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Abstract 
Superconducting RF (SRF) technology for particle 

accelerators has been mostly based on bulk, ultrapure Nb, 
which has now reached its theoretical limits. Next 
generation technology will be based on thin films, which 
will be not only a way to overcome Nb performances, but 
also a game changer in manner of energy consumption.  

This paper will describe the challenges met when trying 
to develop this new generation technology, and how the 
international community is trying to tackle it. 

INTRODUCTION 
Several thousands of superconductors have been 

identified since the discovery of superconductivity, most of 
them the centre of interesting, “exotic” physics, but when 
it comes to applications only a dozen of them are used. 
They are all conventional type II materials, i.e. materials 
exhibiting two transitions. At low field, temperature and 
current density, they are in the Meissner state. In presence 
of external magnetic field surface supercurrent generate an 
opposed magnetic moment and magnetic flux is fully 
expelled from the material. Above the first critical field 
HC1, the external field cannot be fully screened anymore, 
and some flux line start to enter the material, forming 
vortices (a vortex defines a flux line in a normal conducting 
region, surrounded by screening current, while the rest of 
the material is still superconducting). This phase is called 
“mixed state”. Above the second critical filed HC2, the 
material becomes normal conducting. 

Magnets vs RF Cavities 
Most developments on applied superconductors have 

been initially devoted to electromagnets. Those materials 
all exhibit very low HC1 and very high HC2 and operate in 
the mixed state, which is desirable in this case.  

In RF, vortices oscillate in the field, and moving a 
normal (resistive) zone gives rise to very high dissipation. 
So the materials optimized for magnet applications are not 
fitted for SRF applications; they are even the worst case 
scenario. Niobium is the material with the highest HC1, 
which allows it to operate in the Meissner state. In this 
case, the dissipation are minimal: 105 less than copper at 
the same frequency. Superconducting cavities are the only 
way to reach high accelerating gradient at high duty cycles, 
even so in continuous wave (CW), they exhibit low field 
emission, no breakdown and thus reduced dark current. 
They also present other advantages like more open designs 
that help with alignment issues or reducing wake field 
activation… 

Ultimate Limits 
As SRF cavities operate in the Meissner State, in 

principle they cannot operate at fields higher than HC1. 
Fortunately, when the field is parallel to the surface it is 
very difficult to nucleate a vortex under the surface; thus 
one can stabilise the Meissner state at a (superheated) field 
HSH, above HC1. 

Nonetheless, stabilizing a metastable state in presence of 
small fluctuation is difficult. In presence of a surface 
defect, vortex loops can enter the material and bring an 
early quench (Figure 1). 

 
Figure 1.Ultimate field limits (i.e. transition field), in the 
ideal case (left) and in presence of defects (right). 

So contrary to magnets, where material’s optimization 
consist into implanting defects to enhance vortex pinning, 
optimising SRF material consist into reducing the density 
of defects on the surface and inside the material… or to 
find structures which are less sensitive to defects, which is 
more realistic in terms of industrial production. 

REDUCING CRYOGENIC COSTS 
The surface resistance of a superconductor follows 

equation (1): 
𝑅! = 𝑅"	 + 	

$%!

&
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where R0 is a small residual term, independent of the 
temperature T, A and B are constants, w the RF frequency 
and TC the temperature transition of the superconductor. 
Cavities operate between 2 and 4 K where the exponential 
term is small compared to R0. In principle, using a high TC 
material should produce lower dissipation and allow 
operating at higher temperature. Since these materials have 
a smaller HC1 than Nb the main difficulty is to produce 
them in sufficiently good quality to maintain them in the 
superheated state. 

4.5 K vs 2K: Impact on Investment Cost 
Working with liquid helium rather than superfluid 

helium makes the cryogenic system simpler and less 
expensive. Pumping on helium requires a tight pumping 
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system (1/cryomodules, ~250 k€), heaters for the cold gas 
(1/cryomodules, ~10 k€), and a specific 2K return line 
(~1k€/m). The cryomodules are also more complex as they 
have to include at minima a heat exchanger (~50 k€/ 
cryomodule).  

 
Figure 2. Main differences in cryogenic systems operating 
at 2K (left) and 4.5 K (right). 

