Vol. 52 (2021) Acta Physica Polonica B No 4

MODULATIONAL INSTABILITY OF NONLINEAR
WAVES IN A COLD QUARK-GLUON PLASMA

E. BoutaLs®?, L. Air-Goucam®!, O. BouziT?
F. MEKIDECHE-CHAFA?

aTheoretical Physics Laboratory, Faculty of Sciences-Physics
University of Bab-Ezzouar
U.S.T.H.B, B.P. 32, El-Alia, Algiers 16111, Algeria
bLaboratory of Particle Physics and Statistical Physics
Department of Physics, Ecole Normale Supérieure
B.P. 92 Vieux kouba, Algiers, Algeria

(Received December 29, 2020; accepted April 6, 2021)

Using a simple equation of state for the quark—gluon plasma (QGP),
we expand the hydrodynamic equations around equilibrium configurations.
The resulting differential equations describe the propagation of perturba-
tions in the energy density. We derive in detail the nonlinear Schrédinger
equation (NLSE) which governs the modulation instability (MI) in the cold
quark—gluon plasma.
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1. Introduction

For the last several years, a tremendous effort has been dedicated to a
fairly new branch of high-energy physics, namely, the field of quark—gluon
plasma (QGP) [1]. Systems consisting of deconfined quarks and gluons, the
fundamental constituents of matter and the mediators of the strong force,
are produced in controlled laboratory conditions in reactions of heavy nuclei
at ultrarelativistic energies. These so-called “quark—gluon plasmas” exist at
very high temperatures and energy densities similar to those found a few mi-
croseconds after the Big Bang. The quark—gluon plasma is a special kind of
state of matter, which is believed to be formed in ultrarelativistic heavy-ion
collisions or existed for a few microseconds after the Big Bang. Quantum
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Chromodynamics (QCD) predicts that deconfined phase transition will take
place at high temperature and/or high density. As a result, the nuclear mat-
ter will undergo a transition to the quark—gluon plasma which is composed
of quarks and gluons. One main goal for relativistic heavy-ion collision ex-
periments is to seek this new state of matter. For the last ten years, the
study of QGP properties has attracted intense interest. Recently, we have
learned many things about the QGP and one of the most striking is that it
is an almost perfect fluid with very small viscosity. Highly localized pertur-
bations can exist and propagate through a fluid. The most famous are the
Korteweg—de Vries (KdV) solitons, which are solutions of the KdV equa-
tion. Previous studies on nonlinear waves in cold and warm nuclear matter
can be found in |2, 3]. In [4], wave propagation has been studied in cold
and dense matter, both in a hadron gas phase and in a quark—gluon plasma
phase. Works on nonlinear waves in cold QGP in the mean field approach
were published in [5] and their extension to three dimensions was published
in [6]. Perturbations in fluids with different equations of state (EOS) gen-
erate different nonlinear wave equations: the breaking wave equation, KdV,
Burgers etc. Among these equations, we find the Kadomtsev—Petviashvili
(KP) equation [7], which is a nonlinear wave equation in three spatial and
one temporal coordinate. It is the generalization of the KdV equation to
higher dimensions. This equation has been found with the application of
the reductive perturbation method [8] to several different problems such as
the propagation of solitons in multicomponent plasmas, dust acoustic waves
in hot dust plasmas and dense electron—positron-ion plasma [9]. In [10], Fo-
gaca et al. considered hadronic matter at finite temperature and studied the
effects of temperature on the KdV soliton. In [11], they started the study of
perturbations in the QGP at zero and finite temperature. The conclusion
found in that work was that the existence of KdV solitons in a QGP de-
pends on details of the EOS and with a simple MIT Bag Model EOS there
is no KdV soliton. A further study of the equation of state, carried out in
[12], showed that if nonperturbative effects are included in the EOS through
gluon condensates, then new terms appear in the expression of the energy
density and pressure. Otherwise, for the last few years, great attention has
been paid to the study of the modulation instability (MI) of solitons in the
context of the nonlinear Schrodinger equation (NLSE) [13, 14], due to their
relevance in wave propagation stability. To complement and provide new in-
sights into what has been already published, we propose here to investigate
the modulational instability of waves in a cold quark—gluon plasma.

