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Abstract

An interesting new physical phenomenon is uncovered—an open resonator array
excited by an electron beam and able to generate a special kind of Smith—Purcell
radiation (SPR). Although the frequency and direction satisfy the SPR relation, this is
a single frequency radiation in a specific direction that is essentially different from
ordinary SPR. The spectral density of this special radiation is also much higher than
that of ordinary SPR. By means of theoretical analysis and digital simulations, the
radiation mechanism together with its requirements are explored. This radiation may
have great influence in modern physics and optics as it offers new ways to carry out
coherent radiation generation and beam diagnostics.

Keywords: Smith—Purcell radiation, open resonators array, coherent radiation

Since its first experimental observation in 1953, Smith—Purcell radiation (SPR), from a uniformly
moving electron beam passing over a periodic surface, has been the subject of much theoretical and
experimental work for its great applications in radiation generation, beam acceleration and nondestructive
diagnostics of electron beams [1-5]. It is characterized by the following well-known dispersion relation:
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Figure 1. Schematic diagram of the Smith—Purcell radiation from the resonator array. 8
indicates the radiation direction.

resonators

where A is the radiation wavelength, € (shown in figure 1) indicates the radiation direction, L is
the structural period, f is the ratio of the beam velocity to light velocity, and » is a negative
integer that indicates the harmonic order.

More recently, the Smith—Purcell free electron laser (SP-FEL) [6-8], which is the coherent
SPR from premodulated electron bunches (generated previously by the accelerator or by the
beam—wave interaction on the periodic surface), has been extensively studied for its potential in
generating radiation that can not be easily obtained by other methods, especially for terahertz
(THz) wave generation [9, 10]. In SP-FEL, the SPR becomes coherent in some specific
directions, where the SPR frequency is harmonic of bunching frequency, and the radiation
intensity is remarkably increased since it is proportional to the square of the bunch number.
Even to this day, there are still many studies on SPR for its more potential applications [11-14].

Despite the various studies and applications, the physical mechanism of SPR is still under
dispute. Traditionally, there are two theoretical models commonly used to deal with the
mechanism of SPR. One is the diffraction model [15, 16], where SPR is thought be the
diffraction of the periodic surface to the electron beam’s evanescent incident waves. The other
is the surface-current model which is based on the image-charge approximation [17, 18].
According to this model, SPR is generated from the surface-current, induced by a moving
electron beam, on the periodic structure. Both models can educe the relation of equation (1).

In this paper we discover a new kind of SPR—the monochrome coherent radiation from an
array of periodically arranged open resonators excited by a uniformly moving electron beam,
and, by means of theory and simulations, we are going to show that it has a completely new
mechanism which is different from both of the theoretical models mentioned above. Without
any preprocessing of the electron beam (note that the formation of a prebunched electron beam
is the primary challenge for SP-FEL), it can generate coherent radiation with an intensity much
higher than ordinary SPR. This new radiation may have many potential applications in
generating coherent THz wave radiations.

Figure 1 shows the scheme that we are going to study. At first sight, it is a rectangular
optical gating that is commonly used in ordinary SPR. For better illustration and comparison, let
us first briefly visit the ordinary SPR process. According to the diffraction model of ordinary
SPR, there are both surface waves and radiation waves in diffraction from a grating. The surface
waves, whose frequencies are below the threshold of SPR, can only propagate along the grating
and cannot radiate into the free space except for the abrupt change of structure [19, 20], while
the radiation waves, which are the negative harmonics of diffraction, can radiate into the upper
half-space, and the dependence of radiation frequency with direction satisfies equation (1) [21].
By using the particle-in-cell (PIC) code of CST [22], we carried out the simulations of this case
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Figure 2. (a) Simulation results for the contour map of the E, component in ordinary
SPR. (b) Simulation results of the radiation spectrum together with the corresponding
time-domain waveform, detected by probe 1 shown in figure 2(a). (c) Simulation results
of the frequency spectrum of surface waves and the corresponding time-domain
waveform, detected by probe 2 shown in figure 2(a).

(hereinafter, case 1) and the results are shown in figure 2, in which the grating is set as a perfect
conductor with structural parameters: L = 1 mm, d = 0.5 mm, 4 = 0.4 mm, and the electron beam
is a 2 fs (in time duration) electron pulse with energy 200keV, which is not hard to obtain
experimentally [23].
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From the contour map of the electric field (E,) shown in figure 2(a), we can clearly see that
the surface waves and radiation waves are independent of each other: the surface waves are
bound to the periodic structure while the radiation waves extend to all directions in the upper
half-space. The radiation spectrum, shown in figure 2(b), covers a wide frequency band, which
is because the radiation direction is continuously changing while the electron beam is moving.
Figure 2(c) shows that the frequency of the surface wave is 105 GHz, which is below the
threshold of SPR. These results agree well with theoretical prediction of ordinary SPR.