In Table 1, we tried to evaluate the over-costs of a 2K 
installation, for two examples of accelerators, based on the 
2023 prices of individual components. Of course these 
figures are probably over-evaluated since they do not take 
into account cost reduction for large scale supply.  

Table 1: Cost estimation of the 2 K part for two examples 
of recent projects. 

Example XFEL ESS 
Cryomodules # ~100 

 
~40 

Pumps 25 M€ 10 M€ 
Heaters  1 M€ 400 k€ 
Linac length ~1 km 400 m 
Lines 1 M€ 400 k€  
2K total  ~27 M€ ~11 M€ 
Total cryogenic 
installation 80 M€ (?*) 50 M€ 

* For XFEL, an already existing facility was completed so the exact 
figures are not known 

A similar evaluation was done in the 90’s at LHC. The 
evaluation was conducted in CHF [1]. Figure 3 shows an 
original figure from [1] (curtesy of Philippe Lebrun), 
where investment cost is reported vs 1.8 K refrigeration 
capacity. One can observe that the 1.8 K part is 35-40% of 
the total cost. For comparison, pulsed XFEL, CW XFEL, 
and ESS necessary capacities are reported on the same 
graph. For instance the cryogenics for the superconducting 
Linac of ESS are the order of 40 M€; building a similar 
machine with 4.5 K capable cavities would save 14 to 15 
M€ in investment.  

In addition, the maintenance of the system is easier, with 
a lower risk of Helium pollution and pumps failure. 

 
Figure 3. Investment cost in regard to the needed 
refrigeration power (after [1]). 

4.5 K vs 2K: Impact on Operation Cost 
Cryogenic costs are inversely proportional to the 

combination of the thermodynamic Carnot efficiency hC 
and the refrigerator efficiency hTh. Thot = Tcold /(Thot-Tcold). 
When Thot = 300 K, hC ~ 1/70 for Tcold = 4.2 K and hC ~ 1/150 
for Tcold = 2 K. hTh is at best 25-30 % for T = 4.2 K and only 
15-20% when T= 2 K. 

Basically, switching from 2 K to 4.2 K divides the plug 
power by a factor 3. Here again, compared of ESS, 
supposing the Linac consumption is about 15% of the total 
power (250 GWh/year) [2], with 1 MWh is ~300 € (liable 
to increase in the future).the expected savings are also in 
the order of 3-5 M€. Appreciable savings can arise from 
changing the cavities technology to advanced thin film 
materials. There are still some issues to be solved: some 
cavity design are very sensitive to small variation of 
pressure that cannot be avoided in a 4.2 K system, the RF 
design of such cavities has to be upgraded. Moreover, the 
main energy budget in an accelerator is still coming from 
the RF power supply, which means that the savings due to 
cavity technology will become appreciable once RF costs 
have also been significantly decreased. 

THIN FILMS 
Today, bulk Nb cavities are not optimized for 

superconductivity but for thermal conduction, so that they 
can be stabilized in presence of tiny defects. Future relies 
on a functionalized material which each layer playing a 
different role. For instance, the mechanical and structural 
part can be fabricated out of copper, the surface 
superconducting layer can be a thin film, and one can even 
consider specific protective layer aimed at reducing for 
instance multipacting (Figure 4).  

Going from a pure metal like copper to a multi-layered 
superconducting structure constitute a big scientific jump. 
Indeed copper requires just some mastering in metallurgy, 
a science humankind started to discover 6000 years ago. 
When switching to niobium, where the field penetration 
depth is only ~40 nm, surface features become of 
paramount importance. In contrast surface science is ~ one 
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century old. Switching from bulk to thin film materials 
makes surfaces and interface more even dominant. 
Switching to higher Tc materials requires also that the 
composition and structure are mastered (chemistry started 
only ~250 Years ago). Deposition techniques are also very 
recent: the development of CVD (Chemical vapour 
deposition) or PVD (Physical vapour deposition) started in 
the second part of 20th century, and the most advanced 
techniques are still under development…The next 
generation of SRF technology presents huge challenges in 

material science, with a very vast parameter space to be 
explored. 

Compared to the development of magnet technologies, 
the SRF R&D has been underfinanced for years. Although 
it is advanced material science, it is not considered a 
“fashionable topic” among fundamental material scientists 
and thus funding agencies (accelerators are thought like 
dirty hardware), and one must admit that material science 
is also treated a little like alchemy among the accelerator 
physicists. 