One of the first equations of state of the quark—gluon plasma was the one
derived from the MIT (Massachusetts Institute of Technology) Bag Model
[15]. Due to its simplicity, it has been widely used in astrophysics and
cosmology. A further study of the equation of state (EOS), carried out in [5],
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showed that if nonperturbative effects are included in the EOS through gluon
condensates, then new terms appear in the expression of the energy density
and pressure, and in the present work, we will take into account these new
terms to study the modulational instability of waves in a cold quark—gluon
plasma. This study might be applied to the deconfined cold quark matter in
compact stars and cold quark—gluon plasma formed in heavy-ion collisions
at the intermediate energies in the Facility for Antiproton and Ion Research
(FAIR) [16] or Nuclotron-based Ion Collider Facility (NICA) [17].

The aim of this paper is therefore to derive the nonlinear Schrodinger
equation (NLSE) after the proper treatment of the hydrodynamical equa-
tions. In the next section, we present the basic equations of our theoretical
model. In Section 3, we introduce the equation of state. A weak nonlinear
analysis is carried out in Section 4 to derive the NLSE. Our results are given
in Section 5, and a summary of our findings is given in Section 6.

2. Relativistic fluid dynamics

In this part, we review the essential applications of one-dimensional rel-
ativistic hydrodynamics. In this work, we use the natural unitsc=1, A =1
and (Boltzmann’s constant) kg = 1. The relativistic version of the Euler
equation [11, 12, 18, 19| is given by

ov o2\ - 1 - _Op
E—l—(v-V)U— (€+p)v2<vp+vat>, (1)

where U, €, p and ~ are the velocity, energy density, pressure and the Lorentz
factor, respectively. Space and time coordinates will be in fm (1 fm =
10~ m). The relativistic version of the continuity equation for the baryon
density pp in ideal relativistic hydrodynamics is [18]

Since j% = u”pp, the above equation could be rewritten as follows [11,
12]:
8[)3 2 av
ot +7vpB i
In the one-dimensional Cartesian relativistic fluid dynamics, the velocity
field is written as U = v(x,t)Z, where T is the unit vector in the x direction.
Equations (1) and (3) can be rewritten in the simple form

v v (v*=1) (dp  Op
— t v = v |,
ot or  (e+p)

+U-6U>+ﬁ(pm7):0. (3)

dz ot )
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and

ov ov OpB ov Opp
I 1— ZFB i =0.
UPB<8t+U6$>+( U><8t —I-,OBa +v c'):c) 0 (5)

3. The QGP equation of state

In this section, we shall use the equation of state derived from the MIT
Bag Model. This equation was obtained and developed for the strongly
interacting quark—gluon plasma (sQGP) at zero temperature |5, 12|. It has
been applied to the calculation of the structure of compact quark stars [20].
The energy density and the pressure are given by [12]

. 279> Ea 27¢° ) 02p3+ 2792 p 0*pp
om2, ) PP \omd ) PP a2 T\ 2mb, ) PP fat

27¢*\ &pp 0'pp Q k:F
B
(2m%) ox? Ozt +Bacp + 3 2 4 (©)

and
_(278% N 189 0 P 99 'vs ([ 99° \ 9pB IpB
p 2m2G PB mG B 92 mG PB 54 Qmé Or Ox
n 99° \ pp pp (99 Pppd'pp [ 99° \ PppFps
2mé, ) 0x% 022 mg, ) 0x2 Oxt 2mg, ) ox3 0x3

9%\ 9pB pp Q ki
<mg> or 905 DeP T3y ")

272 4

In Egs. (6) and (7), 7¢q is the quark degeneracy factor g = 2(spin) x

3(flavor) = 6 and kp is the Fermi momentum defined by the baryon number
3

density by pg = :—E The other various parameters g, mg and Bqcp are the

coupling of the hard gluons, the dynamical gluon mass and the bag constant
in terms of the gluon condensate, respectively.

