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ABSTRACT

The Standard Model describes a wide range of fundamental interactions. Searches are
ongoing for experimental results that differ from the Standard Model predictions. Such
disagreements would both indicate that the Standard Model is incomplete and constrain
the properties of New Physics scenarios. To probe the Standard Model over a wide
kinematic range, low energy tests are necessary to complement experiments in the high
energy regime. We perform calculations for experiments that are representative of two
general types of low energy tests. The Qweak experiment at Jefferson Lab is a low
energy measurement of the weak charge of the proton. Since the weak charge is
proportional to the weak mixing angle, the result can be interpreted as a test of the
Standard Model prediction that coupling parameters “run” as the energy of the
interaction changes. To determine whether New Physics is present in the Qweak
measurement, all Standard Model physics must be correctly accounted for. We present
our calculation of a particularly troublesome radiative correction, the vZ box. We focus
particularly on our models of the unmeasured structure functions Fy' 5,3 (z,Q?) and
discuss how they can be experimentally determined in the future. Atomic systems can
also be used to test the Standard Model at low energies. Recently, there has been a
discrepancy between the proton’s charge radius extracted from electronic and muonic
hydrogen measurements. This discrepancy could be a sign of New Physics for the muon
and we present our model that bring the two radii extractions into agreement.
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LOW ENERGY TESTS OF THE STANDARD MODEL



CHAPTER 1

Introduction

A naive reason to perform low energy tests of the Standard Model is that not all
physicists can work at the Large Hadron Collider. A better reason to perform low energy
tests of the Standard Model is that not all physicists should work at the Large Hadron
Collider. Though high energies are indeed needed to produce and directly detect heavy
particles, such particles should also appear in low energy processes through small but
measurable loop effects. These low energy processes cannot be ignored. If the Standard
Model is the theory that describes the way the world works, it must agree with experimental
tests at all energies. We can only begin to resolve a complete picture of fundamental physics
when the results of both high and low energy experiments are combined.

This introductory chapter is organized as follows. Sec. 1.1 introduces the basic ele-
ments of the Electroweak Lagrangian that are probed by low energy experiments. Secs. 1.2
and 1.3 provide an overview of two general types of low energy tests of the Standard Model.
Sec. 1.2 describes how the Standard Model has definite predictions on how coupling and
mass parameters should “run” as energies change. Discrepancies between the measured

running and Standard Model prediction would indicate the presence of previously unac-



3

counted for particles or interactions (New Physics). Much of this thesis will focus on the
Qweak experiment at Jefferson Lab and the extraction of the running of the weak mix-
ing angle. Sec. 1.3 describes measurements of the Lamb Shifts of electronic and muonic
hydrogen. The Lamb Shift is a quantum field theory effect. Applying Standard Model
physics to Lamb Shifts of both types of hydrogen allows for the extraction of the proton’s
charge radius. The present discrepancy between the extracted charge radii of electronic
and muonic hydrogen may be the result of New Physics. Several New Physics proposals

exist that “explain” the discrepancy.

1.1 Introduction to the Electroweak Lagrangian.

Low energy experiments can probe the Electroweak Lagrangian of the Standard
Model. The Electroweak Lagrangian is a gauge theory that combines the SU(2), and
U(1)y groups [1]. The interaction and kinetic terms for fermions and gauge bosons of the

Electroweak Lagrangian are given by

) o Y
Lew = X7* (“% —-gT-W, - g’—2—B,,) XL
. Y
+YrY* (10, — g EBM Yr
- ZW“V * W - ZB#V.B
_ . . 1.
= Xe1*i0ux1 — gJ* - W, — ¢'557* B,
- ) 1.
+ YrY"i0, ¥R — g"z"J Y4B,

S |
— Wi - W — 2B B (1.1)

In the above expression x; is a fermion doublet with left-handed chirality and vy is a

right-handed fermion singlet. 7' are the generators of SU(2), and the hypercharge Y is



4

the generator of U(1)y. W,, and B, are the gauge fields for SU(2), and U(1)y, respectively.
g and ¢’ are the couplings between the fermions and gauge fields. J* and j¥* are concise

ways of expressing the weak and weak hypercharge currents:

J# = x1v*T XL,

J = PrY Y. (1.2)
Wpu and B, are given by

Wy = 8,W, — 8,W, — gW,, x W,

B,, =8,B,—8,B, (1.3)

A gauge theory remains unchanged under internal, unmeasurable shifts in the fermion
and gauge fields. In order for the Lagrangian to be invariant under the SU(2). and U(1)y

transformations,

XL = ei&(z)-f+iﬂ(z)YXL,

YR — P Y, (1.4)
the gauge fields, to leading order in @ and 3, must concurrently transform as

- - 1 -
W,‘—->W,,—-§8“d’—-62xW,,

1
B,— B, - :(}7 8. (1.5)

The above Lagrangian is a gauge invariant theory but work remains for it to be interpreted

as a physical theory. To describe real physics, the gauge fields V—Vu and B, must be redefined



in terms of the observed fields W7, Z,, and A,.
W= bosons couple only to left-handed fermion doublets and their fields can be ex-

pressed as
W= \/g(wl FiW?),. (1.6)
The charged current is defined as
Jr = XLYuTEXL (1.7)

where 74 = T +iT3 = 1/2(m, £ im3) and 7 are Pauli isospin matrices.

Z bosons and photons couple to both left- and right-handed fermions. It is thererfore
necessary to mix the field that couples only to left-handed currents, Wﬁ, with the field
that couples to both, B,. We define

A, = By cosfw + W, sinfy (1.8)

Z, = —Bysinby + W} cos Oy (1.9)

where 6y is the weak mixing angle.

We also identify the electromagnetic current as

. 1,
=g+ §JI , (1.10)



or, in terms of the generators,

Y
-_—3 —
Q T+2

Substituting these values into the relevant part of the Lagrangian, we see
w5 pu_ in By I3 + ' cos By 21 ) A
-gJ, —5]“ = —\gsinbwJ, + g cos w5
jY
- (g cosfw J; — ¢’ sin GW%) zZ*
Identifying gsin 8y = ¢’ cos 6y = e, Eq. (1.12) becomes

/
—gJiW — ZY B¥ = —ejim At -—-COSQBW (J2 — sin® 6w) Z*

where J3 — sin® 6y = JC.

The neutral current can be reexpressed as

- 1 .
INCZH = Gy, [5(1 —2*)T} ~ sin’ owa] ¥y 2

o1
= Prvz ol — 9hr’)ws 2

where gf, = T? — 2Q; sin® 0w and g} = T3.

(1.11)

(1.12)

(1.13)

(1.14)

The interaction and kinetic terms of the Electroweak Lagrangian describing real



physics are now

Lew = X (v*0,)x + Yr(iv"0,)¥r

9 — TR —
- —E(J""‘W,f + JJTHW)

_ psemp _ 9 NCu
ej* ™A, o b - J Z,
~ e 1B (115

Mass terms for the fermions and gauge bosons are generated from spontaneous sym-
metry breaking of the ground state potential of the Higgs field. The SU(2) x U(1)y gauge

invariant Lagrangian for the Higgs scalar doublet, ¢, is

2

Ly = — 296 — X¢'9)*. (1.16)

, o Y
('lap -gT-W, — g'EB,,)d)

The last two terms of the above expression represent the potential of the Higgs field. For
the case u? < 0 and X > 0, the ground state of the potential does not occur at ¢ = 0. In
fact, there are an infinite number of minima distributed on a circle centered around ¢ = 0.

We are free to choose a minimum and by convention,

¢0=\/§ °1. (1.17)

v

Here, v is the vacuum expectation value. Although the ground state is not symmetric,
the overall symmetry (and gauge invariance) of the Lagrangian is preserved. Selecting a

minimum out of an infinite number of minima is known as spontaneous symmetry breaking.



The part of Eq. (1.16) that generates mass terms is

2 1 2
= (ivg) W:W—“

1
+ gvz(gW;‘3 ~ ¢'B,)? + 0(¢W; + gB,)*. (1.18)

= = Y=1

Identifying sinfw = ¢’/+/g% + ¢ and cosfw = g/+/ g% + g", Eq. (1.18) becomes

Lo Yy =1 2 1 \?2 _
(5 0o« i

1
+ —8-(92 + 9?22 + 0AL. (1.19)

As desired, the photon is massless. The mass terms for the W and Z bosons are identified

as My = %vg and Mz = %v\/ 92 + g%, respectively. Taking the ratio of these masses yields

MW
——— = cos# .20
M COSs Ow, (12)

to leading order in perturbation theory. The next-to-leading order mass ratio is calculated

in Chapter 2.

1.2 Low Energy Test of the Standard Model 1: Mea-

surement of Coupling Running.

1.2.1 Tree Level Analysis of Electroweak Interactions

The Electroweak Lagrangian operates between initial and final states as a time-

ordered exponential and produces a scattering amplitude multiplied by a four-momentum-



conserving d-function,
iM(2r)484(ps — pi) = (f|T{e!d F'*£@}]i). (1.21)

This exponential must be expanded in a time-ordered power series. Each term represents
a higher order in perturbation theory. The minimum number of orders required to produce
an interaction is known as the “tree level” amplitude. For example, an unpolarized electron
scattering off of an unpolarized proton via photon exchange can be described by the second

order term,

iM, (2m)A6 (P + K —p — k) = <e<k'>p<p')l%fr{ [ daieyb@)my @) at(a)

< | d4y<+z‘e)zz<y>e~/.,we(y)A”(y)}|e(k)p(p)>. (1.22)

Because there are two orderings, the factor of 1/2! can be dropped. After expanding the

field operators and operating on the initial and final states, the amplitude becomes

“iguu
q? + ie

iM—y = ’L—Lk/,)‘/ (ie’y")uk,)\ 'ap’,s' (-—z’e'y")up,s. (123)

By applying tree level analysis to electron proton scattering, the tree level coupling pa-

rameter, a = €2/4, can in principle be determined.

1.2.2 Loops, Renormalization, and Running

As the orders of the exponential expansion increase in Eq. (1.21), the field operators
begin forming loops. These loops produce divergent, momentum-dependent integrals. To
cancel the divergences of the loops, the fields must be renormalized. They “absorb” the

divergence, but the momentum dependence of the loops remains.
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Couplings redefined to account for loop corrections are often referred to as effective
couplings. The effective coupling is what is measured experimentally. The momentum
dependence of the loops is what causes effective couplings to “run” from their tree level
value.

For example, consider the expansion of a photon progagator. Because a photon propa-
gator couples to fermions, it depends upon a. An expansion of the propagator can therefore
be interpreted as a correction to the tree level value of a. The expansion, in terms of one

loop corrections II(¢?), is

o ((MT(g) e+ = o
g +ie  q*+ie g+ e T (g% + ie)(1 — II(¢?))
_ —ZZ3a . 2 . .
= Frie (in ¢* — 0 limit) (1.24)

Renormalizing the field A, — Z; / 2A’ absorbs the divergence of I1(¢?) into the definition

where 63 = Z3 — 1. The new term is the counterterm.

After renormalization the expansion up to one loop order is

—ia 2y _ _ —ia
g + ie q+ze( ) z5)"’+2€ '"_q2+i€—(H(qz)—53)

T (14 (Ty(g?) = 83) +..),  (1.26)

—q 3

where TI2(¢?) indicates a single loop. &3 is a constant that subtracts away the divergence.
There is not a unique choice for this subtraction. In the commonly used modified mini-

mal subtraction (MS) scheme, J3 is chosen to be equal to IT3(¢?) evaluated at a specific
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momentum. The choice of the subtracted momentum is known as the renormalization
condition.

The effective value of alpha at one loop order is

err(¢?) = a(1 + (T2(¢?) — 83)). (1.27)

Notice that the effective coupling is a function of the scheme-dependent choice of ds.
When discussing effective couplings, one must make clear what renormalization scheme is
being used. We will use the MS bar scheme in all of our analysis.

For momentum at the renormalization condition, all higher order loop corrections
cancel. Thus, measurements at the renormalization condition isolate tree level masses
and coupling parameters. Masses and coupling parameters run as the momentum of the
exchanged boson evolves from that of the renormalization condition. The Electroweak
Lagrangian predicts how the couplings run. Experiments at momentum away from the

renormalization condition can be used to test the Standard Model prediction.

1.2.3 The Qweak Experiment: Extracting the Running of sin? 6}y .

Different initial and final states isolate different parts of the Electroweak Lagrangian.
In the illustrative example above we saw that unpolarized electron-proton scattering allows
for the extraction of @. Suppose we now consider polarized electrons scattering off an
unpolarized proton. When compared to protons, electrons are essentially massless. In the

massless limit, chirality and helicity are equivalent. The neutral current for a massless
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electron becomes

o1
IN¥Cle = Vg 9V — 947Ny

~ By (95 — 42Ny, (1.28)

where A = +1/2 is the helicity of the incoming electron. For an unpolarized proton the

parity-violating piece of the neutral current gets washed out,

- 1
J};vclp = ¢f7p§9€¢f- (1.29)

At tree level the proton’s weak charge is defined as Q%° = 2¢5, = 1 — 4sin® Oy

By scattering electrons of opposite helicity off an unpolarized proton and taking the
difference, the combination g4g}, can be measured. Assuming g4 = —1/2, such parity-
violating measurements can be used to extract the proton’s weak charge and the weak
mixing angle.

The renormalization condition of the weak mixing angle is often chosen at the Z-pole.
Its value in the MS bar scheme is sin? 6y (Q? = M%) = 0.2313 [2]. The Qweak experiment
at Jefferson Lab [3] measured parity-violating electron proton scattering at a momentum
transfer of Q2 = 0.025 GeV2. The Qweak measurement is far from the Z-pole and can be
used to test for discrepancies between experiment and the Standard Model prediction for
the running of the weak mixing angle. Such discrepancies would indicate the presence of
hitherto unaccounted for New Physics loop corrections.

The presence of New Physics effects can only be determined if the Standard Model
loop corrections are correctly accounted for. In Chapter 2 we discuss the Standard Model
expansion of @, to one loop order. The expansion is well-known, but an explicit derivation

for all the terms is lacking in the literature. In Chapter 3 we focus on a particularly



13

bothersome one loop correction, the vZ box. Several groups have studied this diagram
and each has slightly different results due to differing treatments of vZ structure functions.
In Chapter 4 we highlight how the PVDIS experimental result at Jefferson Lab [4] can be

used as a first test of the differing treatments.

1.3 Low Energy Test of the Standard Model 2: Mea-

surement of Muonic Hydrogen Lamb Shift.

1.3.1 The Proton Charge Radius and Its Contribution to the
Lamb Shift

Atomic systems are natural laboratories for low energy tests of the Standard Model.
The Lamb Shift between 2S and 2P orbitals is a quantum field effect. The energy of the
electron in the 2§ state is shifted due to the vacuum polarization of the photon exchanged
between the electron and proton. Vacuum polarization occurs when the photon splits
into a fermion-anti-fermion pair which annihilate into a photon. This polarization is not
accounted for in relativistic quantum mechanics. Applying Standard Model physics to
Lamb Shift measurements of hydrogen allows for the extraction of the proton’s charge
radius.

The lowest order contribution of the proton charge radius to the Lamb shift is in the
exchange of a photon between the lepton and proton. The proton’s charge radius is found
by an examination of its form factors. For a point particle, F1(0) = 1. Thus, the finite
size contribution to the amplitude is

2

M = Gralk Iy u(k)u(r) (% (F@)-1) + ﬁd,wunz(Qz))u(p), (1.30)



14

where M is the proton mass and ¢> = —Q? is the square of the exchanged momentum.

These form factors can be rewritten in terms of Sachs form factors,

2

_ q
Gg=F + m’iF2
Gy = Fy + Fs. (131)

In the nonrelativistic limit the electronic Sachs form factor, Gg(Q?), represents the

nucleon charge distribution in momentum space. It is expressed as a Fourier transformation

Cu(Q?) = / o(Z)eT2d%s, (1.32)

where p(Z) is the charge distribution in position space. Expanding this integral, the square

of the charge radius is found to be

dGs(Q?)

R%Z = (rf,) = - fm——"

o (1.33)

Q=0

Eq. (1.33) is also taken to be the definition of the charge radius in relativistic situations.

Returning to Eq. (1.30), we see that in the low Q? limit

e? _(dF(Q?) 1
M=M ’"e"( o I sz2<°>)
dGe(Q?)
= e dMm,—X 1| 1.34
€ Me sz 01=0 ( )
The proton charge radius produces the shift
2ra
Ezs — Eyp = == (I2s0)° = I62p(0)[*) B}, (1.35)

where ¢(0) is the lepton wavefunction evaluated at the origin (¢2p(0) = 0). The radial
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wave functions for the 2S and 2P states are

1 T
=—— {2 -r/2a
o = oy ( )

1 T
-r/2a 1.36
Ry 22)°72 \/§ae (1.36)

where a = 1/(m,a) is the Bohr radius and m, is the reduced mass of the bound system.
The above energy shift is only a small contribution to the total Lamb Shift. The
charge radius can only be extracted when the energy shifts of all Standard Model processes

(vacuum polarization, two photon exchange, etc.) are calculated.

1.3.2 Atomic Measurements of the Proton Charge Radius

The CODATA value for the proton charge radius is Rg = 0.8775(51) fm [5] and relies
largely on Lamb Shift and other energy splitting measurements from electronic hydrogen.

Since muons are roughly 200 times heavier than electrons, muonic orbitals should
be more sensitive to proton size effects. Recently, Pohl et al. [6] measured the Lamb
Shift between the energy levels 255! 2 — 2PJ75? of muonic hydrogen. They expected to
find a more precise value of the proton charge radius that would still agree with previous
electronic measurements. Instead, Pohl and collaborators extracted a charge radius of
Rr = 0.84184(67) fm. A more recent muon Lamb Shift analysis, including the energy
level splitting 2Sf/‘2‘° 2Pf5 3/2 ! yielded a charge radius of Rg = 0.84087(39) fm [7]. The
muon measurements are 7o smaller than the CODATA value.

Assuming the experimentalists truly obtained their stated accuracy and accounted
for all Standard Model corrections, the smaller muon measurement is indicative of New
Physics. The smaller muonic hydrogen measurements could be due to energy shifts from

new muon-proton interactions being wrongly attributed to proton size effects. In order
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to bring the muonic measurement of the proton charge radius into agreement with the
electronic measurement, New Physics must lower the muonic Lamb Shift by 310 peV. Since
this New Physics scenario involves muons, any models should also not conflict with the
well-known muon anomalous magnetic moment discrepancy. In Chapter 5 we present our
New Physics proposal that “explains” both the muon discrepancies. Concluding Remarks

are made in Chapter 6.



CHAPTER 2

One Loop Contributions to the
Proton’s Weak Charge

The Standard Model Electroweak Lagrangian has a definite prediction for how the
weak mixing angle, 8y, should change at different momentum. The renormalization con-
dition of the weak mixing angle is often chosen at the Z-pole because many measurements
have been taken in this region [8]. This result in the modified minimal subtraction scheme
is sin? Oy (Q? = M32) = 0.2313 [2]. Measurements of this parameter at momenta, different
than the Z-pole can be used to test for discrepancies between experiment and the predic-
tion of the Standard Model. Such discrepancies would indicate the presence of hitherto
unaccounted for New Physics.

The aim of the Qweak experiment at Jefferson Lab [3] is to obtain a 4% measurement
of the proton’s weak charge, Q%,. The experiment measured the asymmetry between left-
and right-polarized scattered off an unpolarized proton target. The incoming electrons
had an energy of E = 1.165 GeV and the momentum transfer was Q? = —¢? = 0.025

GeV?, Data analysis is ongoing at the time of this writing.

17
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To extract the weak mixing angle from the measured value of @%, and place constraints
on New Physics at the desired precision, all radiative corrections must be well understood.
This chapter identifies and evaluates all of the one loop diagrams contributing to @%,,, with

the very notable exception of the bothersome [I,z. The 0,z is discussed in Chap. 3.

