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Abstract: In this paper, we explore the behavior of a minimally coupled tachyonic scalar

field at an inflection point within an accelerating universe. We examine various cosmic

expansion factors, including power-law, exponential, and a hybrid form combining power-

law and exponential growth. For each of these scenarios, we derive the corresponding

potentials of the tachyonic scalar field. Subsequently, we calculate the inflection points of

the spatially homogeneous tachyonic scalar field for these potentials. To further analyze the

system, we employ dynamical system analysis techniques to identify equilibrium points

and assess their stability.

Keywords: inflection point; tachyonic scalar field; cosmic inflation

1. Introduction

Cosmic acceleration is now an established phenomenon. As supported by several

cosmological and astrophysical observations [1–10] our universe is in a phase of acceler-

ated expansion at the present stage. It is generally believed that, behind this accelerated

expansion, there is a mysterious component, with negative pressure dominating 70% of

the universe. A promising candidate to explain this acceleration is “dark energy” [11–15],

introduced as modified matter in Einstein’s field equations, that contributes to the energy–

momentum tensor. One of the remarkable features of dark energy is its negative pressure

and repulsive gravity characteristics led by the equation of state wde =
pde
ρde

. On the other

hand, there are also alternative gravity theories accounting for this cosmic acceleration

by modifying the geometrical aspects of the field equation. Observational data from the

Planck 2018 CMB [7–10] suggest that 70% of the universe’s energy budget is in the form of

dark energy, while the remaining 30% of the energy budget of the universe is attributed

to non-relativistic baryonic and non-baryonic pressureless (pm = 0) dust matter, with an

equation of state (EoS) of wm = 0. In recent years, various candidates have been put forth

to elucidate the nature of dark energy, with the cosmological constant standing out as one

of the simplest models, embodying constant dark energy with an EoS of wΛ = −1. Despite

its alignment with observational data to a certain accuracy, the Λ CDM model grapples

with unresolved cosmological constant and coincidence problems [16–20]. In response to

these limitations, dynamical dark energy models, particularly those involving scalar fields,

have gained prominence [21–26], with scalar field serving as a candidate of dynamical

dark energy; it is dubbed as φCDM and has a dynamical EoS wφ. Recent data [27–30] also
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suggest a dynamical form of dark energy. The nature of dark energy has been the subject of

several works in the literature. As alternatives to the cosmological constant, dynamic dark

energy models have been developed, in which the EoS varies with time. There are many

different dynamical dark energy models, such as quintessence fields [31–33], which possess

tracker behaviour, and late time accelerating solutions of modified Friedmann equations

lead by modification of gravity; other models include tachyon models, holographic dark

energy models, chaplygin gas, phantom, k-essence, φCDM, and w(z)CDM [34–47].

Tachyonic scalar fields, originating from string theory, provide a compelling alternative

to conventional scalar field dark energy models [48–50]. They represent the negative-mass

mode within the open string perturbative spectrum; while their application in the dark en-

ergy domain is primarily phenomenological, we have specifically examined the behaviour

of the scalar field near the inflection point. The study of scalar field dynamics in cosmology

has been important in studying both early and late acceleration; moreover, in particular, a

potential showing inflection can lead to an ultra slow-roll phase, sustaining the acceleration.

Similar mechanisms arise in other contexts, such as the interplay between quantum and

cosmological phenomena, where scalar fields play a significant role in bridging the gap

between fundamental physics and large-scale cosmic evolution [51–56].

Recent studies by various researchers have also investigated dark energy models incor-

porating inflection points, particularly in the context of inflation [55–74], where the scalar

field near an inflection point of the potential rolls slowly to produce inflation. Similarly, at

low redshifts, an inflection point in the potential can cause the scalar field to roll slowly

enough to explain cosmic acceleration. To study the dynamics and resulting behaviour

of any scalar field model, the potential V(φ) plays a pivotal role. A potential with an

inflection point allows the field to exhibit a smooth transition (due to its flatness) between

different cosmological phases by introducing a feature that facilitates slow rolling. When

attempting to achieve a current equation of state value of wφ ≈ −1, which could lead to

accelerated expansion, this slow-roll mechanism could be a key ingredient. By imposing

the approximation in which the kinetic term φ̇2 of the tachyon is significantly smaller

than unity, i.e., φ̇2
<< 1, we can position φ in an extremely flat region of the potential.