4. Derivation of the Nonlinear Schréodinger Equation (NLSE)

We first write Eqs. (4) and (5) in terms of the dimensionless variables

PB ~ U
v=—, 8
pO Cs ()

5=

where pg is an equilibrium (or reference) density, upon which perturbations
may be generated, and ¢ is the speed of sound.
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To investigate the modulation of the wave, we employ the standard re-
ductive perturbation technique (RPT) [8] to derive the appropriate NLSE.
The independent variables are stretched as £ = o (z — Vgt) and 7 = o,
where o is a small parameter and V; is the group velocity of the wave. The
dependent variables are then expanded as

,0:1+§:U Zp(") s oil(kz— wt)’

l=—

v = ZO_ (n) Z v} 57_ zl(km wt) (9)

l=—00

where p and v satisfy the reality condition @(fl) = (@l(n))* and the asterisk
denotes complex conjugate. The derivative operators appearing in the fluid
equations are written as

9 L0 020 0
at ot 7 ar “'tag’
) 8 9

Substituting the expression of the operators Eq. (10) and the expression
of the expanded variables Eq. (9) into Eqs. (4)—(5), we obtain the n'"-order
reduced equations
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and
. (n—2) (n—1) (n—1)
i, om, 10p Ve 9 o), OY)
~ - _ Ik
Cs wer cs OT cs O0€ ke 0¢
£330 [l ) (e )
n/=1l'=—o0
’ 81)(”_”/) ’ (9 (n—n’)
(n'—1) OV _p (n'—1)90_p
+pp 785 + vy 7@5
/ ’ ’ 8U(nin/) ’ 81}(”7”/)
. (n—n'") (n) (n'=2) Y Y- (n'—1)““1—1
+CS <_7/w (l - l/) Ul*l’ Ul/ + Ul/ T — VgUl/ Tg
-3 !w (== (ool ) o i)
n/ n/'=11"1"=—0co
’ " 87}(”7”/7”//) ’ 7z aU(ninlinN)
(n'=2) (n") Y I—r—1" (n'=1) (n") ¥ i-1—1"
*Pl/ Ul// T + Vgpl/ Ul// T
-2 ( ”)apl(nl—/n’l;n//) =1 (0" apl(n;n’l;n//)
+Ul/ Ul// ﬁ - ngl/ Ul// 85] = 0 (12)

For the first-order (n = 1) equation with (I = 1), we can obtain the

first-order quantities in terms of pgl) as

2.2 2.2 2.2
—Csw [(2792/)0) + 37T§p§:| ’UEI) + [(2792;)0) k— <18g4p0) k3
m m m
G G G

99%p5 2 4]
- (mgo K +rspik| oV =0, (13)
—=pf +ikofY = 0. (14)

The solution for the first harmonics is
w

(1)
fece P (15)

o) =

Thus, we obtain the following dispersion relation:

2 ]{72 18 2.2 9 2 2
% — Cs |:1 v < g4p0 4 g Gpok,2>:| , (16)
k A me My
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with )y
27 2 3
2 ( "ZQG%) T
c; = P 1 (17)
( 732/)0) +37T3PS
G
and
2792 p? 4 274° Po 2 4
A= 5 +37po5’ +73pg (18)
mq me;

For the second-order reduced equation (n = 2) with (I = 1), the following
equations are obtained:

