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Abstract

The role of strange quarks in generating the structure of the nucleon provides a
key testing-ground for our understanding of Quantum Chromodynamics (QCD).
Because the nucleon has zero net strangeness, strange observables give tremendous
insight into the nature of the vacuum; they can only arise through quantum fluctu-
ations in which strange-antistrange quark pairs are generated. Strange observables
are also relevant to searches for physics beyond the Standard Model; the role of
the strange quark in generating the nucleon mass—encoded in the strange sigma
term—is essential information for the interpretation of dark matter direct-detection
experiments. For these reasons, strangeness in the nucleon is currently a particular
focus of the nuclear physics community.

We use the numerical lattice gauge theory approach to QCD, and the chiral
perturbation theory formalism, to build a clear picture of the role of strange quarks in
various nucleon-structure observables. A detailed analysis of the octet baryon masses
provides precise new values of the nucleon sigma terms. By combining experimental
and lattice input, we deduce the strange electromagnetic form factors of the nucleon
over a far larger range of momentum-scales than is accessible experimentally. Our
calculation of the strange magnetic moment is an order of magnitude more precise
than the closest experimental result.

Until now, the dominant uncertainty in experimental determinations of the
strange proton form factors has come from a lack of knowledge about the size of
charge symmetry violation (CSV) in these quantities. CSV effects quantify the
breaking of the approximate SU(2)-flavour symmetry of the up and down quarks.
As well as their relevance to experimental determinations of nucleon strangeness,
the precise knowledge of CSV observables has, with increasing experimental preci-
sion, become essential to the interpretation of many searches for physics beyond the
Standard Model. We develop a formalism for the calculation of CSV observables
from isospin-averaged 2 4 1-flavour lattice QCD simulations.

Applying this formalism to a comprehensive lattice-based study of the electric
and magnetic Sachs form factors of the baryon octet reveals that the CSV form fac-
tors are an order of magnitude smaller than suggested by previous work. This cal-
culation opens the door for new, precise, experimental measurements of the strange
nucleon form factors. We also investigate the proton-neutron mass difference and
quantify the long-neglected CSV effects in the low Mellin moments of the spin-
dependent and spin-independent parton distribution functions. This analysis im-
proves the interpretation of neutrino-nucleus deep inelastic scattering experiments.
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Chapter 1

Introduction

Protons and neutrons are the building blocks of atomic nuclei. Collectively called
nucleons, they constitute more than 99% of the visible mass in our universe. Quan-
titatively describing the structure of these particles in terms of the quark and gluon
constituents encoded in Quantum Chromodynamics (QCD), our theory of the strong
force, remains a defining challenge for hadronic physics research. The ultimate goal
is to ‘map out’ the complete spatial, momentum, spin, flavour, and gluon structure
of the nucleon; to understand (and be able to predict) its interactions and reso-
nances precisely. Such a map is not only the key to interpreting our observations
of Nature in terms of the currently-accepted fundamental theory, but is essential to
inform searches for physics beyond the Standard Model (SM). For example, QCD
calculations of the SM background are necessary to constrain direct searches for
new physics at the high-energy frontier at the Large Hadron Collider. In the low
energy-regime—at the so-called intensity frontier—QCD is typically the limiting
factor in indirect searches for non-SM physics, from CP violation in b-quark decays
to permanent electric dipole moments in hadrons and nuclei.

Over several decades of experimental investigation and theoretical analysis based
on QCD, a complicated picture of the nucleon has emerged. The modern under-
standing is that its structure is generated not only by three ‘valence’ quarks—the
simplest configuration needed to carry the observed quantum numbers—but addi-
tionally any number of ‘sea’ quark-antiquark pairs and gluons. Deep inelastic scat-
tering of electrons and neutrinos off nuclear targets has demonstrated that, at low
values of the probing momentum-scale )2, valence-quark effects dominate. For the
proton and neutron, with valence-quark content (uud) and (udd) respectively, the
uw and d quarks are thus of primary importance. However, with larger values of ()?
the resolving power of scattering probes increases, and the increasingly-significant
role of the vacuum-generated ¢q pairs and gluons is exposed. Because the large
masses of the heavy quarks (Q = ¢, b or t) prohibit any significant admixtures of
QQ pairs in the nucleon wavefunction, strange quarks—the lightest of the sea-only
quark flavours—play a unique role. Providing tremendous insight into the nature
of the quantum vacuum, strange nucleon observables occupy a position in QCD
comparable in significance to that of the Lamb shift in the history of QED. The
calculation of these quantities within QCD, and their verification by experiment, is
thus of fundamental importance.



2 Introduction

As well as providing a key test of our understanding of QCD, strange observables
are relevant to searches for physics beyond the SM. The role of the strange quark
in generating the nucleon mass—encoded in the strange sigma term—is particularly
topical as the uncertainty on this much-debated quantity is the limiting theoretical
factor in the interpretation of experimental searches for particle dark matter. The
spatial distribution of the nucleon’s strange quark content has also received consid-
erable attention in recent decades. Despite significant accelerator facility programs
at Jefferson National Laboratory and at Mainz, the best experimental values of
the proton’s strange electromagnetic form factors are indistinguishable from zero.
The limiting uncertainty in future determinations of these quantities is theoretical,
arising from the assumption of good charge symmetry.

Charge symmetry violating (CSV) effects quantify the breaking of the approxi-
mate SU(2)-flavour symmetry of the u and d quarks. Beyond their relevance to the
experimental investigation of strangeness in the nucleon, the precise determination
of CSV observables has, with increasing experimental precision, become essential
theoretical input for searches for physics beyond the SM. In particular, the long-
neglected CSV effects in the low Mellin moments of the spin-independent parton
distribution functions are important to the interpretation of neutrino-nucleus deep
inelastic scattering experiments. Clearly it has become imperative to determine
both strange and CSV observables precisely from QCD.

The only known way to directly probe QCD in the nonperturbative regime is
using a numerical technique named lattice QCD. This method involves explicitly cal-
culating observables within a discretised formulation of QCD. First proposed in the
mid-1970s, lattice methods, computer infrastructure, and the theoretical techniques
used to interpret lattice simulation results, have now reached a level of sophistica-
tion that allows truly quantitative predictions to be made from QCD. In this body
of work we explore hadron structure from lattice QCD, with a particular focus on
both strangeness and CSV in nucleon observables.

After introducing QCD, the lattice approach, and the chiral perturbation theory
formalism upon which this work is based, in Chapters[2|and [3] we investigate several
nucleon observables in turn. We begin in Chapter {4| by calculating the strong-force
contribution to the proton-neutron mass difference. Beyond giving quantitative in-
sight into the breaking of charge symmetry, a precise understanding of this quantity
from first principles will inform studies of the evolution of our universe; if there were
a stable neutron, and a more massive proton, one would expect a predominance of
heavy nuclei, no normal galaxies, stars, or planets would form, and life as we know
it would be impossible.

In Chapter |5| we extend this study to investigate sigma terms, which are the ma-
trix elements of the scalar quark currents between baryon states. As many dark mat-
ter candidates (e.g., the supersymmetric neutralino) have interactions with hadronic
matter which depend quadratically on these terms, the uncertainty of theoretical
dark matter scattering cross-sections is largely driven by the poorly-known strange
sigma term. Modern revisions of this quantity, including our precise result based on



lattice QCD, have resulted in predicted dark matter cross-sections being reduced by
an order of magnitude, with significant increases in precision.

There is an almost-universal assumption of charge symmetry in the literature
concerned with parton distributions. In Chapter [6] we quantify the long-neglected
CSV effects in the low Mellin moments of the spin-dependent and spin-independent
parton distribution functions. Our results confirm that the omission of these effects
led to an over-inflated view of the importance of the deviation from SM expectations
observed in neutrino-nucleus deep inelastic scattering experiments. By comparing
the total spin carried by the quarks in baryons across the octet, we are also able to
reveal that the experimentally-measured suppression of the fraction of the proton
spin carried by its quarks (relative to quark-model predictions) is not a universal
property of baryons, but rather is structure-dependent. This supports the conclusion
that the spin-suppression observed in the proton cannot be explained by the axial
anomaly.

In Chapter [7| we present a comprehensive lattice-based study of the electric and
magnetic Sachs form factors of the baryon octet. This analysis includes the hyperon
form factors, which have so far received limited attention in the literature. Notably,
we achieve the first accurate determination of the hyperon magnetic radii from lattice
QCD. We also investigate strange and CSV effects in the nucleon in this context.
By combining experimental and lattice input, we deduce the strange nucleon form
factors over a far larger range of momentum-scales than is accessible experimentally.
Our calculation of the strange magnetic moment is an order of magnitude more
precise than the closest experimental result. Until now, the dominant uncertainty
in experimental determinations of the strange proton form factors has come from
a lack of knowledge about the size of CSV in these quantities. By revealing that
the CSV form factors are an order of magnitude smaller than suggested by previous
work, our calculations also open the door for a new generation of experimental tests
of QCD through the proton’s strange form factors.

Finally, in Chapter [§| we review this body of work to build a coherent picture of
the role of both CSV effects and the strange quark in the structure of the nucleon
in QCD.






Chapter 2

Quantum Chromodynamics

The Standard Model of Particle Physics (SM) embodies our knowledge of the strong
and electroweak interactions. It contains as fundamental degrees of freedom the
spin—% quarks and leptons, the spin-1 gauge bosons, and the spin-0 Higgs field.
Despite the presence of a number of a-priori unknown parameters, this model is a
mathematical construction of considerable predictive power. Notably, it suggested
the existence of the W and Z bosons, the gluon, and the top and charm quarks
before these particles were observed. In 2013, the particle content of the SM was
made complete by the experimental discovery of the Higgs Boson [1}2].

Here we focus on the strong-force component of the SM, which specifies how
quarks and gluons bind together to form ordinary hadronic matter. This is the the-
ory of Quantum Chromodynamics (QCD), describing all strong-interaction physics
at all distance scales, from high energy particle collisions and the decay of heavy
nuclei to the properties of matter under extreme conditions such as in the core of
a neutron star. This diverse physics is encapsulated in a single formula of alluring
simplicity: the Lagrangian of QCD. Despite its apparently simple form, deriving the
physical dynamics of a system from this equation poses a tremendous theoretical
challenge.

Asymptotic freedom—the property that quarks and gluons interact very weakly
in high-energy reactions—ensures that perturbative approaches can be applied to
QCD at small distance scales. In this way one can obtain precise theoretical predic-
tions from the SM which may be rigorously tested through high-energy scattering
experiments. In the low-energy regime, however, the QCD coupling is large and
perturbative techniques cannot be used. The only known first-principles approach
to QCD at these scales is numerical: a discretised form of the QCD equations can be
solved exactly, using supercomputers, on a finite four-dimensional grid representing
space-time. This technique is named lattice QCD.

Of course, although we receive invaluable insight by discretising QCD, we have
also lost direct comparison with the physical, continuous, world. To be able to com-
pare the results of lattice QCD simulations with experiment, one must extrapolate
to the physical point. Precisely, the continuum limit (as lattice spacing a — 0), the
infinite volume limit (as lattice size L — o0), and, as computation time often limits
simulations to larger-than-physical quark masses, the continuation into small quark
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6 Quantum Chromodynamics

(phys.)

masses (as Mg — Mg ) must be taken. This final limit, the so-called chiral ex-

trapolation, is arguably the most difficult of the three to implement and will be a
particular focus of this body of work.

As technological and algorithmic advances now allow lattice simulations to be
performed near, or even at, the physical quark masses, it is foreseeable that chiral
extrapolation as a means of reaching the physical point will soon become obsolete.
With this in mind, we explore this technique not only as an essential link between
lattice simulations and Nature, but as an invaluable tool with which to develop a
deeper understanding of QCD from unphysical test cases which cannot be explored
experimentally. As we will see in later chapters, one can extend chiral extrapolation
techniques to isolate vacuum-quark effects, explore the quark-mass dependence of
observables and hence extract mass-derivative quantities, and extend SU(2)-flavour—
symmetric simulations to the SU(2)-broken world. Combining the insight afforded
by unphysical lattice simulations with experimental results allows one to deduce
hard-to-calculate quantities to a precision that is yet unreachable by direct compu-
tation. In this way, we set the benchmarks for the next generation of experimental
tests of the SM.

After outlining the mathematical formulation of QCD in the next section, we
briefly discuss the numerical lattice QCD approach. The remainder of this chapter
is devoted to the concepts of strangeness and charge symmetry violation in the
nucleon, which are the core themes of this body of work.

2.1 Mathematical Formulation

Mathematically, QCD is a gauge field theory describing the interactions of ‘colour-
charged’ particles. It is based on the non-Abelian, compact, and simple Lie group
SU(3), commonly represented by the group of 3 x 3 complex unitary matrices with
unit determinant. The gluons A, arise as the (spin-1) gauge bosons of this theory.
As such, they may be identified with the generators of SU(3) rotations in colour-
spaceﬂ, A, =t,A45, and transform in the adjoint representation of the gauge group.
The dimension of the adjoint representation (equal to the number of generators) is
3? —1 = 8 for SU(3), thus the gluons are colour-octet. The quark fields ¢ are spin—%
fermions in the fundamental representation of the gauge group and carry colour and
flavour labels. The dimension of the fundamental representation is the degree of the
group, N = 3 for SU(3), so the quarks are colour-triplet.

The classical, unrenormalised Lagrangian density of QCD is completely speci-
fied by the conditions of renormalisability and invariance under the SU(3) gauge

Here t, = Aa/2, where Ay, a = 1,. .., 8 are the Gell-Mann matrices with normalisation Tr(A,\p) =
Oab-
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transformations
Y(x) = ' (x) = Ux)p(z), | (2.1a)
Au() = A(x) = U@) A (@)U (@) + (U (@)U  (z),  (2.1b)

9

where U(x) = exp(i¢®(x)t*) defines an independent SU(3) transformation at every
point in space-time. Neglecting a quark-mass mixing phase—the 6 parameter asso-

ciated with the strong CP problem—as it is known to be extremely small [3], one
finds?

T iJ i j 1 a a)uv
Lacp =D 1y (i7" Dyl = 87my) vy — S F) F
q

= (i) — My) — %IFWF"”. (2.2)

The second line shows the standard compact notation—fundamental-representation
colour indices ¢, 7, adjoint-representation colour indices a, and flavour labels ¢ =
u,d, s,... have been suppressed. The Dirac matrix v#*, where u is a Lorentz vector
index, expresses the vector nature of the strong force, and the non-zero quark masses
are encoded in M, = diag(m,, m4,ms...). There is no gauge-invariant way of
including a gluon mass. The QCD covariant derivative introduces the coupling g of
the quarks to the gluons:
D)) = 6Y0,, —igty] A}, (2.3)
and the non-Abelian gluon field strength tensor is given by
F{9 = 0,A% — 0,A% + g farc AL AC, (2.4)

where fu. are SU(3) Lie group structure constants. This is non-linear in terms
of the gauge field and as a result the gluon kinetic energy term of the Lagrangian
generates three and four-gluon self-interactions. These interactions are responsible
for many of the salient features of QCD.

In particular, because of the gluon self-coupling, the polarisation of virtual glu-
ons in the vacuum antiscreens (i.e., enhances) colour charge. This effect dominates
over the screening effect of the quark vacuum-polarisation, which is analogous to
that of QED. As a result, the QCD coupling, a, = ¢g?/4m, runs to become small
at large scales; at high energy QCD is essentially a theory of free partons—quarks
and gluons—which only interact through relatively small quantum corrections that
can be systematically, perturbatively, calculated. This is the property of asymp-
totic freedom, for which Politzer, Gross, and Wilczek were awarded the 2004 Nobel
Prize |45

2Counterterms and ghost and gauge-fixing terms are implicit; they are all unnecessary for the
lattice QCD approach which we will consider here.



8 Quantum Chromodynamics

In contrast, at low energies accelerators reveal a particle spectrum which bears
no resemblance to the non-interacting theory: free quarks are never observed. In-
stead, towers of strongly-bound colour-singlet particles named hadrons emerge. This
is termed confinement and is understood as a consequence of the property that the
force between two colour-charges does not diminish as they are separated. Instead,
linear string-like potentials build up between partons. These strings only ‘break’
when the energy contained is large enough to create an additional quark-antiquark
pair out of the vacuum. As a result, one only observes mesons, which have the quan-
tum numbers of a quark-antiquark pair, and baryons, with the quantum numbers
of three quarks. The properties of these hadrons are the focus of this body of work.

Analytic derivations of hadron properties have proven to be impossible except
in some extreme limiting cases; at the relevant low energy scales the strong cou-
pling becomes large and perturbation theory is no longer valid. While many models
and approximations are used to study low-energy processes: the limit of the large
number of colours; generalisations of the original Shifman-Vainshtein-Zakharov sum
rules; QCD vacuum models and effective string models; the AdS/CFT conjecture;
and Schwinger-Dyson equations, the only known way to study QCD in the non-
perturbative regime directly is to use numerical methods. As suggested earlier, the
most successful of these, and the only one rigorously derived from the fundamental
theory, is lattice QCD.

2.2 Lattice Quantum Field Theory

First proposed by Wilson in 1974 [6], lattice QCD is a first-principles method of
calculating QCD observables numerically. In short, a discretised version of the full
QCD theory is solved explicitly on a four-dimensional lattice of points (3 space, 1
time dimension). Any such lattice is characterised by a finite lattice spacing a which
is not physical but acts as a method of regularisation. The limit a — 0 must be
taken to connect to the physical theory.

As the only known direct probe of QCD in the nonperturbative regime, the
lattice is an important source of information for tests of the SM; it provides results
for various low-energy hadronic matrix elements that are complimentary to those
obtained using phenomenological approaches. It has also become a viable framework
for calculations of nuclear few-body quantities [7,8], and for the exploration of part of
the QCD phase diagram [9,/10]. As we will see in later chapters, a great advantage of
lattice field theory is that the technique allows precise control over the parameters of
QCD. By varying these parameters one may probe more than QCD at the physical
point—for example, one can ‘turn off’ vacuum loop contributions or change the
quark masses—to develop a deeper understanding of nonperturbative phenomena.
In this section we introduce the basic concepts and terminology relevant to lattice
QCD. A comprehensive summary of the approach may be found in Refs. [11-13].
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2.2.1 The Discretised Action

Lattice gauge theory is based on the Feynman path integral approach to quantum
field theory [14]. In this formulation of QCD, observables are given by the expecta-
tion values of field operators. These expectation values, known as Green’s functions,
can be expressed as functional derivatives of the generating functional,

ZQCD :/(5AM5E(5¢€iSQCD, (25)

with respect to the various sources. If all Green’s functions could be calculated,
QCD would be solved. In Minkowski space, however, this formulation of QCD does
not lend itself to numerical computation because of the complex term e**2c> which
appears in Eq. ; the oscillatory integrand causes cancellations between different
regions of phase space. For this reason lattice QCD is formulated in Fuclidean
space-time. The partition function

Z&op = / 5 A, 01 5vp e Sacp (2.6)

is obtained by a Wick rotation (t — —itg) of the corresponding expression in
Minkowski space (Eq. (2.5)). This form allows a probabilistic interpretation of the
functional integral; the exponential factor corresponds exactly to the Boltzmann
weighting of a statistical ensemble.

In this section we describe the construction of a discretised lattice action for
QCD: B
Sqcep = SrlU, ¥, 9] + Sa|U], (2.7)

where the subscripts F' and G denote the fermion and purely-gauge components,
respectively.

Fermions

In Euclidean space-time the Dirac action for a free fermion is written as

/d4x () (D +m)y(). (2.8)

In the discretised theory the quark fields i(n) reside on the sites n of the lattice,
i.e., the fermionic degrees of freedom are

w(n), ¥(n), neA. (2.9)

We will restrict ourselves to four-dimensional cubic lattices:

A= {xERﬂx:an, n ez}, (2.10)
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where a is the discrete lattice spacing. While this is the standard topology, others
have been explored [15,/16] and there has been a recent resurgence of interest in
anisotropic lattices [17,[18]. In practice, of course, the lattices used for numerical
simulations have some finite extent. As in the continuum theory, the spinors 1 carry
colour, flavour, and Dirac indices (which are suppressed in our notation).

The derivative in Eq. (2.8) may be discretised using a symmetrised finite differ-
ence, where appropriate gauge links are included to maintain gauge invariance:

wzpwézzm m— Z Y(n+ ) = Ul(n — @) (n — )],

(2.11)
where the gauge fields U, (n) are elements of the gauge group SU(3). These fields are
oriented and attached to the links of the lattice: U,(n) lives on the link connecting
the sites (n) and (n + 1). Under a gauge transformation A(n),

Uu(n) = A(n) Uu(n) AMn + air) " (2.12)

Finally, implementing the discretisation of the integral in Eq. (2.8]) as a sum over
the set of space-time points A, we arrive at the ‘naive’ action for fermions in an
external gauge field U:

SNU, v, 0] = 3 Bln (} > Uy eln + i) = Ufn = ) n = )] + mw<n>>

= > ¥(n) My, [U]w(m), (2.13)

n,meA

where MY is the naive interaction matrix
ngm[U] = ZV}L |:U7LM 5 m u Un W én(m""ﬂ) . (214)

By Taylor-expanding U, and v in powers of the lattice spacing a, one can see that
the naive fermion action has O(a?) errors. It is clear, however, that the first-order
derivative can only couple lattice sites separated by 2a. As a result, certain high-
momentum modes do not correspond to a large value of the action. This leads to
unwanted additional long-range degrees of freedom called doublers; in the continuum
limit there are 2¢ = 16 flavours of quark rather than one.

There are two common methods of fixing the doubling problem. The first reduces
the number of doublers by ‘staggering’ the quark degrees of freedom on the lattice.
This procedure is described in Ref. [11]. The other technique, which is used in this
work, involves adding additional operators to the quark action (which scale with a
and so vanish in the continuum limit) to suppress the doublers by driving them to
higher energies.
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Precisely, the Wilson term—a particular (energy) dimension-five operator—is
added to the standard naive lattice fermion action, giving the ‘Wilson action’:

SY[U ] =) d(n [Z( —%raA“)—i—m

nen p=1

(n). (2.15)

Here V denotes the finite difference defined in Eq. (2.11)), and the operator A removes
the unwanted doublers by coupling adjacent lattice sites:

Aub(n) = S [Uum)d(n+ @) + Ultn — ) b(n— ) — 20(m)].  (2.16)

a

In terms of link variables, the Wilson action is written as

SWIU w9 = > 0" (n) MY [U] 0 (m),
n,meA
where
4
aM,, (U] —5nm—ff2[ " = V) Un Onmp) + (r +9) Ul Onmiw | (2:17)
pn=1

with a field renormalisation

k= 1/(2ma + 8r), (2.18)
L=V, (2.19)

It is typical to take r = 1.

In the continuum limit it is clear that, through the addition of the Wilson term,

we have introduced O(a) discretisation errors into the fermion matrix; the Dirac
action of Eq. (2.8) becomes

/d4x () (lD +m — a%) U(z) + O(a?). (2.20)

Numerical simulations using Wilson fermions must thus be performed on very fine
lattices, which are computationally expensive, in order for continuum extrapolations
to be reliable. It has become standard to improve the uncertainties of the Wilson
action through the addition of higher-dimension operators. This procedure is known
as the Symanzik improvement program [19).

We discuss here only one choice of improved fermion action, which we use in
this work (see Chapter [7)). The Sheikholeslami-Wohlert fermion action [20] includes
the so-called ‘clover’ term—a gauge-invariant, local, dimension-five operator—in
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addition to the standard terms of the Wilson action:

SEVIU. ) = SFIU, 0] = = D0 S D) o Fu(m) v(n). (221)

4
neA p,v=1

Here cgw is the clover coefficient which can be tuned (typically nonperturbatively
using the axial Ward identity [21]) to remove all O(a) artefacts. Further details may
be found in Refs. |[11-13].

Gluons

The matrix-valued link variable U,(x) was introduced in Eq. to maintain
the gauge-invariance of the covariant derivative. Based on its gauge transforma-
tion properties (Eq. (2.12))), we interpret U,(n) as a lattice version of the gauge
transporter connecting the points (n) and (n + ). Under this identification, we
can express the link variable in terms of the algebra-valued continuum gauge field

A, (x):
U,(n) = Pexp ig/ A, (n+ Ap)dA, (2.22)
0

where the operator P path-orders the A, along the integration path and g is the
coupling constant.

From Eq. it is clear that the trace over a closed (Wilson) loop of link
variables is a gauge-invariant object. Various such loops are used in combination
to build the lattice version of the QCD gauge action—the precise construction is
arbitrary provided that the usual continuum action is recovered in the a — 0 limit.
It is natural to consider the simplest case first; the shortest nontrivial closed loop
on the lattice is the so-called plaquette, constructed by the product of four links
enclosing an elementary square:

Pu(n) =Re Tr[Uu(n) Uy(n+ 1) Ul (n + 0) Ul (n)]. (2.23)

Using Eq. (2.22), and expanding the integral, we express P, in terms of the field
A,

m
P, (n) = Re Tr Peid fo, A

1—%(g?€nA-dx)2+O(A4)

Stoke’s theorem gives an expression for the integral:

—Tr P . (2.24)

7{ A-dx = / dx,dx,[0,A,(n+ ) — 0,A,(n+ )]
Opn 0
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:/ dz,dx,F,,(n+ )
0
4
= a®F,,(n) + 3—4(83 + 02)F(n) + O(d, A?), (2.25)

where the last line follows from a Taylor expansion of F),,(n+x) about the lattice site
(n). Substituting this expression back into Eq. (2.24)), the plaquette term becomes

1
P,(n)=1- 592(14 Tr [Fu,,(n)ﬂ + O(gQaG, a8,g4a6). (2.26)

This expansion yields the ‘Wilson action’ for gluons on the lattice:

ED ) IR

neA p<v

S TR0 + O ) (2.27)

neA p<v

This expression differs from the continuum gluon action by terms which are O(a?)
and O(a?g?). These artefacts can be removed, however, by adding other Wilson
loops to the action which have different errors at O(a?). For example, the Liischer-
Weisz gauge action [22] includes 1 x 2 rectangular loops and parallelogram-shaped
loops as well as the standard plaquette:

SEW <co DIH=Pul+ad M-Rul+ed [1- LW}>, (2.28)

plaq. rect. par.

where R, and L, denote products of gauge links, enclosing 1 x 2 rectangles and
parallelograms respectively, defined analogously to P,, in Eq. . The relative
weighting coefficients ¢; (that are generically functions of g*) are chosen to satisfy
co + 8c1 + 8co = 1, which ensures that discretisation errors are cancelled to O(a4).
Two common choices of the weighting coefficients are the Iwasaki gauge action 23]
and the tree-level improved action [24] which we use in Chapter[7] This latter choice
sets g = 20/12, ¢ = —1/12, and ¢, = 0.

2.2.2 Lattice Expectation Values
Physical observables are calculated in the lattice approach as expectation values:

1 —
(0) =3 / §A, 0 5 O e~ Sacr, (2.29)
where O can be any combination of operators expressed in terms of time-ordered
products of gauge and quark fields, and Z is the Euclidean—space-time partition
function (Eq. (2.6)). One can remove any dependence of O on the quark fields as

dynamical variables by performing Wick contractions to re-express them in terms
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of propagators. The propagators, for a given background field U, are determined by
inverting the Dirac operator. In terms of an interaction matrix M (e.g., Eq.
or (2.17)),

Si(m,n, U) = (M[U]™ ") m (2.30)

gives the amplitude for the propagation of a quark from site (n) to site (m) (where
the spin-colour indices are suppressed). Now, integrating over the fermion field
(recalling that the fermion action is given by S = 1My, Eq. (2.13)),

_ [OA, det[M]Oe 5

(0) = [A, det[M] eS¢

(2.31)

As the gauge group SU(3) is continuous, there are infinitely many gauge configura-
tions that contribute to this expression. For this reason the integral over the gauge
fields is approximated statistically:

N

(0) ~ % > o). (2.32)

i=1

Here O(U) is the operator O evaluated for the i" field configuration U of an
ensemble of N such configurations which have been randomly generated based on the
acceptance probability of the weight function det[M[U]]ecwl. This generation is
performed iteratively using a Markov process; beginning from an initial configuration
U] a chain of configurations {UW, U®, ...} is generated using a Monte-Carlo-style
algorithm satisfying

P(U[zel] _ U[i])P[U[ifl]] _ p(U[i] N U[ifl])p[U[ﬂ]’ (2.33)

where P(U — U’) is the transition probability between configurations U and U’.
General criteria exist that guarantee that the configurations visited are indeed dis-
tributed according to the desired probability distribution after a sufficient number
of iterations.

The generation of gauge configurations is computationally expensive. The cost
of calculating the fermion determinant det[M [U]] depends not only on the number of
configurations generated, but on the number of lattice sites, the lattice volume, and
the quark masses. Because of the sheer size of the fermion matrix M, its determinant
is approximated numerically. This is done using iterative algorithms which involve
inverting matrices that become progressively more singular as the quark masses be-
come lighter. Similarly, the quark propagators, which must be calculated explicitly
for each gauge configuration, become more expensive to calculate at light masses.
Moreover, the lattice volume required becomes increasingly large. For this reason
calculations at or near the physical masses are only now becoming tractable [25].

A further cost-saving approximation is that quark propagators are typically cal-
culated from a fixed source point to every other point on the lattice; ‘all-to-all’
propagators from every lattice site to every other site are simply too expensive. As
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a result, contributions to observables from quark-line-disconnected loops—which
could appear at any point on the lattice—are neglected in most simulations (see
Section [2.3.1)). The effects of this omission in the case of baryon electromagnetic
form factors will be discussed in detail in Chapter

2.2.3 Scale Setting

A characteristic of lattice simulations is that all quantities are calculated in units of
the unknown lattice spacing a, which must be determined by matching an observable
to its physical valud®l This can be done in a variety of ways. Two common meth-
ods, often referred to as the ‘mass-independent’ and ‘mass-dependent’ scale-setting
schemes, are of particular interest to us here:

1. Mass-independent. The inverse bare coupling 5 determines the lattice spac-
ing a. That is, simulations at some fixed value of [ are extrapolated to the
physical point (usually linearly in the bare quark mass am,., ), and the value
of some observable at that point is used to set the common scale a for all
lattice ensembles at that common f.

2. Mass-dependent. The lattice spacing varies with bare quark mass. That is,
a is determined separately for each set of bare parameters (3, am,,,,) by using
a physical observable that is assumed to be independent of the quark masses.
A typical choice of observable is the Sommer scale, 7y, which is related to the
force between static quarks at relatively short distance, or any of a range of
similar quantities.

We could think of these two choices of scale-setting prescription as different
ways of absorbing the observed quark-mass dependence of the ratio ry/a at fixed
B. Method 1 essentially assumes that this dependence may be attributed to the
variation of ry with quark mass, while method 2 instead assumes that a is changing.
What is not often considered is that both ry and ¢ may have some dependence on
the sea-quark mass, which would lead to an intermediate scale in some sense. Such
a ‘mixed’ scale-setting procedure would be nontrivial to implement.

Of course, in the continuum limit, and after the chiral extrapolation to physical
quark masses has been performed, the results of each method of scale setting must
agree for physical observables. When considering quantities which are expressed as
derivatives with respect to quark mass, however, the choice of scale-setting method
becomes far more significant; these quantities, by the very definition of the deriva-
tive, depend on the scale away from the physical point and hence on the scale-setting
scheme chosen. This distinction will be particularly relevant to the discussion of
Chapter [5 where we calculate the octet baryon sigma terms as derivatives via the
Feynman-Hellmann theorem.

3The lattice spacing is not physical, but acts as a method of regularisation. The only physical
quantities are mass-ratios.
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2.3 Strangeness and Charge Symmetry Violation
in the Nucleon

We finish this chapter with an introduction to the concepts of strangeness and
charge symmetry violation (CSV) in nucleon structure; these topics are the unifying
themes of this body of work. Both strange and CSV observables are associated
with deviations from approximate features of the nucleon in QCD. They are hence
benchmark quantities for modern precision tests of the theory.

In particular, strange nucleon observables occupy a position of comparable im-
portance in QCD to that of the Lamb shift in the history of QED. While lattice QCD
and models have described a number of valence-quark—dominated hadronic proper-
ties extremely accurately [26], strange observables can only arise through quantum
fluctuations of the vacuum in which a strange-antistrange quark pair briefly bubble
into and out of existence. The calculation of such quantities directly within QCD,
and their verification by experiment, is thus the ideal test of our understanding of
virtual sea quarks in the nucleon.

Charge symmetry, defined formally in Section [2.3.2] is related in QCD to the
near mass-degeneracy of the u and d quarks. At the quark level this symmetry
is, of course, very badly broken, but this is hidden by dynamical chiral symmetry
breaking; in nuclear reactions charge symmetry holds to better than about 1% [27].
Precise calculations of CSV observables therefore also provide SM benchmarks for
tests of QCD. In our discussion, the themes of strangeness and CSV are connected
through the electromagnetic form factors (Chapter ; the strange quark and CSV
contributions to these quantities cannot be distinguished experimentally.

2.3.1 Nucleon Strangeness

The net strangeness of the nucleon is, of course, zero; its quantum numbers corre-
spond to those of two u quarks and a single d. In QCD, however, these light valence
quarks are accompanied by a fluctuating sea of all flavours of ¢q pairs. The magni-
tude of the vacuum contributions to observables from different flavours scales with
quark mass. Clearly, the lightest non-valence quark flavour—the s for the nucleon—
will provide the dominant vacuum contribution, and hence be the most interesting
phenomenologically.

Other than the valuable information about the quantum vacuum which strange
observables provide in their own right, these quantities are also relevant in other
arenas. Most importantly, the strange nucleon sigma terms (Chapter [5)) are essen-
tial input for the interpretation of dark matter direct-detection experiments. In
general, however, the uncertainties in both experimental and theoretical determi-
nations of the strangeness matrix elements, including the strange sigma terms, are
large. Clearly lattice QCD promises significant improvement by facilitating the
calculation of definitive quantitative results for these observables.
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O

(a) Disconnected insertion. (b) Connected insertion.

NZ.
7N

Figure 2.1: Quark-line ‘skeleton’ diagrams showing connected and disconnected inser-
tions of some operator (represented by the crossed vertex). All gluons and additional

O

(a) Quark-line-connected (b) Quark-line-disconnected
meson loop. meson loop.

(spectator) quark-antiquark pairs are omitted for clarity.

—

Figure 2.2: Quark-line ‘skeleton’ diagrams showing the meson cloud contributions to
hadronic observables. All gluons and additional quark-antiquark pairs are omitted for
clarity. Any operator insertion into a connected quark line (i.e., any line other than the
vacuum bubble in Fig. is included in a connected-only calculation.

The challenge in determining strange nucleon observables in lattice QCD lies
in the evaluation of the so-called disconnected insertions, illustrated in Fig.
Determining these terms explicitly requires the calculation of all-to-all propagators—
from every point on the lattice to every other point—which is prohibitively expensive
compared to the evaluation of the connected insertions. Consequently, there are
very few lattice calculations of disconnected observables [28,29]. In these studies
the all-to-all propagators are stochastically estimated. For these reasons, the lattice
QCD simulations which we use and develop in this body of work will include only
connected insertions. We emphasise here that this does not omit the entire meson
cloud of QCD. This distinction is illustrated explicitly in Fig.

We investigate the role of strange quarks in generating different nucleon observ-
ables by combining connected-only lattice QCD simulations, chiral effective field
theory, and experimental input; the aim is to build a cohesive picture of the con-
tribution not only from the strange quark, but from the dynamical vacuum more
generally, in QCD. In particular, we investigate the strange nucleon sigma terms
(Chapter [5)) and the strange contribution to the electromagnetic form factors of the
nucleon (Chapter [7)).

2.3.2 Charge Symmetry Violation

Charge symmetry is formally defined as the invariance of the strong interaction
under an isospin rotation exchanging u and d quarks; it corresponds precisely to a
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rotation by 7w about the ‘2’ axis in isospin space (compared to isospin symmetry,
which is invariance under an arbitrary rotation in this space). The violation of this
symmetry is arguably small: the proton-neutron mass difference is one part in a
thousand [30] and many nuclear reactions proceed identically if protons and neutrons
are interchanged. The effects of this small CSV, however, may be hugely significant.
For example, if the proton-neutron mass difference were reversed, protons could
undergo beta decay, atoms such as carbon, the building block of all organic matter,
could not form, and life as we know it would be impossible. CSV also explains
the discrepancy between the calculated and measured binding energy differences of
mirror nuclei (Okamoto-Nolen-Schiffer anomaly [31]) and may play a role in precision
tests of the SM [32], including those at the LHC [33].

In lattice QCD studies, however, the small effects of CSV are in general ig-
nored; it is standard to perform ‘2+41-flavour’ simulations where the light quarks
are mass-degenerate. A full ‘14-141-flavour’—isospin-broken—study would involve
a significantly more complicated tuning procedure in order to find the lattice pa-
rameters corresponding to the close-to-physical space of interest. With the majority
of lattice simulations not yet at the physical average light-quark mass, the effect of
CSV has thus long been a secondary concern; only very recently have lattice studies
been performed that partially (for the valence quarks only) [34] or fully [35] include
strong CSV contributions.

CSV effects have also, until very recently [36-38|, been neglected in many stan-
dard analyses of experimental results. For example, the assumption of good charge
symmetry at the parton level has been applied to global fits of parton distribution
functions to experimental data [33}/39] in order to reduce the number of indepen-
dent functions by a factor of two. Experimental tests of the SM are now, however,
reaching a level of precision where CSV effects may be important. For example, it
has been suggested [40] that CSV artefacts could significantly reduce the 3-sigma
discrepancy with the SM value for the weak mixing angle found by the NuTeV col-
laboration [41] in neutrino-nucleus deep inelastic scattering. For this reason, we
devote considerable attention to the role of CSV in the nucleon (returning to a
discussion of the NuTeV anomaly in Chapter @

In future chapters we combine 24 1-flavour lattice QCD simulations with input
from chiral effective field theory to determine CSV effects in a number of nucleon
observables. In particular, we separate the strong and electromagnetic contributions
to the proton-neutron mass difference (Chapter , as well as determining the level
of CSV in the baryon sigma terms (Chapter [f]), and in moments of parton distribu-
tion functions (Chapter @ In Chapter |7| we describe the first lattice-QCD-based
calculation of the CSV electromagnetic form factors and, importantly, present the
remarkable result that these quantities are constrained to be an order of magni-
tude smaller than previous best estimates. This revelation paves the way for a new
generation of experimental determinations of the strange nucleon form factors to
constrain these quantities to an unprecedented level of precision. Moreover, because
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of the extremely small SM background, measurements of CSV in the electromagnetic
form factors may in the future provide some insight in searches for new physics.






Chapter 3

Chiral Perturbation Theory

One of the prime motivators for lattice QCD is its potential to confront experiment
in the nonperturbative regime. Its success on this front has historically been tied to
chiral effective theory, whose essential role was to bridge the gap between the physical
region of light quark masses and simulations with computationally less demanding,
heavier, masses. Even in the current era of high-precision lattice studies approaching
the physical point, chiral extrapolation techniques are not obsolete. As will be
described in the coming chapters, the formalism has become a refined tool with which
one can correct a variety of lattice artefacts in near-physical simulations or glean
understanding from unphysical test cases which are not accessible experimentally.

In this chapter we provide an introduction to chiral perturbation theory with a
focus on understanding properties of the low-lying baryon octet. After discussing
effective field theories, of which the chiral theory is arguably the canonical exam-
ple, we consider the symmetry-breaking pattern of QCD and describe the emergent
Nambu-Goldstone bosons, exposing their universal low-energy dynamics through an
effective chiral Lagrangian. Through the example of the chiral extrapolation of the
mass of the nucleon we introduce the finite-range regularisation scheme which is
applied throughout this body of work. The final section describes the use of chiral
perturbation theory to correct artefacts resulting from a finite lattice volume.

In later chapters we develop and use more complex chiral extrapolations for
particular observables of interest. Throughout that discussion we maintain a focus
on applications tailored to lattice QCD in the high-precision era; beyond quark-mass
extrapolation formulae, we address extensions needed to account for the quark-line—
connected approximation to QCD (Chapter [7)), and the breaking of the commonly-
employed light quark mass degeneracy m,, = mg (Chapter [4)).

3.1 Effective Field Theory

Effective field theories (EFTs) provide a standard way to analyse physical systems
with widely-separated energy scales. Such systems are common in arenas ranging
from the high-energy domain of particle physics beyond the SM to the low-energy
domain of nuclear physics which is of interest to us here. In essence, EFTs encode
the expectation that the details of high-energy interactions will have little influence

21
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on the low-energy dynamics of a system; parameters encoding physics at energy
scales that are very large or small with respect to the scale of interest are taken
to infinity or zero, respectively. This provides a simpler, approximate, description
of the system, which can be improved to arbitrary order by treating corrections
induced by higher and lower energy scales—i.e., by the finite physical values of the
parameters which have been removed—as perturbations.

This process is very familiar and intuitive; it is the basis of the multi-pole ex-
pansion in electrodynamics, the use of Newtonian rather than relativistic mechanics
for systems with scales v < ¢, and the replacement of a physical dielectric with a
uniform one. In a relativistic, quantum mechanical theory where particles may be
created and destroyed, however, it is complicated considerably by the necessity of
ultraviolet regularisation; the limit in which small distance scales are taken to zero
must be handled carefully. Furthermore, the renormalisation-group running of cou-
pling constants is modified in an effective theory—the usual logarithmic dependence
on heavy particle masses is traded for scale-dependence.

The machinery of EFTs in the modern sense grew out of the chiral Lagrangian
techniques developed by Weinberg, Dashen and others in the late 1960s as a short-
cut to current-algebra derivations [42-48]. On the grounds of perturbative unitarity
and analyticity, Weinberg argued that the correct effective Lagrangian consists of
all operators with the desired fields and symmetries. Thus, to construct an EFT
describing physics below some energy scale A, only relevant degrees of freedom—
states with m < A,—are considered explicitly, while heavier excitations with M >
A, are ‘integrated out’ of the action, generating non-local terms. One then writes an
expansion of interactions among the light states in powers of (energy/A, ), replacing
the non-local interactions from virtual heavy particle exchange with a set of local
interactions which are constructed to give the same physics at low energies. The
leading terms in the expansion will dominate in the low-energy region of interest.

While the EFT has the same infrared behaviour as the underlying fundamen-
tal theory, it has different ultraviolet behaviour; the only remnants of high-energy
dynamics are contained in the symmetries of the EFT and in the (a-priori un-
known) couplings of the resulting low-energy Lagrangian. In our applications of
chiral effective field theory to lattice QCD studies in future chapters, these cou-
plings will be determined by fits to lattice simulation results. In the next section we
describe the construction of the chiral Lagrangian which was established by Gasser
and Leutwyler [49] as the canonical example of the use of effective field theory.

