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Abstract 

A general theory is presented to const ruct link polynomials , topological invari­
an t s for kno t s and l inks, from exact ly solvable ( integrable) models . Represen­
ta t ions of t h e braid g roup and t h e Markov traces on the representa t ions are 
m a d e th rough t h e general theory which is based on fundamenta l p roper t i es of 
t h e models . In addi t ion , the equivalence of algebraic and graphical formula t ion 
is proved. Various examples including Alexander , Jones , Kauffman and new 
link polynomials are explicitly shown. In a word, the soliton theory contains an 
essence of t he kno t theory. 

1 I n t r o d u c t i o n 

In 1965, Zabusky and Kruskal [1] in t roduced 
a new concept , soliton, in the s t u d y of nonlin­
ear waves. T h e soliton sys tem has an infinite 
number of conserved quant i t ies and is proved 
to be a completely in tegrab le sys tem. W h e n 
we extend the soliton theory to q u a n t u m com­
pletely integrable sys tems , there emerges a 
unified viewpoint on various exact ly solvable 
models in 1 + 1 d imensional field theory and 
in 2-dimensional classical s ta t i s t ica l mechan­
ics. To each mode l we can associa te a fam­
ily of commut ing transfer ma t r i ces which are 
generators of an infinite n u m b e r of conserved 
quant i t ies . T h e condit ion for the commutab i l -
ity is the Yang-Baxte r relat ion. [2,3,4,5] 

Recently, the Yang-Baxte r relat ion has been 
found to be a key to several fields in m a t h e ­
mat ica l physics. In par t icu la r , Y. Aku t su and 
the au thors found a general m e t h o d to ob ta in 
various link polynomials [6,7,8,9] and thei r ex­

tensions from exactly solvable models . [10,11, 
12,13,14,15,16,17,19,20,21,22,23] T h e purpose 
of this pape r is to summar ize the general the ­
ory for cons t ruc t ion of known and new link 
polynomials from exact ly solvable models . 

Several problems in physics such as p a t h 
integrals , fractional s ta t i s t ics and q u a n t u m 
gravity t heo ry are re la ted to t h e braid g roup . 
[24,25,26,27,28,29] In par t icu lar , it is in teres t ­
ing t h a t solvable models and conformai field 
theories share m a n y m a t h e m a t i c a l features in 
common. [30,31,32,33,34] 

T h e out l ine of this p a p e r is given in t h e fol­
lowing. In §2, t h e Yang-Bax te r relat ions for 
S-matrices, vertex models and I R F models are 
in t roduced . Then , the m o t h o d for cons t ruc­
tion of the representa t ions of t h e b ra id group is 
given. In §3, l ink polynomials are cons t ruc ted 
by algebraic and graphical approaches . T h e 
crossing s y m m e t r y is used for t he graphica l 
calculat ion of t he l ink polynomials . In §4, 
apppl icat ions to several models are shown. 
Link polynomials ob ta ined include Alexander , 
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Jones , Kauffman and new link polynomials . 
In §5, link polynomials are constructed from 
solvable models with graded symmetry . T h e 
last section is devoted to concluding remarks . 

2 Exact ly solvable models 
and braids 

Let us first in t roduce factorized S-matrices. 
We wri te the ampl i tude of the sca t t r ing pro­
cess: i —• k, j —• I as 5yJ(u) , where u is the 
rapidi ty difference of incoming (outgoing) par­
ticles. In general, the "charge" variables t , j , k 
and t of Sji(u) take vector values (weight vec­
tors) . T h e factorized S-matrices represent the 
elastic scat ter ing of particles where only the 
exchanges of m o m e n t a and the phase shifts oc­
cur. T h e rapidi ty difference of the scat ter ing 
particles can b e depicted by the angle in t h e 
d iagram. W h e n 5 J - J ( u ) is non-zero only for t he 
case i + j = k + I, we say t ha t t he model has 
"charge conservation" property. [10,19,20] 

T h e Yang-Baxter relation for the S-matrices 
reads as 

This relation is often referred to as the factor­
ization equat ion [2,5], 

In two-dimensional s tat is t ical mechanics, [3, 
20] there are two types of solvable models, ver­
tex models and I R F models . We int roduce 
vertex models . T h e Bol tzmann weight (stat is­
tical weight) w(i1ji k, I] u) of a vertex model is 
defined for a configuration ky£} round a 
vertex. Here the pa rame te r u is called spectral 
pa rame te r which controls t he anisotropy (and 
s t rength) of the interact ions for the model. 

For vertex models the Yang-Baxter relation 
is given by 

It is known tha t factorized S-matrices are 

mathemat ica l ly equivalent to the correspond­
ing solvable vertex models . 

We consider I R F models . T h e Bol tzmann 
weight u>(a, 6, c, d; u) of an I R F model is de­
fined on a configuration {a, 6, c, d} round a 
face. I R F models have constra ints on the con­
figurations. By b ~ a we denote t h a t the 
"spin" b is admissible to the "spin" a under 
the constraint of the model. If the condit ions 
b ~ a}a ~ d}b ~ c and c ~ d are all satis­
fied, then the configuration {a, 6, c, d} is called 
to be allowed. T h e Bol tzmann weights for not-
allowed configurations are set to be 0. For I R F 
models the Yang-Baxter relation is wr i t ten as 

T h e I R F configuration a, 6, c, d corresponds to 
the vertex configuration by i = a — d, j = b — 
a,k — b — c and I = c — d. 

Factorized S-matrices satisfy the following 
basic relations in addit ion to the Yang-Baxte r 
relation. [10,14,15,19,20] 
1) s t anda rd initial condition 

where 5 t J- is the Kronecker 's symbol. 
2) inversion relation (uni tar i ty condit ion) 

where p(u) is a model-dependent function. 
3) second inversion relation (second uni ta r i ty 
condit ion) 

We call the pa ramete r A crossing pa ramete r 
and {r(i)} crossing multipliers. 
4) crossing symmet ry 
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Here, we have in t roduced the no ta t ion k for 
the "an t ipa r t i c l e" of A:. We assume tha t r(k) = 
l/r(k). Note t h a t the second inversion re­
la t ion and t h e crossing s y m m e t r y define t he 
crossing mult ipl iers . 

T h e B o l t z m a n n weights for most of I R F 
models satisfy t he basic re la t ions correspond­
ing to (4)-(7) . For example , the crossing sym­
m e t r y is 

where {ip(t)} are t he crossing mult ipl iers for 
the I R F model . Crossing mult ipl iers { V ' C O } 
for an I R F model are related to those for 
the cor responding vertex model by r2(j) = 
tp(b)/ip(a), when j = b — a and b ~ a. We 
shall see t h a t t h e basic relat ions and the Yang-
B a x t e r relat ion are re la ted in t imate ly to t h e 
local moves on l ink d i ag rams , known as t he 
Reidemeis ter moves in knot theory. 

In order to re la te exact ly solvable mod­
els wi th the braid group we in t roduce Yang-
Bax te r ope ra to r Xi(u). [10,14,19,20] For fac-
torized S-matrices, we define Yang-Bax te r op­
e ra to r by 

Here / ^ d e n o t e s the ident i ty ma t r ix and e aj, a 
m a t r i x such t h a t (eafc);jk = Sja6kb- T h e Yang-
B a x t e r opera tors {Xi(u)} satisfy the following 
relat ions (Yang-Baxte r a lgebra) , 

In te rms of t he Yang-Bax te r opera tors , 
the Y a n g - B a x t e r relat ions for factorized S-
matr ices , solvable ver tex and I R F models are 
in the same form. 

T h e braid g roup Bn [35] is defined by a set 
of genera tors , b\, • • -, 6 n _ i which satisfy 

T h e opera t ion 6j makes (i + l ) - t h s t r ing cross 
above i-th s tr ing. 

Braid is a fundamenta l object in kno t the­
ory since any oriented l ink can be expressed by 
a closed braid. T h e equivalent braids express­
ing t h e same link are mutua l ly t ransformed 
by a finite sequence of two types of opera t ions , 
Markov moves I and IL T h e Markov t race 
is a l inear functional on t he representa t ion of 
the braid group which have the following p rop­
erties ( the Markov proper t ies ) : 

F rom t h e Markov t race we ob ta in a l ink poly­
nomial a ( - ) as [10,19,20] 

Here e(A) is t he exponent s u m of b^s in t he 
braid A, which is equivalent t o the wr i the of 
the l ink d iag ram (cf.(30)). I t is easy t o show 
tha t a(-) defined by (16) is indeed invar iant 
under the Markov moves. 

T h e braid opera to r G i ( + ) , t he inverse op­
era tor G»(—) and the ident i ty I are given by 

T h e l imit u —• oo (more precisely, an infinity 
in a cer ta in direction in t h e complex i t -p lane) 
requires t ha t factorized S-matr ices ( the Boltz­
m a n n weights) be pa ramet r i zed by hyperbol ic 
or t r igonometr ic functions. In s ta t i s t ica l me­
chanics, it implies t h a t the mode l is a t t he 
criticality. Hereafter we shall wri te t he ma t r i x 
elements of the bra id ope ra to r as 

Then we can express t h e braid opera to r (17) 
cons t ructed from the Yang-Bax te r ope ra to r as 
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To summarize, corresponding to an exactly 
solvable model, we obtain a representation of 
the braid group by using the formula (17). 

3 Construction of link 
polynomials 

3.1 T h e Markov trace 

We shall obtain link polynomials by construct­
ing the Markov trace on the representations 
of the braid group derived from the solvable 
models. For factorized S-matrices and vertex 
models, the Markov trace takes the following 
form [10,19,20] 

where 6% — 6ab is the Kronecker's symbol. For 
the models with the crossing symmetry (and 
the second inversion relation), r(p) is noth­
ing but the crossing multiplier of the model. 
T h e t race < (̂-) denned in (21) is the Markov 
trace since we can prove the Markov property 
I by the "charge conservation" property and 
the Markov property II by the following con­
ditions: 

T h e r-factors are related to x ( i ) as f / r = 
x ( - ) / x ( + ) . 

We can prove the extended Markov property 
[14,16,19,20] : 

where the function H(u;rj) is called character­
istic function. This relation is an extension of 
(22) into the case of finite spectral parameter . 

For I R F models we introduce a "constrained 
trace" fr(A) by 

where the symbol E with "represents the sum-
mataion over admissible multi-indices {li : 
A+i ~ U} for i = 0, • • •, 7i - 1 with being 
fixed. Then the Markov trace <f>(-) is writ ten 
as 

where I[n) is the identity operator for n 
strings. We can prove the extended Markov 
property also for I R F models. [14,16,19,20] 
In conclusion, the extended Markov property 
(and the charge conservation condition for ver­
tex models) is sufficient for the existence of the 
Markov trace. This completes the algebraic 
construction of link polynomials from exactly 
solvable models. 