Now we reduce the gap width d to be 25 ym (all other parameters are kept unchanged) and
carry out another simulation (hereinafter, case 2). The results are given in figure 3, which shows
that the radiation spectrum changes into a narrow band with peak frequency 172 GHz and the
spectrum density increases by a factor of 1.5, see figure 3(b), and the radiation waves in the
upper half-space are focused at a specific direction, see figure 3(a). Careful studies show that it
is just the corresponding direction (9 = 107.8°) of 172 GHz waves according to equation (1).
These results show an interesting phenomenon: the ordinary SPR changes into a
monochromatic radiation with enhanced intensity at a specific direction that satisfies the SPR
relation. The expansion of the radiation spectrum to the narrow frequency band indicated in
simulations can be understood as follows: the electron beam used in simulations is the
electron’s pulse which results in the excited radiation; it is also a pulse wave (with a finite time
duration and a finite time-period number). Under this condition, the radiation spectrum, which
is the Fourier transformation of the time-domain pulse waveform, will inevitably extend to a
certain frequency bandwidth [24]. To explore the physical mechanism and the characteristics of
this new radiation phenomenon are the major goals of this paper.

As is already known, in an open periodic structure of case 1, the surface waves are formed
by the coupling of resonator modes in the periodic resonator array [25, 26]. When we reduce the
gap width d, the distance between the adjacent resonators will be increased, which will
obviously weaken or even eliminate the coupling of the resonator modes. The surface waves
will no longer exist when the coupling of the resonator modes are completely eliminated. Under
this condition, the grating changes into an array of independent resonators. This can also be
illustrated by the dispersion curves shown in figure 4. The dispersion curves of surface waves
are a series of curves with positive and negative slopes, respectively, indicating the forward and
backward propagating waves on the surface of the periodic structure. While for the resonator
modes, the dispersion curves are a series of straight horizontal lines, indicating that they can not
propagate along the periodic structure since the group velocity is zero.

Following the above analysis, the mechanism of the new radiation in case 2 can then be
uncovered as below. When an electron beam skims over the resonator array, the
electromagnetic modes in each resonator of the array will be excited one by one. These
resonator modes then independently radiate into the upper half-space, through their open
‘mouths’ like an antenna array, one after another with a certain phase shift. And the radiation
frequencies are just the eigenfrequencies of the resonator modes. The simulation results in
figure 3(c) show that the frequency of the resonator modes (172 GHz) is exactly the same as the
radiation frequency, which offers a good verification of our analysis. We can also see that,
unlike the surface waves whose intensity roughly keeps constant as time elapses (see the inset
of figure 2(c)), the intensity of the resonator modes decreases gradually with time (see the inset
of figure 3(c)) because of radiation.

Further examination shows that in the direction given by equation (1), the phase shift from
every adjacent resonator is 2nz (n is the integer), indicating that the radiation from all resonators
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Figure 3. (a) Simulation results for the contour map of the E, component in special
SPR. (b) Simulation results of the radiation spectrum together with the corresponding
time-domain waveform, detected by probe 1 shown in figure 3(a). (c) Simulation results
of the frequency spectrum of surface waves and the corresponding time-domain
waveform, detected by probe 1 shown in figure 3(a).

is coherent. So the radiation in this direction will be remarkably enhanced, while in all other
directions the radiations from different resonators will counteract each other, and the radiation
can not occur. This is just what we observed in the simulations of case 2, and we will call this
new radiation ‘special SPR’ hereinafter.

According to the above analyses, the resonator modes play an essential role in this special
SPR since they determine both radiation frequency and direction. Now we study the resonator
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Figure 5. Diagram of a single resonator and the distribution of the E, component in the
y direction for three resonator modes.

modes that can be excited by an electron beam and evaluate their eigenfrequencies. For the case
that the gap width is much less than the radiation wavelength, say d < 4, transversal TEM
modes (with only two non-zero components, E, and H, in the coordinate shown in figure 1) will
be primarily excited in the resonators by the electron beam [27, 28]. In other words, the
radiations are largely from the transversal TEM modes of resonators. To estimate the
eigenfrequencies of these resonator modes, we make the following approximations: the E,
reaches a maximum value at the resonator ‘mouth’, which is reasonable since it is closest to the
electron beam, and vanishes at the bottom. According to this approximation, the E, distributions
in the y direction of the resonator can be illustrated by figure 5, from which the wavelength 4 of
the resonator modes can be determined:

m 1
ﬂ_h/(3+1) @)

where m is a non-negative integer, indicating the mode number, and # is the resonator depth.

