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Abstract

The role of strange quarks in generating the structure of the nucleon provides a

key testing-ground for our understanding of Quantum Chromodynamics (QCD).

Because the nucleon has zero net strangeness, strange observables give tremendous

insight into the nature of the vacuum; they can only arise through quantum fluctu-

ations in which strange-antistrange quark pairs are generated. Strange observables

are also relevant to searches for physics beyond the Standard Model; the role of

the strange quark in generating the nucleon mass—encoded in the strange sigma

term—is essential information for the interpretation of dark matter direct-detection

experiments. For these reasons, strangeness in the nucleon is currently a particular

focus of the nuclear physics community.

We use the numerical lattice gauge theory approach to QCD, and the chiral

perturbation theory formalism, to build a clear picture of the role of strange quarks in

various nucleon-structure observables. A detailed analysis of the octet baryon masses

provides precise new values of the nucleon sigma terms. By combining experimental

and lattice input, we deduce the strange electromagnetic form factors of the nucleon

over a far larger range of momentum-scales than is accessible experimentally. Our

calculation of the strange magnetic moment is an order of magnitude more precise

than the closest experimental result.

Until now, the dominant uncertainty in experimental determinations of the

strange proton form factors has come from a lack of knowledge about the size of

charge symmetry violation (CSV) in these quantities. CSV effects quantify the

breaking of the approximate SU(2)-flavour symmetry of the up and down quarks.

As well as their relevance to experimental determinations of nucleon strangeness,

the precise knowledge of CSV observables has, with increasing experimental preci-

sion, become essential to the interpretation of many searches for physics beyond the

Standard Model. We develop a formalism for the calculation of CSV observables

from isospin-averaged 2 + 1–flavour lattice QCD simulations.

Applying this formalism to a comprehensive lattice-based study of the electric

and magnetic Sachs form factors of the baryon octet reveals that the CSV form fac-

tors are an order of magnitude smaller than suggested by previous work. This cal-

culation opens the door for new, precise, experimental measurements of the strange

nucleon form factors. We also investigate the proton-neutron mass difference and

quantify the long-neglected CSV effects in the low Mellin moments of the spin-

dependent and spin-independent parton distribution functions. This analysis im-

proves the interpretation of neutrino-nucleus deep inelastic scattering experiments.
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Chapter 1

Introduction

Protons and neutrons are the building blocks of atomic nuclei. Collectively called

nucleons, they constitute more than 99% of the visible mass in our universe. Quan-

titatively describing the structure of these particles in terms of the quark and gluon

constituents encoded in Quantum Chromodynamics (QCD), our theory of the strong

force, remains a defining challenge for hadronic physics research. The ultimate goal

is to ‘map out’ the complete spatial, momentum, spin, flavour, and gluon structure

of the nucleon; to understand (and be able to predict) its interactions and reso-

nances precisely. Such a map is not only the key to interpreting our observations

of Nature in terms of the currently-accepted fundamental theory, but is essential to

inform searches for physics beyond the Standard Model (SM). For example, QCD

calculations of the SM background are necessary to constrain direct searches for

new physics at the high-energy frontier at the Large Hadron Collider. In the low

energy-regime—at the so-called intensity frontier—QCD is typically the limiting

factor in indirect searches for non-SM physics, from CP violation in b-quark decays

to permanent electric dipole moments in hadrons and nuclei.

Over several decades of experimental investigation and theoretical analysis based

on QCD, a complicated picture of the nucleon has emerged. The modern under-

standing is that its structure is generated not only by three ‘valence’ quarks—the

simplest configuration needed to carry the observed quantum numbers—but addi-

tionally any number of ‘sea’ quark-antiquark pairs and gluons. Deep inelastic scat-

tering of electrons and neutrinos off nuclear targets has demonstrated that, at low

values of the probing momentum-scale Q2, valence-quark effects dominate. For the

proton and neutron, with valence-quark content (uud) and (udd) respectively, the

u and d quarks are thus of primary importance. However, with larger values of Q2

the resolving power of scattering probes increases, and the increasingly-significant

role of the vacuum-generated qq pairs and gluons is exposed. Because the large

masses of the heavy quarks (Q = c, b or t) prohibit any significant admixtures of

QQ pairs in the nucleon wavefunction, strange quarks—the lightest of the sea-only

quark flavours—play a unique role. Providing tremendous insight into the nature

of the quantum vacuum, strange nucleon observables occupy a position in QCD

comparable in significance to that of the Lamb shift in the history of QED. The

calculation of these quantities within QCD, and their verification by experiment, is

thus of fundamental importance.
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2 Introduction

As well as providing a key test of our understanding of QCD, strange observables

are relevant to searches for physics beyond the SM. The role of the strange quark

in generating the nucleon mass—encoded in the strange sigma term—is particularly

topical as the uncertainty on this much-debated quantity is the limiting theoretical

factor in the interpretation of experimental searches for particle dark matter. The

spatial distribution of the nucleon’s strange quark content has also received consid-

erable attention in recent decades. Despite significant accelerator facility programs

at Jefferson National Laboratory and at Mainz, the best experimental values of

the proton’s strange electromagnetic form factors are indistinguishable from zero.

The limiting uncertainty in future determinations of these quantities is theoretical,

arising from the assumption of good charge symmetry.

Charge symmetry violating (CSV) effects quantify the breaking of the approxi-

mate SU(2)-flavour symmetry of the u and d quarks. Beyond their relevance to the

experimental investigation of strangeness in the nucleon, the precise determination

of CSV observables has, with increasing experimental precision, become essential

theoretical input for searches for physics beyond the SM. In particular, the long-

neglected CSV effects in the low Mellin moments of the spin-independent parton

distribution functions are important to the interpretation of neutrino-nucleus deep

inelastic scattering experiments. Clearly it has become imperative to determine

both strange and CSV observables precisely from QCD.

The only known way to directly probe QCD in the nonperturbative regime is

using a numerical technique named lattice QCD. This method involves explicitly cal-

culating observables within a discretised formulation of QCD. First proposed in the

mid-1970s, lattice methods, computer infrastructure, and the theoretical techniques

used to interpret lattice simulation results, have now reached a level of sophistica-

tion that allows truly quantitative predictions to be made from QCD. In this body

of work we explore hadron structure from lattice QCD, with a particular focus on

both strangeness and CSV in nucleon observables.

After introducing QCD, the lattice approach, and the chiral perturbation theory

formalism upon which this work is based, in Chapters 2 and 3, we investigate several

nucleon observables in turn. We begin in Chapter 4 by calculating the strong-force

contribution to the proton-neutron mass difference. Beyond giving quantitative in-

sight into the breaking of charge symmetry, a precise understanding of this quantity

from first principles will inform studies of the evolution of our universe; if there were

a stable neutron, and a more massive proton, one would expect a predominance of

heavy nuclei, no normal galaxies, stars, or planets would form, and life as we know

it would be impossible.

In Chapter 5 we extend this study to investigate sigma terms, which are the ma-

trix elements of the scalar quark currents between baryon states. As many dark mat-

ter candidates (e.g., the supersymmetric neutralino) have interactions with hadronic

matter which depend quadratically on these terms, the uncertainty of theoretical

dark matter scattering cross-sections is largely driven by the poorly-known strange

sigma term. Modern revisions of this quantity, including our precise result based on
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lattice QCD, have resulted in predicted dark matter cross-sections being reduced by

an order of magnitude, with significant increases in precision.

There is an almost-universal assumption of charge symmetry in the literature

concerned with parton distributions. In Chapter 6 we quantify the long-neglected

CSV effects in the low Mellin moments of the spin-dependent and spin-independent

parton distribution functions. Our results confirm that the omission of these effects

led to an over-inflated view of the importance of the deviation from SM expectations

observed in neutrino-nucleus deep inelastic scattering experiments. By comparing

the total spin carried by the quarks in baryons across the octet, we are also able to

reveal that the experimentally-measured suppression of the fraction of the proton

spin carried by its quarks (relative to quark-model predictions) is not a universal

property of baryons, but rather is structure-dependent. This supports the conclusion

that the spin-suppression observed in the proton cannot be explained by the axial

anomaly.

In Chapter 7 we present a comprehensive lattice-based study of the electric and

magnetic Sachs form factors of the baryon octet. This analysis includes the hyperon

form factors, which have so far received limited attention in the literature. Notably,

we achieve the first accurate determination of the hyperon magnetic radii from lattice

QCD. We also investigate strange and CSV effects in the nucleon in this context.

By combining experimental and lattice input, we deduce the strange nucleon form

factors over a far larger range of momentum-scales than is accessible experimentally.

Our calculation of the strange magnetic moment is an order of magnitude more

precise than the closest experimental result. Until now, the dominant uncertainty

in experimental determinations of the strange proton form factors has come from

a lack of knowledge about the size of CSV in these quantities. By revealing that

the CSV form factors are an order of magnitude smaller than suggested by previous

work, our calculations also open the door for a new generation of experimental tests

of QCD through the proton’s strange form factors.

Finally, in Chapter 8 we review this body of work to build a coherent picture of

the role of both CSV effects and the strange quark in the structure of the nucleon

in QCD.





Chapter 2

Quantum Chromodynamics

The Standard Model of Particle Physics (SM) embodies our knowledge of the strong

and electroweak interactions. It contains as fundamental degrees of freedom the

spin-1
2

quarks and leptons, the spin-1 gauge bosons, and the spin-0 Higgs field.

Despite the presence of a number of a-priori unknown parameters, this model is a

mathematical construction of considerable predictive power. Notably, it suggested

the existence of the W and Z bosons, the gluon, and the top and charm quarks

before these particles were observed. In 2013, the particle content of the SM was

made complete by the experimental discovery of the Higgs Boson [1, 2].

Here we focus on the strong-force component of the SM, which specifies how

quarks and gluons bind together to form ordinary hadronic matter. This is the the-

ory of Quantum Chromodynamics (QCD), describing all strong-interaction physics

at all distance scales, from high energy particle collisions and the decay of heavy

nuclei to the properties of matter under extreme conditions such as in the core of

a neutron star. This diverse physics is encapsulated in a single formula of alluring

simplicity: the Lagrangian of QCD. Despite its apparently simple form, deriving the

physical dynamics of a system from this equation poses a tremendous theoretical

challenge.

Asymptotic freedom—the property that quarks and gluons interact very weakly

in high-energy reactions—ensures that perturbative approaches can be applied to

QCD at small distance scales. In this way one can obtain precise theoretical predic-

tions from the SM which may be rigorously tested through high-energy scattering

experiments. In the low-energy regime, however, the QCD coupling is large and

perturbative techniques cannot be used. The only known first-principles approach

to QCD at these scales is numerical: a discretised form of the QCD equations can be

solved exactly, using supercomputers, on a finite four-dimensional grid representing

space-time. This technique is named lattice QCD.

Of course, although we receive invaluable insight by discretising QCD, we have

also lost direct comparison with the physical, continuous, world. To be able to com-

pare the results of lattice QCD simulations with experiment, one must extrapolate

to the physical point. Precisely, the continuum limit (as lattice spacing a→ 0), the

infinite volume limit (as lattice size L→∞), and, as computation time often limits

simulations to larger-than-physical quark masses, the continuation into small quark

5



6 Quantum Chromodynamics

masses
(

as mq → m
(phys.)
q

)
must be taken. This final limit, the so-called chiral ex-

trapolation, is arguably the most difficult of the three to implement and will be a

particular focus of this body of work.

As technological and algorithmic advances now allow lattice simulations to be

performed near, or even at, the physical quark masses, it is foreseeable that chiral

extrapolation as a means of reaching the physical point will soon become obsolete.

With this in mind, we explore this technique not only as an essential link between

lattice simulations and Nature, but as an invaluable tool with which to develop a

deeper understanding of QCD from unphysical test cases which cannot be explored

experimentally. As we will see in later chapters, one can extend chiral extrapolation

techniques to isolate vacuum-quark effects, explore the quark-mass dependence of

observables and hence extract mass-derivative quantities, and extend SU(2)-flavour–

symmetric simulations to the SU(2)-broken world. Combining the insight afforded

by unphysical lattice simulations with experimental results allows one to deduce

hard-to-calculate quantities to a precision that is yet unreachable by direct compu-

tation. In this way, we set the benchmarks for the next generation of experimental

tests of the SM.

After outlining the mathematical formulation of QCD in the next section, we

briefly discuss the numerical lattice QCD approach. The remainder of this chapter

is devoted to the concepts of strangeness and charge symmetry violation in the

nucleon, which are the core themes of this body of work.

2.1 Mathematical Formulation

Mathematically, QCD is a gauge field theory describing the interactions of ‘colour-

charged’ particles. It is based on the non-Abelian, compact, and simple Lie group

SU(3), commonly represented by the group of 3× 3 complex unitary matrices with

unit determinant. The gluons Aµ arise as the (spin-1) gauge bosons of this theory.

As such, they may be identified with the generators of SU(3) rotations in colour-

space1, Aµ = taA
a
µ, and transform in the adjoint representation of the gauge group.

The dimension of the adjoint representation (equal to the number of generators) is

32−1 = 8 for SU(3), thus the gluons are colour-octet. The quark fields ψ are spin-1
2

fermions in the fundamental representation of the gauge group and carry colour and

flavour labels. The dimension of the fundamental representation is the degree of the

group, N = 3 for SU(3), so the quarks are colour-triplet.

The classical, unrenormalised Lagrangian density of QCD is completely speci-

fied by the conditions of renormalisability and invariance under the SU(3) gauge

1Here ta = λa/2, where λa, a = 1, . . . , 8 are the Gell-Mann matrices with normalisation Tr(λaλb) =
δab.
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transformations

ψ(x)→ ψ′(x) = U(x)ψ(x), (2.1a)

Aµ(x)→ A′µ(x) = U(x)Aµ(x)U−1(x) +
i

g
(∂µU(x))U−1(x), (2.1b)

where U(x) = exp(iφa(x)ta) defines an independent SU(3) transformation at every

point in space-time. Neglecting a quark-mass mixing phase—the θ parameter asso-

ciated with the strong CP problem—as it is known to be extremely small [3], one

finds2

LQCD =
∑
q

ψ
i

q

(
iγµDij

µ − δijmq

)
ψjq −

1

4
F (a)
µν F

(a)µν

= ψ
(
i /D −Mq

)
ψ − 1

4
FµνF

µν . (2.2)

The second line shows the standard compact notation—fundamental-representation

colour indices i, j, adjoint-representation colour indices a, and flavour labels q =

u, d, s, . . . have been suppressed. The Dirac matrix γµ, where µ is a Lorentz vector

index, expresses the vector nature of the strong force, and the non-zero quark masses

are encoded in Mq = diag(mu,md,ms . . .). There is no gauge-invariant way of

including a gluon mass. The QCD covariant derivative introduces the coupling g of

the quarks to the gluons:

Dij
µ = δij∂µ − igtija Aaµ, (2.3)

and the non-Abelian gluon field strength tensor is given by

F (a)
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν , (2.4)

where fabc are SU(3) Lie group structure constants. This is non-linear in terms

of the gauge field and as a result the gluon kinetic energy term of the Lagrangian

generates three and four-gluon self-interactions. These interactions are responsible

for many of the salient features of QCD.

In particular, because of the gluon self-coupling, the polarisation of virtual glu-

ons in the vacuum antiscreens (i.e., enhances) colour charge. This effect dominates

over the screening effect of the quark vacuum-polarisation, which is analogous to

that of QED. As a result, the QCD coupling, αs = g2/4π, runs to become small

at large scales; at high energy QCD is essentially a theory of free partons—quarks

and gluons—which only interact through relatively small quantum corrections that

can be systematically, perturbatively, calculated. This is the property of asymp-

totic freedom, for which Politzer, Gross, and Wilczek were awarded the 2004 Nobel

Prize [4, 5].

2Counterterms and ghost and gauge-fixing terms are implicit; they are all unnecessary for the
lattice QCD approach which we will consider here.
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In contrast, at low energies accelerators reveal a particle spectrum which bears

no resemblance to the non-interacting theory: free quarks are never observed. In-

stead, towers of strongly-bound colour-singlet particles named hadrons emerge. This

is termed confinement and is understood as a consequence of the property that the

force between two colour-charges does not diminish as they are separated. Instead,

linear string-like potentials build up between partons. These strings only ‘break’

when the energy contained is large enough to create an additional quark-antiquark

pair out of the vacuum. As a result, one only observes mesons, which have the quan-

tum numbers of a quark-antiquark pair, and baryons, with the quantum numbers

of three quarks. The properties of these hadrons are the focus of this body of work.

Analytic derivations of hadron properties have proven to be impossible except

in some extreme limiting cases; at the relevant low energy scales the strong cou-

pling becomes large and perturbation theory is no longer valid. While many models

and approximations are used to study low-energy processes: the limit of the large

number of colours; generalisations of the original Shifman-Vainshtein-Zakharov sum

rules; QCD vacuum models and effective string models; the AdS/CFT conjecture;

and Schwinger-Dyson equations, the only known way to study QCD in the non-

perturbative regime directly is to use numerical methods. As suggested earlier, the

most successful of these, and the only one rigorously derived from the fundamental

theory, is lattice QCD.

2.2 Lattice Quantum Field Theory

First proposed by Wilson in 1974 [6], lattice QCD is a first-principles method of

calculating QCD observables numerically. In short, a discretised version of the full

QCD theory is solved explicitly on a four-dimensional lattice of points (3 space, 1

time dimension). Any such lattice is characterised by a finite lattice spacing a which

is not physical but acts as a method of regularisation. The limit a → 0 must be

taken to connect to the physical theory.

As the only known direct probe of QCD in the nonperturbative regime, the

lattice is an important source of information for tests of the SM; it provides results

for various low-energy hadronic matrix elements that are complimentary to those

obtained using phenomenological approaches. It has also become a viable framework

for calculations of nuclear few-body quantities [7,8], and for the exploration of part of

the QCD phase diagram [9,10]. As we will see in later chapters, a great advantage of

lattice field theory is that the technique allows precise control over the parameters of

QCD. By varying these parameters one may probe more than QCD at the physical

point—for example, one can ‘turn off’ vacuum loop contributions or change the

quark masses—to develop a deeper understanding of nonperturbative phenomena.

In this section we introduce the basic concepts and terminology relevant to lattice

QCD. A comprehensive summary of the approach may be found in Refs. [11–13].
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2.2.1 The Discretised Action

Lattice gauge theory is based on the Feynman path integral approach to quantum

field theory [14]. In this formulation of QCD, observables are given by the expecta-

tion values of field operators. These expectation values, known as Green’s functions,

can be expressed as functional derivatives of the generating functional,

ZQCD =

∫
δAµ δψ δψ e

iSQCD , (2.5)

with respect to the various sources. If all Green’s functions could be calculated,

QCD would be solved. In Minkowski space, however, this formulation of QCD does

not lend itself to numerical computation because of the complex term eiSQCD which

appears in Eq. (2.5); the oscillatory integrand causes cancellations between different

regions of phase space. For this reason lattice QCD is formulated in Euclidean

space-time. The partition function

ZEQCD =

∫
δAµ δψ δψ e

−SQCD (2.6)

is obtained by a Wick rotation (t → −itE) of the corresponding expression in

Minkowski space (Eq. (2.5)). This form allows a probabilistic interpretation of the

functional integral; the exponential factor corresponds exactly to the Boltzmann

weighting of a statistical ensemble.

In this section we describe the construction of a discretised lattice action for

QCD:

SQCD = SF [U, ψ, ψ] + SG[U ], (2.7)

where the subscripts F and G denote the fermion and purely-gauge components,

respectively.

Fermions

In Euclidean space-time the Dirac action for a free fermion is written as∫
d4xψ(x)

(
/D +m

)
ψ(x). (2.8)

In the discretised theory the quark fields ψ(n) reside on the sites n of the lattice,

i.e., the fermionic degrees of freedom are

ψ(n), ψ(n), n ∈ Λ. (2.9)

We will restrict ourselves to four-dimensional cubic lattices:

Λ =
{
x ∈ R4

∣∣x = an, n ∈ Z4
}
, (2.10)
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where a is the discrete lattice spacing. While this is the standard topology, others

have been explored [15, 16] and there has been a recent resurgence of interest in

anisotropic lattices [17, 18]. In practice, of course, the lattices used for numerical

simulations have some finite extent. As in the continuum theory, the spinors ψ carry

colour, flavour, and Dirac indices (which are suppressed in our notation).

The derivative in Eq. (2.8) may be discretised using a symmetrised finite differ-

ence, where appropriate gauge links are included to maintain gauge invariance:

ψ /Dψ →
4∑

µ=1

ψγµ∇µψ =
1

2a
ψ(n)

4∑
µ=1

γµ
[
Uµ(n)ψ(n+ µ̂)− U †µ(n− µ̂)ψ(n− µ̂)

]
,

(2.11)

where the gauge fields Uµ(n) are elements of the gauge group SU(3). These fields are

oriented and attached to the links of the lattice: Uµ(n) lives on the link connecting

the sites (n) and (n+ µ̂). Under a gauge transformation λ(n),

Uµ(n)→ λ(n)Uµ(n)λ(n+ aµ̂)−1. (2.12)

Finally, implementing the discretisation of the integral in Eq. (2.8) as a sum over

the set of space-time points Λ, we arrive at the ‘naive’ action for fermions in an

external gauge field U :

SN
F [U, ψ, ψ] =

∑
n∈Λ

ψ(n)

(
1

2a

4∑
µ=1

γµ
[
Uµ(n)ψ(n+ µ̂)− U †µ(n− µ̂)ψ(n− µ̂)

]
+mψ(n)

)
=
∑
n,m∈Λ

ψ(n)MN
nm[U ]ψ(m), (2.13)

where MN is the naive interaction matrix

MN
nm[U ] = mδnm +

1

2a

4∑
µ=1

γµ

[
Unµ δn(m−µ) − U †(n−µ)µ δn(m+µ)

]
. (2.14)

By Taylor-expanding Uµ and ψ in powers of the lattice spacing a, one can see that

the naive fermion action has O(a2) errors. It is clear, however, that the first-order

derivative can only couple lattice sites separated by 2a. As a result, certain high-

momentum modes do not correspond to a large value of the action. This leads to

unwanted additional long-range degrees of freedom called doublers; in the continuum

limit there are 2d = 16 flavours of quark rather than one.

There are two common methods of fixing the doubling problem. The first reduces

the number of doublers by ‘staggering’ the quark degrees of freedom on the lattice.

This procedure is described in Ref. [11]. The other technique, which is used in this

work, involves adding additional operators to the quark action (which scale with a

and so vanish in the continuum limit) to suppress the doublers by driving them to

higher energies.
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Precisely, the Wilson term—a particular (energy) dimension-five operator—is

added to the standard naive lattice fermion action, giving the ‘Wilson action’:

SW
F [U, ψ, ψ] =

∑
n∈Λ

ψ(n)

[
4∑

µ=1

(
γµ∇µ −

1

2
ra∆µ

)
+m

]
ψ(n). (2.15)

Here∇ denotes the finite difference defined in Eq. (2.11), and the operator ∆ removes

the unwanted doublers by coupling adjacent lattice sites:

∆µψ(n) =
1

a2

[
Uµ(n)ψ(n+ µ̂) + U †µ(n− µ̂)ψ(n− µ̂)− 2ψ(n)

]
. (2.16)

In terms of link variables, the Wilson action is written as

SW
F [U, ψ, ψ] =

∑
n,m∈Λ

ψ
L
(n)MW

nm[U ]ψL(m),

where

aMW
nm[U ] = δnm − κ

4∑
µ=1

[
(r − γµ)Unµ δn(m−µ) + (r + γµ)U †(n−µ)µ δn(m+µ)

]
, (2.17)

with a field renormalisation

κ = 1/(2ma+ 8r), (2.18)

ψL = ψ/
√

2κ. (2.19)

It is typical to take r = 1.

In the continuum limit it is clear that, through the addition of the Wilson term,

we have introduced O(a) discretisation errors into the fermion matrix; the Dirac

action of Eq. (2.8) becomes∫
d4xψ(x)

(
/D +m− ar

/D
2

2

)
ψ(x) +O

(
a2
)
. (2.20)

Numerical simulations using Wilson fermions must thus be performed on very fine

lattices, which are computationally expensive, in order for continuum extrapolations

to be reliable. It has become standard to improve the uncertainties of the Wilson

action through the addition of higher-dimension operators. This procedure is known

as the Symanzik improvement program [19].

We discuss here only one choice of improved fermion action, which we use in

this work (see Chapter 7). The Sheikholeslami-Wohlert fermion action [20] includes

the so-called ‘clover’ term—a gauge-invariant, local, dimension-five operator—in
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addition to the standard terms of the Wilson action:

SSW
F [U, ψ, ψ] = SW

F [U, ψ, ψ]− a cSW r

4

∑
n∈Λ

4∑
µ,ν=1

ψ(n)σµν Fµν(n)ψ(n). (2.21)

Here cSW is the clover coefficient which can be tuned (typically nonperturbatively

using the axial Ward identity [21]) to remove all O(a) artefacts. Further details may

be found in Refs. [11–13].

Gluons

The matrix-valued link variable Uµ(x) was introduced in Eq. (2.11) to maintain

the gauge-invariance of the covariant derivative. Based on its gauge transforma-

tion properties (Eq. (2.12)), we interpret Uµ(n) as a lattice version of the gauge

transporter connecting the points (n) and (n + µ̂). Under this identification, we

can express the link variable in terms of the algebra-valued continuum gauge field

Aµ(x):

Uµ(n) = P exp ig

∫ a

0

Aµ(n+ λµ̂)dλ, (2.22)

where the operator P path-orders the Aµ along the integration path and g is the

coupling constant.

From Eq. (2.12) it is clear that the trace over a closed (Wilson) loop of link

variables is a gauge-invariant object. Various such loops are used in combination

to build the lattice version of the QCD gauge action—the precise construction is

arbitrary provided that the usual continuum action is recovered in the a→ 0 limit.

It is natural to consider the simplest case first; the shortest nontrivial closed loop

on the lattice is the so-called plaquette, constructed by the product of four links

enclosing an elementary square:

Pµν(n) = Re Tr
[
Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν(n)

]
. (2.23)

Using Eq. (2.22), and expanding the integral, we express Pµν in terms of the field

Aµ:

Pµν(n) = Re Tr Peig
∮
2n

A·dx

= Tr P

[
1− 1

2

(
g

∮
2n

A · dx
)2

+O(A4)

]
. (2.24)

Stoke’s theorem gives an expression for the integral:∮
2n

A · dx =

∫ a

0

dxµdxν [∂µAν(n+ x)− ∂νAµ(n+ x)]
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=

∫ a

0

dxµdxνFµν(n+ x)

= a2Fµν(n) +
a4

24

(
∂2
µ + ∂2

ν

)
Fµν(n) +O

(
a6, A2

)
, (2.25)

where the last line follows from a Taylor expansion of Fµν(n+x) about the lattice site

(n). Substituting this expression back into Eq. (2.24), the plaquette term becomes

Pµν(n) = 1− 1

2
g2a4 Tr

[
Fµν(n)2

]
+O

(
g2a6, a8, g4a6

)
. (2.26)

This expansion yields the ‘Wilson action’ for gluons on the lattice:

SW
G [U ] =

2

g2

∑
n∈Λ

∑
µ<ν

[1− Pµν(n)]

=
a4

2g2

∑
n∈Λ

∑
µ<ν

Tr
[
Fµν(n)2

]
+O

(
a2, a2g2

)
. (2.27)

This expression differs from the continuum gluon action by terms which are O(a2)

and O(a2g2). These artefacts can be removed, however, by adding other Wilson

loops to the action which have different errors at O(a2). For example, the Lüscher-

Weisz gauge action [22] includes 1 × 2 rectangular loops and parallelogram-shaped

loops as well as the standard plaquette:

SLW
G [U ] =

2

g2

(
c0

∑
plaq.

[1− Pµν ] + c1

∑
rect.

[1−Rµν ] + c2

∑
par.

[1− Lµν ]

)
, (2.28)

where Rµν and Lµν denote products of gauge links, enclosing 1 × 2 rectangles and

parallelograms respectively, defined analogously to Pµν in Eq. (2.23). The relative

weighting coefficients ci (that are generically functions of g2) are chosen to satisfy

c0 + 8c1 + 8c2 = 1, which ensures that discretisation errors are cancelled to O(a4).

Two common choices of the weighting coefficients are the Iwasaki gauge action [23]

and the tree-level improved action [24] which we use in Chapter 7. This latter choice

sets c0 = 20/12, c1 = −1/12, and c2 = 0.

2.2.2 Lattice Expectation Values

Physical observables are calculated in the lattice approach as expectation values:

〈O〉 =
1

Z

∫
δAµ δψ δψO e−SQCD , (2.29)

where O can be any combination of operators expressed in terms of time-ordered

products of gauge and quark fields, and Z is the Euclidean–space-time partition

function (Eq. (2.6)). One can remove any dependence of O on the quark fields as

dynamical variables by performing Wick contractions to re-express them in terms
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of propagators. The propagators, for a given background field U , are determined by

inverting the Dirac operator. In terms of an interaction matrix M (e.g., Eq. (2.14)

or (2.17)),

Sf (m,n, U) = (M [U ]−1)nm (2.30)

gives the amplitude for the propagation of a quark from site (n) to site (m) (where

the spin-colour indices are suppressed). Now, integrating over the fermion field

(recalling that the fermion action is given by SF = ψMψ, Eq. (2.13)),

〈O〉 =

∫
δAµ det[M ]O e−SG∫
δAµ det[M ] e−SG

. (2.31)

As the gauge group SU(3) is continuous, there are infinitely many gauge configura-

tions that contribute to this expression. For this reason the integral over the gauge

fields is approximated statistically:

〈O〉 ≈ 1

N

N∑
i=1

O
(
U [i]
)
. (2.32)

Here O(U [i]) is the operator O evaluated for the ith field configuration U [i] of an

ensemble of N such configurations which have been randomly generated based on the

acceptance probability of the weight function det[M [U ]]e−SG[U ] . This generation is

performed iteratively using a Markov process; beginning from an initial configuration

U [0], a chain of configurations
{
U [1], U [2], . . .

}
is generated using a Monte-Carlo–style

algorithm satisfying

P
(
U [i−1] → U [i]

)
P
[
U [i−1]

]
= P

(
U [i] → U [i−1]

)
P
[
U [i]
]
, (2.33)

where P (U → U ′) is the transition probability between configurations U and U ′.

General criteria exist that guarantee that the configurations visited are indeed dis-

tributed according to the desired probability distribution after a sufficient number

of iterations.

The generation of gauge configurations is computationally expensive. The cost

of calculating the fermion determinant det[M [U ]] depends not only on the number of

configurations generated, but on the number of lattice sites, the lattice volume, and

the quark masses. Because of the sheer size of the fermion matrix M , its determinant

is approximated numerically. This is done using iterative algorithms which involve

inverting matrices that become progressively more singular as the quark masses be-

come lighter. Similarly, the quark propagators, which must be calculated explicitly

for each gauge configuration, become more expensive to calculate at light masses.

Moreover, the lattice volume required becomes increasingly large. For this reason

calculations at or near the physical masses are only now becoming tractable [25].

A further cost-saving approximation is that quark propagators are typically cal-

culated from a fixed source point to every other point on the lattice; ‘all-to-all’

propagators from every lattice site to every other site are simply too expensive. As
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a result, contributions to observables from quark-line–disconnected loops—which

could appear at any point on the lattice—are neglected in most simulations (see

Section 2.3.1). The effects of this omission in the case of baryon electromagnetic

form factors will be discussed in detail in Chapter 7.

2.2.3 Scale Setting

A characteristic of lattice simulations is that all quantities are calculated in units of

the unknown lattice spacing a, which must be determined by matching an observable

to its physical value3. This can be done in a variety of ways. Two common meth-

ods, often referred to as the ‘mass-independent’ and ‘mass-dependent’ scale-setting

schemes, are of particular interest to us here:

1. Mass-independent. The inverse bare coupling β determines the lattice spac-

ing a. That is, simulations at some fixed value of β are extrapolated to the

physical point (usually linearly in the bare quark mass amqsea), and the value

of some observable at that point is used to set the common scale a for all

lattice ensembles at that common β.

2. Mass-dependent. The lattice spacing varies with bare quark mass. That is,

a is determined separately for each set of bare parameters (β, amqsea) by using

a physical observable that is assumed to be independent of the quark masses.

A typical choice of observable is the Sommer scale, r0, which is related to the

force between static quarks at relatively short distance, or any of a range of

similar quantities.

We could think of these two choices of scale-setting prescription as different

ways of absorbing the observed quark-mass dependence of the ratio r0/a at fixed

β. Method 1 essentially assumes that this dependence may be attributed to the

variation of r0 with quark mass, while method 2 instead assumes that a is changing.

What is not often considered is that both r0 and a may have some dependence on

the sea-quark mass, which would lead to an intermediate scale in some sense. Such

a ‘mixed’ scale-setting procedure would be nontrivial to implement.

Of course, in the continuum limit, and after the chiral extrapolation to physical

quark masses has been performed, the results of each method of scale setting must

agree for physical observables. When considering quantities which are expressed as

derivatives with respect to quark mass, however, the choice of scale-setting method

becomes far more significant; these quantities, by the very definition of the deriva-

tive, depend on the scale away from the physical point and hence on the scale-setting

scheme chosen. This distinction will be particularly relevant to the discussion of

Chapter 5, where we calculate the octet baryon sigma terms as derivatives via the

Feynman-Hellmann theorem.

3The lattice spacing is not physical, but acts as a method of regularisation. The only physical
quantities are mass-ratios.
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2.3 Strangeness and Charge Symmetry Violation

in the Nucleon

We finish this chapter with an introduction to the concepts of strangeness and

charge symmetry violation (CSV) in nucleon structure; these topics are the unifying

themes of this body of work. Both strange and CSV observables are associated

with deviations from approximate features of the nucleon in QCD. They are hence

benchmark quantities for modern precision tests of the theory.

In particular, strange nucleon observables occupy a position of comparable im-

portance in QCD to that of the Lamb shift in the history of QED. While lattice QCD

and models have described a number of valence-quark–dominated hadronic proper-

ties extremely accurately [26], strange observables can only arise through quantum

fluctuations of the vacuum in which a strange-antistrange quark pair briefly bubble

into and out of existence. The calculation of such quantities directly within QCD,

and their verification by experiment, is thus the ideal test of our understanding of

virtual sea quarks in the nucleon.

Charge symmetry, defined formally in Section 2.3.2, is related in QCD to the

near mass-degeneracy of the u and d quarks. At the quark level this symmetry

is, of course, very badly broken, but this is hidden by dynamical chiral symmetry

breaking; in nuclear reactions charge symmetry holds to better than about 1% [27].

Precise calculations of CSV observables therefore also provide SM benchmarks for

tests of QCD. In our discussion, the themes of strangeness and CSV are connected

through the electromagnetic form factors (Chapter 7); the strange quark and CSV

contributions to these quantities cannot be distinguished experimentally.