3.2 Chiral Symmetry

The possibility of building a phenomenological effective theory of low-energy QCD
exists because there is a mass gap between the pseudoscalar mesons (7, K ,1), which
are the lightest hadrons, and all other states and resonances. This is elegantly
explained by the Nambu-Goldstone mechanism: in the limit of vanishing quark mass
the mesons are massless bosons arising from the spontaneous breaking of the chiral
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symmetry. The construction of an effective Lagrangian describing only the low-
energy Goldstone-boson modes, but incorporating the full chiral symmetry of QCD,
allows a systematic analysis of the implications of the symmetries and symmetry-
breaking pattern, with higher-order corrections treatable in the sense of perturbative

field theory.
The QCD Lagrangian was introduced in Chapter

Laocp = (i) — My)p — %IF’“’FW. (3.1)

Two approximate symmetries of Locp concern us here. If all quark masses are
equal, the Lagrangian is invariant under global unitary-vector transformations:

U(x) = ¢ (x) = "y (a), (3-2)

where, as in previous sections, t, = \,/2 are the generators of flavour-SU(Ny)
(and Ny is the number of quark flavours in the theory). These transformations
form the group SU(Ny)v, a generalisation of the familiar isospin symmetry SU(2)y .
If all quark masses vanish, then Lqocp is also invariant under global axial-vector
transformations which form the group SU(Ny)a:

Y(w) = ' (x) = e (x). (3.3)
The combined symmetry group SU(Ny)y @ SU(Ny) 4 is termed chiral symmetry; the

limit M, — 0 is named the chiral limit. Noether’s theorem gives the corresponding
classically-conserved vector and axial-vector currents:

VE =gty AF = gyysty, (3-4)
with associated classically-conserved charges
Q, = /d%VO and Qy = /dngO, (3.5)

respectively.

It is useful for future sections to re-write the chiral symmetry group using the
notion of chirality, defined by the operators

1
FL,R: 5(1:&’}/5), (36)
which project left and right-handedﬂ components of the Dirac wavefunction:

Y =Ty, Yr=TgY, with ¢ =1vp+ g (3.7)

!The terms left and right-handed come from the high-energy (or massless) limit in which chirality
becomes identical to helicity.
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In terms of these chirality states, the QCD Lagrangian (Eq. (3.1)) may be re-
expressed as

Laocp = Ypilpvy, + rilDhg — b Mypg — Mgy, — %LFW/FIW‘ (3.8)

In the chiral limit (A, — 0), the left and right-handed quark fields decouple and
Lqocp becomes invariant under global SU(Ny), ® SU(Ny)g symmetry transforma-
tions.

Chiral symmetry is spontaneously broken in nature by the vacuum state. If it
were unbroken, the axial current would be exactly conserved and the axial charge

operators, Q%, would commute with the Hamiltonian: [Qj,ﬁ } = 0. Then, given

an eigenstate of the Hamiltonian, [NT) (e.g., the nucleon, with positive parity and
mass M = 0.940GeV), such that

HINT) = M|N™"), (3.9)

another state, of opposite parity because of the =5 structure of the axial current,
must be defined by [N~) = Q%4|N*). By the commutation relation, this state is
degenerate with |[NT) in mass. Such pairs of mass-degenerate states of opposite
parity are not observed in the low-energy hadron spectrum (the lowest excitations
of the nucleon, N(1535) and A(1620), have masses more than 500 MeV greater than
that of the N). Clearly, Q4]0) # 0.

The Goldstone theorem [50] states that, in a physical system in which a con-
tinuous symmetry is broken by the vacuum state, there exists a massless, spinless
boson carrying the quantum numbers of the symmetry transformation; a ‘Gold-
stone boson’. For QCD with Ny = 3, there are 2(NJ% — 1) = 16 generators of
the chiral symmetry, 8 of which are broken spontaneously by the vacuum state (as
SU(3)r, ® SU(3)r = SU(3)y). The 8 associated Goldstone bosons are identified
with the pseudoscalar meson octet.

The physical octet mesons are only approximately Goldstone because of the ez-
plicit chiral symmetry breaking by the finite quark masses; the quark-mass term in
the Lagrangian, —Mqﬂvﬁ, is not invariant under axial-vector transformations. Nev-
ertheless, as the physical QCD vacuum lies very close to a spontaneously broken
phase of an exact chiral symmetry, we can treat the explicit breaking as a pertur-
bation about the chiral limit, giving rise to the small masses of the physical octet
mesons.

Ever since the phenomenological importance of chiral symmetry was realised |51],
there has been great interest in quantifying its breaking in nature (comprehensive
early reviews are given in Refs. [52,53]). This is complicated by confinement; one
cannot simply measure the mass of a free quark. Instead, matrix elements of the
scalar quark currents, called sigma commutators, can be determined (to first order)
from on-shell scattering amplitudes. The sigma terms vanish identically in the chiral
limit and hence their non-zero values in Nature provide some information on the
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form and size of explicit chiral symmetry breaking. These quantities are the focus
of Chapter 5]

3.3 The Chiral Effective Lagrangian

By the formalism outlined in Section [3.1] the chiral Lagrangian is given by the most
general expression of the form

Lot = Lo + Lsg, (3.10)
which satisfies the following conditions:

e [ possesses the same symmetries as the chirally-symmetric part of the QCD
Lagrangian. That is, it is invariant under the chiral flavour group SU(3); ®
SU(3)g.

e The symmetry group is spontaneously broken to SU(3)y by the ground state
of the theory.

e The Goldstone modes resulting from the broken symmetry are the only mass-
less, strongly-interacting particles.

e The explicit symmetry-breaking part, Lgg, is small, can be treated perturba-
tively, and generates small masses for the pseudo-Goldstone mesons.

By construction this Lagrangian will produce the same low-energy expansion as
QCD itself. The systematic framework underpinning that expansion—an ordering
in powers of energies and momenta (generically denoted by p) of the interacting
particles such that any matrix element or scattering amplitude is organised as a
Taylor series in p—is called chiral perturbation theory.

The following subsections outline the construction of the various (meson, baryon)
components of Lez. More detail may be found in Refs. [54,55], with the ‘heavy-
baryon’ formalism used here presented in Ref. [56].

3.3.1 Pseudo-Goldstone Bosons

In order to construct Leg in the meson sector with Ny = 3, it is convenient to
represent the pseudoscalar pseudo-Goldstone bosons by a 3 X 3 matrix field ¥(x) =
&%(xz) € SU(3). This matrix transforms linearly under chiral rotations of left and
right-handed quarks: under SU(3);, ® SU(3)g,

Y — LYRT, (3.11a)
¢ — LEUT = UERY, (3.11b)
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where U is defined implicitly as a function of L, R and £ by Eq. (3.11b]). Explicitly,

2iP
2 = €2 = exp (;—) (3.12)
\/LETFO + \/Léﬁ Tt K+
- 1 1 0
P = E ™ _7§7T0 :‘ 7677 K s (313)
— N7 2

where f; is a low-energy constant which describes the normalisation of the field X.
From its relation to the axial current this constant is identified, as the notation sug-
gests, with the pion decay constant in the SU(3) chiral limit. A chiral perturbation
theory estimate is f, = 87 MeV, with this normalisationﬂ [57]. We note that the
symbol ‘n’ in Eq. denotes the octet component of the 7 field, rather than a
representation of the observed n meson.

The meson part of Leg may now be written in terms of the field ¥ (z) and its
derivatives. At low energy, an expansion in powers of the meson momenta is equiva-
lent to an expansion in powers of 0#%.. By Lorentz invariance, only terms with even
numbers of derivatives will appear. At leading order in chiral perturbation the-
ory, which corresponds to O(p?) in the energy/momentum expansion, the effective
Lagrangian is thus [54]

2
Lo = Tr(0"S10,%) + A Tr M, (ST + 5). (3.14)

All two-derivative terms can be incorporated into this form. The low-energy con-
stant A, which relates the quark-mass matrix to the meson masses, could in prin-
ciple be calculated explicitly in terms of fundamental QCD parameters. Without
exact solutions to QCD Green’s functions, however, this constant is determined
phenomenologically.

Taylor-expanding the symmetry-breaking part of £fﬁ_ in powers of the meson

field, one finds
L3 = ATr M, (ST + %)

=2\ Tr(M,) — j—é Tr(M,9?) + O(2*)

4\
= 2\(m, + 2m) — —2(ﬁ’-ﬁm+

K - K(m+ my) + %n%m + 2ms)> +O(9*),
(3.15)

1
2

where the first term is a vacuum energy contribution, higher-order interaction terms
have been neglected, and we have taken the isospin-symmetric limit by approximat-
ing m,, = mg = m (i.e., M, = diag(m, ™, m;)). The meson masses to leading order

2The two most common conventions for the normalisation of f differ by a factor of v/2.
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can be simply read from this equation:

AN 8A
mi = —(m+m,), mi= 372

Ik

We have clearly recovered the Gell-Mann—QOakes—Renner relation [58] m?2 oc ™ and
the Gell-Mann-Okubo mass relation [59,60]

8A
m2

P= g (T + 2m,). (3.16)

3m? +m7 —4mj = 0. (3.17)

By taking both the pion and the vacuum matrix-elements of the symmetry-breaking
Lagrangian, the low-energy constant A, and hence the meson masses (from Eq. (3.16)),
can also be related directly to the quark condensate:

=2\ = <ﬂu>vac. = <ad>vac. = <§$>vac.7 (318)
2m2 = —m(uu + dd)yae.- (3.19)

™

Other tree-level results can be derived just as simply; expanding L% to O(®*) yields
an interaction term between four mesons:

e (Tr([®, 0, P|P 0"D) + 2Af2 Tr(P*M,)). (3.20)
This expression leads trivially to the celebrated n7 scattering lengths obtained by
Weinberg in the 1960s |61] using current algebra techniques (as well as to predictions
for the scattering amplitudes for any other four pseudoscalar mesons).

Contributions at next-to-leading order are systematically included by incorpo-
rating terms involving higher derivatives and increased powers of the quark masses
into the chiral Lagrangian. In addition to the resulting tree-level contributions at
O(p*), loops with interaction vertices taken from the leading-order Lagrangian must
be considered, i.e., chiral perturbation theory corresponds to an expansion in both
quark-mass and momentum-dependent interactions and increasing loop complexity.
The ordering of this expansion is termed chiral power counting and is the focus of
Section [3.41 While formally possible, calculations at arbitrarily high order in the
chiral expansion are not practical; at each order there is a significant increase in
the number of undetermined coefficients (12 at O(p*) and 90 at O(p®)) which must
be input from phenomenology, experiment, or lattice QCD, limiting the predictive
power of the theory [62].

3.3.2 Octet Baryons

In the meson sector, chiral perturbation theory gives rise to a power-series expansion
of the effective Lagrangian in terms of derivatives and the quark-mass matrix M.
Progressively higher-dimension operators are suppressed by higher inverse powers
of the chiral symmetry breaking scale A,. Physically, this scale corresponds to
the range of validity of the effective theory. As the first non-Goldstone mode is
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the p meson, perturbation theory with only the pseudo-Goldstone octet mesons is
sensible at scales up to A, =~ m, ~ 770 MeV. An alternate argument, based on
loop geometry, suggests A, = 4nfr ~ 1 GeV—the same order of magnitude. For
baryons, if Mp denotes the baryon-mass matrix, Mp/A, ~ O(1). This indicates
that higher-derivative operators involving baryon fields are not suppressed in the
same way as those involving the meson fields.

To see this explicitly, consider a Lagrangian consisting of the baryon kinetic
energy term plus a higher-dimension term with two additional derivatives: for a
baryon field B, )

£=B(id - My)B + B(id - MB)%B. (3.21)

X

As the time derivatives in 9*/A2 produce a factor of M3 /A2, which is not small, this
term is important even for processes involving small momenta. A similar problem
occurs in the loop expansion; higher-order loop graphs may produce terms which
scale as Mp/A, ~ O(1) relative to the leading-order contributions and hence cannot
be neglected. This complicates the low-energy structure of the meson-baryon system
considerably; there is no longer a one-to-one mapping between the loop and small-
momentum expansions. To overcome this difficulty and include the octet baryons
into the chiral Lagrangian, we use a formalism, pioneered by Jenkins and Manohar
(based on earlier work by Georgi for the study of heavy quarks [63]), in which
baryons are treated as heavy static fermions [56).

In the chiral limit, the momentum that is transferred between baryons by pion ex-
change is small with respect to the baryon mass. Thus, baryon velocity is effectively
conserved. This suggests a parameterisation of the momentum of a close-to-on-shell
baryon as

P = Mpv, + k,, (3.22)

where v = 1 and v - k < A, is proportional to the amount by which the baryon is
off-shell. The effective theory can now be reformulated in terms of new baryon fields
B,, with definite four-velocity v*, which are related to the original baryon fields B
by

By(z) = - u ¥ exp(iMpv - 2)B(z). (3.23)

As [v*,x"] = ihg" /Mp — 0 in the heavy fermion limit, this field with definite
position and velocity is allowed. The factor %(1 + ) projects out the particle com-
ponents of the Dirac spinors. The antiparticle fields are integrated out of the theory
(generating O(1/Mp) corrections—this is detailed in Appendix and the effects
of virtual baryon loops are absorbed into higher-order terms in the chiral expansion.
The new baryon fields obey a modified Dirac equation, #B, = 0, which no longer
has a baryon mass term:

B(i — Mp)B = B,i})B, + O (MLB) (3.24)
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It is clear from Eq. that derivatives acting on B, produce powers of k rather
than p, so higher-derivative terms in the reformulated effective field theory are sup-
pressed by powers of the small quantity k/A,. The heavy-baryon formalism thus
allows a systematic and consistent expansion in powers of derivatives.

As in the meson case, it is convenient to represent the octet baryons by a 3 x 3
matrix field?]

1 1

7520 + TEA o+ p
e =0 _2ZA
= - V6

Under SU(3), ® SU(3)g, this field transforms as
B — UBUT, (3.26)

where U is defined by Eq. (3.11b)). Velocity-dependent Pauli-Lubanski spin operators
St =Sk = %750‘“’% act on the baryon fields. These satisf

v-S=0, S’B= —ZB, (3.27a)

{s* 87} = %(u%“ — "), [S",87] =i, Ss. (3.27b)

For a non-relativistic spin—% particle in its rest frame the spin operators reduce to
the usual expression, &/2.

The effective Lagrangian in the baryon sector is the most general expression that
can be written using the baryon field B, the meson field X, the spin operator S,
and derivatives. At lowest order [56],

v
L - /2—/001663_, (328)
with
£ = iTrB(v-D)B+2DTrBS*{A, B} + 2F TrBS*[A,, B|
+op Te B{E"M " + €M,E, BY + bp Tr B[¢TM,E" + €M, B
+0o Tr M, (Z + =1) Tr BB, (3.29)
where
D'B = 9"B + [V*, B], (3.30)
Vi S(eonet +glone),  Ar = (eone — €00, (331)

3Subscripts v are implicit on the velocity-dependent heavy baryon fields.
4We use the convention egia3 = +1.



30 Chiral Perturbation Theory

Here the spin operators and a host of associated identities, which can be found in
Appendix [B] have been used to eliminate y-matrix structure; all tensors made from
spinors can be written in terms of v* and S”. The integral over v in Eq. ([3.28)), which
we suppress for clarity in future expressions, ensures that the theory is Lorentz-
invariant. The mass term MzBB which appears in the usual chiral Lagrangian was
removed by the redefinition of baryon fields in Eq. (3.23).

One could at this point use the Lagrangian given above to develop Feynman rules
and form a perturbative expansion of observables such as the octet baryon masses.
However, as outlined in the following section, it is important to first consider and
include contributions arising from the decuplet baryons.

3.3.3 Decuplet Baryons and Resonances

The lowest-lying decuplet of Spin—% baryon resonances plays a particularly impor-
tant role in low-energy baryon phenomenology because of the closeness of the av-
erage decuplet mass My to the average octet baryon mass Mpg; the physical N-A
mass splitting is 6 ~ 300 MeV. In our application of chiral perturbation theory to
lattice simulation results, this scale is comparable to relevant values of the pseudo-
Goldstone boson mass m. As we cannot claim that m < J, it is in general prudent
to retain explicit decuplet fields, rather than integrate them out. Integrating the de-
cuplet out would generate higher-order contributions suppressed by powers of C2/§
(where C is the T B¢ coupling)E]. Given that the coupling C is approximately 1.5
(calculated using SU(6) symmetry), and higher-dimension operators from typical
short-distance QCD effects are suppressed by 1/A,, decuplet contributions are thus
significantly more important than other higher-dimension operators in the chiral
theory.

Higher baryon resonances are, in general, sufficiently heavy to be consistently
integrated out of the low-energy effective theory. Even allowing for unphysically-
large meson masses m ~ 500 MeV—of a comparable scale to the mass gap between
the nucleon and higher N* resonances—these fields do not necessarily need to be
included explicitly but can be mimicked by higher-dimension operators whose effects
are of a similar size. For example, the N(1440) lies only 500 MeV above the N(939),
but it is estimated that the contribution to typical octet baryon amplitudes from
this state is no more than 10% that of the A(1232) [56]. This can be understood
physically using an intuitive argument provided by the quark model: the wavefunc-
tions of the octet and decuplet baryons differ only in the arrangement of spin, while
higher resonances have different spatial wavefunctions. As the hyperfine spin-spin
interaction is relatively weak, it is energetically easier for an octet baryon to be
converted into a decuplet baryon than for it to transition to other excited states.

For these reasons we include the spin—% decuplet, but no higher baryon reso-
nances, into the effective chiral theory. The decuplet is represented by a Rarita-
Schwinger field (T*)upe, which is totally symmetric under the exchange of flavour

5Here T represents decuplet baryons, B represents octet baryons, and ¢ stands for the octet mesons.
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indices and contains both spin—% and spin—% components. The constraint v*7), = 0
projects out the spin—% pieces. Explicitly,

A++ AT = At A0 30 DD il B
o At A0 wx A0 I n*0 me— Ere
T= i L B e i B R R (3.32)
& E*O E_*O E_*O NF— =k E*O =k Qf
V3 V6 V3 V6 V33 V3B
Under SU(3); ® SU(3)g, T* transforms as
Th, — USUUITY (3.33)

where U is defined in Eq. (3.11b]). Just as was done for the octet baryons (Eq. (3.23)),
it is convenient to define the velocity-dependent field

1+
2

TH(x) = f exp(iMpv - x)TH(z). (3.34)

v

To avoid the introduction of factors of exp(i(Mr — Mp)v - x) into the Lagrangian,
which would otherwise appear in terms that involve both B and 7', one can define

TH = exp(iMpv - )T} (x). (3.35)

The modified Dirac equation for the re-defined decuplet fields is (u? — 5) T, = 0; the
decuplet mass term has been replaced by the octet-decuplet mass splitting J. Spin
operators S, which satisfy the same spin algebra as the octet baryon spin operators,
act on the spinor indiced’| of T*. It is again useful to note identities which can be
used to eliminate Dirac structures from the theory, in particular,

T, =0, S'T,=0. (3.36)

A more complete collection of such identities is given in Appendix [B]

To lowest order, the decuplet baryon contribution to the effective Lagrangian
may be written as

Lly = —iT"(v-D)T, +6T"T, +C(T"A,B + BA,T") + 2HT"S, A"T,,
+T" (€ MEN + EMET, — 6 Tr M (S + DT, (3.37)

where we have suppressed the SU(3) tensor indices and the bold typeface on T*.
Flavour-space contractions denoted by brackets (...) are given by

(BAB) = B AlByy., (3.38)
(BBA) = B ALB,, (3.38b)

6Tt is important to note that S* is now not the total spin operator. Instead, S*T* =

%(00‘ — (o -v)v*)T", i.e., S" acts only on the spinor portion of the Rarita-Schwinger field.
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where B represents either the decuplet baryon tensor 7" or

Bape = %(Gadedc + €acaBab)- (3.39)
The Lagrangian in Eq. contains an explicit mass term proportional to the
octet-decuplet mass splitting 0 because the transformation to velocity-dependent
fields has the effect of removing only part of the decuplet baryon mass. The complete
first-order Lagrangian for the effective field theory is given by the sum of the meson,
octet and decuplet Lagrangians which appear in Egs. , and .
From this one can derive Feynman rules for meson-baryon interactions (summarised
in Section and use diagrammatic perturbation theory to calculate expansions
for hadronic properties, including the octet baryon masses. This is the topic of
Section 3.6
Of course, to obtain meaningful expansions of physical observables in this way,
one must include all diagrams to a given order in perturbation theory. The process
of assigning a rigorous order to each type of Feynman diagram is the subject of
chiral power counting, which is outlined in Section (3.4

3.3.4 Feynman Rules

Using the complete first-order Lagrangian which was developed in the previous sec-

tions (Eqs. (3.14), (3.29) and (3.37))), one can derive Feynman rules within the

heavy-baryon formalism. The octet and decuplet baryon propagators, meson prop-
agator, and baryon-meson vertices are summarised in standard notation below.

?

Octet Baryon Propagator: oTic (3.40a)
Decuplet Baryon Propagat o (3.40Db)
ryon Pr r: _ :
ecuplet Baryon Propagato R S
Meson Propagator: W, (3.40c)
k-S
BB/gb Vertex (Flg 2 f CBB’d); (340d)
k
BT ¢ Vertex (Fig. 3.1(b)): —LCpry. (3.40e)

™

Here v* denotes the four-velocity of the heavy baryon B or T', k* in a propagator
refers to the momentum of the relevant baryon or meson and in a vertex to the (out-
going) momentum of the meson, P* = vty — g — (4/3)S*S" is a spin-polarisation
projector that projects onto the Spin—% solutions to the equation of motion, and ¢
denotes the average octet-baryon—decuplet-baryon mass splitting. The flavour alge-
bra is encompassed in the definitions of the (Clebsch-Gordan) coefficients C' which
are given explicitly in Appendix[F} Subscripts B, T, and ¢ on these coefficients label
the octet baryon, decuplet baryon, and meson which appear in the corresponding
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(a) BB'¢ vertex. (b) BT¢ vertex.

Figure 3.1: Diagrammatic representation of the leading-order strong interaction ver-
tices (solid squares). The single, double, and dashed lines denote octet baryons, decuplet
baryons, and mesons, respectively.

vertex (illustrated in Fig.[3.1)). This list of Feynman rules will be extended in future
chapters, where we generalise the Lagrangian to include external sources as needed
for the calculation of various current matrix elements.

3.4 Chiral Power Counting

Chiral power counting is a systematic method for assigning a chiral dimension to
each Feynman diagram. This dimension plays a role analogous to that of the fine-
structure constant « in QED expansions; naive dimensional analysis shows that
contributions to physical observables from diagrams with chiral dimension D are
suppressed by p” (where p is the momentum-scale of the chiral expansion—see
Section [3.3)).

The chiral dimension of a particular Feynman diagram is given by a combination
of the dimensions of its propagator and vertex components; each component con-
tributes as specified by the powers of external momenta and meson masses which
appear. Using the Feynman rules summarised in the previous section, one finds
that [64]:

e Meson propagators are given by - where k is the four-momentum of

frrzzi +ie’
the meson field and m, is its mass. They hence have chiral dimension D = —2.
The total dimension associated with all meson propagators in a given diagram

is written as Iy.

e Octet baryon propagators and decuplet baryon propagators may be
i ipH : :
expressed as ;7= and ;= respectively, where & is the four-momentum
of the baryon field and v* is its four-velocity. The chiral dimension of a baryon
propagator is thug’| D = —1. The symbol I3 denotes the total chiral dimension
of the baryon propagators in a diagram.

e The chiral dimension D = d; of a particular mesonic vertex is given by the
dimension of the term of the chiral Lagrangian from which it originates. Recall

"Subtleties regarding transitions between octet and decuplet baryon multiplets will be discussed
later in this section.
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that by Lorentz covariance only even dimensions contribute: dy; = 2,4,6, .. ..
The number of mesonic vertices of dimension d,; in a given diagram is denoted
by N, é‘]/\{[ )
e Similarly, the dimensions D = dp of meson-baryon vertices are obtained
from the dimensions of the terms of the chiral Lagrangian from which they

originate. The number of meson-baryon vertices of dimension dg =1,2,3,...
is denoted by N7

These components combine to give the chiral dimension D of a complete diagram:
D=4L—2Iy —Ig+ Y dyNyl +) dgN'®, (3.41)
dM dB

where L is the total number of loops. In the case of fully-connected diagrams, one
can eliminate I, by substituting the general topological identity

L=Iy+Ip—Y Ny =S N}IP+1 (3.42)
dyg dp
to obtain the relation
D=2L+2+1Ip+ Y (dy—2)N)2 +) (dp —2)NIP. (3.43)
dM dB

The diagrams which are relevant to this body of work have a single baryon line
running through the diagram. In this case ZdB Né‘ﬁB = Ig + 1. Substituting this

into Eq. (3.43)), we find

D=2L+1+) (dy—2)Ny! +> (ds — 1)NIP > 2L + 1. (3.44)

dr dp

This shows that tree diagrams contribute at order p, and that one-loop graphs begin
to contribute at order p3.

There is some ambiguity in this power counting scheme for diagrams which in-
clude transitions between baryon multiplets, for example octet — decuplet — octet.
In general (for example in their application to lattice QCD simulation results), one
wishes chiral extrapolations to be valid for a reasonably large range of values of
me. Thus one can claim neither 6 < mg, nor 0 > my, and, as a result, the appro-
priate chiral dimension of loops involving transitions is debatable. Because of the
particular significance of decuplet effects, as outlined in Section [3.3.3] we choose to
consider self-energy loops involving transitions between octet and decuplet baryons
at the same order as the analogous loops without transitions. This will be our choice
of convention throughout this body of work. In our scheme, terms which enter a
chiral expansion of octet baryon self-energy with chiral dimension D = 3 thus arise
from the one-loop diagrams shown in Fig.
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Figure 3.2: One-loop graphs which contribute to an expansion of octet baryon self-energy
at order p>. Single, dashed, and double lines represent octet baryons, mesons, and decuplet
baryons, respectively. The solid squares denote leading-order strong-interaction vertices.

When these loops are regularised using the finite-range regularisation scheme
(FRR) (introduced in Section [3.f]), the simple power counting described in this
section is modified; FRR introduces an additional mass parameter A with the result
that loop processes renormalise chiral parameters at different orders in the energy
expansion. In the small meson mass limit, however, FRR gives the same result as
other regularisation schemes and the standard power counting is restored. From this
one can conclude that the order in which loops contribute in FRR is still dictated
by the standard formalism [65]. When the meson masses are set to their physical
values, FRR expressions include a partial resummation of higher-order effects which
combine to cancel unphysical small-distance behaviour. This resummation will be
shown explicitly for an example given in Section [3.6]

3.5 Finite-Range Regularisation

As for any physical description in quantum field theory, one must regularise and
renormalise infinities arising from self-interactions in chiral perturbation theory. De-
veloped in [66-70], finite-range regularisation (FRR) is a regularisation prescription
which takes into account the extended nature of fields of finite structure; the scheme
is characterised by the suppression of the ultraviolet behaviour of loop integrals.

FRR was motivated in part by the poor convergence of the traditional approach
of dimensional regularisation (DR). DR is a regularisation scheme based on the
fact that logarithmically divergent integrals in a four-dimensional theory become
convergent in d = (4 — 2¢) dimensions, where € > 0. An analytic continuation to d
dimensions is performed, rendering the integral finite, and a finite four-dimensional
result is recovered by taking € — 0 and subtracting terms which diverge in this
limit. This process involves integrals over all possible loop (i.e., meson) momenta.
This allows meson propagation over distances smaller than typical hadronic size.
That is, DR introduces model-dependent effects; it treats meson-baryon couplings
as point-like and does not take into account the finite size of the baryon, instead
integrating over loop momenta far beyond the scale where the particular EFT has
any significance [71}72].

It is clear that physical results should be independent of regularisation and renor-
malisation schemes. It is the physical insight recognised above which informs the
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development of FRR. In QCD, Goldstone bosons are emitted and absorbed by com-
posite objects made of quarks and gluons. Because these objects have some finite
size R, the emission and absorption of probes with momenta greater than A ~ R~!
is suppressed. So, for m, > A, we expect pseudo-Goldstone boson loops to be
suppressed by powers of A/mg, not enhanced by powers of mg/A,. If A > A,
this physics would be included in the standard formulation of the effective theory.
Evidence suggests, however, that A < A, [66-70]. FRR thus introduces a finite
ultraviolet cutoff (i.e., a mass parameter A), which physically corresponds to the
fact that the source of the meson cloud is an extended structure [65,73H75]. The
form of the regulator used, which could for example be chosen to be a sharp cutoff
or dipole, does not affect the leading-order non-analytic structure of the expan-
sion [70]. Furthermore, the renormalisation constants may be fixed by matching to
lattice simulation results, eliminating dependence on the regulator.

FRR also offers improved convergence over dimensionally-regulated SU(3) chiral
expansions. This stems from the fact that the parameter A remains finite; FRR effec-
tively resums the chiral expansion, leaving only the long-distance model-independent
physics at the lower orders. In the limit m4/A — 0, however, FRR becomes equiv-
alent to DR.

It is worth commenting here on a subtlety which arises when using FRR rather
than DR in chiral perturbation theory. As with any theory involving derivative cou-
plings, there is an occasional change of the Feynman rules for the FRR-regularised
theory from their prescribed form. The canonical momentum conjugate to a field
variable is given by

oL
™) = o) (3.45)
Time-derivatives in the interaction Lagrangian then lead to canonical momenta
which carry portions of the interaction; the interaction Hamiltonian is no longer
simply the negative of the interaction Lagrangian. Since the Feynman rules for a
theory are derived from the interaction Hamiltonian, it is clear that they are modi-

fied, potentially in a nontrivial way [76].

Dimensionally-regularised chiral perturbation theory has the fortunate peculiar-
ity that these changes, which can be accounted for by adding a specific contact
interaction proportional to §4(0) to the mesonic part of the theory, vanish. In this
case the naive Feynman rules may be used without modification. While this is not
the case for the theory with FRR, it has been verified that, to the order of our cal-
culations, the extrapolation of observables such as baryon mass are not affected [65].
We will use the FRR regularisation scheme throughout this work.

3.6 The Nucleon Mass

We illustrate the FRR technique using the chiral extrapolation of the nucleon mass

—

My as a test case. Here we account for pion loops only (and neglect n, K)—a full



§3.6  The Nucleon Mass 37

SU(3) perturbation theory study of the octet baryon masses will be presented in the
next chapter.

The physical nucleon mass My is defined as the pole position of the full propa-

gator:
1

P My—3(p)’
where My denotes the nucleon mass in the chiral limit and X(p) refers to the (one-

particle irreducible) self-energy. Determining the mass My thus reduces to a calcu-
lation of the self-energy: one must solve

So(p) (3.46)

My — My —X(My) =0 (3.47)
for My.

From the discussion of baryon self-energy in Section [3.4] the chiral expansion of
My may be formulated in terms of m2 ~ m, as

My = {ag + aym? 4+ agm? + ...} + {xalr(My) + Xealea(mg) + ...}, (3.48)

where the second term corresponds, at leading order, to contributions from the loops
displayed in Fig. 3.2} That is, the expansion takes the form

My = {terms analytic in m,} + {chiral loop corrections}, (3.49)

where the coefficients of the analytic terms are not constrained by chiral symmetry
(and will be determined from lattice QCD calculations in future chapters), and the
chiral loops account for non-analytic behaviour in the quark masses. The coefficients
of the loop terms are model-independent and can be derived using the effective field
theory Lagrangian of Section

For example, the nucleon self-energy, i.e., the first of the diagrams shown in
Fig. |3.2] gives an additive correction y, I, to the mass of the nucleon, where

I d*k kik;
Y S i . 3.50
by / (2m) (ko — i€) (k% — m2 + ie) (3:50)

Using the results of Appendix to simplify the integral, and writing y, explicitly,
this can be expressed as

393 2 /°° k4
I(my) = — S B L 51
Xor L (1) 2nf2mw J, k? +m2 (3:51)

where g4 = (D + F) in the notation of Eq. (3.29). Both DR and FRR were outlined
in Section Choosing DR with ¢ — 0, the nucleon expansion of Eq.
becomes

My = co + cam? + Xxm> + com? + ..., (3.52)
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where the coefficients ¢; denote the a; of Eq. after they have undergone an
infinite renormalisation. As previously discussed, DR allows a large contribution
from the k — oo portion of the integral, and short distance physics is highly over-
estimated. Numerical estimates of the terms in Eq. give [77]

My = (1 11 (ﬁ)Q - 1.o(ﬁ)3 ¥ ) [0.89 GeV, (3.53)

where mp = 0.54GeV. This resembles a geometric series with no sign of convergence
for pion masses m, 2 0.5 GeV. Pion masses of this magnitude are still typical of
many lattice simulations.

If one instead uses FRR, introducing a dipole regulator (the form suggested by
a comparison of the nucleon’s axial and induced pseudoscalar form factors [78])

u(k) = (AQA—ij)Q (3.54)

at each pion-nucleon vertex, the integral becomes

]FRR—E Oodkk—4 2(k 3.55
™ _7T0 k:2+m2u<)7 ()

which is convergent for £ — oo and can be evaluated explicitly:

JFRR _ 1 A5 (m?2 + 4m A + A?)

T16 (my r A (3:56)

Taylor-expanding about m, = 0, the difference between the two regularisation
schemes becomes apparent:

A3 5A 35 4
[}:RRﬁ1—6—Emi+m§r—16—Ami+Fmi+---- (3.57)

Higher-order DR terms are resummed in the FRR scheme with the result that loop
contributions I, — 0 as m, becomes large. Writing out the FRR expansion of My
to leading non-analytic order, one recovers the renormalised expansion coefficients
¢; obtained using DR:

My = ag + A—3 + | ay — % m2 + y.m> + (a4 — ﬁ m +
N — 0 X 16 2 X 16 fs Xal, 4 Xﬂ'16A T
= co+comi 4 xemd +egmi 4., (3.58)

just as was claimed in Section [3.4]
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3.7 Finite-Volume Corrections

The discussion of chiral perturbation theory in this chapter has, to a large extent,
been motivated by our intent to apply this formalism to extrapolate lattice QCD
simulation results from unphysically-large pseudoscalar meson masses to the physical
masses. As was described in Section [2.2.2] however, there are other systematic
effects which must be considered before lattice studies can confront experiment. In
particular, simulations are necessarily performed on lattices with some finite spatial
extent. In this section we describe an application of effective field theory to the
modelling and correction of finite-volume artefacts.

Lattice QCD simulations must satisfy several conditions if the low-energy chiral
EFT is to provide an appropriate framework for the estimation of finite-volume
effects. Of course, the EFT can only be applied where the standard hierarchy of
mass scales is maintained:

7l,m. < A, < a ' (3.59)

Here p is a typical momentum in the system of interest, m;, is the pion mass, A, is
the scale of chiral symmetry breaking which separates soft from hard momenta, and

a is the lattice spacing. In a box of finite spatial extent L, momenta are quantised
such that p= 277i/L (with 7 € Z3). Equation (3.59) then places a condition on L:

27 21 1
— <A, =L>» —~= ~ 1fm. 3.60
[ ST hEE T Ry mm (3.60)

The constraint L > 2R, where R corresponds approximately to the size of the
system of interest, must also be satisfied for (non-pionic) hadronic physics to be
completely contained inside the lattice. In this body of work we consider single
baryon systems, i.e., R ~ 1fm = L > 2fm. This is a more stringent requirement
than that given in Eq. (3.60).

In addition, to ensure that the box size has no effect on spontaneous chiral sym-
metry breaking, the lattice must be sufficiently large that m,L > 1 for simulation
values of the pion mass. If this is not maintained, there will be a deformation of the
vacuum state and the momentum-zero modes of the pseudo-Goldstone bosons must
be treated nonperturbatively [79,80]. Physically, if m,L < 1—that is, the Compton
wavelength 1/m, (approximately 1.4 fm for the physical pion mass) is of a similar
size to L—the pion does not have enough space to propagate before interacting with
the boundaries of the finite lattice. If m,L > 1 and the pion fits comfortably inside
the box, however, the explicit symmetry breaking of the low-energy behaviour of
the system is more important than that resulting from the finite volume. Like in
the infinite volume, contributions from zero modes can be neglected in this case.

In the regime where all conditions are satisfied, quantities calculated on a finite
lattice are expected to display behaviour which is qualitatively similar to that on
the infinite volume. Furthermore, one can model finite-volume artefacts using the
chiral perturbation theory formalism. This approach is based on the understanding
that the dominant finite-volume effects come from the exchange of mesons ‘around
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the world” of the lattice as a result of the periodic boundary conditions. As a
consequence, the mass of a hadron, for example, receives corrections of order e~"=%
to its asymptotic value. For typical numerical simulations, such as those performed
in Chapter [, m.L > 3 and the finite-volume corrections are small compared to the
statistical uncertainties.

Formalising this approach, explicit expressions for finite-volume artefacts can
be written in terms of the loop integrals which represent the meson cloud in the
chiral perturbation theory formalism. The finite-volume shift to the value of some
observable is modelled as

o’ = ZXI or(Z), (3.61)
7

where the sum runs over all loops Z contributing to the chiral expansion of the
observable of interest, and xz is the appropriate chiral coefficient that scales the
contribution of loop Z to that observable. The volume-dependence of Z is given by

5i(T) = I1, — Toe. (3.62)

Here Z;, and Z., denote the loop expression evaluated on a lattice of length L and
on the infinite volume, respectively:

1 Pk
6.(7) = LI > I—/WI : (3.63)

NgNyNz

where the n; are integers. Throughout this body of work we consider symmetric
lattices, for which L, = L, = L, = L.

While Eq. (3.63)) can be evaluated by explicitly performing the finite-volume sum
and the integral, this procedure is computationally intensive. It is more efficient to

use the well-known decomposition of 07, in terms of Bessel functions [81,82]. For a
typical integrand

L il v 1
or, (W) E Z (2 + M2)m /(2703 (f2+M2)m

2—%—WKA437%n 3
= " > (LMt ="K (LMil),  (3.64)
m2l'(m) 3% 2

where 7 € Z3 and K,,(z) is a modified Bessel function of the second kind. In
general, it is necessary to use Feynman parameters to express integrands in the
standard form used above. In Appendix we do this explicitly for an integral
discussed in the previous section in the context of a chiral expansion of the nucleon
mass. The example we use is

. 2 k4 A?
dip. __ <
L= W/dkk:2+m2 (AQ—I-kQ)’ (3:65)
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where a dipole regulator has been chosen within the FRR scheme. Making the

identification 6,(M,m) = d,, <m>, we find

1
Or(I2%) = 4wA®S (A, 4) — 167rm2A8/ dzx(1 — x)géL(\/xmz + (1 —x)A?, 5).

’ (3.66)
The accuracy of this model has been confirmed, for the case of the octet baryon
masses, by a detailed numerical study using multiple lattice volumes [83].

We will use this model in future chapters to correct lattice simulation results
for finite-volume artefacts before performing chiral extrapolations. Since finite-size
effects should be insensitive to short-distance physics, varying the FRR regulator
form and mass within the integrands can also provide an estimate of the model-
dependence associated with the ultraviolet part of the loop integrals.






Chapter 4

Octet Baryon Mass Splittings

Charge symmetry violation in the nucleon mass is arguably small—the neutron-
proton mass difference is one part in a thousand. The effects of this small CSV,
however, are of tremendous significance; it is precisely this which ensures that the
hydrogen atom is stable against weak decay and that neutrons can decay into pro-
tons (plus electrons and antineutrinos) in radioactive beta decay. Moreover, the
elemental abundances established during the first few minutes after the big bang
depended on the neutron-proton mass difference and neutron lifetime. If there were
a stable neutron, and a more massive proton, our universe would be radically differ-
ent; one would expect a predominance of heavy nuclei, no normal galaxies, stars, or
planets would form, and life as we know it would be impossible [84]. Beyond giving
quantitative insight into the breaking of charge symmetry, a precise understanding
of the neutron-proton mass difference from first principles will inform studies of the
evolution of our universe.

In the framework of the Standard Model, the neutron-proton mass difference is
generated by the electroweak interactions. It may be expressed (to leading order)
as the sum of two terms:

M, — M, = Apy + Ay (4.1)

The electromagnetic contribution, Agy;, arises because of the different electromag-
netic charges of the proton and neutron. This contribution is negative and is com-
pensated by the strong isospin breaking contribution A,,,_,,,. In a quark picture
this second term results from the difference in the masses of the up and down quarks;
this is ultimately determined by the values of the Yukawa couplings and by the vac-
uum expectation value of the Higgs field. The total mass difference M,, — M, and the
analogous physical mass splittings between members of the other baryonic isospin
multiplets, have been measured extremely precisely experimentally [30,85]:

M, — M, =1.2933322(4)MeV, (4.2a)
M- — Mg+ = 8.079(76) MeV, (4.2b)
Mz- — M=o = 6.85(21)MeV. (4.2¢)

43
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The decomposition of each into its electromagnetic and strong components, however,
is far less well known.

In recent years there has been considerable effort invested in lattice-based deter-
minations of both the QCD contribution to the baryon mass splittings [86-90] and
the electromagnetic contribution [91-94]. However, 1 + 1 4+ 1-flavour simulations—
at this stage the only way to directly probe the full flavour-dependence of QCD
observables—are not yet widely available (the first set of 1 + 1 + 1 4+ 1-flavour
ensembles has recently appeared [35]).

In this chapter we describe the use of SU(3) chiral perturbation theory to deter-
mine the strong contribution to the mass splittings among members of octet baryon
isospin multiplets using isospin-averaged (2 + 1-flavour) lattice calculations [95,96].
This procedure takes advantage of the high-precision simulations which are currently
available for the octet baryon masses using mass-degenerate light quarks. The sym-
metries of low-energy QCD are used to break this mass-degeneracy—the unknown
low-energy constants in the chiral expansion are the same whether or not the SU(2)
symmetry is broken—while describing the meson mass dependence of the masses of
the entire baryon octet simultaneously.

This study is of particular interest in the light of recent results which suggest that
the accepted value for the electromagnetic contribution to the neutron-proton mass
difference calculated using the Cottingham formula, Agy = —0.76 £ 0.30MeV [97],
may be too small. Walker-Loud et al. (WLCM) claim to find an omission in the
traditional analysi{l| and present a larger value of —1.30 & 0.03 £ 0.47 MeV [98].
From these estimates, one infers strong isospin breaking contributions of A,,,_,, =
2.05 £ 0.30MeV (traditional) and 2.60 + 0.47 MeV (WLCM), respectively. Clearly,
independent theoretical estimates of the size of the strong contribution to M,, — M,
such as that reported here, are of considerable value.

4.1 SU(3) Chiral Extrapolation

In this section we develop an SU(3) chiral perturbation theory expansion for the
octet baryon masses. This is an extension of the formalism presented in Section
for the mass of the nucleon to the entire baryon octet, now including not only pion,
but also eta and kaon loops. We also revisit the discussion of the meson fields in
Section to allow for a non-zero light quark mass splitting, i.e., m, # myq.