3.2 Graphical calculat ion 

The crossing symmetry is significant in alge­
braic and graphical aspects of the knot theory. 
For solvable models with the crossing sym­
metry, the Yang-Baxter operator becomes the 
Temperley-Lieb operator at the point u = A. 
[15] In fact, set t ing 

we find tha t the operators {E{} satisfy the fol­
lowing relations ( the Temperley-Lieb algebra) 
[36]: 

where the quanti ty qll2 is related to the cross­
ing multipliers r(a) (or by [10,14,15] 

In (28) the summation is over all s tates b al­
lowable to a. 
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Let us consider the graphical meaning of the 
relat ions (27). F rom the crossing s y m m e t r y 
and the s t a n d a r d init ial condit ion we have [15, 
19] 

where ô(a, c) = 6ac is t he Kronecker s symbol . 
We can regard t h e elements r(c)6(c,d) 

and r ( a )5 (a , b) as the weights for the pair-
annihi la t ion d i a g r a m and the pair-creat ion di­
agram, respectively. T h e n , the Yang-Baxter 
ope ra to r at u = A is depicted as the monoid 
d iagram, by which the Temperley-Lieb a lgebra 
is explained. Th i s in te rpre ta t ion is consistent 
with a fact t h a t the energy at the point u = À 
is related to the pair-creat ion energy. 

For I R P models , t h e weights {ip{a)/<ip(b)}l/2 

and {is{c)/tp(b)}1/2 correspond to the pair-
annihi la t ion and pair-creat ion d iagrams , re­
spectively. 

We can formulate l ink polynomials with t he 
crossing s y m m e t r y direct ly on l ink d iagrams. 
Link d i ag ram L is a 2-dimensionai projection 
of a l ink L . T h e wr i the w(L) is t he s u m of 
signs for all crossings G; in t h e l ink d iag ram : 

We calculate "statistical sum" Tr(L) on the 
diagram L by summing over braid diagrams, 
pair-creation diagrams and pair-annihilation 
diagrams. The link polynomial for the link 
L is given by 

Here Ko is the trivial knot diagram (a loop) 
and the constant c is defined by a relation 

I t is easy to see t h a t a(L) is invariant under 
the Reidemeis te r moves, and therefore ct(L) 
is a topological invar iant of the link L. T h u s 

we have shown tha t t h e l ink polynomials con­
s t ruc ted from solvable models with the cross­
ing symmet ry are also graphically formulated. 
T h e monoid d i ag ram and t h e weights for the 
creation and annihi lat ion d iagrams were used 
by L.H. Kauffman [37] for the Bracket polyno­
mial which gives a graphical calculation of the 
Jones polynomial . We have derived monoid 
opera tors from the crossing symmet ry of solv­
able models by a general formula (26). 

We have an i m p o r t a n t conclusion. T h e 
graphical formulation applied to closed bra ids 
yields t h e Markov t race . For t he l ink poly­
nomials with the crossing symmetry, t h e for­
mulat ion based on the Markov t race is t hus 
equivalent to the graphical formulation. 

I t is interest ing t h a t l ink d iagrams are con­
sidered as the Feynman d iagrams for t h e high 
energy processes of charged part icles and the 
link polynomials as t h e sca t t e r ing ampl i tudes . 
At the lowest point in t he d i a g r a m the re oc­
cur a pair creation and at t he highest point a 
pair annihi la t ion. I t is also in teres t ing tha t , 
if we regard the l ink d iagrams as d is tor ted 2-
dimensional lat t ices, the l ink polynomials are 
considered as the par t i t ion functions. 

4 Various examples 

4.1 T V - s t a t e v e r t e x m o d e l 

From the / / - s t a t e vertex models , a hierarchy 
of link polynomials is ob ta ined by t h e general 
me thod presented in §3 and §4.[10] T h e model 
corresponds to t he factorized S-matrices wi th 
spin s part icles, where N = 25 + 1. [38,39] 

Using the iV-state vertex mode l (asym-
metr ized by the s y m m e t r y breaking transfor­
ma t ion) , we get the braid ope ra to r which sat­
isfies an iV-th order relat ion: [10] 

We call a relation for G, such as (34) reduct ion 
relation of the braid opera to r . T h e crossing 
mult ipl ier for t h e asymmetr ized iV-state ver­
tex model is 
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where s = ( N - l ) / 2 . 
T h e extended Markov proper ty [14,20] is 

satisfied with the characterist ic function given 
as 

T h e constants r and r are 

It is remarkable t ha t there exists an infinite 
sequence of link polynomials corresponding to 
the TV-state vertex models ( N = 2 ,3 ,4 , 5, ••• 
). [10,20] T h e N = 2 case corresponds to the 
Jones polynomial.[7] In the N > 3 cases we 
have new link polynomials . From the reduc­
tion relation, we obta in the skein relations ( the 
Alexander-Conway relations) for the link poly­
nomials: 

In (40), by L + , LQ and L _ we have denoted 
links which have the same configuration except 
6j, and b~x a t an intersection. Similarly, 
L 2 +» £+» L 0 and L_ in (41) and L 3 + , L 2 + , 
L + , Lo and L_ in (42) should be unders tood. 
For general iV, the skein relation is of JV-th 
degree relat ing links L ( ^ _ 1 ) + , - • -, Lo, L _ . 

4.2 Graph s t a t e I R F m o d e l 

We can construct solvable I R F models 
corresponding to arbi t rary graphs in any 
dimensions.[40,14] We call them graph s t a t e 
I R F models . We may express the constraint 
of the model by a graph. In the graph each 
point represents the spin s ta te . When a spin 
c is admissible to d then the point c is con­
nected by a line to the point d. For A D E 
type graphs of Dynkin diagrams, the models 
are called A D E models.[41] There also exist 

solvable models with elliptic parametr iza t ion 
for extended Dynkin diagrams [40,42]. 

Let us construct the graph s ta te I R F 
models.[14] We solve the eigenvalue equat ion 
for the graph ; 

where the summat ion is over all spin s t a t e b 
admissible to a. Construct ing the Temperley-
Lieb opera tor 

we have the Yang-Baxter operar tor 

From the model we get t he braid opera tor by 
taking the limit u —> oo and the Markov t race 
on the braid group representat ion by using the 
crossing multipliers. T h e link polynomial sat­
isfies the second degree skein relation. 

We can consider vertex models correspond­
ing to the graph s ta te I R F models under the 
Wu-Kadanoff-Wegner transformation and the 
base-point-infinity limit .[21] From these ver­
tex and I R F models we have multi-variable 
braid matr ices . [21] 

4.3 A B C D I R F m o d e l s 

The I R F model corresponding to affine Lie al-
gebra A%lx (B%\ C£\ D$) is-caJled i f i - i 
( B £ \ C £ \ D$) model.[43] T h e crossing pa­
rameter X and the sign factor a are defined 
as 

where LJ is a parameter . T h e reduction rela­
tions are 
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T h e extended Markov property is proved and 
the characterist ic functions are calculated as 

(The explicit forms of the crossing multipliers 
are given in [16]). Using the reduction rela­
tions and the Markov traces, we obtain the 
generalized skein relations: 

a ( L + ) = (1 - i ) < ( m - 1 ) / 2 a ( L 0 ) + r a ( L . ) 

for 4 ^ , 
a ( L 2 + ) = 

+{t + p t - / ? ) e - 2 ' ( 2 A + . ^ - i ) ) . a ( L o ) 

f o r S ^ , and D&\ (51) 

where 

't = e~2i\ (52) 

For model, the Alexander polynomail is 
obtained by the limit m -» 0, while m — 2 
corresponds to the Jones polynomial. 

Link polynomials thus obtained are one-
variable invariants for each fixed ra. It is noted 
tha t m is independent of t. We now have 
two variables t and ra. The link polynomial 
constructed from A^_X model corresponds to 
the two-variable extension [8] of the Jones 

polynomial. T h e link polynomials from B£\ 
Cm \ D^} models correspond to the Kauffman 
polynomial [9]. We thus have explicit real­
izations of the Kauffman polynomial and the 
two-variable extension of the Jones polyno­
mial (HOMFLY polynomial) . T h e braid ma­
trices given by Turaev [44,45] correspond to 
the vertex-model analog of the braid matrices 
constructed from A^li, B%\ I R F 

models. From the I R F models we can con­
struct braid matrices and the Markov trace 
for the vertex models by the Wu-KadanofF-
Wegner transformation and the base-point-
infinity limit. [14] For example, from A-type 
I R F models we obtain the mult i -s tate vertex 
models [46] related to SU(n). In the limit, the 
Markov trace [16] for the I R F model leads to 
that [44] for the vertex model. 

5 Super Vertex models 

5.1 g l ( M | N ) Ver tex m o d e l s 

We 
shall explain construction of link polynomials 
from vertex models with graded symmetry.[22] 
We consider a family of solvable vertex models 
associated with gl(M|N).[22,46] We prepare a 
set of signs {e t } 

The sign c,- represents the 'par i ty ' of the edge 
s ta te i. We also introduce 'grade ' p(i) G {0 ,1} 
of the edge s ta te i as e> = (—l)p^\ T h e num­
ber of positive (resp. negative) signs is given 
by M (resp. N). In this way we have in­
troduced the graded symmetry. For any set 
of signs {ei} we have a solution of the Yang-
Baxter relation. Non-zero elements of the 
Boltzmann weights are given as follows: 

where t] is a parameter and the edge variables 
a and b take values 1, 2, • • •, M + N. T h e 
models have the charge conservation property: 
w(a, 6, c, d; u) = 0 unless a + b = c + d. 

The elements of the braid matrices are 
derived from (54) and (19) with p(u) = 
siiih(7] — u ) / s inh7? : 
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Here a variable t is denned by t = exp(27/). De­
pending on the choice of the signs { e 0 } [22], we 
obtain 2 M + N different representat ions. Note 
t h a t by replacing t with t~l and mult iplying 
the braid mat r ix by — we have an equivalent 
representat ion. 

Bach representat ion has only two eigenval­
ues 1 and - 1 T h e braid matrices satisfy the 
Hecke algebra relations. Thus , to summa­
rize, the Hecke algebra appears in the braid 
matr ices associated with the Lie superalgebra 
g l (M|N). [22] 

By tak ing the limit rj -+ 0 we get the graded 
pe rmuta t ion opera tor from the representat ion 
of the braid group (55). In this sense, the braid 
opera tor is a q-analogue of the graded permu­
tat ion operator . 

5.2 Link p o l y n o m i a l s 

Through the general theory we construct the 
Markov t race on the representat ions derived in 
the previous subsection. For any grading {e,} , 
the Markov t race is given by 

Here the diagonal mat r ix h is 

In the limit rj —• 0, the t race with matr ix h 
reduces to the super t race sir A = ^ i e » ' ^ » » * 
We can prove the extended Markov property, 
[14,16,19,20] 

where the characterist ic function H(u\ rj) is 
given by 

This is a generalization of the characterist ic 
function for the AM-I (sl(M)) model given in 
(50).[16,19,20] 

T h e link polynomial obtained from the ver­
tex model associated with gl(M|N) satisfies the 
skein relation: 

Since the skein relation is of second degree, 
the link polynomial is calculable only by the 
relation. We now have a hierarchy of link 
polynomials which depends on the number 
p zz M — N— 1. I t is interesting t h a t as far as p 
is common we have the same link polynomial 
[22]. To repeat , from different models related 
to gl(M|N) with p = M - J V - l w e obtain the 
same link polynomial. Note tha t the hierarchy 
includes the case p = 0 where f / r = 1. 

