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Abstract In this work we build a relativistic anisotropic
admissible compact structures. To do so we combine the class
I approach with gravitational decoupling in order to generate
the deformation function f (r). As an example we have re-
anisotropized two anisotropic matter distributions previously
obtained by the class I procedure. To produce all the graph-
ical study supporting this analysis, we have considered the
data corresponding to the compact object 4U 1538-52, SMC
X-1 and LMC X-4 for model 1 and Cen X-3 for model 2. In
considering the last one, we have taken the constant param-
eter α to be {−0.3; 0.1; 0.3}. It is found that the resulting
models satisfy all the general requirement in order to repre-
sent or describe realistic compact structures such as neutron
or quark stars.

1 Introduction

The embedding class I condition is a versatile and simple
tool, which can be considered an auxiliary condition to solve
Einstein’s field equations. Staged by Karmarkar [1], this
condition generally applies to any n-dimensional (pseudo)-
Riemannian space-time. In short, this technique says that a n-
dimensional (pseudo)-Riemannian manifold can be embed-
ded into a pseudo-Euclidean n+ p-dimensional space, where
p denotes the class of the embedded manifold. Since general
relativity works on a 4-dimensional manifold a spherically
symmetric and static space-time described by a Riemaniann
variety with Lorentzian metric can be embedded within a 5-
diemensional pseudo-Euclidean space, then the submerged
manifold is of class I. For the aforementioned case the deriva-
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tion of the class I condition made by Karmarkar reads

Rrtrt = Rrθrθ Rφtφt + Rrθθ t Rrφφt

Rθφθφ

. (1)

The above relationship between the Riemann tensor compo-
nents is valid only if Rθφθφ �= 0 [2]. As we will see in the
following, the components of the Riemann tensor engaged
in expression (1) lead to a beautiful and simple relationship
between the metric potentials ν and λ that determine the
geometry of the space-time under study. For the resolution
of the field equations in the context of general relativity, this
relationship is very helpful, given that in the context of com-
pact solutions such as the modeling of neutron stars, whose
material content is described by an imperfect fluid, the num-
ber of unknowns exceeds the number of equations. Specifi-
cally one has five unknowns: the geometry {ν, λ} and the mat-
ter content {ρ, pr , pt }. Then, with the imposition of a suitable
ansatz for ν or λ the class I condition leads to the determina-
tion of the modeling geometry, whereby the thermodynamic
variables that characterize the model are obtained by insert-
ing the resulting geometry into the field equations. Therefore
the problem is mathematically solved.

Due to the great difficulty involved in solving the general
relativity field equations, during the last years the conspiracy
of class I has been widely used in the study on modeling
compact structures with anisotropic matter distribution [3–
37]. As we mentioned earlier this technology solves the prob-
lem in the mathematical sense, however the challenge is even
greater since such models must be physically admissible to
represent a realistic situation. In a simpler context a compact
configuration can be made of a perfect fluid matter distribu-
tion p = pr = pt , which greatly reduces the resolution of the
field equations. Nevertheless, the work by Lake and Delgaty
[38] showed that not all models built on the assumption of
a perfect fluid distribution are admissible from the physical
point of view. The inclusion of local anisotropies � ≡ pt−pt
in the stellar interior has a long history and has been thor-
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oughly studied [39–66]. Due to extreme internal density and
strong gravity within self-gravitating compact object indi-
cates that pressure may not be equal, i.e., there exist two
different kinds of interior pressures, namely the radial and
tangential pressure [41,67]. Such kind of compact object may
be developed to study the phase transitions and distributions
containing the combination of two fluids [68,69]. Lemaître
[70] first pointed out this outcome in the stellar structure and
evolution of compact objects. Later on, Bowers and Liang
[39] revived the interesting study of anisotropic relativistic
matter distributions in general relativity. Using the general-
ization of the equation of hydrostatic equilibrium, they cre-
ated a static spherically symmetric stellar structure and inves-
tigated the modifications in the surface redshift and gravita-
tional mass. Through the theoretical studies, Ruderman in
[71] jagged that nuclear matter tends to become anisotropic
in nature at very high densities of order of 1015 g/cm3. For a
massive compact star model, they had considered that both
pressures (radial and tangential) might be differ to each other.
In this situation, many different opinions have been presented
for the presence of anisotropy in the stellar compact objects
such as by the existence of different kinds of phase transitions
[72], the occurrence of solid core, combination of two flu-
ids, presence of type 3A superfluid [73] or by other different
physical aspects. Nowadays, several works have been done
for anisotropic stellar models in different context [32,74–
77,79].

In this direction, recently a novel method was developed
to generate anisotropic solutions to Einstein’s field equations
[80–90]. The so-called gravitational decoupling by minimal
geometric deformation (MGD) was designed to extend solu-
tions driven by an isotropic matter distribution to anisotropic
domains. This scheme not only modifies the material content
of the object, also deforms its geometry in such a way that
the symmetry of the solution is preserved. These last two
years the amount of works available in the literature using
this method has grown considerably. Applications range from
stellar interiors, black holes and modified gravity theories, to
name a few [78,91–116]. What is more, the MGD inverse
problem ı.e, given an anisotropic solution it is possible to
know the isotropic counterpart, was developed in [117] and
the extended case, that is, deformation on both metric poten-
tials was worked in [118].