2.3.1 Nucleon Strangeness

The net strangeness of the nucleon is, of course, zero; its quantum numbers corre-

spond to those of two u quarks and a single d. In QCD, however, these light valence

quarks are accompanied by a fluctuating sea of all flavours of qq pairs. The magni-

tude of the vacuum contributions to observables from different flavours scales with

quark mass. Clearly, the lightest non-valence quark flavour—the s for the nucleon—

will provide the dominant vacuum contribution, and hence be the most interesting

phenomenologically.

Other than the valuable information about the quantum vacuum which strange

observables provide in their own right, these quantities are also relevant in other

arenas. Most importantly, the strange nucleon sigma terms (Chapter 5) are essen-

tial input for the interpretation of dark matter direct-detection experiments. In

general, however, the uncertainties in both experimental and theoretical determi-

nations of the strangeness matrix elements, including the strange sigma terms, are

large. Clearly lattice QCD promises significant improvement by facilitating the

calculation of definitive quantitative results for these observables.
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(a) Disconnected insertion. (b) Connected insertion.

Figure 2.1: Quark-line ‘skeleton’ diagrams showing connected and disconnected inser-

tions of some operator (represented by the crossed vertex). All gluons and additional

(spectator) quark-antiquark pairs are omitted for clarity.

(a) Quark-line–connected
meson loop.

(b) Quark-line–disconnected
meson loop.

Figure 2.2: Quark-line ‘skeleton’ diagrams showing the meson cloud contributions to

hadronic observables. All gluons and additional quark-antiquark pairs are omitted for

clarity. Any operator insertion into a connected quark line (i.e., any line other than the

vacuum bubble in Fig. 2.2(b)) is included in a connected-only calculation.

The challenge in determining strange nucleon observables in lattice QCD lies

in the evaluation of the so-called disconnected insertions, illustrated in Fig. 2.1(a).

Determining these terms explicitly requires the calculation of all-to-all propagators—

from every point on the lattice to every other point—which is prohibitively expensive

compared to the evaluation of the connected insertions. Consequently, there are

very few lattice calculations of disconnected observables [28, 29]. In these studies

the all-to-all propagators are stochastically estimated. For these reasons, the lattice

QCD simulations which we use and develop in this body of work will include only

connected insertions. We emphasise here that this does not omit the entire meson

cloud of QCD. This distinction is illustrated explicitly in Fig. 2.2.

We investigate the role of strange quarks in generating different nucleon observ-

ables by combining connected-only lattice QCD simulations, chiral effective field

theory, and experimental input; the aim is to build a cohesive picture of the con-

tribution not only from the strange quark, but from the dynamical vacuum more

generally, in QCD. In particular, we investigate the strange nucleon sigma terms

(Chapter 5) and the strange contribution to the electromagnetic form factors of the

nucleon (Chapter 7).

2.3.2 Charge Symmetry Violation

Charge symmetry is formally defined as the invariance of the strong interaction

under an isospin rotation exchanging u and d quarks; it corresponds precisely to a
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rotation by π about the ‘2’ axis in isospin space (compared to isospin symmetry,

which is invariance under an arbitrary rotation in this space). The violation of this

symmetry is arguably small: the proton-neutron mass difference is one part in a

thousand [30] and many nuclear reactions proceed identically if protons and neutrons

are interchanged. The effects of this small CSV, however, may be hugely significant.

For example, if the proton-neutron mass difference were reversed, protons could

undergo beta decay, atoms such as carbon, the building block of all organic matter,

could not form, and life as we know it would be impossible. CSV also explains

the discrepancy between the calculated and measured binding energy differences of

mirror nuclei (Okamoto-Nolen-Schiffer anomaly [31]) and may play a role in precision

tests of the SM [32], including those at the LHC [33].

In lattice QCD studies, however, the small effects of CSV are in general ig-

nored; it is standard to perform ‘2+1-flavour’ simulations where the light quarks

are mass-degenerate. A full ‘1+1+1-flavour’—isospin-broken—study would involve

a significantly more complicated tuning procedure in order to find the lattice pa-

rameters corresponding to the close-to-physical space of interest. With the majority

of lattice simulations not yet at the physical average light-quark mass, the effect of

CSV has thus long been a secondary concern; only very recently have lattice studies

been performed that partially (for the valence quarks only) [34] or fully [35] include

strong CSV contributions.

CSV effects have also, until very recently [36–38], been neglected in many stan-

dard analyses of experimental results. For example, the assumption of good charge

symmetry at the parton level has been applied to global fits of parton distribution

functions to experimental data [33, 39] in order to reduce the number of indepen-

dent functions by a factor of two. Experimental tests of the SM are now, however,

reaching a level of precision where CSV effects may be important. For example, it

has been suggested [40] that CSV artefacts could significantly reduce the 3-sigma

discrepancy with the SM value for the weak mixing angle found by the NuTeV col-

laboration [41] in neutrino-nucleus deep inelastic scattering. For this reason, we

devote considerable attention to the role of CSV in the nucleon (returning to a

discussion of the NuTeV anomaly in Chapter 6).

In future chapters we combine 2+1-flavour lattice QCD simulations with input

from chiral effective field theory to determine CSV effects in a number of nucleon

observables. In particular, we separate the strong and electromagnetic contributions

to the proton-neutron mass difference (Chapter 4), as well as determining the level

of CSV in the baryon sigma terms (Chapter 5), and in moments of parton distribu-

tion functions (Chapter 6). In Chapter 7 we describe the first lattice-QCD–based

calculation of the CSV electromagnetic form factors and, importantly, present the

remarkable result that these quantities are constrained to be an order of magni-

tude smaller than previous best estimates. This revelation paves the way for a new

generation of experimental determinations of the strange nucleon form factors to

constrain these quantities to an unprecedented level of precision. Moreover, because
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of the extremely small SM background, measurements of CSV in the electromagnetic

form factors may in the future provide some insight in searches for new physics.





Chapter 3

Chiral Perturbation Theory

One of the prime motivators for lattice QCD is its potential to confront experiment

in the nonperturbative regime. Its success on this front has historically been tied to

chiral effective theory, whose essential role was to bridge the gap between the physical

region of light quark masses and simulations with computationally less demanding,

heavier, masses. Even in the current era of high-precision lattice studies approaching

the physical point, chiral extrapolation techniques are not obsolete. As will be

described in the coming chapters, the formalism has become a refined tool with which

one can correct a variety of lattice artefacts in near-physical simulations or glean

understanding from unphysical test cases which are not accessible experimentally.

In this chapter we provide an introduction to chiral perturbation theory with a

focus on understanding properties of the low-lying baryon octet. After discussing

effective field theories, of which the chiral theory is arguably the canonical exam-

ple, we consider the symmetry-breaking pattern of QCD and describe the emergent

Nambu-Goldstone bosons, exposing their universal low-energy dynamics through an

effective chiral Lagrangian. Through the example of the chiral extrapolation of the

mass of the nucleon we introduce the finite-range regularisation scheme which is

applied throughout this body of work. The final section describes the use of chiral

perturbation theory to correct artefacts resulting from a finite lattice volume.

In later chapters we develop and use more complex chiral extrapolations for

particular observables of interest. Throughout that discussion we maintain a focus

on applications tailored to lattice QCD in the high-precision era; beyond quark-mass

extrapolation formulae, we address extensions needed to account for the quark-line–

connected approximation to QCD (Chapter 7), and the breaking of the commonly-

employed light quark mass degeneracy mu = md (Chapter 4).

3.1 Effective Field Theory

Effective field theories (EFTs) provide a standard way to analyse physical systems

with widely-separated energy scales. Such systems are common in arenas ranging

from the high-energy domain of particle physics beyond the SM to the low-energy

domain of nuclear physics which is of interest to us here. In essence, EFTs encode

the expectation that the details of high-energy interactions will have little influence

21
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on the low-energy dynamics of a system; parameters encoding physics at energy

scales that are very large or small with respect to the scale of interest are taken

to infinity or zero, respectively. This provides a simpler, approximate, description

of the system, which can be improved to arbitrary order by treating corrections

induced by higher and lower energy scales—i.e., by the finite physical values of the

parameters which have been removed—as perturbations.

This process is very familiar and intuitive; it is the basis of the multi-pole ex-

pansion in electrodynamics, the use of Newtonian rather than relativistic mechanics

for systems with scales v � c, and the replacement of a physical dielectric with a

uniform one. In a relativistic, quantum mechanical theory where particles may be

created and destroyed, however, it is complicated considerably by the necessity of

ultraviolet regularisation; the limit in which small distance scales are taken to zero

must be handled carefully. Furthermore, the renormalisation-group running of cou-

pling constants is modified in an effective theory—the usual logarithmic dependence

on heavy particle masses is traded for scale-dependence.

The machinery of EFTs in the modern sense grew out of the chiral Lagrangian

techniques developed by Weinberg, Dashen and others in the late 1960s as a short-

cut to current-algebra derivations [42–48]. On the grounds of perturbative unitarity

and analyticity, Weinberg argued that the correct effective Lagrangian consists of

all operators with the desired fields and symmetries. Thus, to construct an EFT

describing physics below some energy scale Λχ, only relevant degrees of freedom—

states with m� Λχ—are considered explicitly, while heavier excitations with M ≥
Λχ are ‘integrated out’ of the action, generating non-local terms. One then writes an

expansion of interactions among the light states in powers of (energy/Λχ), replacing

the non-local interactions from virtual heavy particle exchange with a set of local

interactions which are constructed to give the same physics at low energies. The

leading terms in the expansion will dominate in the low-energy region of interest.

While the EFT has the same infrared behaviour as the underlying fundamen-

tal theory, it has different ultraviolet behaviour; the only remnants of high-energy

dynamics are contained in the symmetries of the EFT and in the (a-priori un-

known) couplings of the resulting low-energy Lagrangian. In our applications of

chiral effective field theory to lattice QCD studies in future chapters, these cou-

plings will be determined by fits to lattice simulation results. In the next section we

describe the construction of the chiral Lagrangian which was established by Gasser

and Leutwyler [49] as the canonical example of the use of effective field theory.

3.2 Chiral Symmetry

The possibility of building a phenomenological effective theory of low-energy QCD

exists because there is a mass gap between the pseudoscalar mesons (~π, ~K, η), which

are the lightest hadrons, and all other states and resonances. This is elegantly

explained by the Nambu-Goldstone mechanism: in the limit of vanishing quark mass

the mesons are massless bosons arising from the spontaneous breaking of the chiral
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symmetry. The construction of an effective Lagrangian describing only the low-

energy Goldstone-boson modes, but incorporating the full chiral symmetry of QCD,

allows a systematic analysis of the implications of the symmetries and symmetry-

breaking pattern, with higher-order corrections treatable in the sense of perturbative

field theory.

The QCD Lagrangian was introduced in Chapter 2:

LQCD = ψ
(
i /D −Mq

)
ψ − 1

4
F µνFµν . (3.1)

Two approximate symmetries of LQCD concern us here. If all quark masses are

equal, the Lagrangian is invariant under global unitary-vector transformations:

ψ(x)→ ψ′(x) = eiw
ataψ(x), (3.2)

where, as in previous sections, ta = λa/2 are the generators of flavour-SU(Nf )

(and Nf is the number of quark flavours in the theory). These transformations

form the group SU(Nf )V , a generalisation of the familiar isospin symmetry SU(2)V .

If all quark masses vanish, then LQCD is also invariant under global axial-vector

transformations which form the group SU(Nf )A:

ψ(x)→ ψ′(x) = eiw
ataγ5ψ(x). (3.3)

The combined symmetry group SU(Nf )V ⊗SU(Nf )A is termed chiral symmetry; the

limit Mq → 0 is named the chiral limit. Noether’s theorem gives the corresponding

classically-conserved vector and axial-vector currents:

Vµ = ψγµtψ, Aµ = ψγµγ5tψ, (3.4)

with associated classically-conserved charges

QV =

∫
d3xV0 and QA =

∫
d3xA0, (3.5)

respectively.

It is useful for future sections to re-write the chiral symmetry group using the

notion of chirality, defined by the operators

ΓL,R =
1

2
(1± γ5), (3.6)

which project left and right-handed1 components of the Dirac wavefunction:

ψL = ΓLψ, ψR = ΓRψ, with ψ = ψL + ψR. (3.7)

1The terms left and right-handed come from the high-energy (or massless) limit in which chirality
becomes identical to helicity.
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In terms of these chirality states, the QCD Lagrangian (Eq. (3.1)) may be re-

expressed as

LQCD = ψLi /DψL + ψRi /DψR − ψLMqψR − ψRMqψL −
1

4
F µνFµν . (3.8)

In the chiral limit (Mq → 0), the left and right-handed quark fields decouple and

LQCD becomes invariant under global SU(Nf )L ⊗ SU(Nf )R symmetry transforma-

tions.

Chiral symmetry is spontaneously broken in nature by the vacuum state. If it

were unbroken, the axial current would be exactly conserved and the axial charge

operators, Q̂a
A, would commute with the Hamiltonian:

[
Q̂a
A, Ĥ

]
= 0. Then, given

an eigenstate of the Hamiltonian, |N+〉 (e.g., the nucleon, with positive parity and

mass M = 0.940GeV), such that

Ĥ|N+〉 = M |N+〉, (3.9)

another state, of opposite parity because of the γ5 structure of the axial current,

must be defined by |N−〉 = Q̂a
A|N+〉. By the commutation relation, this state is

degenerate with |N+〉 in mass. Such pairs of mass-degenerate states of opposite

parity are not observed in the low-energy hadron spectrum (the lowest excitations

of the nucleon, N(1535) and ∆(1620), have masses more than 500MeV greater than

that of the N). Clearly, Q̂a
A|0〉 6= 0.

The Goldstone theorem [50] states that, in a physical system in which a con-

tinuous symmetry is broken by the vacuum state, there exists a massless, spinless

boson carrying the quantum numbers of the symmetry transformation; a ‘Gold-

stone boson’. For QCD with Nf = 3, there are 2(N2
f − 1) = 16 generators of

the chiral symmetry, 8 of which are broken spontaneously by the vacuum state (as

SU(3)L ⊗ SU(3)R
vac.

=⇒ SU(3)V ). The 8 associated Goldstone bosons are identified

with the pseudoscalar meson octet.

The physical octet mesons are only approximately Goldstone because of the ex-

plicit chiral symmetry breaking by the finite quark masses; the quark-mass term in

the Lagrangian, −Mqψψ, is not invariant under axial-vector transformations. Nev-

ertheless, as the physical QCD vacuum lies very close to a spontaneously broken

phase of an exact chiral symmetry, we can treat the explicit breaking as a pertur-

bation about the chiral limit, giving rise to the small masses of the physical octet

mesons.

Ever since the phenomenological importance of chiral symmetry was realised [51],

there has been great interest in quantifying its breaking in nature (comprehensive

early reviews are given in Refs. [52, 53]). This is complicated by confinement; one

cannot simply measure the mass of a free quark. Instead, matrix elements of the

scalar quark currents, called sigma commutators, can be determined (to first order)

from on-shell scattering amplitudes. The sigma terms vanish identically in the chiral

limit and hence their non-zero values in Nature provide some information on the
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form and size of explicit chiral symmetry breaking. These quantities are the focus

of Chapter 5.

3.3 The Chiral Effective Lagrangian

By the formalism outlined in Section 3.1, the chiral Lagrangian is given by the most

general expression of the form

Leff. = L0 + LSB, (3.10)

which satisfies the following conditions:

• L0 possesses the same symmetries as the chirally-symmetric part of the QCD

Lagrangian. That is, it is invariant under the chiral flavour group SU(3)L ⊗
SU(3)R.

• The symmetry group is spontaneously broken to SU(3)V by the ground state

of the theory.

• The Goldstone modes resulting from the broken symmetry are the only mass-

less, strongly-interacting particles.

• The explicit symmetry-breaking part, LSB, is small, can be treated perturba-

tively, and generates small masses for the pseudo-Goldstone mesons.

By construction this Lagrangian will produce the same low-energy expansion as

QCD itself. The systematic framework underpinning that expansion—an ordering

in powers of energies and momenta (generically denoted by p) of the interacting

particles such that any matrix element or scattering amplitude is organised as a

Taylor series in p—is called chiral perturbation theory.

The following subsections outline the construction of the various (meson, baryon)

components of Leff.. More detail may be found in Refs. [54, 55], with the ‘heavy-

baryon’ formalism used here presented in Ref. [56].

3.3.1 Pseudo-Goldstone Bosons

In order to construct Leff. in the meson sector with Nf = 3, it is convenient to

represent the pseudoscalar pseudo-Goldstone bosons by a 3× 3 matrix field Σ(x) =

ξ2(x) ∈ SU(3). This matrix transforms linearly under chiral rotations of left and

right-handed quarks: under SU(3)L ⊗ SU(3)R,

Σ→ LΣR†, (3.11a)

ξ → LξU † = UξR†, (3.11b)
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where U is defined implicitly as a function of L, R and ξ by Eq. (3.11b). Explicitly,

Σ = ξ2 = exp

(
2iΦ

fπ

)
, (3.12)

Φ =
1√
2


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 − 2√

6
η

, (3.13)

where fπ is a low-energy constant which describes the normalisation of the field Σ.

From its relation to the axial current this constant is identified, as the notation sug-

gests, with the pion decay constant in the SU(3) chiral limit. A chiral perturbation

theory estimate is fπ = 87 MeV, with this normalisation2 [57]. We note that the

symbol ‘η’ in Eq. (3.13) denotes the octet component of the η field, rather than a

representation of the observed η meson.

The meson part of Leff. may now be written in terms of the field Σ(x) and its

derivatives. At low energy, an expansion in powers of the meson momenta is equiva-

lent to an expansion in powers of ∂µΣ. By Lorentz invariance, only terms with even

numbers of derivatives will appear. At leading order in chiral perturbation the-

ory, which corresponds to O(p2) in the energy/momentum expansion, the effective

Lagrangian is thus [54]

LΦ
eff. =

f 2
π

4
Tr
(
∂µΣ†∂µΣ

)
+ λTrMq

(
Σ† + Σ

)
. (3.14)

All two-derivative terms can be incorporated into this form. The low-energy con-

stant λ, which relates the quark-mass matrix to the meson masses, could in prin-

ciple be calculated explicitly in terms of fundamental QCD parameters. Without

exact solutions to QCD Green’s functions, however, this constant is determined

phenomenologically.

Taylor-expanding the symmetry-breaking part of Lφeff. in powers of the meson

field, one finds

LΦ
SB = λTrMq

(
Σ† + Σ

)
= 2λTr(Mq)−

4λ

f 2
π

Tr
(
MqΦ

2
)

+O
(
Φ4
)

= 2λ(ms + 2m)− 4λ

f 2
π

(
~π · ~πm+

1

2
~K · ~K(m+ms) +

1

3
η2(m+ 2ms)

)
+O

(
Φ4
)
,

(3.15)

where the first term is a vacuum energy contribution, higher-order interaction terms

have been neglected, and we have taken the isospin-symmetric limit by approximat-

ing mu = md = m (i.e., Mq = diag(m,m,ms)). The meson masses to leading order

2The two most common conventions for the normalisation of fπ differ by a factor of
√

2.
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can be simply read from this equation:

m2
π =

8λ

f 2
π

m, m2
K =

4λ

f 2
π

(m+ms), m2
η =

8λ

3f 2
π

(m+ 2ms). (3.16)

We have clearly recovered the Gell-Mann–Oakes–Renner relation [58] m2
π ∝ m and

the Gell-Mann–Okubo mass relation [59,60]

3m2
η +m2

π − 4m2
K = 0. (3.17)

By taking both the pion and the vacuum matrix-elements of the symmetry-breaking

Lagrangian, the low-energy constant λ, and hence the meson masses (from Eq. (3.16)),

can also be related directly to the quark condensate:

−2λ = 〈uu〉vac. = 〈dd〉vac. = 〈ss〉vac., (3.18)

f 2
πm

2
π = −m〈uu+ dd〉vac.. (3.19)

Other tree-level results can be derived just as simply; expanding LΦ
eff. to O(Φ4) yields

an interaction term between four mesons:

1

24f 2
π

(
Tr([Φ, ∂µΦ]Φ ∂µΦ) + 2λf 2

π Tr
(
Φ4Mq

))
. (3.20)

This expression leads trivially to the celebrated ππ scattering lengths obtained by

Weinberg in the 1960s [61] using current algebra techniques (as well as to predictions

for the scattering amplitudes for any other four pseudoscalar mesons).

Contributions at next-to-leading order are systematically included by incorpo-

rating terms involving higher derivatives and increased powers of the quark masses

into the chiral Lagrangian. In addition to the resulting tree-level contributions at

O(p4), loops with interaction vertices taken from the leading-order Lagrangian must

be considered, i.e., chiral perturbation theory corresponds to an expansion in both

quark-mass and momentum-dependent interactions and increasing loop complexity.

The ordering of this expansion is termed chiral power counting and is the focus of

Section 3.4. While formally possible, calculations at arbitrarily high order in the

chiral expansion are not practical; at each order there is a significant increase in

the number of undetermined coefficients (12 at O(p4) and 90 at O(p6)) which must

be input from phenomenology, experiment, or lattice QCD, limiting the predictive

power of the theory [62].

3.3.2 Octet Baryons

In the meson sector, chiral perturbation theory gives rise to a power-series expansion

of the effective Lagrangian in terms of derivatives and the quark-mass matrix Mq.

Progressively higher-dimension operators are suppressed by higher inverse powers

of the chiral symmetry breaking scale Λχ. Physically, this scale corresponds to

the range of validity of the effective theory. As the first non-Goldstone mode is
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the ρ meson, perturbation theory with only the pseudo-Goldstone octet mesons is

sensible at scales up to Λχ ≈ mρ ≈ 770 MeV. An alternate argument, based on

loop geometry, suggests Λχ = 4πfπ ≈ 1 GeV—the same order of magnitude. For

baryons, if MB denotes the baryon-mass matrix, MB/Λχ ∼ O(1). This indicates

that higher-derivative operators involving baryon fields are not suppressed in the

same way as those involving the meson fields.

To see this explicitly, consider a Lagrangian consisting of the baryon kinetic

energy term plus a higher-dimension term with two additional derivatives: for a

baryon field B,

L = B
(
i/∂ −MB

)
B +B

(
i/∂ −MB

) ∂2

Λ2
χ

B. (3.21)

As the time derivatives in ∂2/Λ2
χ produce a factor of M2

B/Λ
2
χ, which is not small, this

term is important even for processes involving small momenta. A similar problem

occurs in the loop expansion; higher-order loop graphs may produce terms which

scale as MB/Λχ ∼ O(1) relative to the leading-order contributions and hence cannot

be neglected. This complicates the low-energy structure of the meson-baryon system

considerably; there is no longer a one-to-one mapping between the loop and small-

momentum expansions. To overcome this difficulty and include the octet baryons

into the chiral Lagrangian, we use a formalism, pioneered by Jenkins and Manohar

(based on earlier work by Georgi for the study of heavy quarks [63]), in which

baryons are treated as heavy static fermions [56].

In the chiral limit, the momentum that is transferred between baryons by pion ex-

change is small with respect to the baryon mass. Thus, baryon velocity is effectively

conserved. This suggests a parameterisation of the momentum of a close-to-on-shell

baryon as

pµ = MBvµ + kµ, (3.22)

where v2 = 1 and v · k � Λχ is proportional to the amount by which the baryon is

off-shell. The effective theory can now be reformulated in terms of new baryon fields

Bv, with definite four-velocity vµ, which are related to the original baryon fields B

by

Bv(x) =
1 + /v

2
exp(iMBv · x)B(x). (3.23)

As [vµ, xν ] = i~gµν/MB → 0 in the heavy fermion limit, this field with definite

position and velocity is allowed. The factor 1
2
(1 + /v) projects out the particle com-

ponents of the Dirac spinors. The antiparticle fields are integrated out of the theory

(generating O(1/MB) corrections—this is detailed in Appendix A) and the effects

of virtual baryon loops are absorbed into higher-order terms in the chiral expansion.

The new baryon fields obey a modified Dirac equation, /∂Bv = 0, which no longer

has a baryon mass term:

B
(
i/∂ −MB

)
B = Bvi/∂Bv +O

(
1

MB

)
. (3.24)
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It is clear from Eq. (3.23) that derivatives acting on Bv produce powers of k rather

than p, so higher-derivative terms in the reformulated effective field theory are sup-

pressed by powers of the small quantity k/Λχ. The heavy-baryon formalism thus

allows a systematic and consistent expansion in powers of derivatives.

As in the meson case, it is convenient to represent the octet baryons by a 3× 3

matrix field3

B = Bv =


1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ

. (3.25)

Under SU(3)L ⊗ SU(3)R, this field transforms as

B→ UBU †, (3.26)

where U is defined by Eq. (3.11b). Velocity-dependent Pauli-Lubanski spin operators

Sµ = Sµv = i
2
γ5σ

µνvν act on the baryon fields. These satisfy4

v · S = 0, S2B = −3

4
B, (3.27a)

{Sλ,Sσ} =
1

2

(
vλvσ − gλσ

)
,

[
Sλ,Sσ

]
= iελσαβvαSβ. (3.27b)

For a non-relativistic spin-1
2

particle in its rest frame the spin operators reduce to

the usual expression, ~σ/2.

The effective Lagrangian in the baryon sector is the most general expression that

can be written using the baryon field B, the meson field Σ, the spin operator Sµ,

and derivatives. At lowest order [56],

L =

∫
d3v

2v0
LBeff., (3.28)

with

LBeff. = iTr B(v · D)B + 2DTr BSµ{Aµ,B}+ 2F Tr BSµ[Aµ,B]

+bD Tr B{ξ†Mqξ
† + ξMqξ,B}+ bF Tr B

[
ξ†Mqξ

† + ξMqξ,B
]

+σ0 TrMq

(
Σ + Σ†

)
Tr BB, (3.29)

where

DµB = ∂µB + [V µ,B], (3.30)

V µ =
1

2

(
ξ∂µξ† + ξ†∂µξ

)
, Aµ =

i

2

(
ξ∂µξ† − ξ†∂µξ

)
. (3.31)

3Subscripts v are implicit on the velocity-dependent heavy baryon fields.
4We use the convention ε0123 = +1.
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Here the spin operators and a host of associated identities, which can be found in

Appendix B, have been used to eliminate γ-matrix structure; all tensors made from

spinors can be written in terms of vµ and Sµ. The integral over v in Eq. (3.28), which

we suppress for clarity in future expressions, ensures that the theory is Lorentz-

invariant. The mass term MBBB which appears in the usual chiral Lagrangian was

removed by the redefinition of baryon fields in Eq. (3.23).

One could at this point use the Lagrangian given above to develop Feynman rules

and form a perturbative expansion of observables such as the octet baryon masses.

However, as outlined in the following section, it is important to first consider and

include contributions arising from the decuplet baryons.

3.3.3 Decuplet Baryons and Resonances

The lowest-lying decuplet of spin-3
2

baryon resonances plays a particularly impor-

tant role in low-energy baryon phenomenology because of the closeness of the av-

erage decuplet mass MT to the average octet baryon mass MB; the physical N -∆

mass splitting is δ ≈ 300 MeV. In our application of chiral perturbation theory to

lattice simulation results, this scale is comparable to relevant values of the pseudo-

Goldstone boson mass m. As we cannot claim that m� δ, it is in general prudent

to retain explicit decuplet fields, rather than integrate them out. Integrating the de-

cuplet out would generate higher-order contributions suppressed by powers of C2/δ

(where C is the TBφ coupling)5. Given that the coupling C is approximately 1.5

(calculated using SU(6) symmetry), and higher-dimension operators from typical

short-distance QCD effects are suppressed by 1/Λχ, decuplet contributions are thus

significantly more important than other higher-dimension operators in the chiral

theory.

Higher baryon resonances are, in general, sufficiently heavy to be consistently

integrated out of the low-energy effective theory. Even allowing for unphysically-

large meson masses m ≈ 500MeV—of a comparable scale to the mass gap between

the nucleon and higher N∗ resonances—these fields do not necessarily need to be

included explicitly but can be mimicked by higher-dimension operators whose effects

are of a similar size. For example, the N(1440) lies only 500MeV above the N(939),

but it is estimated that the contribution to typical octet baryon amplitudes from

this state is no more than 10% that of the ∆(1232) [56]. This can be understood

physically using an intuitive argument provided by the quark model: the wavefunc-

tions of the octet and decuplet baryons differ only in the arrangement of spin, while

higher resonances have different spatial wavefunctions. As the hyperfine spin-spin

interaction is relatively weak, it is energetically easier for an octet baryon to be

converted into a decuplet baryon than for it to transition to other excited states.

For these reasons we include the spin-3
2

decuplet, but no higher baryon reso-

nances, into the effective chiral theory. The decuplet is represented by a Rarita-

Schwinger field (T µ)abc, which is totally symmetric under the exchange of flavour

5Here T represents decuplet baryons, B represents octet baryons, and φ stands for the octet mesons.
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indices and contains both spin-1
2

and spin-3
2

components. The constraint γµTµ = 0

projects out the spin-1
2

pieces. Explicitly,

T =


 ∆++ ∆+

√
3

Σ∗+√
3

∆+
√

3
∆0
√

3
Σ∗0√

6
Σ∗+√

3
Σ∗0√

6
Ξ∗0√

3

,


∆+
√

3
∆0
√

3
Σ∗0√

6
∆0
√

3
∆− Σ∗−√

3
Σ∗0√

6
Σ∗−√

3
Ξ∗−√

3

,


Σ∗+√
3

Σ∗0√
6

Ξ∗0√
3

Σ∗0√
6

Σ∗−√
3

Ξ∗−√
3

Ξ∗0√
3

Ξ∗−√
3

Ω−


. (3.32)

Under SU(3)L ⊗ SU(3)R, T µ transforms as

T µabc → Ud
aU

e
bU

f
c T

µ
def , (3.33)

where U is defined in Eq. (3.11b). Just as was done for the octet baryons (Eq. (3.23)),

it is convenient to define the velocity-dependent field

T µv (x) =
1 + /v

2
exp(iMTv · x)T µ(x). (3.34)

To avoid the introduction of factors of exp(i(MT −MB)v · x) into the Lagrangian,

which would otherwise appear in terms that involve both B and T , one can define

Tµ = exp(iMBv · x)T µv (x). (3.35)

The modified Dirac equation for the re-defined decuplet fields is
(
i/∂ − δ

)
Tµ = 0; the

decuplet mass term has been replaced by the octet-decuplet mass splitting δ. Spin

operators Sµ, which satisfy the same spin algebra as the octet baryon spin operators,

act on the spinor indices6 of Tµ. It is again useful to note identities which can be

used to eliminate Dirac structures from the theory, in particular,

vµTµ = 0, SµTµ = 0. (3.36)

A more complete collection of such identities is given in Appendix B.

To lowest order, the decuplet baryon contribution to the effective Lagrangian

may be written as

LTeff. = −iT µ(v · D)Tµ + δT
µ
Tµ + C

(
T
µ
AµB +BAµT

µ
)

+ 2HT µSνAνTµ
+cT

µ(
ξ†Mqξ

† + ξMqξ
)
Tµ − σ̃TrM

(
Σ + Σ†

)
T
µ
Tµ, (3.37)

where we have suppressed the SU(3) tensor indices and the bold typeface on T µ.

Flavour-space contractions denoted by brackets (. . .) are given by

(BAB) = B
kji
AliBljk, (3.38a)

(BBA) = B
kji
AlkBijl, (3.38b)

6It is important to note that Sµ is now not the total spin operator. Instead, SαTµ =
1
2 (σα − (σ · v)vα)Tµ, i.e., Sµ acts only on the spinor portion of the Rarita-Schwinger field.
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where B represents either the decuplet baryon tensor T µ or

Babc =
1√
6

(εabdBdc + εacdBdb). (3.39)

The Lagrangian in Eq. (3.37) contains an explicit mass term proportional to the

octet-decuplet mass splitting δ because the transformation to velocity-dependent

fields has the effect of removing only part of the decuplet baryon mass. The complete

first-order Lagrangian for the effective field theory is given by the sum of the meson,

octet and decuplet Lagrangians which appear in Eqs. (3.14), (3.29) and (3.37).

From this one can derive Feynman rules for meson-baryon interactions (summarised

in Section 3.3.4) and use diagrammatic perturbation theory to calculate expansions

for hadronic properties, including the octet baryon masses. This is the topic of

Section 3.6.

Of course, to obtain meaningful expansions of physical observables in this way,

one must include all diagrams to a given order in perturbation theory. The process

of assigning a rigorous order to each type of Feynman diagram is the subject of

chiral power counting, which is outlined in Section 3.4.

3.3.4 Feynman Rules

Using the complete first-order Lagrangian which was developed in the previous sec-

tions (Eqs. (3.14), (3.29) and (3.37)), one can derive Feynman rules within the

heavy-baryon formalism. The octet and decuplet baryon propagators, meson prop-

agator, and baryon-meson vertices are summarised in standard notation below.

Octet Baryon Propagator:
i

k · v + iε
, (3.40a)

Decuplet Baryon Propagator:
iP µν

k · v − δ + iε
, (3.40b)

Meson Propagator:
i

k2 −m2
φ + iε

, (3.40c)

BB′φ Vertex (Fig. 3.1(a)):
k · S
fπ

CBB′φ, (3.40d)

BTφ Vertex (Fig. 3.1(b)):
kµ
fπ
CBTφ. (3.40e)

Here vµ denotes the four-velocity of the heavy baryon B or T , kµ in a propagator

refers to the momentum of the relevant baryon or meson and in a vertex to the (out-

going) momentum of the meson, P µν = vµvν−gµν−(4/3)SµSν is a spin-polarisation

projector that projects onto the spin-3
2

solutions to the equation of motion, and δ

denotes the average octet-baryon–decuplet-baryon mass splitting. The flavour alge-

bra is encompassed in the definitions of the (Clebsch-Gordan) coefficients C which

are given explicitly in Appendix F. Subscripts B, T , and φ on these coefficients label

the octet baryon, decuplet baryon, and meson which appear in the corresponding
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B B′

φ

(a) BB′φ vertex.

B T

φ

µ

(b) BTφ vertex.

Figure 3.1: Diagrammatic representation of the leading-order strong interaction ver-

tices (solid squares). The single, double, and dashed lines denote octet baryons, decuplet

baryons, and mesons, respectively.

vertex (illustrated in Fig. 3.1). This list of Feynman rules will be extended in future

chapters, where we generalise the Lagrangian to include external sources as needed

for the calculation of various current matrix elements.

3.4 Chiral Power Counting

Chiral power counting is a systematic method for assigning a chiral dimension to

each Feynman diagram. This dimension plays a role analogous to that of the fine-

structure constant α in QED expansions; naive dimensional analysis shows that

contributions to physical observables from diagrams with chiral dimension D are

suppressed by pD (where p is the momentum-scale of the chiral expansion—see

Section 3.3).

The chiral dimension of a particular Feynman diagram is given by a combination

of the dimensions of its propagator and vertex components; each component con-

tributes as specified by the powers of external momenta and meson masses which

appear. Using the Feynman rules summarised in the previous section, one finds

that [64]:

• Meson propagators are given by i
k2−m2

φ+iε
, where k is the four-momentum of

the meson field and mφ is its mass. They hence have chiral dimension D = −2.