T h e H O M F L Y polynomial [8] is character­
ized by the second degree skein relation: 

Here t and w are independent (continuous) 
variables. We see tha t the l ink polynomi­
als constructed from the gl(M|N) type vertex 
models correspond to the cases u> = tp

} p G Z 
of the HOMFLY polynomial. Based on the 
Markov traces we thus obtain a hierarchy of 
link polynomials corresponding to the H O M ­
FLY polynomial. [22] 

The link polynomial for p = - 1 is the 
Alexander polynomial.[6] T h e case p = 1 cor­
responds to the Jones polynomial. [7] There­
fore we have a number of braid matrices with 
different sizes which lead to the Alexander 
polynomial and the Jones polynomial [22]. 

6 Concluding remarks 
We have shown tha t various link polynomi­
als are systematically constructed from ex­
actly solvable (integrable) models . T h e Yang-
Baxter relation, which is a sufficient condition 
of the solvability of the models, plays a central 
role in the theory. 

T h e existence and propert ies of the link 
polynomials [10] constructed from the N-
s ta te vertex model [39] can be proved also by 
the construction of composite models (fusion 
method) in te rms of the Temperley-Lieb alge­
bra and by the graphical formulation derived 
from the crossing symmetry.[15] Note t ha t the 
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combination of the crossing symmetry and the 
Temperley-Lieb algebra characterizes the link 
polynomials. 

Due to the limited space we have omitted 
a discussion on construction of two-variable 
link invariants [12,13,19,20]. Those invariants 
may be regarded as two-variable extension of 
the link polynomials constructed from A type 
composite vertex and I R F models. In pa­
pers [12,13], an algori thm for calculation of 
the two-variable link invariants for any link 
has been established, and some examples have 
been given. 

For any combinations of braid matrices 
which have the Markov traces, multivariable 
link polynomials with higher skein relations 
have been constructed. Using braid matrices 
with the Markov traces, we obtain a compos­
ite (hybrid-type) braid matr ix and a compos­
ite Markov trace from them, and therefore a 
link polynomial. [23] Thus we have a variety 
of link polynomials with multivariables. 

It is now established tha t there exists a list 
of link polinomials. This fact is significant not 
only in mathemat ics but also in other areas of 
sciences, since there are many interestig prob­
lems concerning applications of link polynomi­
als. We believe tha t the various link polynomi­
als exhibited in this paper will be helpfull for 
s tudying those applications in physics, chem­
istry and biology. 
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DISCUSSION 

Q, M . Bowick (Syracuse Univ.) : Can one obtain link 
invariants from conformai field theories perturbed 
away from criticality but remaining integrable? 

A. M . W a d a t i : I agree that it is a challenging prob­
lem. But is seems to me that we cannot obtain link 
invariants from models at off-criticality. 
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ABSTRACT 

T h e e q u i v a l e n c e b e t w e e n t h e q u a n t u m g r o u p (ç£(N ,C;L)/U(U) = gl(N;L) a t q 2 = - l o v e r a n o n -

q.s q,s 

G r a s s m a n n i a n f i e l d a n d &£(L|N-L) o v e r a G r a s s m a n n i a n f i e l d i s d i s c u s s e d . T h e e q u i v a l e n c e e x t e n d s 

t o ç £ ( N ; L ) ( q 2 = - l ) ~ a £ ( L | N - L ) . T h i s s u g g e s t s a g e n e r a l i z a t i o n o f &£(L|N-L)* t o Z - g r a d i n g v i a 

q.l 2 th m 
a £ ( N ; L ) a t q = m r o o t o f u n i t y , m > 2 . S p e c i f i c a l l y , r e p r e s e n t a t i o n s g £ ( 2 ; l ) a t m t h r o o t o f 

q,s q,s 

u n i t y a r e s h o w n , v i a t h e i r f u s i o n a n d b r a i d i n g p r o p e r t i e s , t o t r a n s f o r m a s s - d e f o r m e d p a r a f e r m i o n s , 

o r s p i n - l / m a n y o n s . T h e y c o n t r a s t s h a r p l y w i t h c o r r e s p o n d i n g r e p r e s e n t a t i o n s o f <d(2) . 
s 

R e c e n t l y r e p r e s e n t a t i o n s o f q u a n t u m g r o u p s , 

e s p e c i a l l y a £ ( N , C ) ( h e n c e f o r t h û £ ( N M a t r o o t s 

o f u n i t y h a v e a t t r a c t e d a g r e a t d e a l o f a t t e n ­

t i o n . H e r e w e d i s c u s s r e p r e s e n t a t i o n s a t 

r o o t s o f u n i t y o f a n o t h e r q u a n t u m g r o u p 

( g £ ( N , C ; L ) / U ( D ) ( h e n c e f o r t h q£(N;L) a n d 
T q,s q,s 

c a l l e d t w i s t e d q u a n t u m g r o u p o f A i n [ 2 , 3 ] ) . 

N - l 

S o m e o f t h e e s p e c i a l l y i n t e r e s t i n g p r o p e r t i e s o f 

t h e s e r e p r e s e n t a t i o n s a r e a l r e a d y k n o w n : (a) F o r 

N = 2 , s g e n e r i c a n d q = - 1 , t h e r e p r e s e n t a t i o n 

g i v e s t h e A l e x a n d e r - C o n w a y l ink p o l y n o m i a l , 

w h o s e c o u n t e r p a r t i s t h e J o n e s p o l y n o m i a l d e r i v ­

a b l e f r o m t h e f u n d a m e n t a l r e p r e s e n t a t i o n o f 
M2) , q g e n e r i c . 1 2 1 (b) T h e s t a t e m o d e l a s s o -

q 
c i a t e d w i t h t h e A l e x a n d e r - C o n w a y p o l y n o m i a l i s 

t h e f r e e f e r m i o n m o d e l . 3 , 4 (c) T h e r e i s a 

h i e r a r c h y o f A l e x a n d e r - C o n w a y l ink p o l y n o m i a l s 

c o r r e s p o n d i n g N = 2 , s g e n e r i c a n d q 2 = m t h r o o t o f 

u n i t y . (d) T h e r e p r e s e n t a t i o n s o f 

a £ ( N ; L ) a t q 2 = - l c o i n c i d e w i t h t h o s e o f 
q,s 

^ £ ( L | N - L ) , w h o s e a s s o c i a t e d l ink p o l y n o m i a l s 

a r e j u s t W i t t e n ' s W i l s o n - l i n e s f o r t h e 3 D t o p o -

l o g o c a l C h e r n - S i m o n s t h e o r y w i t h g a u g e g r o u p 

S U ( L | N - L ) . [ 3 , 6 1 

In t h i s r e p o r t ( w h e r e u> = e x p ( 2 7 r i / m ) , 
m 

q m = w ) w e g i v e a s u m m a r y o f p r o p e r t i e s o f 
m 

t h e r e p r e s e n t a t i o n s o f ç £ ( 2 ; l ) , s g e n e r i c 
qm,s 

( g £ ( 2 ; L ) r e d u c e s t o &U2) u n l e s s L = l ) . T h e y 
q»s s 

a r e p a r a f e r m i o n i c a n d u n l i k e t h e r e p r e s e n t a t i o n s 
o f bl{2) , s g e n e r i c , w h i c h h a v e a o n e - t o - o n e 

s 

c o r r e s p o n d e n c e t o t h e r e p r e s e n t a t i o n s o f dL{2). 

We s h o w t h a t a £ ( 2 ; l ) p r o v i d e s a g e n e r a l i z a -
qm,s 

t i o n o f t h e Z - g r a d i n g o f bt{2) t o Z - g r a d i n g . 
2 m 

12] 
T h e g e n e r a t o r s o f t h e H o p f a l g e b r a o f 

o £ ( 2 ; l ) , d e n o t e d b y dt a r e I, H a n d X" , w h e r e 

q,s 

i n t h e c l a s s i c a l l i m i t I g e n e r a t e s t h e U ( l ) f a c ­

t o r i n ql(2) ~ ^ £ ( 2 ) x U ( l ) a n d t h e o t h e r t h r e e 

g e n e r a t e &£(2). In t h e q u a n t i z e d c a s e ^ I i s 

s t i l l c e n t r a l t o df a n d [ H , X ~ ] = ± 2 X ~ a n d 

[ X + , X ~ ] = ( k 2 - k " 2 ) / ( q - q ' X ) a s in d{2) , e x c e p t 

t h a t q 

, ( H - D / 2 1 /2 

k = q s (1) 

H / 2 
i n s t e a d o f k = q in a £ ( 2 ) . I t i s p o s s i b l e t o 

q 
a b s o r b t h e e f f e c t o f I o n k i n (1) i n t o H b y a 

r e d e f i n i t i o n o ^ t h e l a t t e r , w h i c h w i l l n o l o n g e r 

b e t r a c e l e s s . F o r r e a s o n s t h a t w i l l b e c o m e 

t r a n s p a r e n t w e u s e t h e e x p r e s s i o n (1) i n w h i c h 

t h e r o l e o f I a n d t h a t o f t h e s e c o n d p a r a m e t e r s 

i s m a d e e x p l i c i t f r o m t h e o u t s e t ( in w h i c h c a s e 

t h e r e s p e c t i v e n u m b e r s o f g e n e r a t o r s in t h e 

C a r t a n s u b a l g e b r a a n d d e f o r m a t i o n p a r a m e t e r s 

s t i l l m a t c h ) . F o r c o n v e n i e n c e w e w r i t e p = s / q . 