Recently, class I condition has been used within the frame-
work of MGD [119]. In that work, a space-time has been gen-
erated using the embedding technique and then deformed
by applying MGD. In this sense, the proposal of this arti-
cle is not only to extend solutions to scenarios dominated
by anisotropic matter. The fundamental idea is to use Kar-
markar’s condition as a generator of MGD, which in turn
allows to determine the components of the new material
sector responsible for the anisotropic behavior inside the
compact structure. As examples we have considered the

uncharged Adler–Finch–Skea solution [120,121] to be re-
anizotropized using the described methodology and a hybrid
obtained by using the temporal metric potential correspond-
ing to Kuchowicz space-time [122] which was worked in
[13]. It is worth mentioning that the Adler–Finch–Skea solu-
tion was already obtained in the framework of class I scheme,
as well as the hybrid formed by Kuchowicz metric poten-
tial. Furthermore, in both cases the matter distribution corre-
sponds to an anisotropic charged one (see [28] and [29] for
further details). However, in this case we have taken only the
geometry of such solutions. To produce the profiles of the
energy–density, radial and tangential pressures, anisotropy
factor, velocities of the pressure waves, stability and balance
mechanism we have used the observational data correspond-
ing to the compact objects [123] 4U 1538-52, SMC X-1 and
LMC X-4 for model 1 (Adler–Finch–Skea) and Cen X-3 for
model 2 (Kuchowicz). The article is organized as follows:
Sec. 2 presents in brief the class I approach and the gravi-
tational decoupling by means of minimal geometric defor-
mation. In Sect. 3 the anistoropic stellar interior solution is
provided. Next in Sect. 4 are analyzed the main results and
finally in Sect. 5 some remarks are reported.

Throughout the article we shall use the mostly negative
signature {+,−,−,−}.

2 Class I and MGD schemes revisited

2.1 Embedding class I

A space-time is said to be of class I ı.e, admits to be embedded
into a 5-dimensional pseudo-Euclidean space, if there exist
a second fundamental form symmetric tensor Kσγ = Kγ σ

satisfying the Gauss–Codazzi equations

Rσγβω = ε
(
KσβKγω − KσωKγβ

)
, (2)

∇βKσγ = ∇γ Kσ,β, (3)

where ε = ± (according to the normal to the manifold being
time-like “–” or space-like “+”), Rσγβω is the Riemann tensor
and ∇ω the affine connection associated to the metric tensor
gγβ , ∇γ gβω = 0.

Regarding the spherically symmetric and static space-time
given in Schwarzschild like coordinates x = {t, r, θ, φ} by

ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin2θdφ2

)
, (4)

the only non trivial components of the symmetric tensor Kσγ

are: Ktt , Krr , Kθθ = sin2θ Kφφ and Ktr = Krt . By inserting
these components into (2) one arrives to

Rrtrt = Rrθrθ Rφtφt + Rrθθ t Rrφφt

Rθφθφ

. (5)
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The Riemann tensor components compromised in the previ-
ous condition and associated to the line element (4) are

Rrtrt = −eν

(
ν′′

2
− λ′ν′

4
+ ν′2

4

)
, (6)

Rθφθφ = −e−λr2 sin2 θ
(
eλ − 1

)
, (7)

Rφtφt = − r

2
ν′eν−λ sin2 θ, (8)

Rrθrθ = − r

2
λ′, (9)

Rrφφt = 0 (10)

Rrθθ t = 0. (11)

Next, replacing (6)–(11) in Eq. (5) we obtain the following
differential equation

2
ν′′

ν′ + ν′ = λ′eλ

eλ − 1
, (12)

with eλ �= 1, from where

eλ = 1 + Aν′2eν, (13)

being A an integration constant. Equation (12) also can be
solved to express the metric potential ν in terms of λ as fol-
lows

eν =
[
B + C

∫ √
eλ − 1dr

]2

, (14)

where B and C are integration constants.

2.2 Gravitational decoupling by MGD

Minimal geometric deformation (MGD from now on)
approach is a novel tool useful to generate anisotropic solu-
tions of the Einstein field equations starting from an isotropic
(anisotropic) one [90]. In general, there are many ways to
introduce local anisotropies. In this regard we will focus
on the case where the shear term of the energy–momentum
tensor is taken to be null. Hence, the anisotropic behaviour
appears when pt − pr �= 0. In order to produce the afore-
mentioned anisotropies, it is necessary to introduce an extra
gravitational source which, in principle, can be e.g. a scalar,
vectorial or tensorial field. This extra source is coupled to
the energy–momentum tensor associated to the seed solu-
tion. The effective energy–momentum tensor can be defined
as follows [90,124]

Tμν ≡ T̃μν + αθμν, (15)

where T̃μν corresponds to a perfect fluid given by

T̃μν = (ρ̃ + p̃) χμχν − p̃gμν, (16)

being χμ = e−ν/2δ
μ
t the time-like four velocity of the fluid

satisfying χμχμ = 1, ρ̃ the isotropic energy–density and
p̃ the isotropic pressure. The new field θμν encodes the

anisotropies introduced into the system. Now, the Einstein
field equations

Gμν ≡ Rμν − 1

2
Rgμν = −8πG

c4 Tμν, (17)

associated with the geometry (4) and the matter distribution
(15) explicitly reads