The total dimension associated with all meson propagators in a given diagram

is written as IM .

• Octet baryon propagators and decuplet baryon propagators may be

expressed as i
v·k+iε

and iPµν

v·k−δ+iε respectively, where kµ is the four-momentum

of the baryon field and vµ is its four-velocity. The chiral dimension of a baryon

propagator is thus7 D = −1. The symbol IB denotes the total chiral dimension

of the baryon propagators in a diagram.

• The chiral dimension D = dM of a particular mesonic vertex is given by the

dimension of the term of the chiral Lagrangian from which it originates. Recall

7Subtleties regarding transitions between octet and decuplet baryon multiplets will be discussed
later in this section.
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that by Lorentz covariance only even dimensions contribute: dM = 2, 4, 6, . . ..

The number of mesonic vertices of dimension dM in a given diagram is denoted

by NM
dM

.

• Similarly, the dimensions D = dB of meson-baryon vertices are obtained

from the dimensions of the terms of the chiral Lagrangian from which they

originate. The number of meson-baryon vertices of dimension dB = 1, 2, 3, . . .

is denoted by NMB
dB

.

These components combine to give the chiral dimension D of a complete diagram:

D = 4L− 2IM − IB +
∑
dM

dMN
M
dM

+
∑
dB

dBN
MB
dB

, (3.41)

where L is the total number of loops. In the case of fully-connected diagrams, one

can eliminate IM by substituting the general topological identity

L = IM + IB −
∑
dM

NM
dM
−
∑
dB

NMB
dB

+ 1 (3.42)

to obtain the relation

D = 2L+ 2 + IB +
∑
dM

(dM − 2)NM
dM

+
∑
dB

(dB − 2)NMB
dB

. (3.43)

The diagrams which are relevant to this body of work have a single baryon line

running through the diagram. In this case
∑

dB
NMB
dB

= IB + 1. Substituting this

into Eq. (3.43), we find

D = 2L+ 1 +
∑
dM

(dM − 2)NM
dM

+
∑
dB

(dB − 1)NMB
dB
≥ 2L+ 1. (3.44)

This shows that tree diagrams contribute at order p, and that one-loop graphs begin

to contribute at order p3.

There is some ambiguity in this power counting scheme for diagrams which in-

clude transitions between baryon multiplets, for example octet→ decuplet→ octet.

In general (for example in their application to lattice QCD simulation results), one

wishes chiral extrapolations to be valid for a reasonably large range of values of

mφ. Thus one can claim neither δ � mφ nor δ � mφ, and, as a result, the appro-

priate chiral dimension of loops involving transitions is debatable. Because of the

particular significance of decuplet effects, as outlined in Section 3.3.3, we choose to

consider self-energy loops involving transitions between octet and decuplet baryons

at the same order as the analogous loops without transitions. This will be our choice

of convention throughout this body of work. In our scheme, terms which enter a

chiral expansion of octet baryon self-energy with chiral dimension D = 3 thus arise

from the one-loop diagrams shown in Fig. 3.2.
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Figure 3.2: One-loop graphs which contribute to an expansion of octet baryon self-energy

at order p3. Single, dashed, and double lines represent octet baryons, mesons, and decuplet

baryons, respectively. The solid squares denote leading-order strong-interaction vertices.

When these loops are regularised using the finite-range regularisation scheme

(FRR) (introduced in Section 3.5), the simple power counting described in this

section is modified; FRR introduces an additional mass parameter Λ with the result

that loop processes renormalise chiral parameters at different orders in the energy

expansion. In the small meson mass limit, however, FRR gives the same result as

other regularisation schemes and the standard power counting is restored. From this

one can conclude that the order in which loops contribute in FRR is still dictated

by the standard formalism [65]. When the meson masses are set to their physical

values, FRR expressions include a partial resummation of higher-order effects which

combine to cancel unphysical small-distance behaviour. This resummation will be

shown explicitly for an example given in Section 3.6.

3.5 Finite-Range Regularisation

As for any physical description in quantum field theory, one must regularise and

renormalise infinities arising from self-interactions in chiral perturbation theory. De-

veloped in [66–70], finite-range regularisation (FRR) is a regularisation prescription

which takes into account the extended nature of fields of finite structure; the scheme

is characterised by the suppression of the ultraviolet behaviour of loop integrals.

FRR was motivated in part by the poor convergence of the traditional approach

of dimensional regularisation (DR). DR is a regularisation scheme based on the

fact that logarithmically divergent integrals in a four-dimensional theory become

convergent in d = (4− 2ε) dimensions, where ε > 0. An analytic continuation to d

dimensions is performed, rendering the integral finite, and a finite four-dimensional

result is recovered by taking ε → 0 and subtracting terms which diverge in this

limit. This process involves integrals over all possible loop (i.e., meson) momenta.

This allows meson propagation over distances smaller than typical hadronic size.

That is, DR introduces model-dependent effects; it treats meson-baryon couplings

as point-like and does not take into account the finite size of the baryon, instead

integrating over loop momenta far beyond the scale where the particular EFT has

any significance [71,72].

It is clear that physical results should be independent of regularisation and renor-

malisation schemes. It is the physical insight recognised above which informs the
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development of FRR. In QCD, Goldstone bosons are emitted and absorbed by com-

posite objects made of quarks and gluons. Because these objects have some finite

size R, the emission and absorption of probes with momenta greater than Λ ≈ R−1

is suppressed. So, for mφ > Λ, we expect pseudo-Goldstone boson loops to be

suppressed by powers of Λ/mφ, not enhanced by powers of mφ/Λχ. If Λ > Λχ,

this physics would be included in the standard formulation of the effective theory.

Evidence suggests, however, that Λ ≤ Λχ [66–70]. FRR thus introduces a finite

ultraviolet cutoff (i.e., a mass parameter Λ), which physically corresponds to the

fact that the source of the meson cloud is an extended structure [65, 73–75]. The

form of the regulator used, which could for example be chosen to be a sharp cutoff

or dipole, does not affect the leading-order non-analytic structure of the expan-

sion [70]. Furthermore, the renormalisation constants may be fixed by matching to

lattice simulation results, eliminating dependence on the regulator.

FRR also offers improved convergence over dimensionally-regulated SU(3) chiral

expansions. This stems from the fact that the parameter Λ remains finite; FRR effec-

tively resums the chiral expansion, leaving only the long-distance model-independent

physics at the lower orders. In the limit mφ/Λ→ 0, however, FRR becomes equiv-

alent to DR.

It is worth commenting here on a subtlety which arises when using FRR rather

than DR in chiral perturbation theory. As with any theory involving derivative cou-

plings, there is an occasional change of the Feynman rules for the FRR-regularised

theory from their prescribed form. The canonical momentum conjugate to a field

variable is given by

π(x) =
δL

δ∂0φ(x)
. (3.45)

Time-derivatives in the interaction Lagrangian then lead to canonical momenta

which carry portions of the interaction; the interaction Hamiltonian is no longer

simply the negative of the interaction Lagrangian. Since the Feynman rules for a

theory are derived from the interaction Hamiltonian, it is clear that they are modi-

fied, potentially in a nontrivial way [76].

Dimensionally-regularised chiral perturbation theory has the fortunate peculiar-

ity that these changes, which can be accounted for by adding a specific contact

interaction proportional to δ4(0) to the mesonic part of the theory, vanish. In this

case the naive Feynman rules may be used without modification. While this is not

the case for the theory with FRR, it has been verified that, to the order of our cal-

culations, the extrapolation of observables such as baryon mass are not affected [65].

We will use the FRR regularisation scheme throughout this work.

3.6 The Nucleon Mass

We illustrate the FRR technique using the chiral extrapolation of the nucleon mass

MN as a test case. Here we account for pion loops only (and neglect η, ~K)—a full
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SU(3) perturbation theory study of the octet baryon masses will be presented in the

next chapter.

The physical nucleon mass MN is defined as the pole position of the full propa-

gator:

S0(p) =
1

/p−M0 − Σ(/p)
, (3.46)

where M0 denotes the nucleon mass in the chiral limit and Σ(/p) refers to the (one-

particle irreducible) self-energy. Determining the mass MN thus reduces to a calcu-

lation of the self-energy: one must solve

MN −M0 − Σ(MN) = 0 (3.47)

for MN .

From the discussion of baryon self-energy in Section 3.4, the chiral expansion of

MN may be formulated in terms of m2
π ∼ mq as

MN = {a0 + a2m
2
π + a4m

4
π + . . .}+ {χπIπ(mπ) + χπ∆Iπ∆(mπ) + . . .}, (3.48)

where the second term corresponds, at leading order, to contributions from the loops

displayed in Fig. 3.2. That is, the expansion takes the form

MN = {terms analytic in mq}+ {chiral loop corrections}, (3.49)

where the coefficients of the analytic terms are not constrained by chiral symmetry

(and will be determined from lattice QCD calculations in future chapters), and the

chiral loops account for non-analytic behaviour in the quark masses. The coefficients

of the loop terms are model-independent and can be derived using the effective field

theory Lagrangian of Section 3.3.

For example, the nucleon self-energy, i.e., the first of the diagrams shown in

Fig. 3.2, gives an additive correction χπIπ to the mass of the nucleon, where

− iδij
Iπ

24π
:=

∫
d4k

(2π)4

kikj
(k0 − iε)(k2 −m2

π + iε)
. (3.50)

Using the results of Appendix C.1 to simplify the integral, and writing χπ explicitly,

this can be expressed as

χπIπ(mπ) = − 3g2
A

32πf 2
π

2

π

∫ ∞
0

dk
k4

k2 +m2
π

, (3.51)

where gA = (D+F ) in the notation of Eq. (3.29). Both DR and FRR were outlined

in Section 3.5. Choosing DR with ε → 0, the nucleon expansion of Eq. (3.48)

becomes

MN = c0 + c2m
2
π + χπm

3
π + c4m

4
π + . . . , (3.52)
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where the coefficients ci denote the ai of Eq. (3.48) after they have undergone an

infinite renormalisation. As previously discussed, DR allows a large contribution

from the k → ∞ portion of the integral, and short distance physics is highly over-

estimated. Numerical estimates of the terms in Eq. (3.52) give [77]

MN =

(
1 + 1.1

(
mπ

mR

)2

− 1.0

(
mπ

mR

)3

+ . . .

)
[0.89 GeV], (3.53)

where mR = 0.54GeV. This resembles a geometric series with no sign of convergence

for pion masses mπ & 0.5 GeV. Pion masses of this magnitude are still typical of

many lattice simulations.

If one instead uses FRR, introducing a dipole regulator (the form suggested by

a comparison of the nucleon’s axial and induced pseudoscalar form factors [78])

u(k) =

(
Λ2

Λ2 + k2

)2

(3.54)

at each pion-nucleon vertex, the integral becomes

IFRR
π =

2

π

∫ ∞
0

dk
k4

k2 +m2
π

u2(k), (3.55)

which is convergent for k →∞ and can be evaluated explicitly:

IFRR
π =

1

16

Λ5(m2
π + 4mπΛ + Λ2)

(mπ + Λ)4
. (3.56)

Taylor-expanding about mπ = 0, the difference between the two regularisation

schemes becomes apparent:

IFRR
π → Λ3

16
− 5Λ

16
m2
π +m3

π −
35

16Λ
m4
π +

4

Λ2
m5
π + . . . . (3.57)

Higher-order DR terms are resummed in the FRR scheme with the result that loop

contributions Iπ → 0 as mπ becomes large. Writing out the FRR expansion of MN

to leading non-analytic order, one recovers the renormalised expansion coefficients

ci obtained using DR:

MN =

(
a0 + χπ

Λ3

16

)
+

(
a2 − χπ

5Λ

16

)
m2
π + χπm

3
π +

(
a4 − χπ

35

16Λ

)
m4
π + . . .

= c0 + c2m
2
π + χπm

3
π + c4m

4
π + . . . , (3.58)

just as was claimed in Section 3.4.
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3.7 Finite-Volume Corrections

The discussion of chiral perturbation theory in this chapter has, to a large extent,

been motivated by our intent to apply this formalism to extrapolate lattice QCD

simulation results from unphysically-large pseudoscalar meson masses to the physical

masses. As was described in Section 2.2.2, however, there are other systematic

effects which must be considered before lattice studies can confront experiment. In

particular, simulations are necessarily performed on lattices with some finite spatial

extent. In this section we describe an application of effective field theory to the

modelling and correction of finite-volume artefacts.

Lattice QCD simulations must satisfy several conditions if the low-energy chiral

EFT is to provide an appropriate framework for the estimation of finite-volume

effects. Of course, the EFT can only be applied where the standard hierarchy of

mass scales is maintained:

|~p |,mπ � Λχ � a−1. (3.59)

Here p is a typical momentum in the system of interest, mπ is the pion mass, Λχ is

the scale of chiral symmetry breaking which separates soft from hard momenta, and

a is the lattice spacing. In a box of finite spatial extent L, momenta are quantised

such that ~p = 2π~n/L (with ~n ∈ Z3). Equation (3.59) then places a condition on L:

2π

L
� Λχ ⇒ L� 2π

Λχ

≈ 1

2πfπ
≈ 1fm. (3.60)

The constraint L � 2R, where R corresponds approximately to the size of the

system of interest, must also be satisfied for (non-pionic) hadronic physics to be

completely contained inside the lattice. In this body of work we consider single

baryon systems, i.e., R ≈ 1 fm ⇒ L � 2 fm. This is a more stringent requirement

than that given in Eq. (3.60).

In addition, to ensure that the box size has no effect on spontaneous chiral sym-

metry breaking, the lattice must be sufficiently large that mπL � 1 for simulation

values of the pion mass. If this is not maintained, there will be a deformation of the

vacuum state and the momentum-zero modes of the pseudo-Goldstone bosons must

be treated nonperturbatively [79,80]. Physically, if mπL . 1—that is, the Compton

wavelength 1/mπ (approximately 1.4 fm for the physical pion mass) is of a similar

size to L—the pion does not have enough space to propagate before interacting with

the boundaries of the finite lattice. If mπL� 1 and the pion fits comfortably inside

the box, however, the explicit symmetry breaking of the low-energy behaviour of

the system is more important than that resulting from the finite volume. Like in

the infinite volume, contributions from zero modes can be neglected in this case.

In the regime where all conditions are satisfied, quantities calculated on a finite

lattice are expected to display behaviour which is qualitatively similar to that on

the infinite volume. Furthermore, one can model finite-volume artefacts using the

chiral perturbation theory formalism. This approach is based on the understanding

that the dominant finite-volume effects come from the exchange of mesons ‘around
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the world’ of the lattice as a result of the periodic boundary conditions. As a

consequence, the mass of a hadron, for example, receives corrections of order e−mπL

to its asymptotic value. For typical numerical simulations, such as those performed

in Chapter 7, mπL ≥ 3 and the finite-volume corrections are small compared to the

statistical uncertainties.

Formalising this approach, explicit expressions for finite-volume artefacts can

be written in terms of the loop integrals which represent the meson cloud in the

chiral perturbation theory formalism. The finite-volume shift to the value of some

observable is modelled as

δtot.
L =

∑
I

χI δL(I), (3.61)

where the sum runs over all loops I contributing to the chiral expansion of the

observable of interest, and χI is the appropriate chiral coefficient that scales the

contribution of loop I to that observable. The volume-dependence of I is given by

δL(I) ≡ IL − I∞. (3.62)

Here IL and I∞ denote the loop expression evaluated on a lattice of length L and

on the infinite volume, respectively:

δL(I) ≡

 1

LxLyLz

∑
nxnynz

I −
∫

d3k

(2π)3
I

, (3.63)

where the ni are integers. Throughout this body of work we consider symmetric

lattices, for which Lx = Ly = Lz = L.

While Eq. (3.63) can be evaluated by explicitly performing the finite-volume sum

and the integral, this procedure is computationally intensive. It is more efficient to

use the well-known decomposition of δL in terms of Bessel functions [81, 82]. For a

typical integrand

δL

(
1

[~l2 +M2]m

)
≡ 1

L3

∑
~n

1

(~n 2 +M2)m
−
∫

d3l

(2π)3

1

(~l 2 +M2)m

=
2−

1
2
−mM3−2m

π
3
2 Γ(m)

∑
~n6=0

(LM|~n|)−
3
2

+mK 3
2
−m(LM|~n|), (3.64)

where ~n ∈ Z3 and Km(z) is a modified Bessel function of the second kind. In

general, it is necessary to use Feynman parameters to express integrands in the

standard form used above. In Appendix C.2 we do this explicitly for an integral

discussed in the previous section in the context of a chiral expansion of the nucleon

mass. The example we use is

Idip.
π =

2

π

∫
dk

k4

k2 +m2

(
Λ2

Λ2 + k2

)
, (3.65)
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where a dipole regulator has been chosen within the FRR scheme. Making the

identification δL(M,m) ≡ δL

(
1

[~l 2+M2]m

)
, we find

δL
(
Idip.
π

)
= 4πΛ8δL(Λ, 4)− 16πm2Λ8

∫ 1

0

dx(1− x)3δL

(√
xm2 + (1− x)Λ2, 5

)
.

(3.66)

The accuracy of this model has been confirmed, for the case of the octet baryon

masses, by a detailed numerical study using multiple lattice volumes [83].

We will use this model in future chapters to correct lattice simulation results

for finite-volume artefacts before performing chiral extrapolations. Since finite-size

effects should be insensitive to short-distance physics, varying the FRR regulator

form and mass within the integrands can also provide an estimate of the model-

dependence associated with the ultraviolet part of the loop integrals.





Chapter 4

Octet Baryon Mass Splittings

Charge symmetry violation in the nucleon mass is arguably small—the neutron-

proton mass difference is one part in a thousand. The effects of this small CSV,

however, are of tremendous significance; it is precisely this which ensures that the

hydrogen atom is stable against weak decay and that neutrons can decay into pro-

tons (plus electrons and antineutrinos) in radioactive beta decay. Moreover, the

elemental abundances established during the first few minutes after the big bang

depended on the neutron-proton mass difference and neutron lifetime. If there were

a stable neutron, and a more massive proton, our universe would be radically differ-

ent; one would expect a predominance of heavy nuclei, no normal galaxies, stars, or

planets would form, and life as we know it would be impossible [84]. Beyond giving

quantitative insight into the breaking of charge symmetry, a precise understanding

of the neutron-proton mass difference from first principles will inform studies of the

evolution of our universe.

In the framework of the Standard Model, the neutron-proton mass difference is

generated by the electroweak interactions. It may be expressed (to leading order)

as the sum of two terms:

Mn −Mp = ∆EM + ∆md−mu . (4.1)

The electromagnetic contribution, ∆EM, arises because of the different electromag-

netic charges of the proton and neutron. This contribution is negative and is com-

pensated by the strong isospin breaking contribution ∆md−mu . In a quark picture

this second term results from the difference in the masses of the up and down quarks;

this is ultimately determined by the values of the Yukawa couplings and by the vac-

uum expectation value of the Higgs field. The total mass difference Mn−Mp, and the

analogous physical mass splittings between members of the other baryonic isospin

multiplets, have been measured extremely precisely experimentally [30,85]:

Mn −Mp = 1.2933322(4)MeV, (4.2a)

MΣ− −MΣ+ = 8.079(76)MeV, (4.2b)

MΞ− −MΞ0 = 6.85(21)MeV. (4.2c)

43
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The decomposition of each into its electromagnetic and strong components, however,

is far less well known.

In recent years there has been considerable effort invested in lattice-based deter-

minations of both the QCD contribution to the baryon mass splittings [86–90] and

the electromagnetic contribution [91–94]. However, 1 + 1 + 1–flavour simulations—

at this stage the only way to directly probe the full flavour-dependence of QCD

observables—are not yet widely available (the first set of 1 + 1 + 1 + 1–flavour

ensembles has recently appeared [35]).

In this chapter we describe the use of SU(3) chiral perturbation theory to deter-

mine the strong contribution to the mass splittings among members of octet baryon

isospin multiplets using isospin-averaged (2 + 1–flavour) lattice calculations [95,96].

This procedure takes advantage of the high-precision simulations which are currently

available for the octet baryon masses using mass-degenerate light quarks. The sym-

metries of low-energy QCD are used to break this mass-degeneracy—the unknown

low-energy constants in the chiral expansion are the same whether or not the SU(2)

symmetry is broken—while describing the meson mass dependence of the masses of

the entire baryon octet simultaneously.

This study is of particular interest in the light of recent results which suggest that

the accepted value for the electromagnetic contribution to the neutron-proton mass

difference calculated using the Cottingham formula, ∆EM = −0.76± 0.30MeV [97],

may be too small. Walker-Loud et al. (WLCM) claim to find an omission in the

traditional analysis1 and present a larger value of −1.30 ± 0.03 ± 0.47 MeV [98].

From these estimates, one infers strong isospin breaking contributions of ∆md−mu =

2.05± 0.30MeV (traditional) and 2.60± 0.47MeV (WLCM), respectively. Clearly,

independent theoretical estimates of the size of the strong contribution to Mn−Mp,

such as that reported here, are of considerable value.

4.1 SU(3) Chiral Extrapolation

In this section we develop an SU(3) chiral perturbation theory expansion for the

octet baryon masses. This is an extension of the formalism presented in Section 3.6

for the mass of the nucleon to the entire baryon octet, now including not only pion,

but also eta and kaon loops. We also revisit the discussion of the meson fields in

Section 3.3.1 to allow for a non-zero light quark mass splitting, i.e., mu 6= md.

1WLCM found that the application of the Cottingham formula with two different Lorentz decom-
positions of the Compton scattering tensor yields incompatible results. The ambiguity can be
removed using a subtracted dispersive analysis, which leads to the updated results.
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For mu 6= md, mixing occurs between the π0 and η: expanding the mass term of

the meson Lagrangian, Eq. (3.14), in powers of the meson field,

LΦ
kin =BTr

(
MqΦ

2
)

(4.3a)

=B(mu +md)π
+π− + B(ms +md)K

0K
0

+ B(ms +mu)K
+K− +

B
2

(mu +mu)(π
0)2

+
B
6

(md +mu + 4ms)η
2 +

B√
3

(mu −md)ηπ
0, (4.3b)

where B = 4λ/f 2
π . This may be diagonalised into the mass basis via a field rotation:

π0 → π0 cos ε− η sin ε, (4.4a)

η → π0 sin ε+ η cos ε, (4.4b)

where the mixing angle ε is defined2 by

tan 2ε =

√
3 (md −mu)

2ms − (md +mu)
. (4.5)

The meson masses may be expressed as

m2
π± = B(mu +md), (4.6a)

m2
π0 = B(mu +md)−

2B
3

(2ms − (mu +md))
sin2 ε

cos 2ε
, (4.6b)

m2
K± = B(ms +mu), (4.6c)

m2
K0 = B(ms +md), (4.6d)

m2
η =
B
3

(4ms +mu +md) +
2B
3

(2ms − (mu +md))
sin2 ε

cos 2ε
, (4.6e)

where mπ0 and mη now contain some dependence on the mixing angle ε. In the limit

ε→ 0 these expressions clearly reduce to the isospin-averaged results of Eq. (3.16).

Using the formalism of Chapter 3, the mass of an octet baryon B can now be

expressed as a series

MB = M (0) + δM
(1)
B + δM

(3/2)
B + . . . , (4.7)

where the superscript indicates the order of the expansion in powers of the quark

mass—the explicit chiral symmetry breaking parameter of QCD. The leading term,

M (0), denotes the degenerate mass of the octet baryons in the SU(3) chiral limit, and

the leading dependence on Mq, which is encoded in δM
(1)
B , arises from terms in the

octet Lagrangian (Eq. (3.29)) with coefficients bD, bF , and σ0. In anticipation of the

2This notion of a π0-η mixing angle is well-defined only at leading order in the quark mass expan-
sion.
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CBu CBd CBs

p 5
3
α + 2

3
β + 2σ 1

3
α + 4

3
β + 2σ 2σ

n 1
3
α + 4

3
β + 2σ 5

3
α + 2

3
β + 2σ 2σ

Λ 1
2
α + β + 2σ 1

2
α + β + 2σ α + 2σ

Σ+ 5
3
α + 2

3
β + 2σ 2σ 1

3
α + 4

3
β + 2σ

Σ− 2σ 5
3
α + 2

3
β + 2σ 1

3
α + 4

3
β + 2σ

Ξ0 1
3
α + 4

3
β + 2σ 2σ 5

3
α + 2

3
β + 2σ

Ξ− 2σ 1
3
α + 4

3
β + 2σ 5

3
α + 2

3
β + 2σ

Table 4.1: Coefficients of the terms in Eq. (4.7) which are linear in the up, down, and

strange quark masses, expressed in terms of the SU(3)-breaking parameters α, β, and σ.

extension to the partially-quenched formalism which we will consider in later chap-

ters, where it becomes notationally convenient to use a different parameterisation

of the Lagriangian, we define parameters α, β, and σ:

α =
2

3
bD + 2bF , β = −5

3
bD + bF , σ = bD − bF + σ0. (4.8)

In terms of these parameters,

δM
(1)
B = −CBu Bmu − CBd Bmd − CBs Bms, (4.9)

where the coefficients CBq are given explicitly in Table 4.1.

The first non-analytic term, δM
(3/2)
B , encodes the leading loop corrections to the

baryon masses; as discussed in Section 3.4, these correspond to the diagrams shown

in Fig. 3.2 and include both octet and decuplet baryon intermediate states. The

relevant coefficients and integrals may be derived from the appropriate terms of the

chiral Lagrangian, just as was shown for the nucleon mass in Section 3.6. Explicitly,

δM
(3/2)
B = − 1

16πf 2
π

∑
φ

[χBφ IR(mφ, 0,Λ) + χTφ IR(mφ, δ,Λ)], (4.10)

where the meson loops involve the integrals

IR(mφ, δ,Λ) =
2

π

∫
dk

k4√
k2 +m2

φ

(
δ +

√
k2 +m2

φ

)u2(k)− b0 − b2m
2
φ. (4.11)

The subtraction constants, b0,2, are defined so that the parameters M (0) and CBq
are renormalised. Explicit expressions for these terms can be readily evaluated by

Taylor-expanding the integrand in m2
φ, as was done for the nucleon expressions in

Eqs. (3.57) and (3.58). This is done in Ref. [70]. The mass scale Λ is introduced

through the finite range regulator u(k) (for details see Section 3.5), and the chiral
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χBφ
π0

p 1
6
(2(D2 + 3F 2) + (D2 + 6DF − 3F 2) cos(2ε)−

√
3(D − 3F )(D + F ) sin(2ε))

n 1
6
(2(D2 + 3F 2) + (D2 + 6DF − 3F 2) cos(2ε) +

√
3(D − 3F )(D + F ) sin(2ε))

Λ 2
3
D2

Σ± F 2 + F 2 cos(2ε) + 2
3
D sin ε(±2

√
3F cos ε+D sin ε)

Ξ0/− 1
6
(2(D2 + 3F 2) + (D2 − 6DF − 3F 2) cos(2ε)±

√
3(D + 3F )(D − F ) sin(2ε))

η

p 1
6
(2(D2 + 3F 2)− (D2 + 6DF − 3F 2) cos(2ε) +

√
3(D − 3F )(D + F ) sin(2ε))

n 1
6
(2(D2 + 3F 2)− (D2 + 6DF − 3F 2) cos(2ε)−

√
3(D − 3F )(D + F ) sin(2ε))

Λ 2
3
D2

Σ± 2
3
(D2 cos2 ε∓ 2

√
3DF cos ε sin ε+ 3F 2 sin2 ε)

Ξ0/− 1
6
(2(D2 + 3F 2)− (D2 − 6DF − 3F 2) cos(2ε)∓

√
3(D + 3F )(D − F ) sin(2ε))

π± K0 K±

p (D + F )2 (D − F )2 2
3
(D2 + 3F 2)

n (D + F )2 2
3
(D2 + 3F 2) (D − F )2

Λ 4
3
D2 1

3
(D2 + 9F 2) 1

3
(D2 + 9F 2)

Σ± 2
3
(D2 + 3F 2) (D ∓ F )2 (D ± F )2

Ξ0 (D − F )2 2
3
(D2 + 3F 2) (D + F )2

Ξ− (D − F )2 (D + F )2 2
3
(D2 + 3F 2)

Table 4.2: Chiral SU(3) coefficients for the coupling of an octet baryon to other octet

baryons through the pseudoscalar octet meson φ.

coefficients χBφ and χTφ relevant to this particular calculation are given in Tables

4.2 and 4.3.

In the most general case, each octet baryon receives distinct loop contributions

from each of the mesons π±, π0, K±, K0, η, where the π± and K± remain pairwise

mass-degenerate. In the isospin-averaged scenario (ε→ 0), to which we turn in the

next section, the sum in Eq. (4.10) runs only over π, K, and η: χBπ = χBπ± +χBπ0 ,

with the contributions from the charged and neutral kaons combined in an analogous

way. Clearly, the coefficients of terms linear in the light quark masses may also be

combined: CBl = CBu +CBd. Our calculation of the octet baryon mass splittings in

Section 4.3 will be based on the observation that the a-priori unknown low-energy

constants which appear in these coefficients, namely α, β, and σ, remain linearly

independent in this limit (when considering the entire baryon octet) and hence can

be determined using isospin-symmetric 2 + 1–flavour lattice QCD simulations.
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χTφC−2

π0 π± K0 K± η

p 4
9

cos2 ε 8
9

2
9

1
9

4
9

sin2 ε

n 4
9

cos2 ε 8
9

1
9

2
9

4
9

sin2 ε

Λ 1
3

cos2 ε 2
3

1
3

1
3

1
3

sin2 ε

Σ+ 1
9
(cos ε+

√
3 sin ε)2 1

9
2
9

8
9

1
9
(−
√

3 cos ε+ sin ε)2

Σ− 1
9
(− cos ε+

√
3 sin ε)2 1

9
8
9

2
9

1
9
(
√

3 cos ε+ sin ε)2

Ξ0 1
9
(cos ε+

√
3 sin ε)2 2

9
1
9

8
9

1
9
(−
√

3 cos ε+ sin ε)2

Ξ− 1
9
(− cos ε+

√
3 sin ε)2 2

9
8
9

1
9

1
9
(
√

3 cos ε+ sin ε)2

Table 4.3: Chiral SU(3) coefficients for the coupling of an octet baryon to the decuplet

baryons through the pseudoscalar octet meson φ.

4.2 Fits to Isospin-Averaged Lattice QCD Simu-

lation Results

Here we describe the application of the octet-baryon–mass chiral extrapolation

formalism developed in the previous section to recent 2 + 1–flavour (i.e., isospin-

averaged, with mu = md) lattice QCD simulation results. The fits described will

form the basis for the extraction of the strong contribution to the octet baryon mass

splittings in Section 4.3.

We consider two distinct sets of simulations, generated by the PACS-CS [95] and

QCDSF-UKQCD [96] collaborations. There are significant systematic differences

between the two sets of ensembles, including the lattice volumes, lattice spacings,

and methods of determining these spacings. Furthermore, they follow quite different

trajectories in the light-strange quark mass plane, as shown in Fig. 4.1. While the

PACS-CS collaboration results are generated at what is essentially a fixed strange

quark mass, the QCDSF-UKQCD collaboration simulations follow paths of constant

singlet quark mass (m2
K +m2

π/2), beginning at several SU(3)-symmetric points. We

perform independent analyses on these two lattice data sets.

Before fitting the chiral perturbation theory expressions of the previous section to

the lattice simulation results, we correct for finite-volume effects using the formalism

outlined in Section 3.7. The corrections are small; for the PACS-CS collaboration

results (L3 × T = 323 × 64, L ≈ 2.9 fm) they are less than 1% at all masses. The

corrections to the QCDSF-UKQCD simulation results range between approximately

5% on the smallest volume (L3×T = 243× 48, L ≈ 1.8fm) to less than 0.5% on the

largest (L3 × T = 483 × 96, L ≈ 3.6 fm). We also allow for an uncertainty on these

corrections, determined by allowing the dipole mass of the FRR regulator used in

the finite-volume estimation to range between 0.8 GeV and 4 GeV; while 0.8 GeV

is a typical value (e.g., based on a comparison of the nucleon’s axial and induced
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Figure 4.1: Locations of the lattice simulations in the ml–ms plane. The green circles

show the PACS-CS [95] data set, while the squares denote QCDSF-UKQCD collaboration

results [96] where the light blue, dark blue, and purple colours indicate lattice volumes of

dimension L3×T = 243× 48, 323× 64, and 483× 96, respectively. The red star represents

the physical point and the dashed line indicates the SU(3)-symmetric trajectory. The

dotted red lines show the trajectories plotted in Figs. 4.2 and 4.3: constant strange quark

mass and constant singlet quark mass (m2
K +m2

π/2 = fixed), passing through the physical

point.

pseudoscalar form factors [78]), the limit of large regulator mass corresponds to the

regulator-independent formalism.

After correcting to infinite volume, we fit to the simulation results for the entire

baryon octet simultaneously. Of course, separate fits are performed to the results

of the two collaborations, which have different sources of systematic uncertainty

because of the different lattice configurations and simulation parameters. While

our formal chiral power counting scheme treats the octet and decuplet baryons as

degenerate (as outlined in Section 3.4), we retain the octet-decuplet mass splitting, δ,

in numerical evaluations, setting this to the physical N -∆ splitting: δ = 0.292GeV.

The baryon-baryon-meson coupling constants are taken from phenomenology; D +

F = gA = 1.27, F = 2
3
D and C = −2D, and fπ is set to 87MeV, a chiral perturbation

theory estimate for the pion decay constant in the SU(3) chiral limit [57]. The fit

parameters are the octet baryon mass in the chiral limit M (0), the SU(3) chiral

symmetry breaking parameters α, β, σ, and the finite-range regulator mass Λ. Of

course, ε, which parameterises the light-quark mass splitting, is zero for this fit to

2 + 1–flavour lattice simulations.

The fit to the PACS-CS baryon octet data is shown in Fig. 4.2, while that to

the QCDSF-UKQCD set is shown in Fig. 4.3 (and also in Fig. D.2 in Appendix D).
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Figure 4.2: Fit to the PACS-CS lattice simulation results. The error bands shown are

purely statistical and incorporate correlated uncertainties between all fit parameters. The

lattice data was corrected for the effects of the finite lattice volume before fitting. For

display the data has been shifted (based on the fit—see Eq. (4.12)) from the simulation

strange quark mass, which was somewhat larger than the physical value, to the physical

value. The red stars show the experimentally-determined baryon masses [30].

For illustration, the lattice simulation results (M latt.
B ) have been shifted onto the

trajectories shown in Fig. 4.1 using the chiral fit:

M latt.
B →M latt.

B −
[
Mfit

B

(
m(sim.)
π ,m

(sim.)
K

)
−Mfit

B

(
m(traj.)
π ,m

(traj.)
K

)]
. (4.12)

Here m
(sim.)
φ denotes the simulation value of the meson mass, while m

(traj.)
φ denotes

the closest point on the desired trajectory (relative to the axes of Fig. 4.1). The shifts

are illustrated explicitly in Appendix D. This process allows us to show both the

comparison of our extrapolated results with the experimental values of the baryon

masses, and the quality of fit to the lattice data, on a single figure.