'WLCM found that the application of the Cottingham formula with two different Lorentz decom-
positions of the Compton scattering tensor yields incompatible results. The ambiguity can be
removed using a subtracted dispersive analysis, which leads to the updated results.
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For m, # myg, mixing occurs between the 7% and 7: expanding the mass term of
the meson Lagrangian, Eq. (3.14]), in powers of the meson field,

Ly, =B Tr(M,P?) (4.3a)
=B(my + mg)mTn~ + B(m, + md)KOFO
+ B(ms+m,) KTK™ + g(mu + my)(7°)?
B 2, B 0
+ —(mg + my, + 4mg)n” + —(my, — mg)nm", (4.3b)

6 V3

where B = 4)\/f2. This may be diagonalised into the mass basis via a field rotation:

70 — 1%cose — nsine, (4.4a)

n — m¥sine + ncose, (4.4b)

where the mixing angle € is deﬁnedﬂ by

V3 (Mg —my,)

tan 2e = . 4.5
T S, = (g ma) )
The meson masses may be expressed as
m2. = B(m, +my), (4.6a)
.2
s
m2o = Blmy + ma) — —(2ms — (ma + md))c(l): 266, (4.6b)
mi+ = B(mg +my), (4.6¢)
Mo = B(ms +ma), (4.6d)
B 2B sin? e
mfz = 5(4m5 +my +mg) + ?(Qms — (My + my)) p—y (4.6¢)

where m o and m, now contain some dependence on the mixing angle €. In the limit
€ — 0 these expressions clearly reduce to the isospin-averaged results of Eq. .

Using the formalism of Chapter |3 the mass of an octet baryon B can now be
expressed as a series

Mg =M + MY +6MGP + . (4.7)
where the superscript indicates the order of the expansion in powers of the quark
mass—the explicit chiral symmetry breaking parameter of QCD. The leading term,
M denotes the degenerate mass of the octet baryons in the SU(3) chiral limit, and
the leading dependence on M, which is encoded in M 1(91), arises from terms in the
octet Lagrangian (Eq. ) with coefficients bp, b, and oq. In anticipation of the

2This notion of a 7% mixing angle is well-defined only at leading order in the quark mass expan-
sion.
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CBu CBa Chs
p Ja+328+20 za+3B+20 20
n ita+18+20 Sa+2B+20 20
A Ja+B+420 ja+B+20 a+ 20
St Sa+ 28+ 20 20 s+ 36+20
5T 20 2a+28+20 ia+368+20
2 ta+38+420 20 Jat 38420
=" 20 %a+%ﬁ+20 §a+§ﬁ+2a

Table 4.1: Coefficients of the terms in Eq. (4.7) which are linear in the up, down, and
strange quark masses, expressed in terms of the SU(3)-breaking parameters «, 3, and o.

extension to the partially-quenched formalism which we will consider in later chap-
ters, where it becomes notationally convenient to use a different parameterisation
of the Lagriangian, we define parameters «, 3, and o:

2 5
o= ng+2bF> p= _ng+bF7 o =bp — br + 0. (4.8)
In terms of these parameters,
SMY) = —Cpy Bmy — Cpa Bmy — C, Bms, (4.9)

where the coefficients Cp, are given explicitly in Table .

The first non-analytic term, 6 M g’/ 2) , encodes the leading loop corrections to the
baryon masses; as discussed in Section [3.4] these correspond to the diagrams shown
in Fig. and include both octet and decuplet baryon intermediate states. The
relevant coefficients and integrals may be derived from the appropriate terms of the
chiral Lagrangian, just as was shown for the nucleon mass in Section [3.6, Explicitly,

1

(3/2) _
OMp"™ = — 672 ;[wa Ir(mg, 0, A) + X1 Tr(mg, 6, A)], (4.10)
where the meson loops involve the integrals
Ir(mg, 0, A) = u?(k) —bo — bym3.  (4.11)

4
2 / dk i
T ,/k:2+m§)<5—|—1/k2+m35>
The subtraction constants, by 2, are defined so that the parameters M ©) and Cgyq
are renormalised. Explicit expressions for these terms can be readily evaluated by
Taylor-expanding the integrand in mé, as was done for the nucleon expressions in
Eqgs. and (3.58). This is done in Ref. [70]. The mass scale A is introduced
through the finite range regulator u(k) (for details see Section , and the chiral
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XBo
p  §(2(D*+3F?) + (D*+ 6DF — 3F?) cos(2¢) — V3(D — 3F)(D + F)sin(2¢))
n 1(2(D?+3F?) + (D?+ 6DF — 3F?) cos(2¢) + V/3(D — 3F)(D + F) sin(2¢))
A 22

»E F? + F?cos(2€) + 2D sine(£2v/3F cos e + Dsine)

=Y~ L(2(D*+3F?%) + (D? — 6DF — 3F?) cos(2¢) £ V/3(D + 3F)(D — F)sin(2¢))

7

p  2(2(D*+3F?) — (D?>+6DF — 3F?) cos(2€) + V3(D — 3F)(D + F) sin(2¢))
n  Y(2(D*+3F?) — (D?+ 6DF — 3F?)cos(2¢) — V3(D — 3F)(D + F)sin(2e))

A 2D2
3
(D? cos? € F 2v/3DF cos e sin € 4+ 32 sin® €)
(D? — 6DF — 3F?) cos(2¢) F v/3(D + 3F)(D — F)sin(2¢))

2
3
2V~ L(2(D*+3F?) —

n* K K+

p  (D+F)? (D F)2  2(D*+3F?)
n (D+F)? 2 +3F?)  (D-—F)?
4 1

S+ 2(D*+3F?)  (DFF)? (
© (D—F)? :(D*+3F?) (D+F)
- (D-F)? (D+ F)?  2(D?+3F?)

[1]

(D?
(D* +9F?) L(D?+9F?)
(

(1]

Table 4.2: Chiral SU(3) coefficients for the coupling of an octet baryon to other octet
baryons through the pseudoscalar octet meson ¢.

coefficients xpg and x4 relevant to this particular calculation are given in Tables
and [£.3|

In the most general case, each octet baryon receives distinct loop contributions
from each of the mesons 7%, 7%, K*, K° 1, where the 7% and K* remain pairwise
mass-degenerate. In the isospin-averaged scenario (¢ — 0), to which we turn in the
next section, the sum in Eq. runs only over 7, K, and 1: Xpr = XBrt + XBxO,
with the contributions from the charged and neutral kaons combined in an analogous
way. Clearly, the coefficients of terms linear in the light quark masses may also be
combined: Cg; = Cp, + Cpy. Our calculation of the octet baryon mass splittings in
Section will be based on the observation that the a-priori unknown low-energy
constants which appear in these coefficients, namely «, , and o, remain linearly
independent in this limit (when considering the entire baryon octet) and hence can
be determined using isospin-symmetric 2 + 1-flavour lattice QCD simulations.
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X1C ™2
70 Tt K% K* n

P S cos?e 8 2z 2 gsin’e

n 5 cos?e S $sin’e

A 3 cos? e 2 3 3 3sin’ e

St Lcose+V3sine)? 1 28 l(_\/[3cose+sine)?
27 Y(—cose+V3sine)? L 8 2 1(\/Bcose+sine)?
=0 L(cose++3sine)? 2 L 8 1(_\/[3cose+sine)’
Z° §(—cose+ V/3sine)? 2 ¢ 5 %(\@COSE—FSiHE)Q

Table 4.3: Chiral SU(3) coefficients for the coupling of an octet baryon to the decuplet
baryons through the pseudoscalar octet meson ¢.

4.2 Fits to Isospin-Averaged Lattice QCD Simu-
lation Results

Here we describe the application of the octet-baryon—mass chiral extrapolation
formalism developed in the previous section to recent 2 + 1-flavour (i.e., isospin-
averaged, with m, = my) lattice QCD simulation results. The fits described will
form the basis for the extraction of the strong contribution to the octet baryon mass
splittings in Section [4.3]

We consider two distinct sets of simulations, generated by the PACS-CS [95] and
QCDSF-UKQCD [96] collaborations. There are significant systematic differences
between the two sets of ensembles, including the lattice volumes, lattice spacings,
and methods of determining these spacings. Furthermore, they follow quite different
trajectories in the light-strange quark mass plane, as shown in Fig. 4.1, While the
PACS-CS collaboration results are generated at what is essentially a fixed strange
quark mass, the QCDSF-UKQCD collaboration simulations follow paths of constant
singlet quark mass (m?% +m?2/2), beginning at several SU(3)-symmetric points. We
perform independent analyses on these two lattice data sets.

Before fitting the chiral perturbation theory expressions of the previous section to
the lattice simulation results, we correct for finite-volume effects using the formalism
outlined in Section [3.7, The corrections are small; for the PACS-CS collaboration
results (L3 x T = 323 x 64, L ~ 2.9fm) they are less than 1% at all masses. The
corrections to the QCDSF-UKQCD simulation results range between approximately
5% on the smallest volume (L3 x T' = 24% x 48, L ~ 1.8fm) to less than 0.5% on the
largest (L3 x T' = 483 x 96, L ~ 3.6fm). We also allow for an uncertainty on these
corrections, determined by allowing the dipole mass of the FRR regulator used in
the finite-volume estimation to range between 0.8 GeV and 4 GeV; while 0.8 GeV
is a typical value (e.g., based on a comparison of the nucleon’s axial and induced



§4.2  Fits to Isospin-Averaged Lattice QCD Simulation Results 49

[ Y //
i o © ° ]
0.6} /,/ :
L . // 4
. ,
05p. ™ 7 ]
o *.” """"""""
@ 04 ~ , 1
x| I Rl
T 030 . 1
o -
5 [ /
02} s ]
.
0.1f /‘ ' ]
0.0‘»/‘”‘\””\H‘"‘\HH\HH\HH\HH—
00 0.1 02 03 04 05 06 07
m,zr(GeVZ)

Figure 4.1: Locations of the lattice simulations in the m;—m, plane. The green circles
show the PACS-CS [95] data set, while the squares denote QCDSF-UKQCD collaboration
results [96] where the light blue, dark blue, and purple colours indicate lattice volumes of
dimension L3 x T = 243 x 48, 323 x 64, and 48> x 96, respectively. The red star represents
the physical point and the dashed line indicates the SU(3)-symmetric trajectory. The
dotted red lines show the trajectories plotted in Figs. and constant strange quark
mass and constant singlet quark mass (m%{ +m2 /2 = fixed), passing through the physical
point.

pseudoscalar form factors [78]), the limit of large regulator mass corresponds to the
regulator-independent formalism.

After correcting to infinite volume, we fit to the simulation results for the entire
baryon octet simultaneously. Of course, separate fits are performed to the results
of the two collaborations, which have different sources of systematic uncertainty
because of the different lattice configurations and simulation parameters. While
our formal chiral power counting scheme treats the octet and decuplet baryons as
degenerate (as outlined in Section, we retain the octet-decuplet mass splitting, 6,
in numerical evaluations, setting this to the physical N-A splitting: § = 0.292GeV.
The baryon-baryon-meson coupling constants are taken from phenomenology; D +
F=gy=127F = %D and C = —2D, and f is set to 87 MeV, a chiral perturbation
theory estimate for the pion decay constant in the SU(3) chiral limit [57]. The fit
parameters are the octet baryon mass in the chiral limit M®  the SU(3) chiral
symmetry breaking parameters «, 5, o, and the finite-range regulator mass A. Of
course, €, which parameterises the light-quark mass splitting, is zero for this fit to
2 + 1-flavour lattice simulations.

The fit to the PACS-CS baryon octet data is shown in Fig. 4.2 while that to
the QCDSF-UKQCD set is shown in Fig. |4.3| (and also in Fig. in Appendix D).
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Figure 4.2: Fit to the PACS-CS lattice simulation results. The error bands shown are
purely statistical and incorporate correlated uncertainties between all fit parameters. The
lattice data was corrected for the effects of the finite lattice volume before fitting. For
display the data has been shifted (based on the fit—see Eq. ) from the simulation
strange quark mass, which was somewhat larger than the physical value, to the physical
value. The red stars show the experimentally-determined baryon masses [30].

For illustration, the lattice simulation results (M%) have been shifted onto the
trajectories shown in Fig. [£.1] using the chiral fit:

™

M]l;mtt. N Mgtt' N |:Mgt <m(sim.), m&?m)> _ Mgt <m7(Ttraj.), m%ml))] ) (412)
Here mffim') denotes the simulation value of the meson mass, while m"™) denotes
the closest point on the desired trajectory (relative to the axes of Fig. . The shifts
are illustrated explicitly in Appendix [D] This process allows us to show both the
comparison of our extrapolated results with the experimental values of the baryon
masses, and the quality of fit to the lattice data, on a single figure.

The quality of fit is clearly excellent in each case; the x?/d.o.f. are 0.5 and 0.6
for the PACS-CS and QCDSF-UKQCD results, respectively. The dipole regulator
masses, A = 1.0(1) GeV and 0.8(2) GeV, are in close agreement with the value
deduced from an analysis of nucleon magnetic moment data [99] and, from the
phenomenological point of view, remarkably close to the value suggested by a com-
parison of the nucleon’s axial and induced pseudoscalar form factors [78]. While we
use the dipole regulator to calculate the central values, we allow the form of the UV
regulator to vary between monopole, dipole, Gaussian, and sharp cutoff forms as an
estimate of the model-dependence. This is the smallest systematic uncertainty.

A comparison of the octet baryon masses extrapolated to the physical point with
the experimental values is given in Table The results are largely consistent; we
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Figure 4.3: Fit to the QCDSF-UKQCD baryon octet data, plotted along the physical
singlet-mass trajectory (m3 + m?2/2 = constant) and SU(3)-symmetric line. The error
bands shown are purely statistical, with a dipole regulator chosen in the FRR formalism,
and incorporate correlated uncertainties between all fit parameters. The lattice data was
corrected for finite-volume effects before fitting. For display the lattice points in (a) have
been shifted (based on the fit—see Eq. (4.12)) from the simulation values of the pion and
kaon masses to the physical singlet trajectory. These shifts are shown in Fig. Lattice
data points on the SU(3)-symmetric line are only shown on figure (b). Colour-coding is
as in Fig. u The red stars show the experimental values of the baryon masses .
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Mass (GeV)
B PACS-CS QCDSF-UKQCD Experimental
N 0.964(19)(23)  0.940(18)(9) 0.939
A 1.132(12)(15)  1.110(10)(5) 1.116
S 1.190(10)(10)  1.174(9)(4) 1.193
= 1.325(6)(3) 1.289(5)(1) 1.318

Table 4.4: Octet baryon masses in the infinite-volume after chiral extrapolation to the
physical point. The first uncertainty quoted is statistical, while the second allows for
variation of the form of the FRR UV regulator and for a 10% deviation of f., F, C, and
d from their central values. The experimental baryon masses are taken from Ref. [30].

thus expect these fits to provide a good basis for the extraction of the mass splittings
among members of the baryon isospin multiplets as described in the next section.

4.3 Mass Splittings

Using the chiral extrapolation formulae developed in Section (summarised in
Egs. (4.7)), (4.9) and (4.10)) it is straightforward to write expressions for the strong

mass splittings between members of the baryon isospin multiplets: (M, — M,),
(Msg- — My+), and (M=- — M=o). The isospin-averaged fits described in Section
can then be used to reduce these expressions to functions of quark mass only; all
other free parameters, namely the SU(3)-breaking parameters «, (3, and o, as well
as the regulator mass A, are specified by the fits.

We choose to express our results in terms of the light-quark mass ratio R =
m.,/mg. The Gell-Mann—Oakes—Renner relation suggests the definition

B(mg—m,) 1(1-R) ,

YT T AER) e (4.13)
which leads to the identifications of the quark mass terms in Eq. as
Bm, lmfr —w, (4.14a)
2" M(phys.)
Bmg = %mw(phys) : (4.14b)
Bms = m%%hys‘) — %mi(phys‘). (4.14c¢)

Here we take my = 137.3MeV and mg, , = 497.5 MeV to be the physical
isospin-averaged meson masses [30]. The loop meson masses are calculated using
Eq. .

The resulting octet baryon mass splittings are summarised, as a function of w,
in Table [£.5] and the strong neutron-proton mass difference is shown graphically
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Ay, X [mi(phys‘)/w} (MeV)
PACS-CS QCDSF-UKQCD

M, — M, 20.1(13) 17.5(10)
Mg- — My 52.2(24) 52.6(13)
Mz — M= 32.0(18) 35.2(14)

Table 4.5: Strong mass splittings between members of the baryon isospin multiplets,
based on a chiral extrapolation of lattice QCD simulation results. The quoted uncertainties
contain all statistical and systematic errors (discussed in the text) combined in quadrature.
The constant w, defined in Eq. , encodes the mass difference between the light quarks.

(Mn _Mp)Sll‘Ong (MCV)

1’1\\\\\\x\l\\\|l||||l||||l||||l||||7

035 040 045 050 055 060 065 0.0
R:mu/md

Figure 4.4: Strong contribution to the neutron-proton mass difference as a function of

the light-quark mass ratio R. The green (upper) and blue (lower) bands show the result

of fits to the PACS-CS and QCDSF-UKQCD collaboration simulations, respectively. The

vertical pink (right) and orange (left) shaded bands correspond to two recent estimates of
the physical up-down quark mass ratio [100,/101] as described in the text (see Eq. (4.15)).

as a function of R in Fig. 4.4l The results using the fits based on the PACS-
CS and QCDSF-UKQCD collaboration simulations are largely consistent; the mass
splittings between the members of the sigma and cascade baryon isospin multiplets
agree at the 1-sigma level, while the two results for the strong neutron-proton mass
difference differ by just over one sigma.

To determine these quantities in physical units we take two recent estimates for
the up-down quark mass ratio [100}/101],
mu

R=—"=0553+0043, and 0.47 % 0.04. (4.15)

mq
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The first of these is determined by a fit to meson decay rates. This value is com-
patible with more recent estimates of the ratio from 2 4 1 and 3-flavour QCD and
QED [87,[102]. The second is the result from the FLAG] [101].

Numerical results in physical units are summarised in Table [£.6, The error
bands quoted are the result of a complete analysis taking into account the correlated
uncertainties arising from all of the fit parameters, as well as the quoted uncertainty
on R. Monopole, dipole, Gaussian, and sharp cutoff regulators u(k) are considered
within the FRR scheme; the variation of the final results as u(k) is changed is of
order 1% of the total mass differences. The deviation as the parameters f,, F, C,
and 0 are perturbed by +10% from their central values is similarly small, and the
statistical uncertainty arising from the fit to lattice data is smaller still. In fact,
the dominant uncertainty is that arising from the quoted error band on the light-
quark mass ratio R. It is clear that better estimates of this quantity will allow
our results to be greatly improved in precision, without the need for further lattice
data. Conversely, a precise determination of the electromagnetic contribution to
the neutron-proton mass difference could possibly facilitate an improved estimate
of R by this method. This is shown clearly in Fig. [1.5, which illustrates that our
results are more consistent with both the traditional and WLCM calculations of
the electromagnetic neutron-proton mass difference, and with direct lattice QCD
calculations of the strong contribution, when taken with the larger estimate of R
(Leutwyler [100]) than with the smaller value (FLAG [101]).

It is interesting to compare our results with those from a different analysis of the
same QCDSF-UKQCD collaboration simulation set. Horsley and collaborators [90]
have recently calculated the strong contribution to the baryon mass splittings from
this lattice data using a linear and quadratic SU(3)-flavour-symmetry—breaking ex-
pansion in the quark masses. As the expansion coefficients depend only on the
average quark mass, provided this is kept constant at its physical value (as it is
along the primary QCDSF-UKQCD simulation trajectory), a fit of these coefficients
to the isospin-averaged lattice results allows an estimation of the baryon mass split-
tings at the physical point. The results using this method are [90]:

M, — M, = 3.13(15)(53) MeV, (4.16a)
Plstrong

Ms- — Ms+| . = 8.10(14)(135) MeV, (4.16D)

Mz — Mzol = 4.98(10)(84) MeV. (4.16¢)

The first uncertainty quoted in Eq. (4.16) is statistical, while the second allows for
violations of Dashen’s theoremﬂ While in this approach one can only make use of
lattice data calculated along a trajectory which holds the average quark mass fixed,

3FLAG stands for the FLAVIAnet Lattice Averaging Group which provides world-averages of
lattice simulation results for a number of observables.
4This is the statement that the squares of the electromagnetic contributions to the mass differences

between the charged and neutral pseudoscalar mesons are equal in the chiral SU(3) limit, i.e.,

(mii - m?rU)EM = (m%(i - m%(U)EM
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Ayy—m, (MeV)

PACS-CS QCDSF-UKQCD
R 0.553(43) 0.47(4) 0.553(43) 0.47(4)
M, —M,  290(18)(36) 3.63(23)(37) 2.51(15)(31)  3.15(19)(32)
Ms- — Ms+ 7.51(35)(93)  9.40(44)(97)  7.57(19)(94)  9.49(24)(98)
M=- — M= 4.60(26)(57) 5.77(33)(59)  5.06(20)(63)  6.34(25)(65)

Table 4.6: Strong mass splittings between members of the baryon isospin multiplets,
based on a chiral extrapolation of lattice QCD simulation results. For the fits to each data
set we display the results using two different estimates of the up-down quark mass ratio
R . The second uncertainty—by far the dominant contribution in all cases—
results from propagating the uncertainty on R, while the first includes all other statistical
and systematic uncertainties combined in quadrature.
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(a) Leutwyler: R = 0.553(43) [100]. (b) FLAG: R =0.47(4) [101].

Figure 4.5: Strong and electromagnetic contributions to the neutron-proton mass differ-
ence. The black line indicates the experimental constraint on the total . The green
and blue shaded bands show the result of fits to the PACS-CS and QCDSF-UKQCD col-
laboration simulations, respectively, with the given values of the light-quark mass ratio
R. The yellow vertical band indicates a recent direct lattice calculation of the strong
mass splitting by the BMW collaboration . The horizontal bands show the traditional
(orange) and WLCM (pink) estimates for the EM contribution.
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Amd,mu (MeV) Mn - Mp Mz— - M2+ ME_ - MED
1 Chiral (PACS-CS) 2.9(4) 7.5(10) 4.6(6)
2 Chiral (QCDSF-UKQCD)  2.5(3) 7.6(9) 5.0(6)
3 QCDSF-UKQCD 3.1(6) 8.1(14) 5.0(9)
4 Exp. & EM (traditional) 2.0(3) 7.9(3) 6.0(3)
5 Exp. & EM (WLCM) 2.6(5)
6 Exp. & EM [103] 2.3(4) 8.1(11) 6.5(11)

Table 4.7: Strong contribution to the octet baryon mass splittings. Lines 1 and 2 show
the results of our chiral extrapolations of PACS-CS and QCDSF-UKQCD lattice data,
respectively, with the up-down quark mass ratio set to R = 0.553(43). Line 3 shows
the QCDSF-UKQCD collaboration analysis of their data as described in the text, while
lines 4 and 5 give estimates deduced from the total mass splittings and electromagnetic
contributions, as determined by Gasser and Leutwyler (traditional) or Walker-Loud et al.
(WLCM). An update and extension of the WLCM dispersion analysis is shown in line
6 [103].

our chiral fit (results presented in Table also includes simulations which lie away
from this line. This is the primary reason for our smaller uncertainties. We also
point out that both methods require some theoretical input: we input the up-down
quark mass ratio R, while the Horsley et al. calculation uses Dashen’s theorem (with
some uncertainty) to estimate ‘pure QCD’ meson masses at the physical point. The
clear consistency between the two calculations is encouraging.

4.4 Summary and Discussion

We have calculated the strong contribution to the mass splittings between mem-
bers of the octet baryon isospin multiplets using a formal chiral expansion based on
broken SU(3)-flavour symmetry, fit to lattice QCD simulation results. Our results,
based on independent analyses of PACS-CS and QCDSF-UKQCD lattice data sets,
are summarised in Table [£.7 Both calculations yield compatible values, despite
significant differences between the two lattice studies, including in particular dif-
ferent lattice volumes, lattice spacings, and different methods of determining these
spacings. Of course, as emphasised previously, the two sets of lattice ensembles
also follow quite different trajectories in m,—mpg space. Furthermore, the results
of a flavour-symmetry—breaking expansion in the quark masses [90], fit to a subset
of the QCDSF-UKQCD collaboration lattice data set, are entirely consistent with
our values despite the different phenomenological input used (that calculation used
Dashen’s theorem, with some uncertainty, while we input R = m,/my).

While more lattice data for the isospin-averaged octet baryon masses, on larger
lattice volumes and at lighter meson masses, would allow the precision of our cal-
culation to be somewhat improved, we emphasise that the dominant contribution
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to the uncertainty of our result arises not from the lattice simulations but from the
up-down quark mass ratio R. A more precise value of R = m, /m, could reduce the
uncertainty of our determination of the strong baryon mass splittings considerably,
without the need for further simulations. Conversely, direct lattice (or phenomeno-
logical) determinations of the electromagnetic contributions to the mass splittings,
with the analysis presented here, may allow a significantly improved determination
of R. At the current level of precision it is already clear from Fig. that, for con-
sistency with direct lattice calculations [34] and experiment, this analysis favours
the larger value R = 0.553(43) over the smaller R = 0.47(4).

Our results using the larger value of R are consistent with both the traditional
and Walker-Loud et al. (WLCM) determinations of the strong contribution to the
proton-neutron mass difference from the electromagnetic component, as shown in
Table The WLCM subtracted dispersion approach was adapted to the hyper-
ons in Ref. [103] (and some minor updates were implemented for the proton-neutron
systemED. For the hyperons, the dispersive estimates have significantly larger un-
certainties than for the nucleon; these are dominated by the lack of knowledge of
the hyperon isovector polarisabilities. Certainly further theoretical (or experimen-
tal) work on this aspect of hyperon structure would be of interest, particularly as
the present uncertainties are too large to provide a meaningful counterpoint to our
current work.

In the next chapter, we use the chiral extrapolation for the octet baryon masses
presented here to investigate the size and nature of chiral symmetry breaking in
the context of the octet baryon sigma commutators. Our focus is, in particular, on
the strange nucleon sigma term, which can be interpreted as a direct measure of
strangeness in the nucleon.

5The minor differences in the nucleon analysis arise from two sources: significant spurious CSV
effects in the Delta region realised by the Bosted-Christy structure functions have been suppressed
in the new analysis, generating a rather small increase in the self-energy, and an inelastic subtrac-
tion is suppressed more rapidly in order to appropriately match onto the ultraviolet behaviour
dictated by the operator product expansion. This acts to reduce the size of that term, and con-
sequently lessen the sensitivity to the poorly-known isovector polarisability. Details are given in
Ref. [103).






Chapter 5

Sigma Commutators

Approximate chiral symmetry forms the backbone of the phenomenological low-
energy effective theory of QQCD——chiral perturbation theory—which we use in this
work (c.f., Section . The central importance of this symmetry to our under-
standing of the strong interaction, however, predates the explicit formulation of
QCD, having been established by the successes of the current algebra and par-
tially conserved axial-vector current techniques of the 1960s [51-53]. Since then,
there have been significant efforts to calculate and measure quantities named sigma
terms, which provide crucial information about the size and mechanism of chiral
symmetry breaking in nature.

Sigma terms are defined as the matrix elements of the scalar quark currents
between baryon statesﬂ and as such quantify the contribution of explicit chiral
symmetry breaking to the baryon masses |104]. Most commonly, one considers the
‘pion-nucleon’ and ‘strange nucleon’ sigma terms:

oxn = my(N|uu + dd|N), (5.1a)
ons = ms(N|Ss|N), (5.1b)
where m; = (m, + my)/2. These fundamental parameters of low-energy hadron

physics are closely related to hadronic physics topics as diverse as the mass spectrum,
meson-nucleon scattering amplitudes (through Ward identities), quark mass ratios,
properties of hadronic atoms, and nuclear matter at finite temperature and density.
In the context of this body of work, our focus is on oy, which provides a direct
measure of strangeness in the nucleon.

Historically, a sigma term (or sigma commutator) is in fact defined as any matrix element of an
even number of charge commutators of the Hamiltonian [53]. The modern definition corresponds
to the double commutator: for a baryon B,

o = (8|2 [ ]]|5)

where Q‘A denote the axial-vector charge operators (defined in Section with SU(3)-octet

label a, and the commutator explicitly picks out the symmetry-breaking part of H (for QCD,

qMq = Zq mggq). In this notation the usual meson-nucleon sigma terms are o.n = okt and

u/d _ 44/66
ORN =0N -

59
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The strange nucleon sigma term has historically been poorly known. It is tra-
ditionally calculated from the small difference between o,x, deduced from pion-
nucleon scattering data using a dispersion relation analysis |[105}/106], and the non-
singlet quantity oo = m;(N|@u + dd — 25s|N) which is determined based on ob-
servations of the baryon mass spectrum. An EFT-improved estimate is og =
36+ 7MeV [|107]. Given this value, even a perfect determination of o,y would result
in oy, having an uncertainty of order 100% [108]. Far from perfect, the benchmark
value o,y = 45 + 5 MeV remains that of Gasser, Leutwyler and Sainio [109] from
the early 1990s; the experimental status of pion-nucleon scattering data has not
improved substantially in the last two decades. The long-standing conclusion from
these numbers was that oy, is of the order of 300 MeV. Such a large value would im-
ply that as much as one third of the nucleon mass can be attributed to non-valence
quarks, a conclusion apparently incompatible with the success of constituent quark
models. This puzzle has generated much theoretical interest over the last decades.

In recent years, the best value for oy has seen an enormous revision. Advances
in lattice QCD have revealed a strange sigma term of 20-50 MeV [90,/110-118|,
an order of magnitude smaller than previous determinations and significantly more
precise. This revelation has far-reaching consequences, in particular for the interpre-
tation of experimental searches for particle candidates of dark matter |119-124]. As
many such candidates (e.g., the favoured neutralino) have interactions with hadronic
matter which are determined by couplings to the squares of the sigma terms, the
uncertainty of their theoretical cross-sections is largely driven by the poorly-known
ons. The lattice QCD revision of this quantity has resulted in predicted dark matter
cross-sections being reduced by an order of magnitude, with significant increases in
precision. Clearly, ever-better determinations of the sigma terms, in particular the
strange nucleon term, using lattice methods, are essential for the progress of dark
matter research.

In this chapter we describe a calculation of the sigma terms of the octet baryons,
based on the chiral extrapolation of lattice results for the baryon masses which was
presented in Chapter [ While we deduce both light and strange quark sigma terms
for the entire baryon octet, we focus in particular on the strange nucleon sigma term
ons. The small statistical uncertainty, and considerably smaller model-dependence,
in our analysis allows a significantly more precise determination of this quantity
than hitherto possible, subject to an unresolved issue concerning the lattice scale
setting which is discussed in detail in Section [5.1 Our technique allows comparison
with recent direct lattice QCD calculations of the flavour-singlet matrix elements at
unphysical meson masses [111-113,|125}|126].

5.1 The Feynman-Hellmann Theorem
The Feynman-Hellmann theorem relates the derivative of the energy of a system,

with respect to some parameter, to the expectation value of the derivative of the
Hamiltonian with respect to the same parameter. This relation may be used to ex-
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press the sigma terms as derivatives of baryon mass with respect to quark mass [127].
Using generic notation for the sigma term of any octet baryon B with quark flavour

q,

0pq = Me(Blqq|B) (5.2)
OMp
= G, (5.3)

where the second line is the statement of the Feynman-Hellmann relation in this
context. To the order of the chiral expansion described in Section 4.1 one can
replace the quark masses m, with meson masses squared: Bm; — m?2 /2 and Bms —
(m2% — m?2/2) (where B is related to the parameter A of Eq. by B = 4)\/f3?).
Clearly, given closed-form expressions for baryon mass Mp as a function of the
meson masses, which were developed in Chapter [} the scalar form factors can be
evaluated by simple differentiation.

This method has a considerable advantage over the direct calculation of the
sigma terms in lattice QCD; it does not require the evaluation (or estimation) of
contributions from quark-line-disconnected diagrams which are represented by noisy
and expensive ‘all-to-all’ propagators on the lattice. However, it also has a disad-
vantage; the application of the Feynman-Hellmann relation requires taking a partial
derivative with respect to quark mass. That is, all other parameters must be held
fixed, including the strong coupling « (or, equivalently, Aqcp). In lattice QCD,
there is an apparent ambiguity as to how to define a fixed renormalised coupling
« [128,/129]. This is precisely the issue of lattice scale setting, which was discussed
in Section [2.2.3}—while lattice simulation results extrapolated to the physical point
must be independent of scale-setting scheme, derivative quantities, by definition,
make reference to the scale away from the physical point and hence their values may
depend on the scheme chosen.

We consider here two independent scale-setting schemes which are described in
detail in Section [2.2.3] The mass-dependent approach is based on the assumption
that the dimensionful Sommer scale, rg, which is related to the force between static
quarks at relatively short distance, is essentially disconnected from chiral physics
and should therefore vary slowly with changes in quark mass. Using this scheme,
the Feynman-Hellmann relation applied to lattice simulation results involves the
derivative

6(%0aM B) '

omy

(5.4a)

If this expression is to generate the physical sigma terms, one requires dro/0m, = 0.
Applying the theorem within the mass-independent scheme instead, where the lattice
scale at constant bare coupling (e.g., 8) is taken to be independent of the bare quark
mass, amounts to calculating

0 (%GMB)

4
amq Y (5 b)
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where the asterisk denotes a value extrapolated to the physical point. This, in
contrast to the first approach, will give physical results if a/a* = 1 (or equivalently,
da/0m, = 0).

One might expect the difference between the nucleon sigma terms evaluated
in each scheme to be particularly significant for the strange quark. Omne reason
is the shift in the ratio ro/a which is observed when unquenching lattice simula-
tions [130]. This effect can be interpreted as a sea-quark dependence of either 7
or the lattice spacing a. As this shift can be significant, the choice of scale set-
ting absorbs a possibly large effect, and hence will lead to non-negligible differences
in the results of derivatives with respect to sea-quark mass calculated with each
of the two choices. Additionally, the strange quark is considerably heavier than
the light quarks, which serves to amplify the effect of any scale-setting prescription
dependence on the strange sigma term.

For the chiral extrapolation of octet baryon masses in Chapter [4] the scale for the
PACS-CS lattice data was set using the mass-dependent approach, while the mass-
independent scheme was used for the QCDSF-UKQCD simulation results. In the
coming sections we give results based on these extrapolations and on an otherwise
identical analysis of the PACS-CS collaboration simulation results where the scale
was set using the mass-independent scheme, allowing us to investigate the scale-
dependence of our extraction of the sigma terms. We do not have access to the

lattice values of ¢ necessary to apply the mass-dependent scheme to an analysis of
the QCDSF-UKQCD lattice data.

5.2 Light and Strange Sigma Terms

Light and strange quark sigma terms, calculated using Eq. applied to the
chiral extrapolations of octet baryon masses described in Chapter [4] are presented in
Table[5.1} The fit to the QCDSF-UKQCD lattice simulation results yields a value for
ons With a much larger uncertainty than the analyses of the PACS-CS collaboration
data set. This is as expected; the leading-order term in a chiral expansion for the
strangeness nucleon sigma commutator is determined by the parameter o, as made
explicit in Table [4.1] This parameter is common to all baryons in the octet, and
is sensitive only to the singlet combination of the quark masses (see Egs.
and (4.8] . Figure E 4.1| shows that the variation of the singlet quark mass across the
PACS-CS ensemble is quite large relative to the extrapolation necessary to reach the
physical point. In contrast, the QCDSF-UKQCD data set covers a much smaller
range of singlet quark masses; by design, most simulation ensembles lie on one
close-to-physical singlet quark mass line.

It is also clear that there is a significant dependence on the scale-setting scheme,
despite the otherwise small uncertainties of the calculation. While the chiral extrapo-
lations of the PACS-CS collaboration octet baryon masses using the mass-dependent
and independent schemes agree at the physical point, as expected, and the qualities
of the two fits are similar (x?/d.o.f. 0.43 and 0.78, respectively), the value of the
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OBl (MGV)
B PACS-CS (MD) PACS-CS (MI) QCDSF-UKQCD (MI)
N 43.8(69) 45.7(73) 39.6(72)
A 28.6(43) 30.7(47) 27.0(43)
5 23.5(33) 25.7(36) 21.9(34)
= 11.5(14) 13.8(16) 12.3(14)
OBs (MGV)
N 20(6) 52(8) 26(15)
A 158(8) 185(12) 163(14)
5 202(9) 227(14) 234(14)
= 315(10) 337(16) 334(14)

Table 5.1: Light and strange quark sigma terms for the octet baryons based on chiral
extrapolations of PACS-CS and QCDSF-UKQCD collaboration lattice simulation results
for the baryon masses. The labels (MD) and (MI) denote results where the lattice scale
has been set using mass-dependent and mass-independent schemes respectively. The un-
certainty quoted includes the statistical uncertainty and allows for the variation of various
chiral parameters and the form of the UV regulator as described in Chapter [4

strangeness sigma term in the nucleon changes from 20 4+ 6 MeV to 52 £ 8 MeV.
This is by far the most significant shift; the light-quark sigma terms are entirely
consistent within uncertainties, while the other strange sigma terms are consistent
within 2-sigma.

Given the large systematic scale-setting effect, we consider it prudent to check
that the order of the chiral expansion used in the analysis is sufficient; as the PACS-
CS collaboration data set includes pseudoscalar masses significantly larger than
the physical values, it is possible (although unexpected, based on previous studies
of the FRR formalism [69]) that higher-order terms become significant, distorting
the results. By performing the fit to progressively fewer data points, that is, by
dropping the heaviest mass points, we confirm that the results are independent
of the truncation of the data. This can be seen clearly in Fig. 5.1l Although we
have displayed results with the mass-dependent scale-setting scheme, this conclusion
holds equally for the results with the mass-independent prescription.

Alternatively, we can check the possible contribution from higher-order terms
by explicitly including them in the fit. Adding all analytic terms at order mé
to the baryon mass expansion, and re-fitting to the PACS-CS lattice results with
the coefficients of the new terms generously constrained to twice the dimensional
estimate (M ©) /(47 fw)4) at 1-sigma, yields new values for the baryon sigma terms.
Although the uncertainties are large, as one would expect given the excellent fit
quality at lower order, the fact that the central values for all sigma terms shift
very little—e.g., ons = 22 + 46 MeV and on; = 43 + 3 MeV for the PACS-CS
collaboration results with the mass-dependent scale-setting scheme (where only the
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Figure 5.1: Baryon sigma terms, evaluated using the Feynman-Hellmann theorem follow-
ing a fit to PACS-CS collaboration lattice simulation results for the octet baryon masses.
The horizontal scale shows the number of pseudoscalar meson masses included in the fit.
The lattice scale was set using the mass-dependent scheme.

statistical uncertainties of the new fit are quoted)—does indicate that our fit is
robust. Including in quadrature the shift in central values from the higher-order fit as
an estimate of the systematic uncertainty resulting from our choice of resummation
(i.e., through the FRR prescription) does not increase the uncertainties quoted in
Table 5.1

With a view to finding a physically significant result for oy, we point out that
direct lattice calculations of this quantity should not have a large dependence on
the scale-setting scheme. As we can easily evaluate sigma terms from our fit at
any pion or kaon mass, we may compare our results explicitly with such calcula-
tions, including preliminary calculations performed at only one set of pseudoscalar
masses. Such a comparison is given in Table [5.2l The available direct calculations
include 2 and 2 + 1 4+ 1-flavour simulations [112,/113] at a single set of pion and
kaon masses, and 2 + 1-flavour calculations which have been chirally extrapolated
to the physical point |125,126]. The MILC collaboration calculation is not a di-
rect three-point calculation, but rather uses a ‘hybrid” method to find the sigma
term [111]. The collaboration indicates that this method corresponds most closely
to the mass-independent scale-setting scheme [131]. The results of our analysis us-
ing the mass-dependent scale-setting approach for the PACS-CS simulations agree
extremely well with the direct QCDSF and ETM calculations at the simulation val-
ues of m, and mg. We regard this comparison as particularly significant as those
calculations involved no chiral extrapolation. A similar level of agreement is found
with the (chirally-extrapolated) JLQCD result. Finally, the Engelhardt result sits
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(M, mi ) MeV direct MD (

QCDSF [113] (281,547) 1273 16(6)  50(7)  24(16)
ETM [112] (390,580) 13(5)(1) 12(5)  46(6)  22(16)
Engelhardt [125] physical 43(10) 20(6) 52(8)  26(14)
JLQCD [126] physical 8(14)(15)  20(6)  52(8)  26(14)
MILC [111] physical 59(6)(8) 20(6)  52(8)  26(14)

Table 5.2: Recent direct lattice calculations of oy, compared with the results of our anal-
ysis. Columns labelled MD and MI correspond to our analysis of the PACS-CS collabora-
tion (P) or QCDSF-UKQCD collaboration (Q) lattice results, evaluated at the indicated
(mz, mg) values, with the scale set using the mass-dependent or independent scale-setting
prescriptions, respectively. Those simulations listed at the physical point denote values
after chiral extrapolation (by the relevant lattice groups).

between the values of oy, given by the two scale-setting schemes, while the MILC
result favours the mass-independent scheme. The extrapolated QCDSF-UKQCD
collaboration simualtion results, analysed using only the mass-independent scheme,
have somewhat larger uncertainties and are compatible with all direct simulations
at the 1-sigma level.

There is no consensus in the literature as to the most appropriate way to set the
scale for a spectral determination of the sigma terms; both Refs. [129] and [132] argue
for the mass-independent scheme, in the former case based on observations of scal-
ing violation, while others (e.g., Refs. |[133}[134]) favour the mass-dependent scheme.
We choose the mass-dependent prescription to calculate our preferred central values
because, for the PACS-CS simulation results where we can compare scale-setting
schemes, it yields values for oy, which are more consistent with direct calculations.
Of course, we cannot rule out the possibility of ‘mixed scale setting’, as discussed
in Section [2.2.3] Nevertheless, we emphasise that our results are more significant
than the general statement that oy, lies in the 45 MeV range spanned by all de-
terminations would indicate; within each scale-setting prescription we find results
which are very precise, with small statistical and systematic uncertainties. More
lattice data for the octet baryon masses will not improve the results significantly
compared to the scale-setting problem. Future direct lattice calculations for the
strange nucleon sigma commutator, however, will not only more precisely constrain
this term as needed for dark matter calculations, but will provide significant insight
into the problem of scale setting on the lattice and indeed into QCD itself.

Finally, we note again that our results for the light quark sigma terms using each
scale-setting method—and both the PACS-CS and QCDSF-UKQCD collaboration
simulation sets—are precise and compatible within uncertainties, and that we are
for this reason extremely confident in our determination on; = 44 + 7MeV.
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O Bq (MeV)

B U d S

p 19(3) 23(4) 22(7)
n 12(2) 34(5) 19(6)
A 10(2) 18(3) 158(8)
0 8(1) 15(2) 201(9)
Xt 16(2) 2(1) 205(10)
> 1(1) 29(4) 199(8)
=0 8(1) —0.46(42) 317(11)
= —0.11(23) 15(2) 313(10)

Table 5.3: Individual quark sigma terms for the octet baryons based on a chiral extrap-
olation of PACS-CS collaboration lattice simulations of the baryon masses. The lattice
scale was set using the mass-dependent prescription.