F i r s t n o t e t h e t r i v i a l s p e c i a l c a s e o f (1) a t 

p =1 , w h e n c e t h e U ( l ) f a c t o r i n a £ ( N ; L ) i s 

q,s 
m o d d e d o u t a n d d i s r e d u c e d t o ol(2) , w h o s e 

p r o p e r t i e s a r e w e l l k n o w n . q 

2 
We c o n s i d e r o n l y t h e n o n t r i v i a l c a s e p * 1 . 

T h e n d h a s a f i n i t e r e p r e s e n t a t i o n o v e r t h e v e c ­

t o r f i e l d V o n l y w h e n q i s a r o o t o f u n i t y : 

2 - 1 -zm/m . _ . , 
q = c j = e , m = p o s i t i v e i n t e g e r (2 ) 

T h e s a m e r e s u l t o b t a i n s w h e n o n e c h o o s e s , 

i n s t e a d o f ( 2 ) , q =a> m , p r o v i d e ^ m ' i s p r i m e t o 

m. G i v e n ( 2 ) , t h e e l e m e n t s ( X ~ ) m a r e c e n t r a l in 

dt a n d a f u n d a m e n t a l m - d i m e n s i o n a l m a t r i x r e p r e ­

s e n t a t i o n t t : .4-»End(V) i s o b t a i n e d w h e n t h e 

r e l a t i o n s 

nUXn™) = 0 (3 ) 
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a r e i m p o s e d . In w h a t f o l l o w s , i t w i l l b e u n d e r ­
s t o o d t h a t a l l e x p r e s s i o n s g i v e n f o r e l e m e n t s in 
4 a r e t h o s e u n d e r t h e h o m o m o r p h i s m T T , a n d t h a t 
[ p ] = { | i > ; i ~ l t o m } i s a b a s i s f o r V, w i t h t h e 
h i g h e s t ( l o w e s t ) s t a t e w i t h r e s p e c t t o X + b e i n g 
| l > ( | m > ) . T h e n | m > ( | l > ) a r e t h e h i g h e s t ( l o w ­
e s t ) s t a t e w i t h r e s p e c t , t o X~. W i t h t h e a i d o f 
t h e d e r i v e d r e l a t i o n ( m e a n t t o h o l d w h e n 
a c t e d o n a s t a t e € K e r X \ l m ( X + ) m ~ ) 

T h e R - m a t r i x m a y b e c a l c u l a t e d f r o m t h e 
m e t h o d e i t h e r o f D r i n f e l d o r o f [21. H e r e w e 

2 
o n l y g i v e i t s m e i g e n v a l u e s , w h o s e d e g e n e r a c i e s 
d e t e r m i n e t h e fusion rule o f t h e d i r e c t p r o d u c t 
[pMp] a n d w h o s e v a l u e s c h a r a c t e r i z e t h e braid­
ing o f t h e i r r e d u c i b l e r e p r e s e n t a t i o n s in t h e 
d i r e c t p r o d u c t , a s e x p r e s s e d i n t h e f o l l o w i n g 
t w o r e l a t i o n s 

T h a t i s , t h e d e g e n e r a c y o f r i s n , a n d 

2 J J 
S n = m . F o r t h e R - m a t r i x u n d e r s t u d y , r a n d 

J J J 
n^ a r e g i v e n b y 

T h e r e a r e m d i s t i n c t e i g e n v a l u e s , a l l w i t h 
d e g e n e r a c y m. T h i s c o n t r a s t s s h a r p l y w i t h t h e 
R - m a t r i x , d e n o t e d b y R ' , o f t h e m - d i m e n s i o n a l 
r e p r e s e n t a t i o n [p' ] o f ^£ (2 ) , w h o s e e i g e n v a l u e s 

s 
a n d d e g e n e r a c i e s n^ f o r g e n e r i c s a r e g i v e n 

b y 

F o r m = 2 , t h e l i n k p o l y n o m i a l s c o r r e s p o n d i n g t o 

[p ] a n d [ p ' 1 a r e r e s p e c t i v e l y J u | | ] t n e 

A l e x a n d e r - C o n w a y a n d J o n e s p o l y n o m i a l s ' . It 
f o l l o w s f r o m t h e f a c t d c o i n c i d e s w i t h t h e Hopf 
a l g e b r a d' o f &£(2) i n t h e l i m i t s = q =o> t h a t 

R f s W ^ H R ' t e 2 ^ " 1 ) . On t h e o t h e r h a n d (9 ) a n d 
(10) a r e d i s c r e t e l y d i s t i n c t . T h e r e f o r e a t 
l e a s t o n e o f t h e r e l a t i o n s c a n n o t b e c o n t i n u o u s 
in t h a t l i m i t . I t t u r n s o u t t h a t b o t h a r e n o t ; 
f o r a d e t a i l e d d i s c u s s i o n s e e [ 1 0 ] . 

T o h a v e a b e t t e r u n d e r s t a n d i n g o f t h e d i f ­
f e r e n c e b e t w e e n ( 9 ) a n d (10) w e r e t u r n t o d 

( i n s t e a d o f + t h e h o m o m o r p h i s m n) a n d c o n s i d e r , 
i n s t e a d o f X", t h e g e n e r a t o r s 

D e f i n e a n x - c o m m u t a t o r t o b e [A ,B] s A B - x B A . 
X 

T h e n , + i n s t e a d + o f h a v i n g a c o m m u t a t i o n r e l a t i o n 
l i k e X"" d o , Y~ s a t i s f y 

w h e r e w=q~ a n d A i s a n o n e s s e n t i a l n o r m a l i z a ­
t i o n c o n s t a n t s o l o n g a s q * 1 . T h e ccvproduc^ on 
Y~ n o w h a s a n o n s t a n d a r d a p p e a r a n c e : A(Y~) = 

<aq p + p ®Y . 

T h e l e f t - h a n d s i d e o f (12) i s a n 
w - c o m m u t a t o r . In p a r t i c u l a r , w h e n w = - l , i t i s 
a n anti-commutator. In t h i s c a s e , u n d e r t h e 
h o m o m o r p h i s m n o f ( 5 ) f o r m = 2 , t h e r i g h t - h a n d 
s i d e o f (12) i s p r o p o r t i o n a l t o ( s - s ) , w h i c h 
v a n i s h e s i n t h e l i m i t s-»l. If o n e r e p l a c e s t h e 
n o r m a l i z a t i o n c o n s t a n t A b y ( s - s ) , t h e n (12) 
i s e x a c t l y t h e c o m m u t a t i o n r e l a t i o n s a t i s t f i e d 
b y t h e r a i s i n g a n d l o w e r i n g g e n e r a t o r s o f 
û £ ( l | l ) ( n o t e t h a t t h e f u n d a m e n t a l r e p r e s e n t a -

s 
t i o n o f H in A £ ( 1 | D i s p r o p o r t i o n a l t o t h e 

u n i t m a t r i x , j u s t a s t h a t o f I i s ) . In t h i s 

s e n s e ql(2\\)^^ i s e q u i v a l e n t t o 1 

T o u n d e r s t a n d t h i s n o t i o n f u r t h e r , c o n s i d e r 
(9 ) a n d (10) f o r t h e c a s e m = 2 , a n d w r i t e t h e t w o 
s t a t e s 11> a n d 12> a s | +> a n d | - > , t h e r e p r e s e n ­
t a t i o n s [<r J f o r j = l a n d 2 ( s e e ( 7 ) ) a s [b] a n d 

[ f ] , a n d [<r^] a s [ s ] a n d [ a ] , r e s p e c t i v e l y . F o r 

r e a s o n t h a t w i l l b e c l e a r p r e s e n t l y , b , f, s a n d 
a s t a n d f o r b o s o n , f e r m i o n , s y m m e t r i c a n d a n t i ­
s y m m e t r i c , r e s p e c t i v e l y . We h a v e 

T h e t w o s e t s o f e q u a t i o n s a p p e a r i d e n t i c a l , b u t 

t h e y c a r r y q u i t e d i f f e r e n t m e a n i n g s . It s u f ­

f i c e s t o p o i n t o u t t h a t w h e r e a s b o t h t h e s y m m e ­

t r i c s t a t e s I +> I +> a n d | - > | - > l i e in t h e t h r e e 

d i m e n s i o n a l [ s ] in t h e c a s e o f ol{2) , in t h e 
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c a s e o f gl{2;\) | + > | + > l i e s i n t h e t w o d i m e n -
q2 1 1 

s i o n a l [b] w h i l e | - > | - > l i e s i n t h e t w o d i m e n ­

s i o n a l [ f ] . T h u s , i n t h e l i m i t s-»l, [ f ] c h a n g e s 

s i g n u n d e r b r a i d i n g n o t b e c a u s e i t i s a n t i s y m m e ­

t r i c , l i k e [ a ] i s , b u t b e c a u s e i t s c o n s t i t u e n t s 

a r e f e r m i o n i c . 

It i s i m p o r t a n t t o d i s t i n g u i s h h o w [ f ] i s 
g i v e n a £ e r m i o n i c e x c h a n g e p r o p e r t y ( h e r e , 
b e c a u s e ( Y ~ ) a r e c e n t r a l , t h e r e i s n o d i f f e r ­
e n c e b e t w e e n b r a i d i n g a n d t r a n s p o s i t i o n ) in ( t h e 
u n q u a n t i z e d ) & £ ( l | l ) a n d i n ç £ ( 2 ; l ) . In t h e 

q2 , l 
f o r m e r , w h i c h h a s a t r i v i a l c o p r o d u c t , t h e t a s k 

i s a c h i e v e d b y m a k i n g t h e v e c t o r s p a c e e x p l i ­

c i t l y c o n t a i n a G r a s s m a n n v a r i a b l e , n a m e l y t h e 

s t a t e I - > . In t h e l a t t e r t h e f e r m i o n i c p r o p e r t y 

o f I - > i s e n c o d e d i n t h e b r a i d i n g p r o p e r t y o f R 

in a Hopf a l g e b r a w i t h a n o n t r i v i a l c o p r o d u c t , 

w h i l e t h e v e c t o r s p a c e i s nonGrassmannian. 

T h e a n a l y s i s a b o v e c a n b e t r a n s p l a n t e d o n t o 
a £ ( N ; L ) t o d e m o n s t r a t e i t s e q u i v a l e n c e t o 

q2,s 
û £ ( L | N - L ) . T h i s e x p l a i n s w h y , f o r t h e f u n d a -

m e n t a l r e p r e s e n t a t i o n s o f t h e t w o q u a n t u m 

g r o u p s , t h e l ink p o l y n o m i a l s , w h i c h a r e a c t u a l l y 

e i g e n v a l u e s o f i n v a r i a n t s o f t h e q u a n t u m g r o u p , 

a r e i d e n t i c a l , a s a r e t h e i r a s s o c i a t e d g r a d e d 

v e c t o r m o d e l s , a n d w h y t h e l a t t e r a r e n o n q u a s i -

c l a s s i c a l . T h e e q u i v a l e n c e c a r r i e s o v e r t o 

t h e l i m i t s->l t o e s t a b l i s h t h e e q u i v a l e n c e 

b e t w e e n t h e H o p f a l g e b r a ç £ ( N ; L ) a n d t h e 
q 2 , l 

g r a d e d L i e a l g e b r a û £ ( L | N - L ) . F o r o£ (N;L) 

t h e f o r m u l a (13) s t i l l a p p l i e s , e x c e p t t h a t t h e 

d i m e n s i o n a l i t y o f [b] i s N ( N - l ) / 2 + L a n d t h a t o f 

[ f ] i s N ( N + l ) / 2 - L . T h e s e a r e t o b e c o n t r a s t e d 

w i t h t h e d i m e n s i o n a l i t i e s o f [ s ] a n d [a ] in 

û£(N) , b e i n g r e s p e c t i v e l y N ( N + l ) / 2 a n d N ( N -
s 

l ) / 2 . 

