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Abstract

A general theory is presented to construct link polynomials, topological invari-
ants for knots and links, from exactly solvable (integrable) models. Represen-
tations of the braid group and the Markov traces on the representations are
made through the general theory which is based on fundamental properties of
the models. In addition, the equivalence of algebraic and graphical formulation
is proved. Various examples including Alexander, Jones, Kauffman and new
link polynomials are explicitly shown. In a word, the soliton theory contains an

essence of the knot theory.

1 Introduction

In 1965, Zabusky and Kruskal [1] introduced
a new concept, soliton, in the study of nonlin-
ear waves. The soliton system has an infinite
number of conserved quantities and is proved
to be a completely integrable system. When
we extend the soliton theory to quantum com-
pletely integrable systems, there emerges a
unified viewpoint on various exactly solvable
models in 141 dimensional field theory and
in 2-dimensional classical statistical mechan-
ics. To each model we can associate a fam-
ily of commuting transfer matrices which are
generators of an infinite number of conserved
quantities. The condition for the commutabil-
ity is the Yang-Baxter relation. {2,3,4,5]
Recently, the Yang-Baxter relation has been
{found to be a key to several fields in mathe-
matical physics. In particular, Y. Akutsu and
tke authors found a general method to obtain
various link polynomials [6,7,8,9] and their ex-
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tensions from exactly solvable models. [10,11,
12,13,14,15,16,17,19,20,21,22,23] The purpose
of this paper is to summarize the general the-
ory for construction of known and new link
polynomials from exactly solvable models.

Several problems in physics such as path
integrals, fractional statistics and quantum
gravity theory are related to the braid group.
[24,25,26,27,28,29] In particular, it is interest-
ing that solvable models and conformal field
theories share many mathematical features in
common. [30,31,32,33,34]

The outline of this paper is given in the fol-
lowing. In §2, the Yang-Baxter relations for
S-matrices, vertex models and IRF models are
introduced. Then, the mothod for construc-
tion of the representations of the braid group is
given. In §3, link polynomials are constructed
by algebraic and graphical approaches. The
crossing symmetry is used for the graphical
calculation of the link polynomials. In §4,
appplications to several models are shown.
Link polynomials obtained include Alexander,



Jones, Kauffman and new link polynomials.
In §5, link polynomials are constructed {from
solvable models with graded symmetry. The
last section is devoted to concluding remarks.

2 Exactly solvable models
and braids

Let us first introduce factorized S-matrices.
We write the amplitude of the scattring pro-
cess: 1 = k, ] — £ as ,S" 1(u) , where u is the
rapidity difference ofmcommg (outgoing) par-
ticles. In general, the "charge” variables ¢, 7, k
and £ of S} («) take vector values (weight vec-
tors). The factorized S-matrices represent the
elastic scattering of particles where only the
exchanges of momenta and the phase shifts oc-
cur. The rapidity difference of the scattering
particles can be depicted by the angle in the
diagram. When Sj'f (w) is non-zero only for the
case 1+ J = k + £, we say that the model has
"charge conservation” property. [10,19,20]

The Yang-Baxter relation for the S-matrices
reads as

> SIS (u +v)S5(v)

abc

= ). S

abe

(v)Sie(u+0)5E2(w). (1)

This relation is often referred to as the factor-
izatlon equation [2,5].

In two-dimensional statistical mechanics, [3,
20] there are two types of solvable models, ver-
tex models and IRF models. We introduce
vertex models. The Boltzmann weight (statis-
tical weight) w(z, 7, k, {; u) of a vertex model is
defined for a configuration {i,j, k,£} round a
vertex. Here the parameter u is called spectral
parameter which controls the anisotropy (and
strength) of the interactions for the model.

For vertex models the Yang-Baxter relation
is given by

Z w(b, c,q,r; w)w(a, k,p, c;u + v) X

abe
w(i, j, a, b; v)
= Ew(a,b,p,q;v)w(i, ¢ a, iU+ v) X
abc
w(J, k, b, ¢y u). (2)

It is known that factorized S-matrices are
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mathematically equivalent to the correspond-
ing solvable vertex models.

We consider IRF models. The Boltzmann
weight w(a,b,c,d;u) of an IRF model is de-
fined on a configuration {a,b,c,d} round a
face. IRF models have constraints on the con-
figurations. By & ~ a we denote that the
"spin” b is admissible to the "spin” @ under
the constraint of the model. If the conditions
b~ aa~db~cand ¢c ~ d are all satis-
fied, then the configuration {a, b, ¢, d} is called
to be allowed. The Boltzmann weights for not-
allowed configurations are set to be 0. For IRF
models the Yang-Baxter relation is written as

Z w(b,d,c,a;u)w(d, e, fyc;u+v) X

w(c,f,g,a;v)
= Z w(d, e, ¢, b; v)w(b, c, g, a;u + v) X
c

w(e, e, f,9;%). (3)

The IRF configuration a, b, ¢, d corresponds to
the vertex configuration by t =a—d,7 =b—
a,k=b—candf{=c—d.

Factorized S-matrices satisfy the following
basic relations in addition to the Yang-Baxter
relation. [10,14,15,19,20]

1) standard initial condition

S;f(u = 0) = 5il5jk, (4)

where §;; is the Kronecker’s symbol.
2) inversion relation (unitarity condition)

2SS () = (-, (9

where p(u) is a model-dependent function.
3) second inversion relation (second unitarity
condition)

Z 1‘; - u)Skp (A+u) x

() ) v
r()r(7)r(k)r(€)
= p(u)p(—u)b;; 6k (6)

We call the parameter A crossing parameter
and {r(1)} crossing multipliers.
4) crossing symmetry

st =sie -0 (5) @



Here, we have introduced the notation % for
the "antiparticle” of k. We assume that r(l—c) =
1/r(k). Note that the second inversion re-
lation and the crossing symmetry define the
crossing multipliers.

The Boltzmann weights for most of IRF
models satisfy the basic relations correspond-
ing to (4)-(7). For example, the crossing sym-
metry is

w(a, b, c,d; u)

_ . P(a)p(e)\
=w(b,c,d,a; A — u) (W) (8)

where {¥({)} are the crossing multipliers for
the IRF model. Crossing multipliers {¢(¢)}
for an IRF model are related to those for
the corresponding vertex model by 72(j) =
¥(b)/¥(a), when j = b—a and b ~ a. We
shall see that the basic relations and the Yang-
Baxter relation are related intimately to the
local moves on link diagrams, known as the
Reidemeister moves in knot theory.

In order to relate exactly solvable mod-
els with the braid group we introduce Yang-
Baxter operator X;(u). [10,14,19,20] For fac-
torized S-matrices, we define Yang-Baxter op-
erator by

Xi(w) = D ShIV - @) @cfy™
abed
QI g... ™. (9)

Here I®)denotes the identity matrix and eqp a
matrix such that (eqs)jx = 6ja0ks. The Yang-
Baxter operators {X;(u)} satisfy the following
relations (Yang-Baxter algebra),

Xi(w)Xig1(u+v) Xi(v)
= Xi+1('U)Xi(u +v) Xig1(u), (10)
Xi(u)X;(v) = X;(v) Xi(u),

li —j] > 2. (11)

In terms of the Yang-Baxter operators,
the -Yang-Baxter relations for factorized S-
matrices, solvable vertex and IRF models are
in the same form.

The braid group B, [35] is defined by a set
of generators, by, -+, bp—; which satisfy

bibiy1b; =
bib;

biy1bibiqa,
bh  Jimil2 2 (12)
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The operation b; makes (i 4+ 1)-th string cross
above i-th string.

Braid is a fundamental object in knot the-
ory since any oriented link can be expressed by
a closed braid. The equivalent braids express-
ing the same link are mutually transformed
by a finite sequence of two types of operations,
Markov moves I and II. The Markov trace ¢(-)
is a linear functional on the representation of
the braid group which have the following prop-
erties (the Markov properties):

I. $(AB) = ¢(BA), A, BeB,, (13)
II. $(4b,) = 7¢(A),
p(Art) = T(4),
AeBy, by By, (14)
where

T=¢(bi), T = 6(b")

From the Markov trace we obtain a link poly-
nomial o) as [10,19,20]

for all 1. (15)

AeB,.
(16)

Here e(A) is the exponent sum of 4's in the
braid A, which is equivalent to the writhe of
the link diagram (cf.(30)). It is easy to show
that a(-) defined by (16) is indeed invariant
under the Markov moves.

The braid operator G;(+), the inverse op-
erator G;(—) and the identity I are given by
[10]

a(4) = (r7)” (D)W (a),

Gi(£)
I

lim Xi(E)/(), (17
Xi(0). (18)

The limit v — oo (more precisely, an infinity
in a certain direction in the complex u-plane)
requires that factorized S-matrices (the Boltz-
mann weights) be parametrized by hyperbolic
or trigonometric functions. In statistical me-
chanics, it implies that the model is at the
criticality. Hereafter we shall write the matrix
elements of the braid operator as

(%) = lim Xob(du)/p(+u)
= lim 53 (xu)/p(u). (19)

Then we can express the braid operator (17)
constructed from the Yang-Baxter operator as

Gi(£) =) Gu(#)IVe---®

abed



el @epy ) © 16+ - @ I™20)

To summarize, corresponding to an exactly
solvable model, we obtain a representation of
the braid group by using the formula (17).

3 Construction of link

polynomials

3.1 The Markov trace

We shall obtain link polynomials by construct-
ing the Markov trace on the representations
of the braid group derived from the solvable
models. For {actorized S-matrices and vertex
models, the Markov trace takes the following
form [10,19,20]

Tr(H(n)A)
A= AeB,,
M= @)
e = [T (a8 (21)

where 8 = 644 is the Kronecker’s symbol. For
the models with the crossing symmetry (and
the second inversion relation), r(p) is noth-
ing but the crossing multiplier of the model.
The trace ¢(-) defined in (21) is the Markov
trace since we can prove the Markov property
I by the "charge conservation” property and
the Markov property II by the following con-
ditions:

DyGoy(£)r’(b) = x(£)
(independent of a).  (22)

The r-factors are related to x(+) as 7/7 =
x(=)/x(+).