2.1 Definition of Qf;, at One Loop Order.

The parity-violating asymmetry for left- and right-handed electrons scattering off an

unpolarized proton target is given by

_ 0L —0OR

Apy = — = 2.1
i oL+ OR 1)

where o(g) is the cross section for left (right) polarized electrons. Since o is proportional
to the modulus squared of the amplitude, the tree level (or lowest order) asymmetry can

be rewritten as

2 2

|M7 -+ MZIA=—1/2 - lM"I + MZ',\:I/Z
2

My + My + My + Mzl

APVlLO = (2.2)

where M., and M are the amplitudes for the exchange of a photon and Z boson and A
indicates the helicity of the incoming electron. The lowest order amplitudes, Fig. 2.1, are

given by

—~i9u _ .
“;eup’,S’ (—iev")up, (2.3)

M. = U w(iev*)u
¥ k,A('Y)k,Aq+

and

. 2 .
] = _2‘g__ s B (g8 — & ~° 19w _ v _ 5
iMz (2cosz 9w) U Y (9y — 94y )uk,,\—————q2 — M2 +i€up1,,,ry (& — a7 ups. (24)
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ofk) o(k)

Zy

plp) p(p)

FIG. 2.1: Tree level diagram contributions to @Q%,.

At low @2, the tree level asymmetry is

A Mzlr==172 — Mz|r=1/2
PVILO M,

_ Gr@Q? 10
- 22 e (25)

Here, QFC = 2g%, = 1—4sin® @y is the weak charge of the proton at tree level and Gr
is the Fermi constant defined as v/2¢%/(8M32,). At tree level pno = M3,/ (M2 cos? Ow) = 1.

To all order in perturbation theory, Eq. (2.1) can be rewritten as

My + Mz + Mpcls__ p — My + Mz + Mrcli_

Apy = 3 3 (2.6)
My + Mz + MRCIA=_1/2 -+ IM», + Mz + MRCI)‘,—_l/z
where Mpc are amplitudes for higher order radiative corrections.
Factoring out the tree level amplitudes, Eq. (2.6) becomes
GrQ? LO( Mpclr=—1/2 — MRCI,\=1/2)
Apy = ; + 2.7
PV 2ra NCT T Mzlae1/2 — Mzla=1/2 27)

In the low Q?, forward-scattering limit, the one loop asymmetry can be expressed as the

expansion

Apv|, Loop Cj/F‘Q2 (Qh +BsQ* + .. (2.8)
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where B, contains hadronic corrections and

1
Mzlr=-172 = Mzlr=1/2

Qw = QPWLO (PNC +
X [(MV + Mg + Myz + Manlp + Mylp)r=-1/2

- My + Mg+ Myz + Mgalp + Mp|p)|A=1/2]) (2.9)

Q2—0,E—0

The only hadronic corrections included in the definition of Q% is the “pinched” part
of the proton’s vertex correction (M,|;). The pinch technique will be discussed in Sec. 2.6.
The remaining radiative corrections to %, are gauge boson mass renormalizations (pnc¢),
electron vertex corrections (My), box diagrams (Mp), vZ propagator mixing (Mpiz),
and the “pinched” part of the electron’s anapole moment (Mg,|p). The Feynman diagrams
for pnc, My, and Mg are shown in Fig. 2.2. The diagrams for M.,z, M,,, and M, are
shown in Fig. 2.3 and contribute to the one loop running of sin’ 8y, .

Obviously, the Qweak experiment is not performed at Q2 = 0 and incoming electron
energy £ = 0. Q%, can only be extracted when the Qweak data point is fitted with other
low Q? parity-violating data from SAMPLE [9, 10], PVA4 [11, 12], HAPPEX [13, 14] and
GO [15] and extrapolated down to Q% = 0.

12

efk) o(k)
ok} ofk)

Zy
tb
W, Zy w2y
w2z wz 00,

plo) p) 4

Lo

FIG. 2.2: One loop contributions to @Q%,. The first diagram contributes to gauge boson mass
renormalization (pnc). The second diagram represents lepton vertex corrections (My ). The
third diagram represents box diagrams (Mp).
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ofk) ofk) e(k) oK)

plp) plp) p(p) Pip)

FIG. 2.3: Remaining one loop contributions to Q%,. The diagrams are for vZ propagator mixing
(M~ z), the electron’s anapole moment (M,,), and the proton’s vertex correction (M,p). The

“pinched” parts of the latter two diagrams together with M., produce the running of sin® Oy
at one loop order.

The next sections will evaluate each type of one loop correction to @Q},. In the final
section of this chapter we will connect the results of our calculations to the notation used

in Eq. (4) of Erler et al. [16]
Qb = [ove + A[1 — 4sin® 6w (0) + AL} + Oww + Ozz + O,z (2.10)

In their notation, A, and A, are terms containing corrections to the lepton vertex,
sin? @y, (0) is the one loop definition of the sine of the weak mixing angle evaluated at
Q? = 0, and the Os are terms containing corrections to the exchange of two gauge bosons
(“box” diagrams) indicated by the subscript.

For all of our calculations we use £ = 1 gauge.

2.2 Evaluation of pn¢

At tree level pyo = ME /(M2 cos?yw) = 1. At one loop order we must account for
the corrections to the gauge boson propagators. The corrections renormalize the masses of

the gauge boson and shift the value of pyc. The one loop correction to the W propagator
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is

) = (74 ) D [ e
x Te[y*(1 = ) ((d+ @) + me)Y (1 = ¥°)(d + mo))] (2.11)

where m; and m; are the masses of the top and bottom quarks. Other quark loops also
exist, but their masses are negligible compared to those of the third generation. § is the
momentum inside the loop and will be used throughout this chapter to indicate such.
Note that we are integrating over dimensions d in anticipation of using dimensional
regularization to evaluate the divergent integral. Also note that the factors of ie have been
dropped in the denominator to clean up the notation. We can drop them as long as we
remember that we are calculating propagators using the Feynman prescription.

The denominator of the above amplitude can be reexpressed using “Feynman’s famous

formula” (FFF),

1 =/ dzx 1
(g+a?-mi@-—m]  Jo = (a(g+q)?—zmi+(1—12)(@—md)>

(2.12)

By redefining our momentum variable as [ = § + zq, the integrals for the quark loop

become

d'q 1 a1
@) (g +97 - mig —m] / = [ Gr = a7 (213)

where A = —z(1 — 1)¢? + m? + (1 — z)m?.
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After dropping terms proportional to odd powers of [, the trace simplifies to

Tr[v*(1 — ¥*)((d+ @) + me )Y (1 — ¥°)(d + my))

= 8[ - (1 — :21-) 2g" —2z(1 — z)g*q” + z(1 — z)q2g‘"’] (2.14)

Performing the momentum integrals, the amplitude reduces to

—ig\? 8 2
@)= (508) s [ 4=l (et + (0 = mr

- 2z(1 - z)(¢"¢" — ¢°9*")] (g — 7y + log4n — log A) (2.15)

where € = 4 —d and + is the Euler-Mascheroni constant. In the M S scheme, the divergent
term, 2 , as well as v and log 47 are subtracted off. A momentum-independent counterterm
is also subtracted.

Since the weak charge is defined at Q% = 0, we are free to set ¢2 = —Q? = 0.

Subtracting off a generic counterterm log A2, the amplitude becomes

iy g™ = iI1%(0)

_ zg 1, 2
= 3271’29 {" =(my +my)
4 2 4 2
L My ™ 1,.7%
+ mE — log A2 mE—m3 log A2] (2.16)

The amplitude for the one loop correction to the Z boson propagator is

i

@) = (5ot ) VY [ G

i=b,t

x Te[y*(1 = 7°)((d+ @) + ma)y" (1 = 7°)d + m)] (2.17)
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The breakdown of the denominators and momentum integral are nearly identical to
that of IIy. As for the previous amplitude, [ = § + zq. Here, A = —z(1 — z)g? + m2.

Once again we take the ¢> — 0 limit. The amplitude simplifies to

illzg* = ill,’(0)
2

—___ 9 Zm log = 2 g“” (2.18)

3272 cos? Oy =,

p is now renormalized to

MG, (1+ 3)
pNe = MZ% cos? 0w (1 + -—4—)
M2, g m2m2 m2
= 1 2 2 __ 2 t''% e
M2 cos? Oy [ + 64m2 M2, (mt T m? — m? log m?
m2m?2 m?2
=1 — gt—bl —t
+8\/_7r2(mt+mb m2 —mg ogmg)
=1+Ap (2.19)

The term on the left side represents ”"running” masses. All of the terms on the right
side are all still tree level values. Thus, the substitutions Gr = 1/2¢%/(8M%,) and
MZ, /M2 cos? Gy = 1 are still valid.

Using Gr = 1.1664 x 1075 GeV?, m;, = 4.198 GeV, and, m; = 173.1 GeV taken from
the Particle Data Group [2], pyc = 1.0031.

2.3 Evaluation of the Vertex Corrections: A, and A/

There are two parity-violating lepton vertex diagrams. The first is a photon loop
correction to Z boson exchange and the second is a Z boson loop correction to photon

exchange.
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2.3.1 Evaluation of A,

The first diagram contributes to A, and has the following amplitude

iM . 2 ( ) ZgP"' Z(d""'m) p( e 5)
Zy-Loop = 2COS2 0 Uk ey (27T)d (k q)2 7 gv — 947

igd+m —1
q('g m2) (ze7p)u k,A 2 gM2 Up,sY (9‘3 Qf{)’ )up,s, (2.20)

where m is the mass of the electron.

The denominator of the lepton current can be reexpressed using FFF,

1 1 ! 2(1 — )
el (—o@—m+ato® &%

By redefining our momentum variable as | = § — zk, the integrals for the lepton current

become

dlg _ 1 a1
T T T = " / wi-o) [ Gty @

where A = (1 — z)%?m?

The numerator of the lepton current evaluates to

T, (1€77) (—igpr Jild + M) (9% — 947°)id + m) (iey”)u,» =
N2 4 e _ e
(ie) it a [((d -4+ Zi) 2+ 2m?(z(4—z) — 1)) (g% — 957°)
- am¥(1 - aPasr | s (229
where we have dropped terms proportional to odd ! since they will integrate to zero.

In a renormalized gauge theory, there exist vertex counterterms that cancel loop con-

tributions at one specific momentum. For vertex corrections, the renormatization condition
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is usually chosen at ¢ = 0. Such a counterterm cancels the contribution proportional to
(g% — 957°). For momentum different than @ = 0, the counterterm will still cancel the
divergent part but not the entire contribution. The vertex correction would cause the
coupling to “run” when @ # 0.

As a check that the above algebra is correct, we can calculate the counterterm directly.
The counterterm has the form of the derivative of the electron self-energy, dX/d &|y=m.

Specifically, the self-energy is an electron line with a photon loop,

dig L i@+m) 5 —ig
—i% op = (i€)? . b__daob 2.24
DBhior = @ [ o i e 229
For an accurate calculation of the photon loop correction, the term proportional to
(9% —957°) should exactly cancel the derivative of the electron self-energy diagram, d-/d k.
This cancelation has been verified.

The remaining amplitude at @ = 0 is

. 2
. - _ e
Mzirroop =(2—’g§;) k3 (— 9577 i
—1 v v
X 07 (6} — 57t
y4
x 8im?(ie)? / Cdp(1—gp [ I L (2.25)
0 (2m)d (12 — A)3 .

The remaining integral is actually convergent at d = 4 and evaluates to

! s [ d¥ 1 -
‘/o‘ dz(l — z) @ry (E= A) = @ yiame (2.26)
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The ratio between this vertex correction and Z exchange amplitudes is A,

MZ,‘Y-LOOD|I\=—1/2 — MZ,7-Loop|A=1/2
Mzlr=-1/2 — Mz|r=1/2
(8

--£ (2.27)

A, =

Using the value of o at @) = 0, this term evaluates to -0.00116.

2.3.2 Evaluation of A/

The amplitude for a Z boson loop correction to photon exchange contributes to A is

. 2 d = .
, _ —ig _ d%g —igor 5\ i(f +m)
ZM'y,Z-Loop - (20082 0W) Up 2 (27!')“ (k — q.)2 M2 8 (gV gA’y ) -,2 m2
: - — G _ .
(1) ST (5 — ks~ (i€ i (2.28)

Unlike the amplitude for the «-loop correction to Z boson exchange, we cannot im-
mediately take the  — 0 limit. The reason is that the photon propagator diverges as
@ — 0 wheras the Z boson propagator does not. We must keep terms in the lepton
current proportional to ¢2 to produce a cancelation with the denominator of the photon
propagator. By redefining our momentum variable as | = § — 1k — z2q as before, the

integrals for the lepton current become

/ d4g 1 1 1
@) (k=27 = M3) (@ — m) @ — )
! 1-71 dél 1
= 2‘/0‘ d$1/0 d:1:2 (27f)d (l2 — A)3 (229)

where A = (1 — z,)?m? + £ M2 — z5(1 — 71 — 72)¢>.
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The numerator of the lepton current evaluates to

ey (~igor )V (9% — 927" )il +m)(ien*)ild + m)v7 (g% — 947" )ues =
e}t { 067 - @ - D1 - 2/
—2m?%(3 — 2z; — 22)v* + 2¢*(z2 — 1)(z1 + T2)Y*
+ dmk*((z2 — 1)z1 — 222) + 4mk*(1 + 221 + 225 — Z1(T1 + T2))]
+(92)?[ - (2= d)(1 — 2/d)>*
—2m?(=1 — 217 — 22)v* + 2¢%(z2 — 1)(z1 + T2)¥*
+ 4mk'™ ((z2 — 1)1 + 222) — Amk*(1 + 211 + 222 + z1(Z1 + xz))]
+(=2649%) [ - (2 - d)(1 - 2/d)*+"
—2m?(1 — ) + 2¢%(z2 — 1)(z1 + T2)7*

— 4mk'™ (x5 — 1)(z1 + 222) + 4mk*(z1 + T2) (71 + 272 — 2)] 75}uk,,\ (2.30)

The vector part of the numerator is not necessary for calculating a parity-violating asym-
metry. It is included for completeness and as a check that the algebra is correct. In the
limit @ — 0 the vector part cancels with the counterterm given by the derivative of the
electron self-energy diagram. This self-energy diagram is different than the previous one
in that the electron line emits and reabsorbs a Z boson. Its amplitude is

i(4+m)

. 2 d ~ ;
_ (=8 ) [ E e gensy a8
12(K)|z Loop (2008 9w> (27r)d’7 (9v — 94~ )(k —9)? - MZ(@ - m?)

x ¥ (g% — 957°). (2.31)

Upon subtracting off the axial part of dX/d k|y—m and performing the [ integral, the
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axial part of the loop correction is

. 2 _zl
. —1g —a
Z'M'M-Loovleiaa = (2cos2 3W> Ups \ / dz, /

2 202
X [log [le +(Z z1)"m ]’7

1 1
— m2(r2 - T
m(z; — 1) (A T M2+ (1 - a:1)2m2)7
q> 2m
- Z(zg - 1)(.’B1 + :Dz)’)’“ + Kk “(:L‘g — 1)(231 + 2112)

2m
— ——A—-k“(a:l + z2)(zy + 229 — 2)] (~2gjg§75)uk,,\

X ;_;ﬁp’,s"'fuup,s- (2.32)

When we rewrite k# and k’# in terms of ¢# and (k + k')*, we see that the coefficient
for (k + k')* integrates to zero. g* when shifted to the hadron side also yields zero.

Eq. (2.32) is complicated, but simplifies after it is expanded in terms of g>. When
the limit g2 — 0 is taken, only the term proportional to g2 survives as it cancels with the
denominator of the photon propagator.

The parity-violating ratio between this vertex correction and the treel level Z boson

exchange in the @ — 0 limit is

Ay _ Myz-rooplr=—1/2 = My,z—Loop|r=1/2
Qe Mz|r=—172 — Mz|r=1/2
a (1 M
T (6 +log [';n‘z‘]) (233)

At @ = 0, this term evaluates to -0.00141.
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2.4 Box Diagrams: Uyw and Oz

The box diagrams describe the exchange of two gauge bosons between the electron and
proton. The W and Z propagators are dominated by high momentum which allows the
hadronic currents to be calculated using pQCD. The WW and ZZ boxes can therefore
be calculated directly with quark operators substituted into the hadronic currents. In
contrast, the photon propagator is dominated by low momentum exchange outside of the
regime of pQCD. The analysis of the vZ box is more involved than the other boxes and
we delay a presentation of its analysis until the next chapter.

The calculation of the WW and ZZ boxes is relatively straightforward. Still, we
present some of the intermediate results in the evaluation of the boxes highlight their
structure and to provide a check for readers interested in working through the calculations

themselves.

2.4.1 Evaluation of Oyw

The easiest way to proceed in the analysis of the WW box is to express its amplitude

in terms of field operators,

iMww(2r)4 (K +p —k —p) = (:%)4 / dwdzdydz
x (e(K)p(0) | T{W;; (W) (w)W; (2) (<)

x We 0)J~*@)W5 (2)7+°(2)} |e(k)p(p)), (2.34)
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where J*¥(z) = 4, (z)71/2(1 —4°)9.(x) and the integrals are taken over four dimensions.

Evaluating the gauge field propagators and simpifying gives

iMyw(2m)6(K' +p —k—p) = (:\72_22) /dwdx(e(k’)|T{J"“(w)J+"(a:)}|e(k)>

'k —igus _kG-w) [ K —iGa iy
/ W | ik Mg ° @n k2 - M3,°

x {p(®")|T{J*(v)J**(2)}|p(p)), (2.35)

We are only interested in the zero-momentum transfer limit, k = k' = q. After evaluating

some of the §-functions, the amplitude becomes

iMyw = ( ) )/ (27r)4 2((] Mt?v)2ukl AYH v’ (1— 5)UkA
x 4 / dye (p() | T{ T+ (0); ()} |p(p) ). (2.36)

The lepton current simplifies to
1
T (1= 7 )ura = qakgTr[S (1 + 2N)Y)y Y%y (1 = 7)), (2.37)

where ) indicates the helicity of the incoming electron. Only left-handed electrons (\ =

—1/2) give a non-vanishing trace:
U (1= P Vueal oy = 4R*Q +K7Q* — g - kg" +iePkgqa)  (2.38)

For the hadron currents we only consider field operators for the up and down quarks,
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notated u(z) and d(z) respectively.

4 / &y (o) | T{J (0)J; ()} |p(p)) = / dye v (p(p")| {B(0)1(1 — 1°)d(0)
x d(y) v (1 — ¥*)u(y)O(0 — yo)
+ d(y)1 (1 — v°)uly)

x 4(0)74(1 — 7°)d(0)O(y0 — 0)}|p(p))  (2:39)

After some algebra and the approximations u(y) ~ u(0) and d(y) =~ d(0), the currents

reduce to

4 / diye v (p(p") | T{JF (0)J; ()} |p(p)) = —2;—Z"<p<p'>t{a<omm,(1 — 2%)u(0)

~ d(0) 1% 7u(1 — 7¥°)d(0)} |p(p)) (2.40)
The entire amplitude can be expressed as

, 4 4
. _ (9 o2y [ 29 L
'LMWWL\=_1/2 = (2\&) (—2i)°4 (2m)t ¢?(¢? — M3,)?
x (ktg” + kg — q - kg"” + ieP#* kgq,)

< Z_‘;<p(p'>|{a(0)mm<1 —~ 7%)u(0)

= d(0)n Y m(1 — 7°)d(0)}|p(p)). (2.41)

To evaluate the first three terms of the lepton current with the hadron current, we must
spin-average the hadron currents and rewrite the quark currents in terms of isospin and

electromagnetic currents. In the limit of zero momentum transfer, p’ = p and the currents
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simplify to

)| 1p)) = 5(p) {a(0)3,5(0) ~ d(O).d(0)} p(r))

= Pu (2.42)

and

(@) p(p)) = (p®@)| { gﬁ(o)'mu(ﬂ) — %J(O)vud(O)} Ip(p))

=2p,. (2.43)

To evaluate the fourth term of the lepton current with the hadron current, we must invoke

the identity,

v Y7175

Pty = gy — gPY* + gPAH + € ey (2.44)

It is important not to spin-average before taking this identity as it contains a v° term.