Potentials with an inflection point are good candidates for providing flat regions suitable

for the ultra slow roll approximation. We consider the late-time behaviour of the tachyon

scalar field in the accelerated expansion of the universe, which shares similarities with

early inflation. Numerous authors have examined the cosmic behaviour of tachyonic scalar

fields [49,75,76], discovering possibilities for both pure exponential growth and power-law

expansion. We try to investigate the possibilities based on the superposition of these forms,

because the current data have not yet determined the precise shape of the evolution of the

scale factor.

Dynamical Setup

In this section, we present the mathematical framework on which the dynamics are

based. We choose GR to be the background theory. The cosmological principle is encoded

in the FLRW metric, which is expressed in terms of spherical co-moving coordinates,

as follows:

ds2 = gµνdxµdxν ≡ −dt2 + a2(t)

(

dr2

1 − Kr2
+ r2dθ2 + r2 sin2 θdφ2

)

. (1)

Here, we have taken c = 1. In the above equation, a(t) is the scale factor and the parameter

k is the spatial curvature, with the values K = −1, 0, 1 corresponding to spatially open,
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flat, and closed geometry, respectively. For our model, we have taken the effective four-

dimensional action for the tachyonic field, which is given as follows [77,78]:

Sφ =
1

2κ2

∫

d4x f (φ)
√

−gR +
∫

d4xV(φ)
√

−g
√

(

1 + gµν∂µφ∂νφ
)

, (2)

where V(φ) represents the potential, κ2 = 1
M2

p
= 1, and f (φ) = 1 under minimal coupling.

This action introduces a non-canonical scalar field with a modified (DBI) kinetic term, often

inspired by high-energy theories. The square-root structure resembles the DBI action from

string theory. The energy–momentum tensor for Equation (2) can be written as follows:

T
(φ)
µν =

V(φ)∂µφ∂νφ
√

1 + gαβ∂αφ∂βφ
− gµνV(φ)

√

1 + gαβ∂αφ∂βφ (3)

Einstein’s field equation for a spatially flat universe (K = 0) gives the Friedmann

equations as follows:

H2 =

(

ȧ

a

)2

=
8πG

3
ρ, (4)

and
ä

a
= −4πG

3
(ρ + 3p), (5)

where H(t) ≡ da
dt is the Hubble parameter and ρ = ρφ + ρm and p = pφ + pm denote the

total energy and the pressure, respectively. In general, multiple components, such as matter,

radiation, and dark energy, can contribute to the energy–momentum tensor, each with

a different equation of state. However, during early time periods, radiation dominated,

after which matter started dominating more effectively. At later time periods (z −→ 0),

dark energy dominated the universe, leading to cosmic acceleration. We are therefore

driven to focus on only two components: pressureless matter and dark energy. For cosmic

acceleration, we have ρ + 3p < 0. The continuity equation is given as follows:

ρ̇ + 3H(1 + w)ρ = 0. (6)

where

ρ=ρm + ρφ (7a)

and

p=pm + pφ (7b)

In Section 2, the investigation of the behaviour of the tachyonic scalar field is carried out

near the inflection point. We consider three different possibilities of cosmic behaviours; the

first two cases involve conventional power-law expansion and pure exponential growth, i.e.,

a(t) = αtn, a(t) = γeβt, respectively, and the third case is of quasi-exponential expansion of

the scale factor a(t) = ηtneβt. For these three cases, we calculate the respective potentials

and then investigate the behaviour of that particular model near their respective inflection

points. In Section 3, dynamical analysis for the above two cases is carried out.