We can prove the extended Markov property
[14,16,19,20] :

> Xe(wh(b) = H(uin)o(u)
b
(independent of a), (23)

where the function H(u;7) is called character-
istic function. This relation is an extension of
(22) into the case of finite spectral parameter.

For IR_F models we introduce a”constrained
trace” Tr(4) by
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[14,16,19,20]:

~

Tr(A)= Y

LlgL,

Aloll-"l“ ’w(en)
Lody o ¢(£0)’

(Lo : fixed)

24
where the symbol & with "represents the sgm?
mataion over admissible multi-indices {¢; :
fiy1 ~ 4} fori=0,--+-,n— 1 with £, being
fixed. Then the Markov trace ¢(-) is written
as

L ON
Tr(I(n))

where I(n) is the "identity” operator for n
strings. We can prove the extended Markov
property also for IRF models. {14,16,19,20]
In conclusion, the extended Markov property
(and the charge conservation condition for ver-
tex models) is sufficient for the existence of the
Markov trace. This completes the algebraic
construction of link polynomials from exactly
solvable models.

AeB,, (25)

3.2 Graphical calculation

The crossing symmetry is significant in alge-
braic and graphical aspects of the knot theory.
For solvable models with the crossing sym-
metry, the Yang-Baxter operator becomes the
Temperley-Lieb operator at the point u = A.
[15] In fact, setting

E; = X)), (26)

we find that the operators {E;} satisfy the fol-
lowing relations (the Temperley-Lieb algebra)
[36]

BB Ei = E;
E'Z = q%Eiv

EE;, = EjE, li-j>2, (27)

where the quantity ¢'/2 is related to the cross-
ing multipliers 7(a) (or #(1)) by [10,14,15]

q% = E'I‘Z(j), for S-matrix
J
({for vertex model),

M for IRF model
2 ) (28

In (28) the summation is over all states b al-
lowable to a.



Let us consider the graphical meaning of the
relations (27). From the crossing symmetry
and the standard initial condition we have {15,
19]

r(a)r(c)\1 oda
('r(b)r(d)) SBC(O) )
= r(a)8(a,b)-r(c)é(c,d), (29)

Saa(M)

where 6(a, c) = 8, is the Kronecker’s symbol.

We can regard the elements r(c)6(c,d)
and r(a)6(a,b) as the weights for the pair-
annihilation diagram and the pair-creation di-
agram, respectively. Then, the Yang-Baxter
operator at © = A is depicted as the monoid
diagram, by which the Temperley-Lieb algebra
is explained. This interpretation is consistent
with a fact that the energy at the point u = A
is related to the pair-creation energy.

For IRF models, the weights {¥(a)/v(b)}!/?
and {¢(c)/¥(b)}}/? correspond to the pair-
annihilation and pair-creation diagrams, re-
spectively.

We can formulate link polynomials with the
crossing symmetry directly on link diagrams.
Link diagram L is a 2-dimensional projection
of a link L. The writhe w(L) is the sum of

signs for all crossings C; in the link diagram :
w(L) = T¢,e(Cs). (30)

We calculate "statistical sum” Tr(L) on the
diagram L by summing over braid diagrams,
pair-creation diagrams and pair-annihilation
diagrams. The link polynomial for the link
L is given by

o — c—w(f,) TT(f/)
()= Tr(Ko) (31

Here Ky is the trivial knot diagram (a loop)
and the constant ¢ is defined by a relation

G;E; = cE;, (32)
or by (cf.(22))
_ (220
°= (x(+)) ' (33

It is easy to see that a(L) is invariant under
the Reidemeister moves, and therefore (L)
is a topological invariant of the link L. Thus
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we have shown that the link polynomials con-
structed from solvable models with the cross-
ing symmetry are also graphically formulated.
The monoid diagram and the weights for the
creation and annihilation diagrams were used
by L.H. Kauffman [37] for the Bracket polyno-
mial which gives a graphical calculation of the
Jones polynomial. We have derived monoid
operators from the crossing symmetry of solv-
able models by a general formula (26).

We have an important conclusion. The
graphical formulation applied to closed braids
yields the Markov trace. For the link poly-
nomials with the crossing symmetry, the for-
mulation based on the Markov trace is thus
equivalent to the graphical formulation.

It is interesting that link diagrams are con-
sidered as the Feynman diagrams for the high
energy processes of charged particles and the
link polynomials as the scattering amplitudes.
At the lowest point in the diagram there oc-
cur a pair creation and at the highest point a
pair annihilation. It is also interesting that,
if we regard the link diagrams as distorted 2-
dimensional lattices, the link polynomials are
considered as the partition functions.

4 Various examples

4.1 N-state vertex model

From the N-state vertex models, a hierarchy
of link polynomials is obtained by the general
method presented in §3 and §4.[10] The model
corresponds to the factorized S-matrices with
spin s particles, where N = 2s + 1. [38,39]

Using the N-state vertex model (asym-
metrized by the symmetry breaking transfor-
mation), we get the braid operator which sat-
isfies an N-th order relation: [10]

(G,‘ - Cl)(G,' - Cg)*--(G,' — CN) =0 (34)
where for j =1,2,---, N

Cj = (_1)j+Nt}N(N—1)—;—j(j—1), $ = 2>,
(35)
We call a relation for G; such as (34) reduction
relation of the braid operator. The crossing
multiplier for the asymmetrized N-state ver-
tex model is

r(k)=e M =t"*2 k=5 —541,-,s,

(36)



where s = (N —1)/2.

The extended Markov property [14,20] is
satisfied with the characteristic function given
as

L sinh(N X — u)
Hwd =m0 O
The constants 7 and ¥ are
T=1/(1 4t V7Y, (38)
F=tNY (4t 4N, (39)

It is remarkable that there exists an infinite
sequence of link polynomials corresponding to
the N-state vertex models (N = 2,3,4,5, -
). [10,20] The N = 2 case corresponds to the
Jones polynomial.[7} In the N > 3 cases we
have new link polynomials. From the reduc-
tion relation, we obtain the skein relations (the
Alexander-Conway relations) for the link poly-
nomials:

a(Ly) = (1 - )5 a(Lo) + t2a(L_),
(N =2) (40)

a(Lay) = t(1 — 1% + 3)a(L4)

+(t* = t® +1")a(Lg)

~8a(L_), (N=3) (41)
a(Lay) = t372(1 = 4+ ¢° — %)Ly )
+85(1 -2+ 83+ 65 -1+ ®a(Ly)
+125/2(~1 4 1 — 13 4 %) (Lo)
-t2(L.), (N =4). (42)

In (40), by L4, Lo and L_ we have denoted
links which have the same configuration except
b, 69 and b.-‘l at an intersection. Similarly,
L2+, L+, Lo and L_ in (41) and L3+, L2+,
Ly, Lo and L_ in (42) should be understood.
For general NN, the skein relation is of N-th
degree relating links Liy_1y4, *+, Lo, L.

4.2 Graph state IRF model

We can construct solvable IRF models
corresponding to arbitrary graphs in any
dimensions.[40,14] We call them graph state
IRF models. We may express the constraint
of the model by a graph. In the graph each
point represents the spin state. When a spin
¢ is admissible to d then the point ¢ is con-
nected by a line to the point d. For ADE
type graphs of Dynkin diagrams, the models
are called ADE models.[41] There also exist
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solvable models with elliptic parametrization
for extended Dynkin diagrams [40,42].

Let us construct the graph state IRF
models.[14] We solve the eigenvalue equation
{or the graph ;

> $(b) = Ay(a), (43)

brva

where the summation is over all spin state b

admissible to a. Constructing the Temperley-

Lieb operator
ki

[E ]m Pno__ 6k'+1 '4’(77' ¢( ) H 6{’

i =0 t d’(pi 1) ’

j= J=i+l

(44)

we have the Yang-Baxter operartor

Sl?ﬁ(x)u) (I * smifil a2 " )

From the model we get the braid operator by
taking the limit « — oo and the Markov trace
on the braid group representation by using the
crossing multipliers. The link polynomial sat-
isfies the second degree skein relation.

We can consider vertex models correspond-
ing to the graph state IRF models under the
Wu-Kadanoff-Wegner transformation and the
base-point-infinity limit .[21] From these ver-
tex and IRF models we have multi-variable
braid matrices.[21]

X,'(u) =

4.3 ABCD IRF models

The IRF model corresponding to afline Lie al-
gebra 4D (BY), ¢, DY) is-called AN
(Bm BY O,(é), D(l)) model.[43] The crossing pa-
ra,meter A and the sign factor ¢ are defined
as

A= mwf2, ¢=1 for A(l?_l,

A= (2m-1w/2, ¢=1 for BY,
A= (m+ 1w, o=-1 for C’,(,}),
A= (m=-1lw, o=1 for DY (486)

where w is a parameter. The reduction rela-
tions are

(Gi = 1)(Gi+77) =
for AS) T

(Gi = 1)(Gi = B)Gi +77) =0
for B, and DY, (48)

(47)



with
vy o= e—iw
for AD |, BV, 68V and DY,
ﬂ = Ue—i[?)\-f-w(l-i-a)]

for BY, €5 and DY (49)

The extended Markov property is proved and
the characteristic functions are calculated as

sin(mw — u) )
H _— 7
(v) sin{fw —u) ’ for An=sy
H(w) osin(2A — u)sin(ow + A — u)’

sin(A — u)sin(w — u)

{or B,(,i), C,(,,l) and D,(,i). (50)

(The explicit forms of the crossing multipliers
are given in [16]). Using the reduction rela-
tions and the Markov traces, we obtain the
generalized skein relations:

a(Ly) = (1 = )tV 26(Lo) 4 t™o(L..)
for A,(;)_l,
a(loy) =
=(1 _t+ﬁ)e—.’(z,\+a(«—1)) ca(Ly)
+(t + 0t - ﬁ)e—Qi(2A+w(a——~1)) . Q(Lo)
_tﬂe—36(2A+W(a—1)) . oz(L_)

’

for BY, € and DY, (51)
where
t = e—2|w. (52)

For A,(T:)_l model, the Alexander polynomail is
obtained by the limit m — 0, while m = 2
corresponds to the Jones polynomial.