The amplitude simplifies to

4
. _.9° p-k
ZMWW|A=_1/2 = 23—-1—671'—2]\4—%,(1 + 1+ 1/2 + 9/2) (245)

In the @% — 0 limit, the amplitude for Z boson exchange is

2
1 - _-_____-‘Z_______ . e __ e ,LO
ZMZ - 22 COSZ 0WM§ k p(gV (2A)gA)% (2‘46)
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and the WW box is

Mwwr=-172 — Mwwr=1/2 ~p.LO
Mzla=c1j2 = Mzlazryz 7

_ Ta

" irsinl Oy

Oww =

(2.47)

Although the overall momentum transfer is Q) = 0, the momentum within the loop is
high. To evaluate this term, definitions of a and sin? @y at the Z pole are used. At the Z

pole Oww evaluates to 0.0188.

2.4.2 Evaluation of [z

The ZZ box analysis is very similar to that of the WW box. Substituting J** — J¥,
Wk — Z¢ and % - af}g; in Eq. (2.35), the ZZ amplitude is

iMzz(2n) (k' +p —k—p) = ( ) /dwdm(e(k’ ) T{JI5(w)J%(z)}|e(k))

X /dydz d4E __—zQ”'ﬂ e—":k(Z—W) d4k _ -zgua e-‘ik'(z—y)
(2m)t k2 — M2 (2m)* &2 — M2

x (p(P)|T{J3()J5(2)}|p(p)), (2.48)

cos? By,

where J4(z) = ¥e(x)7*1/2(g% — 957°)¢e(x). Once again we are only interested in the
zero-momentum transfer limit, k = k' = ¢q. After evaluating some of the d-functions, the

amplitude becomes

Mas(am)'5K + 5~ k=) = (o )( ) | Gy

x e v 47" ((95)° + (95)% — 205957 Juk
X 4 / d*ye'® (p(p')|T{J2.(0)Jz.(v) }[p(p))- (2.49)
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The lepton current simplifies to

1
ey 47 ((9%)° + (95)° — 265 957" ur s = QQkBTr[E(l + (2A)7° )P yry 2y
x ((gv) + (95)° — 265.957°)], (2.50)

where A indicates the helicity of the incoming electron. Both left- and right-handed elec-

trons give a non-vanishing trace:

G 7 ((9%)° + (92)° — 205907 Yura sy, 2 = 2((9% F 92)° (K" + K"¢*
— q- kg" F i kpqa) (2.51)

For the hadron currents we once again only consider field operators for the up and

down quarks, notated u(z) and d(z) respectively.

4 / d'ye ¥ (p(p")| T{J2u(0)Jz. ()} |p(p)) = / d*ye'™ (p(p')|
> {a(0)nu(g¥ — 957°)a(0)

q=u,d

x Gy (9% — 957%)a(¥)O(0 — o)

+ 3 (9% — 957°)a(w)

X §(0)7u(g¥ — g%47*)a(0)O(yo — 0)}|p(p))

(2.52)

After some algebra and the approximations u(y) =~ u(0) and d(y) =~ d(0), the currents
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reduce to

/ d'ye'® (p(0)|T{Jzu(0)Jz.(¥) }|p(p)) = ———(p(p’)l > {aOyvren

gq=u,d
x ((9%)* + (93)° — 295.957°)a(0)
- q-(o)')'u')'o’)'u

X ((g%)? + (%) — 2¢5.957°)a(0) }Hp(p)) (2.53)

The entire amplitude can be expressed as

iMZZ|A=—1/2 - iMZZ’,\=1/2 = (2(:082 B ) (=2¢)(—9) / (2m)% g2(g% — M§)2
x [((g8 + 95)° — (9% — 92)%) (K*¢” + k*¢* — q - kg*")
+ i kga,) (9% + 95)° + (g% — 99)°)]

x %;(p(p’)l PR UL

g=u,d
x ((95)% + (952)* — 29%.957°)a(0)
— 7(0)7 Yo Yu

x ((g%)* + (95)% — 265957°)a(0)}|p(p)) (2.54)

The first three terms of the lepton current cancel with the hadron current in a straight-

forward manner. To evaluate the fourth term we once again must invoke the identity of
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Eq. (2.44). After spin-averaging this term becomes

PRV ke g;<...> =6 <p(®)| 3 629%4(0)159(0)|p(»))

q=u,d
= 6k°((g + 95)% + (9% — 95)%)

3
x < p(p)| (—2— — 3sin? HW) Jg™ + (— =+ 8 gin? GW) J3|p(p)).

2 3
(2.55)
The amplitude simplifies to
: 4
. . ) —1ig 24p-k (3 5,
- = 22 9
zj\/tzzl"=‘1/2 iMzz5ese z(2cos2 9w) 16m2 M2 (4 3o W
x (1 — 4sin® 8y + 8sin® Oy) (2.56)
The ZZ box is
Ogy = Mzz|r=—1/2 — M2zz|r=1/2 ~p.LO
Mzlr=—1/2 — Mz|r=1/2
o 9 ) .2 .4
= - — g 1—-4 0 8 0 2.87
Py —— ( 1 5sin w)( sin” Oy + 8sin® Gy ) (2.57)

As with the other box diagram, we evaluate [Jzz using Z pole definitions of parame-

ters. (Jzz evaluates to 0.00192.

2.5 Contribution of M,,;; to sin? 0y (Q?)

A Z boson propagator can fluctuate into a photon propagator through a fermion or

W boson loop. Such diagrams, M,,;,, contribute to the running of sin? 8y .



38

All amplitudes have the form

i Mo (0 — 057k A o (iTLag}
2 miz 2COS2 0W Uk A Yul\Gy ga”7 Uk q2 — M% af
. Bv
—1 _ i v
X — gy (=€) Jups (2.58)

Notice that we have dropped the g,g, term in the numerator of the Z boson propagator
since it will evaluate to zero when confronted with the hadron current.
All of the loops with fermions or two W bosons feature the same substitution [ = §+zq.

The integrals for these loops become

ddq 1 1 1 ddl 1
(2m)d g2 — m? (G + q)2 — m? = /(; dIL‘/ 2n) @ = A)’ (2.59)
where A = ~z(1 — z)g® + m? and m; is the mass of either a fermion or W boson.

2.5.1 Contribution of the fermion loop.

Y

FIG. 2.4: Fermion loop.
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The fermion loop is shown in Fig. 2.4 and its amplitude is

inaﬂ, Fermion Loop = )/ (2 )d E Z Tr [( zQze'Yﬁ) ( (ﬂ_:'qg;‘ mz)i

i color

s\ 0@ + my)
X oot e — 9 | (2.60)

where ¥; is a sum over fermions. The sum over color only applies to the quark loops.
Plugging Eq. (2.60) into Eq. (2.58) gives

. 2 .
. —-ig \". —iGu
i Mmiz, Fermion Loop = (m) U Y (g5 — givs)uk,AT‘gﬁ‘z‘up',a' (7 )up,s

Z Z( Qz)gv/ dz(1 — a:):v(— — v+ log4m — log A)

i color

(2.61)

Using the M S scheme, the divergent parts as well as v and log 4n are subtracted off.

We are free to choose a renormalization condition. Because the Particle Data Group [2]
quotes a value of sin’fy at the Z pole, we renormalize at the mass of the Z boson.
To invoke our renormalization condition sin?fy (Q? = M2) = 0.2313, we subtract off
A = z(1 — z)MZ + m?2. For the remainder of this chapter, sin® 6y = 0.2313.

Notice that the first line of Eq. (2.61) is very similar to Eq. (2.4). Adding the hadronic

vector part of these two equations together gives
2.-A’tZ +iMmim, Fermion Loop

. 2 .
= (%9 _\ ; 5 —tG9u _
B (2 cos2 Ow ) U 37 (9V — 947 Yk ¢ — Mg“p',s'(’YV)up,s

(g{’, - Z 3" Qi / dz(1 — z)zlog [':;“:”; ((11__2))4525 J) (2.62)

i1 color

Following the notation of Czarnecki and Marciano [17, 18, 19], the second line of
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Eq. (2.62) can be interpreted as the fermion loop’s contribution to the “running” of sin® 8y,

(1~ 4510 00 (Q")| o onp) = 51— 457(@)sin B (M) (263)

N

where

[m? +z(1— x)M%]

(8] i !
w(Q@) =1+ 2.2 Qng/O da(l - 2)elog | s A 02

i color

=1+ Klep(Q2) + Kguark (@) (2.64)

The ratio involved in the one loop expansion of Q%, is

Mmia:, Fermion Loopl)\=——1/2 - Mmiz, Fermion Loop'z\=1/2 ,LO
w
Mzlr=—172 = Mz|r=1/2

= —4(rs(Q?) — 1) sin” 6w (M3).
(2.65)

Fig. 2.5 displays the running of sin?6fy due to the fermion loop. The value of a
was chosen at the Z pole. Fig. 2.6 breaks down the running into the lepton and quark
contributions. The top quark contribution is neglible and is not included.

The behavior of the plots can be understood if we look closely at the logarithm:

mi+z(1—z)MZ] M?2 m2/M2 + z(1 — )
lo [m?+x(1—a:)Qf} —log{mng + log [1+x(lz——x)Q2/m§]’ (2.66)

]

When Q? < m2, the first logarithm dominates. Fermions with smaller masses produce
a larger value for the first logarithm. At low Q? we clearly see the contribution of each
fermion follows the mass spectrum, with lighter fermions producing a larger contribution.

As Q7 increases the second logarithm decreases the overall contribution. This decrease does
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not become substantial until Q> = m?2. Thus, the contribution of each fermion remains
relatively constant for Q% < m?.

The quark contributions are greater than the lepton contributions for two reasons.
First, g}, is larger for quarks than for charged leptons. Second, the quark contributions
are tripled due to the sum over color. All the fermion contributions converge to 0 as
Q% — M2 because of our choice for the renormalization condition.

Our fermion contribution is smooth and calculated using the conventions of Czarnecki
and Marciano {17, 18, 19]. In contrast, the fermion contribution to the sin®€@y running
plot calculated by Erler et al. [16, 20] is not smooth. The jaggedness comes about because
they chose not to include particle i in the summation of x;(Q?) when Q2 < m?. They also
evaluated Eq. (2.66) in the limit Q% >> m?. Taking the high Q? limit of Eq. (2.66) and

plugging it into Eq. (2.64) gives the Erler et al. expression for x;(Q?):

2 a ; M2 m? s o
Kf(Q%)|Ener = 1 + m E Z Qigv{ log [W} + log [‘Q“g] o(Q" - mi)}, (2.67)

i color

where ©(Q? — m?) is the Heaviside step function.

The above quark loop analyses for both Czarnecki and Marciano and Erler et al.
overlook a crucial problem at low Q2. As discussed by Marciano and Sirlin [21] and
Czarnecki and Marciano [17], QCD effects in the quark loops dominate at low @2 and
electroweak calculations are insufficient. Estimates of these low Q2 loops are found by
performing dispersion relations on experimental results of ete~ — hadron reactions. For
Q? = 0, Czarnecki and Marciano [17] give the overall correction to sin? Oy (M2) as (Q? =
0) = 1.0301 = 0.0025. This correction yields sin® 8y (0) = k(0) sin? Oy, (M%) = 0.2383 +
0.0006. A more recent and precise value for x(0) was calculated by Erler et al. [20] and
Ferroglia et al. [22]. The Erler et al. calculation yielded sin? 8y, (0) = x(0) sin? 6y (M2) =
0.23867 + 0.00016. We chose to use this more precise value instead of the Czarnecki and
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Marciano result.

Following the lead of Czarnecki and Marciano [19], we consider QCD effects in the
range () < 0.1 GeV. Czarnecki and Marciano presumably chose an upper bound of @ = 0.1
GeV because it is at the scale of pion production. After including the W loop and pinch
corrections of the next sections, we perform a simple modification to the total running of

sin? @y by substituting sin® 6y (Q?) = 0.23867 for Q < 0.1 GeV.

0.242

0.240}

0.238f

o
N
[N
N

0.234¢

kr(QP)sinOw(M2)

0.232-

0.230}

0.228 %01 0.01 0.1 1 10 100 1000
Q (GeV)

FIG. 2.5: The running of sin @y due to vZ mixing via a fermion loop.

2.5.2 Contribution of the two W loop.

The mixing of a Z boson and a photon propagator can also occur via a W loop. In

€ = 1 gauge, there are five diagrams that contribute to the loop with two bosons (see
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0.0010 0.010~ S
Red = Electron
0.0008} Blue = Muon 0.008
N Green = Tau ~§a
Z 0.006
3
'éj 0.004}
0.002
0.0008 561601 0.1 1 10 100 1000 0008501601 o1 1 10 100 1000
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FIG. 2.6: Left: the running of sin® 6y due to lepton loops. Right: the running due to quark
loops.

w w w Yoo/ we | Ve o4 Y o

\\ // ".~ '."
Y Y Y S g Y

FIG. 2.7: Two boson loop diagrams in £ = 1 gauge. The first diagram contains two W bosons.
The second and third diagrams contain a W and Goldstone boson. The fourth diagram is a
two Goldstone Boson loop and the fifth diagram is a ghost loop.
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Fig. 2.7). The first diagram gives

. dig , . _ _
2Htl’tﬂ,W-Loop = /-(—57}%7(_29 cos OW) [(2(] + Q)agap + (q - Q)pgcw
—30P¢
y ig
+(~q— 2‘1)&900] @+ 92— M‘gv

> TO

. _ _ " —1
x (—ie)[(—q + @)egar + (29 + @)-9es + (—q — 24)gr¢] a-‘g'ngTev- (2.68)

After invoking Eq. (2.59) and performing the momentum integrals, the amplitude reduces

to

iIll ——L-/sz 2—§ 1 * cosBwe A—Bé 1 A (2.69)
af3,W-Loop — (41{')% 2 A g w 21_% .

where
A= qaqs(d— 6 —2(2d — 3)z(1 — z)) + gapd® (5 — 22(1 — z)) (2.70)
and
B = gagb (1 - %)  @n)

The two diagrams with a W+ and ¢* give identical amplitudes. Their sum is

z'H2+3 =92 / ddq_ ___2gp€ l
wsWivw =2 | Gm)ila+ 92 - M, @ - M,

X ie M gpe(—ig) Mz sin® O go,
a
i d\[1\*2 , sin’

In the above equation, we are allowed to make the substitution Mz cosfw = My since
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the gauge bosons are tree level.
The diagram with two ¢* evaluates to
déq i sin? O i

T4 — L _ _ 2
Msnsan = [ oz (cost = S ) 0= Mo

. _ 1
x (ie)(—q — 2Q)B‘_;':'MTW

q
i d\ 1\ ¢ g sin? Oy
= @ faer(z-3) (Z) 3 (costw - cosew)
d 1
where
C = quas(1 - 42(1 - 7)) (274)
and
4
D= gaﬂ'&. (2.75)

The ghost loop amplitude is given by

. d*q —1 _
anﬂ,W-Loop ) 2,”_ d (q + q)2 —2 — MV2V (*e)(—g Cos OW)(q + Q)a

x f(—q+ (g + fi))ﬁf""“

CHICY

1
X gcosfye (Zx(l — Z)qaqp + gaﬁ'l'____gA) (2.76)
2
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Y

FIG. 2.8: One boson loop diagrams in £ = 1 gauge. The first diagram contains one W boson.
The second diagram contains one Goldstone boson.

2.5.3 Contribution of the single W loop.

In £ = 1 gauge, there are two, one boson loop diagrams (see Fig. 2.8). The amplitude

with one W propagator gives

) dd— —ig°" )
21-‘[gzﬂ,W-Loop = (27‘,‘;,1 qg -—gM‘?V ("'7'9 Cos 9we)(2gaﬁgcn — 9Bo9ar — gﬂ'rgaa)
d
i d\( 1\"% 1
= | B QA 2gcosOwe(d — 1 2.77

The amplitude with one ¢ propagator gives

- d’q i . sin? @
Zquﬁ‘,w-m;p = / (273,1 715 (zeg)(cos 0w — w

cos Oy )9as

: d 1 \"% 1 sin® Gy
= (411')% F(2 - _2—) (W) 1— gge(COS Ow — cos 0w )gaﬁ (278)
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2.5.4 Sum of W loops.

The sum of Il,p is

zZHaﬂw,Loop a )%/dxl"(z_g_) (%)2—%

[(q 9op — 9a4p) (ge cos Oy (5 — 4z(1 — z) — (3 — €)(1 — 27)?)

sin? Oy \ 1 9
—ge (cosOW— osew)§(1—2x))

+ 2MZ2ge cos Oy gaﬁ]

2
(4 )2( 7+log47r——logA)gecos€w
x {(q 9o — 4ap) (5 — 42(1 — 1)
7 1
- 5(1 —2z)% + 5(1 — 2z)%tan’ Oy ) + 2M§ga,3]

2
+ W2ge cos Ow (1 — 22)*(¢°9as — 2a48), (2.79)

where d = 4 — e. To obtain this sum it was necessary to use the identity,

(1‘{33)1_" / d( 1_§+ ~(1-22)% 2A“) (2.80)

Notice that this amplitude does not satisfy the Ward Identity. The “pinched” part

of the anapole moments will add to this term and preserve gauge invariance. The pinch

technique will be examined in the next section.
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Substituting Eq. (2.79) into Eq. (2.58) gives

2 .
—Z_ ) i 5 -t
2 cos? 9W) T Va9V — 94 )Uk,A—‘q2 v Uy o (Y )Up,s

iMmi:z,W-Loop = (
x = 2_ + logdnr — log A

x cos? Oy [(g— +10z(1 - z)

1 2
+ -2-(1 - 217)2 tan? 9w) + ?Mggag]

+ 2cos? O (1 — 2z)2} (2.81)

To interpret this result as a correction to the weak mixing angle, we renormalize to
define sin® @y at the Z pole and add it to the tree level Z exchange,
Pt e —
) uk',A’7u(_gA7 )uk,Aq2 — Mgup’,s"Yuup,s

a M +z(1 — z) M2
(g{’; + g/dxlog A

X [cos2 Ow (—3— +10z(1 — z)

renorm

iMz + iMmizW-Loop| = (m

+ %(1 — 2z)? tan? 9w> - %Mﬁz]) (2.82)

This expression can be interpreted as giving

%(1 — 4sin? 6y (QY)] ) = -;-(1 — 41y(Q?) sin? By (M2)), (2.83)

mizx
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where
n_,_ o 1 M +z(1 — ) M2
(@) =1 47rsjn20W/dz10g A
X [cos20w(g+10w(l—z)
L1 _ 22)2tan?6 2 Mz (2.84
+ 51 -2 tan by ) - M| 84)

2.6 Pinch Technique Evaluation of the Electron’s
Anapole Moment and the Proton Vertex.

The pinched part of the anapole moment diagrams is considered part of the definition
of sin?6w (Q?). The anapole diagram has two boson and one fermion propagator in its
loop. The pinch technique [23] involves expanding the anapole moment to find a term
which cancels the fermion propagator. The so-called pinch terms for the anapolo moment
and the proton vertex effectively describe two boson loops and are added to the yZ mixing

diagram. Together, they satisfy the Ward Identity.

FIG. 2.9: One loop diagrams for the electron’s anapole moment in £ = 1 gauge. Only the first
diagram has a non-zero pinch term.