The quality of fit is clearly excellent in each case; the χ2/d.o.f. are 0.5 and 0.6

for the PACS-CS and QCDSF-UKQCD results, respectively. The dipole regulator

masses, Λ = 1.0(1) GeV and 0.8(2) GeV, are in close agreement with the value

deduced from an analysis of nucleon magnetic moment data [99] and, from the

phenomenological point of view, remarkably close to the value suggested by a com-

parison of the nucleon’s axial and induced pseudoscalar form factors [78]. While we

use the dipole regulator to calculate the central values, we allow the form of the UV

regulator to vary between monopole, dipole, Gaussian, and sharp cutoff forms as an

estimate of the model-dependence. This is the smallest systematic uncertainty.

A comparison of the octet baryon masses extrapolated to the physical point with

the experimental values is given in Table 4.4. The results are largely consistent; we
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(a) Physical singlet-mass trajectory.
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(b) SU(3)-symmetric line: mK = mπ.

Figure 4.3: Fit to the QCDSF-UKQCD baryon octet data, plotted along the physical

singlet-mass trajectory (m2
K + m2

π/2 = constant) and SU(3)-symmetric line. The error

bands shown are purely statistical, with a dipole regulator chosen in the FRR formalism,

and incorporate correlated uncertainties between all fit parameters. The lattice data was

corrected for finite-volume effects before fitting. For display the lattice points in (a) have

been shifted (based on the fit—see Eq. (4.12)) from the simulation values of the pion and

kaon masses to the physical singlet trajectory. These shifts are shown in Fig. D.1. Lattice

data points on the SU(3)-symmetric line are only shown on figure (b). Colour-coding is

as in Fig. 4.1. The red stars show the experimental values of the baryon masses [30].
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Mass (GeV)
B PACS-CS QCDSF-UKQCD Experimental

N 0.964(19)(23) 0.940(18)(9) 0.939
Λ 1.132(12)(15) 1.110(10)(5) 1.116
Σ 1.190(10)(10) 1.174(9)(4) 1.193
Ξ 1.325(6)(3) 1.289(5)(1) 1.318

Table 4.4: Octet baryon masses in the infinite-volume after chiral extrapolation to the

physical point. The first uncertainty quoted is statistical, while the second allows for

variation of the form of the FRR UV regulator and for a 10% deviation of fπ, F , C, and

δ from their central values. The experimental baryon masses are taken from Ref. [30].

thus expect these fits to provide a good basis for the extraction of the mass splittings

among members of the baryon isospin multiplets as described in the next section.

4.3 Mass Splittings

Using the chiral extrapolation formulae developed in Section 4.1 (summarised in

Eqs. (4.7), (4.9) and (4.10)) it is straightforward to write expressions for the strong

mass splittings between members of the baryon isospin multiplets: (Mn − Mp),

(MΣ− −MΣ+), and (MΞ− −MΞ0). The isospin-averaged fits described in Section 4.2

can then be used to reduce these expressions to functions of quark mass only; all

other free parameters, namely the SU(3)-breaking parameters α, β, and σ, as well

as the regulator mass Λ, are specified by the fits.

We choose to express our results in terms of the light-quark mass ratio R =

mu/md. The Gell-Mann–Oakes–Renner relation suggests the definition

ω =
B(md −mu)

2
=

1

2

(1−R)

(1 +R)
m2
π(phys.)

, (4.13)

which leads to the identifications of the quark mass terms in Eq. (4.9) as

Bmu =
1

2
m2
π(phys.)

− ω, (4.14a)

Bmd =
1

2
m2
π(phys.)

+ ω, (4.14b)

Bms = m2
K(phys.)

− 1

2
m2
π(phys.)

. (4.14c)

Here we take mπ(phys.)
= 137.3 MeV and mK(phys.)

= 497.5 MeV to be the physical

isospin-averaged meson masses [30]. The loop meson masses are calculated using

Eq. (4.6).

The resulting octet baryon mass splittings are summarised, as a function of ω,

in Table 4.5, and the strong neutron-proton mass difference is shown graphically
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∆md−mu ×
[
m2
π(phys.)

/ω
]
(MeV)

PACS-CS QCDSF-UKQCD

Mn −Mp 20.1(13) 17.5(10)
MΣ− −MΣ+ 52.2(24) 52.6(13)
MΞ− −MΞ0 32.0(18) 35.2(14)

Table 4.5: Strong mass splittings between members of the baryon isospin multiplets,

based on a chiral extrapolation of lattice QCD simulation results. The quoted uncertainties

contain all statistical and systematic errors (discussed in the text) combined in quadrature.

The constant ω, defined in Eq. (4.13), encodes the mass difference between the light quarks.
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Figure 4.4: Strong contribution to the neutron-proton mass difference as a function of

the light-quark mass ratio R. The green (upper) and blue (lower) bands show the result

of fits to the PACS-CS and QCDSF-UKQCD collaboration simulations, respectively. The

vertical pink (right) and orange (left) shaded bands correspond to two recent estimates of

the physical up-down quark mass ratio [100,101] as described in the text (see Eq. (4.15)).

as a function of R in Fig. 4.4. The results using the fits based on the PACS-

CS and QCDSF-UKQCD collaboration simulations are largely consistent; the mass

splittings between the members of the sigma and cascade baryon isospin multiplets

agree at the 1-sigma level, while the two results for the strong neutron-proton mass

difference differ by just over one sigma.

To determine these quantities in physical units we take two recent estimates for

the up-down quark mass ratio [100,101],

R =
mu

md

= 0.553± 0.043, and 0.47± 0.04. (4.15)
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The first of these is determined by a fit to meson decay rates. This value is com-

patible with more recent estimates of the ratio from 2 + 1 and 3-flavour QCD and

QED [87,102]. The second is the result from the FLAG3 [101].

Numerical results in physical units are summarised in Table 4.6. The error

bands quoted are the result of a complete analysis taking into account the correlated

uncertainties arising from all of the fit parameters, as well as the quoted uncertainty

on R. Monopole, dipole, Gaussian, and sharp cutoff regulators u(k) are considered

within the FRR scheme; the variation of the final results as u(k) is changed is of

order 1% of the total mass differences. The deviation as the parameters fπ, F , C,
and δ are perturbed by ±10% from their central values is similarly small, and the

statistical uncertainty arising from the fit to lattice data is smaller still. In fact,

the dominant uncertainty is that arising from the quoted error band on the light-

quark mass ratio R. It is clear that better estimates of this quantity will allow

our results to be greatly improved in precision, without the need for further lattice

data. Conversely, a precise determination of the electromagnetic contribution to

the neutron-proton mass difference could possibly facilitate an improved estimate

of R by this method. This is shown clearly in Fig. 4.5, which illustrates that our

results are more consistent with both the traditional and WLCM calculations of

the electromagnetic neutron-proton mass difference, and with direct lattice QCD

calculations of the strong contribution, when taken with the larger estimate of R

(Leutwyler [100]) than with the smaller value (FLAG [101]).

It is interesting to compare our results with those from a different analysis of the

same QCDSF-UKQCD collaboration simulation set. Horsley and collaborators [90]

have recently calculated the strong contribution to the baryon mass splittings from

this lattice data using a linear and quadratic SU(3)-flavour-symmetry–breaking ex-

pansion in the quark masses. As the expansion coefficients depend only on the

average quark mass, provided this is kept constant at its physical value (as it is

along the primary QCDSF-UKQCD simulation trajectory), a fit of these coefficients

to the isospin-averaged lattice results allows an estimation of the baryon mass split-

tings at the physical point. The results using this method are [90]:

Mn −Mp

∣∣
strong

= 3.13(15)(53)MeV, (4.16a)

MΣ− −MΣ+

∣∣
strong

= 8.10(14)(135)MeV, (4.16b)

MΞ− −MΞ0

∣∣
strong

= 4.98(10)(84)MeV. (4.16c)

The first uncertainty quoted in Eq. (4.16) is statistical, while the second allows for

violations of Dashen’s theorem4. While in this approach one can only make use of

lattice data calculated along a trajectory which holds the average quark mass fixed,

3FLAG stands for the FLAVIAnet Lattice Averaging Group which provides world-averages of
lattice simulation results for a number of observables.

4This is the statement that the squares of the electromagnetic contributions to the mass differences
between the charged and neutral pseudoscalar mesons are equal in the chiral SU(3) limit, i.e.,(
m2
π± −m2

π0

)
EM

=
(
m2
K± −m2

K0

)
EM

.
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∆md−mu(MeV)

PACS-CS QCDSF-UKQCD
R 0.553(43) 0.47(4) 0.553(43) 0.47(4)

Mn −Mp 2.90(18)(36) 3.63(23)(37) 2.51(15)(31) 3.15(19)(32)
MΣ− −MΣ+ 7.51(35)(93) 9.40(44)(97) 7.57(19)(94) 9.49(24)(98)
MΞ− −MΞ0 4.60(26)(57) 5.77(33)(59) 5.06(20)(63) 6.34(25)(65)

Table 4.6: Strong mass splittings between members of the baryon isospin multiplets,

based on a chiral extrapolation of lattice QCD simulation results. For the fits to each data

set we display the results using two different estimates of the up-down quark mass ratio

R [100, 101]. The second uncertainty—by far the dominant contribution in all cases—

results from propagating the uncertainty on R, while the first includes all other statistical

and systematic uncertainties combined in quadrature.
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(a) Leutwyler: R = 0.553(43) [100].
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(b) FLAG: R = 0.47(4) [101].

Figure 4.5: Strong and electromagnetic contributions to the neutron-proton mass differ-

ence. The black line indicates the experimental constraint on the total [30]. The green

and blue shaded bands show the result of fits to the PACS-CS and QCDSF-UKQCD col-

laboration simulations, respectively, with the given values of the light-quark mass ratio

R. The yellow vertical band indicates a recent direct lattice calculation of the strong

mass splitting by the BMW collaboration [34]. The horizontal bands show the traditional

(orange) and WLCM (pink) estimates for the EM contribution.
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∆md−mu (MeV) Mn −Mp MΣ− −MΣ+ MΞ− −MΞ0

1 Chiral (PACS-CS) 2.9(4) 7.5(10) 4.6(6)
2 Chiral (QCDSF-UKQCD) 2.5(3) 7.6(9) 5.0(6)
3 QCDSF-UKQCD 3.1(6) 8.1(14) 5.0(9)

4 Exp. & EM (traditional) 2.0(3) 7.9(3) 6.0(3)
5 Exp. & EM (WLCM) 2.6(5)
6 Exp. & EM [103] 2.3(4) 8.1(11) 6.5(11)

Table 4.7: Strong contribution to the octet baryon mass splittings. Lines 1 and 2 show

the results of our chiral extrapolations of PACS-CS and QCDSF-UKQCD lattice data,

respectively, with the up-down quark mass ratio set to R = 0.553(43). Line 3 shows

the QCDSF-UKQCD collaboration analysis of their data as described in the text, while

lines 4 and 5 give estimates deduced from the total mass splittings and electromagnetic

contributions, as determined by Gasser and Leutwyler (traditional) or Walker-Loud et al.

(WLCM). An update and extension of the WLCM dispersion analysis is shown in line

6 [103].

our chiral fit (results presented in Table 4.6) also includes simulations which lie away

from this line. This is the primary reason for our smaller uncertainties. We also

point out that both methods require some theoretical input: we input the up-down

quark mass ratio R, while the Horsley et al. calculation uses Dashen’s theorem (with

some uncertainty) to estimate ‘pure QCD’ meson masses at the physical point. The

clear consistency between the two calculations is encouraging.

4.4 Summary and Discussion

We have calculated the strong contribution to the mass splittings between mem-

bers of the octet baryon isospin multiplets using a formal chiral expansion based on

broken SU(3)-flavour symmetry, fit to lattice QCD simulation results. Our results,

based on independent analyses of PACS-CS and QCDSF-UKQCD lattice data sets,

are summarised in Table 4.7. Both calculations yield compatible values, despite

significant differences between the two lattice studies, including in particular dif-

ferent lattice volumes, lattice spacings, and different methods of determining these

spacings. Of course, as emphasised previously, the two sets of lattice ensembles

also follow quite different trajectories in mπ–mK space. Furthermore, the results

of a flavour-symmetry–breaking expansion in the quark masses [90], fit to a subset

of the QCDSF-UKQCD collaboration lattice data set, are entirely consistent with

our values despite the different phenomenological input used (that calculation used

Dashen’s theorem, with some uncertainty, while we input R = mu/md).

While more lattice data for the isospin-averaged octet baryon masses, on larger

lattice volumes and at lighter meson masses, would allow the precision of our cal-

culation to be somewhat improved, we emphasise that the dominant contribution
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to the uncertainty of our result arises not from the lattice simulations but from the

up-down quark mass ratio R. A more precise value of R = mu/md could reduce the

uncertainty of our determination of the strong baryon mass splittings considerably,

without the need for further simulations. Conversely, direct lattice (or phenomeno-

logical) determinations of the electromagnetic contributions to the mass splittings,

with the analysis presented here, may allow a significantly improved determination

of R. At the current level of precision it is already clear from Fig. 4.5 that, for con-

sistency with direct lattice calculations [34] and experiment, this analysis favours

the larger value R = 0.553(43) over the smaller R = 0.47(4).

Our results using the larger value of R are consistent with both the traditional

and Walker-Loud et al. (WLCM) determinations of the strong contribution to the

proton-neutron mass difference from the electromagnetic component, as shown in

Table 4.7. The WLCM subtracted dispersion approach was adapted to the hyper-

ons in Ref. [103] (and some minor updates were implemented for the proton-neutron

system5). For the hyperons, the dispersive estimates have significantly larger un-

certainties than for the nucleon; these are dominated by the lack of knowledge of

the hyperon isovector polarisabilities. Certainly further theoretical (or experimen-

tal) work on this aspect of hyperon structure would be of interest, particularly as

the present uncertainties are too large to provide a meaningful counterpoint to our

current work.

In the next chapter, we use the chiral extrapolation for the octet baryon masses

presented here to investigate the size and nature of chiral symmetry breaking in

the context of the octet baryon sigma commutators. Our focus is, in particular, on

the strange nucleon sigma term, which can be interpreted as a direct measure of

strangeness in the nucleon.

5The minor differences in the nucleon analysis arise from two sources: significant spurious CSV
effects in the Delta region realised by the Bosted-Christy structure functions have been suppressed
in the new analysis, generating a rather small increase in the self-energy, and an inelastic subtrac-
tion is suppressed more rapidly in order to appropriately match onto the ultraviolet behaviour
dictated by the operator product expansion. This acts to reduce the size of that term, and con-
sequently lessen the sensitivity to the poorly-known isovector polarisability. Details are given in
Ref. [103].





Chapter 5

Sigma Commutators

Approximate chiral symmetry forms the backbone of the phenomenological low-

energy effective theory of QCD—chiral perturbation theory—which we use in this

work (c.f., Section 3.2). The central importance of this symmetry to our under-

standing of the strong interaction, however, predates the explicit formulation of

QCD, having been established by the successes of the current algebra and par-

tially conserved axial-vector current techniques of the 1960s [51–53]. Since then,

there have been significant efforts to calculate and measure quantities named sigma

terms, which provide crucial information about the size and mechanism of chiral

symmetry breaking in nature.

Sigma terms are defined as the matrix elements of the scalar quark currents

between baryon states1, and as such quantify the contribution of explicit chiral

symmetry breaking to the baryon masses [104]. Most commonly, one considers the

‘pion-nucleon’ and ‘strange nucleon’ sigma terms:

σπN = ml〈N |uu+ dd|N〉, (5.1a)

σNs = ms〈N |ss|N〉, (5.1b)

where ml = (mu + md)/2. These fundamental parameters of low-energy hadron

physics are closely related to hadronic physics topics as diverse as the mass spectrum,

meson-nucleon scattering amplitudes (through Ward identities), quark mass ratios,

properties of hadronic atoms, and nuclear matter at finite temperature and density.

In the context of this body of work, our focus is on σNs, which provides a direct

measure of strangeness in the nucleon.

1Historically, a sigma term (or sigma commutator) is in fact defined as any matrix element of an
even number of charge commutators of the Hamiltonian [53]. The modern definition corresponds
to the double commutator: for a baryon B,

σabB =
〈
B
∣∣∣[Q̂aA, [Q̂bA, H]]∣∣∣B〉,

where Q̂aA denote the axial-vector charge operators (defined in Section 3.2) with SU(3)-octet
label a, and the commutator explicitly picks out the symmetry-breaking part of H (for QCD,
qMq =

∑
qmqqq). In this notation the usual meson-nucleon sigma terms are σπN = σ11

N and

σ
u/d
KN = σ

44/66
N .

59
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The strange nucleon sigma term has historically been poorly known. It is tra-

ditionally calculated from the small difference between σπN , deduced from pion-

nucleon scattering data using a dispersion relation analysis [105,106], and the non-

singlet quantity σ0 = ml〈N |uu + dd − 2ss|N〉 which is determined based on ob-

servations of the baryon mass spectrum. An EFT-improved estimate is σ0 =

36±7MeV [107]. Given this value, even a perfect determination of σπN would result

in σNs having an uncertainty of order 100% [108]. Far from perfect, the benchmark

value σπN = 45 ± 5 MeV remains that of Gasser, Leutwyler and Sainio [109] from

the early 1990s; the experimental status of pion-nucleon scattering data has not

improved substantially in the last two decades. The long-standing conclusion from

these numbers was that σNs is of the order of 300MeV. Such a large value would im-

ply that as much as one third of the nucleon mass can be attributed to non-valence

quarks, a conclusion apparently incompatible with the success of constituent quark

models. This puzzle has generated much theoretical interest over the last decades.

In recent years, the best value for σNs has seen an enormous revision. Advances

in lattice QCD have revealed a strange sigma term of 20–50 MeV [90, 110–118],

an order of magnitude smaller than previous determinations and significantly more

precise. This revelation has far-reaching consequences, in particular for the interpre-

tation of experimental searches for particle candidates of dark matter [119–124]. As

many such candidates (e.g., the favoured neutralino) have interactions with hadronic

matter which are determined by couplings to the squares of the sigma terms, the

uncertainty of their theoretical cross-sections is largely driven by the poorly-known

σNs. The lattice QCD revision of this quantity has resulted in predicted dark matter

cross-sections being reduced by an order of magnitude, with significant increases in

precision. Clearly, ever-better determinations of the sigma terms, in particular the

strange nucleon term, using lattice methods, are essential for the progress of dark

matter research.

In this chapter we describe a calculation of the sigma terms of the octet baryons,

based on the chiral extrapolation of lattice results for the baryon masses which was

presented in Chapter 4. While we deduce both light and strange quark sigma terms

for the entire baryon octet, we focus in particular on the strange nucleon sigma term

σNs. The small statistical uncertainty, and considerably smaller model-dependence,

in our analysis allows a significantly more precise determination of this quantity

than hitherto possible, subject to an unresolved issue concerning the lattice scale

setting which is discussed in detail in Section 5.1. Our technique allows comparison

with recent direct lattice QCD calculations of the flavour-singlet matrix elements at

unphysical meson masses [111–113,125,126].

5.1 The Feynman-Hellmann Theorem

The Feynman-Hellmann theorem relates the derivative of the energy of a system,

with respect to some parameter, to the expectation value of the derivative of the

Hamiltonian with respect to the same parameter. This relation may be used to ex-
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press the sigma terms as derivatives of baryon mass with respect to quark mass [127].

Using generic notation for the sigma term of any octet baryon B with quark flavour

q,

σBq ≡ mq〈B|qq|B〉 (5.2)

= mq
∂MB

∂mq

, (5.3)

where the second line is the statement of the Feynman-Hellmann relation in this

context. To the order of the chiral expansion described in Section 4.1, one can

replace the quark masses mq with meson masses squared: Bml → m2
π/2 and Bms →

(m2
K −m2

π/2) (where B is related to the parameter λ of Eq. (3.14) by B = 4λ/f 2
π).

Clearly, given closed-form expressions for baryon mass MB as a function of the

meson masses, which were developed in Chapter 4, the scalar form factors can be

evaluated by simple differentiation.

This method has a considerable advantage over the direct calculation of the

sigma terms in lattice QCD; it does not require the evaluation (or estimation) of

contributions from quark-line–disconnected diagrams which are represented by noisy

and expensive ‘all-to-all’ propagators on the lattice. However, it also has a disad-

vantage; the application of the Feynman-Hellmann relation requires taking a partial

derivative with respect to quark mass. That is, all other parameters must be held

fixed, including the strong coupling α (or, equivalently, ΛQCD). In lattice QCD,

there is an apparent ambiguity as to how to define a fixed renormalised coupling

α [128, 129]. This is precisely the issue of lattice scale setting, which was discussed

in Section 2.2.3—while lattice simulation results extrapolated to the physical point

must be independent of scale-setting scheme, derivative quantities, by definition,

make reference to the scale away from the physical point and hence their values may

depend on the scheme chosen.

We consider here two independent scale-setting schemes which are described in

detail in Section 2.2.3. The mass-dependent approach is based on the assumption

that the dimensionful Sommer scale, r0, which is related to the force between static

quarks at relatively short distance, is essentially disconnected from chiral physics

and should therefore vary slowly with changes in quark mass. Using this scheme,

the Feynman-Hellmann relation applied to lattice simulation results involves the

derivative
∂
(
r0
a
aMB

)
∂mq

. (5.4a)

If this expression is to generate the physical sigma terms, one requires ∂r0/∂mq = 0.

Applying the theorem within the mass-independent scheme instead, where the lattice

scale at constant bare coupling (e.g., β) is taken to be independent of the bare quark

mass, amounts to calculating

∂
(
r∗0
a∗
aMB

)
∂mq

, (5.4b)
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where the asterisk denotes a value extrapolated to the physical point. This, in

contrast to the first approach, will give physical results if a/a∗ = 1 (or equivalently,

∂a/∂mq = 0).

One might expect the difference between the nucleon sigma terms evaluated

in each scheme to be particularly significant for the strange quark. One reason

is the shift in the ratio r0/a which is observed when unquenching lattice simula-

tions [130]. This effect can be interpreted as a sea-quark dependence of either r0

or the lattice spacing a. As this shift can be significant, the choice of scale set-

ting absorbs a possibly large effect, and hence will lead to non-negligible differences

in the results of derivatives with respect to sea-quark mass calculated with each

of the two choices. Additionally, the strange quark is considerably heavier than

the light quarks, which serves to amplify the effect of any scale-setting prescription

dependence on the strange sigma term.

For the chiral extrapolation of octet baryon masses in Chapter 4, the scale for the

PACS-CS lattice data was set using the mass-dependent approach, while the mass-

independent scheme was used for the QCDSF-UKQCD simulation results. In the

coming sections we give results based on these extrapolations and on an otherwise

identical analysis of the PACS-CS collaboration simulation results where the scale

was set using the mass-independent scheme, allowing us to investigate the scale-

dependence of our extraction of the sigma terms. We do not have access to the

lattice values of r0 necessary to apply the mass-dependent scheme to an analysis of

the QCDSF-UKQCD lattice data.

5.2 Light and Strange Sigma Terms

Light and strange quark sigma terms, calculated using Eq. (5.3) applied to the

chiral extrapolations of octet baryon masses described in Chapter 4, are presented in

Table 5.1. The fit to the QCDSF-UKQCD lattice simulation results yields a value for

σNs with a much larger uncertainty than the analyses of the PACS-CS collaboration

data set. This is as expected; the leading-order term in a chiral expansion for the

strangeness nucleon sigma commutator is determined by the parameter σ, as made

explicit in Table 4.1. This parameter is common to all baryons in the octet, and

is sensitive only to the singlet combination of the quark masses (see Eqs. (3.29)

and (4.8)). Figure 4.1 shows that the variation of the singlet quark mass across the

PACS-CS ensemble is quite large relative to the extrapolation necessary to reach the

physical point. In contrast, the QCDSF-UKQCD data set covers a much smaller

range of singlet quark masses; by design, most simulation ensembles lie on one

close-to-physical singlet quark mass line.

It is also clear that there is a significant dependence on the scale-setting scheme,

despite the otherwise small uncertainties of the calculation. While the chiral extrapo-

lations of the PACS-CS collaboration octet baryon masses using the mass-dependent

and independent schemes agree at the physical point, as expected, and the qualities

of the two fits are similar (χ2/d.o.f. 0.43 and 0.78, respectively), the value of the
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σBl (MeV)
B PACS-CS (MD) PACS-CS (MI) QCDSF-UKQCD (MI)

N 43.8(69) 45.7(73) 39.6(72)
Λ 28.6(43) 30.7(47) 27.0(43)
Σ 23.5(33) 25.7(36) 21.9(34)
Ξ 11.5(14) 13.8(16) 12.3(14)

σBs (MeV)

N 20(6) 52(8) 26(15)
Λ 158(8) 185(12) 163(14)
Σ 202(9) 227(14) 234(14)
Ξ 315(10) 337(16) 334(14)

Table 5.1: Light and strange quark sigma terms for the octet baryons based on chiral

extrapolations of PACS-CS and QCDSF-UKQCD collaboration lattice simulation results

for the baryon masses. The labels (MD) and (MI) denote results where the lattice scale

has been set using mass-dependent and mass-independent schemes respectively. The un-

certainty quoted includes the statistical uncertainty and allows for the variation of various

chiral parameters and the form of the UV regulator as described in Chapter 4.

strangeness sigma term in the nucleon changes from 20 ± 6 MeV to 52 ± 8 MeV.

This is by far the most significant shift; the light-quark sigma terms are entirely

consistent within uncertainties, while the other strange sigma terms are consistent

within 2-sigma.

Given the large systematic scale-setting effect, we consider it prudent to check

that the order of the chiral expansion used in the analysis is sufficient; as the PACS-

CS collaboration data set includes pseudoscalar masses significantly larger than

the physical values, it is possible (although unexpected, based on previous studies

of the FRR formalism [69]) that higher-order terms become significant, distorting

the results. By performing the fit to progressively fewer data points, that is, by

dropping the heaviest mass points, we confirm that the results are independent

of the truncation of the data. This can be seen clearly in Fig. 5.1. Although we

have displayed results with the mass-dependent scale-setting scheme, this conclusion

holds equally for the results with the mass-independent prescription.

Alternatively, we can check the possible contribution from higher-order terms

by explicitly including them in the fit. Adding all analytic terms at order m4
φ

to the baryon mass expansion, and re-fitting to the PACS-CS lattice results with

the coefficients of the new terms generously constrained to twice the dimensional

estimate
(
M (0)/(4πfπ)4

)
at 1-sigma, yields new values for the baryon sigma terms.

Although the uncertainties are large, as one would expect given the excellent fit

quality at lower order, the fact that the central values for all sigma terms shift

very little—e.g., σNs = 22 ± 46 MeV and σNl = 43 ± 3 MeV for the PACS-CS

collaboration results with the mass-dependent scale-setting scheme (where only the
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Figure 5.1: Baryon sigma terms, evaluated using the Feynman-Hellmann theorem follow-

ing a fit to PACS-CS collaboration lattice simulation results for the octet baryon masses.

The horizontal scale shows the number of pseudoscalar meson masses included in the fit.

The lattice scale was set using the mass-dependent scheme.

statistical uncertainties of the new fit are quoted)—does indicate that our fit is

robust. Including in quadrature the shift in central values from the higher-order fit as

an estimate of the systematic uncertainty resulting from our choice of resummation

(i.e., through the FRR prescription) does not increase the uncertainties quoted in

Table 5.1.

With a view to finding a physically significant result for σNs, we point out that

direct lattice calculations of this quantity should not have a large dependence on

the scale-setting scheme. As we can easily evaluate sigma terms from our fit at

any pion or kaon mass, we may compare our results explicitly with such calcula-

tions, including preliminary calculations performed at only one set of pseudoscalar

masses. Such a comparison is given in Table 5.2. The available direct calculations

include 2 and 2 + 1 + 1–flavour simulations [112, 113] at a single set of pion and

kaon masses, and 2 + 1–flavour calculations which have been chirally extrapolated

to the physical point [125, 126]. The MILC collaboration calculation is not a di-

rect three-point calculation, but rather uses a ‘hybrid’ method to find the sigma

term [111]. The collaboration indicates that this method corresponds most closely

to the mass-independent scale-setting scheme [131]. The results of our analysis us-

ing the mass-dependent scale-setting approach for the PACS-CS simulations agree

extremely well with the direct QCDSF and ETM calculations at the simulation val-

ues of mπ and mK . We regard this comparison as particularly significant as those

calculations involved no chiral extrapolation. A similar level of agreement is found

with the (chirally-extrapolated) JLQCD result. Finally, the Engelhardt result sits
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σNs (MeV)
(mπ,mK)MeV direct MD (P) MI (P) MI (Q)

QCDSF [113] (281,547) 12+23
−16 16(6) 50(7) 24(16)

ETM [112] (390,580) 13(5)(1) 12(5) 46(6) 22(16)
Engelhardt [125] physical 43(10) 20(6) 52(8) 26(14)
JLQCD [126] physical 8(14)(15) 20(6) 52(8) 26(14)
MILC [111] physical 59(6)(8) 20(6) 52(8) 26(14)

Table 5.2: Recent direct lattice calculations of σNs compared with the results of our anal-

ysis. Columns labelled MD and MI correspond to our analysis of the PACS-CS collabora-

tion (P) or QCDSF-UKQCD collaboration (Q) lattice results, evaluated at the indicated

(mπ,mK) values, with the scale set using the mass-dependent or independent scale-setting

prescriptions, respectively. Those simulations listed at the physical point denote values

after chiral extrapolation (by the relevant lattice groups).

between the values of σNs given by the two scale-setting schemes, while the MILC

result favours the mass-independent scheme. The extrapolated QCDSF-UKQCD

collaboration simualtion results, analysed using only the mass-independent scheme,

have somewhat larger uncertainties and are compatible with all direct simulations

at the 1-sigma level.

There is no consensus in the literature as to the most appropriate way to set the

scale for a spectral determination of the sigma terms; both Refs. [129] and [132] argue

for the mass-independent scheme, in the former case based on observations of scal-

ing violation, while others (e.g., Refs. [133,134]) favour the mass-dependent scheme.

We choose the mass-dependent prescription to calculate our preferred central values

because, for the PACS-CS simulation results where we can compare scale-setting

schemes, it yields values for σNs which are more consistent with direct calculations.

Of course, we cannot rule out the possibility of ‘mixed scale setting’, as discussed

in Section 2.2.3. Nevertheless, we emphasise that our results are more significant

than the general statement that σNs lies in the 45 MeV range spanned by all de-

terminations would indicate; within each scale-setting prescription we find results

which are very precise, with small statistical and systematic uncertainties. More

lattice data for the octet baryon masses will not improve the results significantly

compared to the scale-setting problem. Future direct lattice calculations for the

strange nucleon sigma commutator, however, will not only more precisely constrain

this term as needed for dark matter calculations, but will provide significant insight

into the problem of scale setting on the lattice and indeed into QCD itself.

Finally, we note again that our results for the light quark sigma terms using each

scale-setting method—and both the PACS-CS and QCDSF-UKQCD collaboration

simulation sets—are precise and compatible within uncertainties, and that we are

for this reason extremely confident in our determination σNl = 44± 7MeV.
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σBq (MeV)
B u d s

p 19(3) 23(4) 22(7)
n 12(2) 34(5) 19(6)
Λ 10(2) 18(3) 158(8)
Σ0 8(1) 15(2) 201(9)
Σ+ 16(2) 2(1) 205(10)
Σ− 1(1) 29(4) 199(8)
Ξ0 8(1) −0.46(42) 317(11)
Ξ− −0.11(23) 15(2) 313(10)

Table 5.3: Individual quark sigma terms for the octet baryons based on a chiral extrap-

olation of PACS-CS collaboration lattice simulations of the baryon masses. The lattice

scale was set using the mass-dependent prescription.

5.3 Charge Symmetry Violation

Individual up, down, and strange quark sigma terms are relevant to searches for

supersymmetric dark matter candidates [119, 135, 136]. These terms may be cal-

culated in precisely the same way as the isospin-averaged sigma commutators were

obtained via the Feynman-Hellmann theorem applied to a chiral extrapolation of

lattice QCD simulation results for the octet baryon masses in the last section. As

described in Chapter 4, the only additional input needed to break the light-quark

mass degeneracy in the baryon mass extrapolations is a value for R = mu/md. Based

on the discussion of Section 4.4, we use the Leutwyler [100] value, R = 0.553(43),

determined by a fit to meson decay rates.

Our results, calculated using the PACS-CS collaboration lattice simulation re-

sults with the mass-dependent scale-setting scheme, are shown in Table 5.3. For

the reasons given in Section 5.2 this is our preferred scale-setting scheme. Results

calculated using the mass-independent scheme applied to both this data set and to

the QCDSF-UKQCD lattice results are given in Appendix E. Re-scaling the sigma

terms by the relevant quark masses to make dimensionless quantities and match the

notation of Ellis et al. [119,135,136], we define

B(B)
q ≡ σBq/mq. (5.5)

These terms for the proton (p) and neutron (n) are related to the usual σNs and

σπN by

σπN =
1

4
(mu +md)

(
B(p)
u +B

(p)
d +B(n)

u +B
(n)
d

)
, (5.6a)

σNs =
1

2
ms

(
B(p)
s +B(n)

s

)
. (5.6b)

Our calculation yields
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B
(p)
u −B(p)

s

B
(p)
d −B

(p)
s

= 1.5(4),
B

(p)
d

B
(p)
u

= 0.7(2),
ml

MN

〈p|uu− dd|p〉 = 0.009(5). (5.7)

The quoted errors include correlated uncertainties between all fit parameters and

also allow for some variation of phenomenologically-set quantities including the up-

down quark mass ratio R, as described in Chapter 4. These results, and our values

for the nucleon light quark sigma terms (see Table 5.3), are consistent with those

obtained by Ellis et al. in Ref. [136] based on SU(6) symmetry and the same R-value

used here. The strange sigma terms σp/n,s resulting from our work, however, are

significantly smaller; the Ellis values are σns = σps = 110(60) MeV (and no results

are presented for the hyperons). Of course, the discussion of the previous section

regarding the effect of lattice scale setting on σNs applies equally here: choosing the

mass-independent scale-setting scheme yields larger values for the strange nucleon

sigma terms, namely σps = 53(8) MeV and σns = 50(8) MeV, but values of the

light quark sigma terms and
(
B

(p)
u −B(p)

s

)/(
B

(p)
d −B

(p)
s

)
and B

(p)
d

/
B

(p)
u which are

identical with those given above, to the quoted precision.

5.4 Summary and Discussion

Using the isospin-broken chiral extrapolations of lattice QCD simulation results for

the octet baryon masses which were presented in Chapter 4, we determine pre-

cise values for the baryon sigma terms by simple differentiation. This indirect

approach allows us to achieve small statistical uncertainties while minimising any

model-dependence, most importantly for the strange nucleon sigma terms which

are extremely expensive to calculate directly. These quantities provide a measure

of vacuum quark components in the nucleon, and are a key theoretical ingredient

for the interpretation of dark matter direct-detection experiments. With a given

choice of lattice-scale–setting prescription, our results for the strange nucleon sigma

terms are the most precise to date. The choice of scale-setting method, however,

constitutes a significant systematic uncertainty.