Link polynomials thus obtained are one-
variable invariants for each fixed m. It is noted
that m is independent of . We now have
two variables ¢ and m. The link polynomial

constructed from AS)_l model corresponds to
the two-variable extension [8] of the Jones
polynomial. The link polynomials from B,(,P,
C,(nl), D,(,f) models correspond to the Kauffman
polynomial [9]. We thus have explicit real-
izations of the KKauffman polynomial and the
two-variable extension of the Jones polyno-
mial (HOMFLY polynomial). The braid ma-
trices given by Turaev [44,45] correspond to
the vertex-model analog of the braid matrices

constructed from A B,(,f), C’,(nl), D IRF

m—1
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models. From the IRF models we can con-
struct braid matrices and the Markov trace
for the vertex models by the Wu-Kadanoff-
Wegner transformation and the base-point-
infinity limit. [14] For example, from A-type
IRF models we obtain the multi-state vertex
models [46] related to SU(n). In the limit, the
Markov trace [16] for the IRF model leads to
that [44] for the vertex model.

5 Super Vertex models

5.1 gl(M|N) Vertex models

We

shall explain construction of link polynomials
from vertex models with graded symmetry.[22]
We consider a family of solvable vertex models
associated with gl(M|N).[22,46] We prepare a
set of signs {¢}

¢=lor—1, for i=1,---,M+ N. (53)

The sign ¢; represents the 'parity’ of the edge
state 1. We also introduce 'grade’ p(i) € {0,1}
of the edge state 1 as ¢; = (—=1)P®). The num-
ber of positive (resp. negative) signs is given
by M (resp. N). In this way we have in-
troduced the graded symmetry. For any set
of signs {¢;} we have a solution of the Yang-
Baxter relation. Nomn-zero elements of the
Boltzmann weights are given as follows:

w(a,a,a,a;u) = sinh(n — egu)/sinh7,

) _ exp(—u) fora <b,
w(a,b,byaiu) = { exp(u) fora > b,
w(a,b,a,b;u) = =sinhu/sinhy

for a # b, (54)

where 7 is a parameter and the edge variables
a and b take values 1,2,---,M + N. The
models have the charge conservation property:
w(a,b,c,d;u) = 0 unless a + b = c +d.

The elements of the braid matrices are
derived from (54) and (19) with p(u) =
sinh(n — u)/sinh 7 :

1 dor e =1,

Gaalt) = {—i for € =-1

ab _ 0 for a<b,
Ga(+) = { 1—t dfor a>b,
Gl (4) = Fi/? fora #b. (55)



Here a variable t is defined by ¢t = exp(27). De-
pending on the choice of the signs {e, } [22], we
obtain 2M*Y different representations. Note
that by replacing t with ¢! and multiplying
the braid matrix by —1t, we have an equivalent
representation.

Each representation has only two eigenval-
ues 1 and —t. The braid matrices satisfy the
Hecke algebra relations. Thus, to summa-
rize, the Hecke algebra appears in the braid
matrices associated with the Lie superalgebra
gI(MIN). [22]

By taking the limit n — 0 we get the graded
permutation operator from the representation
of the braid group (55). In this sense, the braid
operator is a g-analogue of the graded permu-
tation operator.

5.2 Link polynomials

Through the general theory we construct the
Markov trace on the representations derived in
the previous subsection. For any grading {¢;},
the Markov trace is given by

H(A) = Tr(H(n)A)

Tx(H(n)) '

[H(n) g2 e = [[ 6(3)6 - (56)
j=1

AeB,,

Here the diagonal matrix A is

j=1
k(7)) =€ exp{n(z 2¢x +¢; — M + N)},
k=1
forj=1,---M+N. (57)

In the limit n — 0, the trace with matrix A
reduces to the supertrace strd = 2,- €A,
We can prove the extended Markov property,
[14,16,19,20]

> Xeb(w)h(b) = H(u;n)p(w)
( independent of a), (58)

where the characteristic function H(u;n) is

given by

sinh((M — N)n — u)
sinh(n — u) ‘

H(u;n) = (59)
This is a generalization of the characteristic
function for the Apr—y (sI(M)) model given in
(50).[16,19,20]
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The link polynomial obtained from the ver-
tex model associated with gl(M|N) satisfies the
skein relation:

a(Ly) = t*/2(1 — t)o(Lo) + P a(L-). (60)

where

p=M-N-1 (61)

Since the skein relation is of second degree,
the link polynomial is calculable only by the
relation. We now have a hierarchy of link
polynomials which depends on the number
p=M-—N-1. Itis interesting that as far as p
is common we have the same link polynomial
[22]. To repeat, from different models related
to gl(M|N) with p = M — N — 1 we obtain the
same link polynomial. Note that the hierarchy
includes the case p = 0 where 7/7 = L.

The HOMFLY polynomial [8] is character-

ized by the second degree skein relation:
a(Ly) = W ?(1 = )a(Lo) + wia(L-). (62)

Here t and w are independent (continuous)
variables. We see that the link polynomi-
als constructed from the gl(M|N) type vertex
models correspond to the cases w =17, p € Z
of the HOMFLY polynomial. Based on the
Markov traces we thus obtain a hierarchy of
link polynomials corresponding to the HOM-
FLY polynomial.[22]

The link polynomial for p = -1 is the
Alexander polynomial.[6] The case p = 1 cor-
responds to the Jones polynomial. [7] There-
fore we have a number of braid matrices with
different sizes which lead to the Alexander
polynomial and the Jones polynomial [22].

6 Concluding remarks

We have shown that various link polynomi-
als are systematically constructed from ex-
actly solvable (integrable) models. The Yang-
Baxter relation, which is a sufficient condition
of the solvability of the models, plays a central
role in the theory.

The existence and properties of the link
polynomials [10] constructed from the N-
state vertex model [39] can be proved also by
the construction of composite models (fusion
method) in terms of the Temperley-Lieb alge-
bra and by the graphical formulation derived
{from the crossing symmetry.[15] Note that the



combination of the crossing symmetry and the
Temperley-Lieb algebra characterizes the link
polynomials.

Due to the limjted space we have omitted
a discussion on construction of two-variable
link invariants [12,13,19,20]. Those invariants
may be regarded as two-variable extension of
the link polynomials constructed from A type
composite vertex and IRF models. In pa-
pers {12,13], an algorithm for calculation of
the two-variable link invariants for any link
has been established, and some examples have
been given.

For any combinations of braid madtrices
which have the Markov traces, multivariable
link polynomials with higher skein relations
have been constructed. Using braid matrices
with the Markov traces, we obtain a compos-
ite (hybrid-type) braid matrix and a compos-
ite Markov trace from them, and therefore a
link polynomial. [23] Thus we have a variety
of link polynomials with multivariables.

It is now established that there exists a list
of link polinomials. This fact is significant not
only in mathematics but also in other areas of
sciences, since there are many interestig prob-
lems concerning applications of link polynomi-
als. We believe that the various link polynomi-
als exhibited in this paper will be helpfull for
studying those applications in physics, chem-
istry and biology.
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DISCUSSION

Q. M. Bowick (Syracuse Univ.): Can one obtain link
invariants from conformal field theories perturbed
away from criticality but remaining integrable?

A. M. Wadati: I agree that it is a challenging prob-

lem. But is seems to me that we cannot obtain link
invariants from models at off-criticality.
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ABSTRACT

The equivalence between the quantum group (qZ(N,ﬂ:;L)/U(l))‘“z = (,pﬂ(N;L)qs at q2=—1 over a non-

Grassmannian field and ol(LlN—L)s over a Grassmannian field is discussed.

to gAN;L)_ (q"=-1) ~ o(L|N-L).
GA(N;L)

. at q =rr1th root of unity, m>2.
s

Specifically, representations ql(z;l)qs at m™

The equivalence extends

This suggests a generalization of ol(L]N—L)- to Zm—grading via

root of

unity are shown, via their fusion and braiding properties, to transform as s-deformed parafermions,

or spin-1/m anyons. They contrast sharply with corresponding representations of a#(2) .
s

Recently representations of quantum groups,
especially 6&(N,C) (henceforth M(N)q) at roots
q

of uH}ty have attracted a great deal of atten-

tion. Here we discuss representations at
roots of unity of another quantum group
(henceforth and

(gUN,C;L)/U) QEN;L)_
called twisted quantum group of AM_1 in [2,3]).