T h e Z 2 - g r a d i n g o f ùi(2) i n t o d o e s 

n o t l e n d i t s e l f t o a d i r e c t g e n e r a l i z a t i o n t o 

h i g h e r g r a d i n g s . H o w e v e r , t h e d i s c u s s i o n a b o v e 

s h o w s t h a t a Z - g r a d i n g c a n b e a c h i e v e d b y w a y 
m 

2 - 1 
o f t h e H o p f a l g e b r a o f ql{2;\) a t q = w , 

q,s m 
w h i c h in t h e f o l l o w i n g w e c a l l d . R e c a l l t h a t 

m 
t h e c o n f i g u r a t i o n s p a c e f o r a s y s t e m o f s t a t e s 

h a v i n g t h e p r o p e r t y o f h i g h e r t h a n g r a d i n g i s 

n o n s i m p l y c o n n e c t e d , s o t h a t , i n s t e a d o f t r a n s ­

p o s i t i o n , o n e m u s t s p e a k o f b r a i d i n g o f t w o 

s t a t e s . T h i s e x p l a i n s w h y a q u a n t u m g r o u p i s 

n e c e s s a r y f o r h i g h e r g r a d i n g s . T h a t d h a s t h e 
m 

p r o p e r t y o f a Z - g r a d e d a l g e b r a i s a l r e a d y c l e a r 
m 

f r o m (9) a n d (12) , e s p e c i a l l y w h e n t h e l a t t e r i s 

r e c a s t i n t o t h e f o r m 

[ Y + , Y _ ] = a ( s ) ( P - p ( s ) ) ( m > 2 ) (15) 
(j) m 

m 

w h e r e P i s i d e m p o t e n t o f o r d e r m , a n d a a n d 0 

a r e c e n t r a l e l e m e n t s d e p e n d i n g o n s a n d I. T h e 

r i g h t - h a n d s i d e o f (15) d o e s n o t v a n i s h i n t h e 

l i m i t s->l f o r m > 2 , s o i t i s n o t n e c e s s a r y t o 

h a v e a f a c t o r ( s - s ) . 

F r o m ( 9 ) , t h e f u s i o n s t a t e s [o^] d e f i n e d in 

(8 ) f o r d a t s = l b r a i d a s 
m 

J+l v 
R[<r ] = ( -1 ) u) 1 ^ 3 ; 

v = - ( j - l ) ( j - 2 ) / 2 ( m o d m ) (16) 

In p a r t i c u l a r [ c r ^ M i s b o s o n i c , [ o ^ M f ] i s 

f e r m i o n i c , w h i l e t h e o t h e r s t a t e s a r e s u c h t h a t 

R m [ o ^ ] = ± [ c ^ ] . T h e s e l a t t e r s t a t e s m a y b e i n t e r ­

p r e t e d a s a n y o n i c s t a t e s w i t h "spin" 1 / m ; t h e y 

a r e d i r e c t g e n e r a l i z a t i o n s o f a f e r m i o n i c s t a t e , 

w h i c h h a s s p i n 1 / 2 . T h e d i m e n s i o n a l i t y o f [<r̂ ] 

i s m , i n d e p e n d e n t o f j . T h u s t h e r e p r e s e n t a t i o n 
[p ] o f d i s p a r a f e r m i o n i c . ( S i n c e t h e l ink 

m 
p o l y n o m i a l f o r d^ i s j u s t t h e W i l s o n l i n e f o r 

t h e s u p e r s y m m e t r i c C h e r g - ^ i m o n s t h e o r y w i t h 
S U ( l | l ) g a u g e s y m m e t r y , * o n e i s i n t r i g u e d 
w i t h t h e p o s s i b i l i t y o f t h e l ink p o l y n o m i a l s f o r 
d , m > 2 , b e i n g r e l a t e d t o t h e W i l s o n l i n e s f o r 

f r a c t i o n a l l y s u p e r s y m m e t r i c C h e r n - S i m o n s 

t h e o r i e s . ) In c o m p a r i s o n , f o r ù £ ( 2 ) , t h e c o r ­

r e s p o n d i n g f u s i o n s t a t e s [<r^] a r e j u s t n o r m a l 

s p i n m - j s t a t e s : t h e y h a v e r e s p e c t i v e d i m e n s i o n ­

a l i t i e s 2 ( m - j ) + l a n d a r e e i t h e r s y m m e t r i c ( j 

o d d ) o r a n t i s y m m e t r i c ( j e v e n ) u n d e r R ' . S i n c e 

û£(2) i s a c o n t i n u o u s d e f o r m a t i o n o f &£(2), t h e 
s 

e i g e n s t a t e s o f R ' f o r g e n e r i c s c a n n o t be 
a n y o n i c e v e n a s t h e y h a v e u n u s u a l b r a i d i n g p r o ­
p e r t i e s . T h e y a r e j u s t n o r m a l s p i n s t a t e s 
d e f o r m e d . F o r a d i s c u s s i o n o f t h e s i t u a t i o n a t 

2 - 1 
s =0) , w h e n d c o i n c i d e s w i t h ol{2) , s e e [ 1 0 ] . 

m m s 

T h i s w o r k i s s u p p o r t e d i n p a r t b y a g r a n t 

f r o m N S E R C ( C a n a d a ) . 
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Q. A. LeClair (Cornell Univ.): Why do you call your 
symmetries fractional supersymmetries if you don't 
have the Poincaré generators in the algebra? I don't 
think the name is justified. 

A. H . C. Lee : The representations are those for 1/m— 
statistics anyons. I mention fractional supersym­
metry because I think the representations are 
characteristic of those of fractional supersymmetric 
systems, plus the fact that the link invariants for 
(5/(71 In) X U( 1 )) g2__x > s are exactly the link invariants 
of Wilson lines in the three-dimensional supersym­
metric topological field theory with SU(n/n) gauge 
group. 
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T H E T R A N C A T E D SOLUTIONS AND BÀCKLUND T R A N S F O R M A T I O N 

F O R T H E THREE-WAVE EQUATIONS 

K.L. CHANG and P.S. HWANG 

Physics Department, National Taiwan University 

Taipei, Taiwan. 10764, R.O.C. 

ABSRTACT 

We prove explicitly t ha t 3-wave equations exhibit the Painlevé propert ies . T h e 

t ranca ted solutions automatical ly provide the Bâcklund transformation. 

A powerful generalization of Painlevé test for 
ordinary differential equation was applied to the 
system of par t ia l differential equat ions^ 1 ) . It was 
proven t h a t when a part ia l differential equat ion 
(PDE) is soluable by inverse scat tering transform 
and a sys tem of ordinary differential equations 
(ODE) is obtained from this P D E by an exact 
similarity reduction, then the solution associated 
with the GePfand-Levitan-Marchenko equation 
will possess the Painlevé property, namely the 
general solution can have no movable singular 
points other t han poles. Fur thermore it was 
proposed^ 2 ) t ha t , wi thout recoursing to the re­
duction to an O D E , a P D E has also the Painlevé 
proper ty when the solution of the P D E are single-
valued about the movable singularity manifolds. 

In this note , we shall investigate the Painlevé 
proper ty of 3-wave equations. It has been known 
tha t 3-wave equations, commonly refered to as 
equations of exact resonance in non-linear inte­
g r a t e system, have soliton, multi-solitons solu­
tions as well as Lax pair. Yet the analytical test 
of Painlevé property has been lacking. We shall 
s t a r t wi th the 3-wave interaction equations of 1+1 
dimension, and expand the solutions in terms of 
Laurent series about a singular manifold, or pole 
manifold. 

Set us denote <j> as a singularity manifold of 
2N-2 real dimension determined by the condition 

T h e Painlevé propert ies s ta te t ha t for a solu­
tion u ( Z i , # 2 , * * * ZN) of a P D E , u is of the simple 
poles about the movable singularties. Therefore 
it can be expressed as 

where U{ and <j> are functions of Z\,...ZN and a 
is some integers. The values of a as well as the 
U{ can be determined by subst i tut ing eq.(2) into 
P D E . T h e integrability condition for a nonlinear 
P D E can be tested if the consistent recursion re­
lations of U{ exist. 

Consider the 3-wave equations under the para­
metric interactions of the wave packets in the fol­
lowing expression, 

where V{ are the group velocities of the 3-wave 
packet Ui respectively. The sign in front of n in 
eq.(3c) is positive, while those in eq.(3a) and (3b) 
are negative. This implies tha t the relative veloc­
ity of tii to 1*3 is opposit to tha t of u2 to u 3 . 

Set us expand the solutions of 3-wave u t -(x,i) 
in t e rms of ^ ( x , i ) , namely 
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where i takes the values from 1 to 3. Substi tut­
ing eq.(4) into eq.(3) and analyzing each order in 
power series of <f>(x,t). The requirement tha t so­
lutions U{ contain no terms other than single pole 
in <j)(x,t) forces us to put 

The lowest expansion coefficients uio are related 
by the equations similar to those of exact reso­
nance, 

u\o<t>t + ^ i U i o ^ x + r}U2ouzo — 0, (6a) 

U2Q<t>t + V2U2Q<t>x + f ? u 3 0 U i o = 0, (66) 

UzQ<f>t + V 3 ^ 3 0 ^ a : - ^ 1 0 ^ 2 0 = 0. (6c) 

For the sake of conciseness in calculating the co­
efficients Uiny we use the following abbriviation 

then the recursion relations for t ^ l n , u 2 n and & 3 n 

(n > 0) can be obtained from the coefficients in 
the series expansion of the terms with (n-2) power 
in <f>, i.e. 

where A n - i , J3 n ~i and C n _ i are given in terms of 
<t>u<l>xi a n d uio up to u x n „ i . The coefficients u t- n 

exist only if the determinant of the 3 x 3 matrix 
of the last equation does not vanish. 

The detailed evaluation of the determinant 
leads to 

Therefore U i n for n > 3 can be solved uniquely if 
the left hand side of eq.(9) does not equal zero, 
and hence the recursion relations among U{n and 
Uin-i can be established. The conditions fail for 
n = — 1 and n = 2. Obviously, the case for 
n — — l will correspond to the Painlevé expan­
sions containing terms of movable singularities 
with double poles. For the case n — 2, eq.(8) 
reduces to 

The vanishing of the determinant in the 3 x 3 ma­
trix on the left hand side of last equation implies 
tha t there exists a complete arbitrary choice of 
U i 2 > w 2 2 and U 3 2 only if they are subject to a 
compatibity condition tha t eq.(10) becomes only 
two independent equations instead of three. 

To do this , let us solve Uio in terms of Di<j> from 
the nonlinear system of eq.(6). Simple algebraic 
manipulat ion provides us with 

1 

But on the other hand, eq.(8) for n 
calculated explicitly as 

1 can be 

Combining eq . ( l l ) and e q . ( 1 2 ) , un are readily 
obtained as follows, 
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= ~l {DiD2<f>) 
2rj2 uso 

One can verify t ha t 

= u20{-D2u2l + rjuuu3l) (15) 

= U 3 0 ( + ^ 3 ^ 3 1 ~ rçiiutt2l). 

Since the condition n = 2 allows us to choose 
arbitrari ly the expansion coefficients ui2, u22 and 
U32 in the general solutions of eq.(4). A set of 
t ranca ted solutions can be achieved if we set U{2 

equal to zero because all the coefficient u t - n for 
n > 3 will automatically vanish according to eq. 
(8). The solution can then be simplied as 

1 
" 1 = T ^ i o + U n , 

9 

u2 = \u20 + U 2 1 , (16) 

1 
« 3 = T U 3 0 + « 3 1 , 

where un are solutions to the 3-wave equations, 
i.e. 

- D i ^ i i H~ t 7 U 2 i U 3 i = 0, 

# 2 ^ 2 1 + nuzxun = 0, (17) 

^ 3 « 3 i - r]unu2i = 0. 