8πρ = 1

r2 − e−λ

(
1

r2 − λ′

r

)
, (18)

8πpr = − 1

r2 + e−λ

(
1

r2 + ν′

r

)
, (19)

8πpt = 1

4
e−λ

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
, (20)

where the primes denote differentiation with respect to the
radial coordinate r . Besides, hereinafter we shall employ
geometrized relativistic units where G = c = 1. The full
diffeomorphims symmetry entails the conservation of the
energy–momentum tensor

∇μT
μ
ν = 0, (21)

which reads

p̃′ + 1

2
ν′ ( p̃ + ρ̃) − αH(θ ii ) = 0, (22)

where the function H(θ ii ) encodes the corresponding
anisotropies and it is defined as:

H(θ ii ) ≡ (
θrr

)′ + 1

2
ν′ (θrr − θ tt

) + 2

r

(
θrr − θϕ

ϕ

)
. (23)

The above expression (22) is a linear combination of Eqs.
(18)–(20), where we have defined

ρ ≡ ρ̃ + αθ tt (24)

pr ≡ p̃ − αθrr (25)

pt ≡ p̃ − αθϕ
ϕ . (26)

It is essential to point out that the inclusion of θ -term intro-
duces anisotropies if θrr �= θ

ϕ
ϕ only. Thus the effective

anisotropy is defined in the usual manner, namely:

� ≡ pt − pr = α
(
θrr − θϕ

ϕ

)
. (27)

Naturally, we recover a perfect fluid when α is taken to be
zero. On the other hand if the seed solution already contains
anisotropies inside the matter content the energy–momentum
tensor is described by an imperfect fluid distribution as fol-
lows

T̃μν = (ρ̃ + p̃t ) χμχν − gμν p̃t + ( p̃r − p̃t ) uμuν, (28)

with p̄r and p̄t being the pressure waves in the principal
directions ı.e, the radial and tangential ones respectively. The
four-velocity of the above fluid distribution is characterized
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by the time-like vector χν . Moreover uν is a unit space-like
vector in the radial direction (orthogonal to χν). In that case
(27) becomes to

� ≡ p̃t − p̃r + α
(
θrr − θϕ

ϕ

)
. (29)

So, in this case the extra term α
(
θrr − θ

ϕ
ϕ

)
introduces a

stronger anisotropic behaviour into the matter distribution.
This serves to improve the stability and equilibrium mecha-
nism. In general, it is not trivial to obtain analytic solutions
of the Einstein field equations in the context of interior solu-
tions, ı.e., relativistic stars. To find a tractable exact solu-
tion, albeit recent, a popular alternatives is the gravitational
decoupling via the MGD approach. The crucial point of this
technique relies on the following map:

eν(r) �→ eν(r) + αh(r) (30)

e−λ(r) �→ μ(r) + α f (r), (31)

in which we deform minimally the gtt and grr components of
the metric. The later maps deform the metric components by
the inclusion of certain unknown functions h(r) and f (r).
At this level, it is noticeable remark that the correspond-
ing deformations are purely radial. The later feature remains
the spherical symmetry of the solution. The so-called MGD
corresponds to set h(r) = 0 with f (r) �= 0, or h(r) �= 0
with f (r) = 0. The first case maintain the deformation in
the radial component only, which means that any temporal
deformation is excluded. In light of this, the anisotropic ten-
sor θμν is produced by the radial deformation (31).

The system of differential equations can be split under
the replacement (31). Thus, the field equations are naturally
decoupled in two set: i) the first set satisfies Einstein field
equations, and correspond to the isotropic (anisotropic) case,
namely α = 0, and it is given by

8πρ̃ = 1

r2 − μ

r2 − μ′

r
(32)

8π p̃ = − 1

r2 + μ

(
1

r2 + ν′

r

)
(33)

8π p̃ = μ

4

(
2ν′′ + ν′2 + 2

ν′

r

)
+ μ′

4

(
ν′ + 2

r

)
, (34)

along with the following conservation equation

p̃′ + 1

2
ν′ ( p̃ + ρ̃) = 0, (35)

and ii) the second set of equations corresponds to the θ -sector
which is obtained when we turn on α. Thus, the equations
for the later sector are:

8πθ tt = − f

r2 − f ′

r
(36)

8πθrr = − f

(
1

r2 + ν′

r

)
(37)

8πθϕ
ϕ = − f

4

(
2ν′′ + ν′2 + 2

ν′

r

)
− f ′

4

(
ν′ + 2

r

)
. (38)

The corresponding conservation equation associated to the
θ -sector is computed to be

(
θrr

)′ − 1

2
ν′ (θ tt − θrr

) − 2

r

(
θϕ
ϕ − θrr

) = 0. (39)

It is important to remark that the above equation is precisely
the essential point to use the MGD approach, given that it
guarantees that the energy interchange is pure gravitational
only. At this stage it should be noted that if the seed solution
is anisotropic the pressure in the left hand side of Eqs. (33)–
(34) must be replaced by p̃r and p̃t , respectively. Moreover,
the conservation equation is modified to

p̃′
r + 1

2
ν′ ( p̃r + ρ̃) + 2

r
( p̃r − p̃t ) = 0. (40)

3 Anisotropic stellar interiors

In this section we provide two examples of anisotropic stellar
interiors. Specifically, we re-anisotropize the Adler–Finch–
Skea model previously obtained in [28] and second one was
worked in Maurya et al. [29] (although in these works the
solutions include electric charge we will take only the geo-
metrical description).