Some of the especially interesting properties of
these representations are already known: (a) For
N=2, s generic and ¢ =-1, the representation
gives the Alexander-Conway link polynomial,
whose counterpart is the Jones polynomial deriv-
able from the fundamental representation of
ol(z)q, q generic. ‘ (b) The state model asso-

ciated with the Alexanders—%onway polynomial is
the free fermion model.”™ (c) There is a
hierarchy of Alexander-Conway link polynomials

. h
correigor]ding N=2, s generic and q2=mt root of
unity. > (d The representations of
g2(N;L) at q°"=-1 coincide with those of

a,s

ol(L|N-L) , whose associated link polynomials
8

are just Witten’s Wilson-lines for the 3D topo-
logocal Ch[eargl—Simons theory with gauge group
SU(L|N-L).™

In this report (where w = exp(2ni/m),
qm = w:/z) we give a summary of properties of
the representations of ql(Z;l)qm,s, s generic
(q£(2;l_.)qls reduces to 4)1(2)s unless L=1). They

are parafermionic and unlike the representations
of oé(2), s generic, which have a one-to-one
S

correspondence to the representations of 68(2).
We show that g@f(2;1) provides a generaliza-
qm,s

tion of the Zz-gr‘ading of al(2) to Zm—grading.
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The generators of the Hopf algeg_ram of

ql(z;l)q o denoted by 4, are I, H and X, where

in the classical limit I generates the U(1l) fac-
tor in @f(2) ~ al(2)xU(1) and the other three
generate o£(2). In the quantized case, I is

sti+11 ) cen%r‘a}2 to ﬁ, and [H,X7]= #2X~ and
X', X I=(k™-k “V/(q-q ) as in ol(2), except
that q

K = q(H—I)/Z R )

H/2

instead of k=q in ol(Z)q.

absorb the effect of I on k in (1) into H by a
redefinition ?_f,‘] the latter, which will no longer
be traceless. For reasons that will become
transparent we use the expression (1) in which
the role of I and that of the second parameter s
is made explicit from the outset (in which case
the respective numbers of generators in the
Cartan subalgebra and deformation parameters
still match). For convenience we write p=s/q.
First note the trivial special case of (1) at
p°=1, whence the U(l) factor in ql(N;L)qs is

modded out and « is reduced to a8(2)
properties are well known.

It is possible to

, Whose
q

We consider only the nontrivial case p2$1.
Then #4 has a finite regresentation over the vec-
tor field V only when q~ is a root of unity:

2_ ~1_ -2Wi/m
=e

q =w (2)

, m = positive integer

The same result obtains when one chooses,
instead of (2), q°=w™ , provided m’ is prime to
m. Given (2), the elements (X°)™ are central in
4, and a fundamental m-dimensional matrix repre-
sentation m: «>End(V) is obtained when the
relations

*'m
n((X7)) =0 (3)



are imposed. In what follows, it will be under-
stood that all expressions given for elements in
A are those under the homomorphism =, and that
lpl={|i>; i=1 to m} is a basis for V, with the
highest (lowest) state with respect to X" being

|1> (Jm>). Then |m> (}1>) are the highest (low-
est) state with respegt to X. With the aid of
the derived relation N (meapt_ to hold when
acted on a state € KerX \Im(X")™)
(xH% )1 =
[vl ! v .2 -u+j , -2 u-j
X))Vt —3 g ke ‘"kg (4)
[v-u] ! -1
q J=1 q-q
one obtains from standard methods:
I[i> = (m-1]i>, H|i> = (m+1-2D)|i>  (5)

172
X_|i> = ([i]q(sm—lq—l+l_s—m+1ql-l)/(q_q—l)] Ii+1>v

<i|X'|i+> = <i#l|X7| > (6)

The R-matrix may P‘ﬁ calculated from the
method either of Drinfeld  or of [2]. Here we
only give its m~ eigenvalues, whose degeneracies
determine the fusion rule of the direct product
[plelp] and whose values characterize the braid-
ing of the irreducible representations in the
direct product, as expressed in the following
two relations

m
[plelpl=e [o‘j], (dimensionality of [crj]=nj) (7)
J=t
Rle ] = r [o 8
[ JI J[ J] (8)
That is, the degeneracy of r‘J is nj, and
ZJnJ:mz. For the R-matrix under study, r‘J and

nj are given by

, n; j=1 to m} =
(rj ;] }

(9)

]Jw(l—j)(J—Z)/zs(m—l)(3-—2_])

{-(~1 , m; j=1 to m)

There are m distinct eigenvalues, all with
degeneracy m. This contrasts sharply with the
R-matrix, denoted by R‘, of the m-dimensional
representation [p’] of 02(2)5, whose eigenvalues
r\I
J
by

and degeneracies n’J for generic s are given

{rg, n’J; j=1 to m} =

2 (10)
{-(—1)Js(m—lm_zmﬂzmm‘l_] ], 2m-2j+l; j=1 to m}

For m=2, the link polynomials corresponding to
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[pl] and [p’] are respectively j?zst] the
Alexander-Conway and Jones polynomials ™™, It
follows from the fact £ coincides wzith2 thg1 Hopf
algebra 4’ of M(Z)s in the limit s"=q"=w ~ that

R(s?’=w)=R’(s’=v™"). On the other hand (9) and
(10) are discretely distinct. Therefore at
least one of the relations cannot be continuous
in that limit. It turns out that both are not;
for a detailed discussion see [10].

To have a better understanding of the dif-
ference between (9) and (10) we return to «
{instead of +the homomorphism n) and consider,
instead of X~, the generators

- H/2

+ H/2,,+ Y_-—-Xq

Y =q X, (11)

Define an x-commutator to be [A,B]xEAB-xBA.

Then, +ins'cead+ of having a commutation relation
like X™ do, Y~ satisfy

H/2, (I-H)/2 1 -(I-H)/2_-1
w (w s - w s )

YLyl = A (12)
w
where w=q_2 and A is a nonessential normaliza-

tipn constant so long as q2=t1. The ?%producg_ on
Y, now has a nonstandard appearance AlYT) =

Y..@quI/Z N p—vz@Y...
The left-hand side of (12) is an

w-commutator. In particular, when w=-1, it is

an anti~commutator. In this case, under the

homomorphism m of (5) for m=2, thIe _rlight—hand
side of (12) is proportional to (s -s ), which
vanishes in the limit s»1. If one replaces the
normalization constant A by (s-s~ )', then (12)
is exactly the commutation relation satistfied
by the raising and lowering generators of
4;2(1]1)s (note that the fundamental representa-

tion of H in <>,£(1|1)’i is proportional to the

unit matrix, just as that of 1 is). In this
sense gl(2;1) ., 15 €quivalent to ol(lll)s.
q2,
To understand this notion further, consider

(9) and (10) for the case m=2, and write the two
states |1> and |2> as |+> and |->, the represen-
tations [o‘j] for j=1 and 2 (see (7)) as [b] and

[f], and [a‘}] as [s] and [a], respectively. For

reason that will be clear presently, b, f, s and
a stand for boson, fermion, symmetric and anti-
symmetric, respectively. We have

Ribl=slbl, RIfl=-s"[f] (for eSS (13)
R'[sl=slsl, R‘[al=-s"lal (for o&(2)) (14)
The two sets of equations appear identical, but
they carry quite different meanings. It suf-

fices to point out that whereas both the symme-
tric states |+>]|+> and |->|-> lie in the three
dimensional [s] in the case of 01’,(2)5, in the



case of (;Z(Z;l)qz |+>|+> lies in the two dimen-

sional [b] while |->|-> lies in the two dimen-
sional [f]. Thus, in the limit s-»1, [f] changes
sign under braiding not because it is antisymme-
tric, like [a] is, but because its constituents
are fermionic.

It is important to distinguish how [f] is
given a f{ermionic exchange property (here,
because (Y7)” are central, there is no differ-
ence between braiding and transposition) in (the
unquantized) of(1|1) and in ql(Z;l)qZI. In the

former, which has a trivial coproduct, the task
is achieved by making the vector space expli-
citly contain a Grassmann variable, namely the
state ]—>. In the latter the fermionic property
of |—> is encoded in the braiding property of R
in a Hopf algebra with a nontrivial coproduct,
while the vector space is nonGrassmannian.

The ﬁ}r}alysis above can be transplanted onto

ge(N;L) . to demonstrate its equivalence to
q2,s

ol(L|N-L)s. This explains why, for the funda-

mental representations of the two quantum

groups, the link polynomials, which are actually
eigenvalues of invariants of the quantum group,
are identical, as are their associated graded
vector mi:u?els, and why the latter are nonquasi-
. 3 - .
classical. The equivalence carries over to
the limit s51 to establish the equivalence
between the Hopf algebra q,l’,(N;L)q21 and the

graded Lie algebra ol(L|N-L). For ql(N;L)qu

the formula (13) still applies, except that the
dimensionality of {b] is N(N-1)/2+L and that of
[f] is N(N+1)/2-L. These are to be contrasted
with the dimensionalities of [s] and [a] in
AZ(N)S, being respectively N(N+1)/2 and N(N-

1)/2.

The Zz-grading of af(2) into of(1|1) does

not lend itself to a direct generalization to

higher gradings. However, the discussion above

shows that a Z -grading can be achieved by way
m

of the Hopf algebra of ql(Z;l)qs at q2 =w’?,

’ m

which in the following we call sdm. Recall that

the configuration space for a system of states
having the property of higher than Z2 grading is

nonsimply connected, so that, instead of trans-
position, one must speak of braiding of two
states. This explains why a quantum group is
necessary for higher gradings. That dlm has the

property of a Zm—graded algebra is already clear

from (9) and (12), especially when the latter is
recast into the form
(m>2)

Y.,y ]w = (15)

m

a(S)(Pm—B(S))

where P is idempotent of order m, and « and B
m
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are central elements depending on s and I. The
right-hand side of (15) does not vanish in the
limit s»1 for m>2, so it is not necessary to
have a factor (s-s ) .

From (9), the fusion states [O‘J] defined in
(8) for Am at s=1 braid as

v
R[o-J] =(-1) w j[o-j];
(16)

v, = -(j-1)(j-2)/2 (mod m)

In particular [01]=[b] is bosonic, [0‘2]=[f] is
fermionic, while the other states are such that
Rm[0‘11=t[o*J]. These latter states may be inter-

preted as anyonic states with "spin" 1/m; they
are direct generalizations of a fermionic state,
which has spin 1/2. The dimensionality of [o*j]

Thus the representation
(Since the link

is m, independent of j.
[p] of sdm is parafermionic.

polynomial for sdz, is just the Wilson line for

the supersymmetric Cheré—(ﬁimons theory with
SU(1|1) gauge symmetry,  one is intrigued
with the possibility of the link polynomials for

4 , m>2, being related to the Wilson lines for
m

fractionally supersymmetricm] Chern-Simons
theories.) In comparison, for of(2), the cor-

responding fusion states [0'; ] are just normal

spin m-j states: they have respective dimension-
alities 2(m-j)+1 and are either symmetric (j
odd) or antisymmetric (j even) under R’. Since
02(2)s is a continuous deformation of af(2), the

eigenstates of R’ for generic s cannot be
anyonic even as they have unusual braiding pro-
perties. They are just normal spin states
dzefor:rlned. For a discussion of the situation at
s=w_-, when adm coincides with 02(2)5, see [10].