9702 2 4 9742 p2 4 (1)
—iwes ( 7g2p0 + 37r§p8> @) — Ve ( 79 10 + 37r§p8> v
m

G mg 73
ik (21908 1847 Pok2 99°06 4 4 12 ) @
m2 mk “m¢, o)
G G G
27g%p2 54 454° 2\ apl)
+< g0 _ 94P0k2 g P0k4 3p3> Py, (19)
me me mG 193
: (1) (1)
i@ Ve @) 0u
- _ '8 =0 20
Cswpl o € +kvy T+ ¢ . (20)
then we obtain the following group velocity:
ko, k% (36g°p3  279%0% ,
o hafu B (0 T
G G

In order to discuss the issue of causality, we have to study the group
velocity which characterize the propagation speed of the fluid |21, 22|. The
causality of the theory is determined by the behavior of the real parts of the
frequencies. For the small k, the group velocity is given by Vy = 83,‘3“’ ™~ Cq.
This is nothing but the usual sound velocity, so the perturbations studied
here seem to be consistent with causality.

From the above equations, we conclude that there is no causality viola-
tion since there is no divergence in the group velocity and it converges very
quickly. For large k, we have V, = 8Re“’ — 0.
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For (n =2) and (I = 2), we obtain the following set of equations:

54 2 2 81 2 2
—WCs [( gzp0+677300> (2)+< I 4 5n 3P> v g)}

"G mg
54 144
Tk {( 79 po 2+37T3p0 S> ( gpo 9P0k2
mg, me
28892 p2 4 2 2 279%p}
— 8896 POgA | 27T§p5,> p;Q) + ( 792P0 79 Po L2 _ 796/)0 L4
mG mag me, ma
2792 1 4 2
+=9 pokﬁ W§p6’> (pgl)) } =0, (22)
mG 3
2 2
—C—wpg) + 2k‘v£2) + 2k:pgl)v§1) — Weg <U§1)> =0, (23)
from which we obtain the following expressions of the second-order quanti-
ties:
2 1)) 2
pé ) = A, <p§ )> )
2 )2
o = B, (V). (24)

2 2 2
w* (27 4 wV, (108 4
+[k2 < Tizpo—l-iiﬂ'gpg)—g( mgpo—l-87r§p§’>

G k G
o (279708 _ 459%05 >, 99° po iy 99 Po k4 Lo, 10 = o
m2 ma mb ms 3 0 1 ’
G G G G
(25)
2 w wV; 1 2
- gpg)JFU(())JFkCS(kg—?)‘Pg)‘ =0, (26)
from which we derive
2 1) ]2
( ) = Co ’/)1 )‘

9 2
Yo o = Dsﬂ‘:‘h ‘ : (27)
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Proceeding to the third order in e (n = 3) with [ = 1, and substituting
the derived expressions from the cases of (n = 2,1 = 2) and (n = 2,1 = 0)
into the components for (n = 3,1 = 1) of the reduced equations, we obtain
the following NLS equation:

au'/ 0’y 9
8 +2P82—£2+Q|W\ v =0, (28)

where ¥ = pgl) denotes the amplitude of the first-order density perturbation.

In the above equation, the coefficients P and Q) are given by

1 | 2w w? k% (54¢%p3  90g> p
P=_- =y —y2_Z _ = 0 0.2 929
w [ R A ( mg, + mg, (29)

i)

and

Q:wc§<w(3 D) <27g >A+Cg0
4

2 ke

+
ke (27g%p? 2
+55 (5520, - Do)+ 7 (5, - 50,

k2c? 27¢%p2 1 2 4 9g>
+wAS [—< 2fnf°+6w§pg> o+ Cop) +< o °k2> (6A, + Co)
G

+ (99 o k4> (34, + Cyp) — <549 Po k6> Aw} (30)
2mG

with

219°05  279°05 12 279°P5 14 _ o 2
mé 2mG 2mG
1 2
A, = ( A —i—A)\) ,
18Kk2 (ijfg + 575;1253]{;2) k2

G G

c1 =

Swln

P )