To verify equation (2) and also to explore the requirements for this special SPR, we have
done some simulations for different resonator depths (other parameters are the same as those in
case 2). Figure 6 shows the dependence of the resonator mode frequency on resonator depth 4
and we can see that the frequency increases as i decreases, largely agreeing with the theoretical
results obtained by equation (2), in which m = 0. Figure 7 further shows the dependence of the
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Figure 7. Variations of field intensity at the resonator ‘mouth’ and of the radiation
intensity with the resonator depth 4. The other parameters are the same as those in
figure 3.

field intensity at the resonator ‘mouth’ and of the radiation intensity on the resonator depth 4.
We can see that, except for the case 4 = 0.6 mm, the radiation is largely in a positive correlation
with the resonator field at the ‘mouth’, which is another verification of our claim that the special
SPR is from resonator modes. For the case & = 0.6 mm, the frequency of the resonator mode is
114 GHz, below the SPR threshold, which means it can not radiate to the upper half-space as
with SPR.

Keeping the other parameters the same as those in case 2 (L = 1 mm and /4 = 0.4 mm), the
intensity variation of special SPR with gap width d are simulated and the results are shown in
figure 8, from which we can see that the radiation reaches a relative maximum value at
d = 50 pm, indicating that d can not be too small or too large. Further simulations show that
when d > 0.1 mm, the monochromatic special SRP turns into the incoherent ordinary SPR with
a wide frequency band because of the coupling of adjacent resonator modes.

Then we keep d and A as constants (d = 25 ym and 4 = 0.4 mm according to case 2), and
gradually change the period L. The simulation results of the special SPR intensity variation with
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Figure 9. Variations of the radiation intensity with period L. Other parameters are the
same as those in figure 3.

L are given in figure 9, which shows that the relative strongest radiation occurs at L = 1 mm and,
notably, that the radiation intensity drops remarkably when L < 0.8 mm. This can be explained
as when L < 0.8 mm, the SPR threshold increases to be higher than the resonator mode
frequency (172 GHz), for example, the SPR threshold is 175 GHz for L = 0.7 mm according to
equation (1), and under this condition the resonator modes can no longer radiate as SPR. This
result is also a good verification of our previous analyses on the mechanism of special SPR.
Based on the simulation results presented above and the new mechanism we have
discovered, we can see that for proper operation of the special SPR, the following conditions
should be satisfied. 1) The period L and gap width d should be well matched to prevent the
coupling of electromagnetic modes in adjacent resonators. 2) The depth of the resonators should
be properly chosen: it should be neither too small, where the resonator modes can not be
effectively excited, nor be too large, where the resonator mode can not radiate into the upper
half-space as SPR since its frequency is below the threshold of SPR. 3) The period L, the
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frequency of resonator modes, and the beam velocity should be well matched to satisfy the SPR
relation equation (1).

Up to now we have only considered the case of a rectangular grating, i.e., the resonators
are all rectangular cavities. In fact, other kinds of resonators can also be used to generate the
special SPR based on the mechanism we discussed above. Further investigations will be
conducted in the future.

To summarize, an interesting new physical phenomenon has been found—an array of open
resonators can generate coherent monochrome radiation via special SPR, which is significantly
different from ordinary SPR. The spectral density is much enhanced. By means of theoretical
analysis and digital simulations, we demonstrate that it is the coherent radiation from resonator
modes. This kind of radiation offers new ways for coherent radiation generation as well as beam
diagnostics, so it may have great influence in modern physics and optics.

Acknowledgments

This work was supported in part by National 973 Program of China (grant no. 2013CB329201).