 
Figure 4. Possible evolution of SRF technology. 

Good Thin Film Superconductor?  
The best solution will not necessarily exhibit the best 

superconducting performances, it will rather be a 
compromise between: 
• High superconducting and RF performance  
• Easy fabrication process, high reproducibility at 

“industrial scale” 
• Easy process to go from 1-cell to multi-cells or 

complex shapes 
• Easy process to adapt to various frequencies 
• Tunability (many of the high Tc superconductors are 

brittle) 
• Low sensitivity to trapped flux upon cooling down  
•  Few crystalline defects or a structure not too sensitive 

to them (e.g. Superconducting-Insulating-
Superconducting (SIS) structures that will be 
described below). 

The strategy to get there is rather well established; for 
instance the same priorities appear in the European project 
IFAST WP9 [3], in the European Accelerator Road map 
addressed to the Laboratory Directors group by CERN [4], 
or the recent Snowmass 2021 Proposals [5, 6]. 

The common features of all these program sits on 6 
priorities that will be detailed in the following chapters:  
• Copper cavity production and surface preparation as a 

substrate for thin film deposition 
• R&D on Niobium films on Copper where recent 

advances have been observed 
• R&D of new superconductors on Cu. Up to today only 

Nb3Sn cavities on Nb have been successfully tested. 
• R&D on multilayer SIS structures, to gain in quality 

factor as well as in accelerating gradient. 

• Develop new cooling systems and/or 3D printing 
fabrication process, aiming at reducing the needed 
volume of Helium and/or go to cryocooling. 

• Complete material characterisation arsenal (classical 
techniques and specific developments) 

• Increase access to RF testing (technical support, 
cleanroom access, RF tests access, which are most of 
the time monopolysed by projects under construction) 

Copper Substrates 
If the quality of the substrate has always been paramount 

to the quality of the film deposition, many or the surface 
preparation routes that have been explored led to counter 
intuitive results [7]. Recently, the test of weld less 
structures (either bulk machined, electrodeposited, 
spinned…) has brought significantly progress [8, 9]. 
Surface preparation is also of paramount importance. The 
quality, especially smoothness of the substrate (Cu) 
appears to have a paramount importance on these 
performances [9-12]. Surface post treatments like laser 
heating are also explored [13, 14] 

Well prepared Copper cavities opens the route to not 
only to Nb thin films, but also more advanced materials. 

Most of these processes are ready for industrial transfer, 
which will be a necessary condition for depositing 
prototypes. 

Niobium Films on Copper 
This research field has stagnated for nearly 50 years, as 

many dead-ends have been explored [7], and has been 
limited for use in circular machine, with no need for high 
accelerating gradients. Indeed, the crystalline quality of 
these films is far less good than that of bulk Nb and the 
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quality factor decrease quickly with field (so called Q-
slope). Nb thin film layers with performance close to bulk 
Nb (mitigation of the Q-slope, high transition field) were 
observed at CERN [15, 16] and at JLab [7]. The main 
features of this success are the substrate preparation (and 
the achievement of dense layers via energetic deposition 
techniques. Activities have also been conducted in Europe 
at UKRI, INFN, USI [11, 17, 18] and Asia at IMP and [19, 
20]. CVD Deposition has been explored at Cornell [21]. 

New Superconductors on Cu 
Nb3Sn. Higher TC material are expected to produce 

lower surface resistance. On the paper, one ideal 
superconductor is Nb3Sn, with a T of ~18 K and HSH of 425 
mT (compared to ~220 mT for bulk Nb, so expected to 
reach accelerating gradients a factor 2 higher). Several 
cavities have been fabricated by thermal diffusion of Sn 
vapour inside Nb bulk cavities and they indeed exhibit very 
high Q0 at 4.2 K [22, 23]. The ultimate field is still limited, 
with a behaviour indicating early field penetration at 
surface defects [23, 24]. There is an active R&D field to 
transpose these results onto copper cavities to reduce the 
fabrication cost of Nb3Sn cavities. Several techniques are 
being explored: magnetron sputtering [25-27], 
electrodeposition [28, 29], bronze route [30, 31]… 

The main challenge with this kind of material is to get 
the proper composition (the material is superconducting 
only for a narrow space of compositions) and the proper 
crystalline structure. Post-treatments like annealing are 
often necessary, with improvement on the crystalline 
quality, but detrimental side effect like Sn evaporation or 
Sn diffusion in the copper substrate. Alternative materials 
of the same A 15 family like V3Si or Nb3Al are also 
explored to overcome these problems. 