In £ = 1 gauge there are three relevant diagrams that contribute to the electron’s

anapole moment (See Fig. (2.9). A fourth diagram involving two Goldstone bosons is
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proportional to m?/M%2, and can be neglected. The first amplitude is

. 2 . . .
VI 5 _7'901' _zgay Z(k— q)
Man (z\/i> Texy’ (1 =) / @)= - MG, &~ M3, (k=)
X Y*(1 = 7V )ur A(—ie) [(—g — §)"g" + (2¢ — a)“g"’ + (24 — 9)%9™]
X —’tqg,s Ty o (—i€Y" )p,s. (2.85)

Expanding this equation gives the pinch term as

d%g 1
gl 2
Moo = (575) (i0P(- 4’)/ i@ - 07— MG, 7 - M3,
X g Y2 (1 — )UkA B Uy 577 Up s

(28722 [ aeog [ Mt 0= 0]

X ’u,kr XY B(l - 5)ukA ﬂ up: s”Y Up,ss (286)

where A = MZ, — z(1 — z)¢>.

Renormalizing at the Z pole and only focusing on the axial contribution gives

. 2
. —ig
iMgnlpinch = (m) e Y (— 927" Y, z\_zv__ggﬁiup’ ¢ Up,s

a MZ +z(1 —2)M2] Q% + M2
— cos Ow / d:clog[ A = (2.87)
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The amplitudes for the electron’s other two anapole moment diagrams add to

4243 _ [ 9 m —1gpu , r
Men™ = (57) s [ o )d{”’( ~ = ar - a M
G

— AP i . Br 2(]6-—-]) Zgﬂp e
O g M G g, O ) e
-1
X gﬁ upl1sl(—26’)’ )up,a (288)

The numerator of this amplitude does not have the necessary momentum-dependence
to produce a pinch term. It does not contribute to the running of the weak mixing angle.
Notice that the lepton anapole moment Eq. (2.87) alone is adequate to cancel the
Ward Identity-violating piece of Eq. (2.81). However, we must also add the pinch part of
the proton’s vertex correction (see Fig. 2.3) for Z exchange to preserve the Ward Identity
in the general gauge [24]. We approximate the intermediate fermion as a massless quark.
As with the lepton’s anapole moment, in £ = 1 gauge there is only one amplitude for

the proton’s vertex correction that possesses a non-zero pinch part. This amplitude is

. 2 .
. =—2g —ig i v’ (0t — af~>
iMy = (2] sommgm (g — e

X ey V(L= ) = (1= s
X (—ig cosw) (¢ — @)792 + (—29 — )ug®" + (24 + 9)°g]]
d%g —i
(2m)d (¢ — M3,)((@+ q)? — MZ,) (0" + q)?

(2.89)

Expanding this equation gives the pinch term. Renormalizing at the Z pole and
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keeping only the lepton’s axial contribution gives

-1

2 .
. g _ —1g _
iMop|pinch = (m) Uk’,A"Y“(—gi’Ys)uk,A'qz _ X;;“p’,a")’"(l - 75)'%,8

—_— 0 . .
X T = cos” By / dz log [ A (2.90)
One further manipulation must be made. The hadron current is
Ty Y (1 — ’75)up,a = 4']3
= 4J7 4 4sin? Gy J™ (2.91)

The neutral current contribution is dropped since it will not contribute to the running
of sin? @y,. The relevant part of the pinch term is
-ig \? —igu
. _ 5 7%
iMbp|pinch = (m) U Y (— 927" )u k,\—z——M-gUp' oY Up,s

2 _ 2
X %cos"’OW/dxlog [Mw‘*'l'(i )Mz ]

(2.92)
This expression can be interpreted as giving

1 . , 1 .
5(1 — 4sin® 0y (Q?) 'miz’W_Loop — 45in? 0y, (Q?) |pinch) = -2-(1 — 4k3,(Q?) sin® By (M2))

(2.93)

where

2 -
/dxl Mg, +z(z§ z)M3Z

X (cos Ow (5 +12z(1 — x)) + -2-(1 — 2z) ) (2.94)

Q) =1-—

47r sin HW
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Fig. 2.10 shows the contribution of the boson loop added with the “pinched” part of
the electron’s anapole moment and the proton’s vertex correction. This curve is smooth
and follows the conventions of Czarnecki and Marciano [17, 18, 19]. In contrast, the boson
contribution to the sin?6fy running plot calculated by Erler et al. [16, 20] is jagged. It
appears Erler and collaborators make similar approximations to what were made in their
fermion calculation. Their boson curve is proportional to log(MZ,/Q?)6(Q? — M%,).

The ratio involved in the one loop expansion of Q¥ is

(MumizW-Loop + Man)|a=-1/2 = (Mumiz,W-Loop + Man)|r=1/2 ~p L0
W

Mz|r=—1/2 = Mz|r=1/2
= —4(k,(Q?) — 1) sin® by (M2). (2.95)

k' (QP)sin’Ow(M2)

001 001 01 ] 10 100 1000
Q (GeV)

FIG. 2.10: The running of sin # due to vZ mixing via a W loop and the pinched parts of the
electron’s anapole moment and proton vertex correction.



54

The total running of the weak mixing angle is

1 — 4sin® 0w (Q?) = 1 — 4(k4(Q?) + K4(Q?) — 1) sin® O (M32). (2.96)

It is necessary to subtract a 1 when we add the x’s to avoid overcounting the tree level
diagram. The total running is shown in Fig. 2.11. As previously discussed, this curve
was calculated following the conventions of Czarnecki and Marciano [17, 18, 19]. The
jaggedness of the Erler et al. [16, 20] plot is due to approximations of the loop logarithms
and removing particle contributions to the fermion loops when Q% < m2. At low Q?
QCD effects in the fermion loop dominate and the QED running calculation is no longer

meaningful. As previously mentioned, for Q < 0.1 GeV we used the value sin? y,=0.23867

calculated by Erler et al. [20] in this region.

001 001 01 1 10 100 1000
Q (GeV)
FIG. 2.11: The total running of sin? 6y .
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2.7 Comparison of our Definition of Qf, to Erler et
al.

Combining all of our results from the previous sections, our definition of Q¥ up to

one loop order at Q? = 0 is

Q% = (pne + D)QEFC + AL — 4(k4(0) + K4(0) — 2) sin? Oy (M2)

+Uww +0Uzz + U,z (2.97)

We have chosen our renormalization at the Z pole. Thus, Q%C = 1 — 4sin? 6y (M32).

Up to one loop order we are free to make the substitution

A, — 4(x£(0) + K4(0) — 2) sin® by (M3)
= (onc + Ae) [AL — 4(k4(0) + £,(0) — 2) sin® Oy (M3)]

= (1+ Ap+ A.)[A, — 4(ks(0) + £3(0) — 2) sin® 6w (M3)], (2.98)

since Ap+ A, multiplied by the terms in square brackets are higher order corrections that

can be dropped. Performing this substitution in Eq. (2.97) yields

Q= love + AJ[QFC + AL — 4(k4(0) + £},(0) — 2) sin? O (M2)] + Oww + Ozz + 0,2
(2.99)

Using the running sin? @y definition of Eq. 2.96 returns the Erler et al. result:

P = lpne + Ac)[l — 4s5in? 0w (0) + AL] + Oww + Ozz + 0,2 (2.100)



CHAPTER 3

Evaluation of the vZ Box

Marciano and Sirlin first examined the diagrams M., z, Fig. 3.1, in their study of O(c)
radiative corrections to parity violation in atomic systems [25, 21]. Due to the presence
of a massless propagator, M.z contains low momentum contributions in which the use of
pQCD is invalid.

Erler et al. [16] concisely express the Marciano and Sirlin result for the proton case as

_ qu|)\=—1/2 - M72‘A=1/2 ,LO

[, =
"z Mz|r=—1/2 — Mz|r=1/2
5 ) M?2
= 2_7ar.(1 _— 481n2 OW)(IOg—K'% +C7Z(A)). (3.1)

The first term of the above expression comes from the pQCD regime while the second
covers the low momentum regime. In the pQCD regime M.,z was evaluated directly in
a manner similar to Mww and Mzz. Additionally, it was assumed that the incoming
electron energy could be set to zero and the struck quarks behaved non-relativistically.
Below the momentum scale A =~ 1 GeV, the constant term C,z(A) both canceled

the A dependence of the pQCD regime and estimated the magnitude of low momentum

o6
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exchange. Erler et al’s estimate of C,z(A) was 3/2 £ 1. Accounting for the prefactor,
this term contributes only a 0.65% uncertainty to Q5,. Erler et al. argued that a more
thorough analysis of C,z(A) could shift its central value but was unlikely to change the

error bars.

e(k) e(k) e(k) e(k)

Y § %Z z % %v
p(p) p(p) p(p) p(p)

FIG. 3.1: Diagrams for M, z.

Gorchtein and Horowitz [26] suggested the [0,z could be more thoroughly evaluated
using a dispersive analysis. Here, the important details to note are that [0,z depended
on the electron’s energy and its error bars were more than double those found by Erler
et al. This surprising result inspired a check of the dispersive analysis by Sibirtsev et
al. [27]. Their analytic expression for the dispersion relation was twice that of Gorchtein
and Horowitz. We performed a third examination of the dispersion relation [28] and agreed
with the expression found by Sibirtsev et al. Gorchtein et al. [29] reanalyzed their work
and now all three groups agree on the analytic form of [J,z. The details of the dispersive
analysis are described in Section 3.1.

The expression for [J,7 contains presently unmeasured proton structure functions,
F7 f 3(z, Q%). Models for these structure functions must be constructed in order to evaluate
O,z. Models for F7%(z,Q?) are presented in [27, 28, 29, 30]. Models for F3Z(z,Q?) are
found in [31, 32, 33]. Section 3.2 describes our model for the structure functions as well as

the models used by other groups. Section 3.3 presents the numerical evaluation of (I, .
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3.1 Dispersive Analysis of [1,;

3.1.1 Optical Theorem and the Evaluation of the Imaginary Term
of M,z

The Qweak experiment measured electrons scattered off a proton target that ex-
changed momentum Q? = 0.026 GeV2. By approximating this momentum exchange as
zero, the optical theorem can be invoked. If the initial and final states of an interaction

are the same, then the imaginary part of the amplitude is given by
1
Im Moo = 5 D " (27)*6“ (pa — pp) MasMoa. (3.2)
b

where subscript “a” labels identical initial and final states and subscript “b” indicates
intermediate states.

Invoking the optical theorem, the amplitude for the vZ exchange gives
1 [ ko —ig \*-1 -1
Im Mz = 5/ (27r)32E, [—(ie)’] (20080W @@ —- M2
X { Z a(k)v*(gv — gavs)u(ky, A)a(ks, A1)y u(k)
A1

X / d*ne'™(ps |Jz, (1) Iy (0)] ps)

+ Y a(k)y*ulks, A)alks, Ay (g% — g5vs)u(k)

A1

x [ dnem s |1,u(m) T2 0)|ps) }, (33)

where El and E) are the 3-momenta and energy of the intermediate electron.
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Rewriting the first line of Eq. (3.3) in terms of Gr, o, and ¢*> = —Q? gives

-2 a3k, 1
_\/-EGF) 47ra/ (@r)52E, p” (% N 1) . (3.4)

1
t Line = —
1st Line 2(

In the limit of a massless electron, the second and fourth lines of Eq. (3.3) yield

identical results. Summing over the intermediate spin \;, the electron contribution is

> ak)yy ulky, M)alks, M)v” (g5 —g57s)u(k) = 2(g% — (2X)g5)
A1

x (KEEY + KV k* — ky - kg™ — i(20)e* ®Phakip)

= (3.5)

where ) is the the helicity of the electron and %12 = +1.

We define the hadronic contribution to Eq. (3.3) as

/ d*ne" (ps |(Jzu(n) S (0) + Jyu(n) Iz, (0)) | ps) = 4nW 7. (3.6)

where

WILZ = [ (—g“,, + 2;‘%) F;’IZ(;L’, Q) + Z;u-p;};;yz(x, Qz)

- ieu,,‘,,.ﬁ—l:;’z(x, Qz)] : (3.7)
2p-q

F{’QZ 3(z, @?) are off-diagonal (yZ) structure functions. Little data exists for the vZ
structure functions at low momenta so they are modeled by modifying electromagnetic
structure functions F733(z, Q%) fitted to electromagnetic data. It should be noted that

the numerical differences between calculations of [,z are due to different models for

F;f‘22,3(x7 Qz)
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Combining Egs. (3.4), (3.5), and (3.6), we see that Eq. (3.3) becomes

1/-2 d3k; 1
ImM.,z = = (———-G >47ra/
vz 2 \/i F (27(')32E1 Q2 (% + 1)
x 2(g5 — (2A)g5) (KK + kYK — ky - kg — i(2X)e*Pkak1p)
<t (~gu + 22) F7%(0,QY) + B2 (2, @)

IV poz(y Q2)] (3.8)

— €uvor T
B 2p .

Evaluating the last two lines of Eq. (3.8) and substituting Q* = —¢° ~ 2k - k, gives

(gt — <2A>g;>cz2{ [F;Z(z, Q) + AR, Q‘*)]
— (NBF}%(s, Q”)}- (3.9)

2pk -k+p-k
where A = -L,ﬁ— 2p 25 and B = ’-’-—25%—1.
Substituting Eq. (3.9) into Eq. (3.8) and subtracting right- and left-handed electron

amplitudes gives

167 d*k
ImMyze—1/2 —ImMyz g2 = — \/—GF dno (27r)321E1

[ B8 AR . )

wr+1
. BFY*(z, Q%)

+ gv———-——% 5 } (3.10)
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3.1.2 Calculation of Im(J,z

Dividing Eq. (3.10) by lowest order Z exchange gives Im [, z:

Im Myz|a=-172 = Im Myzl521/2 5 10
w

ImO,z; =
i Mz|a=-1/2 — Mz|r=1/2

_ 2mdna / 3%, {F{’Z(x, Q) + AF}% (2, @)
v{,Lo (2m)32E, p-k (% + 1)
e Z 2
+ g_‘{_ BF:;.Y (va ) }vai,LO (3‘11)
9ap.-k (—13-%- + 1)

We desire to change the integration variables from k1 to Q? and W2. In the low mass

limit of the electron

d’ky _ 2mE%d(cosf)dE,

(2m)32E, ~  (2m)32E, (3.12)
In the center of mass frame the intermediate electron energy is
gom _ 3 =W
25
= 4By = ‘2%2' (3.13)

In the above expression, s = (p + k)2 is the Mandelstam variable. Q? in the center of

mass frame is

Q% =2k - ky = 2E°MECM (1 — cosh)
—dQ?

= d(COSH) = W

(3.14)
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Substituting these differentials into Eq. (3.12) gives

Pk 2n(EEM)?  —dQ? —dW?
(2r)32ECM ~ (27)32ECM 2ECMECM ") /5
dQ2dW?

= [2n)28E°M /5

(3.15)

Subsituting ECM = %”;, where M is the proton mass, gives

d3k, dQ2dw?

(2m)32ECM - (27)24(s — M?) (3.16)

Substituting these new differentials into Eq. (3.11) gives

@ dQ>dW* {FYZ(w,Qz)+AF;Z(x,Q2)

e =3 | G- ek 2 1
4

e ¥4 2
+gl’.w} (3,17)
9% 7‘% +1

In the lab frame p- k = 9:2M-2- Thus, Im [0,z is

s Qraz F”YZ : 2) 4 AF*/Z , 9
Im D’YZ(ELab) = 6#2)2 /‘;/2 (11,‘/'2‘/0 dQZ{ 1 (IE Q .)er n 12 (IE Q )

L 9 BR(z, Qz)}
e 2
9a %r +1
4

=ImOY;(Era) + Im O (ELa). (3.18)

where Q2,,, = Qﬁéﬂﬁ This limit is found by plugging cos@ = —1 into Eq. (3.14).
W? represents the square of the intermediate hadron mass of the diagram. The minimum
mass, W2 is the sum of the proton and a single pion mass and the maximum occurs when

all of the initial 4~-momenta squared, s, is converted into mass squared.
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The first term of Eq. (3.18) is labeled with a superscript “V” since it is associated
with vector hadronic structure functions. Similarly, the second term is labeled with an

“A” to indicate it contains the axial hadronic structure function.

3.1.3 Dispersion Relations for Red,z(ELq)

We convert the imaginary term of the vZ box to its real term via a dispersion relation
over incoming electron energy. The dispersion relation is constructed by evaluating a
contour integral in the energy plane. To perform this integral we must understand the
imaginary term’s behavior under negative energies.

Let us once again examine Egs. (3.5) and (3.6). A particle with a negative energy is

identified as its antiparticle with positive energy. For a positron, Eq. (3.5) evaluates to
Positron Line = 2(g% — (20)g%) (kiKY + k¥ k* — ky - kg™ + i(20)e***Pkakig).  (3.19)

The only difference compared to the electron line is the sign of the Levi-Civita. The
hadronic contribution remains the same for both electron and positron scattering. Com-
bining the positron and hadronic contributions gives Im M,z.a=_1/2 — Im M., z.3=1/2 for
positron scattering. Compared to Eq. (3.10), the positron amplitude difference has the
same sign for the terms proportional to F} Z and F] Z and the opposite sign for the term
proportional to Fy?Z,

To complete our analysis of the behavior of Im [,z (E) for negative energies, we must
also calculate M for positron scatterings:

2 .
_ —ig _
) e AV (9% — 9577 ) v v 1y o7 (g — G477 ) Up s

’iMZIpositron = ( q2 — M% T e

2 cos? Oy
(3.20)
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For electron scattering, y’uxx — (2)\)uk . Positron scattering yields the opposite
sign, Y vex = —(2\)vg 2.

Combining the positron results for Im M.,z and Mz gives us the behavior of Im 3.,z (E)
at negative energies. For the positron we see that terms proportional to F} Z and Fj Z have
opposite signs as that for electron scattering while the term proportional to ng has the
same sign. Thus, Im 0¥, (ELe) is an odd function while Im (04, (EL4) is an even function.

Re D,‘,’ 7 is given by the following dispersion relation:

’
dE Lab
72 2
ELab - ELab

v 2B [ vV
Re D—yZ(ELab) = - Im D’YZ(ELab)' (3.21)

g

where v, = (W2 - M?%)/2M.
Evaluating this triple integral in its present ordering is a time-consuming process.
Examining Eq. (3.18) we see that the energy dependent terms can be seperated from

those dependent on Q2 and W2. The vector part of Eq. (3.18) becomes

M2FYZ

Z
dw2 /Q?naz szF]’.Y - —Q_Q_EW —Mi1Q
0 1+ %

a 8 Q?naz F’YZ
- dW2/ dQ*——2——
2ME / 2 2
Lab Jw2 0 Q (1 + _A%g)
8 Qrznoz Z
+a / dw? / dQ? . K .
we o @ (1+&) W2 -m2+Q¥)

\4 = ——'g_ s
m Uz (Bras) = Garg 7 /wz

(3.22)

We see that the energy integral can be evaluated analytically if we change the order

of integration. In terms of generic functions, Eq. (3.21) is

3,0 2ME'+M? 2ME (15
FE)=)" / dE'g;(E, E') /W 2 dw? / ( )dQ2h,-(Q2,W2) (3.23)

i=1 /Vn 0
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where g;(E, E') represents the three different E’ integrands, h;(Q?, W?) are the three Q2
and W? integrands, and the “Lab” subscript has been dropped.