To do so the embedding class I technology is combining
with the MGD machinery to generate the deformation func-
tion f (r). Putting together Eqs. (12) and (31) one arrives
to

α f ′(r) + μ′(r) =
[

2
ν′′(r)
ν′(r)

+ ν′(r)
][

μ2(r) + 2αμ(r) f (r)

+α2 f 2(r) − μ(r) − α f (r)

]
. (41)

In principle this first order non-linear differential equation
(41) in f (r) looks to complicated, however it is possible to
integrate this equation for specific choice of ν(r) and μ(r). It
should be remembered that the seed solution corresponds to a
solution of the Einstein field equations with anisotropic mat-
ter distribution which was obtained using the Karmarkar con-
dition (13). A (almost complete) list of such solutions can be
found in [6]. Although some solutions have a fairly complex
geometry, the differential equation (41) can be solved in most
cases, except for some exceptions where the seed solution is
described by very complex metric functions, such as hyperge-
ometric functions. Moreover in the works [125–128], it was
proved that in the modelling of realistic compact objects, the
gravitational potential ν(0) = finite and constant, ν′(0) = 0
and ν′′(0) > 0. On the other hand, the radial pressure and
the energy density must be positive and continuous within the
compact objects which yields r > 2m(r) [129,130]. Then
from pr ≥ 0 with r > 2m(r), it follows that ν′(0) �= 0. This
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implies that generic function ν(r) attains its regular minimum
at centre and increasing monotonically function of r . Also
we ensure that the another obtained gravitational potential
eλ(r) should be the form eλ(r) = 1+O(r2) near at r = 0. By
keeping all above mathematical and physical points in our
mind we have chosen two different space-time to modeling
compact structures, which are given below.

3.1 Model 1

To find the decoupler function f (r) we impose the following
class I seed space-time

ν(r) = Ln

[(
A + Br2

)2
]

, (42)

μ(r) = 1

1 + Cr2 . (43)

From Eqs. (42)–(43) it can be clearly observed that this space-
time is fulfilling the physical and mathematical requirements
mentioned above (see Fig. 1). Moreover, the matter content
inside the stellar interior described by the above geometry is
given by

ρ̃ = C
(
Cr2 + 3

)

8π
(
Cr2 + 1

)2 , (44)

p̃r = 4B − BCr2 − AC

8π
(
Br2 + A

) (
Cr2 + 1

) , (45)

p̃t = 4B + BCr2 − AC

8π
(
Br2 + A

) (
Cr2 + 1

)2 , (46)

where the constants B and C have units of [length]−2 and A
is dimensionless. So, the decoupler function obtained from
(41) using Eqs. (43)–(42) is

f (r) = Cr2
(
1 + Cr2

) (
α + CF + FC2r2

) , (47)

being F an integration constant with units [length]2. As it
is observed at r = 0 the deformation function f (r) is zero.
furthermore, it is dimensionless. So, the deformed space-time
reads

ds2 = −
(
A + Br2

)2
dt2 +

(
1

1 + Cr2

+ αCr2
(
1 + Cr2

) (
α + CF + FC2r2

)
)−1

dr2 + r2d�2.

(48)

Now, by inserting Eq. (47) into the set of Eqs. (36)–(38) pro-
vide the following expressions for the θ -sector components

θ tt =
αC

(
FC3r4 − 2FC2r2 − αCr2 − CF − 3α

)

8π
(
FC3r4 + 2FC2r2 + αCr2 + CF + α

)2 , (49)

θrr =
−αC

(
5Br2 + A

)

8π
(
FC3r4 + 2FC2r2 + αCr2 + CF + α

) (
A + Br2

) , (50)

θ
ϕ
ϕ = C

8π
(
FC3r4 + 2FC2r2 + αCr2 + CF + α

)2 (
A + Br2

)

×
(
FBC3r6 + AFC3r4 − 8BFC2r4 − 4αBCr4 − 7BCFr2

−7αBr2 − ACF − αA

)
. (51)

So, by virtue of Eqs. (45), (46), (50) and (51) the anisotropic factor (29) is
given by

�(r) =
FC2r2

[
CF

(
AC + B

(
Cr2 − 2

))
− 2αB

]

8π
[
A + Br2

] [
CF

(
1 + Cr2

) + α
]2 . (52)

As can be seen at the center r = 0 of the compact star (52)
is vanishing ı.e, �(0) = 0 as it is required.