This work is supported in part by a grant
from NSERC (Canada).
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DISCUSSION

Q. A. LeClair (Cornell Univ.): Why do you call your

symmetries fractional supersymmetries if you don’t
have the Poincaré generators in the algebra? I don’t
think the name is justified.

. H. C. Lee: The representations are those for 1/m-—

statistics anyons. [ mention fractional supersym-
metry because I think the representations are
characteristic of those of fractional supersymmetric
systems, plus the fact that the link invariants for
(sl(n/n)xU(1))g2=—1,s are exactly thelink invariants
of Wilson lines in the three-dimensional supersym-
metric topological field theory with SU(n/n) gauge
group.
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ABSRTACT

We prove explicitly that 3-wave equations exhibit the Painlevé properties. The

trancated solutions automatically provide the Backlund transformation.

A powerful generalization of Painlevé test for
ordinary differential equation was applied to the
system of partial differential equations(!). It was
proven that when a partial differential equation
(PDE) is soluable by inverse scattering transform
and a system of ordinary differential equations
(ODE) is obtained from this PDE by an exact
similarity reduction, then the solution associated
with the Gel’fand-Levitan-Marchenko equation
will possess the Painlevé property, namely the
general solution can have no movable singular
points other than poles. Furthermore it was
proposed(?) that, without recoursing to the re-
duction to an ODE, a PDE has also the Painlevé
property when the solution of the PDE are single-
valued about the movable singularity manifolds.

In this note, we shall investigate the Painlevé
property of 3-wave equations. It has been known
that 3-wave equations, commonly refered to as
equations of exact resonance in non-linear inte-
grable system, have soliton, multi-solitons solu-
tions as well as Lax pair. Yet the analytical test
of Painlevé property has been lacking. We shall
start with the 3-wave interaction equations of 141
dimension, and expand the solutions in terms of
Laurent series about a singular manifold, or pole
manifold.

Set us denote ¢ as a singularity manifold of
2N-2 real dimension determined by the condition

(21,22, - Zn) = 0. (1)
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The Painlevé properties state that for a solu-
tion u(Zy, Zg, - -+ Zy) of a PDE, u is of the simple
poles about the movable singularties. Therefore
it can be expressed as

u = ¢* Z uid’, (2)

where u; and ¢ are functions of Z;,...Zy and «
is some integers. The values of a as well as the
u; can be determined by substituting eq.(2) into
PDE. The integrability condition for a nonlinear
PDE can be tested if the consistent recursion re-
lations of u; exist.

Consider the 3-wave equations under the para-
metric interactions of the wave packets in the fol-
lowing expression,

811.1 + aul 0 (3 )
—_ Vi——— —nu =

at 1 or nuaugz ) a
8u2 6u2

"‘BT + 'UZ“(‘?‘; —nuguy =0, (3b)
Ju Ju

—ét—3+v36—:’+nu1u2 :0, (36)

where v; are the group velocities of the 3-wave
packet u; respectively. The sign in front of » in
eq.(3c) is positive, while those in eq.(3a) and (3b)
are negative. This implies that the relative veloc-
ity of u; to uz is opposit to that of uy to us.

Set us expand the solutions of 3-wave u;(z,t)
in terms of ¢(z,t), namely



wilz,t) = > uij(z, t)g(z, t)7 7 (4)
j=0

where ¢ takes the values from 1 to 3. Substitut-
ing eq.(4) into eq.(3) and analyzing each order in
power series of ¢(z,t). The requirement that so-
lutions u; contain no terms other than single pole
in @(z,t) forces us to put

a1:a2=a3=1. (5)

The lowest expansion coefficients u;o are related
by the equations similar to those of exact reso-
nance,

u100s + V1%i10Ps + NUetzo =0,  (6a)
(6b)

(6¢)

For the sake of conciseness in calculating the co-
efficients u;,, we use the following abbriviation

Ug0Pt + VaU200z + NUseUio = 0,

U300 + Vaugzodz — MUl = 0.

D;i = 8y + vi04, (7)

then the recursion relations for u;,, ug, and us,
{(n > 0) can be obtained from the coefficients in
the series expansion of the terms with (n-2) power
in ¢, i.e.

(n—1)D1¢ —~NU30 —nu20 Uln
—1U30 (n—1)Dy¢ Nuyo Ugp
Nuzo Nu1o (n—1)D3¢ UBn
An—l
= Bn—l s
Cn——l

(8)

where A, _1, Bn_1 and C,,_ are given in terms of
o1, bz, and ujp up to uip—1. The coeflicients u;,
exist only if the determinant of the 3x3 matrix
of the last equation does not vanish.

The detailed evaluation of the determinant
leads to
(n — 1)D 1¢

det
(9)

= —n3(n +1)(n — 2)*ui0u20u30-
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Therefore u;, for n > 3 can be solved uniquely if
the left hand side of eq.(9) does not equal zero,
and hence the recursion relations among u;, and
%;np—1 can be established. The conditions fail for
n = —1 and n = 2. Obviously, the case for
n = —1 will correspond to the Painlevé expan-
sions containing terms of movable singularities
with double poles. For the case n = 2, eq.(8)

reduces to
D¢  —nuze —nuao uj2
—nuzo D —nuio ug2
nuz0 N0 D3¢ u3z2

—Diuyy + nuaius
= | —Douz; + nuirus:
—Dauzy + nuyiugy

The vanishing of the determinant in the 3x3 ma-
trix on the left hand side of last equation implies
that there exists a complete arbitrary choice of
uyq, Uge and uzs only if they are subject to a
compatibity condition that eq.(10) becomes only
two independent equations instead of three.

To do this, let us solve u;p in terms of D;¢ from
the nonlinear system of eq.(6). Simple algebraic
manipulation provides us with

1
uly = —;}—;(D2¢D3¢),

udy = *;117(173¢D1¢), (11)
uly, = +;71~2(D1¢D2¢).

But on the other hand, eq.(8) for n = 1 can be
calculated explicitly as

0 —Nuze —Nugg Uyy
—Nu3zo 0 —Nu10 Uz
Nugo MU 0 u3]
(12)
~Djuyg
= —Djuyg
~Dgugg

Combining eq.(11) and eq.(12), u;; are readily
obtained as follows,

I 1 (D;D3¢)
1=y,
2n U10
1 (D3D,¢)
u T e e
T w0 (13)



One can verify that

uio(—Diru1r + nugiua)
= ugo(—Dauzy + nuiiuszy) (15)

= ugo{+Dsuzs — nuiruz1).

Since the condition n = 2 allows us to choose
arbitrarily the expansion coefficients u;3, uz9 and
A set of
trancated solutions can be achieved if we set u;q

ugy in the general solutions of eq.(4).

equal to zero because all the coefficient u;, for
n > 3 will automatically vanish according to eq.
(8). The solution can then be simplied as

i
Uy = —Uyo + Uiy,

¢

1
ug = SUzo + U21,

p (16)

ug = guso + us,

where u;; are solutions to the 3-wave equations,
i.e.

Diuyy + nugiusr =0,

Daugzy + nugiuyy =0, (17)

Dauzy —nuypuz =0.
By means of eq.(11) and eq.(17), the Bécklund

transformation for 3-wave equations can be ex-
pressed as follows,

1 1 .
u(z,t) = n¢(z,t)[—(D2¢)(D3¢)]‘ + uyy(z,t),

1 L 1:
uz(z,t) = W[—(Ds¢)(01¢)]- + u21(z,1),

1 % Uz
uz(z,t) = iy ) (—(D19)(D29)]7 + uai(z,1),

(18)

namely, a particular form of and arbitrary func-
tion of ¢(z,t) can be added to the solutions u;;
to achieve a new set of solutions.

References

(1) M.J. Abolowitz, A. Ramani and H. Segur, J.
Math. Phys.21, (1980)715;
ibid 21, (1980)1006.

1406

(2) John Weiss, M. Tabor and George Carnevale,
J. Math. Phys. 24, (1983)522;
M. Jimbo, M.D. Kruskal and T. Miwa, Phys.
Lett. 924, (1982)59;
John Weiss, J. Math. Phys. 24, (1983)1405;
A.Roy Chowdhury and Minati Naskar, J. Math
Phys. 28, (1987)1809;
W.H. Steeb and N.Euler, lett. Math. Phys.
14, (1987)99;
A.C. Newell, M. Tabor and Y.B,. Zeng, Physica
29D, (1987)1.



Exotic Solutions of Yang-Baxter Equations and
Yang=-Baxterization Approach
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ABSTRACT

The new soilutions of Yang-Baxter equations associated with the

fundamental representations of B_,C

the braid group representations Ena™s

Baxterization.

Remarkalbrle progress has been made
jin the deriwvation of trigonometric
solutions of Yang-Baxter equations
(¥BE)associated with simple Lie
algebras(1,2).The standard &pproach
is to: make g~deformation of clagsi~
cal Lie algebras,namely,based on the
current formulation of quantum group
including its loop extension(3).We
call this type of solutions"standard"
one,However,on the basis of the same
Lie algebraic structure it allows to
generate new family of solutions of
YBE,which is different from the stan-
dard one and is called"exotic"family
of solutioms of ¥BE.