To slide the energy integral through the W2 integral we must change their integration
bounds. Solving the upper bound of the W? integral in terms of energy gives a lower
bound of E' = 125;4—“‘—3 Eq. (3.23) becomes

3 00 oo 2ME’(1-—M z:{E')
f(E)= E dW2/ dE'g;(E, E") dQ*h,(Q* W?). (3.24)
=1 w2 wi-m? 0
i=1 i 2

To slide the energy integral through the Q? integral, the bounds change yet again.
Solving the upper bound of the @2 integral in terms of energy gives a new lower bound of

Emin = gz (W? — M? + Q* + \/(W? — M2 + Q%)% + 4M>Q?)). Eq. (3.24) becomes

3 00 ) o0
fB)=>" / dw? / dQ?hi(Q?, W?) dE'g:(E, E"). (3.25)
t=1 W‘l? Y Emin
Solving for each of the energy integrals gives
= ! "o E_E_q_ / e dE’ 1
/Emin dE gl (E, E ) B n Emz'n E’,2 - E2 (2ME,)2
— 2Ea 1 1 IEmin —F |
= "M (E2Em,~n + 355 %8 ( E.mtB)) 3%
o 2Ea % dE’ 1
s AN =
‘Lmin dE g2(E, E ) B T Emin E,2 - E2 2ME’

_ 2Fa 1 |E2, — E?|
= 2M7rﬁl°g( E? ’ (327)

min
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00 2Ea _dE
2Ea 1 | Ein — E|
_ _2Ea 1, (1Emn— E]\ 2
7r 2Elg(Em,~,,+E) (3:28)

Substituting these integrals along with their respective h;(Q% W?) integrands into
Eq. (3.25) gives

FE
Re[Y,(E) = / dW? / sz[ (22M;127r (E2EIJ,,,,-,,

z M2F)?
+ L g ((1Bmin— Bl F* — wrabsgn
2E3 Emin+ E 14+ 1%27
z

OMr2E2 E,i;,m 1+ %)

_2Ee1 (‘Em""'E|) 7 ] (3.20)
2F Epimn+ E 2 2 2 _ A2 2y |’ '
min @ (1+8) W2 - M2+ Q?)
The dispersion relation for the axial contribution is
oo U 7
Rl (Brar) = 2 [ ket®Crer 1t (B, (3.30)

12 2
™ o, ELab ELab

Performing the same order of integration flips as the vector case, the axial dispersion

relation becomes

A 2 / 2 / 2 gv 1 | min Elz,abl
Rel1 ;(ELa) = @My aw dQ*a 15, log 28

min
_ M IOg ('Emin - ELabl) ] F?Z
Epap(W? — M2+ Q?) Enin + Erg 1+ %

(3.31)
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Notice that a and g{,/g% = 1 —4sin? 6y are placed inside the integrals. Like Blunden
et al. [31], we chose to consider the running values of o and the weak mixing angle since
the axial vZ box is sensitive to large Q2. It should also be noted that Eq. (3.31) reproduces

the original Marciano and Sirlin result in the Er 4, — 0, elastic limit.

3.2 Analysis of F 123(33 Q%

As previously mentioned, little data exists for the off-diagonal structure functions
FY f 3(z,@?%). At high momenta these structure functions can be constructed directly using
parton distribution functions. In the resonance region off-diagonal structure functions
must be modeled by modifying existing fits to F7'3 5(x, @*). We chose to modify these fits
using an SU(6) constituent quark model. Gorchtein et al. modified the electromagnetic
fits using photoproduction data from the Particle Data Group [2]. A third alternative is
to modify the fits using helicity amplitude fits from MAID [34].

3.2.1 Evaluation of Ff’zz (z, Q?)

Evaluation of Nonresonance Region

To evaluate the remaining double integrals it is necessary to patch together several
different fits for F7'Z and F7Z as each is only valid over a specific range of momenta. In our
analysis [28] we considered three regions of momenta (see Fig. 3.2). In the scaling region
(Q* > 5 GeV2and W > 2.5 GeV) we constructed the yZ structure functions directly using
CTEQ parton distribution functions [35]. The expression for the off-diagonal structure

functions in the scaling region is

F7%(z,Q%) = 22F%(2,Q%) = 2 ) _ 2e9%(a(z, Q%) + a(z, Q%)) (3.32)

2,9
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where g (§) are quark (antiquark) distributions for the proton. Roughly 3% of Re DX 2(E =
1.165 GeV) is from the CTEQ fit. Its contribution is so negligible that we did not perform

any uncertainty analysis for this term.

5
4t ) ¢))
> 3} :
S
B 2
| 3
T2 4 6 s 10
Q* (GeV?)

FIG. 3.2: Breakdown of our F;’:f fits. (1) is the scaling region. In region (2) we modify the fit
by Capella et al. [36]. (3) is the resonance region. We consider contributions outside of these
regions to be negligible.

In the region @? < 5 GeV? and W > 2.5 GeV we modified electromagnetic fits by
Capella et al. [36]. We wanted the Capella and CTEQ fits to smoothly connect at the
Q@? = 5 GeV? boundary. We settled on the modification

@ (F?
-FgZ|Capella = [5 GeV2 (Fzy‘y

—_ 1) + 1] -F;nlCapella- (333)

CTEQ,Q2=5 GeV?

The uncertainty for the Capella region was estimated to be

AFgZICGPCUG = (Fg‘leapella - FgZICapeua)lcp:s GeV2- (3.34)

Roughly 15% of the total uncertainty in Re Ell,’z (E = 1.165 GeV) is due to the Capella
fit. Fig. 3.3 shows the transition from the Capella to Cteq regions at W2 = 7 GeV2.

It should be noted that the elastic contribution of the vector vZ box was calculated
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in [37, 38]. It was found to be a factor of Q%~° smaller than the inelastic contributions.
This factor comes about for elastic collisions at the proton, Z boson vertex. Because the

contribution of the elastic collision is so small, we will not discuss it further.

0.12t
0.10
% 0.08

c

S o.06f ]
‘a 0.06

0;04 I \

Capella to Cteq
0.02} ]
W=7 GeV?
0.00 . :
[} 2 4 6 8
0 (GeV?)

FIG. 3.3: Transition from the Capella to Cteq regions at W? = 7 GeV2., Without the modifi-
cation, the Capella et al. fit lies roughly on the upper uncertainty bound at the Q® = 5 GeV?
transition.

Evaluation of Resonance Region

For the resonance region (Q? < 8 GeV? and W < 2.5 GeV) we modified the Christy
and Bosted electromagnetic fit [39]. Their F77, or, and o fits sum a smooth background
with the contributions from seven resonances: P33(1232), S11(1535), D;3(1520), Fi5(1680),
S511(1650), Pi1(1440), and F3;(1950). Their description and computer code for their fit
allowed us to separately modify the resonances and the background. For the resonances,

our goal was to find prefactors for the summation

F? = " Cres X F{|res (3.35)

res
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such that

Fw;yZ

Cres = _FTY- . (336)

Following the normalization of the Particle Data Group [2], the resonant parts of these
structure functions can be expressed as a product of the polarization vector,

et = 1/+/2(0, -1, —i,0), and hadronic tensors:

Z *
e )’ = e WZJ(WZ)

N-res

=(2) Z/d4zeiqz<N, s|et - JTEV)(z)|res, A)
Y

X (res, A|e+ . J"(O)|N, s)
= 424943, (3.37)

where A and s are the spin projections of the resonance and nucleon, respectively, and v
(Z,V) is the electromagnetic (neutral vector) current. The couplings have been absorbed
into the currents. The factor of 2 is present in yZ-exchange to account for the different
orderings.
The corrective prefactor can be expressed in terms of helicity amplitudes,
23, AJAY

Crea " mz—— (338)

The above amplitudes can be evaluated by considering ¢, - J as a quark operator
embedded between SU(6) wave function representations of the nucleon and resonances [40].
This operator ignores the spatial wave functions, 1, and acts only on the flavor, ¢, and
spin, x, wave functions. Table 3.1 summarizes the multiplet and SU(6) wave function for

each resonance.



TABLE 3.1: Resonances and their multiplets. (A)S indicates an (anti)symmetric wave functions
while M,(A)S indicates a wave function with two elements that are (anti)symmetric.

Resonance Multiplet
Proton |28, 56> 7"‘/)L—0 Lz=0 (d’ XSz—:h1/2 + ¢ st :!:1/2)
P33(1232) |10, 56)

28,70) =5, _ (JJz|LLz,S5Sz)
511(1535) I Jz=5z+Lz ’

Xz ["pLLz (¢MS il ¢M’AXSZ ) + 'QbLLz (¢MS MA L ¢MA g;s) ]
D13(1520)  |28,70)
F15(1680) |28, 56)
511(1650)  |8,70) = 71§¢f=0,1,z=o (6M5X3,—s1/2 + ¢M’Ax§z=ﬂ/z)
P;,(1440)  |*8,56)
F37(1950) |10, 56)

TABLE 3.2: Spin and flavor wave functions. For Sz = —1/2, 1+ and the sign switches for
the mixed symmetric and symmetric wave functions.

Flavor Wave Functions Spin Wave Functions
P15 =~ T ((ud + duyu— 2wnd) Xy = —J(FL + 1) T ~2 1)

¢M’A = VIE(U'd - du)u X+1/2 = T(TJr JrT) t

Xo1je = o1+ 1+ 111)
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Because the colorless portion of the total hadronic wave function is symmetric, we
are free to operate only on their third components of ¢ and x and multiply the result by

three. The amplitude can be expressed as

<7‘es, /\|e+-J7(Z’V)|N, S> =3 X 6513) (9;1/(3))

X <¢res¢reaxl\lﬂ(k’, A’)€+ ) 'Yu(k’ 3’) I"/’N¢NX3>’ (339)

where k (k') and s’ (\’) are the initial (final) momentum and spin projection for the struck
quark. The superscript “3” over the quark electromagnetic and weak vector couplings, e,
and g¥,, indicates that the operators are acting only on the third quark.

Using unit normalized quark spinors,

V 2myg 2P ¢
2mg >3

and choosing a frame where the gauge boson is propagating in the z-direction, the current

reduces to

—r10 V! ’ \/§
u(k , A )€+ . 7u(k, $ ) = m{j\, [P+ + qu+]§3/, (341)
q

where m, is the constituent quark mass, Py = k; + ika, S4 = 1/2(0y + i03), ¢, is the
momentum of the boson, and &, are the usual two spinors. The Wigner-Eckart theorem
allows us to calculate a matrix element of P, as a constant times a matrix element of L.

After absorbing the spatial and momentum information, as well as the quark mass
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coefficient, into parameters A and B, Eq. (3.37) becomes

Flry('rz) I -

N—ores

3% ega) (293/(3)) <¢N¢NX8|[AL+ + BS+]1 l¢rcs¢resX,\)
x 36 (Yresbresa|[AL+ + BS4]|[¥ndnxs)

= (2)A9. (3.42)

To calculate these amplitudes we operated the Hamiltonian on the SU(6) spatial (v),
flavor (@), and spin (x) wave functions of protons and resonances described by Close [40].

As examples, inserting the Hamiltonian into the proton to D;3(1520) helicity amplitudes

gives
AZ‘(=ZI)/2 =3 X 6513) (g?,(s)) (¢res¢resX+1/2‘[AL+ + BS+] W}N¢NX3>
1 u
=% ( — Ao [eu(g¥) — ea(9¥)]
5 u 1 4
~V2Byg '3-€u(gv) + §e¢gv) ) (3.43)
and

A}-(:g)/z =3 X 6513) (ng(a)) (¢rea¢reax+3/2 | [AL+ + BS+] I¢N¢NX3>

= —%Am EXCARIICAIR (3.44)

where A is the spin projection of the resonance along the direction of the gauge boson
momentum. The subscripts of A;p and Bjg indicate the angular momentum dependence
of the resonance’s wave function.

Obtaining A;o and B;o without relying on hadronic wave functions requires addi-
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tional phenomenological information. Data for both of the D;3(1520) and F5(1680) res-
onances [41, 42] show that A7, dominates photoproduction whereas A),, dominates at
high Q2. Thus, the polarization ratio

_ |A’1Y/2|2 - |A:'~Z/2|2
'A’{/zlz + |A‘.‘57/2'2

A (3.45)

is close to —1 for photoproduction, and evolves to +1 at higher Q?. The expressions for

D13(1520) at low Q? yield
A10(Q? = 0) = —v2B14(Q? = 0). (3.46)

Since A'l’/2 is expected to dominate by a power of @? at high Q?, a form with the correct

limits is

Aw(@) _ N 1
Buo(@) ~ V@) = Vi (347)
This leads to
1 2
_GE-f)A-fi)+3fi LO
CD13 - (1 _ f1)2 + 3f]? w (348)
A similar analysis gives
2(1 —
Crp = ~30 ) | gpio (3.49)

(11— f2)2+2f}

We used A? = AZ = 0.2 GeV? [28]. These values were chosen by comparing our fits
constructed using Close’s analysis with MAID fits [34] to transition amplitudes. Better
agreement can be obtained by setting A = 0.256 GeV? and A2 = 0.635 GeV? (see Fig. 3.4),
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and while this more thorough analysis lowers the overall Re D},’ » result, it does not do so

by more than half a percent.

, . —rm =
es 0.5} ] T osl / ]
x x 5
T x
S g
~
S oo ] £ o0
E 8
x x
I £ =1(1+0AD L fo=1(1+QPAD)
§ -0.5 ) ) S -o0s V
3 Red: A?20.256 GeV' 3 - Red: A2=0.635 GeV?
Blue: A?=0.2 GeV? Blue: A3=0.2 GeV?
i . , . R " — 1.0t \ . . \ R
00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14
@ (GeV?) @ (GeV?)

FIG. 3.4: Left: MAID helicity amplitude ratio (black curve) compared with the quark model fit
with different A? values for Dq3. Right: MAID helicity amplitude ratio (black curve) compared
with the quark model fit with different A2 values for Fis.

Table 3.3 summarizes the prefactors for each resonance in the Christy and Bosted fit.
The prefactor for the Roper resonance is easily calculated and is @*independent. The
two Sj; states belong to the same SU(6) multiplet as the D;3(1520), so A and Bjg are
the same for all three states, for valid SU(6) symmetry. The S;; states can mix. The
Moorhouse selection rule [43] indicates that the unmixed vp amplitude for the Si;(1650)
is zero when the values of the quark charges are inserted. Neglecting also the amplitude
for the Z-boson case, the amplitude listed for the S;;(1535) gives a ratio

1+2A

_ ,LO
S — 1 + 2f1 + pr . (3-50)

In electroproduction, S;;1(1650) occurs because of mixing with the bare S;;(1535), and the
above ratio is the same for both the S;;’s.
Cres for I = 3/2 resonances are calculated by considering only the AI = 1 portion of

the current. This term is proportional to (e, — e4). By substituting vector charges, Cies
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for I = 3/2 resonances is found to be (1 + Q5%°).

The Christy-Bosted fit lies within 3% of nearly all data points. Our modifications
to the resonances undoubtedly increase this uncertainty and we estimated it to be 10%.
The uncertainty of the resonances contributes roughly 30% to the total uncertainty of
ReOY,(E = 1.165 GeV).

The Christy-Bosted fit also accounts for a smooth background. To model the vZ-
box background we considered two limiting cases. In the low z limit, the light quark

distributions are expected to be equal and the corrective coefficient is

Zq:u,d,s 2qu€/fq ((E)

_ _ ,LO
Cbkgdlzﬁo - Zq=u’d,s (eq)zfq(m) 1 + QPW . (3.51)

In the limit where there are only valence quarks

Dog=uud 2y fo(z) 2
C en = Rkt == 'LO- 3.52
otlolencs e =27 Tl fa(@) 3 W (352

We used these limits as the error bounds and their average as the background correction.
The background limits were used as uncertainty bounds. A little over half of the total
uncertainty in Re Y, (E = 1.165 GeV) is due to this background uncertainty.
F]" is related to F7" by

Q? ( UL) |3
F'=""(14+—) —5=. 3.53
> " pg or) 1+ % (3.33)

We substituted F7Z into the above expression to obtain Fy?. We also assumed the modi-

fications were the same for both the transverse and longitudinal cross sections.



TABLE 3.3: The seven Christy-Bosted resonances along with their electromagnetic helicity
amplitudes along and corresponding corrective prefactors for the proton. The (pZ — Ny)

helicity amplitudes are calculated by substituting e, — g, = T — 2e,sin%0w (0).

resonance proton electroproduction amplitudes C?,,
Py3(1232)  A]j, (€4 — €4) 1+Q%°
= 2410(ey — €4) 3+2f
059 s IR
Al (Aio(ew — €a)
/2= 7' 10{ €y d 2
(1-£)(1/3—f1)+3f] ,LO
Dis(1520)  +v2Buo(3eu + ded)) G-fomerr T QW
A3/2 TAIO (Cu - ed)
Fi5(1680 A S,
15(1680) \/'3' Bao ( ~ Leg) G-y T @
A3/2 TA20 (26-“ + ed)
S11(1650) A'I/z = - %Bm (ex + 2€4) 113:;?11 + Qp
Pyy(1440) A7, = Boo (3eu — Leq) 2/3 + Qu°
F37(1950) A7, « (ew — €4) 1+ Qe

77
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3.2.2 Alternative Modification of F}(z, Q%) — F{7(z,Q?)

The transition amplitudes for C,., can be modeled using a different technique. The
vector contribution to the Z-boson transition amplitudes can be isospin rotated into a sum
of electromagnetic transition amplitudes, py — N; and ny — N,;. This type of analysis
was used by Gorchtein et al. [29].

Neglecting strange quark contributions, the transition amplitudes are
(N3177%V)|p) = eu(g¥)( Ny layuulp) + ea(g¥) (Ny|dv.dip) (3.54)
and
(NylTIn) = eu(Ny|@yuuln) + ea(N;|dvy,din). (3.55)
After performing an isopin rotation the neutron amplitude becomes
(NalT1n) = eu(Ny|dvudlp) + eal{N, |G@vuulp). (3.56)
Further algebra on these amplitudes reveals
(N3 Ip) = (1 ~ 4sin6w (0)) (V| ]Ip) — 5 (N3l . (357)

Cres can now be written as

£, A1AZ?
243"

Lo 2 APAY"
= Qb —FAlA A 3.58
v oa(AYP)? (3.58)

Cre.s =2
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({99 ]

where superscripts “p” and “n” indicate proton and neutron amplitudes, respectively.
Gorchtein et al. [29] constructed their corrective ratios using photoproduction ampli-
tudes listed in the Particle Data Group [2] to modify the resonance contributions of the
Christy-Bosted fit [39]. Thus, their C,., expressions lack Q?-dependence. To account for
the amplitudes’ Q2-dependence, resonance amplitude fits from MAID [34] can be used.
Gorchtein et al. [29] disregarded the background of the Christy-Bosted fit and instead
modified two Generalized Vector Dominance (GVD) models. Their Model I is based on
the color dipole model of Cvetic et al. [44]. In this model a photon fluctuates into a
g — ¢ pair which interacts with the proton through gluon exchange. Their fit’'s parameters
are constrained by data and are valid for low @QZ?, high energy scattering. Gorchtein
et al. isospin rotate this model to apply it to the vZ case. Their Model II is based
on the generalized vector meson model of Alwall and Ingelman [45]. In this model the
photon couples to the proton via vector meson intermediaries, given by p, w, and ¢ as
well as a background. It is valid for low Q?, high energy scattering. As with the Model I
modifications, the vector meson model is extrapolated to low energy and isospin rotated
for the vZ case. Fig. 3.5 compares the F77(z, Q?) and F7Z(z, Q?) models obtained from

our constituent quark model and Gorchtein et al.’s two models.

0.5 . . . . : . , 05
04 (*=1.1GeV? . 04  0*=1.1GeV?
-~ 0.3} < 0.
(N g 03
X X
& 0.2f Black=CQM 1S 0.2 Black=CQM
oil Red=Mod I o1 Red=Mod 1
Blue=Mod II Blue=Mod I
0. n A i X A s i i n i
Qo 17 14 Is 15 20 22 23 9612 T 16 18 20 22 24
W (GeV) W (GeV)

FIG. 3.5: Comparison of F7"(z,Q?) and FyZ(z,Q?) obtained from our constituent quark model
and Gorchtein et al.’s fits.
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3.2.3 Evaluation of Fj%(z, Q?)

