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Abstract In the ultra-cold regime Van der Waals forces between neutral atoms
can be represented by short range effective interactions. We show that universal
low energy scaling features of the underlying vdW long range force stemming
from two photon exchange impose restrictions on an Effective Field Theory with-
out explicit photons. The role of naively redundant operators, relevant to the defi-
nition of three body forces, is also analyzed.
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1 Introduction

From a fundamental QED point of view the underlying mechanism responsible for
van der Waals (vdW) forces corresponds to two photon-exchange (see e.g. (1) and
references therein). As compared to the short range and exponentially suppressed
chemical bonding forces on sizes about a few Bohr radii, vdW forces are long
range. For interatomic separations aB � r � h̄c/∆E, two photons are exchanged
in a short time ∼ 2r/c while transitions with excitation energy ∆E take a much
larger time ∼ 2h̄/∆E, yielding the potential

V (r) =−C6

r6 −
C8

r8 −
C10

r10 −·· · (1)

where Cn are the dispersion coefficients which are accurately known for many
diatomic systems (see e.g. a compilation in (2)). The vdW length R = (MC6/h̄2)

1
4

characterizes the size of the forces. For such potentials, low energy scattering with
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kR � 1 is dominated by S-waves which phase-shift, δ0(k), fulfills the effective
range expansion (ERE) (3)

k cotδ0(k) =− 1
α0

+
1
2

r0k2 + v2k4 log(k2R2)+ · · · (2)

where α0 is the scattering length, and r0 is the effective range. Note that for this
potential the long-range character stars at O(k4) due to the logarithmic piece.

2 Low Energy Scaling of vdW Forces

Remarkably, the effective range was computed analytically (4; 5) when Cn≥8 = 0
yielding

r0/R = 1.395−1.333(R/α0)+0.6373(R/α0)2 (3)

The scaling of the effective range r0 in the vdW length and the quadratic 1/α0
behaviour is just a particular case of a more general result (6) (see also (7) in these
proceedings). In fact, the dominance of the leading long distance C6 term tacitly
assumed in Refs. (4; 5) was to be expected a priori by suitably re-writing higher
order C8,C10 contributions in vdW units R2MV (r)=−(R/r)6

[
1+g1(R/r)2 +g2(R/r)4 + · · ·

]
where g1 ∼ 10−2 and g2 ∼ 10−4 for many homonuclear diatomic systems. Thus
one expects that even for kR∼ 1 higher order corrections are negligible despite the
strong divergence at short distance. These expectations are indeed met a posteriori
on the light of about a hundred calculations based on phenomenological potentials
(6). This result not only favours the view that these rather simple approaches based
on the leading vdW forces are phenomenologically sound but also shows that a
huge reduction of parameters takes place suggesting that atoms in the ultra-cold
regime can indeed be handled without much explicit reference to the underlying
electronic structure of atoms. The scaling universal relation, Eq. (3), allows for
a quite general discussion on effective interactions in vdW units, as we advance
here.

3 Effective Short Distance Potentials

In the ultra-cold regime, i.e. for extremely long de Broglie wavelengths much
larger than the vdW scale, λ = 1/k � R , one expects the long range character to
become largely irrelevant, keeping the first two terms in Eq. (2). Thus, one might
want to represent the vdW potential by an effective potential with a finite range,
rc, featuring the truncated ERE, Eq. (2), and dismissing any explicit reference to
the underlying photon exchange. However, even at very low energies, causality
arguments provide the shortest possible value for rc, which for vdW forces yields
rc > 0.6R (2). Using for illustration a square well (SW) potential with range rc
and depth V0,Veff(r) =−V0θ(rc− r), one obtains

α0 = rc− tan
√

MV0rc/
√

MV0 , r0 = rc
[
1−1/(α0rcMV0)− r2

c/(3α
2
0 )

]
.(4)

Reproducing Eq. (3) is not possible for a common potential. Indeed, the sign of the
1/α2

0 term is just opposite, so that for small α0 we cannot represent the interaction
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by this short range potential. On the contrary, for large scattering lengths α0 � R
we obtain rc = 1.395R and V0 = π2/(4r2

c M). In terms of volume integrals,

C0 =
∫

d3xVeff(x) , C2 =−1
6

∫
d3xr2 Veff(x) (5)

one gets MCSW
0 /R =−14.41 and MCSW

2 /R3 = 2.80. If we use instead a delta-shell
(DS) potential Veff(r) =−V0rcδ (r− rc) we get for α0 � R the results MCDS

0 /R =
−13.15 and MCDS

2 /R3 = 2.40, not far from the SW estimate. This suggests using a
formulation based directly on the constants C0 and C2. Note that while a C4 exists
for these short distance potentials, the original vdW potential yields a divergence,
in harmony with the observation that the ERE for short range potentials differs at
O(k4) from the vdW expression, Eq. (3).

4 Effective Field Theory

The EFT approach has often been invoked to highlight universal features of ultra-
cold few atoms systems (for reviews see e.g. (8; 9)). We re-analyze it on the light of
the universal and extremely successful scaling relation, Eq. (3). For definiteness,
we consider the Galilean invariant Lagrangian density (10) expanded in composite
Bosonic spinless field operators with increasing energy dimensions and including
multi-particle interactions,

L = ψ
†
(

i∂t +
∇2

2m

)
ψ− C0

2
(ψ†

ψ)2− C2

2
[∇(ψ†

ψ)]2− D0

6
(ψ†

ψ)3 + · · · (6)

Here C0,C2 and D0 are low energy constants which are fixed from few body
dynamics. Using Feynman rules in the two-body sector one derives a scale depen-
dent and momentum truncated self-adjoint pseudo-potential in the CM system (k
and k′ are relative momenta)

〈k′|V |k〉=
[
C0 +C2(k2 +k′2)+ . . .