The work on sample is fairly developed, but successful 
deposition inside cavities has not been reported yet. 

NbN. Since the A15 materials are so sensitive the small 
composition variation, alternative materials like NbN or 
NbTiN1  are also explored. They exhibit a TC about ~17 K 
and a superheating field close to Nb, so they can in 
principle operate at 4.2 K with the same performances. 
They are much less sensitive than A15 to local 
composition, and their fabrication as thin film has been 
assessed for many years, since they are currently used in 
superconducting electronics. Active work has been 
conducted worldwide [5, 32, 33] Deposition set-ups for 6 
GHz cavities have been designed, build and commissioned 
at INFN, STFC and USI [3]. First attempts of deposition in 
6 GHz cavities are undergoing [34]. 

MgB2. The last explored material is MgB2, with a TC of 
39 K. Once again HSH is the same order of magnitude as 
Nb, but is has the potential to be used at 10 K, opening the 
possibility to cool (small) cryomodules with cryocooler, 
without need of large Helium installation. The main 
difficulty is to find a way to deposit is inside cavity since 
most the discovered synthesis routes are hardly adaptable 
for a closed geometry.  

 
1 The presence of Ti just helps to stabilize the correct crystalline phase. 

Only few attempts have been made, mostly because of 
lack of financial support. An hybrid Physical-Chemical 
vapour deposition technique has been developed in Temple 
university [35], in collaboration with LANL. Promising 
work has been conducted on sample but deposition in a full 
RF cavity was never conducted up to RF test. Other 
techniques like magnetron sputtering or electrochemical 
deposition have been explored [36-39] 

SIS structures. Superconducting-Insulating-
Superconducting (SIS) multilayers structures where 
proposed in 2006 by a theoretician [40]. The first 
experimental proofs of concept were published in 2009 
[41].  

If one deposit a superconducting layer which thickness 
is ≤ to the field penetration depth l, it increases artificially 
its HC1 (or HSH), allowing the external layer to stand higher 
RF field. It partially screens the field reaching the 
superconducting layer underneath. The use of a higher Tc 
materials allows to reach lower surface resistance and the 
presence of a dielectric layer plays two major roles: 
decoupling the two superconducting layers, and preventing 
avalanche penetration of vortex in presence of defects (see 
Figure 5).  

 
Figure 5. Effect of a dielectric layer and multilayer 
concept.  
With multilayers, one can both gain on the quality factor 
and the accelerating field. Moreover this structure is much 
less sensitive to the presence of defects, which are always 
present when fabricating complex materials. It might be the 
only way to produce the advanced materials mentioned 
earlier at large scale, with a significant yield. It opens the 
route to more realistic materials. Promising results have 
been achieved on sample in several Labs [7, 25, 42].  

Material characterization  
The development of complex material requires thorough 

characterization tools. Classical material characterization: 
optical and confocal microscopy, SEM, EDX and EBSD, 
Ion beam miller for cross-section, X-Ray, TEM, and basic 
superconducting properties are measured: Tc, RRR, DC 
magnetometry, AC susceptibility. 

In addition, specific original characterization tools have 
been developed to measure the superconducting samples 
behaviour in condition closest to the operating cavities 
condition: Tunnelling microscopy (Superconducting gap, 
density of superconducting states cartography), flux 
penetration measurement set-ups. 
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Now that the R&D community is at the eve of depositing 
the first prototypes, access to SRF testing hardware 
(surface preparation, cleanrooms, RF test stands…) will be 
necessary at larger scale, which will be probably soon 
become a bottleneck. 

CONCLUSION 
Thin superconducting films are liable to lead to 

appreciable cost savings in accelerator technology, from 
the investment point of view as well as operation costs. 
Only RF test of several prototypes will allow to determine 
the best material since several requirements need to be met, 
mainly RF, superconducting properties but also fabrication 
ease and yield, tunability, etc. 

Substantial support is still needed if one which to apply 
this technology in the near future. 
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