5.3 Charge Symmetry Violation

Individual up, down, and strange quark sigma terms are relevant to searches for
supersymmetric dark matter candidates [119,/135,/136]. These terms may be cal-
culated in precisely the same way as the isospin-averaged sigma commutators were
obtained via the Feynman-Hellmann theorem applied to a chiral extrapolation of
lattice QCD simulation results for the octet baryon masses in the last section. As
described in Chapter [4, the only additional input needed to break the light-quark
mass degeneracy in the baryon mass extrapolations is a value for R = m,,/m,. Based
on the discussion of Section [4.4] we use the Leutwyler [100] value, R = 0.553(43),
determined by a fit to meson decay rates.

Our results, calculated using the PACS-CS collaboration lattice simulation re-
sults with the mass-dependent scale-setting scheme, are shown in Table [5.3, For
the reasons given in Section this is our preferred scale-setting scheme. Results
calculated using the mass-independent scheme applied to both this data set and to
the QCDSF-UKQCD lattice results are given in Appendix [E] Re-scaling the sigma
terms by the relevant quark masses to make dimensionless quantities and match the
notation of Ellis et al. [119}|135//136], we define

BP) = ap,/m,. (5.5)

These terms for the proton (p) and neutron (n) are related to the usual oy, and
OrxN by

1 n

Oy = 3 (m+ma) (B;’) +B%Y + B™ 4 B )), (5.6a)
1

ONs = ims(ng) + BM). (5.6b)

Our calculation yields
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B’l(llp) - B,gp) B(p) ml —
— " _—15(4), —4-=07(2), —(pluu—dd|p)=0.009(5). (5.7

The quoted errors include correlated uncertainties between all fit parameters and
also allow for some variation of phenomenologically-set quantities including the up-
down quark mass ratio R, as described in Chapter [l These results, and our values
for the nucleon light quark sigma terms (see Table , are consistent with those
obtained by Ellis et al. in Ref. [136] based on SU(6) symmetry and the same R-value
used here. The strange sigma terms o,/,, resulting from our work, however, are
significantly smaller; the Ellis values are o,s = 0,5 = 110(60) MeV (and no results
are presented for the hyperons). Of course, the discussion of the previous section
regarding the effect of lattice scale setting on oy, applies equally here: choosing the
mass-independent scale-setting scheme yields larger values for the strange nucleon
sigma terms, namely 0,5 = 53(8) MeV and o,, = 50(8) MeV, but values of the

light quark sigma terms and (qup) — ng)>/(B(§p) — ng)> and ng)/Bq(Lp) which are

identical with those given above, to the quoted precision.

5.4 Summary and Discussion

Using the isospin-broken chiral extrapolations of lattice QCD simulation results for
the octet baryon masses which were presented in Chapter [, we determine pre-
cise values for the baryon sigma terms by simple differentiation. This indirect
approach allows us to achieve small statistical uncertainties while minimising any
model-dependence, most importantly for the strange nucleon sigma terms which
are extremely expensive to calculate directly. These quantities provide a measure
of vacuum quark components in the nucleon, and are a key theoretical ingredient
for the interpretation of dark matter direct-detection experiments. With a given
choice of lattice-scale—setting prescription, our results for the strange nucleon sigma
terms are the most precise to date. The choice of scale-setting method, however,
constitutes a significant systematic uncertainty.

A comparison of our results for oy, with those of recent direct lattice calculations
of this quantity—which should not suffer from the scale-setting ambiguity—informs
our choice of the mass-dependent prescription as our preferred method. Setting the
lattice scale for the PACS-CS collaboration simulation results using this scheme,
we find oys = 20 £ 6 MeV at the physical point. The pion-nucleon sigma term is
o.n = 44 + 7MeV. This value is consistent with the results o,y = 46 = 7TMeV and
40 +£ 7 MeV found within the mass-independent scheme from the same PACS-CS
collaboration results and from an entirely independent analysis of QCDSF-UKQCD
collaboration simulation results, respectively. A comparison of these values with
those from other lattice QCD studies and analyses is displayed in Fig. [5.2] Our
results are comparatively precise (up to the scale-setting ambiguity which was not
considered in previous work), and broadly consistent with the latest numbers from
other collaborations. We emphasise that future direct lattice calculations for the
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strange nucleon sigma commutator will provide significant insight into the problem
of scale setting on the lattice and, through this, into QCD itself.
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Figure 5.2: Summary of values for oy, and opy; from lattice QCD with Ny quark
flavours [70490}[110,[111}[115,[117[118][125}[126}[131,[137-150]. The yellow vertical bands
indicate the results of this work. The central values are taken at our preferred results

(using the mass-dependent scale-setting scheme), while the error bands encompass the
full 1-sigma range of both this result and those generated using the mass-independent
prescription.






Chapter 6

Parton Distribution Moments

The revelation of the late 1960s that the proton has distinct substructurd!] raised
a pivotal question: how are hadron observables generated from more fundamental
degrees of freedom? Answering this question—where the generic point-like ‘par-
ton’ constituents originally introduced by Feynman [154] are now identified with
the asymptotically-free quarks and gluons of QCD—remains one of the most basic
challenges of particle and nuclear physics. Perhaps most notably, the decomposition
of the proton’s spin into quark and gluon spin and orbital angular momentum con-
tributions has been much-debated since the quark-spin component was measured to
be only a small percentage of the total [155]. The current value is approximately
33% [156]. We return to the discussion of this ‘proton spin puzzle’ in Section [6.4}

In the modern language, hadron structure as probed in high-energy scattering
is parameterised through structure functions which encode both short and long-
distance effects. It follows from asymptotic freedom that contributions from the
two scales can be systematically separated. This is known as factorisation; struc-
ture functions may be written as the convolution of a perturbatively-calculable hard
scattering cross-section—a process-dependent factor—and a nonperturbative func-
tion encoding the hadron structure. These functions are named parton distribution
functions (PDFs) for inclusive processes (or parton distribution amplitudes for ex-
clusive processes). In the infinite-momentum frame, PDFs represent the number
density of partons of each type carrying the Bjorken momentum fraction?] z at a
renormalisation scale y2.

The utility and importance of PDFs comes from their universality; they encode
the process-independent partonic structure of hadrons. Once determined (e.g., ex-
perimentally, from some limited set of reactions), the PDFs can thus be used for the
analysis of other processes, ranging from deep inelastic scattering to Drell-Yan or

IThis hinged in particular on a series of deep inelastic scattering (DIS) experiments at MIT and
SLAC in late 1967 [151,152]. Two unexpected features emerged. The first was that the probability
of DIS decreased much more slowly with Q?, the momentum transfer to the proton, than that
of elastic scattering, suggesting the existence of some ‘hard core’ within the target protons. The
second was scaling [153], i.e., that in the DIS regime the proton structure functions depend only
on the ratio w = v/Q? (v being the energy lost by the electron), not v and @Q? independently—an
indication that proton structure always appears the same to an electromagnetic probe, regardless
of how hard the proton is struck.

2The Bjorken variable is = Q?/2Mpv o 1/w, where Mp is the mass of the relevant baryon.

71



72 Parton Distribution Moments

W= production. They are also essential to experimental physics programs searching
for physics beyond the SM, for example through the scattering of ultra-high-energy
cosmic ray particles or fixed target and colliding beam experiments.

PDFs have been well determined experimentally [157-160] and widely studied
within models [161H167]. The majority of these investigations, however, have relied
on the assumption of good charge symmetry [3339] to reduce the number of inde-
pendent quark distribution functions by a factor of two. Recently, CSV effects have
been included in phenomenological PDFs for the first time [36{{38]. Experimental
upper limits on partonic CSV are in the range 5-10% [33}39,/168]; effects of this
magnitude would significantly affect a number of tests of the SM, such as those
based on neutrino deep inelastic scattering experiments [40L|169).

Ultimately, one wishes to determine PDFs, and in particular the size of CSV
effects in these quantities, directly from QCD itself. Lattice field theory is currently
the only quantitative tool available with this facility. Until very recently it was not
known how one might calculate PDFs directly on the lattice [170]; deep inelastic
scattering and related processes are dominated by distances that are light-like, and
as such are inaccessible in Euclidean-space calculations. Use of the operator product
expansion, however, allows Mellin moments of PDF's, which represent averages over
the momentum fraction = carried by the parton, to be evaluated using standard
lattice calculations of hadronic matrix elements of local operators [32,/171-173].
Details of the operator product expansion, as well as an overview of the connection
between deep inelastic scattering, hadron structure functions, and PDF's, are given
in Appendix [G]

In this chapter we develop a formalism for the chiral extrapolation of the spin-
dependent and spin-independent Mellin moments of the quark distributions of the
octet baryons. The analysis allows for isospin-breaking and may thus be used to
calculate CSV effects from isospin-averaged lattice QCD simulation results, just as
was outlined for the octet baryon masses and sigma terms in the previous chapters.

6.1 Moments of Quark Distribution Functions

The spin-independent (¢ (z)) and spin-dependent (A¢®(z)) quark distribution func-
tions are defined as

q¢" () =qf (x) + ¢/’ (2), (6.1a)
A¢P(z) =7 (x) — ¢’ (2), (6.1b)

where qﬁ 1) Tepresents the number density of quarks whose spin is parallel (antipar-
allel) to the longitudinal spin direction of a baryon B. For clarity of notation,
we suppress the dependence of these distributions on a renormalisation scale u?
throughout this discussion. We define the (n — 1)th spin-independent (SI) and mth
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spin-dependent (SD) Mellin moments of the parton distributions, respectively, as

1
@ = [ e (o) + (1)), (6.20)
1
(@8 = / de 2™ (AgP(x) + (~1)"A7P (), (6.2b)
0
i.e., our definitions alternate between C-even (4) and odd (—) distributions,

¢*(x) = q(z) £q(2), (6.3)

with increasing n and m. These alternating towers of moments can be related to
the matrix elements of local twist-two operators

Ot = gy Pk L Phng, (6.4a)
ORI = Mgy DL D kg, (6.4b)

=
where D = %(B — 5), through the operator product expansion described in Ap-
pendix [G] One finds:

(B(p)| [0 — ] | B(p)) =
(B(@)|[0% " = Tx] | B()) =

The braces, {...}, indicate total symmetrisation of the enclosed indices, and trace
terms involving ¢g*#i have been subtracted to ensure that the operators transform
irreducibly under the Lorentz group. The spin operator, S*, is as in Eq. ; we
have suppressed the bold typeface here.

<l,n—1>qB [p{m Cpind Tr], (6.5a)

(Z/Um)ngB [S{uopul .. .pﬂm} — Tr}, (6.5b)

In recent years, several collaborations have presented lattice QCD studies of the
matrix elements of twist-two operators relevant to both the spin-independent and
spin-dependent parton distributions [32,|173]. Because of the reduced symmetry
of a cubic lattice compared with continuous space (the symmetry group O(4) —
H(4)), these simulations have been restricted to the lowest few Mellin moments by
power-divergent operator mixing—one can choose irreducible representations of H(4)
which are safe from such mixings only for {n, m} < 4. Furthermore, renormalisation
becomes extremely complex for larger moments.

Although the lowest several moments of the quark distribution functions do not
provide enough information for a reconstruction of the PDFs, they are interesting in
their own right. For example, the zeroth spin-dependent moment, (1)% o+ corresponds
to the spin of baryon B carried by quark flavour ¢. Lattice results for this quan-
tity can thus give insight into the proton spin puzzle (see Section . Moreover,
determinations of CSV effects in the Mellin moments are relevant to experimental
tests of the SM. Perhaps most notably, CSV effects in the lowest spin-independent
PDF moments could act to significantly reduce the 3-sigma discrepancy with the
SM found by the NuTeV collaboration [41] in neutrino-nucleus DIS experiments.
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6.2 Chiral Perturbation Theory

Here we outline the derivation of chiral extrapolation formulae for the spin-indepen-
dent and spin-dependent quark distribution moments, to leading non-analytic order.
The analysis allows for (strong) isospin-breaking, that is, for m, # mg. We begin by
writing down effective Lagrange densities which represent the twist-two operators
O (Egs.(6.44) and (6.4D]) within the framework of chiral effective field theory. The
appropriate flavour structure for each operator will be isolated by insertions of the
matrices

1, — —
A= 5 (EXET + €M), (6.6)
where for each quark flavour ¢, Xq is given by

1
Ay = . A= 1 . A= . (6.7)

Effective operators relevant to the isovector quark distributions, for example, will
be expressed in terms of the matrix A\ = A\, — A\4.

The interactions of the octet baryons, decuplet baryons, and mesons, with no op-
erator insertions, are encoded in the usual effective Lagrangian which was presented
in Chapter [3] We refer to that chapter, in particular Section for a summary
of the notation and conventions used here (note that we now suppress the bold
typeface on matrices of heavy-baryon fields). The only new notation needed is the
generalisation of the quark-mass matrix M, to include higher powers of the meson
field ®:

M= %(qug + ETMEh). (6.8)

We note from the outset that the expressions given in the following sections differ
from those of related works [174-176] by factors of the baryon mass Mp. We have
chosen our convention to make the a-priori unknown low-energy coefficients which
appear in the effective matrix elements dimensionless.

Spin-Independent

Here we list effective matrix elements of the trace-subtracted spin-independent twist-

Oélll---ﬂn}

two operators ( — Tr). All terms involving zero or one mass-insertion (M)

are included. The total symmetrisation of all Lorentz indices, which is usually
denoted by braces, {...}, may also be written as ‘+ permutations’ where this is
notationally more convenient. This always indicates the symmetric sum with no
normalisation factor, i.e., {ur} = pv + vp = (uv + permutations). Superscripts
(n) on the undetermined low-energy coefficients indicate that these constants are
distinct for each operator, that is, a(® # o) etc.
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At leading order, the relevant effective Lagrange density is
[ (BBX,) + 8™ (BAB) + o™ (BB) Tr(\)]|pt* ... ' — Tr. (6.9)
The O(m,) counterterms are given by

(o8 Te[BllA,, B, M]] + b5 Te[B{[,, B, M}] + 0 Te[BI{A,, BY, M]]
+ 05" Tr[B{{Ag, B}, M}] + 65" Tr[BB] Te[A,M] + b Tr[BBA,] Tr[M]
+ b1 Tr[BA,B] Te[M] + by Tr[BM B] Te[A,] + 05" Te[BBM] Tr[),]
+ b%) Tr[BA,] Tr[M B] )p{‘” ptmh — T, (6.10)

and the decuplet insertions may be represented by
YO TNT) 0 )y MG (TAT o pd =T (611)

The contractions between field tensors are defined in Eq. (3.38)).

Spin-Dependent

The spin-dependent operators have effective matrix elements very similar in struc-
ture to those given in the previous section for the spin-independent case. The term

analogous to Eq. has the form

[Aa™ (BS™BA,) + AB™ (BS™A,B) + Ac™ (BS*B) Tr(\)|p" ...p""
+ permutations — Tr. (6.12)

For m = 0, the Goldberger-Treiman relation provides the identification of the low-
energy constants with the meson-baryon coupling constants:

2
Aal® = 2(§D + 2F> : A =2 (—gD + F) (6.13)

where F' and D are defined by Eq. . The effective Lagrange density with
insertions of the quark-mass matrix M is entirely analogous to Eq. :
(A0 T [BS™ (1A, B], M]] + A" Te[BS*{[A,, B], M}]

+ AB™ Tr[BSH[{\,, B}, M]] + Ab™ Tr[BS™{{\,, B}, M}]

+ AB™ Tr[BSH B] Tr[AM] + AbS™ Tr[BSH BA,] Tr[M]

+ AWM Te[BS# N, B] Tr[M] + AbS™ Tr[BS# M B] Tr[A,]

+ ABY™ Te[BS* BM] Tr[A,] + Ab Tr[BS"A,] Tr[MB]) P ph

+ permutations — Tr. (6.14)
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Decuplet contributions may be represented by

Afy(m) (T’js{ququ)pm N .p/‘m} + Afyl(m)]\/[é (T{‘“ Suo)\unz)pus - .pll‘m} — Tr.
(6.15)

Clearly, because of the number of available indices, Ay (®1 = 0. Other approximate
relations between the unknown coefficients may be derived using SU(6) symmetry. In
our numerical calculations, for example, we set Ay(®) = 23 = —6D. The analogous
relation for the first moment is Ay = =2 (Aa) — 2A8W).

Transitions between octet and decuplet baryons via an operator insertion are also
allowed in the spin-dependent case. These are represented by the effective matrix
element

\/gw(m) [(T“O)\qB) + (EAQT“O)}])’“ ... p"™ + permutations — Tr. (6.16)

Here, by the nucleon-delta Goldberger-Treiman relation, we make the identifica-
tion w® = C. This parameter appears in Eq. and encodes the octet-
decuplet baryon transition via meson emission or absorption. To reduce the num-
ber of free low-energy constants, we use the SU(6) approximation to set w® =
—%(Aa(l) — QAB(l)) for our numerical study of the first spin-independent moment

(see Section [6.3)).

6.2.1 Feynman Rules

Feynman rules corresponding to the twist-two operator insertion vertices may be
read directly from the effective Lagrangian terms given in the previous section. Fol-
lowing the notation introduced in Section [3.3.4] the octet baryon, decuplet baryon,
and meson which appear in a particular vertex are indicated by subscripts B, T,
and ¢ on the (Clebsch-Gordan) coefficients C' which encompass the flavour algebra.
The subscript O, indicates that the couplings listed here correspond to operator
insertion vertices. All coefficients C' are given explicitly in Appendix [F]
For the spin-independent operators,

1

BBY; Operator Insertion [6.1(a)} i
B

Ciho, o ..p™),  (6.17a)

I o
TT¢; Operator Insertion #1: MC’;T),Oqugp{“l phm, (6.17b)
B
I
TT¢; Operator Insertion #2: M—C;},Oqgl,{“lgﬂmp“?’ phm, (6.17¢)
B
1 n
BB'¢¢g; Vertex Insertion M—JQCJ(B?;’W’qu{M prm (6.17d)
BJr

The labels indicate the panel of Fig. in which each vertex is depicted, and the
TT' operator insertions labelled #1 and #2 correspond to the first and second
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Figure 6.1: Feynman diagrams illustrating the vertices which appear in the leading
non-analytic contributions to moments of quark distribution functions. The twist-two
operator insertion (denoted by a cross) carries a Lorentz index g in the spin-dependent
case only. Single, double and dashed lines denote octet baryons, decuplet baryons and
mesons, respectively.

terms of the decuplet effective operator contributions respectively (see Egs. (6.11))
and (6.15))). Similarly, for the spin-dependent operators,

BB{, Operator Insertion : C](B”]?,OAqS{“Op’” Lphmd (6.18a)

TT{;, Operator Insertion #1: C;Z?OAqgl,gS{“Op“l Lt (6.18b)

TT¢p, Operator Insertion #2: C’;’;zomg,,{“lgﬁw SHophs . pHm}, (6.18c)

T Bsp Operator Insertion [6.1(c) C:(rné)oAq g lropts | pimd, (6.18d)
: L m

BB'¢¢gp, Vertex Insertion [6.1(d)} f—ECé];,W,OAqS{“OpM phm (6.18e)

By symmetry, the BTsp vertex (i.e., the reflection of Fig. in a vertical plane)
is identical to the T'Bsp vertex given here.

6.2.2 Feynman Diagrams

This section gives details of the Feynman diagrams which contribute to the Mellin
moments of the PDFs to leading non-analytic order. These are shown in Fig. [6.2
and include loops with both octet and decuplet baryon intermediate states, tadpole
loops, and wavefunction renormalisation terms. Diagrams 6.2(j)| contribute
only to the odd-n spin-independent moments at order m”*'log(m,) and are thus
included for the n = 1 spin-independent moment only. For this moment they serve
to cancel the contributions of diagrams|6.2(a)H6.2(e)| to give the usual quark flavour
sum rule; for this reason we do not write out their contribution explicitly.

Figure [6.3| shows the loop diagrams which include Weinberg-Tomozawa contact
terms. These contribute only to the spin-dependent matrix elements at higher order
than we consider here (they have non-analytic behaviour of order m2log(m,) or
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Figure 6.2: Chiral loops included in the present calculation. Single, double, and dashed
lines denote octet baryons, decuplet baryons, and mesons, respectively. Crosses (squares)
denote twist-two operator (leading-order strong interaction) insertions. Diagram is
hereafter referred to as the ‘octet loop’ diagram, Fig. is the ‘decuplet loop’, and
diagram[6.2(b)|is referred to as the ‘tadpole’ diagram. Diagrams[6.2(c)|and[6.2(e)|represent
wavefunction renormalisation. The transition diagrams, shown in Figs. [6.2(f)| and [6.2(g)],
contribute only in the spin-dependent case. Diagrams [6.2(h)H6.2(j)| are included for the
n = 1 spin-independent moment only, as explained in the text.
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Figure 6.3: Loop diagrams which include Weinberg-Tomozawa contact terms. These con-
tribute only to the spin-dependent matrix elements at higher order (they have non-analytic
behaviour of order m3log(m.,) or higher), and are thus excluded from our calculation.
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higher), and are thus excluded from our analysis, although it has been argued that
these terms may indeed be significant |171].

6.2.3 Loop Integrals

Here we summarise the integral expressions needed for the evaluation of the Feyn-
man diagrams depicted in the previous section. We use the finite-range regularisa-
tion scheme which was introduced in Section [3.5] but also make explicit the simple
substitutions which relate our expressions to those generated in the DR formal-
ism [177].

Loops with octet baryon intermediate states (e.g., Fig. involve the term

/ o g 507 ) (6.19)
= — .
(2m)* (ko — i€)?(k* — mj, + i€) FRR 1672
where . .
L L O
T = 3/0 W =T (6.20)

with the finite-range regulator u(k) inserted into the integrand. The normalisation
of J(m?) has been defined so that the non-analytic part is simply related to the
common form of dimensionally regularised results: .J(m?) o m? In(m?/pu?).

Entirely analogous expressions can be written for integrals with decuplet prop-
agators replacing one or more of the octet propagators in the above loop integral
expression. We define

4 i} g 2
/ . L L UL T
(2m)* (ko + 6 — i€)(ko — i€)(k* — mj + i€) FRR 167
d*k k'k? . 200
/ ; R Um0 g )
(2m)* (ko + 6 — i€)*(k* — mf + i€) FRR 167
where
o k'u?(k)
Ji(m?,6) = —/ d , 6.23
1(m”,0) = 2 s R TR Tt 0) (6.23)
4 [ k*u?(k)
Jo(m?,8) = —/ dk , 6.24
2(m”,0) = 3 T R e 1 o7 (6.24)

with one and two decuplet propagators, respectively. The non-analytic parts of these
integrals give the corresponding DR expressions:

2 m? 2 3 0 — V6% —m?
2 2 “ 2 _ ,2)2
Ji(m*,6) = <m 3)111(—”2)4-36(5 m?) ln(5+ 52—m2>

+ ——-m’ — -m”, (6.25)
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2 2 2
9 9 9 m d—Vd2—m

We also define . 2 2(k:)
U
Jr(m?) =4 dk——=,
r(m’) 0 V k2 4+ m?

which has the same non-analytic structure as J, i.e., Jr(m?) = m?In(m?/pu?). This

(6.27)

integral will appear in the evaluation of tadpole loops in Section [6.2.4]

To make a comparison with DR expressions clear, and to avoid absorbing loop
terms into known parameters such as F' and D, constant terms are subtracted by
the integral replacement

Z(m) — Z(m) = [Z(m) — Z(m = 0)], (6.28)

where Z stands for any of the integrals defined earlier. Terms analytic in m? are
absorbed by redefinition of the unknown low-energy coefficients (A)b;. With this
convention, DR expressions can be recovered by simply replacing each loop integral
expression by its non-analytic DR form given above.

6.2.4 Loop Contributions

This section gives explicit expressions for the contribution from each loop diagram
shown in Section to the chiral extrapolation of the Mellin moments of the
PDFs. Each term may be derived using the Feynman rules of Section and is
written in terms of the subtracted integrals defined in Section[6.2.3] In each case, the
subscripts P and U indicate the polarised (spin-dependent) and unpolarised cases,
while the superscripts 8 and 10 indicate diagrams with octet and decuplet baryon
intermediate states. All Clebsch-Gordon coefficients C', the momenta p#! ... ptrm,
and the associated symmetrisation of Lorentz indices are suppressed for clarity of
notation.

Wavefunction Renormalisation

The contributions from wavefunction renormalisation correspond to Figs. and

6.2(e)| and reduce to

1 3\ ~
8 _ 2

1~
Zy1puy = WJQ(WZ, 9). (6.30)
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Tadpole Loops

The tadpole loop contributions correspond to Fig. |6.2(b)|

. 1 (1)~
Zyipuy = 6722 (§> Jr(m?). (6.31)

Octet Intermediate-State Loops
The contribution from Fig. [6.2(a)|, with an operator insertion into an octet baryon

intermediate state, differs from the octet loop wavefunction renormalisation term
only in the spinor algebra.

8,8 1 1\ ~
Z Zw(—g) J(m?), (6.32)

13\~
4% =10 7 (g) J(m?). (6.33)

Decuplet Intermediate-State Loops

The contribution from decuplet loops with one operator insertion (i.e., Fig. [6.2(d))
mimics that of the decuplet loop wavefunction renormalisation term. While there
is an extra P* polarisation projector in the spin algebra, as there are two decu-
plet propagators, the wavefunction renormalisation term (with one propagator) has
the identical integral form, J, because of the derivative with respect to external
momentum.

There are two separate terms which contribute to the decuplet loop (Fig.[6.2(d))),
arising from the two terms in each of Egs. and . We label these con-
tributions as ‘1’ and ‘2’, matching the notation used when defining the relevant
Feynman rules in Eqs. (6.17)) and (6.18]).

o0y 1 5\ ~,

Z1 p1 T 16722 <—§) Jo(m*, 9), (6.34)
1010y 1 1\~
(1010 1 ~

Zl,Ul _167T2f7% (_]‘)‘]2(m )5)7 (636)

10,10 1 1\ ~
AT ):16772]”2 (g) Jo(m?,9). (6.37)
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Octet-Decuplet Transition Loops

By symmetry, the contributions from diagrams|6.2(f)|and [6.2(g)|are the same. These
diagrams do not contribute in the spin-independent case.

10,8 , 1 2
2059 _ 7610 _ 16W2f2( )Jl(m 5).

6.2.5 Fit Functions

Here we finally present complete expressions for the chiral extrapolation of quark
distribution moments. The Clebsch-Gordon coefficients C' are those given in the
Feynman rules in Eqs. (3.40), and (6.18). We emphasise that these coeffi-
cients, while labelled identically, have distinct numerical values for each moment.
Expressions for each C' in terms of the low-energy constants introduced in the effec-
tive Lagrange densities are given in Appendix [F] In the expressions below, summa-
tion over repeated indices, e.g., B', T, ¢ (but not B) is implied. The overall factor
of 2 arises from the corresponding factor in Egs. and . We remind the
reader that the terms p{# .. pt=} and Stroptr  pim} arising from the Feynman
rules and spinor algebra for the chiral extrapolation of the matrix elements, factor
out when writing out the quark moment chiral extrapolation (again see Eqs.

and (6258)).

The master expression for the spin-independent Mellin moments with n > 2 is
n— n n n n 8,8
22" B =(Clho, + Chhour ) + CbaClinio, Cilp, 25 (m3)
a n n n 10,10 (10,10)
+ CBB¢¢0 Z d( 2) + C(BCI)“qu;CIz’O C;’)qu [Zf Ul )( ) + Zl U2 (mi)}
_ (cgg,¢) Cpo, 28 (m2) — (c;%) Co, 739 (m3), (6.38)

while the n = 1 case is simply the quark flavour sum rule. The spin-dependent
moments are given, for m > 1, by

2(z™) %, :<Cg%o + CBBOA M) +C 7%)’¢C](BT7B”OA 01(3”339¢Z£8ﬁ8) (m3g)
+ CBququA Ztad (m¢) + CBn’szCJ(“TEOA CT/B¢> 111(3110) (mi)
OO 00, o | 25520 (m2) + 2057 (m2)
—(C5m) Clon, Z8r(m2) — (C42,) Cnos, i (m2). (639

These expressions match those of previous studies [174-176,/178-182] in the limit
where m,, = my, i.e., € — 0 in the expressions for the couplings C' and the meson

masses my (see Eq. (4.6)).
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To facilitate direct comparison with, and use of, these expressions, the chiral
expansions for some of the commonly-investigated combinations of moments, namely
(1) Ay Ag = 94 and (z)? . are given explicitly in Appendix

6.3 Fits to Lattice QCD Simulation Results

In this section we describe the application of the theory developed here to the
chiral extrapolation of lattice results provided by the CSSM and QCDSF-UKQCD
collaborations for the first few Mellin moments of the quark distributions [24},32/173].
In particular, we consider the first spin-independent moment and the zeroth and first
spin-dependent moments.

The simulations [24,[32,[173] were performed on a lattice volume L3 x T = 243 x 48
(with @ = 0.083fm), and include results for the doubly and singly-represented quark’|
contributions to the Mellin moments of all outer-ring octet baryons (i.e., no A or
30 baryons) at five different sets of pseudoscalar masses (m,, mg). The locations
of the simulations in the light-strange quark mass plane are indicated by the light
blue squares along the single constant singlet-mass line in Fig. [£.1 All numbers
are expressed as ratios of the moments for different octet baryons (as in Fig. ;
overall normalisations are not given.

A2
ey

mass A = 1GeV, within the FRR scheme. All results are insensitive to this choice;
selecting, for example, monopole, Gaussian, or sharp cutoff forms for the regulator
does not change the results of the analysis within the quoted uncertainties. We
explicitly allow A to vary by £20% for our final results.

The fit to the simulation results is performed by minimising the sum of x? for
each set of moments independently. As lattice data is available only for the doubly
and singly-represented quark moments, not all of the parameters which appear in
the equations in the previous sections are linearly independent in the relevant fit
functions. Replacements are made:

2
For our analysis we use a dipole regulator, u(k) = > , and a regulator

ny = by + bs, Ny = by + by, n3 = bs,
nygy = b7, Ny = bg, Nng — bg, (640)

with entirely analogous relations defining An; in the spin-dependent cases.

There are 24 lattice data points available for each of the three moments consid-
ered. The fit parameters are different (and the fits independent), for each moment.
As indicated earlier, we use SU(6) relations between unknown quantities to reduce
the number of free parameters to eight or nine:

e For the zeroth spin-dependent moment, Ango), Ac® and D are fit; the
low-energy constants Aa(® and AB(®) have been related to D by Eq. (6.13). We

3For a baryon with valence quark content zxy, the doubly-represented contribution is the total from
quarks of flavour x, while the singly-represented contribution is the total from y-flavoured quarks.
For example, in the proton the u and d quarks are doubly and singly-represented, respectively.
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First SI (¢ =2) Zeroth SD (i =0) First SD (i = 1)

(A)ngf) 1.1(25)(0) 4.9(84)(9) —1.5(13)(15)
(MRS —7.0(28)(27) 0.5(98)(12) 6.3(29)(26)
(Amg? 8.3(26)(31) —2.2(58)(9) —3.9(16)(23)
(A)nfj) 0.5(27)(1) —15(17)(0) —7.0(46)(11)
(Ang’ 11(H)(4) 0.2(50)(9) —1.0(11)(8)
(A)nt? 6.2(24)(23) —1.1(88)(7) —6.0(28)(34)
(Ao —4.1(17)(12) 0.41(50)(29)
(A)BYD  —8.6(31)(21) —1.5(10)(3)
(A)o® 7.5(26)(23) —0.22(26)(0) —0.93(61)(14)
D 0.74(24)(6)

Table 6.1: Values of the fit parameters corresponding to the fits shown in Fig.
All (A)n, U) have dimensions (GeV~2), other parameters are dimensionless. The first error
range given is statistical, while the second indicates the uncertainty resulting from a +20%
variation in the FRR cutoff A.

use SU(6) symmetry to set ' = 2D and Ay = —6D. C — Cppys. = —29ae.
is also fixed. This gives a total of eight free parameters.

e The mne ﬁt parameters for the first spin-dependent moment are An ,
Aa®, ABD and AcW. Fixed parameters are D — Dphys. = 5gAphyS_, F —
Fonys. = %Dphysl, C — Cphys., and, using SU(6) symmetry, Ay = —%(Aa(l) —
QAB(D), as outlined in the text (see Eq. )

e For the first spin-independent moment, nine parameters, n ), B3,
and o® | are fit, with D, F, and C again fixed to their physical Values. As

no phenomenological estimate of the combination (7(2) — %(2)) is available,

this quantity is fixed to a ‘physical’ value through its relationship to the tree-
level delta insertion, SU(6) symmetry, and the best experimental value of the
isovector proton moment (at a scale of 4GeV?) [183]:

(2) 7/(2) At

(7 - ?> =6(x), 4  at tree level, (6.41a)
=6(z)?_,  using SU(6) symmetry, (6.41Db)
= 6(0.157) = 0.942 (6.41¢)

The fits to the available lattice simulation results (expressed as ratios of Mellin
moments) are shown in Fig. [6.4, The horizontal axes are normalised with re-
spect to the simulation centre-of-mass of the pseudoscalar meson octet, X, =
Vv (2m2% +m2)/3 = 411 MeV, so that the figures may be easily compared against
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Figure 6.4: Illustration of the fits to the zeroth spin-dependent moment (Figs.
and [6.4(b))), the first spin-dependent moment (Figs. [6.4(c)] and [6.4(d))), and the first spin-
independent moment (Figs. 6.4(e)| and [6.4(f)). Figures in left (right) hand panels corre-
spond to the ratios of singly (doubly) represented quark distribution moments for the ¥
(red upward triangles) and Z (blue downward triangles) baryons to those of the nucleon.
Lattice data is taken from Refs. [32,[173].
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previously published analyses which used linear fits to the lattice results [32,/173].
The quality of fit is clearly acceptable in each case, with the x?/d.o.f. between 0.6
and 0.9 for each moment. All y? values are less than one as we were not able to
take into account the effect of correlations between the original lattice data points.
Best-fit parameters for each fit are given in Table [6.1]

In Section [6.5] we describe the use of these fits to determine the magnitude of CSV
effects in each of the Mellin moments. This analysis is based on the same principles
introduced in Chapter 4| to determine the mass splittings among members of baryon
isospin multiplets from 2+1-flavour lattice simulation results. First, however, we
use the chiral extrapolation for the zeroth spin-dependent moment, which directly
probes the distribution of the spin of a baryon among its quarks, to gain some insight
into the proton spin puzzle.

6.4 Hyperon Spin Fractions and the Proton Spin
Puzzle

Since the discovery by the European Muon collaboration [155,(184-186| that quarks
carry a relatively small fraction of the spin of the proton—the proton spin puzzle—
there have been decades of careful experimental investigation of that claim. The
puzzle, however, has persisted; the quark contribution to the proton spin currently
stands at |156] 334+3+5% if one relies on SU(3) symmetry for the octet axial charge,
g% . This is a dramatic suppression with respect to the value of 100% expected in
a naive quark model, or even the 65% expected in a relativistic quark model. The
value deduced from experiment increases only marginally, to 36 4+ 3 + 5%, if ¢
is reduced by 20%, as suggested by model calculations [187] and a recent lattice
simulation [188].

A number of possible theoretical explanations for the spin puzzle have been
offered, ranging from a key role for the axial anomaly [189-195] to the effect of
gluon exchange currents [196-198|, the effects of chiral symmetry [199,)200], and, in
the light of insights gained from lattice QCD studies, a combination of both of these
effect]] [203]. It is clearly of great interest to find new ways to shed light on the
origin of this phenomenon.

The analysis of lattice QCD simulation results described in previous sections
can give some insight into the spin puzzle. In particular, the zeroth spin-dependent
Mellin moment of the quark distribution function for quark flavour ¢ in baryon B
corresponds identically to the spin carried by that quark flavour:

Agp = (1)3, = /01 dz (A¢”(z) + A7 (). (6.42)

4The relatively small values of the gluon spin in the proton, found in both fixed target and collider
experiments [201}/202], have eliminated the possibility that the axial anomaly alone might explain
the observed suppression, although its effect may still be quantitatively significant.
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0.97(1)  0.92(13)
1.49(5)  1.61(33)

B Model Lattice
N 1.0 1.0

A 1.35(2)

pM

Table 6.2: Ratio of the spin fraction for each hyperon to that of the nucleon. For the
model calculation, the uncertainties quoted result from choosing a bag radius R = 0.8fm
rather than the default 1fm. The lattice uncertainties include all statistical and systematic
effects described in previous sections combined in quadrature.

As the lattice QCD simulation results used here were presented in ratio form by the
lattice groups (because the analysis of the renormalisation of the lattice operators
had not been completed), the absolute values of the spin fractions cannot be ex-
tracted from our analysis. We can, however, use our results—which extend to the
entire outer-ring baryon octet—to determine whether the suppression observed for
the proton is a general property or varies across the baryon octet. Despite early
proposals [204] to measure the quark contribution to the A baryon spin, there is at
this stage no experimental indication as to whether spin-suppression is a universal
feature of baryons or not.

Unfortunately, as the lattice data set does not include any calculations for the
A hyperonﬂ, we are unable to present results in that case. However, for the other
members of the octet one can simply sum Au, Ad, and As to obtain the (con-
nected quark-line contribution to the) spin fractions carried by the quarks in each
baryon. These values, determined from the fit functions of Section [6.3| evaluated at
the physical meson masses, are shown in the final column of Table [6.2] Although
the uncertainties are substantial, there is a remarkable degree of variation with the
structure of the baryon, with the ratio of spin fractions equal to 0.92(13) for 3 : N
while it is 1.61(33) for = : N. This variation is not merely an artefact of the (sig-
nificant) chiral extrapolation in pion mass which is necessary to reach the physical
point; it is in fact distinct in the lattice results themselves. This is illustrated in
Fig. [6.5]

These results clearly do not support the hypothesis that the spin suppression ob-
served for the proton might be a universal property. In order to understand this effect
qualitatively it is of considerable interest to investigate the predictions of models in
which the suppression of the spin carried by quarks is dependent on baryon structure.
In Ref. [206], the cloudy bag model (CBM), developed in Refs. [196/197,199,201], was
applied to this problem. The model includes relativity [207-210], gluon exchange
currents [196,211},212], and the meson cloud required by chiral symmetry [199]. As

5Since the completion of this work, calculations of the quark spin fractions in the A baryon have
been performed for a subset of the simulation ensembles used here [205]. At this stage, however,
the results do not span a sufficient range of meson masses to constrain an extrapolation of the A
spin fraction to the physical point (when included in our analysis).
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Figure 6.5: As in Fig. with dimensionful units on the horizontal axis. Red
upward (blue downward) triangles show the ratio of the lattice moments of the u in the
¥t (s in the Z) to the w in the proton. The vertical dashed line indicates the physical
pion mass.

can be seen from Table[6.2] the predicted variation of the fraction of the spin carried
by quarks across the octet is striking, and is in excellent agreement with the results
of our lattice study. Within the quark model, this variation in spin-suppression can
be easily interpreted; the meson cloud correction is considerably smaller in the =
than in the nucleon. That, combined with the less relativistic motion of the heavier
strange quark, results in the quark spin fraction in the = being substantially larger
than that in the nucleon.

6.5 Charge Symmetry Violation

As discussed in the introduction to this chapter, the assumption of good charge
symmetry has been widely applied in parton phenomenology [33.39] despite exper-
imental upper limits on partonic CSV falling in the range 5-10%. CSV of that
magnitude would produce important effects in tests of physics beyond the SM, for
example in neutrino-nucleus deep inelastic scattering experiments [40]. We use the
analysis of lattice simulation results presented in Section to more precisely con-
strain the size of CSV effects in the lowest several lattice-accessible Mellin moments
of the PDFs.
In terms of quark distributions, charge symmetry implies

uP (ac, Q2) =d" (ac, Q2), d? (ac, Q2) =u" (x, Q2), (6.43)

with analogous relations for the antiquark distributions. A measure of the size of
the violation of charge symmetry is given by the ‘CSV parton distributions’, defined
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in terms of the Mellin moments as

u

MW:AdeW%%%“@%%WW—@Wf (6.44a)
and

1
sz/dmwwwmwﬁmywwﬁ—@m? (6.44b)
0
for the spin-independent distributions, with analogous expressions for the spin-
dependent case. Here, the plus (minus) superscripts indicate C-even (C-odd) distri-
butions:

¢*(z) = q(x) £ q(x). (6.45)

As the CSSM and QCDSF-UKQCD collaboration lattice simulation results |32}
173|] analysed in Sectionuse mass-degenerate light quarks, the CSV terms cannot
be directly evaluated using Eqs. and (as this would give zero in each
case). The problem can, however, be approached indirectly; because the simulations
lie along a line of constant singlet quark mass (light blue squares in Fig. , an
approximation to the CSV moments may be found using a linear flavour expansion
about the SU(3)-symmetric point. This approach is described in Section [6.5.1]

The results may be improved using the chiral fits which were presented in Sec-
tion [6.3] Just as was described in detail in the context of determining the mass
splittings among members of baryon isospin multiplets from N; = 2 + 1 lattice
simulation results (Section , the only additional input needed to determine the
CSV moments from the previously-described isospin-averaged fits is a value for the
light-quark mass ratio R = m,/mg. The chirally-improved extraction of the CSV
terms is described in Section [6.5.2

6.5.1 Linear Flavour Expansion

If one takes the light-quark mass difference ms = (my — m,) to be small, the CSV
Mellin moments may be expanded as

du = mg( ool 8@5) +0(m), (6.46)

B 8mu 8md

with a similar expression for dd. The equivalence of the u and d quarks in the lattice
simulations to which we will apply this expansion, i.e., that 9(x)% /Om, = 0(x)?./Om,,
and 0(z)/0m, = 0(x)2/Om,, has been used to simplify the expression. Near
the SU(3)-symmetric point, the strange quark can be considered as a heavy light-
quark; the lattice results for the hyperon Mellin moments can thus be substituted
for information about the light-quark derivatives:

o)y (a)Z — ()t Ol (ol = (@) (6.472)

Q

omy, mg — My omy mg — My
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P =0 P P st P
o)y _ (03— o)y _ ()Y — (o 6.470)
om,, me — My omg Mg — My

Rearranging these expressions, and invoking the Gell-Mann—Oakes—Renner rela-
tion, the CSV momentum fractions can be written a

u__ Lms (" = @)/t

()P . 2my, ( m2) /X2 J (6.48a)
<x(>sgd ;ZE (o) (mK — )) // X (6.48b)

where m, = (2m; + ms)/3 and X2 = (2m3 + m2)/3. Similar expressions hold
for the spin-dependent CSV moments. Written in this way, the fractional CSV
terms are simply the slopes of straight lines drawn through the data displayed in
Fig. (evaluated at the SU(3)-symmetric point), multiplied by the ratio ms/m,.
Taking the Leutwyler value, R = m,/m, = 0.553(43), based on the discussion of
Section we find ms/m, = 0.066(7) for the lattice simulations considered here.
The normalisations of each moment are set using the best experimental values at
the physical point at a scale of 4 GeV? [30,[183}213]:

ga= (DR ., = 1.2695(29), (6.49a)
exp.