Our strategy is stated in the fol~
lowing. '

(I) In order to solve YBE

Ry GOR,y 5 (xy) R, (7)
= Rz (MR, Gy, 5 (x)

where x=e " is the spectral parameter

relating with the rapidity for two-
particle collision, the asymptotic
behavior T= R(X)u=m satisfying

=T, T,,T

10Ty 4 0=Tp5Ty 5 To5
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and D are derived through
he tr?gonometric

Yang -

is firstly solved for given Lie al=-
gebraic structure. T is reffred to
braid group representation(BGR).

(I1)By using the trigonometric Yang-
Baxterization ( 4,5) prescriptionm

(T~YB) ﬁ(x) can be generated for a
given BGR.So far the T-YB llas BDeen
established for those BGR's which
possess distinct eigenvalmes being
three and four( two ,needless to say).

In this talk we only discuss the new
solutions of YBE associated with the
fundamental representations of TLie
algebras Bn’cn and Dn.‘As was known
that the corresponding BGR's possess
three distinct eigenvalues.

First we calculate the BGR's which

are given by (w=g-q~1)

PR I
= {20 Yk %k @ Sk VY kn  ®xiPmm

k+m#0
I L
¥ kem ®km ® €mk +k,m Zym ek---m®--ls::m
k+mz0

where uy=q or -q"1 for k=0 and u_=
uk. k,m €[(N-1)/2,ooo, "(N-1)/2]

where H=2n+1,2n and 2n for Bn’cn and



D _,respectively. The 8y are given

1 (k=m=0)
uy! " (k=m#0)
w[1-u;1( sn ugzﬂ (k=-m<0)

fe+m1
(- 1)k+m+1wuk+m 511 uy

(k=0<¢m, or k¢m=0)

™
-1
k+m+1 -k mf -1
-1 wu u ( T us)
( ) mk jalkl +1 J
(0<k<m, Or k<m<O0)
1 1 m~1 -1
1. w_~u, = us )y
ki - )
( 'ﬂ u ) (k<0, m»0, k+m0)
for Bé1)
-1 (k=m)
Uy
(16271 ( T u32y)u;) (k=-m 0)
i-%
1 m"é' ]
=5
..wum uk ( J]T1u3_;)u
By~ (0<k<m, or k<m<O )

Swa_c( T ui 3)
Ikl +%

(kx 0,m 0,k+m=0)

with -¢ =1 for Cé1)and £ =1 for D£12
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The distinct eigenvalues are given by

(2=2,) (T=2,) (£=14)=0

where
n
-7 A
J_
-1 n . =2
Cp ~q a (j£1uj_§)ug
-7 n =2
T G e
J:

Next we Yang~=Baxterize the solutions
derived above to give the correspon-
ding R(x)s.It has been proved that if
BGR T satisfies the relation (5)

)3 (T12T23 12=To3T 12 23)

-1_ 1 Al At X
- 25T (e )+ 2, (275 ~T51) =0

2 127 23 2 23 ’

then it can be T-YB +to

-1 At 31 42

R(x)= 11x(x-1)T +(1+ T + 13 7, )

xI -;1;1(x-1)m.

Now the calculations convince the

validity(for the derived T) of the
statement.Hencg for the considered
cases we obtain the general solutions
of YBE.

The result is shown in the follo =

wing form,



— - 2— -~
R(x)= 150 u ey ® e~ (a"-1) (x )

L L
k<m k>m
k+m#0 k+m+#0

o

+X )ekk:@)emm

+q(x~1) (x=f) 1.
k#m

k+ms0

en® Cni

+ kZ akm(x) e m ® ey
oM

where
(X-qz)Cx-g) when
~2) (x-E)

when

(x)=
R ~q% (x~q

- q_-

Uk
amd
ahfq&ﬂ)&%m_g%m)*

(£-1)(a"-1)x &,

-1 . =1

]
a Az Dé )

for B£1)and
£ =
-q 2;1 for 051)

9
3. _ -1
km(uk)..amk(uk ).
is ob=-

-1
-q

a s0-

The other permitted solution
#ained by the interchange q e
and keeping 13 unchanged.Such
lution corresponds to the "twisted"
ane.Por imstance, It gives rise to

(2)
A2n--1
D§1),respectivds' » As for the corre-
spondence of C§1) it deserves to be

understood.

(2) N . (1)
A2n or corresponding to En or

We would like to make comments to

the above discussion.
(a)Taking u, =q for all k our solu -
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tions go back to those derived by
Jimbo (6).The other choice leads to
new solutions which are called exotic
ones.Nothing is surprise to appear
such a new type of solutions of YBE
because the usual classical 1limit is
not required here.Actually the new
golution for An had been found hy
Gervais et al(7) in terms of diffe-
rent approach.

(b) In contrast with the standard
solutions the exotic ones possess
very different properties smuch as
without the usual classical limits,
different Hopf algebraic structure
due to Faddeev-Reshetikhin~Takhtajan
approach (8),some of them even cannot
be dizagonalized and so on,

(c)We can prove that the exotic so-

lutions still satisfy Birman-Wenzl

algebra (9).This fact is determined
by the fundamental representations
of Bh’cn and Dn.In a genge our dis~
cusgion provides another explicit
example for Jones' theory(4).

M.L.Ge wishes to thank Professor
C.N.Yang for many enlightening dis-

cussions and encouragements,
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FIELD THEORY FROM INTEGRABLE-SYSTEM POINT OF VIEW
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ABSTRACT

We survey the Geometrical Integrability Properties: linear equations, conservation laws, Riemann-Hilbert trans-

formations, Bianchi-Backlund transformations, Ricatti Equations, and Kac-Moody Algebra are discussed for many

nonlinear systems: various chiral models in two dimensions, SL(2C) systems of Sine-Gordon, KdV, and Liouville

equations; self-dual Yang-Mills equations in four dimensions; extended supersymmetric Yang Mills, and supergravity

equations in four and ten dimensions. Physical applications of these properties are also commented on.

INTRODUCTION

The attempt of this line of research is to treat
Yang-Mills and gravitational fields as nonlinear sys-
tems, and to see how much they possess the geomet-
rical integrability properties, which have been the
guiding force in many two-dimension nonlinear sys-
tems. Though the study so far has been quite formal
and mathematical, the ultimate goal is for particle
physics: to solve the full Yang-Mills and gravita-
tional fields, and to formulate new ways to quantize
the fields.

Recently, linear systems and conservation laws
have been constructed for the extended conformal su-
pergravity theories, ™’ which have been shown to be
the consequences of light-like integrability in curved

(

extended superspace. ) This gives a general pic-
ture of a unifying description of equations of motion
of classical fields from the point of view of geometri-
cal integrability, which had its origin in th? stu)dy of
5—8

and

in the study of self-dual Yang-Mills equations.(s_lz)

Such a view that equations of motion of classical
fields, nonlinear in four dimensional space, become

many two-dimensional nonlinear systems

linear in extended superspace(13_19) helps to find
classical solutions, and points to new ways of quan-
tizing the theory.

The generic structure of geometrical integrability
properties can be summarized in Figure 1.

The heart of the matter is first to find linear sys-
tems with parameters. The linear systems are usu-
ally of the form

Vxyp(X,Y) =0, Vyy(X,Y) =0,

where Vx, Vy are some generalized covariant
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derivatives in some generalized geometrical spaces;
e.g. ordinary space-time space plus complex parame-
ters; ordinary space-time with superspace extensions
plus complex parameters, loop spaces, noncommu-
tative geometrical spaces, etc. The integrability of
¥ requires [Vx,Vy} = 0, i.e. curvatureless. The
equations of motion or the original nonlinear systems
then follow from this generalized curvatureless condi-
tion. It is from these linear systems with parameters
that powerful methods can be used to generate new
solutions.

LINEAR SYSTEMS — oo non-local conservation laws
Ricatti — — - - BT finite R-H transforms — — — — solutions
equations
infinitesimal R-H
oo local Affine algebra

conservation

laws

l

current algebra

in the spectrum space

J

?

Fig. 1: Some Generic Structures of integrable
Non-linear systems

The general theme of these methods are gauge
transformations of ¢, and it is through the ana-
lyticity properties in the complex parameters that
the nonlocal conservation laws can be derived and



that the original nonlinear differential equations are
converted into integral equations in the complex-
parameter space, i.e., the finite Riemann-Hilbert
(RH) transformations. The RH transforms satisfy
group properties and their infinitesimal elements
form the affine Kac-Moody algebra, which can be
viewed as the result of the current algebra in the
complex parameter space. Another branch of de-
velopment is to derive parametric Bianchi-Béacklund
transformation (BT) from a special kind of finite RH
transformation. Such BT’s historically were found
by guesswork and now we have a more general un-
derstanding of their origin, i.e., gauge transformation
with linear dependence in the complex parameter.
From the BT’s with parameters, local conservation
laws can be derived, and another nonlinear system,
the Ricatti equations can be constructed. The Ri-
catti equations then can be shown to share the same

(7

linear systems.

The beautiful and surprising thing is that so
many equations of motions in physics possess these
geometrical integrability properties when the proper
formulations and proper extended spaces are found.
The two dimensional systems include chiral models:
principal; symmetric-space; superized; with Wess—
Zumino term and its superized version; the Ernst
equations (which are reduced systems of stationary
axially symmetric Einstein equations and also static
axially symmetric self-dual Yang-Mills equations);
Sine-Gordon equations, KdV equations, Liouville
equations in the SL(2C) formulations. All the devel-
opments in Fig. (1) have been done for these two-
dimensional systems. The four dimensional mod-
els includes self-dual Yang-Mills; supersymmetric
Yang-Mills; and the conformal supergravity equa-
All of them have been shown to have infi-
nite nonlocal conservation laws and linear systems,

tions.

from which integrability properties of varied degrees
as listed in Figure 1 have been derived.