—99°05 , 69°0,2 | 39°P5 ;4
Ay = st kg k

ma mG mG
Ay = 992 99 Po B2 99° Po kY 4 99° Po 16 1 3

+ 7T3p
2 0>
me mG mG mG 9

2 4
+73p5,
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w 2
B, = B, +By) ,
T 1skse (328 + 2 fip2) <’f2 A>
mG m

G
B, = —99°05 | 249°00 2 | 89P0y, iog
sz m4(; m%
9 2 2 2,2
B, — 992p 45¢° Pokz 9996"0k4+%—8p0k6+17r§p§,
mG mG mG mG 9
CSO = 2 <C + SCA) )
( - )
Cu = ( — V) — 2V,
k (279°p5  459°pg 2 99° P} 44 99y, L2
C/\:w<m2—m4k: S5k ko )
e G G G
w c?
Dy = —————(Du+—=D
@ sz(VgQ_Cg) ( nt A )\> ’
wVy 2
Dy = =2 (Q2-q)+2(¢ -V (1+<))

5. Numerical results

Let us now investigate the stability/instability of the modulated wave
packets in a quark—gluon plasma model on the basis of the NLS equation (28)
that governs the Modulation Instability (MI) of the quark—gluon plasma.
Based on the linear stability analysis [23] when modulation on the wave
amplitude packet takes place in a direction, which is oblique to the direction
of the pump carrier wave propagation, we consider the dynamic solution of
the NLSE (28). Accordingly, we separate the amplitude into two parts

U = (W + 0V (x)) exp (—iAT) , (32)

where ¥ is the constant (real) amplitude of the pump carrier wave, 0¥ is
the small amplitude perturbation. Thus, 0¥ < ¥y, x = K& — 27 is the
modulation phase with K < k and {2 < w, respectively, the wave number
and the frequency of the modulation and A a nonlinear frequency shift. After
linearizing Eq. (28) and using Eq. (32), we obtain the governing equation
for small perturbation 0¥

A=-Q%|, (33)

,aw d9*ow .
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where we have 0¥* as the complex conjugate for 0¥. Introducing the trans-
formation 6% = U + iV introducing the latter expression for 6% in Eq. (34),
and separating the real and imaginary parts, we obtain the following equa-
tions:

ov 0*U
5 = P8§2 +2Q|lI/0\ U,
ou 0?V

Considering that the amplitude perturbation 0¥ varies as ~ exp[i(K& —
27)], one can obtain from the system of Eqs. (35) the following nonlinear
dispersion relation given by

2Q |Wp)?
2? = P2K? <K2 - Qp‘”) . (36)

From the dispersion relation (36), we can note that the stability of the
wave packets depends critically on the sign of the coefficient P/Q. It is clear
that if the coefficient P/Q < 0, then we have a positive value for 22 so the
frequency (2 is real for any values of the wave number K, the wave packet is
then modulationally stable in the presence of a small perturbation §¥. On
the other hand, when the coefficient P/Q > 0, the MI would set in when
{2 becomes imaginary. This happens when the modulation wave number K
of an external perturbation is smaller than the critical value K., given by

2
K. = QQ@. In this case, the perturbation grows exponentially in time.

Furthermore, the maximum growth rate is given by Q |y70\2 and is attained
at K = /K./2. Two types of stationary solutions are possible: (i) stable
solutions called dark envelope soliton when PQ < 0, and (%) unstable solu-
tions called bright envelope soliton when PQ > 0. For unstable wave packet
(PQ > 0), we have envelope soliton given by

bl

0 sech (’P’ )exp iT), (37)

