:

exp <l3 2?;(43—%)) ~1+ (ﬁ\/g(qﬁ—%)) (32)

(31)
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This above assumption constrains the parameter fas 0 < f << 1, so that, with an increase
in power, the higher-order terms become negligibly small and the relationship between
potential and scalar field can be written as follows:

o (1= 3+ 28\/Z0 - 00) + B0 - o))
Vi) =iz (¢ — ¢0)?

Solving Equation (33) above using the approximation mentioned in Equation (32) results

(33)

in the above potential showing inflection at the following point:

1-3n 2n
¢inflection = ( 2np )\/z—" Po (34)

The above equation, Equation (34), is the inflection point around which the curve

changes its behaviour, and this inflection point serves as a critical location where the
field experiences slow rolling. Using the Lambert W function and the scale factor
a(t) = nt" exp Bt, the redshift z and cosmic time t are related, as shown below:

t= nW(’B(iy(l—i—z))_l/”) (35)
B n

where the Lambert W function is defined as the root of a transcendental equation of
the form W(y) exp W(y) = y and has distinct branches, among which two are real; for
more information, readers can refer to [79-81]. On stetting the value of cosmic time f in
Equation (27), the evolution of the equation of state and the scale factor, in terms of redshift
z, can be obtained, respectively, as follows:

R P TR o
and
$(2) :; zglog[1+W(’5(17(1+z))_1/">} + ¢o (37)
Using Equations (25) and (35), potential in terms of redshift can be written as follows:
oW (B ) 3n(1+W(E(n(1+2)-1/n)

Figure 5 shows how scalar field is varying with potential and Figure 6 shows the
variation in equation of state with respect to cosmological redshift z. From this figure,
we observe that, for lower values of 7, the equation of state remains close to wy ~ 0,
resembling the matter-dominated era, while the field itself behaves similarly to dust-like
matter. For small n values, the equation of state falls below —1/3, suggesting that the
same field can transition into a dark energy-like component at late time periods, driving
accelerated expansion. Figure 7 illustrates the behaviour of the scalar field with redshift,
indicating that ¢ takes higher values during late time periods compared to a higher redshift.
Figure 8 illustrates the evolution of the potential V(z) as a function of redshift. At lower
redshifts, corresponding to late-time cosmology, the potential flattens due to the presence
of an inflection point. This behaviour allows the scalar field to enter a slow-roll phase,
which can drive the accelerated expansion of the universe.
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Figure 5. The plot shows the variation in the scalar field ¢ with respect to the potential V(¢) for

different sets of values of n with a fixed value of B << 1, specifically § = 0.1 and ¢y = 0.1.

0.2
0.0
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S -0.2
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-0.4
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n=0.8
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Figure 6. The plot shows the variation in equation of state wy with respect to cosmological redshift
z for different sets of valuesof n (n =1/2,n =2/3,n =0.8,n = 1,n = 1.1 and n = 2 from top to
bottom) with a fixed value of B << 1, specifically B = 0.1 and ¢y = 0.1. Here in plot vertical solid
black line represents the present epoch with z = 0 while the horizontal blacksolid line represents null

value of equation of state parameter w.
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Figure 7. The plot shows the variation in the scalar field ¢ with respect to cosmological redshift z for

different sets of values of n with a fixed value of B << 1, specifically p = 0.1 and ¢p = 0.1.
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100

- n=2/3

— n=0.8

1.1

>
1

Figure 8. The plot shows the variation in potential V (¢(z)) with respect to cosmological redshift z
for different sets of values of n with a fixed value of B << 1, specifically § = 0.1, 7 = 1, and ¢g = 0.1.

3. Dynamical Analysis at Inflection Point

In this section, we perform a dynamical analysis of our inflection point tachyon model.
Dynamical analysis [82-85] is a powerful tool used to study the dynamics of a given model
under consideration and its behaviour over time, thereby providing insights into its long-
term behaviour. It allows us to analyze the contribution of various components of the
universe, including dark matter, dark energy, and ordinary matter, by identifying and
analyzing the critical points and their stability. The background equations governing the
model are as follows:

2 K
-
o= T(P +3p) (39b)

Here again, as mentioned earlier, p and p;; contain two components, namely scalar field
and matter. We set the dimensionless variables [82] as follows:

X == Hp (40a)
KV

Y = N (40b)
V{2V /d¢?)
= aviap? (409

Here, the scalar field has inverse mass dimensions and ' signifies the derivative with respect
to 7 = log a. In the above equation, the term I' naturally approaches zero at the inflection
point of the potential. By definition, an inflection point is where the second derivative of
the potential vanishes, i.e., 4V /d¢? = 0. This condition ensures that the potential flattens
out locally, allowing the scalar field to undergo slow roll. The slow-roll behaviour, in turn,
facilitates a smooth transition between different cosmological phases, making the inflection
point a crucial feature in models describing cosmic acceleration. The vanishing of I" at this
point further simplifies the dynamical system.

dv/dg

A=
K/ V3

(40d)



Universe 2025, 11, 131

12 0f 18

Upon introducing the inflection point from Equation (34) into Equation (40d), we obtain
the following value of A:

1 (382 28 [3\ (4B [3  3B(1-3n) [2n 2
)‘_\/274<2n+3 2n><3\/;+4nz\rs>

Here, we obtain an autonomous two-dimensional system which has been previously

(41)

studied by [49]. Two other parameters (see Equation (40d)) still have ¢ dependency; upon
differentiating these aforementioned dimensionless equations, namely Equations (40a),
(40b), and (40d) with respect to 7 = loga and using Equations (39a) and (39b), one can
obtain the following equations:

X' = ”Z; = (X2 -1)(3X — AV3Y) (42a)

ay =Y (1+wy — X?)

p_ 4t 1t 2 m B
Y = 5 (31/ el 3(1+ wm) + \@AXY) (42b)
A= :ﬁﬁxy (42¢)
Using the following constraint equation:

2

’ )

Qp= 0
T 1-x2

the equation of state and the energy density of the tachyonic scalar field, in terms of these
dimensionless parameters, can be written as follows:

wy =X*—1 (44)
Y2
Qp=1-—<1 45
"X )
and the effective equation of motion can be written as follows:
Y2

The critical points for Equations (40a) and (40b) are discussed below and are listed in
Table 1:

Table 1. The table shows the critical points of the system (40a)—(45) at the inflection point with A.

Y Existence Weff Stability
0 0 v, (14 wm) Wi Unstable Saddle point

Wy =1 1 Stable Node
+1 0 Vi, (14 wm) - Unstable Nodes
% Y. = \/;Aq‘gm V(14 wm), —Y2y/1— %YCZ_F Stable node

0<n<1 w1 2

" 1— A2y2
3

There are five critical points within the dynamical analysis at the inflection point, as
shown in Figure 9 and discussed below:

(a.) Point O: For this critical point, X = 0 and Y = 0; the energy density of the
tachyonic scalar field is revealed to be 0, thereby signifying the matter-dominated epoch.
From the Friedmann constraint equation, Equation (45), we can see that (), = 1 and
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Werf = Wi again signify the matter-dominated epoch; thus, this origin point of the phase
space refers to the unstable saddle point, which has the following eigenvalues:

v =-3<0 (47)

and 3
vy = E(wm +1) (48)

For this critical point, if (14 w;,) > 0, the point is an unstable saddle point. This saddle
point demonstrates attractor behaviour, as shown in Figure 9, and, at this point, the value

of wy = —1 imitates the cosmological constant behaviour.
T T T T T T T T T T T T T T T T T T
1.0_— -~ e A \| } 4
- o = 4 A
e PP -

Wy =\
S\

o [ 2NN

/;
i
v

0.0 - ., A = — —
| | | | |
-1.0 -0.5 0.0 0.5 1.0
X

Figure 9. A phase portrait of the dynamical system for n = 1/3 with A — 1 and w;, = 0, near
the inflection point ¢;, fiection With p <<1 (B = 0.1). Inplot A, O, B_ and B represents the critical
points. Here, stable point A in the phase space shows the region where the universe undergoes
accelerated expansion.