The important extended space that has emerged
from such studies is the extended superspace. In re-
spect to whether Nature has manifesting representa-
tion of supersymmetry as supersymmetrical particle
states or actual superspaces, superspace has already
demonstrated its richness as a useful framework to
look at our physical equations and may turn out to
be an essential part of physical description as com-
plex number is.
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RECENT RESEARCH RESULTS

I. Supergravity Theories

La. D =4: It has been shown that light-like
integrability conditions for n > 5, 6, 7, 8 lead to
(3)

conformal supergravity equations of motion.

ILb. D =4: Linear systems have been con-
structed from all (n = 1, ..., 8) the light-like inte-

grability conditions‘l) These linear systems help to
solve the light-like constraints and thus equations of
motion for n = 5, 6, 7, 8; and helps to solve the
light-like constraints for n = 1, 2, 3, 4 for off-shell
formulation.

Iec. D=10,n=1: It has been shown that
light-like integrability constraints lead to equations
(Poincare) of motion only if an additional algebraic

constraint is imposed.(4) Thus the light-like integra-
bility constraints can allow an off-shell formulation
of the theory.

ILd. D =10, »n = 1: Linear systems and conser-
vation laws can be constructed for the light-like in-
tegrability conditions,@) and thus useful for the off-
shell formulation of the D = 10, n = 1 supergravity
theory. In the construction of the linear systems and
conservation laws, it is essential to use the bi-spinor

representation for the light-like vectors.

IT. Supersymmetric Yang-Mills Theories
.\ e (15—18)
In addition to the similar developments as
mentioned in section I for D = 4, supergravity the-
ories, our recent new addition is the construction
of linear systems, and an infinite number of nonlo-
cal conservation laws using the bi-spinor representa-

tion®® for any light-like vector in D = 6 and 10.
These will be certainly useful for constructing new
solutions in D = 6 and 10, and then in D = 4 by

dimensional reduction.

I1I. Progress Made For The D = 4, Self-Dual Yang-
Mills Equation

ITl.a. Permutability property has been shown to
be true for the Chau-Prasad-Sinha Backlund trans-
formations (BT).(ZI)

ITIL.b. The sequence, Parametric BT — Riccati

— linear systems, has been constructed for the self-

dual Yang—Mills equations.(m)

Ill.c. A generalized Backlund transformation,



which is capable of generating instanton solutions
has been constructed for the (supersymmetric) self-

dual Yang-Mills equations.(23)

IV. The D = 2 Theories

IV.a. The Ernst equations which are reduced
non-linear systems of static and axially symmetric
Einstein, or Yang-Mills equations: linear systems,
infinite-nonlocal conservation laws, finite Riemann—
Hilbert transforms, and infinitesimal RH transform
= Kac-Moody algebra; Backlund transformations,
etc. have been thoroughly discussed *?

IV.b. All the integrability properties as listed
in IV.a. have been constructed for the super—chiral

equations with Wess—Zumino terrn.(zs)

IV.c. A general gauge covariant formulation, as
well as all the integrability properties have been con-

structed for general symmetric-space chiral ﬁelds.(%)

V. General Integrability Discussions

V.a. A unifying derivation of BT has been given
from the point of view of finite Riemann-Hilbert

transforrnation.(

V.b. A general discussion of Kac—-Moody algebra
has been made from the point of view of infinitesimal

(28)

Riemann-Hilbert transformation.

V.c. Using the special Riemann-problem tech-
nique of Zakharov et al., we derive an explicit N-step
Backlund transformation for a class of 141 dimen-
sional nonlinear evolution equations. »

Now we are ready to move forward in two fronts:
first, finding solutions to the full Yang-Mills equa-
tions. The essential new feature in the search for
classical solutions for the full Yang-Mills and su-
pergravity equations is the use of superspace, and
to develop two—complex—variable Riemann-Hilbert
transforms, contrasting to the one-complex—variable
Riemann-Hilbert transform used in two—dimensional
systems and the self-dual Yang-Mills systems. And
second, quantizing the super—Yang-Mills and super-
gravity fields from these new points of view®?

VI. Approach to Quantization To approach quantum
field theory from this geometrical-integrability point
of view, the following work has been done:

VI. a. We have studied the light-cone Hamilto-
nian formalism of the nonabelian chiral model with
Wess—Zumino term in arbitrary coupling constant.
The monodromy matrices and their bracket struc-

(31)

ture are derived explicitly and discussed.
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VI. b. From an action for the self-dual Yang-
Mills (SDYM) system, we have constructed a higher
dimensional version of the Kac-Moody-Virasoro al-
gebra which appears as the symmetry of this system.
We have also constructed a SDYM hierarchy with us-
. (32)
ing these algebras.

VI. c. We have studied a conformally invariant
theory which consists of scalar fields and a gauge
field. The presence of gauge fields introduces in-
teresting phase factors given by the line integral of

(33)

gauge potential in the correlation functions.

FUTURE PLANS

Developing quantum fleld theories from this
geometrical-integrability point of view will be the
emphasis for the near future. Work done as given
in VI.1, VI.2, and VL3 are just the beginning. Cer-
tainly, we do not expect that Yang-Mills and general
relativity field equations are integrable in the way
integrability has revealed in two dimensional mod-
els. However the linear systems have given us a very
strong hint that these realistic four—dimensional field
theories are “partially” integrable. How to make best
use of these “relics” of integrability and get as much
information out as possible will be the challenge. The
hope is that after the integrable part is extracted
out, the nonintegrable part will be much easier to
deal with. The approach may also provide a non-
perturbative approach to these highly and complex
nonlinear dynamical system.

On the classical side, there is still much to be
done, e.g., I would like to construct classical so-
lutions to the full Yang-Mills equations and the
full conformal gravity equations via the geometrical-
integrability properties so far we have found. It is
conceivable that we may eventually write down a
general form of solutions to these equations as Pen-
rose had done to all linear free massless field equa-
tions.
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DISCUSSION

Q. Yong-Shi Wu(Univ. Uteh): What are the boun-
dary conditions you impose at z_ = 0 and z_ = L?

A. L. L. Chau: We have tried both the vanishing
condition and the periodic boundary condition. For
both cases the troubling terms violating the Yang-
Baxter equations are present.
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Abstract: We consider instanton and anti-instanton solutions of the O(3) o-model in two Euclidean
dimensions modified by the addition of apropriate potential and skyrme-like terms as static solitons (and
anti-solitons) - skyrmions of the same model in (2+1) dimensions. We find that in contradistinction
to the pure O(3) o-model the addition of the potential and skyrme terms stabilises the skyrmions and
that the force between them is repulsive. In the scattering process initiated at low relative velocities
the skyrmions bounce back while at larger velocities they scatter at right angles. The scattering is
quasi-elastic and the skyrmions preserve their shape after the collision. On the other hand a skyrmion
and an antiskyrmion attract each other and annihilate into pure radiation.

1. Introduction

Over the last few years sigma models in low
dimensions have become an increasingly important
area of research. Although the o-models are inte-

[1-3}
)

grable in two dimensions it appears that only
very special models are integrable “ in (2+1) dimen-
sions. In particle physics we are interested primarily
in Lorentz invariant models. But all such o-models
in (2+1) dimensions appear to be nonintegrable, and
so it is natural to consider numerical evolutions in

these cases.

The simplest Lorentz invariant (2+1) dimen-
sional o model is the O(3) model, which contains
three real scalar fields, ¢ = (¢*,4%,43). In (2+1)
dimensions q; is a function of the space-time coor-
dinates (t,z,y) which we also write as (z°,z!,22).
The model is defined by the Lagrangian density

L= 3(8"9).(3.9), (1.1)

together with the constraint (i; . $ =1, ie J; lies on
a unit sphere S3. In (1.1) the Greek indices take
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values 0,1,2 and label space-time coordinates, and
9, denotes partial differentiation with respect to z¥.
Note that we have set the velocity of light, ¢, equal
to unity, so that in all our calculations we can use
dimensionless quantities. The Euler-Lagrange equa-

tions derived from (1.1) are

- .

80,8+ (0"$.0,4)¢ = 0. (1.2)

For boundary conditions we take

$(r,0,t) = go(t) as r— o0, (1.3)
where (r,8) are polar coordinates and where 4-5’0 18
independent of the polar angle 8. In two Euclidean
dimensions (i.e. taking ¢ to be independent of time)
this condition ensures finiteness of the action, which
is precisely the requirement for quantisation in terms
of path integrals. In (24+1) dimensions it leads to
a finite potential energy. The boundary condition
(1.3) introduces nontrivial topological aspects into
the theory and it allows us to intoduce an integer-

valued topological charge given by



1 - - -
N = S—W/e,-,-qs.(a@ x 8;¢)d’z , (1.4)

where ¢;; is the antisymmetric symbol on two indices

such that €19 = —€91 = 1.
It is convenient to express the ¢ fields in terms

of their stereographic projection onto the complex

plane W
¢1_W+W* 2_iW-—VV’"
T 1+ W’ 1+ W (15)
¢3_1_|W|2 .
1+ W

The W formulation is very useful, because it
is in this formulation that the static solutions take
the simplest form; namely, as originally shown by
Belavin and Polyakovm and Woo,ls] they are given
by W being any rational function of either 41y or of
z—1y. It is easy to see that the topological charge of
these solutions is a positive or a negative integer re-
spectively. By convention the first case corresponds
to instantons and the other to anti-instantons.

Can we consider the instanton solutions as
static solutions of the same model in (241) dimen-
sions? Can we have any nonstatic solitons? Of
course, the static solutions can be made to move
with arbitrary velocity, simply by Lorentz boost-
ing. Being extended structures with a localised en-
ergy, they resemble the familiar examples of solitons
in (141) dimensions. But are they solitons in the
strict sense? In particular, one may wonder whether
they are stable under small perturbations and also
whether they preserve their shape and velocity in

scattering processes.