Blunden et al. [31] split their Re(J#, analysis into elastic (W? = M?), resonance
(W2 < W? < 4 GeV?), and deep inelastic scaling (W? > 4 GeV?) regions. To allow for
an easier comparison between our analysis and theirs, we used the same energy regions in

our evaluation of Re (14, (see Fig. 3.6).

H(2) (1)

|73

W (GeV)
)

i 3

0 2 4 6 8 10
0 (GeV?)
FIG. 3.6: Breakdown of our Fg’z fits. (1) is the scaling region. In region (2) we modify the

scaling region fit. (3) is the resonance region. We consider contributions outside of these regions
to be negligible.

The average Q° value within the Re (0}, integral is about 0.4 GeVZ. In contrast, the
average Q? value within the Re 0%, integral is about 80 GeV?. Thus, the axial contribution
to the 7Z-box diagram is less sensitive to the modifications of the structure functions in
the resonance region. It is still important to construct as accurate a model as possible.
Since the axial box integral is sensitive to high Q2, we follow the example of Bunden et al.

and evaluate the integral using one loop running values of a(Q?) and sin® 6 (Q?).
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Evaluation of Nonresonance Region

In the scaling region, (W? > 4 GeV2 and Q? > 1 GeV?), FJ'Z can be directly calculated

using parton distribution functions
F72(2,Q%) = ) 2e49% (2=, @) — 2(=, @) - (3.59)
q

Blunden et al. use PDFs from [46]. As with our vector analysis, we use PDF's given by
CTEQ [35]. To be conservative, we estimated a 10% uncertainty in the PDFs.
In the region (W2 > 4 GeV? and Q% < 1 GeV?) we use Blunden et al.’s Model I:

1+ A?/Q2

F%(z, Q%) = (m

)Fs’zov, Q2) (3.60)

where Q2 = 1 GeV? and A? = 0.7 GeV>.

We also estimated an uncertainty of 10% for this modification. Roughly 74% of the
total uncertainty of Re 04,(E = 1.165 GeV) is due to the scaling region while only 3% is
due to Model 1.

For the elastic contribution we exactly follow the technique used by Blunden et al.

For elastic interactions, the structure function reduces to a form factor,
Q) = -Q°GH(@)G5(@)s(W*? — M?) (3.61)

where Gf; and G4 and magnetic and axial vector form factors for the proton. G%, is pa-

rameterized by [47]. Like Blunden et al., we also use G4(Q?) = —1.267/(1+@?/1 GeV?)2,
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Evaluation of Resonance Region

The most significant departure from the Blunden et al. analysis is in the resonance
region. In this region Blunden et al. constructed F;’Z using axial current parameters
of Lalakulich et al. [48]. Lalakulich et al. obtained their parameters through a PCAC
analysis of pionic decays of baryons. Their fit accounts for four resonances but makes
no attempt at estimating a smooth background, defering the determination of its form to
future experiments. As an aside, Lattice QCD calculations have reached a sufficient level
of accuracy to calculate axial form factors [49, 50].

Instead of repeating the Blunden et al. resonance region analysis, we constructed Fy z
by once again modifying the Christy-Bosted fit. Not only does this modification provide
a smooth background, it also accounts for three more resonances. In our analysis of the
resonance region we repeated the technique outlined in Sec. 3.2.1. In the non-relativistic

limit, k] << my, the axial currents becomes
a(k', Xey - yysu(k, s') = V2£},8:€y. (3.62)
Continuing the use of the parameters in Sec. 3.2.1, F Z can be expressed as

2

N-—ires
2

2
3 (2934(3)) '&Z <¢N¢NX3 | [ ;nq BS+]Jr ’¢res¢resXA>

X 361(13) <wrea¢rest\l[AL+ + BS+”¢N¢NX3>: (363)

where v is the energy of the exchanged boson. For our calculation we took the mass of the
struck quark m, to be 0.3 GeV. Table 3.4 summarizes the corrective prefactors to obtain

F7?. As with the corrective prefactors for Fff , we estimated a 10% uncertainty for this
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modification.
The smooth background is once again modified by taking the low z and valence quark

limits. For low z, a quark and anti-quark are equally likely to be struck. Thus,

Cbk d| 0= Zq=u,d,s zqugifq (x) _
z—=0 = =
! % Zq:u,d,s (eq)2fq(a:)

0. (3.64)

In the limit where valence quarks are equally likely to be struck

Chigalval o = 2g=uwd 26e9afe() _ 10
g ence quar. % Zq:u,u,d(eq)z fq (:B) 3

(3.65)

We took their average as the modification for the smooth background. The limits were
taken as the uncertainty bounds. About 23% of the total uncertainty of Re(04,(E =

1.165 GeV) is due to the resonance region.

3.3 Rell,z(F) Results

3.3.1 Evaluation of Re(0Y,(E)

Fig. 3.7 shows Re D}y/Z calculated using the constituent quark model corrections to the
Christy-Bosted fit. With the modified f; and f, parameters, the value at the Qweak energy
is ReOY;(E = 1.165 GeV) = 0.0056 - 0.00075. To be conservative, the uncertainties were
added directly rather than in quadrature. The figure also splits up the contributions from
the resonant and nonresonant regions. At the Qweak energy, roughly 77% of the box
contribution comes from the modified Christy-Bosted electromagnetic fits, 19% is from
the modified Capella et al. fit, and the remaining 3% is from CTEQ.

It is necessary to explain why our paper [28] reports Re DXZ(E = 1.165 GeV) =
0.0057+0.0009. Modified f; and f, values are not the dominant source of the discrepancy.



TABLE 3.4: The seven Christy-Bosted resonances along with their axial helicity amplitudes and
corrective prefactors for proton. The neutron amplitude is calculated by exchanging g% « g%.

resonance proton axial current amplitudes  CF,,
Pi(1232) Ajj; o (9% — 94) 3% 274~
Su(1535) Afj; = —ZBuo (394 +398) T s
AT = [IBi Ges+ 3 g e
Dia(1520) Alz/,i =0 oBio (303 + 39) 53 G d
3/2 =
Az = \/5320 94 — 39%) ¥ (1=fs) _20mqv
F15(1680) Alz/,i —0 5B (5 $94) % TR 3
3/2 —
S1(1650) AZs = —\/ZBuo (g% +260%) T sy n
Pyu(1440) A7 = Boo (39% — 594) T3 E
Fyr(1950) A7 o (9 — 04)*5* 27

'H
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My advisor calculated Re(0Y,(E = 1.165 GeV) = 0.0058 + 0.00075. We averaged our
results together and increased the error bar.

Fig. 3.8 compares the predictions of various resonance modifications. Better agree-
ment between MAID and the quark model was naively expected as the MAID fits were used
to parameterize A?,. The overall smaller value for Re D,‘,/’Z calculated by MAID is almost
entirely due to the Roper resonance. For the Roper, the quark model calculates a con-
stant corrective ratio while the MAID ratio rapidly approaches Q”“’,LO as Q? increases. The
differences in the Roper resonance corrective ratios between the constituent quark model
and MAID were also the primary cause for the different deuteron asymmetry predictions
in [51].

Another notable feature of Fig. 3.8 is that Re DX ~ hardly changes when the corrective
ratios are calculated using PDG photoproduction amplitudes in place of the Q2-dependent
quark model. Re DXZ calculated using the quark model also remains relatively unchanged
when using different values for A?, values. Both features are due to low Q? values domi-
nating the integral. Indeed, an analysis of the integral indicates that the mean Q? value is
0.4 GeV2. In applications with higher Q2, such as the calculation of the deuteron asymme-
try in [51], the quark model and photoproduction corrective prefactors give quite different
values.

Since the Particle Data Group corrections to the resonances vary little from the con-
stituent quark model, the bulk of the Gorchtein et al. model differences are due to their
background modifications.

Table 3.5 displays the numerical results for the vector contribution of [J,z calculated
by each group. Hall et al. [30] recently published an updated vector calculation and argue

that that Gorchtein et al. background uncertainty was overestimated.
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FIG. 3.7: Re D,‘Y’ z 88 a function of incoming electron energy for our constituent quark model.
The black curve is the total result. The blue, dot dashed curve is the contribution from the
nonresonant background while the red dashed curve is the resonant contribution. The pink
band is the sum of the uncertainties from the resonant and nonresonant contributions.
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FIG. 3.8: ReD¥ z 8s a function of incoming electron energy for different models. The black
curve is the result from our previous work and uses helicity amplitudes given by the constituent
quark model. The blue, dot dashed curve is the result with resonance corrections from photo-
production data of the Particle Data Group. The red dashed curve is the result when MAID
helicity amplitudes are used for the resonance corrections. The green dashed curve also involves
MAID helicity amplitudes, with the notable exception that the Roper correction is from our
constituent quark model. Both the quark model and MAID models use the same modifications
for isospin 3/2 resonances and the smooth background.

87



88

TABLE 3.5: Re(0Y,; x 10% evaluated at E = 1.165 GeV.

Sibirtsev et al. [27] 4.7754
Rislow and Carlson [28] 5.7+ 0.9
Gorchtein et al. [29] 54+£2.0
Hall et al. [30] 5.60 £ 0.36

TABLE 3.6: Re[04, x 10° evaluated at E = 1.165 GeV.

Blunden et al. [31] 37104
Rislow and Carlson [33] 4.0+ 0.5

3.3.2 Evaluation of ReDi}Z(E)

Fig. 3.10 displays the result for Re(),. The value at the Qweak energy is Re (0, (E =
1.165 GeV) = 0.0040 &+ 0.0005. The uncertainties were added directly rather than in
quadrature. Fig. 3.9 splits up the contributions from the resonance, elastic, and Model I
regions. At the Qweak energy, roughly 90% of the box contribution comes from the scaling
region, 4% is from the modified Christy Bosted fit, 4% is from Model I, and only 1% from
the elastic. Fig. 3.10 displays the axial box as well as the sum of the axial and vector
boxes. The uncertainties are added directly.

Table 3.6 displays the numerical results for the axial contribution of [,z calculated
by each group. There is much better agreement for the axial box because its evaluation is
less sensitive to resonance region structure function models.

To one loop order, @}, =~ 0.07. A 4% measurement of this value has an error budget

of about 0.0028. Our constituent quark model yields the total

ReO,z(E = 1.165 GeV)|iotar = (9.5 £ 1.3) x 1073, (3.66)
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FIG. 3.9: Elastic (blue), resonance (red dashed), and model I (black dot dashed) contributions

to the axial box.
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FIG. 3.10: The axial box. We also add the axial and vector boxes to obtain the total box.
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At 0.0013, the direct sum of the uncertainties for our axial and vector boxes respects
the allotted error budget.
The total vZ box value from Blunden et al. {31] is

Re(l,z(E = 1.165 GeV)|tota = (8.4%5¢) x 1072, (3.67)

These two calculations are in agreement within uncertainties. Each calculation also
has error bounds below the error budget of the Qweak experiment.

The question remains which calculations the Qweak collaboration should use in their
analysis. The disagreement between the various calculations is largely due to the treatment
of the vZ structure functions in the resonance region. We believe the collaboration will
be equally well-served by either Re D:‘Y*Z calculation. Re D:‘Y‘Z is not very sensitive to the
resonance region modifications since its integrals get much of their support from high Q2.
F} Z in the scaling region can be constructed using fits to parton distribution data.

Which Re[}, calculation to use is more open to debate. The vector integrals receive
much of their support from the resonance region and are thus sensitive to the modification
F} = F} Z In Sec. 3.2.2 we showed that there is little difference between modifying the
Christy-Bosted resonance fits using our constituent quark model [28] or photoproduction
amplitudes from the Particle Data Group (as in [29]). Differences arise between [28] and
[29] because of the treatments of the resonance region background. We continue modifying
the Christy-Bosted background fit while Gorchtein et al. modify two GVD fits to low
@?, high W? data and extrapolate them down to the resonance region. We believe our
modification is more satsifactory since it does not involve any extrapolations. We cannot
comment on the vector calculation of [27] since they provide few details of their model. It
is our understanding that they are currently working on improving their calculation.

Without constraints from experimental data, it is impossible to make a definitive
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statement on which vZ structure function model is the most valid. All of the various fits
give very similar results for the Qweak kinematics. A question remains of the models’
robustness at different kinematics. Do the yZ structure function models yield similar
predictions for different experimental conditions? This question will be addressed in the

next chapter.



CHAPTER 4

Experimental Determination of

Z
F17,2,3(5L’7 Q%)

It is hoped that one day the models for F;’f 3(z,@?) can be replaced in favor of fits
to experimental data (I also share this hope despite the fact such fits will nullify much of
my graduate research). The present data are insufficient to construct fits, but can be used
as a first test of the robustness of competing F{’f 3(z, Q%) models at kinematics different
than the Qweak experiment. In this chapter we present the model predictions for two
present experiments. In Sec. 4.1 we derive and calculate the asymmetry for the PVDIS
experiment at Jefferson Lab [4]. In Sec. 4.2 we calculate the asymmetry for the final days of
the Qweak experimental run. During the last days of Qweak the electron beam kinematics

were changed to test the competing Fy f 3(z, @%) models.
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4.1 PVDIS Test of F{7,(z,Q?

The PVDIS experiment at JLAB [4] measured the parity-violating asymmetry of
electron scattering off a deuteron target. The kinematics were chosen to probe 2C5, — Caq.
At tree level these parameters are defined as
sin? Oy

Cru = 2959y = —5 +

sin2 0w

Cu= 29519{1/ =

Wi Wl

Czu = 2g€,g",§ = —'5 + 2sin2 0W

1 :
Coq = 2¢%9% = 5~ 2sin? Oy (4.1)

The PVDIS proposal [4] stated that two kinematics would be examined: @Q? = 1.1 and
1.9 GeV? at £ ~ 0.3. We were particularly interested in this experiment since a) the
asymmetry can also be expressed as a sum of F{’f 3(z,Q?) and b) the kinematics would

allow a first test of the validity of the different F;" f 3(z, @?) models in the resonance region.

4.1.1 Derivation of PVDIS Asymmetry

The equation for the scattering asymmetry is

Or— 0L

4.2
Or + 0L ( )

Apvprs =

where once again o (g) is the cross section for left (right) polarized electrons (for reasons
unknown, publications for PVDIS and Qweak tend to choose opposite sign conventions for

their asymmetries). Since o is proportional to the modulus squared of the amplitude, the



95

dominant terms of the tree level asymmetry can be rewritten as

(MEMz + M MB)amryz — (MEMz + MM 5=1/2
Apvpis = IYRE : (4.3)

In Chap. 3, we proceeded to evaluate the tree level asymmetry by canceling a factor
of M,,. For this application we are interested in the off-diagonal structure functions at
tree level and we will analyze the numerator and denominator as expressed in Eq. (4.3).

To evaluate the numerator we return to our vZ box analysis. Our study of the vZ box
began with the optical theorem. Removing the integral and factor of 1/2 from Eq. (3.3)

returns the numerator multiplied by a -function,

/ 2 1
(MIMz + M M) (2m) 64k +p— Ky — p') = (—WGF) 4ma;—(%

x 8(gf — (2/\)92)Q2{[P?Z(w, Q)

+ AF}%(2,Q%) — (2N)BF% (s, Q?)}. (4.4)

where A = %%‘-;1_’;1‘- - -2%, B = 1’—'—'52*7;%, and k; is the final momentum of the electron.
Performing the substitutions z = Q?/(2p-q) and y = p - ¢/p - k the above expression

becomes

2 1
V2 Q* (8 +1)
< 8r(s} - (e { @ F (2. @)

(MIMz + M ME)2r) 4 (k+p— Ky — D) = ( GF) dra

2 2
(2 C ) e

zy? Ty

(3 -3 )R cz‘*’)}. (45)



96

To account for the introduction of a d-function in the numerator of Eq. (4.3) we also

multiply the denominator by the same,

(4ra)?
ot
x (KERY + KokM — ky - kg™ — i(20) Bk k15)

X 47r[ (—g,,,, + g(ﬂl-g—") ' (z,Q%) + %Fg"(ﬁ, Q?)

M, 2(2n)*64 (k +p — k1 — p) =

. q°’p’
— €uvor % -q F;;W (x7 Qz)]

.

(4ma)?
= 87 o
2 2
(4.6)
Substituting Eqs.(4.5) and (4.6) into Eq. (4.3) gives
A _ GFM% Q2 e
PVDIS = ona Q? + M2 9a
y? F7%(z,Q%) + (1 ~y- %;”3) F%(z,QY) + % (y - ’4}) 2F7%(z, Q%)

X . (4.7)

22 (z, Q%) + (1 _y- M—Q-;L) F(z, Q%)

The above expression indicates that the PVDIS asymmetry can be used as a first
test of the validity of off-diagonal structure function models. Note that for the PVDIS
kinematics, the third term multiplying FyZ is small.

To complete the derivation of primary interest to the experimentalists, the structure
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functions are rewritten in terms of parton distribution functions. For large x,

1
% = EFQ Zquv(q +4),
1
5‘ =3 Z ez(q+q),

7= 2e9%a-2) (4.8)

F =

where ¢ () are quark (antiquark) parton distributions for the proton. For the neutron,
un, =dand d, = u

In the light quark limit, the off-diagonal structure functions for the deuteron are

1 2 — 1 7 1 8 s
F* = —F}" = 200 (u+8) — 30} (d + d) — 393(s +3)

2 - 1 _ 1 _
+ '59\1?(05 +d) — 595(“ + 1) — 59"’}(3 + 3),

" = -Z-IEF‘;” = -;—[g(u+ﬁ) + %(dwi) + %(s+§)
4,0 - 1, 1,
+ §(d+d)+ §(u+u) + §(s+s)J,
2 1 ;
R =2|308-0) - a4~ )| (4.9)

Substituting for the off-diagonal structure functions and dropping the third prefactor
of FJ%, Eq. (4.7) becomes

GrMZ @? 1
W@t M st - a3

Apyprs = '
(u+a+d+d)+ g(s+§)]

<aiaf 0+ -0 (Bt - gt )t a+a+d - Sapts -9

+ 80— -9 (e - 3ot )+ a0} (4.10)
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where the subscript “v” indicates the distribution of valence quarks.

Defining,

1-(1-y)?
Y"1+«1—ww

. 2(s+3)
T ut+a+d+d

_ uytdy
T u+a+d+d

(4.11)

and substituting C) ; parameters into Eq. (4.10) yields

A =3 GrMz @
PVDIS ovona OF + M%
2C1, — C1d(1 + Rs) + Y(2Czu _ ng)Ru
X )
5+ R,

(4.12)

4.1.2 Asymmetry Predictions from different vZ Structure Func-

tion Models

In our paper [51] we calculated the PVDIS asymmetry based on the kinematics in the
experimental proposal [4]. Since our structure function models for the Qweak experiment
were for protons, we made predictions for both the PVDIS experiment and a hypothetical
proton scattering experiment with identical kinematics.

In fact, the PVDIS experiment took data at four kinematics [52]. The measurements
were published a year after our paper. We present both our paper’s results and new
predictions for the actual PVDIS measurements. Qur paper’s results are still revelant
because they demonstrate how the structure function models evolve as a function of W.

As previously discussed, all models for the proton’s F{’f 3(z, Q%) in the resonance

region are rooted in the Christy-Bosted fit to electromagnetic data [39]. We chose to modify
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their fit using amplitudes constructed by the constituent quark model. Alternatively, these
amplitudes could be constructed using fits from MAID [34]. Gorchtein et al. [29] used
photoproduction data from the Particle Data Group [2].

Fig. 4.1 displays the proton asymmetry predictions of the various Fy f 4(z, @?) models.
Uncertainties were estimated for the constituent quark and MAID models following the
error discussion of Chap. 3. The pink band indicates the uncertainty due to the resonances
of the Christy-Bosted fit. The gray band indicates the uncertainty due to the background
modifications.