(1) Au-aa = 0-190(8), (6.49D)

(254 = 0157(9). (6.49¢)

Results for all six CSV moments are given in the first column of Table [6.3]
Because this method gives estimates of the magnitude of CSV at the simulation
SU(3)-symmetric point, the results may have chiral corrections which are more sig-
nificant than the O(m?) counting suggested by the Taylor expansion in Eq. (6.46).
Using the chiral extrapolations detailed in Section we can improve on this linear
expansion and explicitly calculate the corrections involved in moving away from the
simulation SU(3) value to the physical (SU(3)-broken) point.

6.5.2 Chiral Expansion

To evaluate the CSV terms at the physical (rather than the simulation SU(3)-
symmetric) point, we use the chiral extrapolations detailed in Section .

the isospin-averaged and broken expressions for the Mellin moments as functions
of pseudoscalar mass have the same unknown parameters, the CSV terms given in
Eq. may be evaluated by simply substituting the best-fit parameters of the
previously-described fits into the full isospin-broken expressions. These expressions

6 In Refs. [32,/173] the factor of % appearing at the beginning of the following equations was
erroneously omitted. As a result, the values quoted for the CSV terms were too large by a factor
of two.
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Moment Linear: SU(3)-sym. Chiral: SU(3)-sym. Chiral: physical
1

SAuCt —0.0057(14) —0.0063(13) —0.0061(13)
SAdOT —0.0018(6) —0.0019(6) —0.0018(6)
SAu~ —0.0010(3) —0.0007(2) —0.0007(2)
SAd- —0.0004(1) —0.0003(1) —0.0002(1)
Sult —0.0012(3) —0.0013(3) —0.0023(7)
Sdi+ 0.0010(2) 0.0012(2) 0.0017(4)

Table 6.3: Comparison of CSV PDF moment results. The column labelled ‘Linear’ gives
the results which were published with the lattice simulations [32,/173], calculated using
a linear flavour expansion about the SU(3)-symmetric point. These have been corrected
from the values quoted in Refs. [32/173], as explained in the footnote preceding Eq. .
‘Chiral’ gives the results of this work, i.e., including chiral physics, both at the comparable
‘SU(3)-symmetric’ point (with (mgq + my) = 2ms but the physical (mgq — m,,)), labelled
‘SU(3)-sym.’, and at the physical pseudoscalar masses.

can then be evaluated at any pseudoscalar masses, in particular at the physical point.
As described in Chapter [4 the only additional input needed is a value for the light-
quark mass ratio which we set to the Leutwyler value, R = m,/mgs = 0.553(43),
based on the discussion of Section 4.4l

For example, 0 Au™ may be expressed as a function of meson mass in the form:

m ]' m m m
SO = (@™o = e™ha = o + o (7 + A +087), (6.50)
where
agn) %( Anlm) + Anl" )y Aném) + Anf(sm)>B(mu — ma), (6.51a)
b _\Lf( — 2DF — 3F?) sin(2¢) (5Aa™ + 245 + 6A0™)
x | T(m2,) = T(m2)]
214[ D2(9Aa +2A8" 4+ 8As™)
+2DF(19Aa™ + 10AB™ 4 24A0™)
F3F2(58a + 2880 + 8Ac)] [ T (mka) — T (mi) |
+ o5 L (58a™ 1 2250m) Tr(m) = Tr(ms)] (6.51b)
d§ = - 5(5A04 +2A8M 4 6A5™)C? [Jz(mio, 8) — Jo(m2e, 5)]
1 ~ ~
= (589" = Ay C Ty (k. 6) — Ta(mies, 0). (6.51c)
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g(A e ﬁ(l) — 3F) sin(2€) Aw™ [Jl (m2,6) + Jy (m%, 5)}
2 ~ ~
+ 5(D = 3F)2w™ | Jy (o, 8) — i (ms, ) . (6.51d)

where expressions for the (subtracted) integrals J are given in Section . Clearly,
entirely analogous expressions may be written for §Ad™ and the spin-independent
CSV terms. These are given in Appendix [H.2] To the same order in the broken
SU(3) symmetry, analogous expressions for each quark flavour combination in each
octet baryon are expressed in terms of different linear combinations of the same
coefficients; the general chiral expansion is given in Section [6.2.5

Figure shows the fits to the isospin-averaged lattice data in a form which
emphasises the SU(3)-symmetry-breaking in the simulation results. It is clear from
these plots that, before extrapolation to the physical masses, there are only small
chiral corrections to the CSV moments; the slopes of the fit functions at the SU(3)-
symmetric point are comparable to those of the straight-line fits described in the
previous section.

As the available QCDSF-UKQCD collaboration lattice results are presented only
in terms of ratios of moments, there is an unknown constant scaling factor, Z,
associated with all data points. The Zs are distinct for each moment (zeroth and
first spin-dependent and first spin-independent) under consideration and are fixed by
matching the extrapolations for the isovector moments to experimental values at a
scale of 4 GeV? [30,183/213], just as was done for the linear flavour expansion analysis
(see Eq. ) The uncertainty of the experimental numbers is propagated into
the final results. The full error analysis also takes account of correlated uncertainties
between all of the fit parameters in the original fits, as well as allowing for the stated
variation of R. The regulator mass, A = 1GeV, is allowed to vary by +20%, which
is again propagated into the final uncertainty. Changing the functional form of the
regulator u(k) within the FRR scheme leads to small variations of order 1%.

An advantage of the chiral method is that the CSV moments may be evaluated
at any pseudoscalar masses. In particular, evaluating the chiral perturbation theory
expressions at the point where (mg+m,,) = 2mg and both (mg—m,) and (m,+mg+
m) take their physical values, labelled ‘SU(3)-sym.” in Table gives results which
may be directly compared with the linear flavour expansion calculation. As might
be anticipated from an inspection of Figs. [6.6(a){H6.6(c)| which show fits qualitatively
consistent with straight lines, chiral loop corrections to the CSV terms at this point
are small and do not change the results within the quoted uncertainties, even given
the small shift from the simulation SU(3) value to the physical symmetric point.

Moreover, comparison of these results with the CSV moments evaluated at the
physical pseudoscalar masses gives an indication of the size of any chiral correc-
tions which appear in moving away from the SU(3) point. Again, these correc-
tions are small in the spin-dependent case, while being more significant in the spin-
independent case. In contrast to the results of the linear flavour expansion, the
chiral perturbation theory results are based on fits to all lattice data simultane-



§6.5 Charge Symmetry Violation 93

3 0.10f
e f
55 0.05:
< 000"
[ﬁ [
= -005]
aF
= -0.10¢f
~0.15| | | | |
-10 -0.5 0.0 0.5 1.0
(mi—mz)/Xz
(a) Zeroth spin-dependent Mellin moments.
0.15F
S 010/
\></ L
| L
3 0.05F
X [
< 000
wJ [
2 -005]
3 ool
g —0.10: ]
015} | | | ]
-1.0 -0.5 0.0 0.5 1.0
(mg—mz)/Xz
(b) First spin-dependent Mellin moments.
0.15F
K 0.10F
X [
| L
ol 0.05:
\>$ L
= 000"
[2’3 F
L _005¢
e r
E _o.10f
~0.15) | g

-10  -05 00 05 10
(mg—mz)/Xz

(¢) First spin-independent Mellin moments.

Figure 6.6: Illustration of the fits to the lattice data from Refs. [32,[173] for the lowest
several Mellin moments of the PDFs. Upward and downward triangles indicate the ratios
of doubly and singly-represented quark moments, respectively.
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Figure 6.7: Illustration of some of the octet loop terms contributing to §Au™ = <xm>gu—
(z™)R , or du™ = (z™)} — (z™)". These contributions are non-vanishing when the loop
pseudoscalar masses are different, i.e., when mi{o #* m%i.

ously (for each moment), and thus include the proper correlations between quark
moments in each of the baryons. As a consequence, even with more fit parameters,
the uncertainties are comparable to the simple linear fits.

The origin of the chiral loop contributions to the CSV terms can be seen clearly
from the form of Eq. (and the analogous Egs. , and in
Appendix [H.2). One contribution to the §(A)u moments is illustrated diagram-
matically in Fig. [6.7. The kaon loop diagrams shown, and the analogous dia-
grams for the §(A)d moments, give contributions to the CSV terms proportional to

[j (m%o) —J (mﬁ(i)], which is non-vanishing when m3., # m%.. The correspond-
ing wavefunction renormalisation terms, as well as tadpole and decuplet kaon-loop
diagrams, also contribute to the CSV terms proportional to [J (m2o) —J (mﬁ(i)]

In the spin-independent case, this kaon mass difference effect yields the only chi-
ral loop corrections to the CSV terms. For the spin-dependent moments, however,

additional terms proportional to [JN (m2,) — J (m%)] also contribute. Cancellation
between the octet loop terms and wavefunction renormalisation contributions en-
sures that these terms vanish in the spin-independent case.

The chiral loops also account for the corrections in moving from the ‘SU(3)
point” to the physical point. For example, as one moves along the line of constant

singlet quark mass ((m, + mgq + my) = constant) from the SU(3)-symmetric point

to the physical point, the difference [J~ (mi(o) —-J (mii)] decreases in magnitude

by approximately 30%.

6.6 Summary and Discussion

We have used the chiral perturbation theory formalism to extrapolate QCDSF-
UKQCD collaboration lattice data for the first several Mellin moments of quark
distribution functions to the physical pseudoscalar meson masses. By performing
a consistent analysis including the entire outer-ring baryon octet, we have clearly
shown that the experimentally-measured suppression of the fraction of the proton
spin carried by its quarks (relative to the predictions from a naive or relativistic
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quark model) is not a universal property across the baryon octet, but rather is
structure-dependent. This conclusion is supported by a calculation within a rela-
tivistic quark model which includes gluon exchange currents and the meson cloud
required by chiral symmetry.

Furthermore, our study allows the CSV parton distribution moments to be eval-
uated at the physical pseudoscalar masses. Comparing our results with those of a
previous analysis based on a linear flavour expansion about the SU(3)-symmetric
point [32,[173], we find that both the chiral corrections at the SU(3) point, as well as
the shifts resulting from the extrapolation to the physical pseudoscalar masses, are
small. The latter corrections, however, are more significant for the spin-independent
than spin-dependent moments.

At the physical point, our analysis gives the spin-dependent CSV terms to be

AU’ = —0.0061(13), SAd"T = —0.0018(6), (6.52a)
SAu'™ = —0.0007(2), SAd'™ = —0.0002(1). (6.52b)

As a result, one would expect CSV corrections to the Bjorken sum rule [214}215]
to appear at the half-percent level. Measuring these corrections would require sig-
nificant improvement over the current best determination of the sum rule to 8%
precision at Q? = 3 GeV? from a recent COMPASS collaboration experiment [216].
For the spin-independent moments, this analysis gives

su't = —0.0023(7), §d* = 0.0017(4), (6.53)

in good agreement with previous phenomenological estimates of CSV both within the
MIT bag model [37,40] and using the MRST analysis [36]. These results support the
conclusion [33]/40,217] that partonic CSV effects may reduce the 3-sigma discrepancy
with the Standard Model reported by the NuTeV collaboration [41] by up to 30%.






Chapter 7

Electromagnetic Form Factors

More than a decade before the partonic substructure of the proton was revealed
through DIS (see Chapter @, elastic electron-proton scattering experiments at Stan-
ford University High Energy Physics Laboratory [218] were used to probe the spatial
distribution of the charge and magnetisation density in the nucleon. These prop-
erties were encoded in so-called electromagnetic form factors [219], expressed as
functions of the probing momentum scale, Q. The first measurements of proton
form factors were reported in 1955 [220], followed by the first measurement of the
neutron magnetic form factor in 1958 [221]. Half a century later, the precise deter-
mination of these quantities, and their interpretation within the framework of QCD,
remains a defining challenge for hadronic physics research [222].

In particular, with ever-improving experimental measurements of the nucleon
form factors revealing slight deviations from the phenomenological dipole form [223-
220|, it is of renewed importance to calculate precise QCD benchmarks for these
functions. As the only first-principles approach which can quantitatively probe the
nonperturbative domain of QCD, lattice simulation [227-241] can not only set these
benchmarks, but it can give theoretical predictions of the hyperon form factors [235]
238-242] which are extremely challenging to measure and as a result are poorly
determined, if at all.

Importantly, lattice studies also provide an interpretation of the experimental
results for the baryon electromagnetic form factors in the context of QCD. For ex-
ample, the simulations give general insight into the environmental sensitivity of the
distribution of quarks inside a hadron [235],242] by discriminating between different
quark-flavour contributions to the form factors. The lattice method can also reveal
the dependence of these quantities on quark mass [118]243,[244] and allows a sepa-
ration of quark-line—connected and disconnected terms, providing both a great deal
of physical insight and valuable information for model-building [245].

In this chapter we present two sets of new dynamical 2 + 1-flavour lattice QCD
simulation results for the electric and magnetic form factors of the outer-ring octet
baryons, at a range of discrete Q%-values up to 1.3 GeV2. To interpret these sim-
ulations we develop a novel chiral extrapolation formalism—applied at each fixed
value of Q*which is based on the principles of effective field theory. For the
hyperons in particular, which have so far received limited attention in the litera-
ture [235,[238-242], our results represent the state-of-the-art in such simulations.

97
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The hyperon form factors are of significant interest both in their own right and
because they provide valuable insight into the environmental sensitivity of the dis-
tribution of quarks inside a hadron. For example, one may learn how the distribution
of u quarks in the proton differs from that in the X7, an effect caused by the mass
difference of the spectator d and s quarks.

The last sections of this chapter are devoted to an exploration of our core themes,
strangeness and CSV in the nucleon, in the context of the electromagnetic form fac-
tors. By combining our lattice simulation results with experimental input, we deduce
values for the strange electromagnetic form factors of the proton which are consistent
with available direct measurements of these quantities but span a far larger range
of values of Q* [28,246-248]. Our calculation of the strange magnetic moment, in
particular, is an order of magnitude more precise than the closest experimental re-
sult. The dominant uncertainty in the experimental numbers for the strange proton
form factors arises from the assumption of good charge symmetry which informs
their extraction. By applying the methods for calculating CSV quantities which
were developed in previous chapters, we present the first determination of CSV in
the electromagnetic form factors of the nucleon based on lattice QCD. Our result,
an order of magnitude smaller than model predictions, opens the door for more pre-
cise experimental measurements of the strange proton form factors using existing
methods.

7.1 Dirac, Pauli and Sachs Form Factors

The electromagnetic form factors are formally defined in terms of the matrix el-
ement of the electromagnetic current density operator, j,, between baryon states.
The standard decomposition of this matrix element into distinct Dirac structures, re-
stricted by the requirement of covariance under the improper Lorentz group, charge

conservation, and symmetry under spatial reflections, yields the Dirac and Pauli
form factors Fy(Q?) and F»(Q?) [249]:

(B )jula) Bp, ) =50, ) |3 FP (Q°) + h - FP (@) ulp, ). (7T1)
Here u(p, s) is a Dirac spinor with momentum p and spin polarisation s, ¢ = p’ — p
is the momentum transferred to the baryon, Q? = —¢?, and M3 is the mass of the
baryon B. For a classical point particle, both form factors are independent of Q?;
deviations from this expectation thus give insight into the extended nature of the
baryon as seen by an electromagnetic probe.

Throughout this chapter, we use an alternative standard basis for the form fac-
tors, namely linear combinations of F; and F; named the electric and magnetic
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Sachs form factors:

GE(@) = FI(@) - 11 (@) (72)
G (Q%) = FP(Q%) + FF (@%). (7.3)

This choice is convenient for the interpretation of electron scattering experiments
because the (unpolarised) cross section may be expressed as a linear combination
of the squares of Gg and G, with no interference term. The Sachs form factors
also have simple physical interpretations: in the Breit frame, where the scattered
electron transfers momentum but no energy, and in the non-relativistic limit, the
three-dimensional Fourier transform of GZ(Q?) describes the electric charge den-
sity distribution within the baryon B, while that of G%,(Q?) encodes the magnetic
current density distribution. Electric and magnetic mean-square radii are defined
based on this straightforward interpretation:

6 d
() = G2, (Q? . (7.4)
B G (0) dQ? £ (@) Q=0
At zero momentum transfer, the electric form factor GZ(0) simply gives the charge
of baryon B. Moreover, G¥,(0) = (GZ(0) + kg) = pp defines the baryon magnetic
moment, where kg = F;’(0) is the anomalous magnetic moment. Should G g/ (0) =
0, this normalising factor is omitted from Eq. (7.4)).

7.2 Lattice QCD Simulation

In this section we describe our lattice setup and summarise the standard methods
used to calculate the octet baryon electromagnetic form factors. Because of the
limitations of computation time, the simulations presented here are performed not
only at larger-than-physical pseudoscalar masses, but omit operator self-contractions
(quark-line-disconnected diagrams) which require the notoriously noisy and expen-
sive ‘all-to-all’ quark propagators to be calculated.

In later sections we develop and apply a formalism based on connected chiral per-
turbation theory [72,250-252] to correct for finite-volume effects and to extrapolate
each baryon form factor to the physical pseudoscalar masses. While the omission
of disconnected terms restricts the explicit calculation of full-QCD results from our
simulations to quantities for which the omitted contributions vanish (e.g., isovec-
tor observables, up to CSV effects), the comparison of experimental numbers with
the chirally-extrapolated lattice results for connected-only observables gives insight
into the significance of disconnected quark-loop contributions at the physical point.
This is the method by which we access the strange electromagnetic form factors (Sec-
tion ; the technique is complementary to direct lattice studies of disconnected
terms [28,246-248].
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I6] Ko Ky K m. (MeV) mg (MeV) m,L
1 55 0.120900 0.120900 0.120900 465 465 5.6
2 0.121040 0.120620 360 505 4.3
3 0.121095 0.120512 310 520 3.7
4 5.5 0.120920 0.120920 0.120920 440 440 5.3
5 5.5 0.120950 0.120950 0.120950 400 400 4.8
6 0.121040 0.120770 330 435 4.0
7 5.8 0.122810 0.122810 0.122810 305 405 6.1
8 0.122880 0.122670 340 430 5.1
9 0.122940 0.122551 265 450 4.1
10 5.5 0.120900 0.121166 0.120371 220 540 4.0

Table 7.1: Details of the lattice simulation parameters. Simulations 1-6 constitute
data set I, with 8 = 5.5 corresponding to a = 0.074(2) fm and L3 x T = 323 x 64.
Simulations 7-9 constitute set II, with L3 x T = 482 x 96 and 8 = 5.8 corresponding
to a = 0.062(2) fm. Simulation 10 stands alone and has the same lattice scale as set I
(corresponding to 3 = 5.5), but a larger lattice volume: L? x T = 483 x 96. The parameter
ko denotes the value of k; = ks at the SU(3)-symmetric point.

7.2.1 Simulation Parameters

We use gauge field configurations with 2 4+ 1 flavours of nonperturbatively O(a)-
improved Wilson fermions. The clover action consists of the tree-level Symanzik im-
proved gluon action (described in Section together with a mild ‘stout’ smeared
fermion action [253]. We generate two sets of simulations, on ensembles with lattice
volumes L3 x T = 323 x 64 and 48% x 96, with lattice scales a = 0.074(2) fm and
0.062(2) fm (set using various singlet quantities [24,253}254]), respectively. Details
are given in Table [7.1]

The data set generated on each ensemble consists of the individual (quark-line—
connected) quark contributions to the electric and magnetic form factors of the
outer-ring octet baryons: G%’}‘M, G%‘;M, Gg’/“M, Gﬁ’/sM, G?E’/SM, and G?E’;‘M, at six
(simulation set I) or seven (set II) discrete values of the momentum transfer. These
are the lowest six or seven momentum-transfers accessible on our particular lattices,
where the simulations are performed with zero sink momentum. The three-momenta
q? are given by

2
2m
-2 _ (02 2 2
q* = (n2+n.+n?)x <E) : (7.5)
where n,, . are integers, L is the (dimensionless) spatial extent of the lattice (so
—L/2 < ng,. < L/2), and a is the lattice spacing. The values of the four-
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momentum transfer ¢> vary with baryon mass Mz by the dispersion relation

2
- (\/Mg - MB) 3 (7.6)

since the sink momentum is held fixed at 0. The values of ¢? for our simulations are
shown graphically in Fig. [7.1]

A particular feature of the gauge configurations used here is that the primary
simulation trajectory in quark-mass space, illustrated in Fig. follows a line of
constant singlet mass: my = (m,, + mq + my)/3 = (2my + my)/3. This is achieved
by first finding the SU(3)-flavour-symmetric point where flavour-singlet quantities
take their physical values, then varying the individual quark masses about that
point [24,253]. It is clear from Fig. that this primary trajectory at ko = 0.120900
(where the parameter ko denotes the value of kK, = K, at the SU(3)-symmetric
point) does not quite match the physical singlet-mass line [24]. Extrapolation to
the physical point thus requires a shift not only along the simulation trajectory, but
in a direction perpendicular to it. To constrain the quark-mass dependence in this
perpendicular direction we include additional lattice simulations at several singlet
masses (i.e., values of ko). These are listed as simulations 4-6 in Table and are

shown in Fig. [7.2]

In addition to our two primary simulation sets, we have a single ensemble at the
same lattice scale as simulation set I (8 = 5.5 corresponding to a = 0.072(2) fm) but
on a larger lattice volume, L3 x T = 483 x 96, and at a pion mass of 220MeV, about
100 MeV lighter than the lightest ensemble of data set I. Comparison of chirally-
extrapolated set I (smaller volume) results with this additional point provides a test
that both finite-volume effects and the extrapolation are under control. Raw lattice
results for all simulations are tabulated in Appendix [[}

7.2.2 Lattice Method

On the lattice, the Dirac and Pauli form factors Fy (Q?) and F»(Q?) are obtained from
the standard decomposition of the matrix element of the electromagnetic current j,
between baryon states (see Eq. (7.1)). This quantity, (B(p',s)|j.(¢)|B(p,s)), is
calculated in the usual way from the ratio of three-point and two-point correlation
functions:

_ O3pt(ta T;ﬁ/aﬁ) C2pt(7_7 ﬁ,)CZpt(Ta ﬁ/)c2pt(t - T»ﬁ) 2
Cth(tvﬁ/) Cth(Tvﬁ)Cth(tvﬁ)CQPt(t - T, ﬁ/)

where t denotes the Euclidean-time position of the sink and 7 the operator insertion
time. In order to ensure that excited-state contributions to the correlation functions
are suppressed, we employ quark smearing at the source and sink and use a generous
source-sink separation of 1-1.15fm [237].
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Figure 7.1: Distribution of four-momenta Q? = —¢? for lattice simulation sets I (blue),

IT (green), and simulation 10 (purple) (see Table [7.1). The values of Q? corresponding to
each fixed three-momentum vary slightly because of the different baryon masses feeding

into the dispersion relation (Eq. (7.6))).
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Figure 7.2: Locations of the lattice ensembles in the m;—m; plane. Blue circles and green

crosses correspond to simulation sets I and II, respectively, while the purple square shows
the location of simulation 10 (see Table|7.1)). The red star denotes the physical point and
the dashes indicate the flavour-symmetric line where m; = mg. Our primary simulation

trajectory, illustrated by the dotted line, corresponds to the line of constant singlet quark
mass, (2m3 + m2), at ko = 0.120900 (simulations 1-3 in Table [7.1)). The solid red line
indicates the physical value of the singlet mass.
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The two-point and three-point functions are given, as in Ref. [237], by

Can(r:7) =T (L4 (Bl B0 (7.7
Con(t7.57.5.0) = T[T (B(1,5)0(d.7)B(0.5)] (7.7

where ‘Tr’” denotes a trace in spinor space and the local vector current O is

O0,(q,7) = Z ETTG(T, ) v, q(F, 7). (7.8)

T

Here ¢(Z,7) is a quark field and ¢ is the three-momentum transfer. The Dirac
operator I' represents a polarisation projection. For example, we use

(14 74), (7.9a)

I‘unpol. =

I3 = (1 +7)iv57s, (7.9b)

N~ DN~

for an unpolarised baryon or one polarised in the z-direction, respectively. As the
current O is not strictly conserved at finite lattice spacings, we enforce charge con-
servation by using 2/F}"*(0) as a multiplicative renormalisation on each ensemble (as
explained later, the quark-level form factors are defined for quarks of unit charge).
The values of these constants are approximately 0.86 and 0.88 for simulation ensem-
bles with 8 = 5.5 and 8 = 5.8, respectively. Disconnected quark-line contributions
to the three-point function of Eq. are neglected in these simulations. The
effect of this omission will be discussed further in the following sections. As detailed
in the previous section, simulations are performed with zero sink momentum and
six or seven different values of the momentum transfer ¢ = p’ — p’for each ensemble,
corresponding to Q2 values up to approximately 1.3GeV?.

7.2.3 Lattice Results for F} and F;

Although the primary goal of this work is to determine the values of the electric and
magnetic Sachs form factors at the physical quark masses, with details of the chiral
and infinite-volume extrapolation presented in the following sections, we display
here a sample typical of the raw lattice simulation results for F} and F,. Numerical
results are tabulated in their entirety in Appendix [l We also give the results of
a naive extraction of the Dirac and Pauli mean-squared radii and the anomalous
magnetic moment, based on dipole-like fit forms.

The raw lattice simulation results for the Dirac and Pauli form factors at the
lightest simulation pion mass from data set I, (m,,mg) = (310,520) MeV, are
shown in Figs. and [7.4] The figures have been organised as doubly and singly-
represented quark contributions. This grouping shows most clearly the environ-
mental sensitivity of the quark contributions to the form factors; for example, any
difference between the u-quark contributions to the proton and sigma baryon factors
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must arise from the different masses of the spectator (d and s) quarks. For Fj this
sensitivity increases with Q2. The apparent sensitivity of F, is largely the result
of the baryon-dependence of the natural magneton units. The fits shown use the
2-parameter ansatze:

2y _ F1(0)
F(Q7) = 1+ 00 + caQ* (7.10a)
Py (@) = —2Y) (7.10b)

(1 + CQQQ2)2 ’

where the ¢;; and the anomalous magnetic moment 3 %(0) = x4 are fit parameters,

while F7(0) is fixed by charge conservation. As we consider quarks of unit charge,
F1(0) = 2,1 for the doubly and singly-represented quarks, respectively. Clearly, the
functional forms chosen provide excellent fits to the lattice simulation results; the
particular pion-kaon mass point selected for display is typical of the entire data set.
Mean-squared radii are extracted from the Q?-derivatives of the fit ansitze by

6 d

)i =~ 7@

E(())FQQ i (7.11)

Q2=0

The isovector radii for the nucleon are shown in Fig. [7.5] These results are in
line with those based on other recent 2 4+ 1 and 2 + 1 + 1-flavour lattice simula-
tions [236}255258]. We note that the results displayed from other collaborations
were determined from simulations performed at a range of values of my. More-
over, although most were extracted using dipole or dipole-like forms to parameterise
the Q%-dependence, some include a systematic uncertainty arising from that choice
while others do not. This partially accounts for the large variation in the quoted
errors. Tables of results for all (7"2)5’2‘1 and kP49 extracted from our fits are given in
Appendix Il

7.3 Connected Chiral Perturbation Theory

The lattice simulations considered here, although fully dynamical, include only con-
tributions from ‘connected’ insertions of the current operator. For this reason we ex-
trapolate the simulation results from unphysically large pseudoscalar meson masses
to the physical point using a formalism based on ‘connected chiral perturbation
theory’ [250-252]. This is a special case of partially-quenched chiral perturbation
theory [252,259-265].

Partially-quenched lattice simulations traditionally employ different values for
the sea and valence quark masses. As a result the distinguishing feature of the
partially-quenched perturbation theory formalism, developed to extrapolate such
simulations, is that it allows one to treat the sea and valence quarks separately.
This is precisely what is needed to extrapolate connected lattice results; the ‘quench-
ing’ effect is that the charges of the sea quarks are set to zero, removing the dis-
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Figure 7.3: Quark contributions to the Dirac form factor F; of the octet baryons at the

lightest pion mass from simulation set I, (m,, mg) = (310,520) MeV. The charges of the
relevant quarks have been set to one. The lines show dipole-like fits using Eq. ([7.10a)).
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Figure 7.4: Quark contributions to the Pauli form factor F5 of the octet baryons at the
lightest pion mass from simulation set I, (m,, mg) = (310,520) MeV. The charges of the
relevant quarks have been set to one. The lines show dipole fits using Eq. ([7.10b)).
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Figure 7.5: Dirac and Pauli radii for the nucleon from recent 2+ 1 and 2+ 1 + 1-flavour
lattice simulations , compared with the results of this work. Empty circles,
diamonds and squares denote our simulation sets I, I, and the stand-alone ensemble 10 (see
Table , respectively. Note that the results displayed were generated from simulations
performed using a range of values of mg.
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connected diagrams which are omitted from the lattice simulations. Here we use
the heavy-baryon chiral perturbation theory expansion pioneered by Jenkins and
Manohar [56},266-269] which has been applied throughout this body of work. This
section summarises our adaptation of this formalism and presents the resulting chiral
extrapolation expressions for the Sachs form factors of the octet baryons.

7.3.1 Partially-Quenched Chiral Perturbation Theory

Details of partially-quenched chiral perturbation theory may be found in Refs. |252}
259/-265|. Here we outline the special case of this formalism termed connected chiral
perturbation theory [250].

Partially-quenched QCD includes nine quarks, which appear in the fundamental
representation of the graded symmetry group SU(6]3):

W7 = (u d s j.0,r,d, s) (7.12)

In addition to the three usual light quarks (u,d, s), there are three light fermionic
sea quarks (7,1,7) and three spin—% bosonic ghost quarks (11, cZ, §> When the ghost

quarks are made pairwise mass and charge-degenerate with (u,d, s), their bosonic
statistics ensure that closed ¢ and ¢ quark-loop contributions cancel and hence such
loops do not contribute to observables. Thus, if only (u,d, s) are used in hadronic
interpolating fields, these quarks truly represent valence quarks, while (7,1, r) appear
only in disconnected loops and are therefore interpreted as sea quarks.

For our application, the sea and ghost quarks are mass-degenerate with their
corresponding valence partners. The quark-mass matrix is thus

Mw - diag(mu7md7msamuamdumsamuamd7ms)~ (713)

As we wish to exclude all diagrams with closed quark-loops from contributing to
hadronic observables, we set the sea quark charges to zero. As the ghost quarks
(ﬂ, J, §> must have the same charges, pairwise, as (u, d, s), the general form of the

quark-charge matrix is

Q = dia‘g(quanbQSaOaOa O7qu7Qdaqs)' (714)

Individual quark contributions may be extracted by setting all but one charge to
zero, for example by taking ¢, — 1, ¢4 — 0, g5 — 0 to isolate the u-quark con-
tribution. Of course, reinstating the sea quark chargedl] yields a formalism which
reproduces full chiral perturbation theory exactly [262].

The dynamics of the 80 pseudo-Goldstone mesons (both bosonic and fermionic)
which emerge from the spontaneous breaking of the symmetry group:

SU(6]3), ® SU(6]3)r ® U(1)y — SU(6|3)y @ U(1)y (7.15)

'This can be achieved by setting @ — diag(qu, 4d, Is: Gu, 4d- ds, Gu- dd» ds)-
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are described at lowest order by the Lagrangian

2
£ = 75 Str(D"SD,T) + AStr My (T + 3F), (7.16)
where ;
b X ) ) (2@)
P = ~ ], Y=&=exp|— ). 7.17
( X ¢ Jr (7.17)

This is entirely analogous to the standard leading-order Lagrangian which is given in
Eq. . Here ¢ and 5 are matrices of pseudo-Goldstone bosons with the quantum
numbers of ¢g and §§ pairs respectively, and y contains pseudo-Goldstone fermions
with the quantum numbers of ¢q pairs. With our conventions, ® is normalised such
that @15 = 7+ /v/2. In this way, the upper 3 x 3 block of the matrix ¢ matches pre-
cisely the usual octet of pseudoscalar mesons. The standard naming of the mesons
formed with sea and ghost quarks is made explicit in Ref. [263] (where the conven-
tions for fr and @ differ from ours by a factor of 4/2). The symbol Str denotes the
supertrace, and the gauge-covariant derivative is given by D, = 0,X +ieA,[Q, X].

While the complete partially-quenched theory includes baryons composed of all
types (and all mixtures of types) of quarks, for our application we need only predom-
inantly valence states with at most one ghost or sea quark. These are constructed
explicitly in Ref. [263]. In general terms, the baryon field B;jj, is constructed using
an interpolating field

szk ~ <@/J?’“¢57b re_ ¢?,a¢;,c £,b> €abe(CY5) ap- (7.18)

The usual spin—% baryon octet is embedded in Bijy, for 7, j, k restricted to 1-3, as
1
Biji = %(leBlk + € Byj), (7.19)

where B is the standard matrix of baryon fields introduced in Section [3.3.2] (see
Eq. (3.25)). Similarly, the spin—% decuplet baryons may be constructed as

b K 7b b ’b b b I K 7b
O G T ) LY (e P

where, for 7, j, k =1-3, T};; is simply the usual totally-symmetric tensor containing
the decuplet of valence baryon resonances (see Eq. (3.32)).

The covariant derivative takes the same form for both the octet and decuplet
baryons:

(D" B);j =0"Biji + (V") Biji
+ (_1)m(m+nm)<vu)jm3imk

+ (_1)(7]i+77j)(7)k+7]n)(Vﬂ)kmBijn‘ (7.20)

ijk
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Here the grading factor 7, tracks the statistics of the bosonic ghost quark sector:

1 for k=16
— 7.21
T {0 for k = 7-9, ( )

and the vector field V* is defined in analogy with that in QCD:
Vi = %(gaf@ + &fore). (7.22)
The coupling of the 80 pseudo-Goldstone mesons to the baryons is described by
L :2a(§S“BAu) + 20 (ES“AuB) + QV(ES“B) Str(A,) + 2H (TUS“AMT,,)
+ \/g C[(T"A,B) + (BAT")] + 27 (T'S"T,) Str(A,.). (7.23)
where, again in analogy with QCD,
4= L(eorel — elove). (7.21)

The brackets in Eq. are a shorthand for field bilinear invariants, originally
employed in Ref. [270], which are summarised in Appendix , and S* is the covari-
ant spin-vector. By matching to the usual QCD Lagrangian (Eq. (3.29)) for 4, 7, k
restricted to 1-3, we make the identifications
2 5
a:§D—|—2F, B:—§D+F, (7.25)
while C and H map directly to their QCD values.

The heavy-baryon and off-diagonal meson propagators are the same as those
which arise in the standard formalism; these are given in Eq. . For the mesons
occupying the diagonal of ®, however, the two-point functions deviate from the usual
simple, single-pole form. As these mesons are by definition both flavour and charge-
neutral, this subtlety can be avoided in the current context of the electromagnetic
form factors; we leave the details to Ref. [263].

7.3.2 Electromagnetic Form Factors of the Octet Baryons

In the heavy-baryon formalism, the electromagnetic Sachs form factors Gg and Gy,
are defined by

ieuyaﬁvaSﬁq”

(B )i B)) =) [ 0GR (@) + =1

G (Q%) | ulp), (7.26)

where, as before, ¢ = p' —p and Q? = —¢>. Here we take the magnetic form factor to
be expressed in units of physical nuclear magnetons rather than the natural (baryon-
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dependent) magnetons used in Eq. ; this explains the presence of the nucleon
mass My, rather than Mp, in this expression.

We focus in particular on developing chiral extrapolation formulae for the Sachs
form factors at fixed, finite, values of Q. As our lattice simulations include results at
values of Q2 up to approximately 1.3 GeV?, it is not appropriate to our purposes to
expand perturbatively in this momentum scaleﬂ The following sections summarise
our approach.

Magnetic Sachs Form Factor

In the familiar formulation of chiral perturbation theory, the magnetic moments of
the octet baryons in the chiral limit are encoded in the coefficients of the ‘magnetic
Lagrangian density’ [269]:

e

L= gy fmet 1o (BBQ) + 1s(BQB) +p1, (BB) Str(Q)]. (7.27)
By comparison with the standard QCD Lagrangian (Eq. -3.29), we make the iden-
tifications

2 5
Ha = i + 20k, pig = =D + fip- (7.28)

The 1, term in Eq. vanishes unless the quark charge matrix @ (Eq. )
is defined such that Str(Q)) # 0, for example when considering individual quark
contributions to the form factors (e.g., setting ¢, — 1, g4 — 0, ¢s — 0 to obtain the
u-quark contribution). Terms describing the explicit symmetry-breaking at leading
order in the quark masses are generated by

e

M _
£lin. - B2MN

[ciw (BMyB) Str(Q) + 3" (BBMy) Str(Q) + ¢’ (BQB) Str(My)

(
+ ¢y (BBQ) Str(My) + ¢ (BQMyB) + ¢’ (BBQMy)
+ e (BB) Str(QMy) + ¢} (BB) Str(Q) Str(My)

4 M (—1)mOFm) (Bk”(]\/[wiQ;?lB,mk)

1yt (B (M) Q) B

)™ "’+"m< BY'Q(M,)T Blmk>
)

+ 612( 1 NjNm~+1 <BkﬂQm(Mw) Blmk)]FWUW7 (729)

7 (

(—
+010(
(=

+c

where B = 4)\/ f? (see Eq. (7.16))). The one-loop diagrams displayed in Fig. 7.6 give
rise to the leading chiral non-analyticities of the quark-mass expansion.

2For example, the proton electric form factor can be approximated by a dipole: G4, (Qz) ~

2\ 2
1/(1 + %) . This form has a pole at Q? = —0.71 GeV?, which limits the radius of conver-
gence of any expansion to Q2 = 0.71 GeV?.
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Figure 7.6: Loop diagrams which contribute to Gj; at leading non-analytic order. Single,
double, dashed, and wavy lines represent octet baryons, decuplet baryons, mesons, and
photons, respectively.

For small values of the momentum transfer, the standard perturbative approach
would be to generate extensions of Egs. and , with additional derivatives,
to form a series expansion in Q2. In the present work we are interested in the form
factors over a much larger range of @ than can be explored perturbatively. For
this reason we consider independent chiral extrapolations at fized values of Q2. To
do this, we take a model that maintains the SU(3) flavour structure of Egs.
and . The parameters i, 5, appearing in Eq. are now interpreted as
chiral-limit form factors at fixed ?; their numerical values may be different at each
value of Q? considered [239,[271]. Similarly, the terms of Eq. are associated
with the symmetry-breaking at fixed Q?. Given this interpretation, we can write
down chiral extrapolation formulae which have independent sets of free coefficients
at each value of Q2. A particular advantage of this approach is that there is no
need to impose a phenomenological constraint on the shape of the variation of the
form factors with Q%. Of course, a disadvantage is that the chiral extrapolation
expressions which we generate must be fit to the lattice simulation results at each
value of the momentum transfer independently.

The resulting expressions for the magnetic form factors as a function of quark
mass—at some fixed finite value of Q> —may be summarised as

GP1(Q?) =P + Zan(q’)qu, (7.30)

q

+ Tor 3f22( 51T (mg, Q%) + B I (m¢,Q2)>, (7.31)

defined in units of physical nuclear magnetons py. Here Bm, denotes the mass
of the quark ¢, identified with the meson masses via the appropriate Gell-Mann—
Oakes—Renner relation, e.g., Bm; = m?2 /2. The physical mass of the nucleon is given
by My and ¢ stands for any of the 80 pseudo-Goldstone mesons of our theory. The
contributions from Figs.|7.6(a)| and [7.6(b)| may be expressed in terms of the integrals
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k2u(k + q/2) u(k — 4/2)

¥ = [ dk 32
o /dk 22t , (7.32a)
L k2 (w- 8) u(k + q/2) u(k — q/2
P R VLS BT ) B
2wy + 0)(w- + d)wiw_(wy +w-)
where
we = \J(F £ G/2)2 +m?, (7.33)

-

d denotes the average octet-baryon—decuplet-baryon mass splitting, and u(k) is the
ultraviolet regulator used in the finite-range regularisation scheme (which is dis-
cussed in detail in Section [3.5)). Just as was done in Chapter |§|, we choose a dipole

regulator, u(k) = (AQA—;@) , with a regulator mass A = 0.8 0.1 GeV. The dipole
form is suggested by a comparison of the nucleon’s axial and induced pseudoscalar
form factors |78] and the choice of A is informed by a lattice analysis of nucleon
magnetic moments |99]. Different regulator forms, for example monopole, Gaussian
or sharp cutoff, yield fit parameters (and extrapolated results) which are consistent
within the quoted uncertainties. The coefficients o??, @Pe(4), BgQ(¢), and ng(d)) are

given explicitly in terms of the chiral-limit form factors ¢ and p,, /8/~ 1N Appendix

Electric Sachs Form Factor

The leading-order contribution to the electric form factor is generated by the fol-
lowing term in the Lagrangian:

LY = —ev"(D"F,) [ba(BBQ) + bs(BQB) +b,(BB) Str(Q)]. (7.34)

In analogy with the p., term in Eq. (7.27)) for the magnetic form factor, the b, term
is relevant only when considering individual quark contributions to the electric form
factor. In line with the notation used for the magnetic form factor (Eq. (7.28)), we
define

2 5
b = 5o+ 2bp, bs = —5bp + br. (7.35)

Terms linear in the quark masses are generated by a Lagrangian piece, L& | which
is identical to £}

i (Eq. (7.29)) under the replacements

MF;UJUMV — ’UM(DVF/W), CZ]M — CZE. (736)

The loop diagrams which contribute to G at leading order are those depicted in
Fig. as well as the tadpole diagram shown in Fig. (which does not contribute
to the magnetic form factors). Just as was done in the magnetic case, the coefficients
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Figure 7.7: Tadpole loop diagram which contributes to G at leading order. Single,
dashed, and wavy lines represent octet baryons, mesons, and photons, respectively.

in Eq. (7.34]) are taken to be chiral-limit form factors at some fixed value of Q?, with
a similar interpretation for the ¢ in £ (see Egs. and (7.30)).

The leading-order loop contributions to Gg (Flgs. m and [7 - ) may be written
in terms of the integrals

lo = / i JQ%ELLE%;??S(E 1) (7.37a)
E_ = (kB2 = @2 /4) ulk + §/2) u(k — 7/2)

[D - / k <w+ + 5)(&) + 5)(w+ i w,) > (7.37]3)

= / s Cff )+ L__ 72, (7.37¢)

where w is defined in Eq. (7.33). To prevent the baryon electric charges from being
renormalised by contributions from the loop integrals we make the replacement

I(m, ) — I(m,q) = I(m,q) — I(m,0) (7.38)

for each of the integrals above.
Finally, the formulae for the chiral extrapolation of the electric form factors at
some fixed, finite, value of Q% may be summarised as

Gg’q(Qg) = G (Q =0) + QQQBQ + Q Z—Bq q )qu,

1 1 ~
16 3f2 Z( Bq(¢ ( ,QQ) ﬁgq(¢)[g(m¢’Q2)

7" T (my, Q) ). (7.39)

where, again, Bm, is the mass of the quark ¢, identified with the meson masses
through the appropriate Gell-Mann—QOakes—Renner relation. The term Gg’q(Q2 =0)
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corresponds to the total charge of the quarks of flavour ¢ in the baryon B. As these
expressions apply to quarks of unit charge, Gg’q(Q2 =0) = 2,1 for the doubly and
singly-represented quarks, respectively.