3.2 Model 2

In order to find the decoupler function f (r) for the model 2,
we impose the following another class I seed space-time

ν(r) = A + Br2, (53)

μ(r) = 1

1 + C r2 eA+Br2 . (54)

Again it is observed that from From Eqs. (53)–(54) the space-
time is satisfying the physical and mathematical require-
ments mentioned above (see Fig. 5). The matter content
inside the stellar model 2 can be described using the above
geometry as follows,

ρ̃ = C eA+Br2
(3 + 2Br2 + C r2 eA+Br2

8π
(
1 + C r2 eA+Br2)2 , (55)

p̃r = 2B − C eA+Br2

8π
(
1 + C r2 eA+Br2) , (56)

p̃t = 2B − C eA+Br2 + B2 r2

8π
(
1 + C r2 eA+Br2)2 , (57)

where the constants B and C have same units as [length]−2

while A is dimensionless. Then from (41), the decoupler
function f (r) can be obtained by using Eqs. (54)–(53) as,

f (r) = C r2 eA+Br2

(
1 + C r2 eA+Br2) (

α + C eA F + FC2r2 e2A+Br2) ,

(58)

being F an integration constant with units [length]2. As it
is observed at r = 0 the deformation function f (r) is zero,
and has no dimension. Then the deformed space-time for the
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Model 2 can be read as,

ds2 = eA+Br2
dt2 − r2d�2 −

(
1

1 + C r2 eA+Br2

+α
C r2 eA+Br2 (

1 + C r2 eA+Br2)−1

(
α + C eA F + FC2r2 e2A+Br2)

)−1

dr2.

(59)

Now, by plugging Eq. (55) into the set of Eqs. (36)–(38)
which yield the following expressions for the θ -sector com-
ponents

θ tt = C eA+Br2 [
C3 e3A+2Br2

F r4 − θ1(r) − C r2 θ2(r)
]

8π (1 + C r2 eA+Br2
)2

[
C eA F (1 + C r2 eA+Br2

) + α
]2 , (60)

θrr = −C eA+Br2
(1 + 2 B r2)

8π (1 + C r2 eA+Br2
)
[
C eA F (1 + C r2 eA+Br2

) + α
] , (61)

θ
ϕ
ϕ = C eA+Br2 [

C3 e3A+2Br2
F r4 − θ3(r) − BC r4 θ4(r)

]

8π (1 + C r2 eA+Br2
)2

[
C eA F (1 + C r2 eA+Br2

) + α
]2 (62)

where, θ1(r) = (3 + 2Br2) (C eA F + α),
θ2(r) = eA+Br2

(2C eA + α),
θ3(r) = [1 + 2Br2 (2 + Br2)] (C eA F + α),
θ4(r) = (2 + B r2) eA+Br2

(2C eA + α).
Then, from Eqs. (56), (61) and (62) the anisotropic factor
(29) is given by

�(r) = r2
[
C2 e2A+Br2

F − B (C eA F + α)
]2

8π
[
C eA F (1 + C r2 eA+Br2

) + α
]2 . (63)

It can be clearly noted that the anisotropy, given in Eq. (63),
vanishes at the center of the compact star i.e. �(0) = 0 at
r = 0 which is required for physical acceptability.

4 Physical analysis

The feasibility of any model describing the interior of a com-
pact object representing realistic structures such as neutron
stars must satisfy some requirements to be physically and
mathematically admissible [40,56]

• The metric potentials, namely eν and eλ must be free from
singularities, finite and monotone increasing functions
with increasing radius. Besides, eν(0) > 0 and eλ(0) = 1.

• The main thermodynamic variables, namely {ρ, pr , pt }
should be strictly positive functions at every point inside
the configuration.

• The behavior of the thermodynamic observables responds
to a monotonically decreasing one ı.e, their maximum
values are attained at the center of the object reaching
their minimum at the surface.

• Both the radial and tangential pressure coincide at the
center. Moreover, at the boundary the radial pressure must
vanish and the tangential one not necessarily is.

Fig. 1 The trend of metric potential against the radial coordinate r/R
for C = 0.2 km−2, α = 0.008km and different values mentioned in
Table 1 for compact objects 4U 1538-52, SMC X-1 and LMC X-4

• Inside the compact static structure the velocity of the
pressure waves in the principal direction of the sphere
must be less than the speed of light c = 1 in order to
preserve causality condition: 0 ≤ v2

r = dpr
dρ < 1 and

0 ≤ v2
t = dpt

dρ < 1.
• The energy–momentum tensor has to satisfy simultane-

ously the following conditions: ρ − pr − 2pt ≥ 0 and
ρ + pr + 2pt ≥ 0.

In addition to meet the above requirements, at the bound-
ary � : r = R the model describing the stellar interior
M− should be joined in a smoothly way with the corre-
sponding exterior space-time M+. As we are dealing with
an uncharged anisotropic fluid sphere, in principle the outer
manifold is described by the vacuum space-time ı.e, external
Schwarzschild solution. Nevertheless, the inclusion of the θ -
sector into the matter field could in principle modify both the
geometry and the matter content of the outer manifold. In
this situation the compact structure will be not immersed in
vacuum space-time anymore. In this case the compact object
can remain embedded into a vacuum space-time whether the
contributions coming from the θ -sector are assumed to be
confined within the stellar interior only [90]. Thereby the
outer manifold M+ is given by [131]

ds2=
(

1−2MSch

r

)
dt2−

(
1−2MSch

r

)−1

dr2 − r2d�2,

(64)

being MSch the Schwarzschild mass which coincides with
the total mass M of the object at the boundary �. Then, to
match the inner manifold M− with the external one M+
we apply the Israel-Darmois junction conditions procedure
[132,133]. This procedure dictates the continuity of the first
and second fundamental form across the surface �. The first
fundamental form says that the intrinsic geometry described
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by the metric tensor gμν induced by M− and M+ on the
interface meets

g−
t t |r=R = g+

t t |r=R and g−
rr |r=R = g+

rr |r=R (65)

and the second fundamental form related with the extrin-
sic geometry described by the extrinsic curvature tensor ki j
(Latin indices run over on spatial coordinates) says

pr (r = R) = [
p̃r (r) − αθrr (r)