(2) John Weiss, M. Tabor and George Carnevale, 
J . Ma th . Phys . 24, (1983)522; 
M. J imbo, M.D. Kruskal and T . Miwa, Phys. 
Let t . 92A, (1982)59; 

John Weiss, J. Math . Phys. 24, (1983)1405; 
A.Roy Chowdhury and Minati Naskar, J. Ma th 
Phys . 28, (1987)1809; 

W.H. Steeb and N.Euler, lett. Math . Phys. 
14, (1987)99; 

A.C. Newell, M. Tabor and Y.B. Zeng, Physica 
2 9 ( 1 9 8 7 ) 1 . 

By means of e q . ( l l ) and eq.(17), the Bâcklund 
transformation for 3-wave equations can be ex­
pressed as follows, 

tti(x'*) = \\r [D2(l>){Dz<f>)\* + u n ( M ) , n<p(x,t) 

rj(p(x,t) 

u s ( M ) = J éA-{Di<t>){D2<t>)]> + tt3l(M), rj(j>(x,t) 
(18) 

namely, a part icular form of and arbi t rary func­
tion of (j>(x,t) can be added to the solutions un 
to achieve a new set of solutions. 

R e f e r e n c e s 

(1) M.J . Abolowitz, A. Ramani and H. Segur, J. 
Ma th . Phys .21 , (1980)715; 
ibid 21 , (1980)1006. 
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Exot ic So lut ions of Tang-Baxter Equations and 
Yang-Baxterization Approach 

Mo-Lin G-e Kang Xue 
Theoret ica l Phys ic s , l&nkai I n s t i t u t e o f 
Mathematics , T ianj in , 500071, P • R. China 

A B S T R A C T 

The new s o l u t i o n s of Yang-Baxter equations a s soc ia ted with the 
fundamental representa t ions of B ,C and D are derived through 
the braid group representa t ions and the tr igonometric Yang -
B a x t e r i s a t i o n . 

Remarkable progress has "been made 
i n the d e r i v a t i o n of tr igonometric 
sa&wttians of Yang-Baxter equations 
(IBE) as s e r i a t e d with simple Lie 
a l g e b r a s ( l , 2 ) . T h e standard approach 
i s ton make q-deformation of c l a s s i ­
c a l Lie a lgebras ,namely,based on the 
current fotrmulation o f quantum group 
inc luding i t s l o c p ex tens ion (3 ) • We 
c a l l t h i s type of s o l u t i o n s 1 1 standard 1 1 

one •However, on the b a s i s of the same 
Lie a l g e b r a i c s t ruc ture i t a l lows t o 
generate new family of s o l u t i o n s of 
YBE,which i s d i f f e r e n t from the stan-
dard one and i s c a l l e d e x o t i c family 
of s o l u t i o n s o£ YBE. 

Our s t r a t e g y i s s t a t e d i n the f o l ­
lowing . 

(I ) In order to s o l v e YBE 

R 1 2 ( x ) R 2 5 ( x y ) f i 1 2 ( y ) 
= ft25(y)K12(xy)R23(x) 

where x=e~ m I s the spec tra l parameter 
r e l a t i n g with the r a p i d i t y f o r two-
p a r t l c l e c o l l i s i o n , t h e asymptotic 
behavior T= R ( x ) u = : < D s a t i s f y i n g 

1 1 2 1 2 3 12" X 23 12 x 23 

I s f i r s t l y so lved f o r g iven Lie a l ­
gebraic s t r u c t u r e . T i s re f fred t o 
braid group representation(BGR). 

( I l )By us ing the tr igonometr ic Yang-
Baxter i za t ion ( 4*5) p r e s c r i p t i o n 

(T-YB) &(x) can be generated f o r a 
g i v e n B a R . S o far the T-YB has been 
e s t a b l i s h e d far these B G r R 1 s which 
possess d i s t i n c t e igenvalues be ing 
three and four( two , n e e d l e s s t o s a y ) . 

In t h i s t a l k we only d i s c u s s the new 
s o l u t i o n s of YBE a s s o c i a t e d withi the 
fundamental representa t ions of Lie 
a lgebras B ,C and Dn*, As was known 
that the corresponding BGR's possess 
three d i s t i n c t e i g e n v a l u e s . 

F i r s t we c a l c u l a t e the B £ R f s which 
are g iven by (w-q-q- 1 ) 

fc S o u k e kk ® e kk + w S m *kl^mm 
k+m*0 

+ k=*m ekm ® emk + k,m akm ^ - m ^ - k m 
k+n#0 

-1 
where ^j^q or -q for k=0 and rc^» 
u k . k,m 
where N=2n+1,2n and 2n f o r B n , 0 n and 
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D $ r e s p e c t i v e l y . T h e a r e g i v e n 

b y 

T h e d i s t i n c t e i g e n v a l u e s a r e g i v e n b y 

N e x t we Y a n g - B a x t e r i z e t h e s o l u t i o n s 

d e r i v e d a b o v e t o g i v e t h e c o r r e s p o n ­

d i n g s . I t h a s b e e n p r o v e d t h a t i f 

B G r R T s a t i s f i e s t h e r e l a t i o n ( 5 ) 

- 1 

How t h e c a l c u l a t i o n s c o n v i n c e t h e 

v a l i d i t y ( f o r t h e d e r i v e d T) o f t h e 

s t a t e m e n t . H e n c e f o r t h e c o n s i d e r e d 

c a s e s we o b t a i n t h e g e n e r a l s o l u t i o n s 

o f YBE. 

T h e r e s u l t i s s h o w n i n t h e f o l i o -

w i n g fo rm. , 



The o t h e r p e r m i t t e d s o l u t i o n i s o b -
ta i l z ied "by t h e i n t e r c h a n g e q <—* - q 
a n d k e e p i n g ^ u n c h a n g e d . Such) a s o ­
l u t i o n c o r r e s p o n d s t o t h e " t w i s t e d " 
021e . F o r i n s t a n c e , i t g i v e s r i s e t o 

A 2 n ^ o r ^ n - 1 c o r r e s p o n d i n g * ° B ^ o r 

D ^ , r e s p e c t i v e l y . As f o r t h e c o r r e -
s p o n d e n c e o f C^ ' i t d e s e r v e s t o "be 

u n d e r s t o o d . 

We w o u l d l i k e t o make comments t o 
t h e a b o v e d i s c u s s i o n , 

( a ) T a k i n g u f c = q f o r a l l k o u r s o l u -

t i o n s go h a c k t o t h o s e d e r i v e d b y 
Jimbc? ( 6 ) . T h e o t h e r c h o i c e l e a d s t o 

new s o l u t i o n s w h i c h a r e c a l l e d e x o t i c 
o n e s . N o t h i n g i s s u r p r i s e t o a p p e a r 
s u c h a new t y p e o f s o l u t i o n s o f YBE 
b e c a u s e t h e u s u a l c l a s s i c a l l i m i t i s 
n o t r e q u i r e d h e r e . A c t u a l l y t h e new 
s o l u t i o n f o r A n h a d b e e n f o u n d b y 
G e r r a i s e t a l ( 7 ) i n t e r m s o f d i f f e ­
r e n t a p p r o a c h . 

( b ) I n c o n t r a s t w i t h t h e s t a n d a r d 
s o l u t i o n s t h e e x o t i c ones p o s s e s s 
v e r y d i f f e r e n t p r o p e r t i e s smch a s 
w i t h o u t t h e u s u a l c l a s s i c a l l i m i t s , 
d i f f e r e n t H a p f a l g e b r a i c s t r u c t u r e 
due t o F a d d e e v - R e s h e t i k h i n - T a k h t a j a n 
a p p r o a c h ( 8 ) , s o m e o f t h e m e v e n c a n n o t 
b e d i a g o n a l i z e d a n d so o n . 

( c ) W e c a n p r o v e t h a t t h e e x o t i c s o ­
l u t i o n s s t i l l s a t i s f y B i r m a n - W e n z l 
a l g e b r a ( 9 ) . T h i s f a c t I s d e t e r m i n e d 
b y t h e f u n d a m e n t a l r e p r e s e n t a t i o n s 
o f B n > C n a n d D n . I n a s e n s e o u r d i s ­
c u s s i o n p r o v i d e s a n o t h e r e x p l i c i t 
e x a m p l e f o r J o n e s 1 t h e o r y ( 4 ) . 

M . L . G e w i s h e s t o t h a n k P r o f e s s o r 
C . N . Y a n g f o r many e n l i g h t e n i n g d i s ­
c u s s i o n s a n d e n c o u r a g e m e n t s . 
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FIELD T H E O R Y F R O M I N T E G R A B L E - S Y S T E M P O I N T O F V I E W 

L I N G - L I E C H A U 

Physics Department, University of California 
Davis, G A 95616 

A B S T R A C T 

We survey the Geometrical Integrability Properties: linear equations, conservation laws, Riemann-Hilbert trans­

formations, Bianchi-Bâcklund transformations, Ricatti Equations, and Kac-Moody Algebra are discussed for many 

nonlinear systems: various chiral models in two dimensions, SL(2C) systems of Sine-Gordon, KdV, and Liouville 

equations; self-dual Yang-Mills equations in four dimensions; extended supersymmetric Yang Mills, and supergravity 

equations in four and ten dimensions. Physical applications of these properties are also commented on. 

I N T R O D U C T I O N 

T h e a t t e m p t of this line of research is to t rea t 
Yang-Mills and gravitat ional fields as nonlinear sys­
tems , and to see how much they possess t he geomet­
rical integrabili ty propert ies, which have been the 
guiding force in many two-dimension nonlinear sys­
tems . Though the s tudy so far has been qui te formal 
and mathemat ica l , t he u l t imate goal is for particle 
physics: to solve the full Yang-Mills and gravita­
t ional fields, and to formulate new ways to quantize 
the fields. 

Recently, linear systems and conservation laws 
have been constructed for the extended conformai su-

(l 2) 
pergravity theories, ' which have been shown to be 
the consequences of light-like integrability in curved 

( 3 4 ) . . 

extended superspace. ' This gives a general pic­
tu re of a unifying description of equations of motion 
of classical fields from the point of view of geometri­
cal integrability, which had its origin in the s tudy of 
many two-dimensional nonlinear systems,^ 5 8^ and 

(8—121 
in the s tudy of self-dual Yang-Mills equations. 
Such a view tha t equations of motion of classical 
fields, nonlinear in four dimensional space, become 
linear in extended superspace^ 1 3 1 9 ^ helps to find 
classical solutions, and points to new ways of quan­
tizing the theory. 

T h e generic s t ruc ture of geometrical integrability 
properties can be summarized in Figure 1. 

The heart of the ma t t e r is first to find linear sys­
tems with parameters . T h e linear systems are usu­
ally of the form 

where V j , V y are some generalized covariant 

derivatives in some generalized geometrical spaces; 
e.g. ordinary space- t ime space plus complex parame­
ters; ordinary space- t ime with superspace extensions 
plus complex parameters , loop spaces, noncommu-
tat ive geometrical spaces, etc. T h e integrability of 
^ requires [ V x , V y } = 0, i.e. curvatureless. The 
equations of mot ion or the original nonlinear systems 
then follow from this generalized curvatureless condi­
tion. It is from these linear systems with parameters 
tha t powerful methods can be used to generate new 
solutions. 