These are the problems that will be discussed
in this talk. The talk is based on the work some
parts of which have been performed in collaboration
with R.A. Leese and which has been the subject of

. 7] [8] {s] [10]
a series of papers.
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Looking at the problem of stability we observe
that the model has no intrinsic scale and so admits
the existence of solitons of arbitrary size. Hence un-
der small perturbations the solitons can either ex-
pand indefinitely or shrink to become infinitely tall
spikes of zero width. Our simulations have shown
that this is exactly what happens in this model. In
fact, as soon as the solitons are purturbed, e.g. start
moving, they start shrinking.

We have analysed this problem in some detail
and have found"™ that the solitons of the O(3) ¢
model are unstable. This is true not only in the
full simulation of the model but also™ in the ap-
proximation to the full simulation provided by the
so-called ” collective coordinate” approach in which
the evolution is approximated by geodesic motion
on the manifold of static solutions. Such an approx-
imation is clearly very reliable at small velocities;
B that it is
also reliable even at unexpectedly high velocities (~
0.5 of the velocity of light).

however, all our studies have shown

A few words about our numerical procedures.
Most of our simulations were performed in Los
Alamos using a 4th order Runge-Kutta method of
simulating time evolution. We used the Los Alamos
Connection Machine working in double precision
and also some Los Alamos Crays. We also per-
formed some calculations, using double precision, on
the Floating Point System Machine and on Multi-
flow Trace. Almost all our simulations were per-
formed on fixed lattices which varied from 201 x 201
to 512 x 512, with lattice spacing §z = 6y = 0.02.
The time step was 0.01.

So far as the boundary conditions are concerned
most of our simulations were performed with fixed
boundary conditions as all the effects associated
with the variation of the fields at the boundaries are
very small. However, even though small, they are
nonzero and so we tested their effects by introducing
some absorption or by extrapolating the fields at the



boundaries. We have found that the waves coming
from the boundaries or the waves reflected from the
boundaries can effect our results quite significantly.
In particular, some preliminary results obtained on
smaller size lattices, were not confirmed in our big-
ger lattice simulations. Having tested our results
by changing the lattice size and varying the bound-
ary conditions we are reasonably confident of our
results; although we believe some more work would

be required to be absolutely certain.

2. Skyrme Model

To stabilise the O(3) model we introduced a
scale into the model that would prevent the instan-
tons from both shrinking and expanding. Guided

[12] [23])

by the ideas of Skyrme we chose to add to our

Lagrangian density the following extra terms

L, = —i(ol ((8“5.3#5)2 ~ (8*8.9"9)
(2.1)
06-0,9) + 0:048°)"),

where 6, and 0, are two new (real) parameters of the
model. It is clear that the model based on the La-
grangian with these terms is still Lorentz invariant
and for positive values of #’s its Hamiltonian is pos-
itive definite. Moreover, despite the appearance to
the contrary, the Lagrangian does not contain time
derivatives higher than two and so its equation of

motion takes the conventional form.

8,048 — ($.0,0"9)4
2, [a,,aﬂqs"(a,,a Y 8) + 0,6'(0,0"8 .6"F)
8,0,4'(8°8.0%4) — 8,4'(0"0,4.0%8)
+(0.6.0"8)(0,6.0"$)¢* — (6,8.0,8)
(8"¢ .a“q?)qs"] + 20,(1+ 6%)° (63 — ¢'¢%) = 0.
(2.2)
The equation (2.2) is rather difficult to solve, but if

we restrict ourselves to looking for static solutions
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and then consider $, which corresponds to W being
analytical (i.e. W = W(z + iy)) then it is easy to
check that

W = Az +1y) (2.3)
is a static solution if
)
= ¢ —=. 24
A=y 20, (24)

This is a particular case of the one instanton solu-
tion of the O(3) o model, but with the fixed “size”
(determined by A).

It is easy to show that this solution is stable
with respect to any perturbations. In fact, if we try
to evolve it with (2.4) different from A we find that
the system has an excess of energy which it uses to
bring its size up or down to the correct value and at

the same time it sends out a wave of radiation.

So what are the scattering properties of our
skyrmions? First we looked at the behaviour of two
static skyrmions. Thus we considered the field con-

figuration described by

_(z+iy—a(z+iy+a)

w 2pa

(2.5)
This configuration describes two skyrmions (located
at +a); their widths are the same and are given by
A= % As (2.5) is not a solution of (2.2) it evolves
and as it evolves the system develops some kinetic
energy. Looking at this evolution we have found
that the forces acting on the skyrmions are quite
complicated; they have both repulsive and attractive
components. At first the attractive forces win and
the skyrmions approach each other. However, this
does not last long; very soon the process is reversed,

the skyrmions repel and move away from each other.

During this reversal the system performs some
internal oscillations. In fact, in our simulations we
observed two internal oscillations - which involved

the kinetic energy flowing twice in the original direc-



tion of motion followed by its flow at 90° before the
system stabilised and the skyrmions started moving
away from each other. As they moved away they
accellerated. Moreover, our studies have shown that
the qualitative behaviour of the interaction does not
depend on the values of 8’s; as we increase their val-
ues all effects are the same but become more pro-

nounced.

Next we looked at the scattering properties of
two skyrmions sent towards each other at some ve-
locity v. We implemented this idea by starting with
the field configuration

(z+1iy—a+vt)(z+iy+a— vt)
2u(a — vt)

W(.’E, y,t) =
(2.6)

and calculating from it W(z,y,0) and 6,W(z,y,0).
We chose a = 1.0 and considered the dependence of
the evolution on the values of v. Again, we found
that for all values of 6’s the qualitative properties
of the scattering were the same. At small values
of velocity the skyrmions scattered back to back.
When we increased the initial velocity the skyrmions
came closer and closer together before scattering
back to back, then they spent longer and longer in
a quasi-trapped state before bouncing back, and fi-
nally above a certain critical valueof the velocity v,
they scattered at 90° to the original direction of mo-

tion in their centre of mass.

When the initial velocity is critical or higher
the skyrmions manage to come very close together
before scattering; at their closest they form a ring
from which the outgoing skyrmions emerge. When
the ring is formed the skyrmions loose their iden-
tity - hence it does not make sense to enquire which
skyrmion goes where.

We also looked at the dependence of the crit-
ical velocity on the values of #’s. We observed an
increase of v., with the increase of §’s and a sort
of levelling off (or even a small decrease) at larger

values of 8’s.
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We have also observed that as the skyrmions
move towards each other with their velocities ap-
proaching their critical value, the time during which
the skyrmions stayed close together increades, im-
plying the trapped nature of the quasi bound-state
formed by the skyrmions.

When two skyrmions are put initially on top of
each other, the energy density describes a ring very
reminiscent of the ring formed during the scattering
process. The observed evolution showed small oscil-
lations in the value of the size of the ring, followed,
quite suddenly, by the separation of skyrmions and
their motion away from each other with some finite
velocity very close to the effective critical velocity

(for the corresponding value of 8’s).

Hence we see that the mechanism of the for-
mation of the ring and the possibility of having two

skyrmions on top of each other have the same origin.

3. More General Systems

We also looked at systems consisting of one
skyrmion and one antiskyrmion. In this case we con-
sidered as our initial configuration
_ (z+iy—a)(z—iy+a)

w 2ua

RNERY

It is easy to check that (3.1) is not a solution of
the equation of motion. Moreover, the system is
clearly unstable and when started at rest the two
extended structures approached each other and an-
nihilated into pure radiation. During their ap-
proach the skyrmion and antiskyrmion attracted
each other and so accellerated while moving towards
We found that before their annihila-

tion the skyrmion and antiskyrmion preserved their

each other.

identities very well. After the interaction the sys-
tem represented just pure waves; what is interesting
is that their maxima flowed at 90° to the original

direction of motion. It is easy to check that the



outgoing structures really represented pure radia-
tion waves and not skyrmions and antiskyrmions;
it is enough to observe that they moved with the
velocity of light and that their topological charge
gradually decreased.

We performed several simulations varying the
initial value of v and changing the values of 8;. We
found no significant dependence on #’s showing that
for a system of skyrmions and antiskyrmions, which
is characterised by strong attractive forces already
at the O(3) level, the additional forces generated by
the potential and skyrme terms in the Lagrangian
have little effect on the main features of the scat-
tering. We performed several others simulations in-
cluding the interesting case of a skyrmion and an
antiskyrmion rotating around each other. In this
last case we found that the skyrmion and the anti-
skyrmion had almost got trapped in an orbit around
each other; however, due to their interaction, at a
certain time they slowed down their circular motion,
moved towards each other and then annihilated into
pure radiation. The maximum of the radiation was
again sent out at 90° to the direction motion just

before the annihilation.

4. Some Comments

We have seen that the skyrmions behave very
much like real solitons. In the scattering involv-
ing only skyrmions they preserve their shape and
although during the scattering some radiation ef-
fects are present, these effetcs are always very small.
The situation is different, however, for systems in-
volving skyrmions and antiskyrmions; they interact
with each other very strongly and annihilate into
pure radiation. The outgoing radiation follows the
scattering of skyrmions above their critical velocity;
namely the peaks of radiation are sent out at 90°
to the original direction of motion in the centre of

mass. This phenomenon has also been observed in
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many scatterings of other extended structures, such
as monopoles or vortices"" and so we believe that it
is probably very typical of all scattering of extended
structures in (241) dimensions.

In conclusion we see that the modified O(3)
model, although non-integrable, is almost integrable
in that it has many features in common with many
integrable models. Most differences or deviations
are rather small. As most physically relevant mod-
els are not integrable our results suggest that the
results found in some integrable models should not
be dissmissed as not relevant; it is quite likely that
some of these results may also hold in models which,
strictly speaking, are not integrable but whose devi-
ations from integrability are rather small.

Most of our results agree with the results ob-
tained in the collective coordinate approximation.
This suggests that this approximation is much bet-
ter than could be first thought of on purely general
grounds. Finally, our results suggest that the mod-
ified O(3) o model is a good candidate for being a

toy model of solitons in (2+1) dimensions.
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