We do not estimate the uncertainty in the two models of Gorchtein et al. They aver-
aged their two models together and used them as extrema for their uncertainty estimate.

One thing to note in the MAID fit is that much of the disagreement with the con-
stituent quark model lies with the Roper fit. Fig. 4.2 shows the MAID fit for all resonances
except the Roper. The Roper modification in this case is due to the constituent quark
model. With this change the MAID and constituent quark model predictions are in better
agreement.

The reason for the Roper discrepancy is the modifications’ behavior as a function
of @2. The MAID modification for the Roper resonance features a sign change in the
helicity amplitude at around Q% = 2/3 GeV?2. As it happens, the constituent quark model
modification to the Roper resonance is Q2 independent.

Bosted and Christy also have fits for electromagnetic deuteron data [53). This fit
contains contributions from the same resonances as their proton fit. As with the proton,

we sought a corrective factor,

F?Zld = Z Cres X F;Y‘Yld,rea (413)

€8s
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FIG. 4.1: Normalized proton asymmetry for Q? = 1.1 GeV? and 1.9 GeV? as a function
of W. The top panel displays the predictions from several different off-diagonal structure
function models. The solid line indicates the prediction of a constituent quark modification
to the Christy-Bosted electromagnetic fits. The red, dashed and blue, dot-dashed curves are
models used by Gorchtein et al. The green, dotted curve is the modification of the Christy-
Bosted fits using MAID resonance helicity amplitudes. The middle and bottom panels are the
constituent quark model and MAID fits, respectively, with uncertainty limits. The gray band is
the uncertainty due to the nonresonance background while the pink band includes the resonance
contributions. The dashed vertical lines indicate the kinematic points for the 6 GeV PVDIS
(deuteron) experiment; each corresponds to z = 0.3.
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FIG. 4.2: Normalized proton asymmetry for Q2 = 1.1 GeV? and 1.9 GeV? as a function of
W. The solid line indicates the prediction of a constituent quark modification to the Christy-
Bosted electromagnetic fits. The red, dashed and blue, dot-dashed curves are models used by
Gorchtein et al. The green, dotted curve is the modification of the Christy-Bosted fits using
MAID resonance helicity amplitudes with the exception of the Roper resonance. For the Roper,
the constituent quark model was used. The dashed vertical lines indicate the kinematic points
for the 6 GeV PVDIS (deuteron) experiment; each corresponds to z = 0.3.

such that

FiyZ,p + F?Z’"

Fiw’p + Fiw’n res

Sy AYPALT + 5, AT AT
AATPY + 30, (AT)?

Cres =

=2

(4.14)

(10, 4

where superscripts “p” and “n” indicate proton and neutron amplitudes, respectively.
Table 4.1 shows the amplitudes associated with ny — N transitions and the corrective
prefactor for each resonance.

The transition amplitudes can also be found using amplitudes from MAID or photo-

production fits from PDG. We already showed how an isospin rotation produces

* 1 : * 1 *
(NIIZV1p) = 5(1 — 4sin®0 (0)) (V317 1p) — (N1 T2lm). (4.15)
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A parallel algebraic analysis of neutron amplitudes gives
* 1 : * 1 *
(N2 Im) = 5(1 - 4sin6w (0))(N;| T In) — 5 (N5 1T} Ip)- (4.16)

C.es can also be written as

L TaAAn
RIS NS

Cres = QPWLO (4 17)

We also calculated F3Z for the deuteron in [51]. The corrective ratios for the deuteron
resonances are listed in Table 4.2. Following the above analysis for the proton background,
the limits to the deuteron background are 0 and 18/5. We used these limits as uncertainty
bounds and their average as the actual background.

Fig. 4.3 shows the comparison of different modifications to the Bosted-Christy fit.
With the uncertainties, the different models cannot be resolved.

As for the proton fits, the MAID Roper modification is the main source of disagree-
ment with the constituent quark model. Fig. 4.4 shows the model comparisons when the
constituent quark model Roper is substituted in the MAID fit.

The actual PVDIS data can help us determine which Roper modification is more valid.
Table 4.3 presents the measured asymmetries at the four kinematic points compared to the
predictions of the constituent quark model, MAID, and Gorchtein et al. modifications. At
W = 1.263 GeV, MAID is the only modification that agrees with the measured asymmetry.
This agreement suggests the MAID Roper modification is better at low W. However, at
W = 1.591 MAID significantly underestimates the asymmetry whereas the other two

models agree with the measurement.



TABLE 4.1: The seven Christy-Bosted resonances along with their electromagnetic helicity
amplitudes along and corresponding corrective ratios for the deuteron. The (pZ — N;) helicity
amplitudes are calculated by substituting e, — g; = Tg — 2e,45in%0y/(0). The (ny — N;) and
(nZ — N;;) helicity amplitudes are calculated by exchanging e, <> e4 and g}, < gjj, respectively,
in the proton analysis.

resonance neutron electroproduction amplitudes C4,

Piy(1232) A7), o (eq — €4) 1+ Q4
AT, = L (V2Aso(ea -
S11(1535) “1/2 75 (V2An(ea - eu) 2(13}3)1;1?;32}1) + Q5

—Bio(3ea + 3e4))
A’I = L (A (e — € )
/2 76 10 d u 2 2
(1-£1)(1/3—f1)+6f ,LO
Dy3(1520) +\/§Bml(%ed + Ley)) Gt 1+(1/3—f11)§+6f12 + Q%
Ay, = 75Aw0(ed — €u)

14’17/2 = \/%Azg (264 + eu)

Fi5(1680 4 113 + QLo
15( ) +\/§B20(§€d - %eu) 3(1-f2)*+6f3+4/3 Qv
A.‘:;/2 = %Ago (26,1 + eu)
511(1650) A]), = —y/ 7 Bio (ea + 2¢4) 2(1:;1: 1+(113;fz}1 + Q5
P(1440) A7, = Boo (4ea — 3eu) 12/13 + Q5F°

Fyr(1950) A7), o (ea — eu) 1+ Q4F°
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TABLE 4.2: The seven Christy-Bosted resonances along with their axial helicity amplitudes
and corrective coefficients for the deuteron. The neutron amplitude is calculated by exchanging
g% © g4 in the proton amplitude.

resonance neutron axial current amplitudes C2,
Pys(1232)  Ayjy o (95 — 9:0) %5 2%~
_ 4 142£)+(1/342f1) 16
$11(1535) A1/2 =~ B (394 + 394) Lgfz Are /52 f e 3
AZg = \/—BIO( 294 + 394) = 1-f1)=(f1=1/3) _ 16mgv
Dis(1520) 7% _ o WATIW TR AR e
3/2 =
A% = \/-320 194 — 1gy) T (1—f2)+2/3  20m
F15(1680) 1/ y _0o S e LETT ey
_ /|2 4 142£1)+(1/342f1) 16
511(1650) 1/ 2= 7 B0 (g4 +2924) '«’;,V GEOTAL VT _57'351':/
Z,A Amgqv
P, (1440)  Afj7 = Boo (594 — 39%) o
Fy(1950) A7j7 o< (g4 — g:)f'—;‘;ﬂ 2
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FIG. 4.3: Deuteron asymmetry for Q% = 1.1 GeV? and 1.9 GeV? as a function of W,g, where
WZ = M? + 2Mv — Q2. The top panel displays the predictions from several different off-
diagonal structure function models. The solid line indicates the prediction of a constituent
quark modification to the Christy-Bosted electromagnetic fits. The red, dashed and blue, dot-
dashed curves are models used by Gorchtein et al. The green, dotted curve is the modification
of the Christy-Bosted fits using MAID resonance helicity amplitudes. The middle and bottom
panels are the constituent quark model and MAID fits, respectively, with uncertainty limits.
The gray band is the uncertainty due to the nonresonance background while the pink band
includes the resonance contributions. The dashed vertical lines again indicate the kinematic
points for the 6 GeV PVDIS experiment; each corresponds to z = 0.3.
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FIG. 4.4: Normalized proton asymmetry for Q? = 1.1 GeV? and 1.9 GeV? as a function of
W. The solid line indicates the prediction of a constituent quark modification to the Christy-
Bosted electromagnetic fits. The red, dashed and blue, dot-dashed curves are models used by
Gorchtein et al. The green, dotted curve is the modification of the Christy-Bosted fits using
MAID resonance helicity amplitudes with the exception of the Roper resonance. For the Roper,
the constituent quark model was used. The dashed vertical lines indicate the kinematic points
for the 6 GeV PVDIS (deuteron) experiment; each corresponds to z ~ 0.3.

TABLE 4.3: The measured and predicted PVDIS asymmetry.

PVDIS kinematics I 1I III v

E (GeV) 4867 4.867 4.867  6.067

Q? (GeV?) 0.950 0.831 0.757 1472

Wess (GeV) 1263 1.591 1.857 1.981

Apyprs (ppm)

Measured —68.97 -74.12 —61.80 -119.56
+9.09 +7.43 +5.50 +18.42

cQM —87.4 —67.1 —64.9 -128.1
+8.9 +7.0 +6.8 +13.3

MAID —-75.2 —56.9 —63.2 —125.5
+7.7 +6.1 +6.5 +13.0

GHRM —87.3 —67.6 —64.6 -127.6
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4.2 Qweak Test of F75;(z, Q%

Our comparison of F{'5; model predictions for the PVDIS experiment [51] helped
motivate a look at different kinematics at the end of the Qweak run. During the final days
of data taking, the kinematics were changed from Q? = 0.028 to Q2 = 0.09 GeV? and
E =1.165 to E = 3.35 GeV in an attempt to constrain the different structure function
models.

Fig. 4.5 displays the predictions of the different models. At these kinematics it will be
difficult to resolve the different models. The region with the largest model discrepancies
is unfortunately not probed.
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FIG. 4.5: Proton asymmetry for the final days of the Qweak run as a function of W. The kine-
matics were changed from Q2 = 0.028 to Q? = 0.09 GeV? and E = 1.165 to E = 3.35 GeV. The
top panel displays the predictions from several different off-diagonal structure function models.
The solid line indicates the prediction of a constituent quark modification to the Christy-Bosted
electromaguetic fits. The red, dashed and blue, dot-dashed curves are models used by Gorchtein
et al. The green, dotted curve is the modification of the Christy-Bosted fits using MAID res-
onance helicity amplitudes. The middle and bottom panels are the constituent quark model
and MAID fits, respectively, with uncertainty limits. The gray band is the uncertainty due to
the nonresonance background while the pink band includes the resonance contributions. The
dashed vertical line indicates the experimental value of W which is approximately 2.3 GeV.
Notice that this kinematic choice unfortunately does not probe the region where the models
differ the most.
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CHAPTER 5

Proton Charge Radius Puzzle

As discussed in the Introduction, the charge radius is defined as the derivative of the

electronic Sachs form factor with respect to the momentum exchange:

_ dGE(Qz) (51)

R% = <Tg = TQ__r— QZ_O.

The charge radius can be extracted from experiments where the Sachs form factor is
measured over a range of small Q? values and the resulting fit extrapolated down to
Q?=0.

One experimental technique for probing the charge radius is electron scattering off
a proton target. The differential cross section at tree level is given by the Rosenbluth
formula,

GE(Q*) + TG (Q*)

Mott e(1+17) (5.2)

do _(do
dQ ~ \dQ
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The parameters of the Rosenbluth formula are
e=[L+2(1+7)tan®(0/2)]7 ; 7 = Q%*/(4M?), (5.3)

where 8 is the scattering angle of the electron.

The most recent scattering experiment was conducted at Mainz [54]. They recorded
1400 cross sections of scattering events ranging from Q% = 0.004 — 1 GeV2. and obtained
a charge radius of 0.879(8) fm.

A more precise measurement can be made by measuring the Lamb shift in hydrogen.
The Lamb shift is caused by quantum field corrections to the 2S and 2P energy levels.
CODATA [5] combined the published Lamb Shift and ep scattering measurements and
quote a proton charge radius of Rg = 0.8775(51) fm.

It has long been a dream to use muonic hydrogen to measure the charge radius of the
proton. Since the Bohr radius is inversely proportional to lepton mass, the muon orbitals
are roughly 200 times closer to the proton and are more sensitive to proton size effects.

Pohl et al. [6] measured the Lamb Shift between the energy levels 257! — 2P
of muonic hydrogen. Their measured Lamb Shift was compared to the Standard Model

prediction
AE = 209.9779(49) — 5.2262R2, + 0.0347R3, meV. (5.4)

In the above expression, Rg is in fermi. Vacuum polarization (also referred to as the
Uehling potential) is the largest contributor to the Lamb shift because the Compton wave-
length for electrons is at same scale as the Bohr radius for muons. The one loop vacuum
polarization contributes 205 meV and was calculated, along with many other corrections,

by Pachucki [55, 56]. Other important calculations for the Standard Model prediction were
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performed by Martynenko [57, 58] and Borie [59].

Pohl and collaborators first reported charge radius measurement was Rg = 0.84184(67)
fm. The most recently reported charge radius from their collaboration is Rg = 0.84087(39)
fm [7]. Both values are 7o smaller than the CODATA value. The discrepancy could be due
to missing Standard Model corrections. It could also be due to the presence of New Physics
that is wrongly attributed to Standard Model corrections. To bring the charge radius de-
termined by muonic hydrogen into agreement with the radius obtained from electronic
hydrogen measurements, New Physics must lower the Lamb shift by 310 ueV. Compared

to the measured muonic Lamb Shift of 206.2949(32) meV, this discrepancy is about 1500

5.1 New Physics Solutions to the Proton Charge Ra-
dius Puzzle

There have been several proposals to explain the discrepancy. The muon also has
another well-known discrepancy between the measured and theoretical (g — 2),. The

experimental results [60, 61] and latest theory [62] calculation are expressed as F3(0) =

ay = (9—2),/2,

a,(data) = (116 592 089 + 63) x 10~'! [0.5 ppm],
a,(thy.) = (116 591 840 + 59) x 10~* [0.5 ppm],

da, = (249 £ 87) x 107! [2.1 ppm =+ 0.7 ppm]. (5.5)

It is desirable to introduce new models that account for both discrepancies. However, the

scale of the (g — 2), discrepancy is roughly one thousand times smaller than that of the
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proton charge radius. It is a challenge to explain both discrepancies simultaneously.

Several groups have looked into the proton charge radius problem. Jaeckel and
Roy [63] considered the possibility that a dark photon could be responsible. This new
U(1) gauge boson kinetically mixes with hypercharge. They pointed out that dark pho-
tons which couple equally to both electrons and muons could not explain the discrepancy.
In this model the electron shift would actually be greater for ordinary hydrogen.

Tucker-Smith and Yavin [64] considered two models that introduced a scalar or vector
particle that preferentially couples to muons. They first used the (g — 2), discrepancy to
find the couplings as a function of particle mass. They then plotted the resulting energy
shift as a function of mass. Their model found that masses of order 1 MeV “explain” both
discrepancies. The details of their analysis overlap with our own and can be deduced from
the discussion of our model. -

Batell et al. [65] modified the dark photon model by including an additional coupling
to right-handed muons. Their model also required a new particle with scalar coupling to
match the muon anamolous magnetic moment discrepancy.

Barger et al. wrote a couple of papers [66, 67] pointing out further constraints model-
makers need to consider. The first paper covered meson decay constraints placed by T,
J/¢¥, m, and n decays. The second focused on the Batell et al. model and pointed out
that kaon decays would put severe limitations on the model for dark photons that decay
invisibly. The Batell et al. model’s dark photon mixes with ordinary electrodynamics and
is unaffected by the kaon decay constraint.

It has recently been proposed that the proton charge radius puzzle could be due to

extra dimensions [68].
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5.2 Our Model

5.2.1 Coupling Constraints placed by the Proton Charge Radius

Puzzle.

We considered two models to account for the 'cha.rge radius puzzle, (g — 2),, and the
kaon constraint [69]. Like Tucker-Smith and Yavin, our two models contain a scalar and
vector particle, respectively. These couplings are chosen to account for the energy shift
needed to solve the proton charge radius problem. In addition, the scalar particle also has
a pseudoscalar partner particle with its coupling fine-tuned to account for the (g — 2),
discrepancy. Likewise, the vector particle has an axial vector particle with fine-tuned
coupling. The kaon decay constraint is applied to each model and provides mass bounds
for the particles.

The Lagrangian for scalar and pseudoscalar particles coupled to a proton and muon

is given by

Ls=— CSWM/’;; - ’iC’}l;QO’l/—l“’)’s'lﬁ“
- Cg‘m/;p"/)p - inS<P1/—1p75¢p, (5'6)

where ¢ is a scalar, ¢ is a pseudoscalar field, and ¢ are fermion fields identified by their
subscripts.

Muonic hydrogen is a bound system and therefore can be treated nonrelativistically.
At low momentum, 75y — 0. Thus, interactions between the muon and proton occur
almost solely through the exchange of a scalar particle. The energy shift needed to solve
the proton charge radius problem can be used to constrain the strength of the scalar

coupling.
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The energy shift is found using the Born approximation. The amplitude for scalar

particle exchange is

)

iM = ~C5C5———5 U uylpUp (5.7)
g —my

where my is the mass of the scalar particle. The Born approximation allows us to identify

the potential energy in momentum space as

~ —C4C%
AV(]) = =5 (5.8)
1912 + m3
Performing a Fourier transformation yields the Yukawa-type potential
CLCY,
AV(r) = ——SSgme", 5.
(1) =-=2e (59)
The energy shift between the 2S and 2P radial wave functions is given by
AEss op = / r2dr AV (r)(R2, — R2,). (5.10)
The radial wave functions are
1 r
—_ - —-r/2a
o= g (2 5)°
_ 1 T -r/2a
Ry = 2a)? \/§ae (5.11)

where a = 1/(m,a) is the Bohr radius and m, is the reduced mass of muonic hydrogen.

The result of of the integral is

CsCE_ 1 (amy)*
4 2a3m3 (1 +amy)t

AEss_op = — (5.12)
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Eq. (5.12) highlights the key point made by Jaeckel and Roy. Electrons have a larger
Bohr radius than muons, so models with new particles that couple equally to both electrons
and muons cannot explain the proton charge radius puzzle. In a dark photon model
electron orbitals would be shifted much more than muon orbitals. New Physics proposals
that address the proton charge radius problem must contain additional muon couplings.
In other words, lepton universality must be tossed out.

Setting AE = —310 peV to account for the energy shift needed for the muonic
hydrogen measurement to comply with electronic measurements of the proton charge radius
and making the stipulation C§ = C% = Cgs allows us to determine the coupling strength
as a function of particle mass. This function is plotted in Fig. 5.1.

The Lagrangian for our model of new polar and axial vector particles is

Ly =— C$¢V"Zu'7v¢’u - Cﬁ‘PV"/;u'Yu'YS"Z’p

~ CV " Uy — Co Y1 Vs¥p- (5.13)

where ¢" is a polar vector and ¢V is an axial vector field.
Finding the strength of the vector coupling follows similar steps involved with the
scalar coupling. The axial vector particle does not contribute to muon-proton interactions

in the nonrelativistic limit. The amplitude for the interaction in this model is given by
. -1 _ _
M= —C’"}Cﬁmuyv“u“up'y“up. (514)
)

The only difference in the potential energies of the two models is a sign. Fig. 5.2
shows the vector couplings strength, C¥ = —C% = Cy needed to account for the 310 ueV

shift as a function of particle mass.
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FIG. 5.1: The scalar and pseudoscalar couplings needed to satisfy the experimental constraints.

The scalar coupling (solid line) is required to give an extra 310 ueV to the muonic hydrogen

2S-2P Lamb shift. The dashed line is the pseudoscalar coupling needed to satisfy the constraint
placed by the muon anomalous moment. We assume the two particle masses are identical.
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FIG. 5.2: The polar and axial vector couplings needed to satisfy the experimental constraints.