The coefficients a%7, @P1(@), BOBq(d’), and Bg‘M’) in Eq. take the same form in
terms of the undetermined chiral coefficients (e.g., ciE/ M) as those named identically
in the case of the magnetic form factor (under the replacements purp — bp and
ip — bp). These, as well as ﬁgq(d)), are given explicitly in Appendix . We point
out that, while these parameters may have the same structure for the electric and
magnetic form factors, the values of the undetermined chiral coefficients are different

in each case.

7.4 Fits to Lattice Simulation Results

Here we describe the application of the chiral extrapolation formalism developed
in the previous section to the lattice simulation results presented in Section
Before fitting the chiral expressions (Egs. (7.30)) and (7.39)) to the lattice results, we
perform several corrections to the raw lattice data. First, we shift the raw numbers to
correct for small finite-volume effects, estimated using the leading one-loop results of
the chiral EFT (see Section[7.4.1)). As the chiral extrapolation functions summarised
in Section are defined for fixed finite values of Q?, we also analyse the lattice
results in fixed-Q? bins; to facilitate this we interpolate the form factors to common

points in Q2.

For the magnetic form factors the entire analysis is performed in units of physical
nuclear magnetons. This choice simplifies the extrapolation procedure as there is
no need to consider a quark-mass dependent magneton, although an extrapolation
using such units is possible and equivalent. The conversion from lattice natural
magnetons to physical nuclear magnetons is performed on the simulation results at
the bootstrap level.

7.4.1 Finite-Volume Corrections

As described in detail in Section [3.7] finite-volume corrections are performed using
the difference between the infinite-volume integrals and corresponding finite-volume
sums for the loop integrals which appear in the chiral expressions (Egs. and
(7.39)). Because momentum is quantised on the lattice, the finite-volume sums
must be calculated with the integrands in Eqs. and shifted from being
symmetric (meson lines with momenta k —¢/2 and k+¢q/2, as illustrated in Fig.
to what is more natural for the lattice, namely meson lines with momenta k and
k+q.

The finite-volume corrections are small: for our smallest volume (data set I)
they contribute approximately 2-4% of the nucleon magnetic form factor at the
lowest value of Q2 (0.26 GeV?) and 0.03-0.06% at the largest (1.35 GeV?), where
the variation in each range is a result of the different pion and kaon mass points
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Figure 7.8: Four-momenta, Q?, corresponding to the lattice simulation results in data
set I. Colours indicate the Q%-bin groupings; each bin corresponds to a single value of the
three-momentum transfer in lattice units.

considered. For the electric form factor the corrections are in the range 1-2% at all
values of ?. An artefact in this estimate is that the naive enforcement of charge-
nonrenormalisation by Eq. may lead to an overestimate of the corrections
to the electric form factor at large values of the momentum transfer Q2. While
the higher-order diagrams (not included here) which would naturally prevent the
renormalisation of charge would contribute progressively less at larger values of Q?,
the constant subtraction used here does not have that feature. As the finite-volume
corrections are nevertheless small—neglecting them yields results for all relevant
observables which are consistent within uncertainties with those presented here—
this is not a significant effect.

7.4.2 Binning in Q?

As the chiral extrapolation expressions used here (Egs. and ) are ap-
plicable for fixed finite values of the four-momentum transfer, we bin the lattice
simulation results in Q? before performing independent fits to the data in each bin.
The bin groupings are illustrated for data set I in Fig. ; the binning (and fitting)
procedure is performed separately for each data set. Each bin corresponds to a single
value of the three-momentum transfer in lattice units. The corresponding physical
values of ) vary slightly because of the different baryon masses feeding into the
dispersion relation (Eq. ) The largest variation is 1.29-1.37 GeV? for the bin
with the highest value of Q2.

To account for the small variation in 9 within each bin, all simulation results are
shifted to the average Q*-value of their respective bin. This shift is performed using
a dipole-like fit to the (finite-volume—corrected) simulation results. The functional
forms used for the magnetic and electric form factors are

fit 12\ 1%
Gu(Q7) = LT dop O + dapa Ot (7.40a)
2
G Q?) = Gr(Q” =0) (7.40b)

14+ dpQ? + dp QY
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where £ and dg/u; are free parameters, and Gg(Q? = 0) = 1,2 for the singly and
doubly-represented quarks (of unit charge) respectively. These particular functional
forms are chosen as they provide good fits to the lattice simulation results; as illus-
trated later, standard dipole forms perform poorly. Several examples of the fits are
shown in Fig. [7.9

After the fits have been performed, the raw lattice simulation results are shifted
by GR(Q2 erage) — G (QZmuiation). As these shifts are small, particularly at low

values of @Q? where the fit functions have larger slopes, there is no dependence,
within uncertainties, on the functional form chosen for G'i*.

7.4.3 Fits

After the lattice simulation results have been finite-volume corrected and binned in
Q? we perform an independent bootstrap-level fit, using Eqs. and for
Gy and G, respectively, to the variation with m, for the results in each Q*-bin.
An advantage of this approach [239,[271] is that it allows the fit parameters, which
are the undetermined chiral coefficients, to vary with Q2 without the need to impose
some phenomenological expectation on the shape of their variation. The best values
of the fit parameters are tabulated in Appendix [J.I} The quality of fit is good, with
the x?/d.o.f. in the range 0.5-1.4 for each bin. An illustration of the fit quality
for data set I in representative bins, for both Gj; and Gg, is given in Fig. [7.10
That figure shows the ratio of the fit function to the lattice simulation result for
each data point; the 24 data points include 6 at each set of pseudoscalar masses
where m, # myg (i.e., GY/', G’;\}[d, Gi’u, fo, fo, and Gifu) and 2 at each SU(3)-
symmetric point. We recall that while each Q*-set is treated as independent (as are
G and G)y), the form factors for the different octet baryons are fit simultaneously.

Using these fits, the baryon Sachs form factors may be extrapolated to the physi-
cal pseudoscalar masses at each bin value of Q2. For example, Fig. shows results
for the u-quark contribution to the proton form factors, plotted along a trajectory
which holds the singlet pseudoscalar mass (m?% + m?2/2) fixed to its physical value.
The results display the expected qualitative behaviour for the magnetic form factor;
as Q% increases (moving down the figure), the extrapolation in m? decreases in cur-
vature. This implies that the magnetic radius of the proton increases in magnitude
as we approach the physical pion mass from above. Magnetic radii are discussed
further in Section [7.5.3]

We note that any uncertainty in the value of the lattice scale, a, affects both the
form factors themselves and the simulation values of % in physical units. At low ()?
the shift in the form factors, and at high Q? the shift in Q? itself, is not negligible
when varying a = 0.074(2) fm or a = 0.062(2) fm within the quoted uncertainties.
Nevertheless, repeating the analysis presented in the following sections for a values
at the extremities of the quoted ranges yields fits which are almost indistinguishable
from those presented for the central value—essentially the points are shifted a short
distance along lines interpolating the form factors in Q% —and give entirely consistent
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(a) Up-quark contribution to the proton magnetic form factor.
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(b) Up-quark contribution to the proton electric form factor.

Figure 7.9: Generalised dipole fits (Eq. ) upon which the binning corrections are
based. The three fits shown in each figure correspond to the three different pseudoscalar
mass points along the primary simulation trajectory for simulation set I (red, green and
blue points denote simulation ensembles 1, 2, and 3 in Table. Quarks have unit charge.
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Figure 7.10: Illustration of the quality of fit for data set I in representative Q?-bins.
Each point denotes one of the lattice simulation results e.g., G&*, Gﬁ}[d ..., at one of the
sets of pseudoscalar masses. For the electric form factor the comparison of Figs.
and shows the expected increase in uncertainty as Q? increases (i.e., as one moves
further from Q? = 0 where the value of G is fixed). Because of correlations between the
lattice data points the x?/d.o.f. of the fit cannot be read trivially from these figures.
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(a) Up-quark contribution to the proton magnetic form factor.
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(b) Up-quark contribution to the proton electric form factor.

Figure 7.11: Up-quark (connected) contribution to the electromagnetic form factors of
the proton for quarks with unit charge. Each line (top to bottom) shows the fit to data set
I at a different (increasing) value of Q2. The fits have been evaluated along the trajectory
which holds the singlet pseudoscalar mass (m?2 + m2/2) fixed to its physical value.
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results for each quantity, even when extrapolated to Q? = 0 using some functional
form.

7.4.4 Test of Finite-Volume Effects

One limitation of the analysis presented in the previous sections is that it is difficult
to quantify finite-volume effects beyond the corrections we perform based on chiral
perturbation theory; all of the lattice simulations at a given value of the lattice scale
were performed on a single volume. Simulation set I was performed at § = 5.5
corresponding to a = 0.074(2) fm, on a L3 x T = 323 x 64 volume. In physical
units, this lattice has an extent of approximately 2.4 fm in the spatial direction.
Simulation set II was performed at § = 5.8 corresponding to a = 0.062(2) fm, on
a larger 483 x 96 volume; this lattice has a spatial extent of approximately 3.0 fm
in physical units. While comparing the results of these two simulation sets is a
valuable consistency-check, any discrepancy between the two data sets cannot be
conclusively categorised as a lattice-scale or finite-volume effect.

To facilitate an explicit check of the volume-dependence of our results, we have
performed an additional simulation at the lattice scale of simulation set I, § = 5.5
corresponding to a = 0.074(2) fm, on a larger 48% x 96 (3.6 fm) volume. This
simulation is also performed at a lighter pion mass: m, = 220MeV. Details of this
ensemble are given as simulation 10 in Table [7.1} raw lattice results for F} and F,
are given in Appendix [I|

As there is only one new simulation on the larger volume, and the discrete Q-
values in physical units differ substantially between volumes, we do not include this
new simulation into the chiral perturbation theory fits. Instead we compare the
results of the fits to simulation set I, extrapolated to the pseudoscalar masses of the
new point (with a pion mass about 100 MeV lighter than the lightest pion mass of
set I), with the larger-volume results. We note that finite-volume corrections, as
described in Section [7.4.1], have been applied to the new results.

Figures and show the excellent agreement between the chirally ex-
trapolated small-volume results and the larger-volume results, in particular for the
charged baryons. For the neutral-baryon electric form factors there is a systematic
shift between the results on the two volumes, although we point out that the abso-
lute magnitude of this shift is small-—of order 5% of the proton form factor. This is
comparable to the size of the discrepancies between the charged baryon form factors
on the two volumes. The shift may be evidence of excited-state contamination in
either set of results—which cannot be estimated quantitatively as only one value
of the source-sink separation is used here—or the effect of some other yet-to-be-
understood systematic. Nevertheless, the comparison is extremely encouraging and
suggests that both the systematic finite-volume effect and the extrapolation in pion
mass are well under control for the charged baryon form factors.
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Figure 7.12: Connected part of the octet baryon magnetic form factors at the pseu-
(220,540) MeV. Results
calculated on ensemble 10 are represented by the empty red diamonds, while the solid
blue circles denote the results of the chiral extrapolation of the set I (323 x 64 volume) lat-

doscalar masses of simulation 10 in Table (Mg, mg)

tice simulation results to the same pseudoscalar meson masses. Finite-volume corrections,

based on leading-order perturbation theory, have been applied to all results.



§7.4  Fits to Lattice Simulation Results

123

10
08}

06 ¥

Gk

04+ 3

02+ x

0.0 S
00 02 04 06 08 10 12 14

0? (GeV?)
10—
08f o
0.6 Se
AT 3
© 04f e
T x
T =
02F =
0.0 S
00 02 04 06 08 10 12 14
0’ (GeV?)
0.04}
0.02¢F
0.00¢F
fim —0.02F 3 4 . s s 3
S 004t ® g {5 1 ¢
-0.06}
-0.08}
-0.10 R
00 02 04 06 08 10 12 14
0? (GeV?)

G}

0.10

0.08}
0.06 ¢
0.04 ¢

0.02

0.00}
-0.02}
-004f
00 02 04 06 08 10 12 14

00

iii ]

Pog

0’ (GeV?)

-02}
—04f
—06f

-0.8}

(S
00 02 04 06 08 10 12 14

0? (GeV?)
-02
-04 ¥ =

Q =

s

-06 .
v

-08}F .

0% (GeV?)

Figure 7.13: As in Fig. for the electric Sachs form factors.

0 l l l l l l
00 02 04 06 08 10 12 14




124 Electromagnetic Form Factors

7.5 Electromagnetic Form Factors at the Physical
Point

The following subsections present infinite-volume, chirally-extrapolated, results at
the physical pseudoscalar masses for some electromagnetic form factor observables of
interest. In particular, we focus on the isovector form factors which do not suffer from
corrections associated with the omitted disconnected quark-loops (Section ,
as well as connected quantities such as the octet baryon magnetic moments (Sec-
tion and magnetic and electric radii (Section [7.5.3)). An investigation of the
individual quark contributions to the form factors gives insight into the environ-
mental sensitivity of the distribution of quarks inside a baryon (Section [7.5.4). We
also apply the methods developed in previous chapters to isolate the charge symme-
try violating form factors (Section , which are essential inputs to experimental
measurements of the strange form factors of the nucleon (Section [7.7)).

7.5.1 Isovector Quantities

Isovector combinations of observables are of particular interest in this study as
they can be determined from the connected-only lattice results with the smallest
systematic uncertainty. Because disconnected quark-loop terms cancel in isovector
combinations, the extrapolated results may be directly compared with experimental
numbers.

The agreement between the extrapolated isovector nucleon form factors and ex-
perimental determinations of these quantities is impressive. Figure displays our
numbers, for both data sets I and II, compared against the Kelly [272] parameteri-
sation of experimental results. The consistency between the two determinations, for
both G and Gy, is remarkable across the entire range of Q*-values considered. We
do note, however, that the uncertainties shown for the Kelly parameterisation may
be overestimated as we were unable to take into account the effect of correlations
between the fit parameters. It is notable that a dipole form does not provide a good
description of the extrapolated results for the isovector electric form factor over the
full range of simulation Q*-values: the x?/d.o.f. > 3 for each dipole fit (to data
sets T or II). As G}y is described acceptably by a dipole form in Q?, this suggests
qualitatively that Gg/Gyr # constant. This is discussed further in Section [7.5.5

The isovector combinations of sigma and cascade baryon form factors are shown
in Figs. [7.15] and There is complete consistency, within uncertainties, between
the extrapolated results based on data sets I and II. As no experimental numbers are
available for the hyperon form factors away from Q% = 0, dipole-like fits (Eq. )
to the extrapolated simulation results, as well as the experimental isovector baryon
magnetic moments, are shown. We find fair agreement with the experimentally-
measured baryon magnetic moments, even with simple phenomenological fits pa-
rameterising the Q?-dependence of the form factors. It is clear, however, that the
point at a lower value of Q% which is included in data set II acts to increase the
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Figure 7.14: Isovector nucleon form factors extrapolated (at fixed Q?-values) to infi-
nite volume and the physical pseudoscalar masses. The dashed red band shows the Kelly
parameterisation [272] of experimental results. The blue circles and green crosses de-
note results derived from simulation sets I (a = 0.074(2) fm) and II (a = 0.062(2) fm),
respectively.
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Figure 7.15: Isovector hyperon magnetic form factors extrapolated (at fixed Q?-values)
to infinite volume and the physical pseudoscalar masses. The bands show dipole-like fits in
Q? using Eq. . The blue circles and green crosses denote results based on simulation
sets I and II, respectively. The red stars indicate the experimental values of the isovector
magnetic moments.
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Figure 7.16: As in Fig.[7.15] for the isovector electric form factors of the hyperons.
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pe (4N)
B p—n YLr-% =0-=-

Extrapolated (set I)  3.8(4) 3.0(3) —0.51(8)
Extrapolated (set II) 4.2(4) 3.2(3)  —0.62(10)
(1)

Experimental [30] 4.706  3.62(3) —0.60(1

Table 7.2: Isovector magnetic moments, based on sets I and II of chirally and infinite-
volume extrapolated lattice simulation results. A dipole-like parameterisation (Eq. ([7.40))
has been used to model the Q?-dependence of the form factors.

curvature in the fit functions in 2, which improves the agreement with experiment
in every case. Isovector magnetic moments, extracted using these fits, are given in
Table [7.2]

We emphasise that the lattice simulation results away from the primary simu-
lation trajectory for data set I (that is, simulations 1-3 in Table are essential
to tightly constrain the chiral extrapolation to the physical point. The effect of
adding the additional off-trajectory points to the fit leads to a factor of 6 reduction
in statistical uncertainty. This illustrates the importance for chiral extrapolations
of performing lattice simulations which map out the m;—mg plane as we have done,
rather than simply following a single trajectory in this space. For data set II we
have simulation results along only one trajectory. However, as this lies very close to
the physical singlet trajectory (as illustrated in Fig. , the extrapolation in a per-
pendicular direction to the physical point inflates the uncertainties only marginally.

7.5.2 Connected Baryon Form Factors

As well as the isovector quantities presented in the previous section, we can deter-
mine the ‘quark-line-connected’ part of all individual baryon form factors. Compar-
ison of these quantities with experimental determinations is of particular interest—a
systematic discrepancy between the lattice and experimental results could be a sig-
nal of significant disconnected contributions to the form factors.

Figures and show extrapolated results for the connected parts of the
proton and neutron form factors, compared with the Kelly parameterisation [272]
of experimental results. The level of agreement between the lattice and experiment
across the entire range of simulation Q?-values supports the conclusion of Ref. 28]
that the omitted disconnected contributions are relatively small.

Figures displaying connected form factors for each of the octet baryons, including
dipole-like fits in ()2, are given in Appendix . The magnetic moments extracted
from the fits to the magnetic form factors, given in Table [7.3 are close to the
experimental values, especially for data set II which includes a point at a lower
value of Q%. Once again, greater curvature in the functional form in Q? would
improve the agreement with experiment in every case.
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Figure 7.17: Extrapolated (connected part of the) proton and neutron magnetic form
factors, compared with the Kelly parameterisation [272] of experimental measurements
(dashed red band). The blue circles and green crosses denote extrapolated results based
on simulation sets I and II, respectively.
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ps (k)

B P n xt
Extrapolated (set I) 2.3(3) —1.45(17) 2.12(18)
Extrapolated (set IT)  2.6(2) —1.65(17) 2.27(18)
Experimental [30] 2.79 —1.913 2.458(10)

T =0 =

Extrapolated (set I) —0.85(10) —1.07(7)  —0.57(5)
Extrapolated (set II) —0.95(11) —1.19(12) —0.59(8)

Experimental [30] —1.160(25) —1.250(14) —0.6507(25)

Table 7.3: Connected contribution to the octet baryon magnetic moments, based on
a dipole-like fit (Eq. (7.40))) to the extrapolated lattice simulation results. Experimental
values are taken from Ref. [30].

7.5.3 Magnetic and Electric Radii

The magnetic and electric radii of the octet baryons are defined by Eq. in terms
of the slopes of the Sachs form factors with respect to changes in the momentum
scale 2%, at Q* = 0. To determine these quantities from the lattice simulation
results we again use dipole-like parameterisations of the Q?-dependence of G and

Gu.

It is clear that fitting the magnetic form factors with Eq. will yield consis-
tently smaller values for the magnetic radii than those determined experimentally
(for the nucleon) or predicted in chiral quark models (for the octet baryons) [273,
274]; as noted in the previous sections, while our results are quite consistent with the
experimental parameterisation of the nucleon form factors where they are calculated,
the best-fit dipole-like function has slightly less curvature. This can be seen clearly

from a comparison of Fig. with Fig. [7.19]

To explore the model-dependence of this extraction of the magnetic radii we
consider a second functional form in Q?, inspired by the Kelly-style parameterisa-
tions of experimental results. This form has a more general polynomial in ()? in the

denominator:
exp.

fit ()2 HB
G (@) = 14 ean@Q? + capp@* + cas@S

We now fix 3" to the experimental magnetic moment (disregarding the omission of
disconnected quark-line contributions in our simulations), so there are again three
free parameters, cp, ¢y, and cy3. As illustrated for the nucleon in Fig. [7.19
(and for the other octet baryons in Appendix , the quality of fit using this
functional form is entirely comparable with that using Eq. . The shift in the
extracted value of the magnetic radius, however, is significant, as shown in Table
This example confirms that truly robust predictions for the hyperon magnetic radii

(7.41)
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Figure 7.19: Connected part of the nucleon magnetic form factors. Blue circles (left-

hand column) and green crosses (right-hand column) denote the results of simulation sets I
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The red stars indicate the experimental magnetic moments. The lines show dipole-like fits
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1.0
0.8}
0.6}

S
04}

02

0.0 ‘ ‘
00 02 04

()‘.6 0‘.8
0? (GeV?)

10 12 14
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(rin)? (fm?)

p n xt ¥ =0 ==
Set T, free fup 0.35(11)  0.35(11) 0.39(9) 0.42(13) 0.27(8) 0.23(8)
Set 11, free up  0.47(14)  0.51(17) 0.42(13) 0.50(19) 0.34(14) 0.17(16)
Set I, general 0.71(8)  0.86(9) 0.66(5) 1.05(9) 0.53(5) 0.44(5)
Set II, general ~ 0.69(8)  0.89(10) 0.62(7) 1.06(12) 0.48(8) 0.38(11)

1
Experimental [30] 0.777(16) 0.862(9)

Table 7.4: Extrapolated results for the octet baryon magnetic radii, based on our fits to
the lattice simulation results, compared with experimental values. Results labelled ‘free
pp’ result from a dipole-like fit function in Q2 (Eq. (7.40)), while those labelled ‘general’
use the ansatz given in Eq. with up fixed to the experimental values [30].

from lattice QCD will require results at much lower values of Q2 to eliminate the
significant dependence on the functional form chosen for the extrapolation in Q2.

Nevertheless, by taking the experimental magnetic moments as additional input,
we find an outstanding level of agreement between the extracted nucleon magnetic
radii and the experimental values for these observables. Moreover, our results using
simulation sets I and II, which have quite different sources of systematic uncertainty,
are entirely consistent. Based on this, we conclude that we have achieved the first
accurate calculation of the magnetic radii of the entire outer ring of the baryon octet
from lattice QCD (extrapolated to the physical pseudoscalar masses).

To extract the electric radii we also use a more general dipole-like parameterisa-
tion of the Q*-dependence of Gy, with three free parameters:

Gp(Q*=0)

) 7.42
1+ cp@Q? + cpaQ* + cp3@S ( )

(@) =

As was noted previously for the isovector nucleon form factor, the standard dipole
form does not provide a good fit to the extrapolated lattice results; the x?/d.o.f. is
as large as 4.0 for the =~ and 1.7 for the proton. In contrast, the more general form
of Eq. yields fits with a x?/d.o.f. < 1 for each of the charged baryons. Fits
using this ansatz are shown in Fig. (for the proton) and Appendix (for the
other octet baryons). Results for the radii of the charged baryons, compared with
the available experimental numbers, are given in Table

The electric radii determined by this method are consistently smaller than the
corresponding experimental numbers for the proton and X~. We point out that
while this calculation omits any disconnected contributions to the form factors and
therefore to the radii, the very close agreement of the extracted proton electric
form factor with the experimental determination suggests that the effect of this
omission is small, barring lattice artefacts as discussed in the previous section. It
is clear that the simple dipole-like parameterisation used for the Q?-dependence is
not sufficient to extract accurate values of the electric radii from these simulations.
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(ri)” (fm?)
P N+ - ==
Dipole ansatz, set | 0.601(14) 0.599(12) 0.414(5) 0.352(3)
Dipole ansatz, set I  0.718(15) 0.738(15) 0.505(10) 0.439(9)
Eq. (7.42) ansatz, set I 0.76(10) 0.61(8)  0.45(3)  0.39(2)
Eq. (7.42) ansatz, set I 0.76(10) 0.68(3)  0.52(4)  0.45(3)

Experimental 0.878(5) 0.780(10)

Table 7.5: Octet baryon electric radii based on a dipole or dipole-like (Eq. (7.42)) fit
to the extrapolated lattice simulation results, compared with the available experimental

values )

000 005 010 015 020
m2 (GeV?)

Figure 7.21: Electric radius of the proton from the chiral extrapolation of data set I, with
a dipole (blue band) or dipole-like (green dashed band) ansatz (Eq. (7.42))) parameterising
the Q%-dependence. The singlet pseudoscalar mass (m3 + m2/2) is held fixed at its
physical value. The red point indicates the experimental value .
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Robust predictions of the electric radii from lattice QCD will require simulations
with a similar level of precision to the results of this work, but at much lower values
of Q?. We note that the electric radius of the proton extracted as described above
does display the expected behaviour with pion mass, increasing quite rapidly as
one approaches the physical pseudoscalar masses from above. This is illustrated in

Fig. [7.2]]

7.5.4 Quark Form Factors

We investigate the environmental sensitivity of the distribution of quarks inside a
hadron by inspecting the individual (connected) quark contributions to the form
factors of the octet baryons. These contributions, evaluated using the chiral ex-
trapolation described in previous sections, are illustrated in Figs. and
The figures show the lowest-Q? result from the fit to data set I, at approximately
0.26 GeV2. We recall that the lines shown on each plot are not independent as the
chiral extrapolation expressions are simultaneously fit to all of the octet baryon form
factors.

Comparison of the u quark contributions to the proton and ¥ magnetic form
factors, illustrated in Fig. , shows the relative suppression of G@’" caused
by the heavier spectator quark in the sigma. This effect is replicated, and is more
significant, when probing the singly-represented quark, as can be seen by the relative
suppression (in magnitude) of the u contribution to the cascade baryon compared
to the d in the proton in Fig. . Changing the mass of the probed quark—
doubly-represented in the proton compared with the cascade, or singly-represented
in the proton compared with the sigma—causes a similar effect.

The doubly-represented quark contributions to the electric form factors are illus-
trated in Fig. . While the u contribution to the proton and the u contribution
to the sigma baryon are very similar—again, the only difference is the mass of the
single spectator (d or s) quark—the s contribution to the cascade baryon has a
different shape. As in the magnetic case, that form factor has significantly less cur-
vature with m2 below the SU(3)-symmetric point as a result of the heavier mass of
the probed s quark.

The singly-represented quark contributions to the electric form factors are shown
in Fig. . Here the difference between the d quark contribution to the proton
and the s quark contribution to the sigma baryon illustrates the effect of changing
the mass of the single probed quark. While the effect of changing the mass of the
spectator quark is small for the doubly-represented form factors, it is far more sig-
nificant here as there are now two spectator quarks. This may be seen by comparing
the d quark contribution to the proton with the w in the cascade baryon.

We also notice that the u quark contribution to the cascade baryon electric
form factor is considerably more suppressed in the light quark-mass region than the
corresponding d quark contribution to the proton. That is, the magnitude of (r?)=
is enhanced relative to (r?)7. This can be explained by the meson-dressing effects;
the connected d in the proton prefers to form a 7 with one of the valence u quarks
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Figure 7.22: Connected part of the doubly and singly-represented quark contributions
to the baryon magnetic form factors for data set I at Q% ~ 0.26 GeV2. The singlet
pseudoscalar mass (m% + m2/2) is held fixed at its physical value. The charges of the
relevant quarks have been set to one.
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Figure 7.24: Ratio of the electric and magnetic form factors of the proton based on the
chiral extrapolations of data sets I (blue circles) and II (green crosses). The red stars
denote the experimental results of Refs. [225,275.276].

in the proton, giving rise to a substantial negative contribution to (r?)f in the light
quark-mass region. In contrast, the connected u in the cascade baryon can only
form a pion state by coupling to a sea quark, from which the resulting enhancement
is always positive.

7.5.5 Ratio of Electric and Magnetic Form Factors

By combining the chirally-extrapolated values of the octet baryon electric and mag-
netic form factors, we deduce the ratios upGE/G¥, at each of the discrete values
of Q? for which we have results. As with the chiral extrapolations themselves, the
entire analysis of these ratios is performed at the bootstrap level.

Figure shows the proton form factor ratio p,G% /G4, where the experimen-
tal value is used for the magnetic moment g, [30]. While the results are qualitatively
consistent with a linear decrease of that ratio with 2, as concluded from polarisa-
tion transfer experiments (e.g., see the results from Refs. [225,275,[276], illustrated
on the figure), this decrease is more pronounced in our results than in the experi-
mental data, with the exception of the results of Ref. |223] which display a similarly
steep trend. In our work this trend is explained by the observation that the lattice
simulation results for G, fall off less rapidly in * than the Kelly parameterisa-
tion of experimental results, while the lattice results for G are consistent with
experiment.

Figure shows the absolute value of ugGZ2/G¥, for each of the outer-ring
octet baryons. The large value of this ratio for the >~ baryon is a result of the
choice of normalisation; the magnetic moment of the ¥~ suggested by the lattice
data was found to be significantly smaller than the experimental value [30] which is
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Figure 7.25: Ratios of the electric and magnetic form factors of the octet baryons. The
points denoting the £1 and Z~ baryons have been slightly offset on the Q?-axis for clarity.
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used here. We note that if the trends displayed for upGE/G%; at the relatively low
Q*-values of this study continue to high Q?, zero-crossings of this ratio for the =~
and X~ baryons seem unlikely.

7.6 Charge Symmetry Violation

The assumption of good charge symmetry has been widely applied in studies of the
electromagnetic structure of the nucleon, just as it has in investigations of sigma
terms (Chapter [5) and in parton phenomenology (Chapter @ In particular, the
limiting factor in state-of-the-art experimental determinations of the strange-quark
contribution to the nucleon electromagnetic form factors [277-281] is the poor the-
oretical constraint on the size of CSV effects.

Precisely, CSV form factors Gcgy, if not accounted for, mimic the strange-quark
contribution G, v in the combination of form factors accessible through parity-
violating electron scattering experiments [282-284]: the measured neutral weak cur-
rent matrix elements G’;/ZM may be expressed as

Ghity = (1 —4sin® 0w) G4\ — Gy — Gy + Gosv, (7.43)
p/1y

where the weak mixing-angle 0y, and the total electromagnetic form factors G i
are precisely determined from other experimental studies.

With theoretical predictions of the size of Gcgy varying through several or-
ders of magnitude [27,285,1286], this uncertainty (along with the remarkable ex-
perimental challenges) has halted experimental parity-violating electron scattering
programs [281]. Using the chiral extrapolations of lattice simulation results pre-
sented in the previous sections, we perform the first ab-initio calculation of the
relevant CSV quantities. With the discovery that the CSV form factors are an order
of magnitude smaller than the precision of existing parity-violating electron scatter-
ing studies, this calculation opens the door for a new generation of experiments to
challenge the predictions of QCD.

7.6.1 CSV Form Factor Formalism

In terms of individual u and d quark contributions to the Sachs electric and magnetic
form factors of the proton and neutron, the CSV form factors which we calculate
are defined as

U U n,d .d n,u
B = Gy — Gl 0t = Ghinr — G (7.44)

where we explicitly calculate G%//TEL /4 and perform the subtractions indicated. The

combination relevant to experimental determinations of nucleon strangeness using
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Eq. (7.43) is
2 1
Gesy = (gé%/M —3 %/M)- (7.45)

We express Gegy as a function of pseudoscalar mass using the chiral formalism
developed in the previous sections. Of course, this formalism must now incorpo-
rate the breaking of SU(2) symmetry; we allow for non-equal light quark masses
m, # mg. Precisely as described in earlier chapters, where we investigated the
mass splittings among members of baryon isospin multiplets (Chapter , the CSV
sigma terms (Chapter , and CSV parton distribution moments (Chapter @, this
is a simple extension of the formalism which we have already described. More-
over, the low-energy parameters which appear in the SU(2)-breaking terms in the
chiral extrapolation expressions for the electromagnetic form factors also appear
in the isospin-averaged expressions. These parameters may thus be fixed by the
previously-described fits to our Ny = 2 4 1 lattice QCD simulations on the baryon
octet.

Explicitly, using the formalism presented in Section [7.3.2] chiral extrapolation
expressions for the CSV electric and magnetic form factors can be written as

1
Sty == (2c)" = 3ctg — 3ely — 4ey” — 28" — 5egh — 54X + 3¢y") B(mg — my,)

6
My 1
+ 1671_3][,7%5[02([%/[(””(0) — [g/[(mKi))

—12(D? + 3F?) (1} (mgo) — I} (mg=))], (7.46a)

1
5%, :6(2c11‘4 + 2c1g — 4ct] + 2c15 — eyt + 4cd + ¢ + 54 — ) B(mg — my,)

My 2
- 167r3f2§[(32(lﬁ4(m;(o) - ]g(mKi)) —9(D - F)Z(Ig(mKO) - ]éw(mKi))L
(7.46b)
1
i :6(2(:5 — 3efy — 3efy — Ay — 2 — B5ef — 54t + 3¢ ) Q*B(ma — my,)
1 1
~ s (€U mao)  15mac) + 6(D° 4 32) (1§ — 1E(msc)
+18(IF (myo) — IF (my+))], (7.46¢)
1
o4 26(20{5 +2c8 — 4ck + 2, — 4cf 4 4cl + cf + 54ck — cg) Q*B(mg —my,)
1 1
S OB i) — 15(msc) + 90D — FP (15 mco) ~ (i)
+9(I7 (mpo) — If (mg=))], (7.46d)
where the low-energy parameters czE/ M are defined in Egs. (7.29) and (7.36). All
of these constants, other than cf/ M, cf/ M, and cf/ M, are determined from the

chiral fits to the connected contribution to the isospin-averaged electromagnetic
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—an

(a) (b)

Figure 7.26: Diagrammatic quark-line skeleton representation of omitted contributions
to the CSV form factors. Solid and wavy lines represent quarks and photons, respectively.
The crosses denote quark mass insertions, i.e., the figures represent the contribution from
disconnected quark-loops to the CSV arising from the different (v and d quark) masses
of: (a): the struck sea quark; (b): spectator quarks. These contributions are proportional
to B(mg —my,).

form factors which are described in Section . The parameters clE/ M, CQE/ M, and

cf/ M do not appear in the previous fit expressions, and thus cannot be determined
from the lattice simulations which we consider here. Bounds on these contributions
to the CSV are estimated within the framework of a model which is described in

Section [7.6.2

7.6.2 Disconnected Contributions to the CSV

While some of the disconnected contribution to the CSV form factors can be system-
atically included by the method described in the previous section, other disconnected
terms—those which are linear in B(my4—m,) and not generated by chiral logarithms
from meson loops—cannot be determined in that way. Precisely, the terms which are
generated by the Lagrangian pieces with coefficients cf/ M, cf/ M, and cf/ M (defined
in Egs. and (7.36))) cannot be determined from the present lattice simula-
tions. Physically, they arise from the diagrams illustrated and described in Fig.[7.26]
These contributions are anticipated to be small based on the success of valence quark
models. This is supported by the results of direct lattice QCD calculations of G/
which find that the disconnected contributions at small finite momentum transfer
are consistent with zero and are bounded at the 1% level [28]. The terms which we
seek to estimate here are only part of that disconnected contribution.

We choose to set contributions from the unknown terms cf/ M, cf/ M, and cf/ M
to 0, with an uncertainty taken to be twice the magnitude of the corresponding con-
tributions from meson loop diagrams, evaluated with a dipole cutoff regulator with
mass scale A = 0.8(2) GeV. This is justified by the well-established and successful
use of this model to relate full and partially-quenched lattice QCD calculations [287].

The loop diagram used to estimate the cféM terms is represented in Fig. [7.27(b)]

where only the ‘loop spectator’ quark mass (i.e., the valence quark part of the me-
i

son mass) is changed. For the cf/ M term, represented in Fig. [7.27(a)l only the sea

quark part of the loop meson mass is considered. These contributions are added in



§7.7 Strange Nucleon Form Factors 143

(a) (b)

Figure 7.27: Quark-line skeleton diagrams of the meson loops used to model the omitted
contributions to the CSV form factors. Solid and wavy lines represent quarks and photons,
respectively. The crosses denote quark mass insertions into: (a): the struck sea quark in
the meson loop; (b): the meson loop spectator quark.

quadrature. The magnitude of this contribution to the total uncertainty varies with
Q?; it is largest at our lowest QQ?-values where it contributes 20-60% of the quoted
uncertainty on the final result (depending which of 52//?\/[ one is considering), while

at larger values of Q? it contributes 1-15%.

7.6.3 CSV Relevant to the Strange Electromagnetic Form
Factors

Figure shows the size of the CSV form factor combination, G¢csy, as relevant to
parity-violating electron scattering experiments probing the strange electromagnetic
form factors of the nucleon by Eq. . The individual v and d quark contributions
are shown in Fig. . The close agreement of the two sets of simulations (at
different lattice spacings a and on different simulation volumes) confirms that the
finite-volume corrections and chiral extrapolations are under control and that any
discretisation effects resulting from the finite lattice spacing are small.

Our result gives quantitative confirmation that CSV effects in the electromag-
netic form factors, for momentum transfers up to approximately 1.3 GeV?, are at
the level of 0.2% of the relevant proton form factors—an order of magnitude smaller
than the precision of existing parity-violating electron scattering studies. To put
this in perspective, the level of CSV shown in Fig. is equivalent to a CSV
difference in charge radii of less than one attometer. These precise results open the
door for a new generation of experiments to probe the structure of the quantum
vacuum through the strange quark form factors. We turn to a deeper discussion of
the strange electromagnetic form factors of the nucleon in the next section.

7.7 Strange Nucleon Form Factors

Recent years have seen extensive experimental efforts directed at measuring the
strange quark contribution to the electromagnetic form factors of the nucleon. Prob-
ing a range of values of Q? up to approximately 0.94 GeV?, the combined data sets
from programs at Jefferson National Lab (GO, HAPPEX) [279-281,288-291], MIT-
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Figure 7.28: Magnetic and electric CSV form factors as relevant to experimental deter-
minations of nucleon strangeness. The blue circles and green crosses denote our results
based on simulation sets I (a = 0.074(2)fm) and II (a = 0.062(2) fm), respectively.
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Figure 7.29: Individual up and down quark contributions to the CSV form factors. These
terms are combined to give the total CSV form factors Gogy = (%5;13/]\/[ 15E/M> Blue
points and green crosses show the results of data sets I and II extrapolated to the physical
point, with corrections applied to model the omitted disconnected terms.
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Bates (SAMPLE) [277,292], and Mainz (A4) [278,[293,294] constrain these terms to
be less than a few percent of the total form factors but all results are, at this stage,
consistent with zero to within 2-sigma [295]. Our precise calculation of the CSV
contributions to the electromagnetic form factors of the nucleon, presented in the
last section, has opened the door for a new generation of parity-violating electron
scattering experiments to improve on these determinations.

The status of the strange form factors from theory is less clear; predictions from
various quark models cover a very broad range of values [296-H301] and the large
computational cost of all-to-all propagators has so far limited direct lattice QCD
studies to large pion masses and single volumes |28} 29].

Using the connected lattice simulations of the octet baryon electromagnetic form
factors presented in this chapter, we determine the strange quark contributions to
the nucleon form factors indirectly over a range of values of Q2 currently unattainable
through direct experimental measurement. Our final result for the strange magnetic
moment of the proton, G4,(Q* = 0) = —0.07 & 0.03 , is non-zero to 2-sigma and
an order of magnitude more precise than the closest experimental results. It is also
consistent with an earlier extraction using FRR to analyse quenched lattice data
at relatively large quark masses [302]. The results reported at values of @Q* above
0.6 GeV? are the first determinations, experimental or based on lattice QCD, in that
region. At present they cannot be distinguished from zero, but the uncertainties
constrain their actual values to be very small.

7.7.1 Indirect Determination of the Strange Form Factors

We have shown in the last section that charge symmetry violation in the electromag-
netic form factors of the nucleon is a small effect, with the CSV terms constrained
to be smaller than approximately 0.2% of G and G over values of Q% up to
1.3GeV?. Using this result—i.e., assuming good charge symmetry—we deduce the
strange form factors [303-305] by combining experimental measurements of the total
nucleon form factors with our lattice QCD determinations of the connected compo-
nents. This method has been applied previously to determine the strange magnetic
form factor at Q2 = {0,0.23} GeV? [302,[306] and the strange electric form factor at
Q% = 0.1GeV? [307] from quenched lattice QCD results.

Explicitly, under the assumption of charge symmetry, one may express the elec-
tromagnetic form factors of the proton and neutron as [303]

p = e"“u? + eld’ + Oy, (7.47a)
n = e’uP + e“d’ + Oy. (7.47b)
Here, p and n denote the physical (electric or magnetic) form factors of the proton

and neutron and u” and dP represent the connected v and d quark contributions to
the proton form factor. The disconnected quark-loop term, Oy, may be decomposed
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into individual quark contributions:

26 16 d 1£
= Zegu gl s 4
Oy =3'G" = 216" = 21, (7.48a)
4G8<1JR3)
=— — ), (7.48b)
3\ ‘Ry

where charge symmetry has been used to equate ‘G* = *G? and the ratio of s to d
disconnected quark-loops is denoted by ZRfl =‘Gs / el

Rearranging Egs. and to isolate the strange quark loop contribu-
tion, ‘G*, yields two independent expressions which are rigorous consequences of
QCD under the assumption of charge symmetry:

¢ ‘R;

G = (1 - KRZ) 2p 4+ n — uP], (7.49a)

0 ‘R;

G° = +2n — dP). 7.49b
(1 — ZRZ) [p n ] ( )

In principle, given a suitable estimate of ZRZ, these expressions may be simply
evaluated; the total form factors p and n are well known experimentally and the
connected contributions v” and dP may be calculated on the lattice.

This procedure relies on the assumption that the difference between the exper-
imental numbers and the connected lattice simulation results for the form factors
may be entirely attributed to contributions from disconnected quark loops, i.e., that
all other systematic effects are under control. In order to be able to estimate any
as-yet undetermined lattice systematics, we average Eqs. and result-
ing in a form where only the connected contribution to the isoscalar combination,
(uP + dP)conn., needs to be determined from the lattice simulations:

14
R 3 1
Lrys d 2 L D
G (1_KR2) |:2(p+n) 2(U +d)conn. . (750)

Relaxing the assumption of exact charge symmetry in the valence sector would
result in an additional term +%GCSV (where Gcgy, defined in Eq. , is the sys-
tematic CSV uncertainty affecting experimental determinations of the strange form
factors) appearing within the square brackets of Eq. . For low values of Q?,
in particular where (‘R5/(1 —‘R3)) is small, this systematic error thus affects our
extraction of the strange form factors considerably less than it impacts on exper-
imental determinations of these quantities, where the assumption of good charge
symmetry is also standard.