] |r=R = 0, (66)

and

MSch = M = m(R) = 4π

∫ R

0

[
ρ̃ + αθ tt

]
r2dr. (67)

The expression (66) is obtained from the continuity of krr
while (67) comes from the continuity of kθθ and kφφ .

4.1 Junction conditions model 1

Next from Eqs. (48), (64) and (65) one obtains
(
A + BR2

)2 = 1 − 2M

R
, (68)

1

1 + CR2 + αCR2
(
1 + CR2

) (
α + CF + FC2R2

)

= 1 − 2M

R
, (69)

and from expressions (45), (50) and (66)

F = 4Bα

C
(
AC − 4B + BCR2

) . (70)

After some algebra Eqs. (68)–(70) can be combined to pro-
vide

F = 2Mα

C
(
CR3 − 2M − 2MCR2

) (71)

B = M

2
√
R5

√
R − 2M

(72)

A = 2R − 5M

2
√
R
√
R − 2M

. (73)

Equations (71)–(73) are the necessary conditions to deter-
mine the constants parameters that characterize the model.
In Table 1 are displayed the resulting numerical values for
A, B and F by considering the data for the mass and radius
corresponding to the compact objects 4U 1538-52, LMC
X-4 and SMC X-1 [123] along with C = 0.2[km−2] and
α = 0.08. As can be seen from the matching condition it
is evident that the constant parameters A, B and F depend
on {R, M,C, α}. What is more the physical behaviour of the
main quantities such as ρ, pr , pt and � depend on the set
{A, B,C, F, α}. Nevertheless, as C , α, M and R are fixed
by hand, then the physical behaviour of the model entirely
depends on {R, M,C, α}. So, as the metric potentials must
be increasing functions with increasing radial coordinate r ,

then from Eq. (42) it follows that both A and B must have the
same sign. Besides, the conditions ρ(0) > 0 and pr (0) > 0
must be satisfied. So, from Eqs. (24), (25), (44), (45), (85)
and (50) one obtains

ρ(0) = 3C2F

8π (CF + α)
> 0, (74)

pr (0) = 4BCF − AFC2 + 4Bα

8π (CF + α)
> 0. (75)

From (74) one gets

F > 0 and CF + α > 0, (76)

or

F < 0 and CF + α < 0, (77)

in order to assure a positive defined density throughout the
compact configuration. Now, from (75) and Zeldovich’s con-
dition pr (0)/ρ(0) ≤ 1 one has

FC2

4 (CF + α)
<

B

A
≤ FC2

(CF + α)
. (78)

Based on the previous discussion the inequality (78) is true
iff

CF + α > 0 ⇒ α > −CF, (79)

or

CF + α < 0 ⇒ α < −CF ⇒ α < C |F |. (80)

On the other hand, if the θ -sector is turned off ı.e, α = 0
which implies F = 0 the seed solution is recovered. In par-
ticular, for this model from Eq. (24) it is observed thatC must
be a strictly positive quantity in order to have a physical rel-
evant density ρ describing a compact object. Of course, if
α and F are zero the values of the constants A and B will
change in magnitude but they still have the same sign. So, in
conclusion despite the solution was modified the sign of the
constant C does not change. This means that in general the
deformed solution accepts negative values for the α parame-
ter restricted to the condition (79) or (80), being the resulting
solution admissible from the physical and mathematical point
of view.

4.2 Junction conditions model 2

Similarly to the model 1 we use the boundary conditions as
before, obtaining the following equations for the first funda-
mental form

eA+BR2 = 1 − 2M

R
, (81)

123
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Fig. 2 The trend of pressures (radial and tangential) (top left), density (top right), anisotropy (bottom left) and velocity (bottom right) against the
radial coordinate r/R for C = 0.2 km−2, and α = 0.008 for compact objects 4U 1538-52, SMC X-1 and LMC X-4

Fig. 3 The trend of energy conditions (left panel) and adiabatic index (right panel) against the radial coordinate r/R for C = 0.2 km−2 α = 0.008
and different values mentioned in Table 1 for compact objects 4U 1538-52, SMC X-1 and LMC X-4

αC r2 eA+Br2

(
1 + C r2 eA+Br2) (

α + C eA F + FC2r2 e2A+Br2)

+ 1

1 + C r2 eA+Br2 = 1 − 2M

R
, (82)

and for the second fundamental form one gets

F = 2Bα

eAC
(
CeA+Br2 − 2B

) . (83)

In this case we have taken as free parameters the constant
B and α. Besides, the mass M and radius R were fixed by
using the numerical data corresponding to the compact star
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Fig. 4 The trend of TOV equation against the radial coordinate r/R for same parameter values C = 0.2 km−2, α = 0.008 and different values
mentioned in Table 1 for compact objects 4U 1538-52 (top left), SMC X-1 (top right) and LMC X-4 (bottom)

Fig. 5 The trend of metric functions eλ (left), and eν (right) against the radial coordinate r/R for various values of B and different α = −0.3, 0.1
and 0.3 for compact object Cen X-3

Cen X-3. In Table 3 are depicted the resulting values for the
remaining constant parameters that characterize the solution.
It should be noted that the constant A depends only on the
mass M and radius R. This is because Eq. (81) corresponds
to the continuity of the temporal metric potential across the
boundary � which remains the same under MGD due to the
deformation enters via the radial metric potential into the
space-time.