2. Inflection Point of Tachyonic Scalar Field

Using Equation (3) for a flat (K = 0) FRLW universe, the energy density and pressure

for the tachyonic scalar field are given as follows:
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ρφ =
V(φ)
√

1 − φ̇2
, (8)

pφ = −V(φ)
√

1 − φ̇2. (9)

Here, the overdot denotes the derivative with respect to time. V(φ) is the potential asso-

ciated with the tachyonic field that we have calculated in the upcoming subsections for

each case.

By using the following equation:

ä

a
= H2 + Ḣ (10)

and plugging Equations (8) and (9) into Equations (4) and (5) for the scalar field, we obtain

the following form of the second Friedmann equation:

ä

a
=

κ2V(φ)

3
√

1 − φ̇2

(

1 − 3

2
φ̇2

)

(11)

Now, for the accelerated expansion of the universe, we have ä > 0; thus, using Equation (11)

and φ̇2
<

2
3 , the EoS (equation of state) for φ is given by the following equation:

wφ =
pφ

ρφ
= (φ̇2 − 1) (12)

In terms of Hubble parameter, the equation of state wφ can be written as follows:

wφ = −1 − 2Ḣ

3H2
(13)

For cosmic acceleration, the possible range of the values of wφ is −1 ≤ wφ < − 1
3 and

0 < φ̇2
<

2
3 . Using Equations (8) and (9), one can easily find the equation of motion for this

tachyonic model, as follows:

φ̈

(1 − φ̇2)
+ 3Hφ̇ +

1

V

dV

dφ
= 0. (14)

Now, using Equations (4) and (5), φ(t) and V(φ) can easily be written in the forms of H

and Ḣ, as follows:

φ(t) =
∫



dt

√

− 2Ḣ

3H2



 (15)

V(t) =
3H2

κ2

√

1 +
2Ḣ

3H2
(16)

Using the two equations above, we are able to find the potential and their respective

inflection point behaviour for the three cases discussed below.

2.1. For Case I: a(t) = αtn

In this subsection, we consider the simplest model for describing the expansion of the

universe in certain cosmological scenarios, namely, the power-law form of scale factor; this

suggests that the universe’s expansion follows a simple power-law relationship with time.

i.e., a(t) = αtn. Here, α is a constant describing the overall scale of the universe, and the

exponent n determines the rate of expansion—it has to be greater than 0 for the universe to
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experience accelerated expansion. For this kind of model, the Hubble parameter is in the

following form:

H =
n

t
(17)

Upon substituting this value of H into Equation (16) and using Equation (15), we obtained

the following form of the potential:

V(φ) = V0(φ − φ0)
−2 (18)

where V0 = 2n
κ2

√

1 − 2
3n . From the above Equation (18), we found there is no such inflection

point for this particular model; we can also see in Figure 1 that the curve shows no inflection,

but one can observe that the scalar field is rolling slowly along the potential. One can apply

slow roll approximation directly into Equation (14) using φ̇2
<< 1 =⇒ 1 − φ̇2 ≈ 1 and

can find the evolution of the scalar field with respect to time, but, in this case, wφ will be

very close to −1. However, in our case, we have calculated the evolution equation directly

from Equation (15), resulting in the following equation:

φ(t) =

√

2

3n
(t2 − t2

0) + φ0 (19)

where t = t0 when φ = φ0, and the equation of state (Equation (13)) is as follows:

wφ = −1 +
2

3n
(20)

For n = 2/3, the scale factor evolves as a ∝ t2/3, corresponding to a matter-dominated

universe, and as we can see from Figure 1 the potential corresponding to this case vanishes.

This, in return, leads to pφ = 0, which corresponds to pressureless fluid with wφ = 0. For

n > 2/3, the equation of state satisfies wφ > −1, indicating a quintessence-like behaviour.

If we set n > 1, then the equation of state satisfies wφ < −1/3, which is a necessary

condition for late-time cosmic acceleration. This supports an expanding universe consistent

with observations of dark energy-driven acceleration.