References

[1] Smith S J and Purcell E M 1953 Phys. Rev. 92 1069-70
[2] Moran M J 1992 Phys. Rev. Lett. 69 2523
[3] Castellano M, Verzilov V A, Catani L, Cianchi A, Orlandi G and Geitz M 2001 Phys. Rev. E 63 056501
[4] Kesar A S 2010 Phys. Rev. ST Accel. Beams 13 022804
[5S] Molenaar P A, van der Straten P, Heideman H G M and Metcalf H 1997 Phys. Rev. A 55 605
[6] Li D, Hangyo M, Tsunawaki Y, Yang Z, Wei Y, Miyamoto S, Asakawa M R and Imasaki K 2012 Nucl.
Instrum. Meth. Phys. Res. A 674 20-23
[7] Li D, Hangyo M, Tsunawaki Y, Yang Z, Wei Y, Miyamoto S, Asakawa M R and Imasaki K 2012 Free
Electron Lasers (InTech) Available at: www.intechopen.com/books/free-electronlasers/theoretical-
analysis-on-smith-purcell-free-electron-laser
[8] Korbly S E, Kesar A S, Sirigiri J R and Temkin R J 2005 Phys. Rev. Lett. 94 054803
[9] Prokop C ef al 2010 Appl. Phys. Lett. 96 151502
[10] Andrews H L, Boulware C H, Brau C A and Jarvis J D 2005 Phys. Rev. ST Accel. Beams 8 110702
[11] Bera A, Barik R K, Min S-H, Kwon O, Baek I, Kim S, Sattorov M A and Park G-S 2012 Vacuum Electronics
(IVEC) 2012 13th IEEE International Conference pp 157-8
[12] Liu W and Xu Z 2014 J. Appl. Phys. 115 014503
[13] Bartolini R et al 2012 J. Instrum. 7 01009
[14] Andrews H L et al 2013 Nucl. Instrum. Meth. Phys. Res. A 740 212
[15] van den Berg P M 1973 J. Opt. Soc. Am. 63 1588
[16] Haeberle O, Rullhusen P, Salome J M and Maene N 1994 Phys. Rev. E 49 3340
[17] Brownell J H, Walsh J E and Doucas G 1998 Phys. Rev. E 57 1075
[18] Karlovets D V and Potylitsyn A P 2006 Phys. Rev. ST Accel. Beams 9 080701
[19] Gardelle J, Courtois L, Modin P and Donohue J T 2009 Phys. Rev. ST Accel. Beams 12 110701
[20] Donohue J T and Gardelle J 2005 Phys. Rev. ST Accel. Beams 8 060702
[21] Liu S, Hu M, Zhang Y, Li Y and Zhong R 2009 Phys. Rev. E 80 036602
[22] Romanov G 2008 Proc. LINACOS (Victoria, BC, Canada)
[23] Marceau V et al 2013 Phys. Rev. Lett. 111 224801
[24] Jackson J D 1999 Classical Electrodynamics 3rd edn (New York: Wiley)


http://dx.doi.org/10.1103/PhysRev.92.1069
http://dx.doi.org/10.1103/PhysRevLett.69.2523
http://dx.doi.org/10.1103/PhysRevE.63.056501
http://dx.doi.org/10.1103/PhysRevSTAB.13.022804
http://dx.doi.org/10.1103/PhysRevA.55.605
http://dx.doi.org/10.1016/j.nima.2012.01.039
www.intechopen.com/books/free-electronlasers/theoretical-analysis-on-smith-purcell-free-electron-laser
www.intechopen.com/books/free-electronlasers/theoretical-analysis-on-smith-purcell-free-electron-laser
http://dx.doi.org/10.1103/PhysRevLett.94.054803
http://dx.doi.org/10.1063/1.3386543
http://dx.doi.org/10.1103/PhysRevSTAB.8.110702
http://dx.doi.org/10.1063/1.4861141
http://dx.doi.org/10.1088/1748-0221/7/01/P01009
http://dx.doi.org/10.1016/j.nima.2013.11.090
http://dx.doi.org/10.1364/JOSA.63.001588
http://dx.doi.org/10.1103/PhysRevB.49.3340
http://dx.doi.org/10.1103/PhysRevE.57.7372
http://dx.doi.org/10.1103/PhysRevSTAB.9.080701
http://dx.doi.org/10.1103/PhysRevSTAB.12.110701
http://dx.doi.org/10.1103/PhysRevSTAB.8.060702
http://dx.doi.org/10.1103/PhysRevE.80.036314
http://dx.doi.org/10.1103/PhysRevLett.111.224801

New J. Phys. 16 (2014) 073006 W Liu and Z Xu

[25] Tigelis I, Vomvoridis J and Tzima S 1998 IEEE Trans. Plasma Sci. 26 922

[26] Liu H-C and Yariv A 2012 Opt. Express 20 9249-63

[27] Liu W, Gong S, Zhang Y, Zhou J, Zhang P and Liu S 2012 J. Appl. Phys. 111 063107

[28] Zhang K and Li D 2008 Electromagnetic Theory in Microwave and Optoelectronics (Berlin: Springer-Velag)
pp 426-30

10


http://dx.doi.org/10.1109/27.700872
http://dx.doi.org/10.1364/OE.20.009249
http://dx.doi.org/10.1063/1.3682481

	Acknowledgments
	References