Fig. 1 : Some Generic Structures of integrable 
Non-l inear systems 

T h e general t heme of these methods are gauge 
transformations of and it is through the ana-
lyticity properties in the complex parameters tha t 
the nonlocal conservation laws can be derived and 
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that the original nonlinear differential equations are 
converted into integral equations in the complex-
parameter space, i.e., the finite Riemann-Hilbert 
(RH) transformations. The RH transforms satisfy 
group properties and their infinitesimal elements 
form the affine Kac-Moody algebra, which can be 
viewed as the result of the current algebra in the 
complex parameter space. Another branch of de­
velopment is to derive parametric Bianchi-Bâcklund 
transformation (BT) from a special kind of finite RH 
transformation. Such BT's historically were found 
by guesswork and now we have a more general un­
derstanding of their origin, i.e., gauge transformation 
with linear dependence in the complex parameter. 
From the BT 's with parameters , local conservation 
laws can be derived, and another nonlinear system, 
the Ricatti equations can be constructed. The Ri-
catt i equations then can be shown to share the same 

linear systems 

The beautiful and surprising thing is that so 
many equations of motions in physics possess these 
geometrical integrability properties when the proper 
formulations and proper extended spaces are found. 
The two dimensional systems include chiral models: 
principal; symmetric-space; superized; with Wess-
Zumino term and its superized version; the Ernst 
equations (which are reduced systems of stationary 
axially symmetric Einstein equations and also static 
axially symmetric self-dual Yang-Mills equations); 
Sine-Gordon equations, KdV equations, Liouville 
equations in the SL(2C) formulations. All the devel­
opments in Fig. (1) have been done for these two-
dimensional systems. The four dimensional mod­
els includes self-dual Yang-Mills; supersymmetric 
Yang-Mills; and the conformai supergravity equa­
tions. All of them have been shown to have infi­
nite nonlocal conservation laws and linear systems, 
from which integrability properties of varied degrees 
as listed in Figure 1 have been derived. 

The important extended space that has emerged 
from such studies is the extended superspace. In re­
spect to whether Nature has manifesting representa­
tion of supersymmetry as supersymmetrical particle 
states or actual superspaces, superspace has already 
demonstrated its richness as a useful framework to 
look at our physical equations and may turn out to 
be an essential part of physical description as com­
plex number is. 

R E C E N T RESEARCH RESULTS 

I. Supergravity Theories 

La. D = 4: It has been shown that light-like 
integrability conditions for n > 5, 6, 7, 8 lead to 

(3) 
conformai supergravity equations of motion. 

Lb. D = 4: Linear systems have been con­
structed from all (n = 1, 8) the light-like inte­
grability conditions. 1^ These linear systems help to 
solve the light-like constraints and thus equations of 
motion for n = 5, 6, 7, 8; and helps to solve the 
light-like constraints for n = 1, 2, 3, 4 for off-shell 
formulation. 

I.e. D = 10, n = 1: It has been shown that 
light-like integrability constraints lead to equations 
(Poincare) of motion only if an additional algebraic 

constraint is imposed .^ Thus the light-like integra­
bility constraints can allow an off-shell formulation 
of the theory. 

I.d. D = 10, n = 1: Linear systems and conser­
vation laws can be constructed for the light-like in-

(2) 

tegrability conditions, and thus useful for the off-
shell formulation of the D = 10, n — 1 supergravity 
theory. In the construction of the linear systems and 
conservation laws, it is essential to use the bi-spinor 
representation for the light-like vectors. 

II. Supersymmetric Yang-Mills Theories 

In addition to the similar developments^ 1 5 as 
mentioned in section I for D = 4, supergravity the­
ories, our recent new addition is the construction 
of linear systems, and an infinite number of nonlo­
cal conservation laws using the bi-spinor representa­
tion^ 2 0^ for any light-like vector in D — 6 and 10. 
These will be certainly useful for constructing new 
solutions in D = 6 and 10, and then in D = 4 by 
dimensional reduction. 

III. Progress Made For The D = 4, Self-Dual Yang-
Mills Equation 

IILa. Permutabil i ty property has been shown to 
be true for the Chau-Prasad-Sinha Bàcklund trans­
formations ( B T ) . ( 2 1 ) 

IILb. The sequence, Parametr ic BT —» Riccati 
—» linear systems, has been constructed for the self-

(22) 
dual Yang-Mills equations; 

III.c. A generalized Bàcklund transformation, 
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which is capable of generating instanton solutions 
has been constructed for the (supersymmetric) self-

(23) 
dual Yang-Mills equations. 

IV. The D = 2 Theories 

IV.a. The Ernst equations which are reduced 
non-l inear systems of static and axially symmetric 
Einstein, or Yang-Mills equations: linear systems, 
infinite-nonlocal conservation laws, finite R i emann-
Hilbert transforms, and infinitesimal RH transform 

Kac-Moody algebra; Bàcklund transformations, 
(24) 

etc. have been thoroughly discussed. 
IV.b. All the integrability properties as listed 

in IV.a. have been constructed for the super-chiral 
(25) 

equations with Wess-Zumino term. 
IV.c. A general gauge covariant formulation, as 

well as all the integrability properties have been con-
(<yc.\ 

structed for general symmetr ic-space chiral fields. 
V. General Integrability Discussions 

V.a. A unifying derivation of BT has been given 
from the point of view of finite Riemann-Hilber t 
transformation.^ 2 7^ 

V.b. A general discussion of Kac-Moody algebra 
has been made from the point of view of infinitesimal 

(28) 
Riemann-Hi lber t transformation. 

V.c. Using the special Riemann-problem tech­
nique of Zakharov et al., we derive an explicit N-step 
Bàcklund transformation for a class of 1+1 dimen­
sional nonlinear evolution equations ,^29^ 

Now we are ready to move forward in two fronts: 
first, finding solutions to the full Yang-Mills equa­
tions. T h e essential new feature in the search for 
classical solutions for the full Yang-Mills and su-
pergravity equations is the use of superspace, and 
to develop two-complex-variable Riemann-Hilber t 
transforms, contrasting to the one-complex-variable 
Riemann-Hi lber t transform used in two-dimensional 
systems and the self-dual Yang-Mills systems. And 
second, quantizing the super-Yang-Mills and super-

gravity fields from these new points of view (30) 

VI. Approach to Quantization To approach quan tum 
field theory from this geometrical-integrability point 
of view, the following work has been done: 

VI. a. We have studied the light-cone Hamilto­
nian formalism of the nonabelian chiral model with 
Wess-Zumino te rm in arbi trary coupling constant. 
T h e monodromy matrices and their bracket struc-

(31) 
ture are derived explicitly and discussed. 

VI. b . From an action for the self-dual Yang-
Mills (SDYM) system, we have constructed a higher 
dimensional version of the Kac-Moody-Virasoro al­
gebra which appears as the symmetry of this system. 
We have also constructed a SDYM hierarchy with us­
ing these algebras.^ 3 2^ 

VI. c. We have studied a conformally invariant 
theory which consists of scalar fields and a gauge 
field. T h e presence of gauge fields introduces in­
teresting phase factors given by the line integral of 
gauge potential in the correlation functionsf 3 3^ 

F U T U R E PLANS 

Developing quan tum field theories from this 
geometrical-integrability point of view will be the 
emphasis for the near future. Work done as given 
in VI. 1, VL2, and VI.3 are just the beginning. Cer­
tainly, we do not expect tha t Yang-Mills and general 
relativity field equations are integrable in the way 
integrability has revealed in two dimensional mod­
els. However the linear systems have given us a very 
strong hint that these realistic four-dimensional field 
theories are "partially" integrable. How to make best 
use of these "relics" of integrability and get as much 
information out as possible will be the challenge. The 
hope is tha t after the integrable part is extracted 
out, the nonintegrable par t will be much easier to 
deal with. The approach may also provide a non-
per turbat ive approach to these highly and complex 
nonlinear dynamical system. 

On the classical side, there is still much to be 
done, e.g., I would like to construct classical so­
lutions to the full Yang-Mills equations and the 
full conformai gravity equations via the geometrical-
integrability properties so far we have found. It is 
conceivable tha t we may eventually write down a 
general form of solutions to these equations as Pen­
rose had done to all linear free massless field equa­
tions. 
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DISCUSSION 

Q. Yong-Shi Wu(Univ. Utah): What are the boun­
dary conditions you impose at = 0 and X - — LI 

A. L. L. C h a u : We have tried both the vanishing 
condition and the periodic boundary condition. For 
both cases the troubling terms violating the Yang-
Baxter equations are present. 
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Abstract: We consider instanton and anti-instanton solutions of the 0(3) <7-model in two Euclidean 
dimensions modified by the addition of apropriate potential and skyrme-like terms as static solitons (and 
anti-solitons) - skyrmions of the same model in (2+1) dimensions. We find that in contradistinction 
to the pure 0(3) <r-model the addition of the potential and skyrme terms stabilises the skyrmions and 
that the force between them is repulsive. In the scattering process initiated at low relative velocities 
the skyrmions bounce back while at larger velocities they scatter at right angles. The scattering is 
quasi-elastic and the skyrmions preserve their shape after the collision. On the other hand a skyrmion 
and an antiskyrmion attract each other and annihilate into pure radiation. 

1. Introduction 

Over the last few years sigma models in low 

dimensions have become an increasingly important 

area of research. Although the <r-models are inte-

grable in two dimensions , it appears that only 

very special models are integrable w in (2+1) dimen­

sions. In particle physics we are interested primarily 

in Lorentz invariant models. But all such (T-models 

in (2+1) dimensions appear to be nonintegrable, and 

so it is natural to consider numerical evolutions in 

these cases. 

The simplest Lorentz invariant (2+1) dimen­

sional a model is the 0 (3 ) model, which contains 

three real scalar fields, <f> = ( < £ \ 0 2 , < £ 3 ) . In (2+1) 

dimensions ^ is a function of the space-time coor­

dinates (tyx,y) which we also write as (x°, x 1 , ^ 2 ) . 

The model is defined by the Lagrangian density 

together with the constraint <f>. <f> = 1, i.e. <j> lies on 

a unit sphere S^. In (1.1) the Greek indices take 

values 0 ,1 ,2 and label space-time coordinates, and 

dp denotes partial differentiation with respect to x^. 

Note that we have set the velocity of light, c, equal 

to unity, so that in all our calculations we can use 

dimensionless quantities. The Euler-Lagrange equa­

tions derived from (1.1) are 

For boundary conditions we take 

where (r, 0) are polar coordinates and where <j>o is 

independent of the polar angle 6. In two Euclidean 

dimensions (i.e. taking <f> to be independent of time) 

this condition ensures finiteness of the action, which 

is precisely the requirement for quantisation in terms 

of path integrals. In (2+1) dimensions it leads to 

a finite potential energy. The boundary condition 

(1.3) introduces nontrivial topological aspects into 

the theory and it allows us to intoduce an integer-

valued topological charge given by 
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where €{j is the antisymmetric symbol on two indices 

such tha t ei2 = —^21 = 1. 