From our analysis of the CSV form factors in Section it is clear that con-
tributions from Gcgy are negligible for this calculation of the strange form factors
across the entire Q?-range of relevance. If we disregard our own calculation, which
constrains CSV to be an order of magnitude smaller than suggested by previous
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studies, and instead take values of Gegy from Ref. [286] (for @Q* < 0.3 GeV? where
the calculation is valid) as a systematic uncertainty, our error bands increase by
less than 10%. A recent re-evaluation of Gcgy using relativistic chiral perturbation
theory with a more realistic w-nucleon coupling [285] found a significant reduction
in Gcgy over the values in Ref. [286]. This confirms that the assumption of good
charge symmetry has a negligible effect on our results.

We discuss in turn each of the three inputs into Eq. :

e The lattice values for (u? + d”)conn.-

e The experimental p and n form factors.

e The ratio ‘RS = ‘/G*/*G“.

Lattice Determinations of v? and d?

The connected quark-line contributions to the proton electric and magnetic form
factors are obtained as described in Section [[.4l Both statistical uncertainties and
systematic effects resulting from the chiral and infinite-volume extrapolations, in-
cluding an estimate of the model-dependence, are included. Additionally, we allow
for any unknown systematics on the combination (u? + dP)eonn, by estimating that
such effects will be similar in magnitude for the isovector combination (u” — d”)conn.,
which may be directly compared with experiment. Because disconnected contri-
butions in the total form factors cancel in the combination (p — n), the difference
(uP — dP)1atr. — (P — M )exp. Provides an estimate of any unaccounted-for uncertainty in
the lattice simulation results. We take the largest value of this difference, evaluated
over the entire range of discrete simulation QQ*-values, as a conservative estimate.

This procedure is followed for both the electric and magnetic form factors. The
additional uncertainty included in this fashion is significant and larger than the
statistical uncertainty in the determination of the strange magnetic form factor.
For the electric form factor it is a modest contribution of a size similar to, or smaller
than, the statistical uncertainty (see Table[7.6]in Section [7.7.2)).

Experimental p and n Form Factors

The total proton and neutron electromagnetic form factors p and n are taken from
the parameterisations of experimental results by Kelly [272] and Arrington and
Sick [308] (the latter is used only on its quoted range of validity, Q? < 1 GeV?).
The entire calculation, including the additional estimate of lattice systematics, is
performed using each parameterisation. The average central value of the two sets of
results is taken as the best-estimate of the strange form factors. Half of the difference
between the two central values is included as an estimate of the parameterisation-
dependent uncertainty. As shown in Table [7.6]in Section [7.7.2] this contribution to
the uncertainty is small.
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Figure 7.30: Loop diagrams which are included in the estimate of ZRz from effective
field theory. Fig. [7.30(b)|is included for the electric form factor only. The solid, dashed,
and wavy lines denote octet baryons, mesons, and photons, respectively.

Estimate of the Ratio ‘R?

We derive an estimate for the disconnected quark-loop ratio KRfl = 'G*/*G? using a
model based on chiral effective field theory, as was also done in Refs. [302}306}307].
In that formalism ‘RY is given by the ratio of loop diagram contributions to the
electromagnetic form factors, where the relevant loop integrals are weighted by the
appropriate ‘disconnected’ chiral coefficients for the s and d quarks [252},306,307].

The primary loop diagram relevant to this calculation is depicted in Fig. [7.6(a)|
For the electric form factor in particular, a higher-order diagram (Fig. is
important as it makes a significant contribution of the opposite sign to that of
Fig. resulting in a large cancellation. While to the order of our chiral extrap-
olation this term contributes a constant to Gg(Q?) (enforcing charge conservation
at Q? = 0), this is not a good approximation for the large values of Q? considered
in this work.

For this reason we include Fig. , with an estimate of its Q*-dependence,
explicitly in our calculation of ZRZ for the electric form factor. This is achieved by
calculating the diagram in heavy-baryon chiral perturbation theory and modelling
the Q%-dependence of the photon-baryon vertex based on the lattice results described
in previous sections. Further details are given in Appendix [J.3]

For both the electric and magnetic form factors the effect of additionally includ-
ing loops with decuplet baryon intermediate states is taken as an estimate of the
uncertainty in the ratio *R5. The errors quoted for the numerical results in Table 7.6
in Section combine this estimate in quadrature with that given by allowing the
dipole mass-parameter A used in the finite-range regularisation scheme to vary in
the range 0.6-1.0GeV. The final values for ‘R? are shown in Fig. [7.31]
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Figure 7.31: Estimate of ZRZ from effective field theory with finite-range regularisation,
for the electric (dashed green) and magnetic (solid blue) form factors. Details are given

in Section [Z.7.11

7.7.2 Strange Form Factors at Q? > 0

The results of this analysis (using Eq.) for the strange electric and magnetic
form factors of the proton are summarised in Table[7.6]and are displayed in Fig.[7.32]
alongside the latest experimental determinations of those quantities. All results
(away from Q? = 0) are consistent with zero to within 2-sigma. The results for the
strange magnetic form factor favour negative values which are consistent with recent
experimental results. For the electric form factor, the two independent analyses
based on the two sets of lattice QCD simulations at different lattice spacings and
volumes are inconsistent at 1-sigma. As a result, simple estimates of the strange
electric charge radius of the proton using a straight-line fit in Q? to the lowest-Q?
result for G'3, give results with opposite signs for the two analyses:

. fm? t 1
2y — {0 0086(79) fm?,  Set I, (751

T’E 9
—0.0114(88) fm?, Set II.

Although we cannot make a conclusive statement without additional simulation
results, we expect that this difference is dominated by statistical fluctuations.

Since experimental determinations of the strange form factors are obtained as
linear combinations of G4, and G4, we also display results at the lowest values of
the momentum transfer, Q% = 0.26 GeV? and 0.17GeV? for simulation sets I and II,
respectively, in the G%,~G% plane in Fig. [7.33] The available experimental results
for similar values of Q? appear on this figure as ellipses. Both of our calculations
are consistent with experiment to within 2-sigma.
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Figure 7.32: Strange contribution to the magnetic and electric form factors of the proton,
for strange quarks of unit charge. The blue circles and green crosses show the results of
independent analyses based on lattice simulation sets I and II (with lattice scales a =
0.074(2) fm and 0.062(2) fm), respectively. The experimental results (red stars) are taken
from Refs. [277,280,281},289}292}294].
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Figure 7.33: Comparison of the results of this work (to 1-sigma) at Q% = 0.26 GeV? for
simulation set I (red ellipse), and at @ = 0.17 GeV? for simulation set II (orange ellipse),
with available experimental results at similar values of Q2. The dark (pale) green ellipse
shows 1-sigma (2-sigma) results from the A4 collaboration at Q* = 0.23 GeV? , while
the blue ellipses show GO collaboration results close to Q2 = 0.23GeV? .
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Q* (GeV?) Gir (uw) Gy
Set1 026  —0.069(12)(44)(15)(78) —0.010(4)(5)(2)(6)
0.50 —0.109(12)(59)(21)(112) —0.014(8)(8)(3)(7)
0.73 —0.136(15)(72)(24)(129) —0.008(15)(11)(1)(13)
0.94 —0.122(20)(83)(20)(136) —0.017(28)(16)(3)(20)
1.14 —0.103(16)(94)(17)(137)  0.053(34)(24)(40)(24)
1.33 —0.115(20)(103)(18)(135)  0.141(57)(35)(153)(36)
Set I 0.17  —0.080(20)(48)(19)(56)  0.0081(31)(29)(4)(46)
0.33 —0.111(20)(61)(24)(88)  0.023(7)(4)(3)(6)
0.47  —0.131(23)(73)(26)(109)  0.039(12)(6)(9)(6)
0.62 —0.153(28)(84)(29)(122)  0.056(20)(7)(18)(9)
0.75 —0.151(28)(94)(28)(130)  0.077(27)(9)(30)(12)
0.88 —0.145(35)(103)(25)(135)  0.104(40)(11)(50)(15)
1.13 —0.089(47)(119)(14)(137)  0.220(78)(17)(164)(24)

Table 7.6: Results for the strange electric and magnetic form factors of the proton at

the non-zero values of Q2 investigated here. The first uncertainty quoted is propagated

from the lattice values for the connected u and d quark contributions to the proton form
factors, while the second is the additional systematic uncertainty included as described in

Section The third uncertainty is that propagated from the factor (ZRZ /(1

- ‘Ry))

(see Section|7.7.1). The last uncertainty is that from the Kelly parameterisation of the ex-
perimental p and n form factors [272], combined in quadrature with the parameterisation-

uncertainty in those results for Q2 < 1 GeV?, where we use two parameterisations as
described in Section [Z.7.1l
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7.7.3 Strange Magnetic Moment

Using the additional information available from experiment at ? = 0, where the hy-
peron form factors have been measured [30], we also determine the strange quark con-
tribution to the proton magnetic moment. We rearrange Eqs. and ,
using the assumption of charge symmetry, to express the nucleon strange magnetic
moment in terms of the hyperon moments [303,305]:

s ZRZ u? + _

G = (1_€R2){2p+n—u—2(2 -3 )}, (7.52a)
L
RS u?’L

l s d —0 —_

G* = an——(2"-27)|. 7.52b

This rearrangement minimises the propagation of lattice systematics as only the
ratios of form factors, not their absolute values, must be determined from lattice

QCD.

The ratios uh, /u¥; and u%,/u5; of connected up quark contributions to the hy-
peron form factors, at a range of non-zero values of the momentum transfer Q?,
are taken from the lattice QCD analyses described earlier (see Section . We
determine the Q? = 0 values needed here using a linear extrapolation in (2, with
an additional experimental constraint provided by the equality of Egs. and

(7.52h)):
@:@(MEO—ME)_’_( Hp — Pn )7 (7.53)
Upr  Upp \Hxt+ — Hy- Hy+ — Hx-
where pp denotes the experimental magnetic moment of the baryon B [30]. The fit
is performed to the lattice results where Q? < 1 GeV?, which display qualitatively
linear behaviour and for which the linear-fit x*/d.o.f. is acceptable given the con-
straint of Eq. . Fitting to one less data point does not change the results to
the precision quoted. The extrapolation for data set I is illustrated in Fig. [7.34} the
same procedure is followed (independently) for data set II.

The best estimates of the ratios of the connected contributions to the baryon
magnetic form factors at Q% = 0 are

{@ uﬂ _ {[1.096(16),1-239(90)]a Set I, (7.54)

uy Uy [1.095(17),1.222(98)], Set I,

where the two sets of results correspond to our two independent analyses using lattice
QCD simulation results at different lattice spacings and volumes as described earlier.
These full-QCD numbers align remarkably well with those determined in Ref. [302],
given that that analysis was based on quenched lattice simulation results at rather

large quark masses, after the application of a theoretical ‘unquenching’ formalism
and FRR [309].
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Figure 7.34: Results for the ratios uf, Ju¥; and u%,/u5; of connected contributions
to the baryon magnetic form factors for the simulations in data set I. The bands show
simultaneous fits, linear in Q?, to the lowest 4 (blue solid band) or 3 (green dashed band)

data points, constrained by Eq. (7.53) at Q% = 0.
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The resulting values for the strange magnetic moment (from Egs. (7.52a)) and
(7.52b))), conventionally defined without the charge factor, are

G (@*=0

- {—0.071(13)(25)(4) pn, Set, (755

| —0.073(14)(26)(4) py,  Set 1L

The first uncertainty is propagated from the lattice simulation results, the second,
dominant, contribution comes from the ratio ERZ, and the last is that from the
experimental determination of the magnetic moments [30]. Clearly, the results of
our analysis using the two independent calculations performed at different lattice
spacings and volumes are in excellent agreement. Our final result, G5,(Q* =0) =
—0.07 £ 0.03 pyy, is non-zero to 2-sigma and an order of magnitude more precise
than the closest experimental results.

7.8 Summary and Discussion

In this chapter we have presented a 2+1-flavour lattice QCD study of the electro-
magnetic form factors of the octet baryons. The results are based on two indepen-
dent sets of simulations, with different lattice spacings and volumes, at a total of 13
discrete values of the momentum transfer in the range 0.17-1.3GeV?.

By performing simulations on configurations which ‘map out’ the m;—m, plane,
rather than following a single trajectory in this space, we are able to robustly con-
strain chiral extrapolations of the Sachs form factors to the physical pseudoscalar
masses. Independent extrapolations are performed at each simulation value of Q?
using a formalism based on connected heavy-baryon chiral perturbation theory. An
advantage of this method is that it requires no phenomenological input regarding
the Q*-dependence of the form factors. Systematic uncertainties are controlled by
evaluating finite-volume corrections using the same formalism. The uncertainties in-
herent in the determination of the lattice scale a, the shape of the ultraviolet cutoff,
and the value of the cutoff parameter A in the finite-range regularisation scheme,
are found to be negligible. Moreover, both sets of simulations, which one would
expect to suffer from different systematic finite-volume and finite-a effects, are en-
tirely consistent after extrapolation to the physical point. It is notable that, even
after extrapolation, the precision of these results rivals experimental measurements
of the nucleon form factors.

It is particularly notable that a pure dipole form in (Q? does not, in general,
provide a good fit to the extrapolated lattice simulation results for Gg or Gj;. A
dipole-like fit function, with a more general polynomial in the denominator, fares
significantly better. In fact, by using a dipole-like fit form and taking the experimen-
tal values for the baryon magnetic moments as additional input in Q?-extrapolations
of G, we are able to perform the first accurate extraction of the magnetic radii
of the entire outer-ring baryon octet. Our analysis suggests that meaningful deter-
minations of the magnetic moments and radii from lattice QCD alone requires a
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more careful analysis than the standard procedure using a pure dipole form in ?
allows, unless simulations are performed for very small Q*-values much less than
0.2 GeV?. Analyses similar to that performed here may reveal that other existing
lattice simulations are in fact more compatible with experiment than the results of
the standard calculations indicate.

The connected proton and neutron form factors, extrapolated to the physical
pseudoscalar masses, agree remarkably well with the experimental determinations
of these quantities at all values of Q? considered. This gives a good indication that
disconnected quark-loop contributions to the nucleon form factors are small relative
to the uncertainties of this calculation. By combining our lattice simulation results
with experimental input, we are able to quantify this claim; we deduce values for
the strange electromagnetic form factors of the proton which are consistent with
available direct measurements of these quantities but span a far larger range of
values of Q2. At Q? above about 0.6 GeV? our results are the first determinations
of the strange form factors, experimental or based on lattice QCD. Our calculation
of the strange magnetic moment is an order of magnitude more precise than the
closest experimental result and is non-zero to 2-sigma: G4,(Q? = 0) = 0.07(3)ux-

We also determine the CSV electromagnetic form factors of the nucleon based
on our chiral extrapolations and a best value for the light-quark mass ratio m, /mg.
Our results reveal that these quantities are at most 0.2% of the relevant proton form
factors to 1-sigma—an order of magnitude smaller than suggested by previous work.
Until now, the dominant uncertainty in experimental determinations of the strange
proton form factors has come from the assumption that the CSV form factors are
small; by quantifying this assumption, our precise results open the door for a new
generation of experimental tests of QCD through the proton’s strange form factors.






Chapter 8

Summary and Outlook

The strong-interaction properties of the nucleon are of broad interest; they directly
reveal the structure and interactions of hadrons, inform astrophysics, and are neces-
sary input into models of the evolution of the universe. Moreover, achieving percent-
level precision in Standard Model (SM) expectations for nucleon observables has be-
come essential in order to interpret modern direct and indirect experimental searches
for new physics. We have investigated the strong-interaction properties of hadrons,
in particular the nucleon, using lattice QCD and chiral effective field theory. Our
focus has been on nucleon strangeness and charge symmetry violation (CSV), both
associated with small deviations from approximate features of the nucleon in QCD.

Strange-quark effects in the nucleon provide a unique probe of the vacuum; as
the nucleon has no net strangeness, ss pairs can only appear through quantum
fluctuations. The contribution of s quarks to the mass of the nucleon—encoded
in the strange sigma term—is also relevant to searches for particle dark matter by
direct detection. Our precise new determination of this quantity using the Feynman-
Hellmann relation, ons = 20(6) MeV, is in line with results from direct lattice
QCD simulations. We have also deduced values for the strange electromagnetic
form factors of the proton based on a comprehensive new lattice study of the octet
baryon Sachs form factors. Our results are consistent with available experimental
measurements of these quantities but span a far larger range of values of the probing
momentum scale, Q%. At Q2 above about 0.6 GeV? ours are the first determinations
of the strange form factors, experimental or based on lattice QCD. Our calculation
of the strange magnetic moment is an order of magnitude more precise than the
closest experimental result and is non-zero to 2-sigma: G%,(Q* =0) = 0.07(3)py-.
These investigations present a coherent picture; contributions from strange quarks
to both the mass and electromagnetic form factors of the nucleon appear at the
percent-level.

CSV effects are smaller still and affect observables at a scale which is typically
a fraction of a percent. Nevertheless, precise determinations of these quantities
are essential at the level of precision of current experiments searching for physics
beyond the SM. For example, our results reveal that the CSV contributions to the
electromagnetic form factors of the nucleon are at most 0.2% at 1-sigma—an order
of magnitude smaller than suggested by previous work. This revelation has removed
the dominant uncertainty in experimental determinations of the proton’s strange
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form factors and has hence opened the door for a new generation of tests of QCD.
Moreover, we have resolved CSV in the low spin-dependent and spin-independent
Mellin moments of parton distribution functions to be non-zero to 3-sigma, but,
again, these contributions appear only at the level of a fraction of a percent of
the total moments. In particular, CSV corrections to the Bjorken sum rule are
approximately 0.5%. This is an order of magnitude smaller than the uncertainty
of the current best experimental determination but will nevertheless be significant
in connection with proposed measurements at a future electron-ion collider. Proper
consideration of the small CSV effects in the spin-independent Mellin moments may
reduce the 3-sigma discrepancy with the SM reported by the NuTeV collaboration,
in neutrino-nucleus deep inelastic scattering experiments, by up to 1-sigma.

Our investigation of nucleon CSV effects proceeded using a novel formalism com-
bining the symmetries of QCD, encoded in the low-energy chiral effective field the-
ory, with the information gained from studying the entire baryon octet in isospin-
averaged 2+1-flavour lattice QCD simulations. In principle this method could
constrain the light-quark mass ratio R = m,/my, if the strong and electromag-
netic mass-splittings among members of the baryon isospin multiplets were precisely
known. Even at the level of precision of current determinations of these quantities
our analysis favours R = 0.553(43) over the slightly smaller number, R = 0.47(4),
obtained from a world-average of lattice simulation results. Clearly, more precise
determinations of the strong and electromagnetic CSV effects in the baryon masses
are of considerable interest.

In the course of our study we were also able to calculate a number of other
observables relevant to nucleon and hyperon structure which are of phenomenological
importance in their own right. Through a detailed analysis of the octet baryon
masses, based on several independent sets of lattice simulations, we determined the
pion-nucleon sigma term: o,y = 46(7) MeV. This result is in complete agreement
with the benchmark experimental value, 45(8) MeV, from an analysis by Gasser,
Leutwyler and Sainio in the early 1990s. Clearly, lattice simulations will be able
to rival experimental precision for this quantity in the near future. Furthermore,
our investigation of the lowest spin-dependent parton distribution moment can give
some insight into the resolution of the proton spin puzzle: we have revealed that
the fraction of spin carried by the quarks in the octet baryons varies, that is, that
the quark spin-fraction is structure-dependent. This result suggests that the spin-
suppression observed in the proton cannot be explained by the axial anomaly alone.

Our complete lattice study of the octet baryon electromagnetic form factors—
including careful consideration of meson mass, finite-volume, and lattice discretisa-
tion effects—allowed a detailed investigation of the hyperon form factors, which have
received little attention in the literature to date. These quantities are of interest
both in their own right and because they provide valuable insight into the environ-
mental sensitivity of the distribution of quarks inside a hadron. Importantly, we
performed the first accurate extraction of the magnetic radii of the entire outer-ring
baryon octet from lattice QCD. It is also notable that the precision of our results
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for the nucleon form factors, extrapolated to the physical point, rivals experimental
measurements.

In summary, we have determined precise new SM values for a number of strong
observables relevant to nucleon and hyperon structure. This investigation has been
guided by experiment. Not only do our results set benchmark values for tests of
QCD, but they provide input for direct searches for physics beyond the SM and in-
form the analysis of experimental measurements of poorly-known SM quantities. By
combining lattice QCD simulations with chiral effective field theory techniques we
have truly been able to probe QCD in the physically-relevant parameter space. We
have carefully corrected systematic effects in our simulations, such as unphysically-
large meson masses and finite lattice volumes, and have taken advantage of the infor-
mation provided by the baryon octet to investigate SU(3)-flavour—breaking effects.
Most notably, we have developed a formalism for determining nucleon CSV observ-
ables from isospin-averaged 2+1—-flavour lattice simulations. A coherent picture has
emerged; CSV effects typically appear at the level of a fraction of a percent—an or-
der of magnitude smaller than most previous estimates. Our study of strange-quark
contributions to nucleon observables has revealed that these are of order 1%.






Appendix A

Formal Details of Heavy Mass
Techniques

In this appendix we explicitly derive the heavy-baryon Lagrangian for the interac-
tions of the spin—% baryon octet with the octet mesons from the familiar relativistic
expression. For simplicity we omit electromagnetic terms and interactions with the
spin—% decuplet; as the effective theory is represented by the most general Lagrangian
consistent with the broken chiral symmetry, it is in most cases simplest to construct
this directly in terms of the heavy-baryon fields. This is the approach which is taken
in Chapter

Representing the octet baryons in matrix form, as in Section the standard
relativistic Lagrangian for baryon-meson interactions is

L = B(il) — Mp) + DBy,s{A", B} + FBy,7;[A"B]. (A1)

Considering the baryons to be heavy, their four-momenta are expressed as p, =
Mpv, + k,, where v, is a four-velocity satisfying v? = 1, and k,, is a soft momentum
with v - k < {Mp,A,}. One can then construct eigenstates of operators which
project the upper and lower components of the Dirac wavefunction, so that

B(z) = e ™M ([ (z) + h(x)), (A.2)
where
H(z) = e™M5v* P, B(1), (A.3a)
h(x) = M8 P_B(z), (A.3b)
and ]
P, = 5(1ﬂ:¢) (A.4)

In terms of these new fields, the Lagrangian of Eq. (A.1]) assumes the form
L =HAH + hBH + H~,B"y,h — hCh. (A.5)
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Using the projection operator identities
PiP;F:O, PiPi:Pi; PilDPi::tU'Dpi, PilDP :m—ﬁ’l}'D, (AG)

one finds the explicit low-energy expansions

A=iv-D+2DBS,{A" B} +2FBS,[A" B] + ..., (A.7a)
B=i(lp) —yv- D) — DBysv,{A", B} — FBysv,[A*, Bl + ..., (A.7b)
C=A+2Mp+.... (A.7c)

Clearly the two field components H and h are coupled in the Lagrangigan of
Eq. (A.5). This can be resolved via the field-redefinition

B =h—C'BH. (A.8)

In path-integral language it is clear that the ‘heavy’ field h, with a mass pa-
rameter of twice the baryon mass, can be integrated out: the generating functional
Z[sources| is given by

ez’Z[sou]rces} — const. /5H 5ﬁ oh 55 exp <Z / d4x (,C + source terms))

= const. /5H 8H Sh 6hexp <z / dz (E(A + VOBWOC_IB)H

1 CH + source terms)>

= const. /5H §H det(C) exp (z’/d4x (ﬁ(.A +B%C 'B)H

+ source terms)) : (A.9)

where the integrated determinant generates an (uninteresting) overall constant. Fi-
nally, we have derived an effective Lagrangian in terms of the ‘light’ field components
H only:

Leg = H(A+ (70B'0)C'B)H. (A.10)

Expanding C~! in a power series in 1/Mp, to leading order, gives the Lagrangian
presented in Eq. (3.29). The first 1/Mp corrections are generated by

— 7oBiB
(/M) _ H%H. (A.11)

Of course, when loop contributions are calculated, a set of counterterms is re-
quired to absorb the various divergences which arise. These are constructed in the
heavy-baryon formalism just as they are in the relativistic framework: by considering
all possible local terms allowed by the symmetry requirements of parity transforma-
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tions, charge conjugation, hermitean conjugation, overall Lorentz-invariance, and
invariance under chiral vector and axial-vector transformations.






Appendix B

Definitions and Identities

Here we collate a number of identities and relations which were used to simplify the
expressions which arose in the derivation of the results presented in Chapters [4], [6]
and[7] As defined in Chapter[3], v* denotes the four-velocity of a heavy baryon, Pauli-
Lubanski spin operators are denoted by S, and P*" is a spin-polarisation projector
that acts on the decuplet baryon field tensor T* to project out the positive spin—%
solutions to the equation of motion.

v-S=0, S’B = —ZB, (B.1)
v'T, =0, ST, = 0, (B.2)
PP = —pr P" g, = =2, (B.3)
p™S, = —%S”, S, PH = —%S“, (B.4)
{$*,87} = %(v’\v" — g)“’), P = (vio” — g") — %S“S”, (B.5)
Py, = P*y, =0, P™S, =S, P" = 0.

Throughout this work we employ a compact notation for field bilinear invariants
which was originally employed by Labrenz and Sharpe in Ref. [270]. In the following
expressions, A is an operator with the transformation properties of the axial current
A, while I' is an arbitrary Dirac matrix, e.g., the spin operator S*. The octet and
decuplet baryon tensors Byjx and T7;; are as defined in Egs. (3.39) and (3.32).

(BI'B) = By, I Bijis, (B.7)
(BT AB) = B,,;T'2 Ai By ji. s, (B.8)
(BT'BA) = ByjiT5 Ajw Byjio 5 % (—1)0HEER), (B.9)

(BTA'T,) = By TLALTY 0, (B.10)
(T'TT,) = Tyi 5T i1 (B.11)
(T'TAT,) = Ty JTGALTY (B.12)
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Appendix C

Derivations for Chapter

In this appendix we give the details of several derivations relevant to the discussion
of Chapter 3]

C.1 Loop Integral Transform

Here we show the simplification of a loop integral required in Section [3.6]

_ 'k ik
I'= / (2m)* (ko — i€) (k2 — m2 + ie)

Pk kik;
= | g | ko ) (12 2
(2m) (ko — i€)(k? —m?2 + ie)

Pk Lk _
= [ =3 [ dk irj L _Jm )
/ (27T)4 / 0 (k:O - ZE)(’{? ) )(ko +w— i€)7 where w m7

0 — W+ 1€

_ _(27rz')/ (;ljr]_;"*{ko(:ﬁ w) kow}
= —(2mi) / (;l:; { Zf; }
= —i/ (;i:;S{Q(Effjmz)}

d3k k2
(27 k‘2 + m?2

/oo dk 4
2m)3 k2 + m?

.ij

(C.1)

C.2 Example of Finite-Volume Correction

Here we explicitly derive the finite-volume correction expression presented in Sec-
tion [3.6f We consider the integral of Eq. (3.55)), with a dipole regulator in the FRR
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scheme:

o 2 K A?
v == [ dk
=2 [t ()

1 k? A2
=— | &k . 2
272 k2?2 +m? <A2 + k2> (C2)

The finite-volume correction to the associated loop-integral expression can be mod-

eled as

1 (27?)32 k2 A2 \* /d3k 2 A2 \*
272 | L3 - k2 +m2 \ A2 + k? k2 +m?2 \ A2 + k2

o (I8%) =

1| (@) A2 ! . A2 \*
Ton?| L3 Z(A2+k2 _/dk A2 4 k2

k

4 4
n 1| (2m)? Z —m? A? B /dsk,‘ —m? A?
272 | L3 k% +m?2 \ A% + k2 k2 +m?2 \ A% + k2

1 1 4 a3k 1 4
=47A® | = — ) -
N e A 1t E)

k

1 Z 1 / A3k 1

I3 - (k% + m?) (k% + A2) (27)3 (k2 + m?) (k2 + A2)*
(C.3)

The final step is to use Feynman parameters to express the second term in the

expression in the standard form:

— 4rm?A8

1 _ 1 N (1— JJ)3
(/{22 + m2)(k;2 + A2)4 - 4/0 d (gg(k}2 -+ m2) + (1 _ $)<k}2 + A2>)5
i (1-2)3
_4/0 d (k2+$m2+(1—x)A2)5’ <C4)

giving the result stated in Section [3.7}

1
O (I9%) = 4w A®S, (A, 4) — 167rm2A8/ dx(1l — x)35L<\/xm2 + (1 —z)A2, 5).
0
(C.5)



Appendix D

Additional Figures for Chapter

In this appendix we display several additional figures relevant to the discussion of
Chapter [4

0.7 1t
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Figure D.1: Locations of the lattice simulations in the m;—ms plane. The symbols are as
in Fig. The arrows show the chosen projection of the lattice simulation results onto
the trajectories plotted in Figs. and
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Figure D.2: Fit to the QCDSF-UKQCD collaboration baryon octet data (also shown
in Fig. , plotted along the trajectory of fixed (physical) strange quark mass. The
error bands are as in Fig. The red stars show the experimental values of the baryon
masses . This figure may be directly compared with Fig. which shows the fit to
the PACS-CS collaboration lattice results along the same trajectory in m,—mpg space.



Appendix E

Additional Results for Chapter

In this appendix we give some additional results of the work presented in Section

0 Bq (MGV)

B U d S

P 19(3) 24(4) 53(8)
n 13(2) 35(5) 50(8)
A 11(2) 20(3) 185(11)
0 9(1) 16(2) 227(14)
Xt 16(2) 3(1) 231(14)
> 2(1) 30(4) 224(13)
=0 9(1) 1.15(41) 339(16)
= 0.78(23) 16(2) 335(15)

Table E.1: Octet baryon sigma terms, derived using the Feynman-Hellmann relation
applied to the chiral extrapolation of PACS-CS collaboration lattice simulation results
described in Chapter |5, with the lattice scale set using the mass-independent prescription

(c.f., Table [5.3).

0 Bq (MeV)

B U d s

P 17(3) 21(4) 27(15)
n 11(2) 30(5) 25(15)
A 10(2) 17(3) 163(14)
0 8(1) 14(2) 234(14)
Xt 15(2) 1(1) 236(14)
¥ 1(2) 27(3) 231(14)
=0 9(1) 0.00(81) 336(14)
= 0.11(44) 16(2) 332(14)

Table E.2: As in Table[E.2] based on the extrapolation of QCDSF-UKQCD collaboration
lattice simulations of the octet baryon masses.
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Appendix F

Tables of Chiral Coefficients

The tables in this appendix give explicit expressions for the various chiral coefficients
used in this body of work, particularly in Chapters[6land[7} Coefficients which vanish
are either omitted from the tables, or their positions are left blank.

F.1 Strong Interaction Vertices

Tables F'.14] give the Clebsch-Gordan coefficients Cgpy and Cpryg (defined in
Egs. and ), which correspond to leading-order strong interaction ver-
tices coupling an octet-baryon to octet-baryon or octet-baryon to decuplet-baryon
through the emission of a meson. These vertices are illustrated in Figs. and
B.1(b)] The coefficients are expressed in terms of the parameters D, F, and C, which

are defined in the Lagrangians of Eq. (3.29) and (3.37) in Chapter [3|

F.2 Twist-Two Operator Insertion Vertices

The Clebsch-Gordan coefficients corresponding to insertions of the twist-two oper-
ators relevant to our exploration of parton distribution moments in Chapter [6] are
given in Tables [F.I5HF.24 The coefficients are defined in Egs. (6.17) and (6.18),
and the associated vertices are illustrated in Fig. Superscripts (n) on every
coefficient C' and on every unknown parameter «, §, o, and b; (defined in the La-
grangians derived in Section have been suppressed for clarity of notation. We
have displayed the coefficient tables for the spin-independent case only; the spin-
dependent coefficients are recovered by the trivial re-labelling o™ — Aa™ etc.
The labels ‘Doubly’, ‘Singly’, ‘Triply’, and ‘Other’ denote the status of the indi-
cated quark flavour in the baryon B or T, i.e., whether it is the doubly, singly or
triply-represented quark, or does not appear at all.

F.3 Electromagnetic Form Factor Extrapolation

In Tables [F.25HF .37 we present expressions for the coefficients o, @?4@)  and
BOB}IgS/)T which appear in the chiral extrapolation expressions for the magnetic and

electric Sachs form factors, Egs. (7.30) and (7.39), derived in Chapter [ These
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parameters take the same form in terms of the undetermined chiral-limit form factors
cf/ Mand g 18/~ (defined in Section |7.3.2)) for the magnetic and electric form factors
(under the replacements up — br and pup — bp for Gg). Of course, the numerical
values of the chiral-limit form factors differ not only for the electric and magnetic
cases, but at each fixed value of Q? at which the extrapolation is applied. As
above, the labels ‘Doubly’, ‘Singly’, and ‘Other’ indicate whether the quark ¢’ or ¢

is doubly-represented, singly-represented, or not at all represented in the baryon B.

Crpmt
B B P A »0 )Ins =0
n 2(D+F)
A 2\/§D
0 —2V2F
5 2\/§D 2\/2F
=- 2D — F)

Table F.1: Clebsch-Gordan coefficients for the leading-order strong coupling of octet
baryons B and B’ through the emission of the pseudoscalar meson 7.

CBB/W_
o B A 370 5 =
D 2(D+F)
A 2\/§D
>0 2v/2F
ou 2\/§D _2\aF
=0 2D — F)

Table F.2: Clebsch-Gordan coefficients for the leading-order strong coupling of octet
baryons B and B’ through the emission of the pseudoscalar meson 7.
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§F.3  Electromagnetic Form Factor Extrapolation
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CBTﬂ—+ X C_l

B 0 + =0
an/& )LD =

0 1
A 7
A~ 1
*0 1
> ~7
*— 1 1
> 5 %
ok L

_—

V3

Table F.8: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet
baryon B to a decuplet baryon T through the emission of the pseudoscalar meson 7"

Cpr xC!

N p n A X0 % =-
ATt -1

+ 1

A V3

%0 1
Tt 1L v

V2 V6
—=x0 1

Table F.9: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet
baryon B to a decuplet baryon 7' through the emission of the pseudoscalar meson 7.

CBTKO x Ct

B 0 e o
anAEZH

*0 1
x ~7

K4 1
x —75
—=*0 1 1

V2 V6

R 1
- V3
Q- 1

Table F.10: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet
baryon B to a decuplet baryon T through the emission of the pseudoscalar meson K.
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CBTK+ X C_l

B 0 + —=0
Np n A X0 X =

2*0

S

Sl
Sl

L
V6

-

-1

Table F.11: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet
baryon B to a decuplet baryon T' through the emission of the pseudoscalar meson K.

B o g+ oy
PG

Cprg- x C1

[1]
o
[1]

A+F

AJr
AO

E*O
s

1

-
4

1
V3

Table F.12: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet
baryon B to a decuplet baryon T' through the emission of the pseudoscalar meson K.

Z*O
X

2

L
V3

Table F.13: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet
baryon B to a decuplet baryon T' through the emission of the pseudoscalar meson i
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OBT(;S x C1

¢ 0
BT T
pAT \/gcos € —\/3sine
nA° \/gcos € —\/gsin €
A0 —\/Lﬁ cos € \/LE sin e
»0y+0 \/Li sin e \/Li COS €
Nyt % (cos € +1/3sin e) \/Lg (sin € — /3 cos e)
T %(\/_sme — COoS e) \/Lg(\/gcose + sin e)
=0=0 \/Lg (cos € +v/3sin e) \/ig (sin e — /3 cos e)
=BT L(\/_sme — CoSs e) \/Lg(\/gcose + sin e)

Table F.14: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet
baryon B to a decuplet baryon T through the emission of the pseudoscalar meson ¥ or
n. The 7% mixing parameter ¢ is defined in Eq. (4.5).

CBgo,
Doubly Singly Other

t(a+26+60) (o+48+ 60) o

Table F.15: Clebsch-Gordan coefficients for the leading-order interaction of the twist-
two operator defined in Eq. with an outer-ring octet baryon B. Labels ‘Doubly’,
‘Singly’, and ‘Other’ indicate whether the quark flavour ¢ is doubly, singly, or not at all
represented in B.

Cppro,
q
BB “ I ’
AA T(a+28+40) T(a+28+40) (o +20)
AX? sl —28) —nvsla—28)
3,050 LGa+26+120) L(5a+28+120) L(a+ 48+ 60)

Table F.16: Clebsch-Gordan coeflicients for the leading-order interaction of the twist-two
operator defined in Eq. (6.4a) with the A and X° baryons.
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-1
CpBo,m X My,

J 4 Doubly
Doubly —bl + bQ — bg + b4 + b5 + b7 + bg
Singly bz
Other b1+bg+b3+b4+b7+b8
Singly
Doubly bg
Singly bs
Other bs
Other
Doubly bl - bg - b3 + b4 + b@ + bg
Singly bg
Other —bl—b2+bg+b4+b5+b6+b8

Table F.17: Clebsch-Gordan coefficients for the O(m,) counterterms relevant to effective
matrix elements of the twist-two operator defined in Eq. . Labels ‘Doubly’, ‘Singly’,
and ‘Other’ indicate whether the quark flavours ¢ and ¢’ are doubly, singly, or not at all
represented in the outer-ring octet baryon B.
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CBBger0,

B b9 TrrT KTK~

p s(8—2a)  §(—ba—28)
n 20— Y-a-49)
A ila—2p)
% (28 —a)
Xt §(=ba—28) (8- 2a)
»- t(bar+2p) ta+48)
=0 g(—a—4p)  3(2a-p)
= s(a+4p) s(5ar+20)

Table F.20: Clebsch-Gordan coefficients for the coupling of the u-quark twist-two oper-
ator defined in Eq. (6.4a) to the octet baryon B through the emission of two mesons.

/ CBBo o,

B ¢ I KK’

p ;2a—=p8)  F(—a—4p)
n %(ﬁ —2a) %(—504 —20)
A i(a —2p)
%0 (28 —a)
»t t(5a+2p) t(a+4p)
¥~ F(=ba—20) (8 —20)
=0 sa+4p) t(5ar+2p)
ET §(—a—4p)  3(2a - p)

Table F.21: Clebsch-Gordan coefficients for the coupling of the d-quark twist-two oper-
ator defined in Eq. (6.4a)) to the octet baryon B through the emission of two mesons.
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CBBeg o,

B 90 goR? K+K-

P t(a+4p) t(5a+2B)
n s(bar+2p) F(a+4p)
A i28—a)  {(28-0q)
30 ila—2p) ila—2p)
25 M-a-18)  lea-p)
xT ;2a—=8)  §(—a—4p)
=0 §(=5a—28)  3(B—20)
=" 5(8—2a)  §(=5a —2p)

Table F.22: Clebsch-Gordan coefficients for the coupling of the s-quark twist-two oper-
ator defined in Eq. (6.4a) to the octet baryon B through the emission of two mesons.

N -1
Crro, %X 3(7 - %)

Singly 1
Doubly 2
Triply 3

Table F.23: Clebsch-Gordan coefficients for the leading-order interaction of the twist-
two operator defined in Eq. with a decuplet baryon T. Labels ‘Doubly’, ‘Singly’,
and ‘Triply’ indicate whether the quark flavour ¢ is doubly, singly, or triply-represented
in T. The low-energy constants v and +' are defined in Eq. .
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CBTOAq X W

BT
+ 1 _ L
pA Vi T3
0 1 1
ni ATV
AYO -+ 1
7057%0 i i 1
2v3  2V3 V3
+$ i+ _ 1 1
DIRDY 7 7
s 1 1
X A v
=0=+0 _ 1 1
- V3 V3
——rmk— 1 _ 1
- = V3 V3

Table F.24: Clebsch-Gordan coeflicients for the transition between an octet baryon B
and decuplet baryon T via an insertion of the twist-two operator defined in Eq. (6.4Db)).
The low-energy constant w is defined in Eq. (6.16]).

B

Doubly  Singly

2up  prp — pp

Table F.25: Expressions for the coefficients a?? which appear in the chiral expansion for
the magnetic Sachs form factor Gs (Eq. (7.30)). The labels ‘Doubly’ and ‘Singly’ indicate
whether the quark flavour ¢ is doubly or singly-represented in the outer-ring octet baryon
B.

aBe
A pp— 22 pp— 22 ED 4y
0 % % HE — [D

Table F.26: Expressions for the chiral coefficients a?9, defined in Eq. (7.30]), for the A
and X° baryons.
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aBad)

q Doubly

mq/

MDoubly %(Clo +c11 ¢+ 1803 + 4504 + 205 + 566 + Cg)

MSingly %(—2010 + 11 — 2¢19 + 18¢3 + 45¢y + 4eo)
MOther %(603 + 15¢4)

Singly
MDoubly £(—2c10 + 411 — 2e12 + 3603 + 9y + o)
MSingly %(3603 + 9¢q + 4es + )
MOther 3(des + )

Table F.27: Coefficients of terms in the chiral expansion for the magnetic Sachs form
factor Gr (Eq. ) which are linear in the quark masses. The labels ‘Doubly’, ‘Singly’,
and ‘Other’ indicate whether the quark flavour ¢ or ¢’ is doubly, singly, or not at all
represented in the outer-ring octet baryon B.

aha(d)
9 U

mq/
My, %(1803 + 9¢y + 2¢5 + c5)
mgy ;11(—C12 —cCiotc+ 1863 + 904 + Cg)
ms (e +9(2¢3 + ca))

d
My, %(—012 — ¢10+ 11 + 18¢3 + 9¢q + ¢9)
mq %(1803 + 9¢q + 2¢5 + )
ms (e +9(2¢3 + ca))

s
My %(1804 + ¢9)
Mg }t(1804 + ¢9)
Mg 2(9¢4 + o)

Table F.28: Coefficients of terms in the chiral expansion for the magnetic Sachs form
factor of the A baryon (Eq. (7.30)) which are linear in the quark masses.
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a=a(d)
m ! Y
q/
My, %(1863 + 45¢4 + 2¢5 + 5eg)
mq %(010 —+ C11 + C12 + 1803 + 4504 + Cg)
mg é(_QCIO +ci1 — 2012 + ]_863 + 4564 + 4Cg>
d
my, %(010 + C11 + C12 + 1803 + 45C4 + Cg)
mq 1—12(1803 +45¢4 4 2c5 + 5eg)
mg 1—12(—2610 +ci1 — 2612 + 1863 + 4564 + 469)
S
my, 1—12(—2C10 + 4611 — 2012 + 7263 + 18C4 + Cg)
mq %(—2010 + 4011 — 2012 + 7203 + 1864 + Cg)
My %(3603 + 9¢q + 4es + co)

Table F.29: Coefficients of terms in the chiral expansion for the magnetic Sachs form
factor of the X.° baryon (Eq. (7.30))) which are linear in the quark masses.

Bq(¢)
o

M Doubly Singly

MDoubly + MSingly 4(D2 + F2) —%(l)2 +6DF — 3F2>

Mgingly + MOther 2(D - F)2
MDoubly + MOther %(DQ + 3F?)
2Mpoubly 3(D? + 3F?)
2Mingly 2(D — F)?