From Figs. 1, 2 (upper panels), 5 and 6 (top panels) it is evi-
dent that the inner geometry is completely regular throughout
the stellar interior and the main salient thermodynamic vari-
ables satisfy the aforementioned requirements to describe a
realistic compact structure from the astrophysical point of
view. Furthermore, the radial pressure pr vanishes at the sur-
face of the structure and the tangential pt one dominates at
all points. As it is observed in Figs. 2 and 6 (top panels) both
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Fig. 6 The trend of pressures (radial and tangential) (top left), density (top right), anisotropy (bottom left) and velocity (bottom right) against the
radial coordinate r/R for different B displayed in Table 3 and α = −0.3, 0.1 and 0.3 for compact object Cen X-3

Fig. 7 The trend of energy conditions (left panel) and adiabatic index (right panel) against the radial coordinate r/R for different values of
parameter B exhibited in Table 3 and different α = −0.3, 0.1 and 0.3 for compact object Cen X-3

pr and pt drift apart towards the surface inducing an and
anisotropic behaviour in the stellar interior. What is more
the anisotropy factor � increases monotonically towards the
boundary remaining finite and continuous in the interior as
can be seen from Figs. 2 and 6 (lower left panel). This fact
reveals the presence of an attractive force in nature within
the compact object. This force helps to counteract the grav-
itational gradient which sustains the stability and balance

of the system against radial disturbances. In Figs. 2 and 6
(lower right panels) it is appreciated that the matter distribu-
tion respects causality condition and it is described by a well
behaved energy–momentum tensor (see left panels in Figs.
3, 7). The former is an important subject regarding the study
of compact structures. Indeed a bounded and finite sound
speed of the pressure waves in the principal directions of the
fluid sphere says that any sign travelling inside the structure
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Fig. 8 The trend of TOV equation against the radial coordinate r/R for different values of constants B mentioned in Table 3 and different α = −0.3
(top left), 0.1(top right) and 0.3 (bottom) for compact object Cen X-3

cannot exceed the speed of light. On the other hand the trend
of the constraints imposed on energy–momentum tensor are
satisfied everywhere. This corroborates that the matter dis-
tribution threading the stellar interior is positive defined. So,
in conclusion the resulting model could serve to describe
realistic compact objects such as neutron stars.

4.3 Stability and hydrostatic balance

To complement the above requirements it is also important
analyze the stability and hydrostatic equilibrium of the sys-
tem. To study the former we have considered to analyze the
behaviour of the relativistic adiabatic index � in the radial
direction. This is so because under the presence of local
anisotropies a spherically symmetric system is affected only
in the radial direction against an eventual gravitational col-
lapse.

In the arena of classical isotropic matter distribution (New-
tonian fluid spheres) the collapsing condition corresponds
to � < 4/3 [40,48]. In the framework of relativistic fluid
spheres the situation involves some extra terms which can be
seen as corrections to the previous condition [49,50],

� <
4

3
+

[
1

3
κ

ρ0 pr0

|p′
r0|

r + 4

3

(pt0 − pr0)

|p′
r0|r

]

max

(84)

where ρ0, pr0 and pt0 are the initial density, radial and tan-
gential pressure when the fluid is in static equilibrium. The
second term in the right hand side represents the relativis-
tic corrections to the Newtonian perfect fluid and the third
term is the contribution due to anisotropy. It is clear from
(84) that if we have a non-relativistic perfect fluid matter dis-
tribution the bracket vanishes and we recast the collapsing
Newtonian limit � < 4/3. In this regard, Heintzmann and
Hillebrandt [40] showed that in the presence of a positive
an increasing anisotropy factor � = pt − pr > 0, the sta-
bility condition for a relativistic compact object is given by
� > 4/3, that is so because positive anisotropy factor may
slow down the growth of instability. Nevertheless, relativis-
tic correction to the adiabatic index � could introduce some
instabilities inside the star [134,135]. To overcome this issue
in [136] was proposed a more strict condition on the adiabatic
index �. This condition claim the existence of a critical value
for the adiabatic index �crit. To have a stable structure, this
critical value depends on the amplitude of the Lagrangian
displacement from equilibrium and the compactness factor
u ≡ M/R. The amplitude of the Lagrangian displacement
is characterized by the parameter ξ , so taking particular a
form of this parameter the critical relativistic adiabatic index
is given by
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Table 1 The numerical values of constant parameters A, B and F with C = 0.2 [km−2] and α = 0.08

Star M/M� R [km] B [km−2] F [km2] A (dimensionless)