A comparison of our results for σNs with those of recent direct lattice calculations

of this quantity—which should not suffer from the scale-setting ambiguity—informs

our choice of the mass-dependent prescription as our preferred method. Setting the

lattice scale for the PACS-CS collaboration simulation results using this scheme,

we find σNs = 20 ± 6 MeV at the physical point. The pion-nucleon sigma term is

σπN = 44± 7MeV. This value is consistent with the results σπN = 46± 7MeV and

40 ± 7 MeV found within the mass-independent scheme from the same PACS-CS

collaboration results and from an entirely independent analysis of QCDSF-UKQCD

collaboration simulation results, respectively. A comparison of these values with

those from other lattice QCD studies and analyses is displayed in Fig. 5.2. Our

results are comparatively precise (up to the scale-setting ambiguity which was not

considered in previous work), and broadly consistent with the latest numbers from

other collaborations. We emphasise that future direct lattice calculations for the
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strange nucleon sigma commutator will provide significant insight into the problem

of scale setting on the lattice and, through this, into QCD itself.
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Figure 5.2: Summary of values for σNs and σNl from lattice QCD with Nf quark

flavours [70, 90, 110, 111, 115, 117, 118, 125, 126, 131, 137–150]. The yellow vertical bands

indicate the results of this work. The central values are taken at our preferred results

(using the mass-dependent scale-setting scheme), while the error bands encompass the

full 1-sigma range of both this result and those generated using the mass-independent

prescription.





Chapter 6

Parton Distribution Moments

The revelation of the late 1960s that the proton has distinct substructure1 raised

a pivotal question: how are hadron observables generated from more fundamental

degrees of freedom? Answering this question—where the generic point-like ‘par-

ton’ constituents originally introduced by Feynman [154] are now identified with

the asymptotically-free quarks and gluons of QCD—remains one of the most basic

challenges of particle and nuclear physics. Perhaps most notably, the decomposition

of the proton’s spin into quark and gluon spin and orbital angular momentum con-

tributions has been much-debated since the quark-spin component was measured to

be only a small percentage of the total [155]. The current value is approximately

33% [156]. We return to the discussion of this ‘proton spin puzzle’ in Section 6.4.

In the modern language, hadron structure as probed in high-energy scattering

is parameterised through structure functions which encode both short and long-

distance effects. It follows from asymptotic freedom that contributions from the

two scales can be systematically separated. This is known as factorisation; struc-

ture functions may be written as the convolution of a perturbatively-calculable hard

scattering cross-section—a process-dependent factor—and a nonperturbative func-

tion encoding the hadron structure. These functions are named parton distribution

functions (PDFs) for inclusive processes (or parton distribution amplitudes for ex-

clusive processes). In the infinite-momentum frame, PDFs represent the number

density of partons of each type carrying the Bjorken momentum fraction2 x at a

renormalisation scale µ2.

The utility and importance of PDFs comes from their universality; they encode

the process-independent partonic structure of hadrons. Once determined (e.g., ex-

perimentally, from some limited set of reactions), the PDFs can thus be used for the

analysis of other processes, ranging from deep inelastic scattering to Drell-Yan or

1This hinged in particular on a series of deep inelastic scattering (DIS) experiments at MIT and
SLAC in late 1967 [151,152]. Two unexpected features emerged. The first was that the probability
of DIS decreased much more slowly with Q2, the momentum transfer to the proton, than that
of elastic scattering, suggesting the existence of some ‘hard core’ within the target protons. The
second was scaling [153], i.e., that in the DIS regime the proton structure functions depend only
on the ratio ω = ν/Q2 (ν being the energy lost by the electron), not ν and Q2 independently—an
indication that proton structure always appears the same to an electromagnetic probe, regardless
of how hard the proton is struck.

2The Bjorken variable is x = Q2/2MBν ∝ 1/ω, where MB is the mass of the relevant baryon.

71
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W± production. They are also essential to experimental physics programs searching

for physics beyond the SM, for example through the scattering of ultra-high-energy

cosmic ray particles or fixed target and colliding beam experiments.

PDFs have been well determined experimentally [157–160] and widely studied

within models [161–167]. The majority of these investigations, however, have relied

on the assumption of good charge symmetry [33, 39] to reduce the number of inde-

pendent quark distribution functions by a factor of two. Recently, CSV effects have

been included in phenomenological PDFs for the first time [36–38]. Experimental

upper limits on partonic CSV are in the range 5–10% [33, 39, 168]; effects of this

magnitude would significantly affect a number of tests of the SM, such as those

based on neutrino deep inelastic scattering experiments [40,169].

Ultimately, one wishes to determine PDFs, and in particular the size of CSV

effects in these quantities, directly from QCD itself. Lattice field theory is currently

the only quantitative tool available with this facility. Until very recently it was not

known how one might calculate PDFs directly on the lattice [170]; deep inelastic

scattering and related processes are dominated by distances that are light-like, and

as such are inaccessible in Euclidean-space calculations. Use of the operator product

expansion, however, allows Mellin moments of PDFs, which represent averages over

the momentum fraction x carried by the parton, to be evaluated using standard

lattice calculations of hadronic matrix elements of local operators [32, 171–173].

Details of the operator product expansion, as well as an overview of the connection

between deep inelastic scattering, hadron structure functions, and PDFs, are given

in Appendix G.

In this chapter we develop a formalism for the chiral extrapolation of the spin-

dependent and spin-independent Mellin moments of the quark distributions of the

octet baryons. The analysis allows for isospin-breaking and may thus be used to

calculate CSV effects from isospin-averaged lattice QCD simulation results, just as

was outlined for the octet baryon masses and sigma terms in the previous chapters.

6.1 Moments of Quark Distribution Functions

The spin-independent (qB(x)) and spin-dependent (∆qB(x)) quark distribution func-

tions are defined as

qB(x) =qB↑ (x) + qB↓ (x), (6.1a)

∆qB(x) =qB↑ (x)− qB↓ (x), (6.1b)

where qB↑(↓) represents the number density of quarks whose spin is parallel (antipar-

allel) to the longitudinal spin direction of a baryon B. For clarity of notation,

we suppress the dependence of these distributions on a renormalisation scale µ2

throughout this discussion. We define the (n− 1)th spin-independent (SI) and mth
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spin-dependent (SD) Mellin moments of the parton distributions, respectively, as

〈xn−1〉Bq =

∫ 1

0

dx xn−1
(
qB(x) + (−1)nqB(x)

)
, (6.2a)

〈xm〉B∆q =

∫ 1

0

dx xm
(
∆qB(x) + (−1)m∆qB(x)

)
, (6.2b)

i.e., our definitions alternate between C-even (+) and odd (−) distributions,

q±(x) = q(x)± q(x), (6.3)

with increasing n and m. These alternating towers of moments can be related to

the matrix elements of local twist-two operators

Oµ1···µn
q = in−1qγµ1

←→
D µ2 · · ·

←→
D µnq, (6.4a)

Oµ0···µm
∆q = imqγ5γ

µ0
←→
D µ1 · · ·

←→
D µmq, (6.4b)

where
←→
D = 1

2

(−→
D −

←−
D
)

, through the operator product expansion described in Ap-

pendix G. One finds:〈
B(~p)

∣∣[O{µ1···µn}
q − Tr

]∣∣B(~p)
〉

= 2〈xn−1〉Bq
[
p{µ1 · · · pµn} − Tr

]
, (6.5a)〈

B(~p)
∣∣[O{µ0···µm}

∆q − Tr
]∣∣B(~p)

〉
= 2〈xm〉B∆qMB

[
S{µ0pµ1 · · · pµm} − Tr

]
. (6.5b)

The braces, {. . .}, indicate total symmetrisation of the enclosed indices, and trace

terms involving gµiµj have been subtracted to ensure that the operators transform

irreducibly under the Lorentz group. The spin operator, Sµ, is as in Eq. (3.27); we

have suppressed the bold typeface here.

In recent years, several collaborations have presented lattice QCD studies of the

matrix elements of twist-two operators relevant to both the spin-independent and

spin-dependent parton distributions [32, 173]. Because of the reduced symmetry

of a cubic lattice compared with continuous space (the symmetry group O(4) →
H(4)), these simulations have been restricted to the lowest few Mellin moments by

power-divergent operator mixing—one can choose irreducible representations of H(4)

which are safe from such mixings only for {n,m} ≤ 4. Furthermore, renormalisation

becomes extremely complex for larger moments.

Although the lowest several moments of the quark distribution functions do not

provide enough information for a reconstruction of the PDFs, they are interesting in

their own right. For example, the zeroth spin-dependent moment, 〈1〉B∆q, corresponds

to the spin of baryon B carried by quark flavour q. Lattice results for this quan-

tity can thus give insight into the proton spin puzzle (see Section 6.4). Moreover,

determinations of CSV effects in the Mellin moments are relevant to experimental

tests of the SM. Perhaps most notably, CSV effects in the lowest spin-independent

PDF moments could act to significantly reduce the 3-sigma discrepancy with the

SM found by the NuTeV collaboration [41] in neutrino-nucleus DIS experiments.
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6.2 Chiral Perturbation Theory

Here we outline the derivation of chiral extrapolation formulae for the spin-indepen-

dent and spin-dependent quark distribution moments, to leading non-analytic order.

The analysis allows for (strong) isospin-breaking, that is, for mu 6= md. We begin by

writing down effective Lagrange densities which represent the twist-two operators

O (Eqs.(6.4a) and (6.4b)) within the framework of chiral effective field theory. The

appropriate flavour structure for each operator will be isolated by insertions of the

matrices

λq =
1

2

(
ξλqξ

† + ξ†λqξ
)
, (6.6)

where for each quark flavour q, λq is given by

λu =

 1
, λd =

 1

, λs =


1

. (6.7)

Effective operators relevant to the isovector quark distributions, for example, will

be expressed in terms of the matrix λ = λu − λd.
The interactions of the octet baryons, decuplet baryons, and mesons, with no op-

erator insertions, are encoded in the usual effective Lagrangian which was presented

in Chapter 3. We refer to that chapter, in particular Section 3.3, for a summary

of the notation and conventions used here (note that we now suppress the bold

typeface on matrices of heavy-baryon fields). The only new notation needed is the

generalisation of the quark-mass matrix Mq to include higher powers of the meson

field Φ:

M =
1

2

(
ξMqξ + ξ†Mqξ

†). (6.8)

We note from the outset that the expressions given in the following sections differ

from those of related works [174–176] by factors of the baryon mass MB. We have

chosen our convention to make the a-priori unknown low-energy coefficients which

appear in the effective matrix elements dimensionless.

Spin-Independent

Here we list effective matrix elements of the trace-subtracted spin-independent twist-

two operators
(
O{µ1...µn}
q − Tr

)
. All terms involving zero or one mass-insertion (M)

are included. The total symmetrisation of all Lorentz indices, which is usually

denoted by braces, {. . .}, may also be written as ‘+ permutations’ where this is

notationally more convenient. This always indicates the symmetric sum with no

normalisation factor, i.e., {µν} = µν + νµ = (µν + permutations). Superscripts

(n) on the undetermined low-energy coefficients indicate that these constants are

distinct for each operator, that is, α(0) 6= α(1) etc.
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At leading order, the relevant effective Lagrange density is[
α(n)

(
BBλq

)
+ β(n)

(
BλqB

)
+ σ(n)

(
BB

)
Tr(λq)

]
p{µ1 . . . pµn} − Tr. (6.9)

The O(mq) counterterms are given by(
b

(n)
1 Tr

[
B[[λq, B],M ]

]
+ b

(n)
2 Tr

[
B{[λq, B],M}

]
+ b

(n)
3 Tr

[
B[{λq, B},M ]

]
+ b

(n)
4 Tr

[
B{{λq, B},M}

]
+ b

(n)
5 Tr

[
BB

]
Tr[λqM ] + b

(n)
6 Tr

[
BBλq

]
Tr[M ]

+ b
(n)
7 Tr

[
BλqB

]
Tr[M ] + b

(n)
8 Tr

[
BMB

]
Tr[λq] + b

(n)
9 Tr

[
BBM

]
Tr[λq]

+ b
(n)
10 Tr

[
Bλq

]
Tr[MB]

)
p{µ1 . . . pµn} − Tr, (6.10)

and the decuplet insertions may be represented by

γ(n)
(
T
ν
λqTν

)
p{µ1 . . . pµn} + γ′(n)M2

B

(
T
{µ1
λqT

µ2

)
pµ3 . . . pµn} − Tr. (6.11)

The contractions between field tensors are defined in Eq. (3.38).

Spin-Dependent

The spin-dependent operators have effective matrix elements very similar in struc-

ture to those given in the previous section for the spin-independent case. The term

analogous to Eq. (6.9) has the form[
∆α(m)

(
BSµ0Bλq

)
+ ∆β(m)

(
BSµ0λqB

)
+ ∆σ(m)

(
BSµ0B

)
Tr(λq)

]
pµ1 . . . pµm

+ permutations− Tr. (6.12)

For m = 0, the Goldberger-Treiman relation provides the identification of the low-

energy constants with the meson-baryon coupling constants:

∆α(0) = 2

(
2

3
D + 2F

)
, ∆β(0) = 2

(
−5

3
D + F

)
, (6.13)

where F and D are defined by Eq. (3.29). The effective Lagrange density with

insertions of the quark-mass matrix M is entirely analogous to Eq. (6.10):(
∆b

(m)
1 Tr

[
BSµ0 [[λq, B],M ]

]
+ ∆b

(m)
2 Tr

[
BSµ0{[λq, B],M}

]
+ ∆b

(m)
3 Tr

[
BSµ0 [{λq, B},M ]

]
+ ∆b

(m)
4 Tr

[
BSµ0{{λq, B},M}

]
+ ∆b

(m)
5 Tr

[
BSµ0B

]
Tr[λqM ] + ∆b

(m)
6 Tr

[
BSµ0Bλq

]
Tr[M ]

+ ∆b
(m)
7 Tr

[
BSµ0λqB

]
Tr[M ] + ∆b

(m)
8 Tr

[
BSµ0MB

]
Tr[λq]

+ ∆b
(m)
9 Tr

[
BSµ0BM

]
Tr[λq] + ∆b

(m)
10 Tr

[
BSµ0λq

]
Tr[MB]

)
pµ1 . . . pµm

+ permutations− Tr . (6.14)
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Decuplet contributions may be represented by

∆γ(m)
(
T
ν
S{µ0λqTν

)
pµ1 . . . pµm} + ∆γ′(m)M2

B

(
T
{µ1
Sµ0λqT

µ2

)
pµ3 . . . pµm} − Tr.

(6.15)

Clearly, because of the number of available indices, ∆γ′(0,1) = 0. Other approximate

relations between the unknown coefficients may be derived using SU(6) symmetry. In

our numerical calculations, for example, we set ∆γ(0) = 2H = −6D. The analogous

relation for the first moment is ∆γ(1) = −3
2

(
∆α(1) − 2∆β(1)

)
.

Transitions between octet and decuplet baryons via an operator insertion are also

allowed in the spin-dependent case. These are represented by the effective matrix

element√
3

2
ω(m)

[(
T
µ0
λqB

)
+
(
BλqT

µ0
)]
pµ1 . . . pµm + permutations− Tr. (6.16)

Here, by the nucleon-delta Goldberger-Treiman relation, we make the identifica-

tion ω(0) = C. This parameter appears in Eq. (3.37) and encodes the octet-

decuplet baryon transition via meson emission or absorption. To reduce the num-

ber of free low-energy constants, we use the SU(6) approximation to set ω(1) =

−1
2

(
∆α(1) − 2∆β(1)

)
for our numerical study of the first spin-independent moment

(see Section 6.3).

6.2.1 Feynman Rules

Feynman rules corresponding to the twist-two operator insertion vertices may be

read directly from the effective Lagrangian terms given in the previous section. Fol-

lowing the notation introduced in Section 3.3.4, the octet baryon, decuplet baryon,

and meson which appear in a particular vertex are indicated by subscripts B, T ,

and φ on the (Clebsch-Gordan) coefficients C which encompass the flavour algebra.

The subscript Oq indicates that the couplings listed here correspond to operator

insertion vertices. All coefficients C are given explicitly in Appendix F.

For the spin-independent operators,

BB′SI Operator Insertion 6.1(a):
1

MB

C
(n)
BB′Oq

p{µ1 . . . pµn}, (6.17a)

TT ′SI Operator Insertion 6.1(b) #1:
1

MB

C
(n)
TT ′Oq

gνβp
{µ1 . . . pµn}, (6.17b)

TT ′SI Operator Insertion 6.1(b) #2:
1

MB

C
(n)
TT ′Oq

g {µ1
ν g µ2

β pµ3 . . . pµn}, (6.17c)

BB′φφ′SI Vertex Insertion 6.1(d):
1

MBf 2
π

C
(n)
BB′φφ′Oq

p{µ1 . . . pµn}. (6.17d)

The labels indicate the panel of Fig. 6.1 in which each vertex is depicted, and the

TT ′ operator insertions labelled #1 and #2 correspond to the first and second
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B B′

µ0

(a)

T T ′

µ0

β ν

(b)

T B

µ0

α

(c)

B B′µ0

φ φ′

(d)

Figure 6.1: Feynman diagrams illustrating the vertices which appear in the leading

non-analytic contributions to moments of quark distribution functions. The twist-two

operator insertion (denoted by a cross) carries a Lorentz index µ0 in the spin-dependent

case only. Single, double and dashed lines denote octet baryons, decuplet baryons and

mesons, respectively.

terms of the decuplet effective operator contributions respectively (see Eqs. (6.11)

and (6.15)). Similarly, for the spin-dependent operators,

BB′SD Operator Insertion 6.1(a): C
(m)
BB′O∆q

S{µ0pµ1 . . . pµm}, (6.18a)

TT ′SD Operator Insertion 6.1(b) #1: C
(m)
TT ′O∆q

gνβS
{µ0pµ1 . . . pµm}, (6.18b)

TT ′SD Operator Insertion 6.1(b) #2: C
(m)
TT ′O∆q

g {µ1
ν g µ2

β Sµ0pµ3 . . . pµm}, (6.18c)

TBSD Operator Insertion 6.1(c): C
(m)
TBO∆q

g {µ0
α pµ1 . . . pµm}, (6.18d)

BB′φφ′SD Vertex Insertion 6.1(d):
1

f 2
π

C
(m)
BB′φφ′O∆q

S{µ0pµ1 . . . pµm}. (6.18e)

By symmetry, the BTSD vertex (i.e., the reflection of Fig. 6.1(c) in a vertical plane)

is identical to the TBSD vertex given here.

6.2.2 Feynman Diagrams

This section gives details of the Feynman diagrams which contribute to the Mellin

moments of the PDFs to leading non-analytic order. These are shown in Fig. 6.2

and include loops with both octet and decuplet baryon intermediate states, tadpole

loops, and wavefunction renormalisation terms. Diagrams 6.2(h)–6.2(j) contribute

only to the odd-n spin-independent moments at order mn+1
π log(mπ) and are thus

included for the n = 1 spin-independent moment only. For this moment they serve

to cancel the contributions of diagrams 6.2(a)–6.2(e) to give the usual quark flavour

sum rule; for this reason we do not write out their contribution explicitly.

Figure 6.3 shows the loop diagrams which include Weinberg-Tomozawa contact

terms. These contribute only to the spin-dependent matrix elements at higher order

than we consider here (they have non-analytic behaviour of order m3
πlog(mπ) or
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i) (j)

Figure 6.2: Chiral loops included in the present calculation. Single, double, and dashed

lines denote octet baryons, decuplet baryons, and mesons, respectively. Crosses (squares)

denote twist-two operator (leading-order strong interaction) insertions. Diagram 6.2(a) is

hereafter referred to as the ‘octet loop’ diagram, Fig. 6.2(d) is the ‘decuplet loop’, and

diagram 6.2(b) is referred to as the ‘tadpole’ diagram. Diagrams 6.2(c) and 6.2(e) represent

wavefunction renormalisation. The transition diagrams, shown in Figs. 6.2(f) and 6.2(g),

contribute only in the spin-dependent case. Diagrams 6.2(h)–6.2(j) are included for the

n = 1 spin-independent moment only, as explained in the text.

(a) (b)

Figure 6.3: Loop diagrams which include Weinberg-Tomozawa contact terms. These con-

tribute only to the spin-dependent matrix elements at higher order (they have non-analytic

behaviour of order m3
πlog(mπ) or higher), and are thus excluded from our calculation.
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higher), and are thus excluded from our analysis, although it has been argued that

these terms may indeed be significant [171].

6.2.3 Loop Integrals

Here we summarise the integral expressions needed for the evaluation of the Feyn-

man diagrams depicted in the previous section. We use the finite-range regularisa-

tion scheme which was introduced in Section 3.5, but also make explicit the simple

substitutions which relate our expressions to those generated in the DR formal-

ism [177].

Loops with octet baryon intermediate states (e.g., Fig. 6.2(a)) involve the term∫
d4k

(2π)4

kikj

(k0 − iε)2(k2 −m2
φ + iε)

=
FRR
−iδij J(m2)

16π2
, (6.19)

where

J(m2) =
4

3

∫ ∞
0

dk
k4u2(k)

(
√
k2 +m2)3

, (6.20)

with the finite-range regulator u(k) inserted into the integrand. The normalisation

of J(m2) has been defined so that the non-analytic part is simply related to the

common form of dimensionally regularised results: J(m2) →
DR

m2 ln(m2/µ2).

Entirely analogous expressions can be written for integrals with decuplet prop-

agators replacing one or more of the octet propagators in the above loop integral

expression. We define∫
d4k

(2π)4

kikj

(k0 + δ − iε)(k0 − iε)(k2 −m2
φ + iε)

=
FRR
−iδij J1(m2, δ)

16π2
, (6.21)∫

d4k

(2π)4

kikj

(k0 + δ − iε)2(k2 −m2
φ + iε)

=
FRR
−iδij J2(m2, δ)

16π2
, (6.22)

where

J1(m2, δ) =
4

3

∫ ∞
0

dk
k4u2(k)

(
√
k2 +m2)2(

√
k2 +m2 + δ)

, (6.23)

J2(m2, δ) =
4

3

∫ ∞
0

dk
k4u2(k)

(
√
k2 +m2)(

√
k2 +m2 + δ)2

, (6.24)

with one and two decuplet propagators, respectively. The non-analytic parts of these

integrals give the corresponding DR expressions:

J1(m2, δ) →
DR

(
m2 − 2

3

)
ln

(
m2

µ2

)
+

2

3δ

(
δ2 −m2

) 3
2 ln

(
δ −
√
δ2 −m2

δ +
√
δ2 −m2

)
+

2π

3δ
m3 − 4

3
m2, (6.25)
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J2(m2, δ) →
DR

(
m2 − 2δ2

)
ln

(
m2

µ2

)
+ 2δ
√
δ2 −m2 ln

(
δ −
√
δ2 −m2

δ +
√
δ2 −m2

)
. (6.26)

We also define

JT (m2) = 4

∫ ∞
0

dk
k2u2(k)√
k2 +m2

, (6.27)

which has the same non-analytic structure as J , i.e., JT (m2) →
DR

m2 ln(m2/µ2). This

integral will appear in the evaluation of tadpole loops in Section 6.2.4.

To make a comparison with DR expressions clear, and to avoid absorbing loop

terms into known parameters such as F and D, constant terms are subtracted by

the integral replacement

I(m)→ Ĩ(m) = [I(m)− I(m = 0)], (6.28)

where I stands for any of the integrals defined earlier. Terms analytic in m2 are

absorbed by redefinition of the unknown low-energy coefficients (∆)bi. With this

convention, DR expressions can be recovered by simply replacing each loop integral

expression by its non-analytic DR form given above.

6.2.4 Loop Contributions

This section gives explicit expressions for the contribution from each loop diagram

shown in Section 6.2.2 to the chiral extrapolation of the Mellin moments of the

PDFs. Each term may be derived using the Feynman rules of Section 6.2.1 and is

written in terms of the subtracted integrals defined in Section 6.2.3. In each case, the

subscripts P and U indicate the polarised (spin-dependent) and unpolarised cases,

while the superscripts 8 and 10 indicate diagrams with octet and decuplet baryon

intermediate states. All Clebsch-Gordon coefficients C, the momenta pµ1 . . . pµn,m ,

and the associated symmetrisation of Lorentz indices are suppressed for clarity of

notation.

Wavefunction Renormalisation

The contributions from wavefunction renormalisation correspond to Figs. 6.2(c) and

6.2(e) and reduce to

Z8
2,{P,U} =

1

16π2f 2
π

(
3

8

)
J̃(m2), (6.29)

Z10
2,{P,U} =

1

16π2f 2
π

J̃2(m2, δ). (6.30)
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Tadpole Loops

The tadpole loop contributions correspond to Fig. 6.2(b).

Ztad
1,{P,U} =

1

16π2f 2
π

(
1

2

)
J̃T (m2). (6.31)

Octet Intermediate-State Loops

The contribution from Fig. 6.2(a), with an operator insertion into an octet baryon

intermediate state, differs from the octet loop wavefunction renormalisation term

only in the spinor algebra.

Z
(8,8)
1,P =

1

16π2f 2
π

(
−1

8

)
J̃(m2), (6.32)

Z
(8,8)
1,U =

1

16π2f 2
π

(
3

8

)
J̃(m2). (6.33)

Decuplet Intermediate-State Loops

The contribution from decuplet loops with one operator insertion (i.e., Fig. 6.2(d))

mimics that of the decuplet loop wavefunction renormalisation term. While there

is an extra P µν polarisation projector in the spin algebra, as there are two decu-

plet propagators, the wavefunction renormalisation term (with one propagator) has

the identical integral form, J2, because of the derivative with respect to external

momentum.

There are two separate terms which contribute to the decuplet loop (Fig. 6.2(d)),

arising from the two terms in each of Eqs. (6.11) and (6.15). We label these con-

tributions as ‘1’ and ‘2’, matching the notation used when defining the relevant

Feynman rules in Eqs. (6.17) and (6.18).

Z
(10,10)
1,P1 =

1

16π2f 2
π

(
−5

9

)
J̃2(m2, δ), (6.34)

Z
(10,10)
1,P2 =

1

16π2f 2
π

(
1

9

)
J̃2(m2, δ), (6.35)

Z
(10,10)
1,U1 =

1

16π2f 2
π

(−1)J̃2(m2, δ), (6.36)

Z
(10,10)
1,U2 =

1

16π2f 2
π

(
1

3

)
J̃2(m2, δ). (6.37)
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Octet-Decuplet Transition Loops

By symmetry, the contributions from diagrams 6.2(f) and 6.2(g) are the same. These

diagrams do not contribute in the spin-independent case.

Z
(10,8)
1,P = Z

(8,10)
1,P =

1

16π2f 2
π

(
2

3

)
J̃1(m2, δ).

6.2.5 Fit Functions

Here we finally present complete expressions for the chiral extrapolation of quark

distribution moments. The Clebsch-Gordon coefficients C are those given in the

Feynman rules in Eqs. (3.40), (6.17) and (6.18). We emphasise that these coeffi-

cients, while labelled identically, have distinct numerical values for each moment.

Expressions for each C in terms of the low-energy constants introduced in the effec-

tive Lagrange densities are given in Appendix F. In the expressions below, summa-

tion over repeated indices, e.g., B′, T , φ (but not B) is implied. The overall factor

of 2 arises from the corresponding factor in Eqs. (6.5a) and (6.5b). We remind the

reader that the terms p{µ1 . . . pµn} and S{µ0pµ1 . . . pµm}, arising from the Feynman

rules and spinor algebra for the chiral extrapolation of the matrix elements, factor

out when writing out the quark moment chiral extrapolation (again see Eqs. (6.5a)

and (6.5b)).

The master expression for the spin-independent Mellin moments with n ≥ 2 is

2〈xn−1〉Bq =
(
C

(n)
BBOq

+ C
(n)
BBOqM

)
+ C

(n)
BB′φC

(n)
B′B′′Oq

C
(n)
B′′BφZ

(8,8)
1,U

(
m2
φ

)
+ C

(n)
BBφφOq

Ztad
1,U

(
m2
φ

)
+ C

(n)
BTφC

(n)
TT ′Oq

C
(n)
T ′Bφ

[
Z

(10,10)
1,U1

(
m2
φ

)
+ Z

(10,10)
1,U2

(
m2
φ

)]
−
(
C

(n)
BB′φ

)2

CBBOqZ
8
2,U

(
m2
φ

)
−
(
C

(n)
BTφ

)2

C
(n)
BBOq

Z10
2,U

(
m2
φ

)
, (6.38)

while the n = 1 case is simply the quark flavour sum rule. The spin-dependent

moments are given, for m ≥ 1, by

2〈xm〉B∆q =
(
C

(m)
BBOq

+ C
(m)
BBO∆qM

)
+ C

(m)
BB′φC

(m)
B′B′′O∆q

C
(m)
B′′BφZ

(8,8)
1,P

(
m2
φ

)
+ C

(m)
BBφφO∆q

Ztad
1,P

(
m2
φ

)
+ C

(m)
BTφC

(m)
TT ′O∆q

C
(m)
T ′BφZ

(10,10)
1,P1

(
m2
φ

)
+ C

(m)
BTφC

(m)
TB′O∆q

C
(m)
B′Bφ

[
Z

(8,10)
1,P

(
m2
φ

)
+ Z

(10,8)
1,P

(
m2
φ

)]
−
(
C

(m)
BB′φ

)2

C
(m)
BBO∆q

Z8
2,P

(
m2
φ

)
−
(
C

(m)
BTφ

)2

CBBO∆q
Z10

2,P

(
m2
φ

)
. (6.39)

These expressions match those of previous studies [174–176, 178–182] in the limit

where mu = md, i.e., ε → 0 in the expressions for the couplings C and the meson

masses mφ (see Eq. (4.6)).
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To facilitate direct comparison with, and use of, these expressions, the chiral

expansions for some of the commonly-investigated combinations of moments, namely

〈1〉p∆u−∆d = gA and 〈x〉pu−d, are given explicitly in Appendix H.

6.3 Fits to Lattice QCD Simulation Results

In this section we describe the application of the theory developed here to the

chiral extrapolation of lattice results provided by the CSSM and QCDSF-UKQCD

collaborations for the first few Mellin moments of the quark distributions [24,32,173].

In particular, we consider the first spin-independent moment and the zeroth and first

spin-dependent moments.

The simulations [24,32,173] were performed on a lattice volume L3×T = 243×48

(with a = 0.083fm), and include results for the doubly and singly-represented quark3

contributions to the Mellin moments of all outer-ring octet baryons (i.e., no Λ or

Σ0 baryons) at five different sets of pseudoscalar masses (mπ,mK). The locations

of the simulations in the light-strange quark mass plane are indicated by the light

blue squares along the single constant singlet-mass line in Fig. 4.1. All numbers

are expressed as ratios of the moments for different octet baryons (as in Fig. 6.4);

overall normalisations are not given.

For our analysis we use a dipole regulator, u(k) =
(

Λ2

Λ2+k2

)2

, and a regulator

mass Λ = 1GeV, within the FRR scheme. All results are insensitive to this choice;

selecting, for example, monopole, Gaussian, or sharp cutoff forms for the regulator

does not change the results of the analysis within the quoted uncertainties. We

explicitly allow Λ to vary by ±20% for our final results.

The fit to the simulation results is performed by minimising the sum of χ2 for

each set of moments independently. As lattice data is available only for the doubly

and singly-represented quark moments, not all of the parameters which appear in

the equations in the previous sections are linearly independent in the relevant fit

functions. Replacements are made:

n1 = b1 + b3, n2 = b2 + b4, n3 = b5,

n4 = b7, n5 = b8, n6 = b9, (6.40)

with entirely analogous relations defining ∆ni in the spin-dependent cases.

There are 24 lattice data points available for each of the three moments consid-

ered. The fit parameters are different (and the fits independent), for each moment.

As indicated earlier, we use SU(6) relations between unknown quantities to reduce

the number of free parameters to eight or nine:

• For the zeroth spin-dependent moment, ∆n
(0)
i , ∆σ(0), and D are fit; the

low-energy constants ∆α(0) and ∆β(0) have been related toD by Eq. (6.13). We

3For a baryon with valence quark content xxy, the doubly-represented contribution is the total from
quarks of flavour x, while the singly-represented contribution is the total from y-flavoured quarks.
For example, in the proton the u and d quarks are doubly and singly-represented, respectively.
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First SI (i = 2) Zeroth SD (i = 0) First SD (i = 1)

(∆)n
(i)
1 1.1(25)(0) 4.9(84)(9) −1.5(13)(15)

(∆)n
(i)
2 −7.0(28)(27) 0.5(98)(12) 6.3(29)(26)

(∆)n
(i)
3 8.3(26)(31) −2.2(58)(9) −3.9(16)(23)

(∆)n
(i)
4 0.5(27)(1) −15(17)(0) −7.0(46)(11)

(∆)n
(i)
5 11(4)(4) 0.2(50)(9) −1.0(11)(8)

(∆)n
(i)
6 6.2(24)(23) −1.1(88)(7) −6.0(28)(34)

(∆)α(i) −4.1(17)(12) 0.41(50)(29)

(∆)β(i) −8.6(31)(21) −1.5(10)(3)

(∆)σ(i) 7.5(26)(23) −0.22(26)(0) −0.93(61)(14)
D 0.74(24)(6)

Table 6.1: Values of the fit parameters corresponding to the fits shown in Fig. 6.4.

All (∆)n
(j)
i have dimensions (GeV−2), other parameters are dimensionless. The first error

range given is statistical, while the second indicates the uncertainty resulting from a ±20%

variation in the FRR cutoff Λ.

use SU(6) symmetry to set F = 2
3
D and ∆γ(0) = −6D. C → Cphys. = −6

5
gAphys.

is also fixed. This gives a total of eight free parameters.

• The nine fit parameters for the first spin-dependent moment are ∆n
(1)
i ,

∆α(1), ∆β(1), and ∆σ(1). Fixed parameters are D → Dphys. = 3
5
gAphys.

, F →
Fphys. = 2

3
Dphys., C → Cphys., and, using SU(6) symmetry, ∆γ(1) = −3

2

(
∆α(1) −

2∆β(1)
)
, as outlined in the text (see Eq. (6.15)).

• For the first spin-independent moment, nine parameters, n
(2)
i , α(2), β(2),

and σ(2), are fit, with D, F , and C again fixed to their physical values. As

no phenomenological estimate of the combination
(
γ(2) − γ′(2)

3

)
is available,

this quantity is fixed to a ‘physical’ value through its relationship to the tree-

level delta insertion, SU(6) symmetry, and the best experimental value of the

isovector proton moment (at a scale of 4GeV2) [183]:(
γ(2) − γ′(2)

3

)
= 6〈x〉∆+

u−d at tree level, (6.41a)

= 6〈x〉pu−d using SU(6) symmetry, (6.41b)

=
exp.