]
θ(Λ − k)θ(Λ − k′). (7)

The cut-off Λ is introduced here to handle the power divergent integrals arising in
the scattering problem, which in terms of the Lippmann–Schwinger (LS) equation
becomes

〈k′|T |k〉= 〈k′|V |k〉+M
∫ d3q

(2π)3
〈k′|V |q〉〈q|T |k〉

p2−q2 + i0+ , (8)

implementing unitarity for p ≤ Λ . Using the potential of Eq. (7) the LS Eq. (8)
reduces to a system of algebraic equations which solution is well known (see e.g.
Ref. (11)) yielding

− 1
α0Λ

=
4
(
−2c2

2 +90π4 +15(3c0 +2c2)π2
)

9π
(
c2

2−10c0π2
) ,

(9)

r0Λ =
16

(
c2

2 +12π2c2 +9π4
)

π (c2 +6π2)2 −
12c2

(
c2 +12π2

)
(c2 +6π2)2

1
α0Λ

+
3c2π

(
c2 +12π2

)
(c2 +6π2)2

1
α2

0Λ 2 ,
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Fig. 1 Cut-off dependence of the EFT coefficients MC0/R when C2 = 0 (dashed red) and
MC0/R3 and MC2/R3 after Eqs. (9) (full blue) for the case α0/R = 10. R is the vdW scale
defined as R = (MC6/h̄2)

1
4

where c0 = MΛC0,c2 = MΛ 3C2. By eliminating C0 in terms of α0 we have writ-
ten r0 in a form similar to Eq. (3). This leads for any cut-off Λ to the mapping
(α0,r0) → (C0,C2). For C2 = 0 one gets r0 = 4/πΛ which for α0 � R yields
ΛR = 0.91 and MC0/R = −21.6 from matching the scattering length and the
effective ranges rvdW

0 = rEFT
0 . The cut-off dependence for C2 6= 0 can be looked

up at Fig. 1 in vdW units and for the specific case α0/R = 10 where a weakly
bound state takes place. As we see there is a clear stability plateau in the region
Λ ∼ π/(2R) illustrating the basic point of the EFT; low energy physics is cut-off
independent within a given cut-off window which does not resolve length scales
shorter than the vdW scale. Numerically we get MC0/R ∼−15 and MC2/R3 ∼ 2
for Λ ∼ π/(2R), in agreement with the previous SW and DS analysis. The val-
ues of Λ where the EFT low energy parameters diverge correspond to an upper
bound above which C0 and C2 become complex, violating the self-adjointness of
the potential (2) and the Lagrangian, L (x) 6= L †(x). Thus, off-shell two-body
unitarity and hence three-body unitarity are jeopardized for ΛR ≥ 4, despite the
phase shift being real and on-shell unitarity being fulfilled.

Direct inspection shows that a perfect matching between the vdW and the
EFT effective ranges, Eq. (3) and Eq. (9) for any α0 is not possible. So we try out
including redundant operators which are usually discarded (10) but are needed to
guarantee off-shell renormalizability of the LS equation (12). A Galilean invariant
term of the form ∆L =− 1

2C′
2(ψ

†ψ)
[
ψ†

(
i∂t +∇2/2m

)
ψ

]
is formally redundant

since it can be eliminated by a field transformation ψ → ψ + 1
4C′

2ψ(ψ†ψ) which
generates additional three body forces as well. The new term adds a correction
∆V = C′

2(2p2−k2−k′2)/2 to the potential, Eq. (7), vanishing on-shell. Solving
the LS equation and eliminating C0 in terms of α0 yields

r0Λ =
16

(
(c′2−2c2)2 +36π4 +6(8c2− c′2)π

2
)

π
(
−2c2 + c′2−12π2

)2

−
12

(
(c′2−2c2)2 +48c2π2

)(
−2c2 + c′2−12π2

)2
1

Λα0
+

3π
(
(c′2−2c2)2 +48c2π2

)(
−2c2 + c′2−12π2

)2
1

Λ 2α2
0

,(10)

where c′2 = MΛ 3C′
2 appears through the combination C′

2 − 2C2 which cannot be
completely eliminated by making C2 → C2 + 1

2C′
2. Note the accidental correla-

tion −4/π between the second and the third coefficients holding regardless on
the particular regularization method. Perfect matching can only be achieved with
complex coefficients. Minimizing the difference between rEFT

0 and rVdW
0 provides

a reasonable range ΛR = 1.6− 1.8 ∼ π/2. As we can see, universal two-body
scaling features encoded in Eq. (3) and exhibiting the underlying vdW (two pho-
ton exchange) nature of interactions impose severe restrictions on the EFT solu-
tion with no explicit photonic degrees of freedom and distinguish between naively
unitarily equivalent Hamiltonians mixing different particle number (see e.g. Ref.
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(13)). Therefore, these limitations are expected to play a role in the EFT analysis
of three-body forces.
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