4U 1538 − 52 (Rawls et al. [123]) 0.87 7.866 0.001603689 0.016261002 0.721821794

SMC X − 1 (Rawls et al. [123]) 1.04 8.301 0.001686197 0.017736814 0.678074959

LMC X − 4 (Rawls et al. [123]) 1.29 8.831 0.001828127 0.020364673 0.612149586

Table 2 The numerical values
of constant parameters A, B and
F with C = 0.2 [km−2] and
α = 0.08

Star M [km] R [km] u ≡ M
R �cri t �

4U 1538 − 52 (Rawls et al. [123]) 1.281684 7.866 0.16294 1.48076 2.10398

SMC X − 1 (Rawls et al. [123]) 1.532128 8.301 0.18457 1.50033 1.90396

LMC X − 4 (Rawls et al. [123]) 1.900428 8.831 0.21519 1.52804 1.70157

Table 3 The numerical values of constant parameters A, C and F for different values of the constants B and α with the data corresponding to the
compact object Cen X-3 (Rawls et al. [123]): R = 9.178 [km] and M = 1.49M�

α B × 10−4 [km−2] C [km−2] F [km2] A (dimensionless) �cri t �

−0.3 6 −0.022756744 −2.440195281 −0.701266343 1.54972 14.3489

0.1 8 −0.022756744 1.070207793 −0.718113480 1.54972 11.4468

0.3 9 −0.022756744 3.589219036 −0.726537048 1.54972 10.4917

�crit = 4

3
+ 19

21
u, (85)

where the stability condition becomes � ≥ �crit. To com-
pute the adiabatic relativistic index � one has the following
expression

� = ρ + pr
pr

dpr
dρ

. (86)

Figures 3 (right panel) and 7 (right panel) shown that � >

�cri t everywhere within the stellar interior, hence the models
1 and 2 are stable under radial perturbation induced by the
anisotropic behaviour. In Tables 2 and 3 are depicted the
numerical values of the central relativistic adiabatic index
for each model, where clearly the mentioned condition is
satisfied.

The other important study is related with the hydrostatic
equilibrium under different forces, namely the hydrostatic
Fh , the gravitational Fg and the anisotropic Fa forces. To
accomplish this analysis we have considered the following
modified Tolman–Oppeneheimer–Volkoff (TOV) equation,

p̃′ + 1

2
ν′ ( p̃ + ρ̃)

− α

[(
θrr

)′ + 1

2
ν′ (θrr − θ tt

) + 2

r

(
θrr − θϕ

ϕ

)] = 0.

(87)

It is clear that in the case α = 0 the familiar TOV [137,138]
in the context of relativistic isotropic models is recovered.
From Figs. 4 and 8 it is observed that the system is in equi-
librium under the mentioned forces. As said earlier the aniso-
torpic force is repulsive in nature. Then the gravitational

gradient is counteracts by the action of the hydrostatic and
anisotropic forces. This prevents the system to collapse below
its Schwarzschild radius onto a point singularity. Moreover,
after some point inside the stellar interior the anisotropic
force dominates the hydrostatic one showing the preponder-
ance that local anisotropies have in the balance on the con-
figuration.

5 Concluding remarks

In this paper, we have combined the class I approach and
gravitational decoupling methodology by means of minimal
geometric deformation to generate anisotropic interior solu-
tions. The main component of this technology is that we have
implemented the class I condition as generator of minimal
geometric deformation functions f (r). To obtain the decou-
pler function f (r) we have tested our approach by setting two
different class I space-time solutions, namely Adler–Finch–
Skea solution (model 1) and Kuchowicz solution (model 2).
As it is well known in the framework of gravitational decou-
pling the θ -sector is completely determine once the ν(r) met-
ric potential and the decoupler function f (r) are specified.
Although the generating equation (41) of decoupler functions
looks quite complex, it can be solved once the seed geometry
has been proposed. This approach offers a new possibility
to find deformation functions f (r) in the light of gravita-
tional decoupling in addition with previous works [90,92–
96] where the mimic constraint scheme was used to generate
f (r) or imposing a suitable f (r) as was done in [103,119].
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It is worth mentioning that we have tested the viability
of the resulting models to describe compact objects sup-
porting by an anisotropic matter distribution, analyzing all
the necessary criteria that any admissible compact structure
must satisfy in order to represent a realistic neutron or quark
star. In this concern we have checked the behaviour of the
geometric structure as well as of the main thermodynamic
variables inside of the compact configuration, causality con-
dition, the trend of the energy–momentum tensor, stability
by means of relativistic adibatic index and hydrostatic bal-
ance by using the modified Tolman-Oppenheimer-Volkoff
equation. All this analysis is supported by Figs. 1, 2, 3,
4, 5, 6, 7 and 8 for both, model 1 and 2 where it is clear
that the obtained solutions satisfy all the requirements to be
an acceptable models capable to describe realistic compact
structures. Moreover, as Tables 1, 2 and 3 exhibit we have
used real data to obtain the constant and physical parameters
that characterized the solution. Specifically, we have imposed
the mass and radius for some known compact configurations,
namely 4U 1538-52, SMC X-1 and LMC X-4 for model 1
and Cen X-3 for model 2.
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