=

where 7 is a real constant. For stable wave packet (PQ < 0), we obtain
modulationally stable wave with special solution known as envelope dark

soliton given by
_ e .
U= ’Q tanh (‘ 2P) 5) exp(iyT) . (38)
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It is obvious from Egs. (37) and (38) that the width and the amplitude of the
solitons vary with P and @, respectively. The soliton width is proportional
to |P| and the soliton amplitude is inversely proportional to |Q|. As appar-
ent from Eqgs. (29) and (30) for P and @, it is observed that these coefficients
depend upon number of parameters such as equilibrium density (or refer-
ence) po, dynamical mass of the hard gluon mg and coupling constant g.
The results obtained from the numerical analysis for various parameters for
the modulational instability of a quark—gluon plasma are plotted in the form
of graphs. The variation of P/Q as a function of k for different values of
po is shown in Fig. 1. It is observed that the wave remains stable at small
wave numbers k < k. and MI sets in when k > k.. The dark solitons occur
in the former case, i.e., for large wavelength, while bright envelope solitons
occur in the latter region. The wave number for which the instability sets
in is called the critical wave number. This critical value decreases with in-
creasing pg. Next, the effect of dynamical mass of the hard gluon mg on
the modulational instability is studied in Fig. 2. The latter, in which we
have depicted the ratio P/Q as a function of k for different values of mg,
displays such an influence. Although, both the dark and bright excitations
are obtained for small and large k, respectively, the trend is in contrast to
the earlier observations, i.e., the critical value k. increases with increasing
meq. Lastly, the influence of the coupling constant ¢ is shown in Fig. 3.
Both the stable and unstable regions are formed with varying the coupling
constant. It is observed that an increase in the value of coupling constant
i.e., as g increases, the critical value decreases.

P/Q

Fig. 1. Variation of the NLSE coefficients P/@Q with the carrier wave number k
for different values of the equilibrium (or reference) densities pg = 1,2 fm =3 (solid
curve), po = 1,5 fm=3 (dotted curve), pp = 2 fm~=3 (dashed curve) and py =
2,3 fm~3 (dot-dashed curve), with fixed values of g = 0,35 and mg = 290 MeV.
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P/Q

Fig. 2. Variation of the NLSE coefficients P/Q with the carrier wave number k for
different values of the dynamical mass of the hard gluon mg = 290 MeV (solid
curve), mg = 296 MeV (dotted curve), mg = 300 MeV (dashed curve) and mg =
304 MeV (dot-dashed curve), with fixed values of py = 2 fm =2 and g = 0, 35.
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Fig. 3. Variation of the NLSE coefficients P/Q with the carrier wave number k for
different values of the coupling constant g = 0,30 (solid curve), g = 0,32 (dotted
curve), g = 0,33 (dashed curve) and g = 0, 35 (dot-dashed curve), with fixed values
of pp =2 fm~3 and mg = 290 MeV.

6. Conclusion

To conclude, we have addressed the problem of the modulational insta-
bility of a cold quark—gluon plasma. NLSE is derived making use of the
standard reductive perturbation technique. It has been found that the equi-
librium density, the dynamical mass, and the coupling constant modify the
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regions of the stability /instability of the wave. The effect of the equilibrium
density (or reference) pg on the modulational instability is studied. Dark as
well as bright excitations occurred in all cases. The critical wave number at
which the instability sets in decreases as the equilibrium density increases.
Furthermore, the effect of the dynamical mass of the hard gluon mg on
the modulational instability is studied. Although both the dark and bright
excitations are obtained for small and large k, respectively, the trend is in
contrast to the earlier observations, i.e., the critical value k. increases with
increasing m¢. Lastly, the influence of the coupling constant g shows that
both stable and unstable regions are formed with varying the coupling con-
stant. It is observed that an increase in the value of coupling constant i.e.,
as g increases, the critical value decreases.

The findings of this investigation may be helpful in understanding strongly
interacting medium phenomena and astrophysical situations. The study of
nonlinear waves in hadron physics is an interesting and fast-developing field.
This study will help to interpret and understand the data from the Large
Hadron Collider at CERN. We hope that our investigation may aid to un-
derstand the nonlinear structures that may occur in quark—gluon plasmas.
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