(b.) Point B_ : For this point, we obtain the following critical points: X = —1 and

Y = 0. At this critical point, the tachyonic equation of state vanishes, i.e., wy = 0; we also
obtain the following eigenvalues:

vp=6>0 (49a)

and

vy = %(wmﬂ) > 0if(14+wn) > 0 (49b)

Therefore, the critical point B_ is an unstable node representing the past attractor, but, here,
the tachyon field behaves like dust-like matter, as in the case with wy = 0 and w, ff = W

(c.) Point B: X =1,Y =0. This point also represents an unstable node with the same
eigenvalues as mentioned above, as follows:

1rn=6>0 (50a)

and

vy = %(wmﬂ) > 0if(14wn) > 0 (50b)

This point also shows the same past attractor behaviour, and the field shows dust-like
behaviour, with w, Ff = Wi

(d.) Point A: (X = AYe o w)

750 Ye is the stable node, with the following

eigenvalues:
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_\4 2 4
1/1:_3_1_( A%+ A%V A% +36) 51)
12
_\4 2 4
v = —3(1 4 1) 42 A AV (52)
We obtain a stable point when (1 + wy) > (7/\4+/\i8 A4+36); for this case, )y =

3(=A2+VA%4+36)
[1 —A%+/A%436
18 1,%

ble point also depends on the values of #; as the value of n increases, this stable point is

, thereby showing dark energy-like behaviour at this point. This sta-

shifting more towards X = 1, and this behaviour can be seen in the phase portraits for
different values of n. The critical point A, as shown in Figures 9-11, represents the stability
of the derived dynamical system of equations and shows the accelerated expansion of the
universe at the inflection point, which is incorporated in the system via the variable A, and
the field experiences accelerated expansion at a late time period.

RRENOR
0.8 r ?//;/;%'/,,/—»S}s\\

0.6

=gt

0.0

Figure 10. Phase portrait of the dynamical system for n = 2/3 with A > 1 and w;;, = 0, near the
inflection point ¢;, fiection With << 1 (8 = 0.1). In plot A, O, B_ and B represents the critical
points. The stable point A in the phase space shows the region where universe undergoes accelerated
expansion; however, because of the increase in n, point A is shifting towards X~1.

T T T

T T T T T T T T T T T T T T T T

0.6} //’?f%\ \ ]
0'4§ //',//VV/ e
e P\

L e -+
0.0 - — G > B — ]
1 s s s s 1 s s s s 1 s s s s 1 s s s s 1 o
-1.0 -0.5 0.0 0.5 1.0
X

Figure 11. Phase portrait of the dynamical system for n = 0.8 with A ~ 5 and w,, = 0, near the
inflection point ¢;;, Flection With B << 1 (8 = 0.1). In plot A, O, B_ and B represents the critical
points. The stable point A in the phase space shows the region where universe undergoes accelerated
expansion; however, because of the increase in #, point A is shifting more towards 1.
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4. Conclusions

In this paper, the evolution of a minimally coupled tachyonic scalar field at the
inflection point has been investigated within an accelerating universe. The inflection point
signifies a transition between regions of stability and instability and provides a flat region
suitable for the ultra slow-roll approximation. In fact, inflection point models can also offer
a robust framework for describing the inflationary phase as it can provide a prolonged
period of slow-roll inflation. In this paper, the field’s dynamics have been investigated for
different forms of expansion factors, and by considering a different form of scale factor,
a form of potential is derived; only the mixed form of potential has shown the inflection
point. We have mainly considered the following three categories of scale (expansion) factor:
(a) power-law expansion (a(t) = at"); (b) the exponential form (a(t) = yePt); and (c) the
mixed form (a(t) = nt"ef*). For all these categories, the potentials and the corresponding
possible inflection points have been calculated, and the dynamical system of equations for
the model has been obtained. Out of these three categories, the mixed form shows inflection
at Pinflection, as given in Equation (34), and, near this point, under slow roll approximation,
the evolution of the scalar field with cosmic time (¢) and cosmological redshift (z) shows the
accelerated expansion of the universe at late time periods near the inflection point. Figure 8
also indicates that a potential with an inflection point can provide a near-flat region for the
field to slow roll, which may derive the accelerated cosmic expansion.

In Section 3, the dynamical analysis carried out shows that the critical point A, as
shown in Figures 9-11, represents the stability of the derived dynamical system of equations
and shows the accelerated expansion of the universe at an inflection point, which is
incorporated in the system via the variable A, and the field demonstrates accelerated
expansion at late time periods.

In addition to the research currently being carried out, it is important for future works
to study the inflection point of scalar field models in the presence of quantum gravity effects.
In particular, scalar field dynamics play a significant role in the post-bounce scenario of
loop quantum cosmology as it gives rise to an inflationary solution [86,87]. Our future
pursuits will include the investigation of how inflection points are affected due to quantum
geometric correction for scalar fields.
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