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ϕ

V
(ϕ

)

n=2/3

n=0.8

n=1

n=1.1

n=2

Figure 1. The plot shows the variation of φ with potential V(φ) for different values of the exponent

factor n (n = 2/3, n = 0.8, n = 1, n = 1.1, and n = 2) for fixed value of φ0 = 0.1.



Universe 2025, 11, 131 6 of 18

In terms of cosmological redshift, we can also rewrite the above Equation (19) as

follows:

φ(1 + z) =

√

2

3nα2/n

√

√

√

√

(

(

1

1 + z

)2/n

−
(

1

1 + z0

)2/n
)

+ φ0 (21)

Here, the initial value of redshift is taken to be z0 −→ 1100. Figure 2 shows the evolution of

φ for different values of n. Also, α is a normalization constant and, for simplicity, is taken

to be unity. We examine the behaviour of a scalar field φ with respect to redshift z. As the

redshift z approaches zero, φ(z) increases asymptotically with z −→ 0, corresponding to the

late-stage evolution of the universe. The field is characterized by a unique potential which

is derived from the scale factor; this potential governs its dynamics and the corresponding

impact on cosmic expansion. Here, the case n < 1 is of interest, as it provides a smooth/slow

evolution of the scalar field φ at a late epoch, resulting accelerated expansion at a late stage.

This slow-roll regime results in the field behaving similarly to a cosmological constant,

with a near-constant energy density. As a consequence, the universe continues to expand at

an accelerating pace.

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

1+z

ϕ
(1
+
z
)

n=2/3

n=0.8

n=1

n=1.1

n=2

Figure 2. The plot shows the evolution of φ with cosmological redshift z for different values of the

exponent factor n (n = 2/3, n = 0.8, n = 1, n = 1.1, and n = 2), with the normalization constant

α = 1 (for simplicity) and φ0 ∼ 0.1.

2.2. For Case II: a(t) = γeβt

For this particular case, we take the simplest exponential form of the scale factor

a(t) = γeβt, where γ and β are the constants. β determines the overall rate at which

the scale factor changes and can have two possibilities for its values, as follows: the first

possibility is β > 0, which implies the exponential growth of the universe, i.e., an expanding

universe; the second possibility is β < 0, which implies exponential decay, i.e., a contracting

universe. As we know, during early epochs the universe experienced expansion, so we

can discard the second possibility. Now, the second constant γ is a normalization factor

that sets the overall scale of the universe at a particular time t, and H for this exponentially

expanding universe is proportional to the constant below:

H = β (22)

Now, using this value of H in Equations (15) and (16), we obtain the following form

of potential:

V(φ) =
3β2

κ2
(23)
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Therefore, for this particular model, there is no inflection point because the potential

is revealed to be constant; this is consistent with the quintessence model, if the same

calculations are carried out for the quintessence model with the same scale factor. Using

Equations (14) and (23) and after applying the slow roll approximation, the scalar field φ is

also revealed to be a constant.

2.3. For Case III: a(t) = ηtneβt

For this case, we consider the universe to be the mixed form of the scale factor given

by a(t) = ηtneβt, i.e., the product of power-law and exponential terms, where η, n and β

are the constants determining the overall rate at which the scale factor changes. For this

model, the Hubble parameter is obtained as follows:

H =
n

t
+ β (24)

Using Equations (15), (16), and (24), we can derive the following form of potential and the

scalar field, in terms of t, as follows:

V(t) =
3(n + βt)2

κ2t2

√

1 − 2n

3(n + βt)2
(25)

Now, using Equation (15), the evolution of the scalar field with respect to cosmic time can

be written as follows:

φ(t) =
1

β

√

2n

3
log |n + βt|+ C (26)

where C is some integration constant. We assume that, at some t = t0 = 0, the scalar field is

φ = φ0; thus, the above equation can be rewritten as follows:

φ(t) =
1

β

√

2n

3
log

(

n + βt

n

)