6(0.157) = 0.942. (6.41c)

The fits to the available lattice simulation results (expressed as ratios of Mellin

moments) are shown in Fig. 6.4. The horizontal axes are normalised with re-

spect to the simulation centre-of-mass of the pseudoscalar meson octet, Xπ =√
(2m2

K +m2
π)/3 = 411 MeV, so that the figures may be easily compared against
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Figure 6.4: Illustration of the fits to the zeroth spin-dependent moment (Figs. 6.4(a)

and 6.4(b)), the first spin-dependent moment (Figs. 6.4(c) and 6.4(d)), and the first spin-

independent moment (Figs. 6.4(e) and 6.4(f)). Figures in left (right) hand panels corre-

spond to the ratios of singly (doubly) represented quark distribution moments for the Σ

(red upward triangles) and Ξ (blue downward triangles) baryons to those of the nucleon.

Lattice data is taken from Refs. [32, 173].
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previously published analyses which used linear fits to the lattice results [32, 173].

The quality of fit is clearly acceptable in each case, with the χ2/d.o.f. between 0.6

and 0.9 for each moment. All χ2 values are less than one as we were not able to

take into account the effect of correlations between the original lattice data points.

Best-fit parameters for each fit are given in Table 6.1.

In Section 6.5 we describe the use of these fits to determine the magnitude of CSV

effects in each of the Mellin moments. This analysis is based on the same principles

introduced in Chapter 4 to determine the mass splittings among members of baryon

isospin multiplets from 2+1–flavour lattice simulation results. First, however, we

use the chiral extrapolation for the zeroth spin-dependent moment, which directly

probes the distribution of the spin of a baryon among its quarks, to gain some insight

into the proton spin puzzle.

6.4 Hyperon Spin Fractions and the Proton Spin

Puzzle

Since the discovery by the European Muon collaboration [155,184–186] that quarks

carry a relatively small fraction of the spin of the proton—the proton spin puzzle—

there have been decades of careful experimental investigation of that claim. The

puzzle, however, has persisted; the quark contribution to the proton spin currently

stands at [156] 33±3±5% if one relies on SU(3) symmetry for the octet axial charge,

g8
A . This is a dramatic suppression with respect to the value of 100% expected in

a naive quark model, or even the 65% expected in a relativistic quark model. The

value deduced from experiment increases only marginally, to 36 ± 3 ± 5%, if g8
A

is reduced by 20%, as suggested by model calculations [187] and a recent lattice

simulation [188].

A number of possible theoretical explanations for the spin puzzle have been

offered, ranging from a key role for the axial anomaly [189–195] to the effect of

gluon exchange currents [196–198], the effects of chiral symmetry [199,200], and, in

the light of insights gained from lattice QCD studies, a combination of both of these

effects4 [203]. It is clearly of great interest to find new ways to shed light on the

origin of this phenomenon.

The analysis of lattice QCD simulation results described in previous sections

can give some insight into the spin puzzle. In particular, the zeroth spin-dependent

Mellin moment of the quark distribution function for quark flavour q in baryon B

corresponds identically to the spin carried by that quark flavour:

∆qB ≡ 〈1〉B∆q =

∫ 1

0

dx
(
∆qB(x) + ∆qB(x)

)
. (6.42)

4The relatively small values of the gluon spin in the proton, found in both fixed target and collider
experiments [201,202], have eliminated the possibility that the axial anomaly alone might explain
the observed suppression, although its effect may still be quantitatively significant.
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B Model Lattice

N 1.0 1.0
Λ 1.35(2)
Σ 0.97(1) 0.92(13)
Ξ 1.49(5) 1.61(33)

Table 6.2: Ratio of the spin fraction for each hyperon to that of the nucleon. For the

model calculation, the uncertainties quoted result from choosing a bag radius R = 0.8 fm

rather than the default 1fm. The lattice uncertainties include all statistical and systematic

effects described in previous sections combined in quadrature.

As the lattice QCD simulation results used here were presented in ratio form by the

lattice groups (because the analysis of the renormalisation of the lattice operators

had not been completed), the absolute values of the spin fractions cannot be ex-

tracted from our analysis. We can, however, use our results—which extend to the

entire outer-ring baryon octet—to determine whether the suppression observed for

the proton is a general property or varies across the baryon octet. Despite early

proposals [204] to measure the quark contribution to the ∆ baryon spin, there is at

this stage no experimental indication as to whether spin-suppression is a universal

feature of baryons or not.

Unfortunately, as the lattice data set does not include any calculations for the

Λ hyperon5, we are unable to present results in that case. However, for the other

members of the octet one can simply sum ∆u, ∆d, and ∆s to obtain the (con-

nected quark-line contribution to the) spin fractions carried by the quarks in each

baryon. These values, determined from the fit functions of Section 6.3 evaluated at

the physical meson masses, are shown in the final column of Table 6.2. Although

the uncertainties are substantial, there is a remarkable degree of variation with the

structure of the baryon, with the ratio of spin fractions equal to 0.92(13) for Σ : N

while it is 1.61(33) for Ξ : N . This variation is not merely an artefact of the (sig-

nificant) chiral extrapolation in pion mass which is necessary to reach the physical

point; it is in fact distinct in the lattice results themselves. This is illustrated in

Fig. 6.5.

These results clearly do not support the hypothesis that the spin suppression ob-

served for the proton might be a universal property. In order to understand this effect

qualitatively it is of considerable interest to investigate the predictions of models in

which the suppression of the spin carried by quarks is dependent on baryon structure.

In Ref. [206], the cloudy bag model (CBM), developed in Refs. [196,197,199,201], was

applied to this problem. The model includes relativity [207–210], gluon exchange

currents [196,211,212], and the meson cloud required by chiral symmetry [199]. As

5Since the completion of this work, calculations of the quark spin fractions in the Λ baryon have
been performed for a subset of the simulation ensembles used here [205]. At this stage, however,
the results do not span a sufficient range of meson masses to constrain an extrapolation of the Λ
spin fraction to the physical point (when included in our analysis).
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Figure 6.5: As in Fig. 6.4(b), with dimensionful units on the horizontal axis. Red

upward (blue downward) triangles show the ratio of the lattice moments of the u in the

Σ+ (s in the Ξ) to the u in the proton. The vertical dashed line indicates the physical

pion mass.

can be seen from Table 6.2, the predicted variation of the fraction of the spin carried

by quarks across the octet is striking, and is in excellent agreement with the results

of our lattice study. Within the quark model, this variation in spin-suppression can

be easily interpreted; the meson cloud correction is considerably smaller in the Ξ

than in the nucleon. That, combined with the less relativistic motion of the heavier

strange quark, results in the quark spin fraction in the Ξ being substantially larger

than that in the nucleon.

6.5 Charge Symmetry Violation

As discussed in the introduction to this chapter, the assumption of good charge

symmetry has been widely applied in parton phenomenology [33,39] despite exper-

imental upper limits on partonic CSV falling in the range 5–10%. CSV of that

magnitude would produce important effects in tests of physics beyond the SM, for

example in neutrino-nucleus deep inelastic scattering experiments [40]. We use the

analysis of lattice simulation results presented in Section 6.3 to more precisely con-

strain the size of CSV effects in the lowest several lattice-accessible Mellin moments

of the PDFs.

In terms of quark distributions, charge symmetry implies

up
(
x,Q2

)
= dn

(
x,Q2

)
, dp

(
x,Q2

)
= un

(
x,Q2

)
, (6.43)

with analogous relations for the antiquark distributions. A measure of the size of

the violation of charge symmetry is given by the ‘CSV parton distributions’, defined
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in terms of the Mellin moments as

δum± =

∫ 1

0

dx xm
(
up±(x)− dn±(x)

)
= 〈xm〉p±u − 〈xm〉n±d (6.44a)

and

δdm± =

∫ 1

0

dx xm
(
dp±(x)− un±(x)

)
= 〈xm〉p±d − 〈x

m〉n±u (6.44b)

for the spin-independent distributions, with analogous expressions for the spin-

dependent case. Here, the plus (minus) superscripts indicate C-even (C-odd) distri-

butions:

q±(x) = q(x)± q(x). (6.45)

As the CSSM and QCDSF-UKQCD collaboration lattice simulation results [32,

173] analysed in Section 6.3 use mass-degenerate light quarks, the CSV terms cannot

be directly evaluated using Eqs. (6.44a) and (6.44b) (as this would give zero in each

case). The problem can, however, be approached indirectly; because the simulations

lie along a line of constant singlet quark mass (light blue squares in Fig. 4.1), an

approximation to the CSV moments may be found using a linear flavour expansion

about the SU(3)-symmetric point. This approach is described in Section 6.5.1.

The results may be improved using the chiral fits which were presented in Sec-

tion 6.3. Just as was described in detail in the context of determining the mass

splittings among members of baryon isospin multiplets from Nf = 2 + 1 lattice

simulation results (Section 4.3), the only additional input needed to determine the

CSV moments from the previously-described isospin-averaged fits is a value for the

light-quark mass ratio R = mu/md. The chirally-improved extraction of the CSV

terms is described in Section 6.5.2.

6.5.1 Linear Flavour Expansion

If one takes the light-quark mass difference mδ = (md −mu) to be small, the CSV

Mellin moments may be expanded as

δu = mδ

(
−∂〈x〉

p
u

∂mu

+
∂〈x〉pu
∂md

)
+O

(
m2
δ

)
, (6.46)

with a similar expression for δd. The equivalence of the u and d quarks in the lattice

simulations to which we will apply this expansion, i.e., that ∂〈x〉nd/∂md = ∂〈x〉pu/∂mu

and ∂〈x〉nd/∂mu = ∂〈x〉pu/∂md, has been used to simplify the expression. Near

the SU(3)-symmetric point, the strange quark can be considered as a heavy light-

quark; the lattice results for the hyperon Mellin moments can thus be substituted

for information about the light-quark derivatives:

∂〈x〉pu
∂mu

≈ 〈x〉
Ξ0

s − 〈x〉pu
ms −ml

,
∂〈x〉pu
∂md

≈ 〈x〉
Σ+

u − 〈x〉pu
ms −ml

, (6.47a)
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∂〈x〉pd
∂mu

≈ 〈x〉
Ξ0

u − 〈x〉
p
d

ms −ml

,
∂〈x〉pd
∂md

≈ 〈x〉
Σ+

s − 〈x〉
p
d

ms −ml

. (6.47b)

Rearranging these expressions, and invoking the Gell-Mann–Oakes–Renner rela-

tion, the CSV momentum fractions can be written as6

δu

〈x〉pu−d
=

1

2

mδ

mq

(
〈x〉Σ+

u − 〈x〉Ξ
0

s

)/
〈x〉pu−d

(m2
K −m2

π)/X2
π

, (6.48a)

δd

〈x〉pu−d
=

1

2

mδ

mq

(
〈x〉Σ+

s − 〈x〉Ξ
0

u

)/
〈x〉pu−d

(m2
K −m2

π)/X2
π

, (6.48b)

where mq = (2ml + ms)/3 and X2
π = (2m2

K + m2
π)/3. Similar expressions hold

for the spin-dependent CSV moments. Written in this way, the fractional CSV

terms are simply the slopes of straight lines drawn through the data displayed in

Fig. 6.6 (evaluated at the SU(3)-symmetric point), multiplied by the ratio mδ/mq.

Taking the Leutwyler value, R = mu/md = 0.553(43), based on the discussion of

Section 4.4, we find mδ/mq = 0.066(7) for the lattice simulations considered here.

The normalisations of each moment are set using the best experimental values at

the physical point at a scale of 4 GeV2 [30, 183,213]:

gA = 〈1〉p∆u−∆d =
exp.

1.2695(29), (6.49a)

〈x〉p∆u−∆d =
exp.

0.190(8), (6.49b)

〈x〉pu−d =
exp.

0.157(9). (6.49c)

Results for all six CSV moments are given in the first column of Table 6.3.

Because this method gives estimates of the magnitude of CSV at the simulation

SU(3)-symmetric point, the results may have chiral corrections which are more sig-

nificant than the O(m2
δ) counting suggested by the Taylor expansion in Eq. (6.46).

Using the chiral extrapolations detailed in Section 6.3 we can improve on this linear

expansion and explicitly calculate the corrections involved in moving away from the

simulation SU(3) value to the physical (SU(3)-broken) point.

6.5.2 Chiral Expansion

To evaluate the CSV terms at the physical (rather than the simulation SU(3)-

symmetric) point, we use the chiral extrapolations detailed in Section 6.3. As

the isospin-averaged and broken expressions for the Mellin moments as functions

of pseudoscalar mass have the same unknown parameters, the CSV terms given in

Eq. (6.44) may be evaluated by simply substituting the best-fit parameters of the

previously-described fits into the full isospin-broken expressions. These expressions

6 In Refs. [32, 173] the factor of 1
2 appearing at the beginning of the following equations was

erroneously omitted. As a result, the values quoted for the CSV terms were too large by a factor
of two.
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Moment Linear: SU(3)-sym. Chiral: SU(3)-sym. Chiral: physical

δ∆u0+ −0.0057(14) −0.0063(13) −0.0061(13)
δ∆d0+ −0.0018(6) −0.0019(6) −0.0018(6)
δ∆u1− −0.0010(3) −0.0007(2) −0.0007(2)
δ∆d1− −0.0004(1) −0.0003(1) −0.0002(1)
δu1+ −0.0012(3) −0.0013(3) −0.0023(7)
δd1+ 0.0010(2) 0.0012(2) 0.0017(4)

Table 6.3: Comparison of CSV PDF moment results. The column labelled ‘Linear’ gives

the results which were published with the lattice simulations [32, 173], calculated using

a linear flavour expansion about the SU(3)-symmetric point. These have been corrected

from the values quoted in Refs. [32,173], as explained in the footnote preceding Eq. (6.48a).

‘Chiral’ gives the results of this work, i.e., including chiral physics, both at the comparable

‘SU(3)-symmetric’ point (with (md + mu) = 2ms but the physical (md −mu)), labelled

‘SU(3)-sym.’, and at the physical pseudoscalar masses.

can then be evaluated at any pseudoscalar masses, in particular at the physical point.

As described in Chapter 4, the only additional input needed is a value for the light-

quark mass ratio which we set to the Leutwyler value, R = mu/md = 0.553(43),

based on the discussion of Section 4.4.

For example, δ∆um may be expressed as a function of meson mass in the form:

δ∆um = 〈xm〉p∆u − 〈x
m〉n∆d = a

(m)
∆ +

1

16π2f 2
π

(
b

(m)
∆ + d

(m)
∆ + g

(m)
∆

)
, (6.50)

where

a
(m)
∆ =

1

2

(
−∆n

(m)
1 + ∆n

(m)
2 + ∆n

(m)
3 + ∆n

(m)
6

)
B(mu −md), (6.51a)

b
(m)
∆ =

1

6
√

3

(
D2 − 2DF − 3F 2

)
sin(2ε)

(
5∆α(m) + 2∆β(m) + 6∆σ(m)

)
×
[
J̃
(
m2
π0

)
− J̃

(
m2
η

)]
+

1

24

[
−D2

(
9∆α(m) + 2∆β(m) + 8∆σ(m)

)
+2DF

(
19∆α(m) + 10∆β(m) + 24∆σ(m)

)
+3F 2

(
5∆α(m) + 2∆β(m) + 8∆σ(m)

)][
J̃
(
m2
K0

)
− J̃

(
m2
K±

)]
+

1

24

(
5∆α(m) + 2∆β(m)

)[
J̃T
(
m2
K0

)
− J̃T

(
m2
K±

)]
, (6.51b)

d
(m)
∆ =− 1

72

(
5∆α(m) + 2∆β(m) + 6∆σ(m)

)
C2
[
J̃2

(
m2
K0 , δ

)
− J̃2

(
m2
K± , δ

)]
− 1

108

(
5∆γ(m) −∆γ′(m)

)
C2
[
J̃2

(
m2
K0 , δ

)
− J̃2

(
m2
K± , δ

)]
, (6.51c)
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g
(m)
∆ =− 4

9
√

3
(D − 3F ) sin(2ε)∆ω(m)

[
J̃1

(
m2
π0 , δ

)
+ J̃1

(
m2
η, δ
)]

+
2

9
(D − 3F )∆ω(m)

[
J̃1

(
m2
K0 , δ

)
− J̃1

(
m2
K± , δ

)]
, (6.51d)

where expressions for the (subtracted) integrals J̃ are given in Section 6.2.3. Clearly,

entirely analogous expressions may be written for δ∆dm and the spin-independent

CSV terms. These are given in Appendix H.2. To the same order in the broken

SU(3) symmetry, analogous expressions for each quark flavour combination in each

octet baryon are expressed in terms of different linear combinations of the same

coefficients; the general chiral expansion is given in Section 6.2.5.

Figure 6.6 shows the fits to the isospin-averaged lattice data in a form which

emphasises the SU(3)-symmetry–breaking in the simulation results. It is clear from

these plots that, before extrapolation to the physical masses, there are only small

chiral corrections to the CSV moments; the slopes of the fit functions at the SU(3)-

symmetric point are comparable to those of the straight-line fits described in the

previous section.

As the available QCDSF-UKQCD collaboration lattice results are presented only

in terms of ratios of moments, there is an unknown constant scaling factor, Z,

associated with all data points. The Zs are distinct for each moment (zeroth and

first spin-dependent and first spin-independent) under consideration and are fixed by

matching the extrapolations for the isovector moments to experimental values at a

scale of 4 GeV2 [30,183,213], just as was done for the linear flavour expansion analysis

(see Eq. (6.49)). The uncertainty of the experimental numbers is propagated into

the final results. The full error analysis also takes account of correlated uncertainties

between all of the fit parameters in the original fits, as well as allowing for the stated

variation of R. The regulator mass, Λ = 1GeV, is allowed to vary by ±20%, which

is again propagated into the final uncertainty. Changing the functional form of the

regulator u(k) within the FRR scheme leads to small variations of order 1%.

An advantage of the chiral method is that the CSV moments may be evaluated

at any pseudoscalar masses. In particular, evaluating the chiral perturbation theory

expressions at the point where (md+mu) = 2ms and both (md−mu) and (mu+md+

ms) take their physical values, labelled ‘SU(3)-sym.’ in Table 6.3, gives results which

may be directly compared with the linear flavour expansion calculation. As might

be anticipated from an inspection of Figs. 6.6(a)–6.6(c) which show fits qualitatively

consistent with straight lines, chiral loop corrections to the CSV terms at this point

are small and do not change the results within the quoted uncertainties, even given

the small shift from the simulation SU(3) value to the physical symmetric point.

Moreover, comparison of these results with the CSV moments evaluated at the

physical pseudoscalar masses gives an indication of the size of any chiral correc-

tions which appear in moving away from the SU(3) point. Again, these correc-

tions are small in the spin-dependent case, while being more significant in the spin-

independent case. In contrast to the results of the linear flavour expansion, the

chiral perturbation theory results are based on fits to all lattice data simultane-
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(a) Zeroth spin-dependent Mellin moments.
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(b) First spin-dependent Mellin moments.
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(c) First spin-independent Mellin moments.

Figure 6.6: Illustration of the fits to the lattice data from Refs. [32, 173] for the lowest

several Mellin moments of the PDFs. Upward and downward triangles indicate the ratios

of doubly and singly-represented quark moments, respectively.
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u/d

Λ,Σ0
Λ,Σ0

K+/0

p/n p/n

u/d

Σ
+/−

Σ
+/−

K0/+

p/n p/n

Figure 6.7: Illustration of some of the octet loop terms contributing to δ∆um = 〈xm〉p∆u−
〈xm〉n∆d or δum = 〈xm〉pu − 〈xm〉nd . These contributions are non-vanishing when the loop

pseudoscalar masses are different, i.e., when m2
K0 6= m2

K± .

ously (for each moment), and thus include the proper correlations between quark

moments in each of the baryons. As a consequence, even with more fit parameters,

the uncertainties are comparable to the simple linear fits.

The origin of the chiral loop contributions to the CSV terms can be seen clearly

from the form of Eq. (6.50) (and the analogous Eqs. (H.5), (H.7a) and (H.7b) in

Appendix H.2). One contribution to the δ(∆)u moments is illustrated diagram-

matically in Fig. 6.7. The kaon loop diagrams shown, and the analogous dia-

grams for the δ(∆)d moments, give contributions to the CSV terms proportional to[
J̃
(
m2
K0

)
− J̃

(
m2
K±

)]
, which is non-vanishing when m2

K0 6= m2
K± . The correspond-

ing wavefunction renormalisation terms, as well as tadpole and decuplet kaon-loop

diagrams, also contribute to the CSV terms proportional to
[
J̃
(
m2
K0

)
− J̃

(
m2
K±

)]
.

In the spin-independent case, this kaon mass difference effect yields the only chi-

ral loop corrections to the CSV terms. For the spin-dependent moments, however,

additional terms proportional to
[
J̃
(
m2
π0

)
− J̃

(
m2
η

)]
also contribute. Cancellation

between the octet loop terms and wavefunction renormalisation contributions en-

sures that these terms vanish in the spin-independent case.

The chiral loops also account for the corrections in moving from the ‘SU(3)

point’ to the physical point. For example, as one moves along the line of constant

singlet quark mass ((mu + md + ms) = constant) from the SU(3)-symmetric point

to the physical point, the difference
[
J̃
(
m2
K0

)
− J̃

(
m2
K±

)]
decreases in magnitude

by approximately 30%.

6.6 Summary and Discussion

We have used the chiral perturbation theory formalism to extrapolate QCDSF-

UKQCD collaboration lattice data for the first several Mellin moments of quark

distribution functions to the physical pseudoscalar meson masses. By performing

a consistent analysis including the entire outer-ring baryon octet, we have clearly

shown that the experimentally-measured suppression of the fraction of the proton

spin carried by its quarks (relative to the predictions from a naive or relativistic
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quark model) is not a universal property across the baryon octet, but rather is

structure-dependent. This conclusion is supported by a calculation within a rela-

tivistic quark model which includes gluon exchange currents and the meson cloud

required by chiral symmetry.

Furthermore, our study allows the CSV parton distribution moments to be eval-

uated at the physical pseudoscalar masses. Comparing our results with those of a

previous analysis based on a linear flavour expansion about the SU(3)-symmetric

point [32,173], we find that both the chiral corrections at the SU(3) point, as well as

the shifts resulting from the extrapolation to the physical pseudoscalar masses, are

small. The latter corrections, however, are more significant for the spin-independent

than spin-dependent moments.

At the physical point, our analysis gives the spin-dependent CSV terms to be

δ∆u0+ = −0.0061(13), δ∆d0+ = −0.0018(6), (6.52a)

δ∆u1− = −0.0007(2), δ∆d1− = −0.0002(1). (6.52b)

As a result, one would expect CSV corrections to the Bjorken sum rule [214, 215]

to appear at the half-percent level. Measuring these corrections would require sig-

nificant improvement over the current best determination of the sum rule to 8%

precision at Q2 = 3 GeV2 from a recent COMPASS collaboration experiment [216].

For the spin-independent moments, this analysis gives

δu1+ = −0.0023(7), δd1+ = 0.0017(4), (6.53)

in good agreement with previous phenomenological estimates of CSV both within the

MIT bag model [37,40] and using the MRST analysis [36]. These results support the

conclusion [33,40,217] that partonic CSV effects may reduce the 3-sigma discrepancy

with the Standard Model reported by the NuTeV collaboration [41] by up to 30%.





Chapter 7

Electromagnetic Form Factors

More than a decade before the partonic substructure of the proton was revealed

through DIS (see Chapter 6), elastic electron-proton scattering experiments at Stan-

ford University High Energy Physics Laboratory [218] were used to probe the spatial

distribution of the charge and magnetisation density in the nucleon. These prop-

erties were encoded in so-called electromagnetic form factors [219], expressed as

functions of the probing momentum scale, Q2. The first measurements of proton

form factors were reported in 1955 [220], followed by the first measurement of the

neutron magnetic form factor in 1958 [221]. Half a century later, the precise deter-

mination of these quantities, and their interpretation within the framework of QCD,

remains a defining challenge for hadronic physics research [222].

In particular, with ever-improving experimental measurements of the nucleon

form factors revealing slight deviations from the phenomenological dipole form [223–

226], it is of renewed importance to calculate precise QCD benchmarks for these

functions. As the only first-principles approach which can quantitatively probe the

nonperturbative domain of QCD, lattice simulation [227–241] can not only set these

benchmarks, but it can give theoretical predictions of the hyperon form factors [235,

238–242] which are extremely challenging to measure and as a result are poorly

determined, if at all.

Importantly, lattice studies also provide an interpretation of the experimental

results for the baryon electromagnetic form factors in the context of QCD. For ex-

ample, the simulations give general insight into the environmental sensitivity of the

distribution of quarks inside a hadron [235,242] by discriminating between different

quark-flavour contributions to the form factors. The lattice method can also reveal

the dependence of these quantities on quark mass [118, 243, 244] and allows a sepa-

ration of quark-line–connected and disconnected terms, providing both a great deal

of physical insight and valuable information for model-building [245].

In this chapter we present two sets of new dynamical 2 + 1–flavour lattice QCD

simulation results for the electric and magnetic form factors of the outer-ring octet

baryons, at a range of discrete Q2-values up to 1.3 GeV2. To interpret these sim-

ulations we develop a novel chiral extrapolation formalism—applied at each fixed

value of Q2—which is based on the principles of effective field theory. For the

hyperons in particular, which have so far received limited attention in the litera-

ture [235, 238–242], our results represent the state-of-the-art in such simulations.

97
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The hyperon form factors are of significant interest both in their own right and

because they provide valuable insight into the environmental sensitivity of the dis-

tribution of quarks inside a hadron. For example, one may learn how the distribution

of u quarks in the proton differs from that in the Σ+, an effect caused by the mass

difference of the spectator d and s quarks.

The last sections of this chapter are devoted to an exploration of our core themes,

strangeness and CSV in the nucleon, in the context of the electromagnetic form fac-

tors. By combining our lattice simulation results with experimental input, we deduce

values for the strange electromagnetic form factors of the proton which are consistent

with available direct measurements of these quantities but span a far larger range

of values of Q2 [28, 246–248]. Our calculation of the strange magnetic moment, in

particular, is an order of magnitude more precise than the closest experimental re-

sult. The dominant uncertainty in the experimental numbers for the strange proton

form factors arises from the assumption of good charge symmetry which informs

their extraction. By applying the methods for calculating CSV quantities which

were developed in previous chapters, we present the first determination of CSV in

the electromagnetic form factors of the nucleon based on lattice QCD. Our result,

an order of magnitude smaller than model predictions, opens the door for more pre-

cise experimental measurements of the strange proton form factors using existing

methods.

7.1 Dirac, Pauli and Sachs Form Factors

The electromagnetic form factors are formally defined in terms of the matrix el-

ement of the electromagnetic current density operator, jµ, between baryon states.

The standard decomposition of this matrix element into distinct Dirac structures, re-

stricted by the requirement of covariance under the improper Lorentz group, charge

conservation, and symmetry under spatial reflections, yields the Dirac and Pauli

form factors F1(Q2) and F2(Q2) [249]:

〈B(p′, s′)|jµ(q)|B(p, s)〉 = u(p′, s′)

[
γµF

B
1

(
Q2
)

+
iσµνq

ν

2MB

FB
2

(
Q2
)]
u(p, s). (7.1)

Here u(p, s) is a Dirac spinor with momentum p and spin polarisation s, q = p′ − p
is the momentum transferred to the baryon, Q2 = −q2, and MB is the mass of the

baryon B. For a classical point particle, both form factors are independent of Q2;

deviations from this expectation thus give insight into the extended nature of the

baryon as seen by an electromagnetic probe.

Throughout this chapter, we use an alternative standard basis for the form fac-

tors, namely linear combinations of F1 and F2 named the electric and magnetic
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Sachs form factors:

GB
E

(
Q2
)

= FB
1

(
Q2
)
− Q2

4M2
B

FB
2

(
Q2
)
, (7.2)

GB
M

(
Q2
)

= FB
1

(
Q2
)

+ FB
2

(
Q2
)
. (7.3)

This choice is convenient for the interpretation of electron scattering experiments

because the (unpolarised) cross section may be expressed as a linear combination

of the squares of GE and GM , with no interference term. The Sachs form factors

also have simple physical interpretations: in the Breit frame, where the scattered

electron transfers momentum but no energy, and in the non-relativistic limit, the

three-dimensional Fourier transform of GB
E(Q2) describes the electric charge den-

sity distribution within the baryon B, while that of GB
M(Q2) encodes the magnetic

current density distribution. Electric and magnetic mean-square radii are defined

based on this straightforward interpretation:

〈r2〉BE/M = − 6

GB
E/M(0)

d

dQ2
GB
E/M

(
Q2
)∣∣∣∣
Q2=0

. (7.4)

At zero momentum transfer, the electric form factor GB
E(0) simply gives the charge

of baryon B. Moreover, GB
M(0) =

(
GB
E(0) + κB

)
= µB defines the baryon magnetic

moment, where κB = FB
2 (0) is the anomalous magnetic moment. Should GE/M(0) =

0, this normalising factor is omitted from Eq. (7.4).

7.2 Lattice QCD Simulation

In this section we describe our lattice setup and summarise the standard methods

used to calculate the octet baryon electromagnetic form factors. Because of the

limitations of computation time, the simulations presented here are performed not

only at larger-than-physical pseudoscalar masses, but omit operator self-contractions

(quark-line–disconnected diagrams) which require the notoriously noisy and expen-

sive ‘all-to-all’ quark propagators to be calculated.

In later sections we develop and apply a formalism based on connected chiral per-

turbation theory [72,250–252] to correct for finite-volume effects and to extrapolate

each baryon form factor to the physical pseudoscalar masses. While the omission

of disconnected terms restricts the explicit calculation of full-QCD results from our

simulations to quantities for which the omitted contributions vanish (e.g., isovec-

tor observables, up to CSV effects), the comparison of experimental numbers with

the chirally-extrapolated lattice results for connected-only observables gives insight

into the significance of disconnected quark-loop contributions at the physical point.

This is the method by which we access the strange electromagnetic form factors (Sec-

tion 7.7); the technique is complementary to direct lattice studies of disconnected

terms [28,246–248].
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β κ0 κl κs mπ (MeV) mK (MeV) mπL

1 5.5 0.120900 0.120900 0.120900 465 465 5.6
2 0.121040 0.120620 360 505 4.3
3 0.121095 0.120512 310 520 3.7

4 5.5 0.120920 0.120920 0.120920 440 440 5.3

5 5.5 0.120950 0.120950 0.120950 400 400 4.8
6 0.121040 0.120770 330 435 4.0

7 5.8 0.122810 0.122810 0.122810 305 405 6.1
8 0.122880 0.122670 340 430 5.1
9 0.122940 0.122551 265 450 4.1

10 5.5 0.120900 0.121166 0.120371 220 540 4.0

Table 7.1: Details of the lattice simulation parameters. Simulations 1–6 constitute

data set I, with β = 5.5 corresponding to a = 0.074(2) fm and L3 × T = 323 × 64.

Simulations 7–9 constitute set II, with L3 × T = 483 × 96 and β = 5.8 corresponding

to a = 0.062(2) fm. Simulation 10 stands alone and has the same lattice scale as set I

(corresponding to β = 5.5), but a larger lattice volume: L3×T = 483×96. The parameter

κ0 denotes the value of κl = κs at the SU(3)-symmetric point.

7.2.1 Simulation Parameters

We use gauge field configurations with 2 + 1 flavours of nonperturbatively O(a)-

improved Wilson fermions. The clover action consists of the tree-level Symanzik im-

proved gluon action (described in Section 2.2.1) together with a mild ‘stout’ smeared

fermion action [253]. We generate two sets of simulations, on ensembles with lattice

volumes L3 × T = 323 × 64 and 483 × 96, with lattice scales a = 0.074(2) fm and

0.062(2) fm (set using various singlet quantities [24, 253, 254]), respectively. Details

are given in Table 7.1.

The data set generated on each ensemble consists of the individual (quark-line–

connected) quark contributions to the electric and magnetic form factors of the

outer-ring octet baryons: Gp,u
E/M , Gp,d

E/M , GΣ,u
E/M , GΣ,s

E/M , GΞ,s
E/M , and GΞ,u

E/M , at six

(simulation set I) or seven (set II) discrete values of the momentum transfer. These

are the lowest six or seven momentum-transfers accessible on our particular lattices,

where the simulations are performed with zero sink momentum. The three-momenta

~q 2 are given by

~q 2 =
(
n2
x + n2

y + n2
z

)
×
(

2π

La

)2

, (7.5)

where nx,y,z are integers, L is the (dimensionless) spatial extent of the lattice (so

−L/2 < nx,y,z ≤ L/2), and a is the lattice spacing. The values of the four-
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momentum transfer q2 vary with baryon mass MB by the dispersion relation

q2 =

(√
M2

B + ~q 2 −MB

)2

− ~q 2, (7.6)

since the sink momentum is held fixed at 0. The values of q2 for our simulations are

shown graphically in Fig. 7.1.

A particular feature of the gauge configurations used here is that the primary

simulation trajectory in quark-mass space, illustrated in Fig. 7.2, follows a line of

constant singlet mass: mq = (mu + md + ms)/3 = (2ml + ms)/3. This is achieved

by first finding the SU(3)-flavour–symmetric point where flavour-singlet quantities

take their physical values, then varying the individual quark masses about that

point [24,253]. It is clear from Fig. 7.2 that this primary trajectory at κ0 = 0.120900

(where the parameter κ0 denotes the value of κl = κs at the SU(3)-symmetric

point) does not quite match the physical singlet-mass line [24]. Extrapolation to

the physical point thus requires a shift not only along the simulation trajectory, but

in a direction perpendicular to it. To constrain the quark-mass dependence in this

perpendicular direction we include additional lattice simulations at several singlet

masses (i.e., values of κ0). These are listed as simulations 4–6 in Table 7.1 and are

shown in Fig. 7.2.

In addition to our two primary simulation sets, we have a single ensemble at the

same lattice scale as simulation set I (β = 5.5 corresponding to a = 0.072(2) fm) but

on a larger lattice volume, L3×T = 483×96, and at a pion mass of 220MeV, about

100 MeV lighter than the lightest ensemble of data set I. Comparison of chirally-

extrapolated set I (smaller volume) results with this additional point provides a test

that both finite-volume effects and the extrapolation are under control. Raw lattice

results for all simulations are tabulated in Appendix I.