Table F.30: Coefficients of terms in the chiral expansion for the magnetic Sachs form
factor (Eq. ) corresponding to loop contributions with octet baryon intermediate
states. The labels ‘Doubly’, ‘Singly’, and ‘Other’ indicate whether the quark flavour ¢ is
doubly, singly, or not at all represented in the outer-ring octet baryon B.
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ﬁng)
q
Bflmqﬁ u d
My + My 2(7D* — 12DF + 9F?) 2(7D?* — 12DF + 9F?)
mq + M 2(D?* —12DF + 9F?)
My + Mg 2(D? — 12DF + 9F?)
2m, 2(7D* — 12DF + 9F?)
2my 2(7D* — 12DF + 9F?)
S
mq + M §(7D2 +6DF +9F?)
My + Mg 2(7TD* + 6DF + 9F?)
2m, 2(D +3F)?

Table F.31: Coefficients of terms in the chiral expansion for the magnetic Sachs form
factor of the A baryon (Eq. (7.30))) corresponding to loop contributions with octet baryon

intermediate states.

ﬁgoq(qﬁ)
B-'m, 1 U d s
My + My 2(D*+3F?%) 2(D*+3F?)
ma + M 2(D? + F?) 2(D*—6DF + 3F?)
My + Mg 2(D? + F?) 2(D* — 6DF + 3F?)
2m, 2(D? + 3F?)
2my 2(D* + 3F?)
2m 2(D — F)?

Table F.32: Coefficients of terms in the chiral expansion for the magnetic Sachs form
factor of the X0 baryon (Eq. (7.30])) corresponding to loop contributions with octet baryon

intermediate states.
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IB;Q(¢>) x C~2
By 7 Doubly Singly
MDoubly + MSingly % _g
MSingly T MOther —5
MDoubly + MOther _%
2mpoubly -3
2mSingly - %

Table F.33: Coefficients of terms in the chiral expansion for the magnetic Sachs form
factor (Eq. ) corresponding to loop contributions with decuplet baryon intermediate
states. The labels ‘Doubly’, ‘Singly’, and ‘Other’ indicate whether the quark flavour ¢ is
doubly, singly, or not at all represented in the outer-ring octet baryon B.

Aq(d) -2
Y x C
~1 q u d S
B m¢
1 1
My, + My ~5 &
1 1
mgy + mg -3 6
1 1
My 1 B G
2my, —%
2md —%

Table F.34: Coefficients of terms in the chiral expansion for the magnetic Sachs form
factor of the A baryon (Eq. (7.30)) corresponding to loop contributions with decuplet
baryon intermediate states.

BEOQW) wx C~2

B_1m¢

mm %

Mg + Mg é _1_78
b
2m,, —%

2md _11_8

2mg —%

Table F.35: Coefficients of terms in the chiral expansion for the magnetic Sachs form
factor of the X% baryon (Eq. (7.30)) corresponding to loop contributions with decuplet
baryon intermediate states.
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B
ﬁTq((Zb)
q .

- Doubly Singly
MDoubly + MSingly 2 1
MgSingly + MOther 1
MDoubly T MOther 2

2’rnDoubly 2

2Tn'Singly 1

Table F.36: Coefficients of terms in the chiral expansion for the electric Sachs form factor
(Eq. ) corresponding to tadpole-loop contributions. The labels ‘Doubly’, ‘Singly’,
and ‘Other’ indicate whether the quark flavour ¢ is doubly, singly, or not at all represented
in the outer-ring octet baryon B.

B
5TCI(¢)

T w d s
Mg
My +mg 1 1
mq + M 1 1
my, +ms 1 1
2m,, 1
Zmd 1
2mg 1

Table F.37: Coefficients of terms in the chiral expansion for the electric Sachs form factor
of the A or X0 baryon (Eq. (7.39))) corresponding to tadpole-loop contributions.



Appendix G

Deep Inelastic Scattering and the
Operator Product Expansion

Here we sketch the connection between inclusive deep inelastic scattering (DIS),
hadron structure functions, and parton distribution functions (PDFs). We focus in
particular on the use of the operator product expansion to separate the hard (per-
turbative) and soft (nonperturbative) physics, and the relation of PDFs to matrix
elements of local operators which is the result used in Chapter [0l Further details
can be found in Ref. [30].

G.1 DIS and the Compton Forward Scattering
Amplitude

At lowest order in perturbation theory, the double-differential cross section for DIS of
polarised leptons on polarised nucleons can be factorised into leptonic and hadronic

components:
d*c 2myo’? ,
_ pv
Tl = O > LW, (G.1)
J
Here x = Q?/2Mv, where ¢ is the four-momentum transferred to the nucleon
through the virtual gauge boson with Q? = —¢*> > 0, v is the lepton’s energy

loss in the nucleon’s rest frame, and y = v/E. The summation in j is over the
exchanged bosons (y and Z for neutral-current processes, W for charged-current
processes), and the factors n; denote ratios of the corresponding propagators and
couplings to the photon propagator and coupling (squared). The lepton tensor L,,
encodes the coupling of the exchanged boson to the leptons and is explicitly calcu-
lable in electroweak theory. The hadronic tensor, on the other hand, encodes all of
the internal structure of the nucleon that is probed by the electroweak currents. It
may be expressed as

W (q,p, S) = 41 /d42€iq'z<p>5|[Ji(Z),Ju(O)} p, ), (G.2)

7
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where p and S denote the momentum and polarisation vector of the nucleon, re-
spectively, and p - S = 0. The hadronic currents, J,(z), are electromagnetic or
weak quark currents which couple to the exchanged gauge boson. For example, the
electromagnetic hadronic current is

TN2) = eqhy(2) 7 tby(2), (G.3)

q

where the sum runs over all quark flavours q.

The hadronic tensor can be decomposed into a sum of distinct Lorentz tensor
structures multiplied by dimensionless quantities, known as structure functions, ac-
companied only by kinematic variables. This decomposition is given explicitly in
Ref. [30]. Of interest to us here is the relationship between moments of these struc-
ture functions and a series of nucleon matrix elements of local operators composed
of quark and gluon fields. To derive this relationship using the operator product
expansion it is useful to consider the virtual Compton forward scattering amplitude,
defined by the time-ordered product of hadronic currents:

T (q,p,S) =i / d'z e (p, S|TJ}(2),(0)|p, S). (G.4)
By the optical theorem, this quantity is related to the hadronic tensor by

Wi (ap.5) = 5= T (a,p.5), (G
L.e., considered as a function of ¢* and w = 1/, W, is given by the discontinuity
of T, across the branch cuts in the complex plane for w (which lie on the real
axis where —00 < w < —1 and 1 < w < o0). The operator product expansion
described in the next section uses the result that the leading Q*-behaviour of W,
is determined by the light-cone singularities of the time ordered product of currents
in7),.

G.2 The Operator Product Expansion

Wilson’s operator product expansion gives a factorisation of the hadronic tensor
into hard and soft components by a formal expansion of the product of hadronic
currents in coordinate space and a systematic analysis of its light-cone behaviour.
Explicitly, the time-ordered product of hadronic currents can be expanded near the
light-cone as

iTJH(2)0(0) RS 00 (:2) 092, 0), (G.6)

7

where Lorentz indices have been suppressed for clarity. The Wilson coefficients
C®(2?) are complex-valued functions which are, in general, singular for z? — 0.
The sum runs over all bilocal operators O(z,0) with the same quantum numbers
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and transformation properties as the product of currents on the left hand side. The
expansion can be further re-written in terms of local operators by a Taylor expansion
about 22 = 0:

. 220 i i

iTJ(2)J(0) "~ ) CO(2)z 200, (0). (G.7)
Because components of z might be large even where 22 — 0, all higher-order terms
in this expansion are important. The set of local operators chosen here is generally
taken to be totally symmetric and traceless in the Lorentz indices, in order to project

onto definite spin n. The singular behaviour of the coefficient functions C®(z?) for
22 — 0 can be derived by naive dimensional counting to be

i (z2) *<° ( ! )2%_@%)_”). (G.8)

||

Here d denotes the mass-dimension of the local operators O, and d; that of the
currents. Clearly, for a given product of currents, the singular behaviour of the
coefficient functions C¥(2?) scales with the difference of the mass dimension and
spin of the associated operators. This dimension is named twist: T,(f) = dg - n, and
the operators with the lowest twist are dominant in the Bjorken limit (where Q*
and v — oo with z fixed). As operators are at least bilinear in the parton fields, the
smallest possible twist is two. Higher-twist contributions are suppressed by powers

of Q2.

Re-writing the Compton amplitude 7' (Eq. (G.4))) using the operator product
expansion, the dominant contributions are thus

T ~ Z/d% g'* O (22) 2 - Zun<p{(9£jl)___un(0)]p> (G.9)
2\" . |
~D. (@) Q%) ¢ - ¢ (p|Of..,.. (0)|p) = Tr.  (G.10)

Here we have simplified the notation by dropping Lorentz indices on the currents and
suppressing any spin-dependence. The symbol Tr denotes trace terms proportional
t0 gu,;- The coefficient functions C’,@(Cf) are essentially Fourier transforms of the

C,(f)(zz). Parameterising the matrix elements of the local operators as

(p|O)_,.(0)|p) = 209 (p,, -+ Py, — ), (G.11)

the Compton forward scattering amplitude thus becomes a Laurent series in (1/x):

T=2) C{(Q*)O0Y (i) S (G.12)
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where the ellipsis denotes the contributions from higher-twist terms. The reduced
matrix elements O generally depend on the renormalisation scale p? of the corre-
sponding operators.

Using the optical theorem (see discussion surrounding Eq. ), we thus reveal
a relationship between the nth moments of the hadronic tensor, or equivalently the
nth moments of the structure functions, and the nucleon matrix elements of the
spin-n operators in the operator product expansion[]:

/ 1 dr o™ 'W(z, Q%) =>_ Ci(Q*) 0P +--- . (G.13)

0

Factorisation appears clearly here; the hadronic tensor has been separated into hard
and soft parts. The Wilson coefficients Cff)(Q2) encode the hard physics, are inde-
pendent of the target state, and their dependence on Q? is perturbatively calculable.
The reduced matrix elements O (1?) contain all of the information about the soft
physics of the process and the internal structure of the target. These quantities
are inherently nonperturbative, and, as we describe in the next section, may be
identified with the PDFs of the QCD-improved parton model.

G.3 The QCD-Improved Parton Model

As outlined in the introduction to Chapter [6] a proton is described in the parton
model as being composed of a number of point-like quark and gluon constituents
named partons. Approaching the infinite-momentum frame of the proton, these
partons behave as quasi-free, non-interacting particles with collinear momenta. The
DIS structure functions can then be described as the incoherent sum of all virtual-
photon—parton cross-sections, weighted by the probability of finding each parton
in the proton with a given longitudinal momentum fraction x. The (nonperturba-
tive) momentum distribution number-density functions are the PDFs. In general, a
structure function F' may thus be decomposed as

F(z) = Cylx)q(x), (G.14)

where g(x) generically denotes a combination of PDFs. In general one writes ¢(x)
for quarks, g(z) for antiquarks, and Agq for the spin-dependent combination (the
difference of the distributions with the quark spin parallel and antiparallel to the
proton spin) of flavour g.

This intuitive picture is modified by our understanding of QCD. In particular, the
radiation of hard gluons from the quarks violates the assumption that the transverse
momentum of the partons in the infinite-momentum frame of the proton is small.

Tn fact, because of some details of the Cauchy integration in w = 1/x in the derivation, this holds
only for certain values of n (even or odd) depending on amplitude under consideration. Details
are given in Ref. [30] or in standard textbooks.
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This leads to logarithmic scaling violations (particularly at small z). That is, the
structure functions in fact evolve with the probing scale and are not functions of x
alone. In this ‘QCD-improved’ parton picture, the structure functions still factorise,
but are now described in terms of scale-dependent PDFs f(z, u?), where f denotes
the gluons ¢ or some flavour of quark ¢, and p is the scale of the probeﬂ

From Eq. applied to the structure functions it is clear that moments of
the QCD-improved parton model PDFs may be directly identified with the scale-
dependent reduced matrix elements of local operators. As an explicit example we
consider the current .J, = ¢v,q for a single quark flavour ¢q. At twist-two, the Lorentz
structure of the operators that can contribute to the operator product expansion
can be either gy*q or gy*v5q (in the limit that light quark masses can be neglected),
because the operator product J*J" does not change chirality. The conventional
basis of twist-two spin-n operators is

Oglun — in—lq,yﬂl D H2 D H/nq7 (G15a)
OR, 1 = gyt D - - Dy, (G-15b)

These operators basically assess the one-particle properties of the quarks in some
state, e.g., in a baryon B. At n = 1 they reduce to the usual vector and axial-vector
currents which measure the coresponding baryon charges. Matrix elements of these
operators:

(B(p)|[Of#nd — Tx]| B(p)) = 2(a™ 1 E[pler - pnd — Ty], (G.16a)
(B(p)|[O%e ) — Tv)| B(R)) = 2(a™) 8, Mp[SUopit - p) — ], (G.16b)

are matched to moments of the spin-independent (¢”) and spin-dependent (Ag?)
quark distribution functions in B (where we have suppressed the dependence on the
scale p?):

(2" 1B = / dr 2"V (gP(2) + (~1)"gP(2)), (G.17a)
(™%, —/0 dx 2™ (A¢P () + (=1)"AG" (1)). (G.17b)

Higher-twist effects have no single-particle interpretation within the parton model.
For example, twist-four (next-to-leading order) contributions are understood to orig-
inate from two sources: the influence of nonperturbative background gluon fields on
the quark propagators, i.e., the correlation of a quark and gluon with total momen-
tum fraction z, and four-quark operators.

2The generalisation of Eq. (G.14) in fact involves the convolution of the perturbatively-calculable
hard scattering cross-section term and the PDFs.






Appendix H

Chiral Extrapolation Formulae for
Moments of PDF's

In this appendix we give explicit expressions for the chiral extrapolation of several
PDF-moment observables which were discussed in Chapter [6]

H.1 g4 and (x)! ,

To facilitate direct comparison with, and use of, the master expressions given in
Egs. (6.38) and , we write out the chiral expansions for the isovector ob-
servables (1)X, Aqg = 94 and (z)? . explicitly. These expressions match earlier
work [171,310] in the limit ¢ — 0. As outlined in Chapter @, the integrals J
correspond directly to logarithmic contributions of the form m?log(m?) in DR. In
matching with familiar notation, we identify Ay©® = 2} and impose the SU(6)
relation H = —3D.

1 2
a=D+F, (H.2a)
1
bar =3 | (— 00" + A6 — 268" + 20 + AU + AK”) B,

+ (—268 + A6”) B,
+ (Abgm + ALY 1+ A £ AN 4 Ab;@) Bms] , (H.2b)
1 2

d=—5(D+F) [—3(0 + F)cose + V3(D — 3F) sin e} T(m2,)

—

D+ F) [(D +F)?J(m2s) + JT(mii)]

(D = F){2F +3(D + F)(D — F) J(mka) + Jr (m%0) }

DO | —

199
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%[21)3 + D*F + 12DF? + 9F%] J(m%s) — F Jr(m%s)
é(D—FF) [S(D—I—F) sine + V3(D — 3F) cose} j(m%), (H.2¢)
d ng[(cos €) Jg( 20,0) + 4J2( 20,0) + jg(m%(o,é) + (sin”¢) @(miﬁ)]

_é(DJrF)[ (cos? €) o (m2,8) + 8 Jo(m2s, ) + 2 o (mko, 8) + Jo(m%e, 0)
+ 4(sin€) J, (m2, 5)}

+§{4(cose)[(D+F)COS€—L(D 3F)Sm€} Ji(m?,0)

V3

+4(D + F) Jy(m2+,0) +2(D — F) Jy(m%0,8) + (D + 3F) Jy (m% ., )
. . 1

+ 4(sine) {(D+F)sme+ﬁ(D—3F)cose] Jl( 7T0,5)}. (H.2d)

_ - ]. — —/ 2
@)=+ b+ o (a+dc?), (H.3)
1 1
a=7 (a<2> — 55@)) , (H.4a)
o
bar =5 [ (=07 + 08 = o 07+ 4 o) B+ (0 + ) B,

+ <b1 + b +b§2>+bf)+b$2))6ms], (H.4b)

STV ST

(0 + 483 [3(D = F)? J(mka) +2 Jr (o)

1

57 (@

i{[6DF( ) —2p@) + 3F%(a® +283)
+D?(110® — 105@)] J(m%.)

+(50® +28) T (m3s) }. (HLAc)

— 1 ~
d = 5(,}/(2) _ '7/(2)) [(COS 6) JQ( 7r075) + 4J2( ﬂi,(S) + Jg (mio,é)
+(sin? €) JQ(mQ,é)}
— i(204(2) - ﬂ@)) |:4(COS €) Jg( 20,0) + 8J2( 20,0) + 2J~2(m§(0,5)

36
+J (mF=,8) + 4(sin€) J (m2, 5)} : (H.4d)
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H.2 Charge Symmetry Violation

This section gives formulae for the spin-dependent and spin-independent charge
symmetry violating quark distributions as functions of quark and meson mass. The
expression for 6Au™ was presented as Eq. (6.50) in Chapter [ All integrals and

constants are defined in that chapter.

H.2.1 Spin-Dependent CSV PDF's

SAL" = (oo~ )R = T8+ o (R + A8 4 al"). )
am :% (-An§m> + Angm>) B(m, —ma), (H.Ga)
B :% (D* = 2DF — 3F?) sin(2¢) (Aa™ + 4A8™ + 6A00™)

x | T(m2,) = T(m2)]

+ 2—14[D2<Aa(m) _ 4A6(m) _ 8A0(m)) +6DF(Aa(m) +4Aﬁ(m) I SAO'(m))

+F2(58a™ +20A8™ + 24A0(™)] [J(mﬁ(o) - j’(mii)}

1 ~ ~
— 57 (8a +4A8) [Ty () = Tr (mies) | (FL6D)
a = - %(Aa(m) 4B 4 640 )2 | Ty (o, 8) — To(ms, )]
1 ~ ~
+ 557 (5891 = Ay )€ |y (o, 8) = o) | (HL6c)
4 ~ ~
g =+ 55D~ 3F)sin(20 A |71 (m2a,8) + Ty (m2,0) |
4 ~ ~
+ PO Ty (1, 6) = Ty (s, 8)) - (H.6d)

H.2.2 Spin-Independent CSV PDF's

1

bum =(a™), — {a")i = 0t + 7 (b + ™), (H.7a)
d u 1672 f2 ’
1 m m m m
0 =5 (=n{™ + 0§ 40l 0™ ) Bl —ma), (H.8a)
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1
m) — L 1p2(7am _ ogm) (m) _ 9g0m) 2(50(m) 4 9(m)
o = [D*(Ta 28'™) + 6DF (a 28™) + 3F?(5a™ +280™)]
x [ T(mi) = T(m3s) |
1 - -

+ o2 (5™ 4+ 250) [Ty (m3) = Tr (). (FLSD)

dm = — 7_12(5a<m> 28 4+ 60)C2 | o (o, 6) — To (i, )]
1 - -

— %(37(7”) — /() c? |:J2 (Mo, 0) — Jo(mies, 5)] (H.8¢)
atm =3 (—né )+ ném))B(mu —mg), (H.8d)
™ :i [~ D2(7at™ + 480 + 6DF (o™ + 48™) — 3F2(a(™ + 450M)]

x [T(mi) = T (s

1 ~ ~
— 57 (0 +48) [ Tr (ma) = T (ms) | (H.8e)
C_Z(m)

= (0 + 48 160 ) [Ty (e, 0) — To(mie )]

+ 1o (39 = )2 Ty (o, 6) — o (s 6) . (ILSf)



Appendix I

Lattice Simulation Results for the
Electromagnetic Form Factors

This section presents tables of raw lattice simulation results, and basic derived quan-
tities, for the electromagnetic form factors F; and F; for the simulation parameters
tabulated in Section . The Dirac and Pauli mean-squared charge radii (rz)ﬁ’gq,
and anomalous magnetic moments x29, extracted using naive dipole-like fits to the
raw lattice data as discussed in Section [7.2.3] are shown in Tables [.IHL.7] The raw
data for simulation set I is given in Tables [[.8H[.I0| that for simulation set II is
presented in Tables [[.11HI.13] and raw lattice results on the orphan ‘ensemble 10’
are given in Tables |[.14HI.16

B,q (P37 (fm?) (7357 (fm?) &5 (uy)

pou  0.467(16) 0.391(91) 0.0414(53)
p,d  0.558(19) 0.502(39)  —0.0616(27)
S,u 0.441(10) 0.374(40) 0.0615(37)
S5 0.4008(69)  0.319(14)  —0.0598(11)
2,5 0.3732(35)  0.283(16) 0.0482(11)
Z,u  0.5208(69)  0.450(13)  —0.0679(11)

Table I.1: Dirac and Pauli mean-squared charge radii and anomalous magnetic moments,

extracted from dipole-like fits (Egs. (7.10a) and (7.10b))) to ensemble 10 at (m,,mg) =
(220, 540) MeV. Details are given in Section
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(M, mg) (MeV) Q2 (GeV?)  FP P e P
(465,465) 0.26 1.434(24)  0.666(11) 0.932(20) —1.113(11)
0.51 1.134(19)  0.4873(94) 0.722(18) —0.8298(94)
0.73 0.936(17)  0.3744(88) 0.589(19) —0.6525(88)
0.95 0.804(16)  0.3014(75) 0.474(21) —0.5547(75)
1.15 0.697(15)  0.2491(72) 0.392(16) —0.4621(72)
1.35 0.616(15)  0.2058(73) 0.328(15) —0.3956(73)
(360,505) 0.26 1.3982(91) 0.6425(40) 0.822(28) —1.081(18)
0.51 1.089(12)  0.4588(51) 0.651(23) —0.792(12)
0.72 0.884(17)  0.3412(66) 0.535(26) —0.622(13)
0.92 0.781(32) 0.284(11) 0.396(36) —0.527(24)
1.12 0.656(26)  0.2219(81) 0.341(22) —0.426(17)
1.3 0.551(26)  0.1719(81) 0.324(23) —0.339(15)
(310,520) 0.26 1.382(18)  0.6253(75) 0.885(58) —1.034(33)
0.49 1.075(20)  0.4433(82) 0.620(39) —0.792(24)
0.71 0.883(29) 0.316(13) 0.528(41) —0.586(34)
0.91 0.754(41)  0.268(15) 0.409(59) —0.519(38)
1.1 0.633(29) 0.194(11) 0.346(34) —0.435(25)
1.29 0.535(36) 0.158(17) 0.343(43) —0.342(30)
(440,440) 0.26 1.3994(79) 0.6540(40) 0.823(38) —1.080(24)
0.5 1.078(11)  0.4689(56) 0.590(31)  —0.804(20)
0.73 0.871(15)  0.3548(79) 0.451(31) —0.623(21)
0.94 0.733(21)  0.2827(92) 0.336(32) —0.479(20)
1.14 0.616(19)  0.2264(89) 0.270(24) —0.403(17)
1.33 0.545(25) 0.189(11) 0.236(23) —0.349(20)
(400,400) 0.26 1.3974(91) 0.6411(53) 0.854(56) —1.027(29)
0.5 1.084(12)  0.4564(62) 0.692(38) —0.744(24)
0.72 0.888(20)  0.3377(89) 0.506(33) —0.596(25)
0.93 0.787(28)  0.286(12) 0.412(47) —0.533(28)
1.13 0.668(20)  0.2299(85) 0.361(32) —0.411(21)
1.32 0.585(27) 0.184(10) 0.296(26) —0.356(26)
(330,435) 0.26 1.367(11)  0.6303(80) 0.819(46) —1.029(28)
0.5 1.057(14)  0.437(10)  0.651(30) —0.773(16)
0.72 0.875(17) 0.324(13) 0.511(31) —0.593(20)
0.92 0.726(33)  0.267(16) 0.340(45) —0.473(31)
1.12 0.614(26)  0.207(13) 0.296(27) —0.395(21)
1.3 0.544(29)  0.170(13) 0.271(30) —0.319(24)

Table I.8: Raw lattice simulation results for the nucleon: data set I.
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(my,mg) (MeV)  Q? (GeV?) E Fs B E*
(465,465) 0.26  1.434(24) 0.666(11) 0.932(20) —1.113(11
0.51  1.134(19) 0.4873(94) 0.722(18) —0.8298(9
0.73  0.936(17) 0.3744(88) 0.589(19) —0.6525(3
0.95  0.804(16) 0.3014(75) 0.474(21) —0.5547(7
115 0.697(15) 0.2491(72) 0.392(16) —0.4621(7
135 0.616(15) 0.2058(73) 0.328(15) —0.3956(7
(360,505) 026 1.4008(72) 0.6829(21) 0.996(24) —1.126(10
0.5 1.0839(97) 0.5058(31) 0.770(21) —0.8620(89)
0.73  0.871(13) 0.3882(43) 0.615(20) —0.680(10
0.95  0.774(23) 0.3301(73) 0.479(27) —0.587(15
1.15 0.646(20) 02611(60) 0.414(19) —0.479(13
134 0.545(21) 0.2092(68) 0.367(18) —0.393(13
(310,520) 026 1.372(12) 0.6776(36) 1.062(38) —1.005(14
0.51  1.055(14) 0.5074(56) 0.796(25) —0.855(17
0.73  0.855(20) 0.3937(82) 0.657(29) —0.681(24
0.95 0.731(24) 0.327(10) 0.507(35) —0.592(21
115 0.641(22) 0.2667(94) 0.439(25) —0.515(20
135 0.563(30) 0.222(14) 0.419(33) —0.442(27
(440,440) 026  1.3994(79) 0.6540(40) 0.823(38) —1.080(24
0.5 1.078(11)  0.4689(56) 0.590(31) —0.804(20
0.73  0.871(15) 0.3548(79) 0.451(31) —0.623(21
0.94 0.733(21) 0.2827(92) 0.336(32) —0.479(20
114 0.616(19) 0.2264(89) 0.270(24) —0.403(17
133 0.545(25) 0.189(11) 0.236(23) —0.349(20
(400,400) 0.26  1.3974(91) 0.6411(53) 0.854(56) —1.027(29
0.5 1.084(12)  0.4564(62) 0.692(38) —0.744(24
0.72  0.888(20) 0.3377(89) 0.506(33) —0.596(25
0.93  0.787(28) 0.286(12) 0.412(47) —0.533(28
113 0.668(20) 0.2209(85) 0.361(32) —0.411(21
132 0.585(27) 0.184(10) 0.296(26) —0.356(26
(330,435) 0.26 1.3678(86) 0.6557(48) 0.915(41) —1.076(16
0.5 1.053(11)  0.4731(66) 0.714(24) —0.815(13
0.73  0.864(13) 0.3598(81) 0.555(27) —0.633(17
0.94  0.734(24) 0.297(11) 0.414(34) —0.529(20
114 0.624(22) 0.238(10) 0.343(23) —0.442(17
133 0.554(27) 0.198(11) 0.296(24) —0.368(21

Table 1.9: Raw lattice simulation results for the sigma baryon: data set I.
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(my,mg) (MeV) Q? (GeV?) P FE F* oS
(465,465) 0.26  1.434(24) 0.666(11) 0.932(20) —1.113(11)
051  1.134(19) 04873(94) 0.722(18) —0.8298(94)
0.73  0.936(17) 0.3744(88) 0.589(19) —0.6525(38)
0.95  0.804(16) 0.3014(75) 0.474(21) —0.5547(75)
115 0.697(15) 0.2491(72) 0.392(16) —0.4621(72)
135  0.616(15) 0.2058(73) 0.328(15) —0.3956(73)
(360, 505) 0.26  14537(51) 0.6457(27) 0.940(18) —1.129(10)
0.51  1.1536(76) 0.4607(35) 0.747(15) —0.8270(78)
0.74  0.948(10) 0.3437(45) 0.616(14) —0.6411(82)
0.96 0.841(20)  0.2909(69) 0.481(18) —0.531(13)
1.17 0.712(19) 0.2278(58) 0.422(16) —0.436(11)
136 0.608(20) 0.1789(65) 0.376(16) —0.354(11)
(310,520) 0.26  1.4475(58) 0.6317(38) 0.974(18) —1.114(13)
0.51  1.1557(36) 0.4468(51) 0.762(16) —0.825(11)
0.74  0.960(13) 0.3347(78) 0.630(18) —0.640(14)
0.96  0.834(17) 0.2742(66) 0.513(18) —0.524(16)
117 0.728(18) 0.2169(61) 0.442(17) —0.449(17)
137 0.647(26) 0.179(10) 0.403(21) —0.376(20)
(440,440) 0.26  1.3994(79) 0.6540(40) 0.823(38) —1.080(24)
0.5 1.078(11)  0.4689(56) 0.590(31) —0.804(20)
0.73  0.871(15) 0.3548(79) 0.451(31) —0.623(21)
0.04  0.733(21) 0.2827(92) 0.336(32) —0.479(20)
114 0.616(19) 0.2264(39) 0.270(24) —0.403(17)
133 0.545(25) 0.189(11) 0.236(23) —0.349(20)
(400,400) 0.26  1.3974(91) 0.6411(53) 0.854(56) —1.027(29)
0.5 1.084(12)  0.4564(62) 0.692(38) —0.744(24)
0.72  0.888(20) 0.3377(89) 0.506(33) —0.596(25)
0.93  0.787(28) 0.286(12) 0.412(47) —0.533(28)
113 0.668(20) 0.2209(85) 0.361(32) —0.411(21)
132 0.585(27) 0.184(10) 0.296(26) —0.356(26)
(330,435) 0.26  1.4094(62) 0.6283(41) 0.892(28) —1.082(14)
0.5 1.1030(87) 0.4418(56) 0.684(18) —0.795(11)
0.73  0.911(11) 0.3313(63) 0.546(19) —0.623(13)
0.95  0.792(19) 0.273(10) 0.430(25) —0.501(16)
115 0.677(19) 0.2178(86) 0.352(18) —0.424(13)
134 0.594(23) 0.1794(36) 0.306(20) —0.354(17)

Table 1.10: Raw lattice simulation results for the cascade baryon: data set I.



210 Lattice Simulation Results for the Electromagnetic Form Factors

(me,mg) (MeV) Q? (GeV?) — FPU P Jode e
(405,405) 0.17 1.5427(36) 0.7270(22) 1.038(28) —1.193(14)
0.33 1.2593(63) 0.5578(35) 0.856(23) —0.9420(90)
0.48 1.0658(90) 0.4448(46) 0.714(22) —0.7663(99)
0.62  0.940(12) 0.3724(57) 0.606(24) —0.655(12)
0.76  0.822(12) 0.3100(56) 0.513(19) —0.555(11)
0.89  0.730(15) 0.2620(64) 0.440(18) —0.480(11)
114 0.568(19) 0.1888(70) 0.331(22) —0.358(12)
(340,430) 0.17 1.5070(88) 0.7110(35) 0.988(39) —1.150(27)
0.32 1.2138(99) 0.5420(51) 0.759(29) —0.875(19)
0.47 1.018(12)  0.4302(64) 0.613(28) —0.711(18)
0.61 0.878(18)  0.3522(90) 0.493(34) —0.590(19)
075  0.767(19) 0.2971(90) 0.405(25) —0.495(16)
087  0.694(25) 0.256(10) 0.354(27) —0.440(19)
112 0.547(32) 0.190(12) 0.244(30) —0.339(25)
(265,450) 0.17 1.507(11)  0.7002(58) 0.872(75) —1.155(41)
0.32 1.224(15)  0.5298(72) 0.709(43) —0.869(30)
0.47 1.036(22)  0.4239(99) 0.504(47) —0.696(31)
0.61 0.870(24) 0.329(12) 0.380(59) —0.603(31)
0.74  0.778(26) 0.288(11) 0.337(34) —0.499(28)
0.86  0.686(32) 0.238(13) 0.315(36) —0.425(30)
1.1 0.518(40) 0.170(15) 0.217(49) —0.301(32)

Table I.11: Raw lattice simulation results for the nucleon: data set II.
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(M, mi) (MeV) Q2 (GeV?) Fo FP B s
(405,405) 0.17 1.5427(36) 0.7270(22) 1.038(28) —1.193(14)
0.33 1.2593(63) 0.5578(35) 0.856(23) —0.9420(90)
0.48 1.0658(90) 0.4448(46) 0.714(22) —0.7663(99)
0.62 0.940(12)  0.3724(57) 0.606(24) —0.655(12)
0.76 0.822(12)  0.3100(56) 0.513(19) —0.555(11)
0.89 0.730(15)  0.2620(64) 0.440(18) —0.480(11)
1.14 0.568(19)  0.1888(70) 0.331(22) —0.358(12)
(340,430) 0.17 1.5105(72) 0.7381(28) 1.107(39) —1.207(17)
0.33 1.2179(85) 0.5780(44) 0.849(28) —0.952(15)
0.48 1.021(10)  0.4690(57) 0.682(27) —0.788(14)
0.62 0.887(16)  0.3929(78) 0.553(31) —0.668(16)
0.76 0.775(17)  0.3333(80) 0.458(24) —0.567(14)
0.89 0.699(21)  0.2892(96) 0.397(26) —0.504(17)
1.14 0.558(27)  0.219(11) 0.275(27) —0.389(21)
(265,450) 0.17 1.5108(79) 0.7485(27) 1.132(53) —1.172(26)
0.33 1.212(10)  0.5920(42) 0.894(37) —0.950(21)
0.48 1.019(13)  0.4846(60) 0.682(34) —0.791(21)
0.62 0.881(14)  0.4033(82) 0.543(37) —0.668(23)
0.76 0.761(16)  0.3411(82) 0.459(26) —0.576(20)
0.89 0.680(20)  0.2927(96) 0.409(26) —0.507(22)
1.14 0.525(28)  0.213(10)  0.296(33) —0.385(26)

Table 1.12: Raw lattice simulation results for the sigma baryon: data set II.
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(my,mg) (MeV)  Q? (GeV?) P P F= F=
(405,405) 0.17  1.5427(36) 0.7270(22) 1.038(28) —1.193(14)
0.33  1.2593(63) 0.5578(35) 0.856(23) —0.9420(90)
048  1.0658(90) 0.4448(46) 0.714(22) —0.7663(99)
0.62  0.940(12) 0.3724(57) 0.606(24) —0.655(12)
076 0.822(12) 0.3100(56) 0.513(19) —0.555(11)
0.89  0.730(15) 0.2620(64) 0.440(18) —0.480(11)
114 0.568(19) 0.1888(70) 0.331(22) —0.358(12)
(340,430) 0.17  1.5483(42) 0.7144(27) 1.027(26) —1.197(18)
033 1.2730(67) 0.5471(39) 0.808(22) —0.920(13)
048  1.0816(95) 0.4364(51) 0.655(21) —0.746(13)
0.62  0.947(13) 0.3622(66) 0.529(23) —0.625(14)
0.76  0.833(15) 0.3066(69) 0.449(19) —0.528(12)
0.9 0.752(19)  0.2654(84) 0.393(20) —0.466(14)
115 0.613(26) 0.2021(99) 0.283(21) —0.367(18)
(265,450) 017  1.5672(39) 0.7074(25) 0.970(24) —1.232(18)
0.33 1.2997(65) 0.5384(35) 0.779(19) —0.933(14)
048 1.1059(94) 0.4278(44) 0.642(18) —0.742(13)
0.63  0976(12) 0.3525(55) 0.523(21) —0.633(15)
0.77  0.856(14) 0.2054(59) 0.454(18) —0.529(12)
0.9 0.758(18)  0.2515(64) 0.396(16) —0.450(15)
116 0.616(26) 0.1905(38) 0.313(25) —0.338(16)

Table 1.13: Raw lattice simulation results for the cascade baryon: data set II.

(me,mg) (MeV) Q@ (GeV?) — FPU P ods jadd
(220,540) 0.12 1.612(12)  0.7631(50) 0.93(12)  —1.251(46)
0.23 1.342(12)  0.6122(75) 0.717(76) —1.006(36)
034  1.165(16) 0.5103(93) 0.606(74) —0.877(32)
044  1.016(21) 0.424(12) 0.604(85) —0.709(38)
0.54  0.906(18) 0.359(10) 0.534(53) —0.635(29)
0.63  0.822(20) 0.311(11) 0.465(45) —0.563(26)
0.81 0.678(36) 0.244(15) 0.345(54) —0.452(36)

Table 1. 14 Raw lattice simulation results for the nucleon calculated on ensemble 10
(Table [7.1)), at (mx, mg) = (220,540) MeV.



213

(my,mg) (MeV) Q? (GeV?) o s o Fy*
(220,540) 012 1.6270(77) 0.8219(21) 1.204(88) —1.314(21)
023 1.3616(92) 0.7040(38) 1.120(60) —1.147(18)
0.35  1.178(10) 0.6109(52) 0.952(49) —1.010(17)
045  1.037(15) 0.5335(74) 0.896(49) —0.898(19)
0.56  0.924(16) 0.4723(80) 0.772(35) —0.810(18)
0.66  0.820(16) 0.4202(87) 0.681(30) —0.731(19)
085  0.687(25) 0.338(11) 0.530(34) —0.610(21)

Table 1.15: Raw lattice simulation results for the sigma baryon calculated on ensemble
10 (Table[7.1)), at (mx, mg) = (220,540) MeV.

(mx, mg) MeV) Q2% (GeV?) Fo P Fo Fy
(220,540) 0.12  1.6759(21) 0.7779(20) 1.062(26) —1.410(19)
0.24  14772(47) 0.6288(27) 0.955(21) —1.155(16)
0.35  1.3183(71) 0.5251(33) 0.862(19) —0.982(16)
046  1.1835(94) 0.4400(47) 0.756(19) —0.843(14)
0.56  1.079(11) 0.3800(46) 0.691(17) —0.734(13)
0.67  0.987(13) 0.3310(48) 0.636(17) —0.643(13)
0.87  0.840(18) 0.2594(61) 0.518(17) —0.512(14)

Table I.16: Raw lattice simulation results for the cascade baryon calculated on ensemble
10 (Table[7.1)), at (mg, mg) = (220,540) MeV.






Appendix J

Additional Results for Chapter

This appendix gives further details of the study of the electromagnetic form factors
which was presented in Chapter [7]

J.1 Fit Parameters

Figures [J.1] and [J.2 show the values of the chiral parameters determined by our fits
to the magnetic and electric Sachs form factors. The parameters up and pp (bp

and bp) are defined in Eq. (7.28)) (Eq. (7.35))), while the ¢; appear in Egs. (7.29)) and

(7.36). The d; are relevant linear combinations of the c¢;:

1
di = c5 — chla dy = c6 + c11, (J.1a)
)
d3 = cg + C11, d4 = C1g — =C4 + C12. (Jlb)

2

We note that the numerical values of the parameters shown here are unrenormalised.
They are included merely to illustrate their approximately linear form in Q2. Recall
that the fits at different values of % are independent.

J.2 Octet Baryon Form Factors: Figures

Figures[J.3] and show the connected part of the octet baryon electromagnetic
form factors, extrapolated to infinite volume and the physical pseudoscalar masses.
The fits shown are those used in Sections [7.5.2] and [7.5.3] to extract the magnetic
moments and magnetic and electric mean-square radii.
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Figure J.1: QQ?-dependence of the unrenormalised fit parameters for the chiral extrapo-
lation of the magnetic Sachs form factors—see Egs. (7.28) and ([7.29)).
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Figure J.3: Connected part of the octet baryon magnetic form factors. The blue circles
(left-hand column) and green crosses (right-hand column) denote the results of simulation
sets I and II, respectively, extrapolated to infinite volume and the physical pseudoscalar
masses. The red stars indicate the experimental magnetic moments. The lines show

dipole-like fits in Q? using Eq. (7.40) (dashed red) and Eq. (7.41)) (solid blue or green).
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J.3 Details of the Calculation of éRfl

In this section we give further details of our model for the ratio of disconnected loop
contributions to the electromagnetic form factors of the proton, ‘R3 = ‘G*/‘Ge.

This quantity is needed for the calculation of the strange form factors performed in
Section

The loop diagram shown in Fig. [7.6(a)| gives contributions to the magnetic and
electric form factors of the proton which depend on the integrals I, and Iy, respec-
tively:

Iy (m. 0?) = / itk + ;]f)w z;_(ﬁ ~4/2) 12)
Ip(m, Q?) = / il ﬂ/c:ljﬁ;qj@j@ —4/2) (1.3)
where
wy = \/(Eiq’/z)Q +m2, (J.4)
{is defined to lie along the z-axis, Q? = —q2 and u(k) is the ultraviolet regulator used

in the FRR scheme. As was done for the chiral extrapolation of the lattice results

2
used in this calculation [240}241], we choose a dipole regulator, u(k) = <A2A—+2k2> ,
with a regulator mass A = 0.8 & 0.2 GeV. The dipole form is suggested by a
comparison of the nucleon’s axial and induced pseudoscalar form factors 78] and

the choice of A is informed by a lattice analysis of nucleon magnetic moments [99].

For the electric form factor we also consider Fig. [7.30(b)] as discussed in Sec-
tion In the formalism used here, this diagram contributes a constant to the
electric form factor which is equal in magnitude and opposite in sign to the con-
tribution from Fig. at Q% = 0, ensuring that the electric charge remains
unrenormalised. We model the Q2-dependence of Fig. by scaling that con-
stant by an appropriate form factor. This results in a contribution to G which is
identical to that of Fig. under the replacement

T (me, Q) — ~Ip(mg.0) G%(Q). (1.5)

Here G, (for ¢ = {d, s}) is the ¢ quark contribution to the ‘intermediate’ baryon
form factor; it is the average contribution of ¢ quarks to the form factors of the
intermediate baryons in the loop with a proton external state, weighted by the
appropriate Clebsch-Gordon coefficients. We approximate this for the s quark by
the form factor G%O’S, taken from our lattice simulations. Similarly, we set G to
the same quantity, but where the strange quark mass is set equal to the light quark
mass in the chiral extrapolation of Section [7.4]
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The contributions of the loop diagrams of Fig. to the proton electric and
magnetic form factors are given by the loop integrals defined above, weighted by the
appropriate chiral coefficients. As the disconnected chiral coefficients for the d and
s quarks are the same (and cancel in the ratio), the central values of ‘R at each
are given simply by the ratio of the integrals I(mg, Q?) with pion and kaon masses
in the loops:

i @) = 1T, (1.6
ZRZ,E(QQ) _ [E(mﬂ7Q2) _IE(mW’()) GE(Q2) (J7)

 Ip(mi, Q) — In(mk,0) G3(Q%)

The dominant uncertainty in eRfl comes from allowing the regulator mass A
to vary in the range 0.6-1.0 GeV. This is combined in quadrature with half of
the shift that results from additionally allowing decuplet intermediate states in the
loops. The calculation including the decuplet loops proceeds as described above,
with additional terms—the relevant decuplet-intermediate-state loop integrals (given
in Section —in both the numerator and denominator of Egs. and ,
weighted by the appropriate relative disconnected chiral coefficients which may be
found in Ref. [306].
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