+ φ0 (27)

Figure 3 shows the scalar field is increasing with cosmic time t for all set of values of n

as mentioned in plot and for fixed β = 0.1. Now, the equation of state (Equation (13)) for

this case follows:

wφ(t) = −1 +
2n

3(n + βt)2
(28)

which is dynamic and varies with cosmic time t. Figure 4 shows the variation in equation

of state with respect to cosmic time, which is in Gyr. Within the plot, the straight dotted

black line shows today’s cosmic time. One can observe from the figure that the equation of

state varies with time and that wφ −→ 1 at a late time period (a point to remember here is

that wφ has both dark energy and matter components).

Equation (27), in terms of t, can be rewritten as follows:

t = −n

β
+

n

β
exp

(

β

√

3

2n
(φ − φ0)

)

(29)

Upon substituting Equation (29) into (25), we obtain the following form of potential V(φ),

which depends on the scalar field φ, as follows:

V(φ) =

3β2 exp

(

2β
√

3
2n (φ − φ0)

)

κ2

(

exp (β
√

3
2n (φ − φ0))− 1

)2

√

√

√

√

√

1 − 2

3n exp

(

2β
√

3
2n (φ − φ0)

) (30)
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0 2 4 6 8 10 12 14

0

2

4

6

t

ϕ
(t
)

n=1/2

n=2/3

n=0.8

n=1

n=1.1

n=2

Figure 3. The plot shows the evolution of φ with cosmic time t for different values of n, β = 0.1, and

φ0 = 0.1

0 5 10 15 20

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

t

w
ϕ
(t
)

t = 13.8

n=1/2

n=2/3

n=0.8

n=1

n=1.1

n=2

Figure 4. The plot shows the evolution of wφ with cosmic time t (Gyr) for different values of n,

β = 0.1, and φ0 = 0.1.

Using binomial expansion and simplification, Equation (30) can be rewritten as follows:

V(φ) =
3β2

κ2











exp

(

2β
√

3
2n (φ − φ0)

)

− 1/3n

(

exp

(

β
√

3
2n (φ − φ0)

)

− 1

)2











(31)

where, for the simple case, we use the following assumption:

exp

(

β

√

3

2n
(φ − φ0)

)

≈ 1 +

(

β

√

3

2n
(φ − φ0)

)

(32)
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This above assumption constrains the parameter β as 0 < β << 1, so that, with an increase

in power, the higher-order terms become negligibly small and the relationship between

potential and scalar field can be written as follows:

V(φ) =
2n

κ2

(

(1 − 1
3n ) + 2β

√

3
2n (φ − φ0) +

3β2

2n (φ − φ0)
2

)

(φ − φ0)2
(33)

Solving Equation (33) above using the approximation mentioned in Equation (32) results

in the above potential showing inflection at the following point:

φin f lection =

(

1 − 3n

2nβ

)

√

2n

3
+ φ0 (34)

The above equation, Equation (34), is the inflection point around which the curve

changes its behaviour, and this inflection point serves as a critical location where the

field experiences slow rolling. Using the Lambert W function and the scale factor

a(t) = ηtn exp βt, the redshift z and cosmic time t are related, as shown below:

t =
n

β
W
(

β

n
(η(1 + z))−1/n

)

(35)

where the Lambert W function is defined as the root of a transcendental equation of

the form W(y) expW(y) = y and has distinct branches, among which two are real; for

more information, readers can refer to [79–81]. On stetting the value of cosmic time t in

Equation (27), the evolution of the equation of state and the scale factor, in terms of redshift

z, can be obtained, respectively, as follows:

wφ(z) = −1 +
2n

3(n + nW( β
n (η(1 + z))−1/n)2

(36)

and

φ(z) =
1

β

√

2n

3
log

[

1 +W
(

β

n
(η(1 + z))−1/n

)]

+ φ0 (37)

Using Equations (25) and (35), potential in terms of redshift can be written as follows:

V(z) =
3β2

κ2

(1 +W
(

β
n (η(1 + z))−1/n

)2

W
(

β
n (η(1 + z))−1/n

)2

√

√

√

√

1 − 2

3n(1 +W
(

β
n (η(1 + z))−1/n

)2
(38)

Figure 5 shows how scalar field is varying with potential and Figure 6 shows the

variation in equation of state with respect to cosmological redshift z. From this figure,

we observe that, for lower values of n, the equation of state remains close to wφ ≈ 0,

resembling the matter-dominated era, while the field itself behaves similarly to dust-like

matter. For small n values, the equation of state falls below −1/3, suggesting that the

same field can transition into a dark energy-like component at late time periods, driving

accelerated expansion. Figure 7 illustrates the behaviour of the scalar field with redshift,

indicating that φ takes higher values during late time periods compared to a higher redshift.

Figure 8 illustrates the evolution of the potential V(z) as a function of redshift. At lower

redshifts, corresponding to late-time cosmology, the potential flattens due to the presence

of an inflection point. This behaviour allows the scalar field to enter a slow-roll phase,

which can drive the accelerated expansion of the universe.
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Figure 5. The plot shows the variation in the scalar field φ with respect to the potential V(φ) for

different sets of values of n with a fixed value of β << 1, specifically β = 0.1 and φ0 = 0.1.
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Figure 6. The plot shows the variation in equation of state wφ with respect to cosmological redshift

z for different sets of values of n (n = 1/2, n = 2/3, n = 0.8, n = 1, n = 1.1 and n = 2 from top to

bottom) with a fixed value of β << 1, specifically β = 0.1 and φ0 = 0.1. Here in plot vertical solid

black line represents the present epoch with z = 0 while the horizontal blacksolid line represents null

value of equation of state parameter wφ.
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Figure 7. The plot shows the variation in the scalar field φ with respect to cosmological redshift z for

different sets of values of n with a fixed value of β << 1, specifically β = 0.1 and φ0 = 0.1.
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Figure 8. The plot shows the variation in potential V(φ(z)) with respect to cosmological redshift z

for different sets of values of n with a fixed value of β << 1, specifically β = 0.1, η = 1, and φ0 = 0.1.

3. Dynamical Analysis at Inflection Point

In this section, we perform a dynamical analysis of our inflection point tachyon model.

Dynamical analysis [82–85] is a powerful tool used to study the dynamics of a given model

under consideration and its behaviour over time, thereby providing insights into its long-

term behaviour. It allows us to analyze the contribution of various components of the

universe, including dark matter, dark energy, and ordinary matter, by identifying and

analyzing the critical points and their stability. The background equations governing the

model are as follows:

H2 =
κ2

3
ρ (39a)

ä

a
=

−κ2

6
(ρ + 3p) (39b)

Here again, as mentioned earlier, ρ and pm contain two components, namely scalar field

and matter. We set the dimensionless variables [82] as follows:

X = φ̇ ≡ Hφ′ (40a)

Y =
κ
√

V√
3H

(40b)

Γ =
V(d2V/dφ2)

(dV/dφ)2
(40c)

Here, the scalar field has inverse mass dimensions and ′ signifies the derivative with respect

to η = log a. In the above equation, the term Γ naturally approaches zero at the inflection

point of the potential. By definition, an inflection point is where the second derivative of

the potential vanishes, i.e., d2V/dφ2 = 0. This condition ensures that the potential flattens

out locally, allowing the scalar field to undergo slow roll. The slow-roll behaviour, in turn,

facilitates a smooth transition between different cosmological phases, making the inflection

point a crucial feature in models describing cosmic acceleration. The vanishing of Γ at this

point further simplifies the dynamical system.