7.2.2 Lattice Method

On the lattice, the Dirac and Pauli form factors F1(Q2) and F2(Q2) are obtained from

the standard decomposition of the matrix element of the electromagnetic current jµ
between baryon states (see Eq. (7.1)). This quantity, 〈B(p′, s′)|jµ(q)|B(p, s)〉, is

calculated in the usual way from the ratio of three-point and two-point correlation

functions:

R(t, τ ; ~p ′, ~p ) =
C3pt(t, τ ; ~p ′, ~p )

C2pt(t, ~p ′)

[
C2pt(τ, ~p

′)C2pt(τ, ~p
′)C2pt(t− τ, ~p )

C2pt(τ, ~p )C2pt(t, ~p )C2pt(t− τ, ~p ′)

] 1
2

,

where t denotes the Euclidean-time position of the sink and τ the operator insertion

time. In order to ensure that excited-state contributions to the correlation functions

are suppressed, we employ quark smearing at the source and sink and use a generous

source-sink separation of 1–1.15fm [237].
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Figure 7.1: Distribution of four-momenta Q2 = −q2 for lattice simulation sets I (blue),

II (green), and simulation 10 (purple) (see Table 7.1). The values of Q2 corresponding to

each fixed three-momentum vary slightly because of the different baryon masses feeding

into the dispersion relation (Eq. (7.6)).
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Figure 7.2: Locations of the lattice ensembles in the ml–ms plane. Blue circles and green

crosses correspond to simulation sets I and II, respectively, while the purple square shows

the location of simulation 10 (see Table 7.1). The red star denotes the physical point and

the dashes indicate the flavour-symmetric line where ml = ms. Our primary simulation

trajectory, illustrated by the dotted line, corresponds to the line of constant singlet quark

mass, (2m2
K + m2

π), at κ0 = 0.120900 (simulations 1–3 in Table 7.1). The solid red line

indicates the physical value of the singlet mass.
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The two-point and three-point functions are given, as in Ref. [237], by

C2pt(τ, ~p ) = Tr

[
1

2
(1 + γ4)〈B(τ, ~p )B(0, ~p )〉

]
, (7.7a)

C3pt(t, τ, ~p
′, ~p,O) = Tr

[
Γ〈B(t, ~p ′)O(~q, τ)B(0, ~p )〉

]
, (7.7b)

where ‘Tr’ denotes a trace in spinor space and the local vector current O is

Oµ(~q, τ) =
∑
~x

ei~q·~x q(~x, τ) γµ q(~x, τ). (7.8)

Here q(~x, τ) is a quark field and ~q is the three-momentum transfer. The Dirac

operator Γ represents a polarisation projection. For example, we use

Γunpol. =
1

2
(1 + γ4), (7.9a)

Γ3 =
1

2
(1 + γ4)iγ5γ3, (7.9b)

for an unpolarised baryon or one polarised in the z-direction, respectively. As the

current O is not strictly conserved at finite lattice spacings, we enforce charge con-

servation by using 2/F p,u
1 (0) as a multiplicative renormalisation on each ensemble (as

explained later, the quark-level form factors are defined for quarks of unit charge).

The values of these constants are approximately 0.86 and 0.88 for simulation ensem-

bles with β = 5.5 and β = 5.8, respectively. Disconnected quark-line contributions

to the three-point function of Eq. (7.7b) are neglected in these simulations. The

effect of this omission will be discussed further in the following sections. As detailed

in the previous section, simulations are performed with zero sink momentum and

six or seven different values of the momentum transfer ~q = ~p ′− ~p for each ensemble,

corresponding to Q2 values up to approximately 1.3GeV2.

7.2.3 Lattice Results for F1 and F2

Although the primary goal of this work is to determine the values of the electric and

magnetic Sachs form factors at the physical quark masses, with details of the chiral

and infinite-volume extrapolation presented in the following sections, we display

here a sample typical of the raw lattice simulation results for F1 and F2. Numerical

results are tabulated in their entirety in Appendix I. We also give the results of

a naive extraction of the Dirac and Pauli mean-squared radii and the anomalous

magnetic moment, based on dipole-like fit forms.

The raw lattice simulation results for the Dirac and Pauli form factors at the

lightest simulation pion mass from data set I, (mπ,mK) = (310, 520) MeV, are

shown in Figs. 7.3 and 7.4. The figures have been organised as doubly and singly-

represented quark contributions. This grouping shows most clearly the environ-

mental sensitivity of the quark contributions to the form factors; for example, any

difference between the u-quark contributions to the proton and sigma baryon factors
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must arise from the different masses of the spectator (d and s) quarks. For F1 this

sensitivity increases with Q2. The apparent sensitivity of F2 is largely the result

of the baryon-dependence of the natural magneton units. The fits shown use the

2-parameter ansätze:

F1(Q2) =
F1(0)

1 + c12Q2 + c14Q4
, (7.10a)

F2(Q2) =
F2(0)

(1 + c22Q2)2
, (7.10b)

where the cij and the anomalous magnetic moment FB,q
2 (0) = κB,q are fit parameters,

while F1(0) is fixed by charge conservation. As we consider quarks of unit charge,

F1(0) = 2, 1 for the doubly and singly-represented quarks, respectively. Clearly, the

functional forms chosen provide excellent fits to the lattice simulation results; the

particular pion-kaon mass point selected for display is typical of the entire data set.

Mean-squared radii are extracted from the Q2-derivatives of the fit ansätze by

〈r2〉i = − 6

Fi(0)

d

dQ2
Fi(Q

2)

∣∣∣∣
Q2=0

. (7.11)

The isovector radii for the nucleon are shown in Fig. 7.5. These results are in

line with those based on other recent 2 + 1 and 2 + 1 + 1–flavour lattice simula-

tions [236, 255–258]. We note that the results displayed from other collaborations

were determined from simulations performed at a range of values of mK . More-

over, although most were extracted using dipole or dipole-like forms to parameterise

the Q2-dependence, some include a systematic uncertainty arising from that choice

while others do not. This partially accounts for the large variation in the quoted

errors. Tables of results for all 〈r2〉B,q1,2 and κB,q extracted from our fits are given in

Appendix I.

7.3 Connected Chiral Perturbation Theory

The lattice simulations considered here, although fully dynamical, include only con-

tributions from ‘connected’ insertions of the current operator. For this reason we ex-

trapolate the simulation results from unphysically large pseudoscalar meson masses

to the physical point using a formalism based on ‘connected chiral perturbation

theory’ [250–252]. This is a special case of partially-quenched chiral perturbation

theory [252,259–265].

Partially-quenched lattice simulations traditionally employ different values for

the sea and valence quark masses. As a result the distinguishing feature of the

partially-quenched perturbation theory formalism, developed to extrapolate such

simulations, is that it allows one to treat the sea and valence quarks separately.

This is precisely what is needed to extrapolate connected lattice results; the ‘quench-

ing’ effect is that the charges of the sea quarks are set to zero, removing the dis-
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(a) Doubly-represented quark contributions.
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(b) Singly-represented quark contributions.

Figure 7.3: Quark contributions to the Dirac form factor F1 of the octet baryons at the

lightest pion mass from simulation set I, (mπ,mK) = (310, 520)MeV. The charges of the

relevant quarks have been set to one. The lines show dipole-like fits using Eq. (7.10a).
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(b) Singly-represented quark contributions.

Figure 7.4: Quark contributions to the Pauli form factor F2 of the octet baryons at the

lightest pion mass from simulation set I, (mπ,mK) = (310, 520)MeV. The charges of the

relevant quarks have been set to one. The lines show dipole fits using Eq. (7.10b).
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(b) Isovector Pauli radius of the nucleon.

Figure 7.5: Dirac and Pauli radii for the nucleon from recent 2 + 1 and 2 + 1 + 1–flavour

lattice simulations [236, 255–258], compared with the results of this work. Empty circles,

diamonds and squares denote our simulation sets I, II, and the stand-alone ensemble 10 (see

Table 7.1), respectively. Note that the results displayed were generated from simulations

performed using a range of values of mK .
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connected diagrams which are omitted from the lattice simulations. Here we use

the heavy-baryon chiral perturbation theory expansion pioneered by Jenkins and

Manohar [56, 266–269] which has been applied throughout this body of work. This

section summarises our adaptation of this formalism and presents the resulting chiral

extrapolation expressions for the Sachs form factors of the octet baryons.

7.3.1 Partially-Quenched Chiral Perturbation Theory

Details of partially-quenched chiral perturbation theory may be found in Refs. [252,

259–265]. Here we outline the special case of this formalism termed connected chiral

perturbation theory [250].

Partially-quenched QCD includes nine quarks, which appear in the fundamental

representation of the graded symmetry group SU(6|3):

ψT =
(
u, d, s, j, l, r, ũ, d̃, s̃

)
. (7.12)

In addition to the three usual light quarks (u, d, s), there are three light fermionic

sea quarks (j, l, r) and three spin-1
2

bosonic ghost quarks
(
ũ, d̃, s̃

)
. When the ghost

quarks are made pairwise mass and charge-degenerate with (u, d, s), their bosonic

statistics ensure that closed q and q̃ quark-loop contributions cancel and hence such

loops do not contribute to observables. Thus, if only (u, d, s) are used in hadronic

interpolating fields, these quarks truly represent valence quarks, while (j, l, r) appear

only in disconnected loops and are therefore interpreted as sea quarks.

For our application, the sea and ghost quarks are mass-degenerate with their

corresponding valence partners. The quark-mass matrix is thus

Mψ = diag(mu,md,ms,mu,md,ms,mu,md,ms). (7.13)

As we wish to exclude all diagrams with closed quark-loops from contributing to

hadronic observables, we set the sea quark charges to zero. As the ghost quarks(
ũ, d̃, s̃

)
must have the same charges, pairwise, as (u, d, s), the general form of the

quark-charge matrix is

Q = diag(qu, qd, qs, 0, 0, 0, qu, qd, qs). (7.14)

Individual quark contributions may be extracted by setting all but one charge to

zero, for example by taking qu → 1, qd → 0, qs → 0 to isolate the u-quark con-

tribution. Of course, reinstating the sea quark charges1 yields a formalism which

reproduces full chiral perturbation theory exactly [262].

The dynamics of the 80 pseudo-Goldstone mesons (both bosonic and fermionic)

which emerge from the spontaneous breaking of the symmetry group:

SU(6|3)L ⊗ SU(6|3)R ⊗ U(1)V → SU(6|3)V ⊗ U(1)V (7.15)

1This can be achieved by setting Q→ diag(qu, qd, qs, qu, qd, qs, qu, qd, qs).
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are described at lowest order by the Lagrangian

L =
f 2
π

4
Str
(
DµΣ†DµΣ

)
+ λ StrMψ

(
Σ + Σ†

)
, (7.16)

where

Φ =

(
φ χ†

χ φ̃

)
, Σ = ξ2 = exp

(
2iΦ

fπ

)
. (7.17)

This is entirely analogous to the standard leading-order Lagrangian which is given in

Eq. (3.14). Here φ and φ̃ are matrices of pseudo-Goldstone bosons with the quantum

numbers of qq and q̃q̃ pairs respectively, and χ contains pseudo-Goldstone fermions

with the quantum numbers of q̃ q pairs. With our conventions, Φ is normalised such

that Φ12 = π+/
√

2. In this way, the upper 3× 3 block of the matrix φ matches pre-

cisely the usual octet of pseudoscalar mesons. The standard naming of the mesons

formed with sea and ghost quarks is made explicit in Ref. [263] (where the conven-

tions for fπ and Φ differ from ours by a factor of
√

2). The symbol Str denotes the

supertrace, and the gauge-covariant derivative is given by DµΣ = ∂µΣ + ieAµ[Q,Σ].

While the complete partially-quenched theory includes baryons composed of all

types (and all mixtures of types) of quarks, for our application we need only predom-

inantly valence states with at most one ghost or sea quark. These are constructed

explicitly in Ref. [263]. In general terms, the baryon field Bijk is constructed using

an interpolating field

Bγ
ijk ∼

(
ψα,ai ψβ,bj ψγ,ck − ψ

α,a
i ψγ,cj ψβ,bk

)
εabc(Cγ5)αβ. (7.18)

The usual spin-1
2

baryon octet is embedded in Bijk, for i, j, k restricted to 1–3, as

Bijk =
1√
6

(εijlBlk + εiklBlj), (7.19)

where B is the standard matrix of baryon fields introduced in Section 3.3.2 (see

Eq. (3.25)). Similarly, the spin-3
2

decuplet baryons may be constructed as

Tα,µijk ∼
(
ψα,ai ψβ,bj ψγ,ck + ψβ,bi ψγ,cj ψα,ak + ψγ,ci ψα,aj ψβ,bk

)
εabc(Cγ

µ)β,γ,

where, for i, j, k =1–3, Tijk is simply the usual totally-symmetric tensor containing

the decuplet of valence baryon resonances (see Eq. (3.32)).

The covariant derivative takes the same form for both the octet and decuplet

baryons:

(DµB)ijk =∂µBijk + (V µ)liBljk

+ (−1)ηi(ηj+ηm)(V µ)jmBimk

+ (−1)(ηi+ηj)(ηk+ηn)(V µ)knBijn. (7.20)
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Here the grading factor ηk tracks the statistics of the bosonic ghost quark sector:

ηk =

{
1 for k = 1–6

0 for k = 7–9,
(7.21)

and the vector field V µ is defined in analogy with that in QCD:

V µ =
1

2

(
ξ∂µξ† + ξ†∂µξ

)
. (7.22)

The coupling of the 80 pseudo-Goldstone mesons to the baryons is described by

L =2α
(
BSµBAµ

)
+ 2β

(
BSµAµB

)
+ 2γ

(
BSµB

)
Str(Aµ) + 2H

(
T
ν
SµAµTν

)
+

√
3

2
C
[(
T
ν
AνB

)
+
(
BAνT

ν
)]

+ 2γ
′(
T
ν
SµTν

)
Str(Aµ), (7.23)

where, again in analogy with QCD,

Aµ =
i

2

(
ξ∂µξ† − ξ†∂µξ

)
. (7.24)

The brackets in Eq. (7.23) are a shorthand for field bilinear invariants, originally

employed in Ref. [270], which are summarised in Appendix B, and Sµ is the covari-

ant spin-vector. By matching to the usual QCD Lagrangian (Eq. (3.29)) for i, j, k

restricted to 1–3, we make the identifications

α =
2

3
D + 2F, β = −5

3
D + F, (7.25)

while C and H map directly to their QCD values.

The heavy-baryon and off-diagonal meson propagators are the same as those

which arise in the standard formalism; these are given in Eq. (3.40). For the mesons

occupying the diagonal of Φ, however, the two-point functions deviate from the usual

simple, single-pole form. As these mesons are by definition both flavour and charge-

neutral, this subtlety can be avoided in the current context of the electromagnetic

form factors; we leave the details to Ref. [263].

7.3.2 Electromagnetic Form Factors of the Octet Baryons

In the heavy-baryon formalism, the electromagnetic Sachs form factors GE and GM

are defined by

〈B(p′)|jµ|B(p)〉 = u(p′)

[
vµG

B
E

(
Q2
)

+
iεµναβv

αSβqν

MN

GB
M

(
Q2
)]
u(p), (7.26)

where, as before, q = p′−p and Q2 = −q2. Here we take the magnetic form factor to

be expressed in units of physical nuclear magnetons rather than the natural (baryon-
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dependent) magnetons used in Eq. (7.1); this explains the presence of the nucleon

mass MN , rather than MB, in this expression.

We focus in particular on developing chiral extrapolation formulae for the Sachs

form factors at fixed, finite, values of Q2. As our lattice simulations include results at

values of Q2 up to approximately 1.3GeV2, it is not appropriate to our purposes to

expand perturbatively in this momentum scale2. The following sections summarise

our approach.

Magnetic Sachs Form Factor

In the familiar formulation of chiral perturbation theory, the magnetic moments of

the octet baryons in the chiral limit are encoded in the coefficients of the ‘magnetic

Lagrangian density’ [269]:

LM =
e

4MN

Fµνσ
µν
[
µα
(
BBQ

)
+ µβ

(
BQB

)
+µγ

(
BB

)
Str(Q)

]
. (7.27)

By comparison with the standard QCD Lagrangian (Eq. (3.29)), we make the iden-

tifications

µα =
2

3
µD + 2µF , µβ = −5

3
µD + µF . (7.28)

The µγ term in Eq. (7.27) vanishes unless the quark charge matrix Q (Eq. (7.14))

is defined such that Str(Q) 6= 0, for example when considering individual quark

contributions to the form factors (e.g., setting qu → 1, qd → 0, qs → 0 to obtain the

u-quark contribution). Terms describing the explicit symmetry-breaking at leading

order in the quark masses are generated by

LMlin. = B e

2MN

[
cM1
(
BMψB

)
Str(Q) + cM2

(
BBMψ

)
Str(Q) + cM3

(
BQB

)
Str(Mψ)

+ cM4
(
BBQ

)
Str(Mψ) + cM5

(
BQMψB

)
+ cM6

(
BBQMψ

)
+ cM7

(
BB

)
Str(QMψ) + cM8

(
BB

)
Str(Q) Str(Mψ)

+ cM9 (−1)ηl(ηj+ηm)
(
B
kji

(Mψ)liQ
m
j Blmk

)
+ cM10(−1)ηjηm+1

(
B
kji

(Mψ)mi Q
l
jBlmk

)
+ cM11(−1)ηl(ηj+ηm)

(
B
kji
Ql
i(Mψ)mj Blmk

)
+ cM12(−1)ηjηm+1

(
B
kji
Qm
i (Mψ)ljBlmk

)]
Fµνσ

µν , (7.29)

where B = 4λ/f 2
π (see Eq. (7.16)). The one-loop diagrams displayed in Fig. 7.6 give

rise to the leading chiral non-analyticities of the quark-mass expansion.

2For example, the proton electric form factor can be approximated by a dipole: GpE
(
Q2
)
≈

1/
(

1 + Q2

0.71

)2
. This form has a pole at Q2 = −0.71 GeV2, which limits the radius of conver-

gence of any expansion to Q2 = 0.71GeV2.
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Figure 7.6: Loop diagrams which contribute to GM at leading non-analytic order. Single,

double, dashed, and wavy lines represent octet baryons, decuplet baryons, mesons, and

photons, respectively.

For small values of the momentum transfer, the standard perturbative approach

would be to generate extensions of Eqs. (7.27) and (7.29), with additional derivatives,

to form a series expansion in Q2. In the present work we are interested in the form

factors over a much larger range of Q2 than can be explored perturbatively. For

this reason we consider independent chiral extrapolations at fixed values of Q2. To

do this, we take a model that maintains the SU(3) flavour structure of Eqs. (7.27)

and (7.29). The parameters µα,β,γ appearing in Eq. (7.27) are now interpreted as

chiral-limit form factors at fixed Q2; their numerical values may be different at each

value of Q2 considered [239, 271]. Similarly, the terms of Eq. (7.29) are associated

with the symmetry-breaking at fixed Q2. Given this interpretation, we can write

down chiral extrapolation formulae which have independent sets of free coefficients

at each value of Q2. A particular advantage of this approach is that there is no

need to impose a phenomenological constraint on the shape of the variation of the

form factors with Q2. Of course, a disadvantage is that the chiral extrapolation

expressions which we generate must be fit to the lattice simulation results at each

value of the momentum transfer independently.

The resulting expressions for the magnetic form factors as a function of quark

mass—at some fixed finite value of Q2—may be summarised as

GB,q
M (Q2) =αBq +

∑
q′

αBq(q
′)Bmq′ (7.30)

+
MN

16π3f 2
π

∑
φ

(
β
Bq(φ)
O IMO (mφ, Q

2) + β
Bq(φ)
D IMD (mφ, Q

2)
)
, (7.31)

defined in units of physical nuclear magnetons µN . Here Bmq denotes the mass

of the quark q, identified with the meson masses via the appropriate Gell-Mann–

Oakes–Renner relation, e.g., Bml = m2
π/2. The physical mass of the nucleon is given

by MN and φ stands for any of the 80 pseudo-Goldstone mesons of our theory. The

contributions from Figs. 7.6(a) and 7.6(b) may be expressed in terms of the integrals
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IMO =

∫
d~k

k2
y u(~k + ~q/2)u(~k − ~q/2)

2ω2
+ω

2
−

, (7.32a)

IMD =

∫
d~k

k2
y (ω− + ω+ + δ)u(~k + ~q/2)u(~k − ~q/2)

2(ω+ + δ)(ω− + δ)ω+ω−(ω+ + ω−)
, (7.32b)

where

ω± =

√
(~k ± ~q/2)2 +m2, (7.33)

δ denotes the average octet-baryon–decuplet-baryon mass splitting, and u(~k) is the

ultraviolet regulator used in the finite-range regularisation scheme (which is dis-

cussed in detail in Section 3.5). Just as was done in Chapter 6, we choose a dipole

regulator, u(k) =
(

Λ2

Λ2+k2

)2

, with a regulator mass Λ = 0.8 ± 0.1 GeV. The dipole

form is suggested by a comparison of the nucleon’s axial and induced pseudoscalar

form factors [78] and the choice of Λ is informed by a lattice analysis of nucleon

magnetic moments [99]. Different regulator forms, for example monopole, Gaussian

or sharp cutoff, yield fit parameters (and extrapolated results) which are consistent

within the quoted uncertainties. The coefficients αBq, αBq(q
′), β

Bq(φ)
O , and β

Bq(φ)
D are

given explicitly in terms of the chiral-limit form factors cMi and µα/β/γ in Appendix F.

Electric Sachs Form Factor

The leading-order contribution to the electric form factor is generated by the fol-

lowing term in the Lagrangian:

LE = −evµ(DνFµν)
[
bα
(
BBQ

)
+ bβ

(
BQB

)
+bγ

(
BB

)
Str(Q)

]
. (7.34)

In analogy with the µγ term in Eq. (7.27) for the magnetic form factor, the bγ term

is relevant only when considering individual quark contributions to the electric form

factor. In line with the notation used for the magnetic form factor (Eq. (7.28)), we

define

bα =
2

3
bD + 2bF , bβ = −5

3
bD + bF . (7.35)

Terms linear in the quark masses are generated by a Lagrangian piece, LElin., which

is identical to LMlin. (Eq. (7.29)) under the replacements

e

4MN

Fµνσ
µν → vµ(DνFµν), cMi → cEi . (7.36)

The loop diagrams which contribute to GE at leading order are those depicted in

Fig. 7.6, as well as the tadpole diagram shown in Fig. 7.7 (which does not contribute

to the magnetic form factors). Just as was done in the magnetic case, the coefficients
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Figure 7.7: Tadpole loop diagram which contributes to GE at leading order. Single,

dashed, and wavy lines represent octet baryons, mesons, and photons, respectively.

in Eq. (7.34) are taken to be chiral-limit form factors at some fixed value of Q2, with

a similar interpretation for the cEi in LElin. (see Eqs. (7.29) and (7.36)).

The leading-order loop contributions to GE (Figs. 7.6 and 7.7) may be written

in terms of the integrals

IEO =

∫
d~k

(~k2 − ~q 2/4)u(~k + ~q/2)u(~k − ~q/2)

ω+ω−(ω+ + ω−)
, (7.37a)

IED =

∫
d~k

(~k2 − ~q 2/4)u(~k + ~q/2)u(~k − ~q/2)

(ω+ + δ)(ω− + δ)(ω+ + ω−)
, (7.37b)

IET =

∫
d~k

u(~k + ~q/2)u(~k − ~q/2)

ω+ + ω−
, (7.37c)

where ω± is defined in Eq. (7.33). To prevent the baryon electric charges from being

renormalised by contributions from the loop integrals we make the replacement

I(m, ~q)→ Ĩ(m, ~q) = I(m, ~q)− I(m, 0) (7.38)

for each of the integrals above.

Finally, the formulae for the chiral extrapolation of the electric form factors at

some fixed, finite, value of Q2 may be summarised as

GB,q
E (Q2) =GB,q

E (Q2 = 0) +Q2αBq +Q2
∑
q′

αBq(q
′)Bmq′

+
1

16π3f 2
π

∑
φ

(
1

2
β
Bq(φ)
O ĨEO (mφ, Q

2)− βBq(φ)
D ĨED(mφ, Q

2)

+β
Bq(φ)
T ĨET (mφ, Q

2)
)
, (7.39)

where, again, Bmq is the mass of the quark q, identified with the meson masses

through the appropriate Gell-Mann–Oakes–Renner relation. The term GB,q
E (Q2 = 0)
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corresponds to the total charge of the quarks of flavour q in the baryon B. As these

expressions apply to quarks of unit charge, GB,q
E (Q2 = 0) = 2, 1 for the doubly and

singly-represented quarks, respectively.

The coefficients αBq, αBq(q
′), β

Bq(φ)
O , and β

Bq(φ)
D in Eq. (7.39) take the same form in

terms of the undetermined chiral coefficients (e.g., c
E/M
i ) as those named identically

in the case of the magnetic form factor (under the replacements µF → bF and

µD → bD). These, as well as β
Bq(φ)
T , are given explicitly in Appendix F. We point

out that, while these parameters may have the same structure for the electric and

magnetic form factors, the values of the undetermined chiral coefficients are different

in each case.

7.4 Fits to Lattice Simulation Results

Here we describe the application of the chiral extrapolation formalism developed

in the previous section to the lattice simulation results presented in Section 7.2.

Before fitting the chiral expressions (Eqs. (7.30) and (7.39)) to the lattice results, we

perform several corrections to the raw lattice data. First, we shift the raw numbers to

correct for small finite-volume effects, estimated using the leading one-loop results of

the chiral EFT (see Section 7.4.1). As the chiral extrapolation functions summarised

in Section 7.3.2 are defined for fixed finite values of Q2, we also analyse the lattice

results in fixed-Q2 bins; to facilitate this we interpolate the form factors to common

points in Q2.

For the magnetic form factors the entire analysis is performed in units of physical

nuclear magnetons. This choice simplifies the extrapolation procedure as there is

no need to consider a quark-mass dependent magneton, although an extrapolation

using such units is possible and equivalent. The conversion from lattice natural

magnetons to physical nuclear magnetons is performed on the simulation results at

the bootstrap level.

7.4.1 Finite-Volume Corrections

As described in detail in Section 3.7, finite-volume corrections are performed using

the difference between the infinite-volume integrals and corresponding finite-volume

sums for the loop integrals which appear in the chiral expressions (Eqs. (7.30) and

(7.39)). Because momentum is quantised on the lattice, the finite-volume sums

must be calculated with the integrands in Eqs. (7.37) and (7.32) shifted from being

symmetric (meson lines with momenta k−q/2 and k+q/2, as illustrated in Fig. 7.6)

to what is more natural for the lattice, namely meson lines with momenta k and

k + q.

The finite-volume corrections are small: for our smallest volume (data set I)

they contribute approximately 2–4% of the nucleon magnetic form factor at the

lowest value of Q2 (0.26 GeV2) and 0.03–0.06% at the largest (1.35 GeV2), where

the variation in each range is a result of the different pion and kaon mass points
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Figure 7.8: Four-momenta, Q2, corresponding to the lattice simulation results in data

set I. Colours indicate the Q2-bin groupings; each bin corresponds to a single value of the

three-momentum transfer in lattice units.

considered. For the electric form factor the corrections are in the range 1–2% at all

values of Q2. An artefact in this estimate is that the naive enforcement of charge-

nonrenormalisation by Eq. (7.38) may lead to an overestimate of the corrections

to the electric form factor at large values of the momentum transfer Q2. While

the higher-order diagrams (not included here) which would naturally prevent the

renormalisation of charge would contribute progressively less at larger values of Q2,

the constant subtraction used here does not have that feature. As the finite-volume

corrections are nevertheless small—neglecting them yields results for all relevant

observables which are consistent within uncertainties with those presented here—

this is not a significant effect.

7.4.2 Binning in Q2

As the chiral extrapolation expressions used here (Eqs. (7.30) and (7.39)) are ap-

plicable for fixed finite values of the four-momentum transfer, we bin the lattice

simulation results in Q2 before performing independent fits to the data in each bin.

The bin groupings are illustrated for data set I in Fig. 7.8; the binning (and fitting)

procedure is performed separately for each data set. Each bin corresponds to a single

value of the three-momentum transfer in lattice units. The corresponding physical

values of Q2 vary slightly because of the different baryon masses feeding into the

dispersion relation (Eq. (7.6)). The largest variation is 1.29–1.37 GeV2 for the bin

with the highest value of Q2.

To account for the small variation in Q2 within each bin, all simulation results are

shifted to the average Q2-value of their respective bin. This shift is performed using

a dipole-like fit to the (finite-volume–corrected) simulation results. The functional

forms used for the magnetic and electric form factors are

Gfit
M(Q2) =

µ

1 + dM1Q2 + dM2Q4
, (7.40a)

Gfit
E (Q2) =

GE(Q2 = 0)

1 + dE1Q2 + dE2Q4
, (7.40b)
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where µ and dE/M,i are free parameters, and GE(Q2 = 0) = 1, 2 for the singly and

doubly-represented quarks (of unit charge) respectively. These particular functional

forms are chosen as they provide good fits to the lattice simulation results; as illus-

trated later, standard dipole forms perform poorly. Several examples of the fits are

shown in Fig. 7.9.

After the fits have been performed, the raw lattice simulation results are shifted

by Gfit(Q2
average) − Gfit(Q2

simulation). As these shifts are small, particularly at low

values of Q2 where the fit functions have larger slopes, there is no dependence,

within uncertainties, on the functional form chosen for Gfit.

7.4.3 Fits

After the lattice simulation results have been finite-volume corrected and binned in

Q2 we perform an independent bootstrap-level fit, using Eqs. (7.30) and (7.39) for

GM and GE, respectively, to the variation with mπ for the results in each Q2-bin.

An advantage of this approach [239, 271] is that it allows the fit parameters, which

are the undetermined chiral coefficients, to vary with Q2 without the need to impose

some phenomenological expectation on the shape of their variation. The best values

of the fit parameters are tabulated in Appendix J.1. The quality of fit is good, with

the χ2/d.o.f. in the range 0.5–1.4 for each bin. An illustration of the fit quality

for data set I in representative bins, for both GM and GE, is given in Fig. 7.10.

That figure shows the ratio of the fit function to the lattice simulation result for

each data point; the 24 data points include 6 at each set of pseudoscalar masses

where mπ 6= mK (i.e., Gp,u
M , Gp,d

M , GΣ,u
M , GΣ,s

M , GΞ,s
M , and GΞ,u

M ) and 2 at each SU(3)-

symmetric point. We recall that while each Q2-set is treated as independent (as are

GE and GM), the form factors for the different octet baryons are fit simultaneously.

Using these fits, the baryon Sachs form factors may be extrapolated to the physi-

cal pseudoscalar masses at each bin value of Q2. For example, Fig. 7.11 shows results

for the u-quark contribution to the proton form factors, plotted along a trajectory

which holds the singlet pseudoscalar mass (m2
K +m2

π/2) fixed to its physical value.

The results display the expected qualitative behaviour for the magnetic form factor;

as Q2 increases (moving down the figure), the extrapolation in m2
π decreases in cur-

vature. This implies that the magnetic radius of the proton increases in magnitude

as we approach the physical pion mass from above. Magnetic radii are discussed

further in Section 7.5.3.

We note that any uncertainty in the value of the lattice scale, a, affects both the

form factors themselves and the simulation values of Q2 in physical units. At low Q2

the shift in the form factors, and at high Q2 the shift in Q2 itself, is not negligible

when varying a = 0.074(2) fm or a = 0.062(2) fm within the quoted uncertainties.

Nevertheless, repeating the analysis presented in the following sections for a values

at the extremities of the quoted ranges yields fits which are almost indistinguishable

from those presented for the central value—essentially the points are shifted a short

distance along lines interpolating the form factors in Q2—and give entirely consistent
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(a) Up-quark contribution to the proton magnetic form factor.
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(b) Up-quark contribution to the proton electric form factor.

Figure 7.9: Generalised dipole fits (Eq. (7.40)) upon which the binning corrections are

based. The three fits shown in each figure correspond to the three different pseudoscalar

mass points along the primary simulation trajectory for simulation set I (red, green and

blue points denote simulation ensembles 1, 2, and 3 in Table 7.1). Quarks have unit charge.
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(b) GE , lowest Q2-bin: Q2 ≈ 0.26GeV2.
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(c) GE , highest Q2-bin: Q2 ≈ 1.35GeV2.

Figure 7.10: Illustration of the quality of fit for data set I in representative Q2-bins.

Each point denotes one of the lattice simulation results e.g., Gp,uM , Gp,dM . . . , at one of the

sets of pseudoscalar masses. For the electric form factor the comparison of Figs. 7.10(b)

and 7.10(c) shows the expected increase in uncertainty as Q2 increases (i.e., as one moves

further from Q2 = 0 where the value of GE is fixed). Because of correlations between the

lattice data points the χ2/d.o.f. of the fit cannot be read trivially from these figures.
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(a) Up-quark contribution to the proton magnetic form factor.
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(b) Up-quark contribution to the proton electric form factor.

Figure 7.11: Up-quark (connected) contribution to the electromagnetic form factors of

the proton for quarks with unit charge. Each line (top to bottom) shows the fit to data set

I at a different (increasing) value of Q2. The fits have been evaluated along the trajectory

which holds the singlet pseudoscalar mass (m2
K +m2

π/2) fixed to its physical value.
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results for each quantity, even when extrapolated to Q2 = 0 using some functional

form.

7.4.4 Test of Finite-Volume Effects

One limitation of the analysis presented in the previous sections is that it is difficult

to quantify finite-volume effects beyond the corrections we perform based on chiral

perturbation theory; all of the lattice simulations at a given value of the lattice scale

were performed on a single volume. Simulation set I was performed at β = 5.5

corresponding to a = 0.074(2) fm, on a L3 × T = 323 × 64 volume. In physical

units, this lattice has an extent of approximately 2.4 fm in the spatial direction.

Simulation set II was performed at β = 5.8 corresponding to a = 0.062(2) fm, on

a larger 483 × 96 volume; this lattice has a spatial extent of approximately 3.0 fm

in physical units. While comparing the results of these two simulation sets is a

valuable consistency-check, any discrepancy between the two data sets cannot be

conclusively categorised as a lattice-scale or finite-volume effect.

To facilitate an explicit check of the volume-dependence of our results, we have

performed an additional simulation at the lattice scale of simulation set I, β = 5.5

corresponding to a = 0.074(2) fm, on a larger 483 × 96 (3.6 fm) volume. This

simulation is also performed at a lighter pion mass: mπ = 220MeV. Details of this

ensemble are given as simulation 10 in Table 7.1; raw lattice results for F1 and F2

are given in Appendix I.

As there is only one new simulation on the larger volume, and the discrete Q2-

values in physical units differ substantially between volumes, we do not include this

new simulation into the chiral perturbation theory fits. Instead we compare the

results of the fits to simulation set I, extrapolated to the pseudoscalar masses of the

new point (with a pion mass about 100 MeV lighter than the lightest pion mass of

set I), with the larger-volume results. We note that finite-volume corrections, as

described in Section 7.4.1, have been applied to the new results.

Figures 7.12 and 7.13 show the excellent agreement between the chirally ex-

trapolated small-volume results and the larger-volume results, in particular for the

charged baryons. For the neutral-baryon electric form factors there is a systematic

shift between the results on the two volumes, although we point out that the abso-

lute magnitude of this shift is small—of order 5% of the proton form factor. This is

comparable to the size of the discrepancies between the charged baryon form factors

on the two volumes. The shift may be evidence of excited-state contamination in

either set of results—which cannot be estimated quantitatively as only one value

of the source-sink separation is used here—or the effect of some other yet-to-be-

understood systematic. Nevertheless, the comparison is extremely encouraging and

suggests that both the systematic finite-volume effect and the extrapolation in pion

mass are well under control for the charged baryon form factors.