It is convenient to express the <f> fields in te rms 

of their stereographic projection onto the complex 

plane W 

The W formulation is very useful, because it 

is in this formulation tha t the stat ic solutions take 

the simplest form; namely, as originally shown by 

Belavin and Polyakov 1 5 3 and Woo) 6 1 they are given 

by W being any rat ional function of either x+iy or of 

x — i y . It is easy to see tha t the topological charge of 

these solutions is a positive or a negative integer re­

spectively. By convention the first case corresponds 

to instantons and the other to anti- instantons. 

Can we consider the instanton solutions as 

s tat ic solutions of the same model in (2+1) dimen­

sions? Can we have any nonstat ic solitons? Of 

course, the stat ic solutions can be made to move 

with arbi t rary velocity, simply by Lorentz boost­

ing. Being extended s t ructures with a localised en­

ergy, they resemble the familiar examples of solitons 

in (1+1) dimensions. But are they solitons in the 

strict sense? In particular, one may wonder whether 

they are stable under small per turbat ions and also 

whether they preserve their shape and velocity in 

scattering processes. 

These are the problems tha t will be discussed 

in this talk. The talk is based on the work some 

par t s of which have been performed in collaboration 

with R.A. Leese and which has been the subject of 
r M [s] t*l [io] 

a series of papers . 

Looking at the problem of stability we observe 

t ha t the model has no intrinsic scale and so admits 

the existence of solitons of arbi t rary size. Hence un­

der small per turbat ions the solitons can either ex­

pand indefinitely or shrink to become infinitely tall 

spikes of zero width. Our simulations have shown 

tha t this is exactly what happens in this model. In 

fact, as soon as the solitons are pur turbed , e.g. s tar t 

moving, they s ta r t shrinking. 

We have analysed this problem in some detail 

and have found tha t the solitons of the 0 ( 3 ) a 

model are unstable . This is t rue not only in the 

full simulation of the model bu t a l so 1 1 1 1 in the ap­

proximation to the full simulation provided by the 

so-called "collective coordinate" approach in which 

the evolution is approximated by geodesic motion 

on the manifold of stat ic solutions. Such an approx­

imation is clearly very reliable a t small velocities; 

however, all our studies have shown 1 1 1 1 1 7 1 t ha t it is 

also reliable even a t unexpectedly high velocities (~ 

0.5 of the velocity of l ight). 

A few words about our numerical procedures. 

Most of our simulations were performed in Los 

Alamos using a 4 th order Runge-Kut ta method of 

simulating t ime evolution. We used the Los Alamos 

Connection Machine working in double precision 

and also some Los Alamos Crays. We also per­

formed some calculations, using double precision, on 

the Float ing Point System Machine and on Multi-

flow Trace. Almost all our simulations were per­

formed on fixed lattices which varied from 201 x 201 

to 512 x 512, with latt ice spacing Sx = 6y = 0.02. 

T h e t ime step was 0.01. 

So far as the boundary conditions are concerned 

most of our simulations were performed with fixed 

boundary conditions as all the effects associated 

with the variation of the fields at the boundaries are 

very small. However, even though small, they are 

nonzero and so we tested their effects by introducing 

some absorption or by extrapolat ing the fields at the 
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boundaries. We have found t ha t the waves coming 

from the boundaries or the waves reflected from the 

boundaries can effect our results quite significantly. 

In part icular , some preliminary results obtained on 

smaller size latt ices, were not confirmed in our big­

ger latt ice simulations. Having tested our results 

by changing the lattice size and varying the bound­

ary conditions we are reasonably confident of our 

results; al though we believe some more work would 

be required to be absolutely certain. 

2. Skyrme Model 

To stabilise the 0 ( 3 ) model we introduced a 

scale into the model t ha t would prevent the instan-

tons from bo th shrinking and expanding. Guided 
[ l 2 j [13] 

by the ideas of Skyrme we chose to add to our 

Lagrangian density the following extra terms 

where 6\ and 92 are two new (real) parameters of the 

model. It is clear t ha t the model based on the La-

grangian with these terms is still Lorentz invariant 

and for positive values of 0's its Hamiltonian is pos­

itive definite. Moreover, despite the appearance to 

the contrary, the Lagrangian does not contain t ime 

derivatives higher t han two and so its equation of 

motion takes the conventional form. 

The equation (2.2) is ra ther difficult to solve, bu t if 

we restrict ourselves to looking for stat ic solutions 

and then consider 0, which corresponds to W being 

analytical (i.e. W = W(x + iy)) then it is easy to 

check t h a t 

This is a part icular case of the one instanton solu­

tion of the 0 ( 3 ) <7 model, bu t with the fixed "size" 

(determined by A). 

It is easy to show tha t this solution is stable 

with respect to any per turbat ions . In fact, if we try 

to evolve it with (2.4) different from A we find tha t 

the system has an excess of energy which it uses to 

bring its size up or down to the correct value and at 

the same t ime it sends out a wave of radiat ion. 

So what are the scat tering propert ies of our 

skyrmions? First we looked at the behaviour of two 

stat ic skyrmions. Thus we considered the field con­

figuration described by 

This configuration describes two skyrmions (located 

at ± a ) ; their widths are the same and are given by 

A = ^ . As (2.5) is not a solution of (2.2) it evolves 

and as it evolves the system develops some kinetic 

energy. Looking at this evolution we have found 

tha t the forces acting on the skyrmions are quite 

complicated; they have bo th repulsive and at tract ive 

components . At first the a t t ract ive forces win and 

the skyrmions approach each other. However, this 

does not last long; very soon the process is reversed, 

the skyrmions repel and move away from each other. 

During this reversal the system performs some 

internal oscillations. In fact, in our simulations we 

observed two internal oscillations - which involved 

the kinetic energy flowing twice in the original direc-
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tiori of motion followed by its flow at 90° before the 

system stabilised and the skyrmions started moving 

away from each other. As they moved away they 

accellerated. Moreover, our studies have shown tha t 

the qualitative behaviour of the interaction does not 

depend on the values of 0's; as we increase their val­

ues all effects are the same but become more pro­

nounced. 

Next we looked at the scattering properties of 

two skyrmions sent towards each other at some ve­

locity v. We implemented this idea by starting with 

the field configuration 

and calculating from it W(x, y, 0) and dtW(x> y) 0). 

We chose a = 1.0 and considered the dependence of 

the evolution on the values of v. Again, we found 

tha t for all values of 0's the qualitative properties 

of the scattering were the same. At small values 

of velocity the skyrmions scattered back to back. 

When we increased the initial velocity the skyrmions 

came closer and closer together before scattering 

back to back, then they spent longer and longer in 

a quasi-trapped state before bouncing back, and fi­

nally above a certain critical valueof the velocity vcr 

they scattered at 90° to the original direction of mo­

tion in their centre of mass. 

When the initial velocity is critical or higher 

the skyrmions manage to come very close together 

before scattering; at their closest they form a ring 

from which the outgoing skyrmions emerge. When 

the ring is formed the skyrmions loose their iden­

tity - hence it does not make sense to enquire which 

skyrmion goes where. 

We also looked at the dependence of the crit­

ical velocity on the values of 0's. We observed an 

increase of vcr with the increase of 0's and a sort 

of levelling off (or even a small decrease) at larger 

values of 0's. 

We have also observed that as the skyrmions 

move towards each other with their velocities ap­

proaching their critical value, the t ime during which 

the skyrmions stayed close together increades, im­

plying the t rapped nature of the quasi bound-state 

formed by the skyrmions. 

When two skyrmions are put initially on top of 

each other, the energy density describes a ring very 

reminiscent of the ring formed during the scattering 

process. The observed evolution showed small oscil­

lations in the value of the size of the ring, followed, 

quite suddenly, by the separation of skyrmions and 

their motion away from each other with some finite 

velocity very close to the effective critical velocity 

(for the corresponding value of 0's). 

Hence we see tha t the mechanism of the for­

mation of the ring and the possibility of having two 

skyrmions on top of each other have the same origin. 

3. More General Systems 

We also looked at systems consisting of one 

skyrmion and one antiskyrmion. In this case we con­

sidered as our initial configuration 

It is easy to check that (3.1) is not a solution of 

the equation of motion. Moreover, the system is 

clearly unstable and when started at rest the two 

extended structures approached each other and an­

nihilated into pure radiation. During their ap­

proach the skyrmion and antiskyrmion at tracted 

each other and so accellerated while moving towards 

each other. We found tha t before their annihila­

tion the skyrmion and antiskyrmion preserved their 

identities very well. After the interaction the sys­

tem represented jus t pure waves; what is interesting 

is tha t their maxima flowed at 90° to the original 

direction of motion. It is easy to check tha t the 
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outgoing structures really represented pure radia­

tion waves and not skyrmions and antiskyrmions; 

it is enough to observe that they moved with the 

velocity of light and that their topological charge 

gradually decreased. 

We performed several simulations varying the 

initial value of v and changing the values of # 2 . We 

found no significant dependence on 0's showing that 

for a system of skyrmions and antiskyrmions, which 

is characterised by strong attractive forces already 

at the 0 ( 3 ) level, the additional forces generated by 

the potential and skyrme terms in the Lagrangian 

have little effect on the main features of the scat­

tering. We performed several others simulations in­

cluding the interesting case of a skyrmion and an 

antiskyrmion rotating around each other. In this 

last case we found that the skyrmion and the anti­

skyrmion had almost got trapped in an orbit around 

each other; however, due to their interaction, at a 

certain time they slowed down their circular motion, 

moved towards each other and then annihilated into 

pure radiation. The maximum of the radiation was 

again sent out at 90° to the direction motion just 

before the annihilation. 

many scatterings of other extended structures, such 

as monopoles or vortices 1 1 4 1 and so we believe that it 

is probably very typical of all scattering of extended 

structures in (2+1) dimensions. 

In conclusion we see that the modified 0 ( 3 ) 

model, although non-integrable, is almost integrable 

in that it has many features in common with many 

integrable models. Most differences or deviations 

are rather small. As most physically relevant mod­

els are not integrable our results suggest that the 

results found in some integrable models should not 

be dissmissed as not relevant; it is quite likely that 

some of these results may also hold in models which, 

strictly speaking, are not integrable but whose devi­

ations from integrability are rather small. 

Most of our results agree with the results ob­

tained in the collective coordinate approximation. 

This suggests that this approximation is much bet­

ter than could be first thought of on purely general 

grounds. Finally, our results suggest that the mod­

ified 0 ( 3 ) <r model is a good candidate for being a 

toy model of solitons in (2+1) dimensions. 

4. Some Comments 

We have seen that the skyrmions behave very 

much like real solitons. In the scattering involv­

ing only skyrmions they preserve their shape and 

although during the scattering some radiation ef­

fects are present, these effetcs are always very small. 

The situation is different, however, for systems in­

volving skyrmions and antiskyrmions; they interact 

with each other very strongly and annihilate into 

pure radiation. The outgoing radiation follows the 

scattering of skyrmions above their critical velocity; 

namely the peaks of radiation are sent out at 90° 

to the original direction of motion in the centre of 

mass. This phenomenon has also been observed in 
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