λ = −dV/dφ

κ
√

V3
(40d)
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Upon introducing the inflection point from Equation (34) into Equation (40d), we obtain

the following value of λ:

λ =
1√
2n

(

3β2

2n
+

2β

3

√

3

2n

)(

4β

3

√

3

2n
+

3β(1 − 3n)

4n2

√

2n

3

)−3/2

(41)

Here, we obtain an autonomous two-dimensional system which has been previously

studied by [49]. Two other parameters (see Equation (40d)) still have φ dependency; upon

differentiating these aforementioned dimensionless equations, namely Equations (40a),

(40b), and (40d) with respect to η = loga and using Equations (39a) and (39b), one can

obtain the following equations:

X′ =
dX

dη
= (X2 − 1)(3X − λ

√
3Y) (42a)

Y′ =
dY

dη
=

−Y

2

(

3Y2 (1 + wm − X2)√
1 − X2

− 3(1 + wm) +
√

3λXY

)

(42b)

λ′ =
3
√

3

2
λ2XY (42c)

Using the following constraint equation:

Ωφ =
Y2

√
1 − X2

(43)

the equation of state and the energy density of the tachyonic scalar field, in terms of these

dimensionless parameters, can be written as follows:

wφ = X2 − 1 (44)

Ωm = 1 − Y2

√
1 − X2

≤ 1 (45)

and the effective equation of motion can be written as follows:

we f f = wm

(

1 − Y2

√
1 − X2

)

− Y2
√

1 − X2 (46)

The critical points for Equations (40a) and (40b) are discussed below and are listed in

Table 1:

Table 1. The table shows the critical points of the system (40a)–(45) at the inflection point with λ.

X Y Existence we f f Stability

0 0 ∀n, (1 + wm) wm Unstable Saddle point

wm = 1 1 Stable Node

±1 0 ∀n, (1 + wm) − Unstable Nodes

Ycλ√
3

Yc =
√

−λ2+
√

λ4+36
6 ∀(1 + wm), −Y2

c

√

1 − λ2Y2
c

3 + Stable node

0 < n < 1
wm



1 − Y2
c

√

1− λ2Y2
c

3





There are five critical points within the dynamical analysis at the inflection point, as

shown in Figure 9 and discussed below:

(a.) Point O: For this critical point, X = 0 and Y = 0; the energy density of the

tachyonic scalar field is revealed to be 0, thereby signifying the matter-dominated epoch.

From the Friedmann constraint equation, Equation (45), we can see that Ωm = 1 and



Universe 2025, 11, 131 13 of 18

we f f = wm again signify the matter-dominated epoch; thus, this origin point of the phase

space refers to the unstable saddle point, which has the following eigenvalues:

ν1 = −3 < 0 (47)

and

ν2 =
3

2
(wm + 1) (48)

For this critical point, if (1 + wm) > 0, the point is an unstable saddle point. This saddle

point demonstrates attractor behaviour, as shown in Figure 9, and, at this point, the value

of wφ = −1 imitates the cosmological constant behaviour.

A

B- B+O

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

X

Y

Figure 9. A phase portrait of the dynamical system for n = 1/3 with λ −→ 1 and wm = 0, near

the inflection point φin f lection with β << 1 (β = 0.1). In plot A, O, B− and B+ represents the critical

points. Here, stable point A in the phase space shows the region where the universe undergoes

accelerated expansion.

(b.) Point B_ : For this point, we obtain the following critical points: X = −1 and

Y = 0. At this critical point, the tachyonic equation of state vanishes, i.e., wφ = 0; we also

obtain the following eigenvalues:

ν1 = 6 > 0 (49a)

and

ν2 =
3

2
(wm + 1) > 0; i f (1 + wm) > 0 (49b)

Therefore, the critical point B_ is an unstable node representing the past attractor, but, here,

the tachyon field behaves like dust-like matter, as in the case with wφ = 0 and we f f = wm.

(c.) Point B+: X = 1, Y = 0. This point also represents an unstable node with the same

eigenvalues as mentioned above, as follows:

ν1 = 6 > 0 (50a)

and

ν2 =
3

2
(wm + 1) > 0; i f (1 + wm) > 0 (50b)

This point also shows the same past attractor behaviour, and the field shows dust-like

behaviour, with we f f = wm.