The vector coupling (solid line) is required to give an extra 310 ueV to the muonic hydrogen

2S-2P Lamb shift. The dashed line is the axial coupling needed to satisfy the constraint placed
by the muon anomalous moment. We assume the two particle masses are identical.
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5.2.2 Coupling Constraints placed by the Muon’s Anomalous
Magnetic Moment.

Since our model] contains couplings to muons, it will contribute to da,. As we will
show, the scalar (vector) and pseudoscalar (axial vector) couplings enter the expression for
the anomalous magnetic moment with opposite signs. This fortuitous situation allows us
to fine tune the coupling strength of the pseudoscalar (axial vector) couplings to account
for da,.

To simplify our model we choose identical masses for the scalar (vector) and pseu-
doscalar (axial vector) particles.

The new particles contribute to the anomalous magnetic moment at one loop order

as shown in Fig. 5.3. This amplitude can be expressed in terms of form factors,

104

AT, upn) = 0(on) (WFU@) + FE Q) Julp)l gy (619)

We do not need to evaluate the entire amplitude to extract F»(0). From Egs. (5.15)
we see that terms proportional to v* contribute to F; and can be dropped. In fact, we only

need to keep terms proportional to (p1 + p2)#. An examination of the Gordon identity,

atormaen) = oton) (P12 4 o Yo (5.16)

reveals that (p; + p2)* can be substituted in favor of —%’A‘j,—"q" (the v* term is associated

with F} and can be dropped). Thus, terms proportional to (p; + p2)* are identified as F5.
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A loop involving our scalar and pseudoscalar particles has an amplitude

d i i(fo— u
alpa)oTuln) = a(r0) [ (‘2””';2 g (~iCs + Cr) (gﬁ = )
< T (iCo + Coutp). (517)

Using FFF and redefining our momentum variable as | = k — zp; — yps, the amplitude

becomes

d )
W(p2)0T u(p,) = ﬂ(pz)/dxdydz%(x +y+z-— 1)/ (%2 (Z=A)p

X (—=iCs + Cp¥®)i(ga— K+ m Vi~ K+ m,)(—iCs + Cpy°)u(p), (5.18)

where A = —zyq® + zm3 + (1 — z)’m2.
Because of the symmetry of the integrals in Eq. (5.18), we can substitute z,y —

1/2(z + y). Keeping only terms proportional to p and pl, the remaining term is

d?l 1
ﬂ(ﬁ)‘sruu(Pl)lm,pz = U(p2) /d:z:dydzZJ(:c +y+z-—- 1)/ (2m)2 (12 — A)3
X (—im) (s +p)*[C3(1 — %) — CB(1— 2P%Julpy),  (5.19)
Performing the substitution (p; + pa)* = —Z¢” we find
_mi 1 C3(1- 2)2(1 +2z)—-C3(1- 2)3
ROlsr =g [ e e (5.20)

Fig. 5.1 plots the strength of Cp needed to produce the anomalous magnetic moment
discrepancy as a function of particle mass.

In £ = 1 gauge a loop involving our polar and axial vector particles has two amplitudes.
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The first is
_ _ dék —1 vr s . 5 i(ﬁz— k+ m“)
u‘(p2)6ruu(pl) = U(p2)/ (271')2 k2 . mi’)’ (—'ZCV - ZCA’Y )(p2 _ k)2 — m2
)l KX ) ) (icy — iCaryulpy). (5.21)

(o1 = k)2 —m3
Redefining our momentum variable as | = k — zp; — yp,, the amplitude becomes

a@(p2)0T u(py) = G(ps) / dzdydz25(z +y + 2 — 1) / : 2‘1;;2 7 1 A"

X (—iCv — iCaY®)i(a— K + mu)v"ih— K+ mu)(—iCyv — iCvy°)u(p1),
(5.22)

where A = —zyq® + zmd + (1 — 2)°m2.
Exploiting the same z,y symmetry as in the scalar case and keeping only terms

proportional to p{' and p, the remaining term is

@(p2) 0T u(p1)|py p; = @(p2) /dxdydz26(x +y+z— 1)/ (;;32 @ __lA)a

x (~26m,) (1 + pa)* [Ch(z — 22) — G5Bz + D]ulp),  (5.23)

Performing the substitution (p; + p2)* = —%’ffq" we find the contribution of the first

diagram to F3(0) to be

CZz(1 —2)2 - C%2(3+2)(1-2)
zm3 + (1 — 2)?m3 '

m;i 1
F>(0)) 18t term = Z;r;/o‘ dz (5.24)
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Next, we calculate the loop due to the Goldstone boson:

d ] (P2 u
(p2)6T"u(py) = (p2) / (;’ﬂ’;z k2—m2(2m";") : (::*k;;:_mmz

o i ) (5.25)

The Goldstone boson’s contribution to F5(0) is

F,(0)|gs = "—/ ” Call = 2)°

m3 zm3 + (1 — z)?m2’ (5:26)

The total contribution of new vector and axial vector particles to the muon’s anoma-
lous magnetic moment is

1
zm3 + (1 — z)?

m2 1
ROl =75 [ a2 —{Cha1 - 2)?
M

—Ci[z(8+2)(1~2) + 2”;’2‘(1 -2)%}. (5.27)
my

Fig. 5.2 plots the strength of C4 needed to produce the anomalous magnetic moment

discrepancy as a function of particle mass.

FIG. 5.3: One-loop magnetic moment correction
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5.2.3 Mass Constraints placed by Kaon Decay.

Barger et al. [67] brought attention to another model constraint due to kaon decay.
Pang et al. [70] performed a search for K+ — pu*tviv. They generalized their experimental
limit to apply it to any decay K — pvrX, where X is a neutral particle (see Fig. 5.4,
where the invisible particle X is our new particle ¢). We can use this limit to place mass

constraints on our new particles. The Pang et al. limit is

dF(K _ ’“’X ) D(T,)dE, < 2 x 1075, (5.28)

F(K—MW)/

where E,, is the energy of the muon and D(T),) is their detector efficiency as a function of the
muon’s kinetic energy. Their detector had variable sensitivity to muons with kinetic energy
between 60-100 MeV. We had to deduce an analytic expression for D(7),) by examining

their plot for their efficiency. The expression we used was

D(T,) = — (T, — 60)(100 — T,)5O(T,, — 60)(1 — (T, — 100)). (5.29)

1650

The denominator contains the simple K — uv decay rate

'K —w 2 (2 _ n2)2 5.30
(K = uv) = p— m“(mK m“). (5.30)

The kaon decay constant, fi, is defined from
(O] Tyu(1 = vs)s |K) = V2fkk,. (5.31)

Note that many groups define the decay constant without the factor of v/2. The convention

used must be checked when comparing to the results of other calculations.
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Three body decay is given by the well known expression

(K — pve) = / dE,dE, 3" |MP, (5.32)

spins

with integration limits

mi +ms —m
m, < E, < —% 2m’}‘( 2 (5.33)
and
{ mazx } my +m2 —mi —2mgE, (5.34)
min 2(mx E, ¥/ 2---mz)

The matrix element for the decay into a muon, neutrino, and particle with both scalar

and pseudoscalar couplings is

MS,P — g);fK‘/us _(l)
X [(Cs —iCp)@* + m,u(Cs +iCp) K] (1 — ¥5)v(q), (5.35)

where Q? = (k — q)2 = m% —2mxE,.

The matrix element squared and summed is

Y [Mspf? = ‘Z;{wéw%)

spins
x [2mKE“Q2(Q2 ~m?2)
— (@ — mZm%)(Q® + mZ —m3))|

+2(C2 - C2) m2Q¥mk — Q’)} . (5.36)

Plugging Eq. (5.36) into Eq. (5.28) places mass constraints on the new scalar-pseudoscalar
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particle. Fig. 5.5 shows the range of masses allowed by the kaon decay measurement.
Masses between 100-200 MeV are not allowed.

We began our kaon decay analysis by assuming the presence of one new particle with
both scalar and pseudoscalar couplings. However, the squared amplitude of Eq. (5.36)
does not contain any coupling cross terms and we are also free to interpret this result as

describing a new scalar particle and pseudoscalar particle with equal mass.

ull)

Q<.
Kk) — — — ~ N g

v(q)

FIG. 5.4: Kaon decay into a muon, neutrino, and new particle, ¢. @ is the intermediate
momentum of the muon.

I'(K— ¢ with Exp'l Cuts)/T(K—s 41)

0 SO 100 150 200 250 300
My MeV)

FIG. 5.5: Mass limits on scalar and pseudoscalar particles due to constraints placed by
K — uvX searches. The solid curve is the full result, accounting for the experimental efficiency,
obtained through satisfying the Lamb shift and magnetic moment criteria. The contributions
of the scalar (dashed curve) and pseudoscalar (dash-dotted curve) couplings are indicated sep-
arately. The experimental limit is the horizontal line, and the shaded region is allowed.
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The matrix element for the decay into a muon, neutrino, and a particle with both

polar and axial vector couplings is

My = g‘;’f"v"" va(l)y”
X [(C’v —_ C’A)Q2 +m,(Cy + Ca) ]6] (1 —)v(q), (5.37)

where ¢, is the polarization vector of the new particle. The square of this amplitude is

Z Myal* = ‘;;2 {(CV —Ca)’Q* [mkE (1- ""(Q2 = mj, —my))

- -(Q2 -m3)(1 - g(m + mj — m3))

1 2 1 2 2 2
- -2-m“(1 - ;;;g(m” -+ my, — m¢))]

1 1
+ (Cv + Ca)*mi [meQ(5mx — By) + 5mi(m2 — m3)
1?2 1 1
+ m_¢ (Q2 - mz - mi) X (Qz(mkEp - ‘2'Q2) - ynﬁ(mi - m:‘;,))]

—3(C%~Ci)m§Q2(mi—Q2)}- (5.38)

Plugging Eq. (5.38) into Eq. (5.28) places mass constraints on the new polar-axial
vector particle. Fig. 5.6 shows the range of masses allowed by the kaon decay measurement.
Masses below about 160 MeV are not allowed.

To consider a model where we have new polar and axial particles of equal mass, all we
must do is eliminate the coupling cross terms in the amplitude squared. The blue, dashed
curve describes the predicted decay ratio for such a model. Masses below about 220 MeV
are not allowed.

New particles with fine-tuned scalar and pseudoscalar (vector and axial vector) cou-

plings can “explain” the proton charge radius puzzle while satisfying constraints placed
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by (9 — 2), and kaon decays. In the next chapter we will discuss the possibility of further
kaon decay constraints from an upcoming experiment at the Japanese Proton Accelerator

Research Complex.
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FIG. 5.6: Mass limits on polar and axial vector particles due to constraints placed by K — uvX
searches. The solid curve is the result for a single particle with both polar and axial vector
couplings, accounting for the experimental efficiency, obtained through satisfying the Lamb
shift and magnetic moment criteria. The dashed curve is the result for separate polar and axial
vector particles with equal masses. The experimental limit is the horizontal line, and the shaded
region is allowed.



CHAPTER 6

Concluding Remarks

As demonstrated in Chap. 4, present experiments are insufficient to produce accurate
fits for FY' 5,3 (z, @%). The Qweak collaboration must use vZ box calculations dependent on
models for F7'5 (z,Q?) [27, 28, 29, 30] and F3?(z,Q?) [31, 33]. I am of course biased that
our model is the best, but the close agreement of the models suggests the collaboration
will be equally well-served using any model or an average of models. In Sec. 6.1 we discuss
whether these models and their uncertainties are acceptable for the next generation of low
energy, weak charge measurements.

The present New Physics models for the proton charge radius problem [64, 65, 69)
are speculative and must be confronted by more experimental constraints. It is also still
unclear if the proton charge radius puzzle is the result of overlooked Standard Model
processes. Sec. 6.2 provides details of future measurements of the proton charge radius

and upcoming experimental constraints for New Physics models.
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6.1 Future Measurements of the Proton’s Weak Charge.

The Mainz P2 experiment plans on performing a 2% measurement of the weak charge
by scattering polarized electrons of E ~ 200 MeV [71]. This error budget is half that
of the Qweak experiment. At this energy, our vector model gives 0.00125 + 0.00018 [28].

Adding in our axial model calculation, the total box value is

Re [, z(E = 200 MeV)|eotar = (5.8 % 0.7) x 1073, (6.1)
Based on Fig. 2 of [31], their prediction for the P2 experiment is about

Re,z(E = 200 MeV)|sota = (5.4 £ 0.5) x 1073, (6.2)

A 2% measurement of the proton’s weak charge at one loop order has an error budget of
about 0.0014. Both fits are within the uncertainty allocations, but it is desirable to reduce
them.

It is unlikely that the resonance coefficients uncertainties for our constituent quark
model can be greatly reduced. The greatest reduction is probably in the resonance back-
ground. Our current background is found by averaging the valence quark and sea quark
limits, and these limits are used as the uncertainty bounds.

Ideally, we would like to do away with models for vZ structure functions and instead
rely on fits to data. The PVDIS experiment [52] represents a first attempt to constrain
the deuteron version of these structure functions. However, this experiment was only
conducted at four kinematic points. To construct fits, a wide range of Q2 will have to be
measured. A new PVDIS experiment will be run after JLAB’s 12 GeV upgrade [4]. The
plan is to measure electrons scattering off a deuteron target for several kinematics ranging

from z from 0.3 to 0.7 and Q? from 5 to 10 GeV?2. This data could be used to constrain
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F7Z ,(z, Q%) models at moderate Q2. Unfortunately, the new PVDIS experiment will not

(L)

probe the resonance region.

6.2 Future Tests of Proton Charge Radius Puzzle.

6.2.1 up Scattering Determination of the Proton Charge Radius
at PSI.

There are two independent techniques to extract the proton’s charge radius using lep-
tons. One can either measure lepton scattering or the Lamb shift of the lepton’s atomic
orbitals. Both techniques have been utilized for electrons and the most recent extrac-
tions [54, 5] have found proton charge radius values that agree within uncertainties. For
muons, only the Lamb Shift has been measured and the extracted proton charge radius is
7o smaller than the electronic measurements [6, 7). It is of obvious interest to see if the
puzzle persists in measurements using muon scattering.

The MUon proton Scattering Experiment (MUSE) [72] at the Paul Sherrer Institut
seeks to measure the proton’s charge radius using muon elastic scattering. MUSE was
approved in January 2013 and has a goal of system tests in late 2015. Once operational,
MUSE will perform simultaneous measurements of ep and up elastic scattering. The
system will be able to scatter both + and — charged leptons. It is important to measure
the cross sections of both charged leptons to separate 2-photon effects from Gg. A large
range of kinematics will be measured using beam momenta of 115 MeV, 153 MeV, and

210 MeV.
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6.2.2 Testing Charge Radius Puzzle Models at JPARC.

There are currently three models for the proton charge radius puzzle that involve
the introduction of new, lepton universality-violating particles [64, 65, 69]. A new kaon
decay experiment, E36, at the Japan Proton Accelerator Research Complex (JPARC) may
be used to eliminate or constrain these models [73]. The main goal of the experiment is
to measure the ratio I'(K* — u* + v,)/T(Kt — e* + v.). They expect to see 10'°
K* — p* + v, events [74]. The branching ratio for this decay channel is 0.6355 [2].

Of particular interest for new particle searches is the decay channel K+ — ut +
v, + et + e . Fig. 6.1 shows the lowest order diagrams for Standard Model QED. The
full branching ratio for this decay channel is calculated to be 2.49 x 10~ [75]. For their
expected 50% acceptance of ete™ coincidences, the total number of such decays E36 can

expect is

NEK* s ut+y,+et +e7)
_1INKT s pt+y,+et +e7)

+ +
=T TR o artny  NET T+

~ 2 x 10°. (6.3)

If no new particles are present, there will be about 1000 such events per bin (bin size
of 1 MeV) in the vicinity of m.. = 30 MeV. Here, m,, is the energy of the ete~ pair. The
amplitude for the QED prediction is

iM = = ZE (i) Varpr) 0 (p0) S5 (VB furm, L — HP3,) (6.4
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2 = (o)1 + )52
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v(q)
v(q)

K+(k) ¥(q)
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v(q)
FIG. 6.1: QED background for K+ — pyt +v,,.

(k—q) _ 2+ W’) -
¢+q% 2-¢d+q%) 7

H? = —iVie”Pq kg — Ai(d - (k — )9” — (k — ¢)°¢") — A:(d*¢” — ¢*¢"),

and

Jv = w(@) (1 +¥*)u(l).
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(6.5)

(6.6)

Values for V4, A1, Az, and fi can be found in Poblaguev et al. [76]. V;, A1, A, are
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given by
_ﬁmk(Ah A21‘/1) = (FA) R> FV)’ (6'7)

where F4 = 0.031, R = 0.235, and Fyy = 0.124. It is important to note that our normal-
ization of fi is different from Poblaguev et al. Their value of fr = 160 MeV corresponds
to v/2fx in our normalization.

A sign of a new particle would be the observation of more events than the QED pre-
diction at some value of m.,. One extension to the Standard Model that will produce more
events is the dark photon. As the name suggests, the dark photon shares many properties
with the photon of QED. To account for the amplitude of dark photon interactions, the
photon’s propagator and coupling in Eq. (6.4) are modified:

—1 -1

=i, , 6.8
@  ¢-m2 +imal (6.8)

—iey* — —ieeyh. (6.9)

In the above expressions m 4 is the mass of the dark photon, I' is its decay rate into
et +e™, and ee is its coupling. If a dark photon exists, a bump in the data will be centered
around the propagator’s pole and will determine the dark photon’s mass. The size of the
deviation will indicate the value of €. Of course, a lack of deviation from the Standard
Model will place constraints on m,4- and ee.

There are already many experimental constraints on dark photon parameters (see
Beranek and Vanderhaeghen [77] for a constraints plot in the low energy region relevant
to the JPARC experiment). As an example of JPARC’s experimental resolution, we cal-
culated the signal of a dark photon with the currently allowed parameters m 4 = 30 MeV

and € = 1073. The result is shown in Fig. 6.2. The dotted red curve is the expected signal



132

from QED while the black curve is the signal due to QED and an additional dark photon.
The simulated data points possess error bars accounting for the statistical uncertainty of
1000 events per bin. Given the relative size of the bump and error bars, it will be very

hard for JPARC to detect the presence of dark photons.

33

ma(MeV)

FIG. 6.2: QED prediction for K+ — u* + v, + e* + e~ (red, dashed curve) and the prediction
with an additional dark photon (black curve). Data points are simulated and possess error bars
accounting for the statistical uncertainty.

JPARC could be quite sensitive to the lepton universality-violating particles present in
proton charge radius puzzle models. The model of Batell et al. [65] contains dark photon-
esque particles that possess an additional coupling to right-handed muons. To account for
this particle’s effect on the amplitude K+ — u* + v, + et + e, the photon’s propagator
and coupling are modified to

—i —i

—_ ,
@2  @?-ms +imal’ (6.10)

—iey* - —ikey* — z'gzﬁfy"(l +7°), (6.11)

where m 4 is the mass of the new particle, I is its decay rate into et + e~, and ke is its
coupling to all particles, and gr/2 is its additional coupling to right-handed muons. Batell

et al. give several values of my/, k, and gg that they claim satisfy all present constraints.
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Fig. 6.3 displays the predictions of their parameter values. This signal is several orders of
magnitude greater than the one due to “standard” dark photons. A dark photon with the
Batell et al. parameters should be detectable.

The particles in our model for the proton charge radius puzzle do not couple to
electrons and would not contribute to this decay channel. In future work we may introduce

a small electronic coupling to our model and calculate its contribution to I'(K* — ut +

vy+et+e).

0.004

(McV)

0.003
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0.002

w, dU(K - pver)

()

0.001

0.000

FIG. 6.3: QED prediction for K* — p* + v, + et + ¢ (red, dashed curve) and the prediction
with the additional lepton-universality violating particle of Batell et al. (black curve). Data
points are simulated and possess error bars accounting for the statistical uncertainty.
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