(d.) Point A: (X = λYc√
3

, Yc =
√

−λ2+
√

λ4+36
6 ) is the stable node, with the following

eigenvalues:
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ν1 = −3 +
(−λ4 + λ2

√
λ4 + 36)

12
(51)

ν2 = −3(1 + wm) + 2
(−λ4 + λ2

√
λ4 + 36)

12
(52)

We obtain a stable point when (1 + wm) >
(−λ4+λ2

√
λ4+36)

18 ; for this case, Ωφ =
3(−λ2+

√
λ4+36)

18

√

1−−λ4+
√

λ4+36
18

, thereby showing dark energy-like behaviour at this point. This sta-

ble point also depends on the values of n; as the value of n increases, this stable point is

shifting more towards X = 1, and this behaviour can be seen in the phase portraits for

different values of n. The critical point A, as shown in Figures 9–11, represents the stability

of the derived dynamical system of equations and shows the accelerated expansion of the

universe at the inflection point, which is incorporated in the system via the variable λ, and

the field experiences accelerated expansion at a late time period.

A

B- B+O

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

X

Y

Figure 10. Phase portrait of the dynamical system for n = 2/3 with λ > 1 and wm = 0, near the

inflection point φin f lection with β << 1 (β = 0.1). In plot A, O, B− and B+ represents the critical

points. The stable point A in the phase space shows the region where universe undergoes accelerated

expansion; however, because of the increase in n, point A is shifting towards X∼1.

A

B- B+O

-1.0 -0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

X

Y

Figure 11. Phase portrait of the dynamical system for n = 0.8 with λ ∼ 5 and wm = 0, near the

inflection point φin f lection with β << 1 (β = 0.1). In plot A, O, B− and B+ represents the critical

points. The stable point A in the phase space shows the region where universe undergoes accelerated

expansion; however, because of the increase in n, point A is shifting more towards 1.
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4. Conclusions

In this paper, the evolution of a minimally coupled tachyonic scalar field at the

inflection point has been investigated within an accelerating universe. The inflection point

signifies a transition between regions of stability and instability and provides a flat region

suitable for the ultra slow-roll approximation. In fact, inflection point models can also offer

a robust framework for describing the inflationary phase as it can provide a prolonged

period of slow-roll inflation. In this paper, the field’s dynamics have been investigated for

different forms of expansion factors, and by considering a different form of scale factor,

a form of potential is derived; only the mixed form of potential has shown the inflection

point. We have mainly considered the following three categories of scale (expansion) factor:

(a) power-law expansion (a(t) = αtn); (b) the exponential form (a(t) = γeβt); and (c) the

mixed form (a(t) = ηtneβt). For all these categories, the potentials and the corresponding

possible inflection points have been calculated, and the dynamical system of equations for

the model has been obtained. Out of these three categories, the mixed form shows inflection

at φin f lection, as given in Equation (34), and, near this point, under slow roll approximation,

the evolution of the scalar field with cosmic time (t) and cosmological redshift (z) shows the

accelerated expansion of the universe at late time periods near the inflection point. Figure 8

also indicates that a potential with an inflection point can provide a near-flat region for the

field to slow roll, which may derive the accelerated cosmic expansion.

In Section 3, the dynamical analysis carried out shows that the critical point A, as

shown in Figures 9–11, represents the stability of the derived dynamical system of equations

and shows the accelerated expansion of the universe at an inflection point, which is

incorporated in the system via the variable λ, and the field demonstrates accelerated

expansion at late time periods.

In addition to the research currently being carried out, it is important for future works

to study the inflection point of scalar field models in the presence of quantum gravity effects.

In particular, scalar field dynamics play a significant role in the post-bounce scenario of

loop quantum cosmology as it gives rise to an inflationary solution [86,87]. Our future

pursuits will include the investigation of how inflection points are affected due to quantum

geometric correction for scalar fields.
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