122 Electromagnetic Form Factors

◇

◇
◇

◇
◇

◇
◇

��� ��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

�� (����)

�
��
(μ
�
)

◇

◇
◇

◇
◇

◇
◇

��� ��� ��� ��� ��� ��� ��� ���

-���

-���

-���

-���

-���

-���

-���

���

�� (����)

�
��
(μ
�
)

◇

◇

◇
◇

◇
◇

◇

��� ��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

�� (����)

�
�Σ
+

(μ
�
)

◇

◇
◇

◇
◇

◇
◇

��� ��� ��� ��� ��� ��� ��� ���
-���

-���

-���

-���

-���

���

�� (����)

�
�Σ
-

(μ
�
)

◇
◇

◇
◇

◇ ◇
◇

��� ��� ��� ��� ��� ��� ��� ���
-���

-���

-���

-���

-���

-���

-���

���

�� (����)

�
�Ξ
�
(μ
�
)

◇

◇
◇

◇
◇

◇

◇

��� ��� ��� ��� ��� ��� ��� ���
-���

-���

-���

-���

-���

-���

�� (����)

�
�Ξ

-

(μ
�
)

Figure 7.12: Connected part of the octet baryon magnetic form factors at the pseu-

doscalar masses of simulation 10 in Table 7.1, (mπ,mK) = (220, 540) MeV. Results

calculated on ensemble 10 are represented by the empty red diamonds, while the solid

blue circles denote the results of the chiral extrapolation of the set I (323×64 volume) lat-

tice simulation results to the same pseudoscalar meson masses. Finite-volume corrections,

based on leading-order perturbation theory, have been applied to all results.
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Figure 7.13: As in Fig. 7.12, for the electric Sachs form factors.
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7.5 Electromagnetic Form Factors at the Physical

Point

The following subsections present infinite-volume, chirally-extrapolated, results at

the physical pseudoscalar masses for some electromagnetic form factor observables of

interest. In particular, we focus on the isovector form factors which do not suffer from

corrections associated with the omitted disconnected quark-loops (Section 7.5.1),

as well as connected quantities such as the octet baryon magnetic moments (Sec-

tion 7.5.2) and magnetic and electric radii (Section 7.5.3). An investigation of the

individual quark contributions to the form factors gives insight into the environ-

mental sensitivity of the distribution of quarks inside a baryon (Section 7.5.4). We

also apply the methods developed in previous chapters to isolate the charge symme-

try violating form factors (Section 7.6), which are essential inputs to experimental

measurements of the strange form factors of the nucleon (Section 7.7).

7.5.1 Isovector Quantities

Isovector combinations of observables are of particular interest in this study as

they can be determined from the connected-only lattice results with the smallest

systematic uncertainty. Because disconnected quark-loop terms cancel in isovector

combinations, the extrapolated results may be directly compared with experimental

numbers.

The agreement between the extrapolated isovector nucleon form factors and ex-

perimental determinations of these quantities is impressive. Figure 7.14 displays our

numbers, for both data sets I and II, compared against the Kelly [272] parameteri-

sation of experimental results. The consistency between the two determinations, for

both GE and GM , is remarkable across the entire range of Q2-values considered. We

do note, however, that the uncertainties shown for the Kelly parameterisation may

be overestimated as we were unable to take into account the effect of correlations

between the fit parameters. It is notable that a dipole form does not provide a good

description of the extrapolated results for the isovector electric form factor over the

full range of simulation Q2-values: the χ2/d.o.f. > 3 for each dipole fit (to data

sets I or II). As GM is described acceptably by a dipole form in Q2, this suggests

qualitatively that GE/GM 6= constant. This is discussed further in Section 7.5.5.

The isovector combinations of sigma and cascade baryon form factors are shown

in Figs. 7.15 and 7.16. There is complete consistency, within uncertainties, between

the extrapolated results based on data sets I and II. As no experimental numbers are

available for the hyperon form factors away from Q2 = 0, dipole-like fits (Eq. (7.40))

to the extrapolated simulation results, as well as the experimental isovector baryon

magnetic moments, are shown. We find fair agreement with the experimentally-

measured baryon magnetic moments, even with simple phenomenological fits pa-

rameterising the Q2-dependence of the form factors. It is clear, however, that the

point at a lower value of Q2 which is included in data set II acts to increase the
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(a) Isovector nucleon magnetic form factor.
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(b) Isovector nucleon electric form factor.

Figure 7.14: Isovector nucleon form factors extrapolated (at fixed Q2-values) to infi-

nite volume and the physical pseudoscalar masses. The dashed red band shows the Kelly

parameterisation [272] of experimental results. The blue circles and green crosses de-

note results derived from simulation sets I (a = 0.074(2) fm) and II (a = 0.062(2) fm),

respectively.
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(a) Isovector sigma baryon magnetic form factor.

+

+
+

+
+ +

+

**

��� ��� ��� ��� ��� ��� ��� ���
-���

-���

-���

-���

-���

-���

-���

���

�� (����)

�
�Ξ
� -
�
�Ξ

-

(μ
�
)

(b) Isovector cascade baryon magnetic form factor.

Figure 7.15: Isovector hyperon magnetic form factors extrapolated (at fixed Q2-values)

to infinite volume and the physical pseudoscalar masses. The bands show dipole-like fits in

Q2 using Eq. (7.40). The blue circles and green crosses denote results based on simulation

sets I and II, respectively. The red stars indicate the experimental values of the isovector

magnetic moments.
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(a) Isovector sigma baryon electric form factor.
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(b) Isovector cascade baryon electric form factor.

Figure 7.16: As in Fig. 7.15, for the isovector electric form factors of the hyperons.
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µB (µN)

B p− n Σ+ − Σ− Ξ0 − Ξ−

Extrapolated (set I) 3.8(4) 3.0(3) −0.51(8)
Extrapolated (set II) 4.2(4) 3.2(3) −0.62(10)

Experimental [30] 4.706 3.62(3) −0.60(1)

Table 7.2: Isovector magnetic moments, based on sets I and II of chirally and infinite-

volume extrapolated lattice simulation results. A dipole-like parameterisation (Eq. (7.40))

has been used to model the Q2-dependence of the form factors.

curvature in the fit functions in Q2, which improves the agreement with experiment

in every case. Isovector magnetic moments, extracted using these fits, are given in

Table 7.2.

We emphasise that the lattice simulation results away from the primary simu-

lation trajectory for data set I (that is, simulations 1–3 in Table 7.1) are essential

to tightly constrain the chiral extrapolation to the physical point. The effect of

adding the additional off-trajectory points to the fit leads to a factor of 6 reduction

in statistical uncertainty. This illustrates the importance for chiral extrapolations

of performing lattice simulations which map out the ml–ms plane as we have done,

rather than simply following a single trajectory in this space. For data set II we

have simulation results along only one trajectory. However, as this lies very close to

the physical singlet trajectory (as illustrated in Fig. 7.2), the extrapolation in a per-

pendicular direction to the physical point inflates the uncertainties only marginally.

7.5.2 Connected Baryon Form Factors

As well as the isovector quantities presented in the previous section, we can deter-

mine the ‘quark-line–connected’ part of all individual baryon form factors. Compar-

ison of these quantities with experimental determinations is of particular interest—a

systematic discrepancy between the lattice and experimental results could be a sig-

nal of significant disconnected contributions to the form factors.

Figures 7.17 and 7.18 show extrapolated results for the connected parts of the

proton and neutron form factors, compared with the Kelly parameterisation [272]

of experimental results. The level of agreement between the lattice and experiment

across the entire range of simulation Q2-values supports the conclusion of Ref. [28]

that the omitted disconnected contributions are relatively small.

Figures displaying connected form factors for each of the octet baryons, including

dipole-like fits in Q2, are given in Appendix J.2. The magnetic moments extracted

from the fits to the magnetic form factors, given in Table 7.3, are close to the

experimental values, especially for data set II which includes a point at a lower

value of Q2. Once again, greater curvature in the functional form in Q2 would

improve the agreement with experiment in every case.
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(a) Proton magnetic form factor.
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(b) Neutron magnetic form factor.

Figure 7.17: Extrapolated (connected part of the) proton and neutron magnetic form

factors, compared with the Kelly parameterisation [272] of experimental measurements

(dashed red band). The blue circles and green crosses denote extrapolated results based

on simulation sets I and II, respectively.
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(a) Proton electric form factor.
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(b) Neutron electric form factor.

Figure 7.18: Extrapolated (connected part of the) proton and neutron electric form

factors, compared with the Kelly parameterisation [272] of experimental measurements

(dashed red band). The blue circles and green crosses denote extrapolated results based

on simulation sets I and II, respectively.
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µB (µN)

B p n Σ+

Extrapolated (set I) 2.3(3) −1.45(17) 2.12(18)
Extrapolated (set II) 2.6(2) −1.65(17) 2.27(18)

Experimental [30] 2.79 −1.913 2.458(10)

Σ− Ξ0 Ξ−

Extrapolated (set I) −0.85(10) −1.07(7) −0.57(5)
Extrapolated (set II) −0.95(11) −1.19(12) −0.59(8)

Experimental [30] −1.160(25) −1.250(14) −0.6507(25)

Table 7.3: Connected contribution to the octet baryon magnetic moments, based on

a dipole-like fit (Eq. (7.40)) to the extrapolated lattice simulation results. Experimental

values are taken from Ref. [30].

7.5.3 Magnetic and Electric Radii

The magnetic and electric radii of the octet baryons are defined by Eq. (7.4) in terms

of the slopes of the Sachs form factors with respect to changes in the momentum

scale Q2, at Q2 = 0. To determine these quantities from the lattice simulation

results we again use dipole-like parameterisations of the Q2-dependence of GE and

GM .

It is clear that fitting the magnetic form factors with Eq. (7.40) will yield consis-

tently smaller values for the magnetic radii than those determined experimentally

(for the nucleon) or predicted in chiral quark models (for the octet baryons) [273,

274]; as noted in the previous sections, while our results are quite consistent with the

experimental parameterisation of the nucleon form factors where they are calculated,

the best-fit dipole-like function has slightly less curvature. This can be seen clearly

from a comparison of Fig. 7.17 with Fig. 7.19.

To explore the model-dependence of this extraction of the magnetic radii we

consider a second functional form in Q2, inspired by the Kelly-style parameterisa-

tions of experimental results. This form has a more general polynomial in Q2 in the

denominator:

Gfit
M

(
Q2
)

=
µexp.
B

1 + cM1Q2 + cM2Q4 + cM3Q6
. (7.41)

We now fix µexp.
B to the experimental magnetic moment (disregarding the omission of

disconnected quark-line contributions in our simulations), so there are again three

free parameters, cM1, cM2, and cM3. As illustrated for the nucleon in Fig. 7.19

(and for the other octet baryons in Appendix J.2), the quality of fit using this

functional form is entirely comparable with that using Eq. (7.40). The shift in the

extracted value of the magnetic radius, however, is significant, as shown in Table 7.4.

This example confirms that truly robust predictions for the hyperon magnetic radii
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Figure 7.19: Connected part of the nucleon magnetic form factors. Blue circles (left-

hand column) and green crosses (right-hand column) denote the results of simulation sets I

and II, respectively, extrapolated to infinite volume and the physical pseudoscalar masses.

The red stars indicate the experimental magnetic moments. The lines show dipole-like fits

in Q2 using Eq. (7.40) (dashed red) and Eq. (7.41) (solid blue or green).
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Figure 7.20: Connected part of the proton electric form factor. The symbols are as in

Fig. 7.19. The lines shown correspond to dipole-like fits in Q2 using Eq. (7.42).
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〈r2
M〉B (fm2)

p n Σ+ Σ− Ξ0 Ξ−

Set I, free µB 0.35(11) 0.35(11) 0.39(9) 0.42(13) 0.27(8) 0.23(8)
Set II, free µB 0.47(14) 0.51(17) 0.42(13) 0.50(19) 0.34(14) 0.17(16)
Set I, general 0.71(8) 0.86(9) 0.66(5) 1.05(9) 0.53(5) 0.44(5)
Set II, general 0.69(8) 0.89(10) 0.62(7) 1.06(12) 0.48(8) 0.38(11)

Experimental [30] 0.777(16) 0.862(9)

Table 7.4: Extrapolated results for the octet baryon magnetic radii, based on our fits to

the lattice simulation results, compared with experimental values. Results labelled ‘free

µB’ result from a dipole-like fit function in Q2 (Eq. (7.40)), while those labelled ‘general’

use the ansatz given in Eq. (7.41) with µB fixed to the experimental values [30].

from lattice QCD will require results at much lower values of Q2 to eliminate the

significant dependence on the functional form chosen for the extrapolation in Q2.

Nevertheless, by taking the experimental magnetic moments as additional input,

we find an outstanding level of agreement between the extracted nucleon magnetic

radii and the experimental values for these observables. Moreover, our results using

simulation sets I and II, which have quite different sources of systematic uncertainty,

are entirely consistent. Based on this, we conclude that we have achieved the first

accurate calculation of the magnetic radii of the entire outer ring of the baryon octet

from lattice QCD (extrapolated to the physical pseudoscalar masses).

To extract the electric radii we also use a more general dipole-like parameterisa-

tion of the Q2-dependence of GE, with three free parameters:

Gfit
E

(
Q2
)

=
GE(Q2 = 0)

1 + cE1Q2 + cE2Q4 + cE3Q6
. (7.42)

As was noted previously for the isovector nucleon form factor, the standard dipole

form does not provide a good fit to the extrapolated lattice results; the χ2/d.o.f. is

as large as 4.0 for the Ξ− and 1.7 for the proton. In contrast, the more general form

of Eq. (7.42) yields fits with a χ2/d.o.f. . 1 for each of the charged baryons. Fits

using this ansatz are shown in Fig. 7.20 (for the proton) and Appendix J.2 (for the

other octet baryons). Results for the radii of the charged baryons, compared with

the available experimental numbers, are given in Table 7.5.

The electric radii determined by this method are consistently smaller than the

corresponding experimental numbers for the proton and Σ−. We point out that

while this calculation omits any disconnected contributions to the form factors and

therefore to the radii, the very close agreement of the extracted proton electric

form factor with the experimental determination suggests that the effect of this

omission is small, barring lattice artefacts as discussed in the previous section. It

is clear that the simple dipole-like parameterisation used for the Q2-dependence is

not sufficient to extract accurate values of the electric radii from these simulations.
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〈r2
E〉B (fm2)

p Σ+ Σ− Ξ−

Dipole ansatz, set I 0.601(14) 0.599(12) 0.414(5) 0.352(3)
Dipole ansatz, set II 0.718(15) 0.738(15) 0.505(10) 0.439(9)
Eq. (7.42) ansatz, set I 0.76(10) 0.61(8) 0.45(3) 0.39(2)
Eq. (7.42) ansatz, set II 0.76(10) 0.68(8) 0.52(4) 0.45(3)

Experimental [30] 0.878(5) 0.780(10)

Table 7.5: Octet baryon electric radii based on a dipole or dipole-like (Eq. (7.42)) fit

to the extrapolated lattice simulation results, compared with the available experimental

values [30].
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Figure 7.21: Electric radius of the proton from the chiral extrapolation of data set I, with

a dipole (blue band) or dipole-like (green dashed band) ansatz (Eq. (7.42)) parameterising

the Q2-dependence. The singlet pseudoscalar mass (m2
K + m2

π/2) is held fixed at its

physical value. The red point indicates the experimental value [30].
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Robust predictions of the electric radii from lattice QCD will require simulations

with a similar level of precision to the results of this work, but at much lower values

of Q2. We note that the electric radius of the proton extracted as described above

does display the expected behaviour with pion mass, increasing quite rapidly as

one approaches the physical pseudoscalar masses from above. This is illustrated in

Fig. 7.21.

7.5.4 Quark Form Factors

We investigate the environmental sensitivity of the distribution of quarks inside a

hadron by inspecting the individual (connected) quark contributions to the form

factors of the octet baryons. These contributions, evaluated using the chiral ex-

trapolation described in previous sections, are illustrated in Figs. 7.22 and 7.23.

The figures show the lowest-Q2 result from the fit to data set I, at approximately

0.26 GeV2. We recall that the lines shown on each plot are not independent as the

chiral extrapolation expressions are simultaneously fit to all of the octet baryon form

factors.

Comparison of the u quark contributions to the proton and Σ+ magnetic form

factors, illustrated in Fig. 7.22(a), shows the relative suppression of GΣ,u
M caused

by the heavier spectator quark in the sigma. This effect is replicated, and is more

significant, when probing the singly-represented quark, as can be seen by the relative

suppression (in magnitude) of the u contribution to the cascade baryon compared

to the d in the proton in Fig. 7.22(b). Changing the mass of the probed quark—

doubly-represented in the proton compared with the cascade, or singly-represented

in the proton compared with the sigma—causes a similar effect.

The doubly-represented quark contributions to the electric form factors are illus-

trated in Fig. 7.23(a). While the u contribution to the proton and the u contribution

to the sigma baryon are very similar—again, the only difference is the mass of the

single spectator (d or s) quark—the s contribution to the cascade baryon has a

different shape. As in the magnetic case, that form factor has significantly less cur-

vature with m2
π below the SU(3)-symmetric point as a result of the heavier mass of

the probed s quark.

The singly-represented quark contributions to the electric form factors are shown

in Fig. 7.23(b). Here the difference between the d quark contribution to the proton

and the s quark contribution to the sigma baryon illustrates the effect of changing

the mass of the single probed quark. While the effect of changing the mass of the

spectator quark is small for the doubly-represented form factors, it is far more sig-

nificant here as there are now two spectator quarks. This may be seen by comparing

the d quark contribution to the proton with the u in the cascade baryon.

We also notice that the u quark contribution to the cascade baryon electric

form factor is considerably more suppressed in the light quark-mass region than the

corresponding d quark contribution to the proton. That is, the magnitude of 〈r2〉Ξu
is enhanced relative to 〈r2〉pd. This can be explained by the meson-dressing effects;

the connected d in the proton prefers to form a π+ with one of the valence u quarks
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(a) Doubly-represented quark contributions.
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(b) Singly-represented quark contributions.

Figure 7.22: Connected part of the doubly and singly-represented quark contributions

to the baryon magnetic form factors for data set I at Q2 ≈ 0.26 GeV2. The singlet

pseudoscalar mass (m2
K + m2

π/2) is held fixed at its physical value. The charges of the

relevant quarks have been set to one.
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(a) Doubly-represented quark contributions.
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(b) Singly-represented quark contributions.

Figure 7.23: As in Fig. 7.22, for the electric form factors.
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Figure 7.24: Ratio of the electric and magnetic form factors of the proton based on the

chiral extrapolations of data sets I (blue circles) and II (green crosses). The red stars

denote the experimental results of Refs. [225,275,276].

in the proton, giving rise to a substantial negative contribution to 〈r2〉pd in the light

quark-mass region. In contrast, the connected u in the cascade baryon can only

form a pion state by coupling to a sea quark, from which the resulting enhancement

is always positive.

7.5.5 Ratio of Electric and Magnetic Form Factors

By combining the chirally-extrapolated values of the octet baryon electric and mag-

netic form factors, we deduce the ratios µBG
B
E/G

B
M at each of the discrete values

of Q2 for which we have results. As with the chiral extrapolations themselves, the

entire analysis of these ratios is performed at the bootstrap level.

Figure 7.24 shows the proton form factor ratio µpG
p
E/G

p
M , where the experimen-

tal value is used for the magnetic moment µp [30]. While the results are qualitatively

consistent with a linear decrease of that ratio with Q2, as concluded from polarisa-

tion transfer experiments (e.g., see the results from Refs. [225, 275, 276], illustrated

on the figure), this decrease is more pronounced in our results than in the experi-

mental data, with the exception of the results of Ref. [223] which display a similarly

steep trend. In our work this trend is explained by the observation that the lattice

simulation results for GM fall off less rapidly in Q2 than the Kelly parameterisa-

tion of experimental results, while the lattice results for GE are consistent with

experiment.

Figure 7.25 shows the absolute value of µBG
B
E/G

B
M for each of the outer-ring

octet baryons. The large value of this ratio for the Σ− baryon is a result of the

choice of normalisation; the magnetic moment of the Σ− suggested by the lattice

data was found to be significantly smaller than the experimental value [30] which is
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(a) Charged baryons.
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(b) Neutral baryons.

Figure 7.25: Ratios of the electric and magnetic form factors of the octet baryons. The

points denoting the Σ+ and Ξ− baryons have been slightly offset on the Q2-axis for clarity.

The circles and crosses denote results based on simulation sets I and II, respectively.
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used here. We note that if the trends displayed for µBG
B
E/G

B
M at the relatively low

Q2-values of this study continue to high Q2, zero-crossings of this ratio for the Ξ−

and Σ− baryons seem unlikely.

7.6 Charge Symmetry Violation

The assumption of good charge symmetry has been widely applied in studies of the

electromagnetic structure of the nucleon, just as it has in investigations of sigma

terms (Chapter 5) and in parton phenomenology (Chapter 6). In particular, the

limiting factor in state-of-the-art experimental determinations of the strange-quark

contribution to the nucleon electromagnetic form factors [277–281] is the poor the-

oretical constraint on the size of CSV effects.

Precisely, CSV form factors GCSV, if not accounted for, mimic the strange-quark

contribution Gs
E/M in the combination of form factors accessible through parity-

violating electron scattering experiments [282–284]: the measured neutral weak cur-

rent matrix elements Gp,Z
E/M may be expressed as

Gp,Z
E/M =

(
1− 4 sin2 θW

)
Gp,γ
E/M −G

n,γ
E/M −G

s
E/M +GCSV, (7.43)

where the weak mixing-angle θW and the total electromagnetic form factors G
p/n,γ
E/M

are precisely determined from other experimental studies.

With theoretical predictions of the size of GCSV varying through several or-

ders of magnitude [27, 285, 286], this uncertainty (along with the remarkable ex-

perimental challenges) has halted experimental parity-violating electron scattering

programs [281]. Using the chiral extrapolations of lattice simulation results pre-

sented in the previous sections, we perform the first ab-initio calculation of the

relevant CSV quantities. With the discovery that the CSV form factors are an order

of magnitude smaller than the precision of existing parity-violating electron scatter-

ing studies, this calculation opens the door for a new generation of experiments to

challenge the predictions of QCD.

7.6.1 CSV Form Factor Formalism

In terms of individual u and d quark contributions to the Sachs electric and magnetic

form factors of the proton and neutron, the CSV form factors which we calculate

are defined as

δuE/M = Gp,u
E/M −G

n,d
E/M , δdE/M = Gp,d

E/M −G
n,u
E/M , (7.44)

where we explicitly calculate G
p/n,u/d
E/M and perform the subtractions indicated. The

combination relevant to experimental determinations of nucleon strangeness using
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Eq. (7.43) is

GCSV =

(
2

3
δdE/M −

1

3
δuE/M

)
. (7.45)

We express GCSV as a function of pseudoscalar mass using the chiral formalism

developed in the previous sections. Of course, this formalism must now incorpo-

rate the breaking of SU(2) symmetry; we allow for non-equal light quark masses

mu 6= md. Precisely as described in earlier chapters, where we investigated the

mass splittings among members of baryon isospin multiplets (Chapter 4), the CSV

sigma terms (Chapter 5), and CSV parton distribution moments (Chapter 6), this

is a simple extension of the formalism which we have already described. More-

over, the low-energy parameters which appear in the SU(2)-breaking terms in the

chiral extrapolation expressions for the electromagnetic form factors also appear

in the isospin-averaged expressions. These parameters may thus be fixed by the

previously-described fits to our Nf = 2 + 1 lattice QCD simulations on the baryon

octet.

Explicitly, using the formalism presented in Section 7.3.2, chiral extrapolation

expressions for the CSV electric and magnetic form factors can be written as

δuM =
1

6

(
2cM1 − 3cM10 − 3cM12 − 4cM2 − 2cM5 − 5cM6 − 54cM7 + 3cM9

)
B(md −mu)

+
MN

16π3f 2
π

1

9

[
C2
(
IMD (mK0)− IMD (mK±)

)
−12

(
D2 + 3F 2

)(
IMO (mK0)− IMO (mK±)

)]
, (7.46a)

δdM =
1

6

(
2cM1 + 2cM10 − 4cM11 + 2cM12 − 4cM2 + 4cM5 + cM6 + 54cM7 − cM9

)
B(md −mu)

− MN

16π3f 2
π

2

9

[
C2
(
IMD (mK0)− IMD (mK±)

)
− 9(D − F )2(IMO (mK0)− IMO (mK±)

)]
,

(7.46b)

δuE =
1

6

(
2cE1 − 3cE10 − 3cE12 − 4cE2 − 2cE5 − 5cE6 − 54cE7 + 3cE9

)
Q2B(md −mu)

− 1

16π3f 2
π

1

9

[
C2
(
IED(mK0)− IED(mK±)

)
+ 6
(
D2 + 3F 2

)(
IEO (mK0)− IEO (mK±)

)
+18

(
IET (mK0)− IET (mK±)

)]
, (7.46c)

δdE =
1

6

(
2cE1 + 2cE10 − 4cE11 + 2cE12 − 4cE2 + 4cE5 + cE6 + 54cE7 − cE9

)
Q2B(md −mu)

+
1

16π3f 2
π

1

9

[
2C2
(
IED(mK0)− IED(mK±)

)
+ 9(D − F )2(IEO (mK0)− IEO (mK±)

)
+9
(
IET (mK0)− IET (mK±)

)]
, (7.46d)

where the low-energy parameters c
E/M
i are defined in Eqs. (7.29) and (7.36). All

of these constants, other than c
E/M
1 , c

E/M
2 , and c

E/M
7 , are determined from the

chiral fits to the connected contribution to the isospin-averaged electromagnetic
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(a) (b)

Figure 7.26: Diagrammatic quark-line skeleton representation of omitted contributions

to the CSV form factors. Solid and wavy lines represent quarks and photons, respectively.

The crosses denote quark mass insertions, i.e., the figures represent the contribution from

disconnected quark-loops to the CSV arising from the different (u and d quark) masses

of: (a): the struck sea quark; (b): spectator quarks. These contributions are proportional

to B(md −mu).

form factors which are described in Section 7.4. The parameters c
E/M
1 , c

E/M
2 , and

c
E/M
7 do not appear in the previous fit expressions, and thus cannot be determined

from the lattice simulations which we consider here. Bounds on these contributions

to the CSV are estimated within the framework of a model which is described in

Section 7.6.2.

7.6.2 Disconnected Contributions to the CSV

While some of the disconnected contribution to the CSV form factors can be system-

atically included by the method described in the previous section, other disconnected

terms—those which are linear in B(md−mu) and not generated by chiral logarithms

from meson loops—cannot be determined in that way. Precisely, the terms which are

generated by the Lagrangian pieces with coefficients c
E/M
1 , c

E/M
2 , and c

E/M
7 (defined

in Eqs. (7.29) and (7.36)) cannot be determined from the present lattice simula-

tions. Physically, they arise from the diagrams illustrated and described in Fig. 7.26.

These contributions are anticipated to be small based on the success of valence quark

models. This is supported by the results of direct lattice QCD calculations of GE/M

which find that the disconnected contributions at small finite momentum transfer

are consistent with zero and are bounded at the 1% level [28]. The terms which we

seek to estimate here are only part of that disconnected contribution.

We choose to set contributions from the unknown terms c
E/M
1 , c

E/M
2 , and c

E/M
7

to 0, with an uncertainty taken to be twice the magnitude of the corresponding con-

tributions from meson loop diagrams, evaluated with a dipole cutoff regulator with

mass scale Λ = 0.8(2) GeV. This is justified by the well-established and successful

use of this model to relate full and partially-quenched lattice QCD calculations [287].

The loop diagram used to estimate the c
E/M
1,2 terms is represented in Fig. 7.27(b),

where only the ‘loop spectator’ quark mass (i.e., the valence quark part of the me-

son mass) is changed. For the c
E/M
7 term, represented in Fig. 7.27(a), only the sea

quark part of the loop meson mass is considered. These contributions are added in
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(a) (b)

Figure 7.27: Quark-line skeleton diagrams of the meson loops used to model the omitted

contributions to the CSV form factors. Solid and wavy lines represent quarks and photons,

respectively. The crosses denote quark mass insertions into: (a): the struck sea quark in

the meson loop; (b): the meson loop spectator quark.

quadrature. The magnitude of this contribution to the total uncertainty varies with

Q2; it is largest at our lowest Q2-values where it contributes 20–60% of the quoted

uncertainty on the final result (depending which of δ
u/d
E/M one is considering), while

at larger values of Q2 it contributes 1–15%.

7.6.3 CSV Relevant to the Strange Electromagnetic Form

Factors

Figure 7.28 shows the size of the CSV form factor combination, GCSV, as relevant to

parity-violating electron scattering experiments probing the strange electromagnetic

form factors of the nucleon by Eq. (7.43). The individual u and d quark contributions

are shown in Fig. 7.29. The close agreement of the two sets of simulations (at

different lattice spacings a and on different simulation volumes) confirms that the

finite-volume corrections and chiral extrapolations are under control and that any

discretisation effects resulting from the finite lattice spacing are small.

Our result gives quantitative confirmation that CSV effects in the electromag-

netic form factors, for momentum transfers up to approximately 1.3 GeV2, are at

the level of 0.2% of the relevant proton form factors—an order of magnitude smaller

than the precision of existing parity-violating electron scattering studies. To put

this in perspective, the level of CSV shown in Fig. 7.28(b) is equivalent to a CSV

difference in charge radii of less than one attometer. These precise results open the

door for a new generation of experiments to probe the structure of the quantum

vacuum through the strange quark form factors. We turn to a deeper discussion of

the strange electromagnetic form factors of the nucleon in the next section.

7.7 Strange Nucleon Form Factors

Recent years have seen extensive experimental efforts directed at measuring the

strange quark contribution to the electromagnetic form factors of the nucleon. Prob-

ing a range of values of Q2 up to approximately 0.94GeV2, the combined data sets

from programs at Jefferson National Lab (G0, HAPPEX) [279–281,288–291], MIT-
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(b) Electric CSV form factors.

Figure 7.28: Magnetic and electric CSV form factors as relevant to experimental deter-

minations of nucleon strangeness. The blue circles and green crosses denote our results

based on simulation sets I (a = 0.074(2) fm) and II (a = 0.062(2) fm), respectively.
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Figure 7.29: Individual up and down quark contributions to the CSV form factors. These

terms are combined to give the total CSV form factors GCSV =
(

2
3δ
d
E/M −

1
3δ
u
E/M

)
. Blue

points and green crosses show the results of data sets I and II extrapolated to the physical

point, with corrections applied to model the omitted disconnected terms.
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Bates (SAMPLE) [277,292], and Mainz (A4) [278,293,294] constrain these terms to

be less than a few percent of the total form factors but all results are, at this stage,

consistent with zero to within 2-sigma [295]. Our precise calculation of the CSV

contributions to the electromagnetic form factors of the nucleon, presented in the

last section, has opened the door for a new generation of parity-violating electron

scattering experiments to improve on these determinations.

The status of the strange form factors from theory is less clear; predictions from

various quark models cover a very broad range of values [296–301] and the large

computational cost of all-to-all propagators has so far limited direct lattice QCD

studies to large pion masses and single volumes [28,29].

Using the connected lattice simulations of the octet baryon electromagnetic form

factors presented in this chapter, we determine the strange quark contributions to

the nucleon form factors indirectly over a range of values ofQ2 currently unattainable

through direct experimental measurement. Our final result for the strange magnetic

moment of the proton, Gs
M(Q2 = 0) = −0.07± 0.03µN , is non-zero to 2-sigma and

an order of magnitude more precise than the closest experimental results. It is also

consistent with an earlier extraction using FRR to analyse quenched lattice data

at relatively large quark masses [302]. The results reported at values of Q2 above

0.6GeV2 are the first determinations, experimental or based on lattice QCD, in that

region. At present they cannot be distinguished from zero, but the uncertainties

constrain their actual values to be very small.

7.7.1 Indirect Determination of the Strange Form Factors

We have shown in the last section that charge symmetry violation in the electromag-

netic form factors of the nucleon is a small effect, with the CSV terms constrained

to be smaller than approximately 0.2% of GE and GM over values of Q2 up to

1.3 GeV2. Using this result—i.e., assuming good charge symmetry—we deduce the

strange form factors [303–305] by combining experimental measurements of the total

nucleon form factors with our lattice QCD determinations of the connected compo-

nents. This method has been applied previously to determine the strange magnetic

form factor at Q2 = {0, 0.23}GeV2 [302,306] and the strange electric form factor at

Q2 = 0.1GeV2 [307] from quenched lattice QCD results.

Explicitly, under the assumption of charge symmetry, one may express the elec-

tromagnetic form factors of the proton and neutron as [303]

p = euup + eddp +ON , (7.47a)

n = edup + eudp +ON . (7.47b)

Here, p and n denote the physical (electric or magnetic) form factors of the proton

and neutron and up and dp represent the connected u and d quark contributions to

the proton form factor. The disconnected quark-loop term, ON , may be decomposed
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into individual quark contributions:

ON =
2

3
`Gu − 1

3
`Gd − 1

3
`Gs, (7.48a)

=
`Gs

3

(
1− `Rs

d
`Rs

d

)
, (7.48b)

where charge symmetry has been used to equate `Gu = `Gd and the ratio of s to d

disconnected quark-loops is denoted by `Rs
d = `Gs/ `Gd.

Rearranging Eqs. (7.47) and (7.48b) to isolate the strange quark loop contribu-

tion, `Gs, yields two independent expressions which are rigorous consequences of

QCD under the assumption of charge symmetry:

`Gs =

( `Rs
d

1− `Rs
d

)
[2p+ n− up], (7.49a)

`Gs =

( `Rs
d

1− `Rs
d

)
[p+ 2n− dp]. (7.49b)

In principle, given a suitable estimate of `Rs
d, these expressions may be simply

evaluated; the total form factors p and n are well known experimentally and the

connected contributions up and dp may be calculated on the lattice.

This procedure relies on the assumption that the difference between the exper-

imental numbers and the connected lattice simulation results for the form factors

may be entirely attributed to contributions from disconnected quark loops, i.e., that

all other systematic effects are under control. In order to be able to estimate any

as-yet undetermined lattice systematics, we average Eqs. (7.49a) and (7.49b) result-

ing in a form where only the connected contribution to the isoscalar combination,

(up + dp)conn., needs to be determined from the lattice simulations:

`Gs =

( `Rs
d

1− `Rs
d

)[
3

2
(p+ n)− 1

2
(up + dp)conn.

]
. (7.50)

Relaxing the assumption of exact charge symmetry in the valence sector would

result in an additional term +3
2
GCSV (where GCSV, defined in Eq. (7.43), is the sys-

tematic CSV uncertainty affecting experimental determinations of the strange form

factors) appearing within the square brackets of Eq. (7.50). For low values of Q2,

in particular where
(
`Rs

d/(1− `Rs
d)
)

is small, this systematic error thus affects our

extraction of the strange form factors considerably less than it impacts on exper-

imental determinations of these quantities, where the assumption of good charge

symmetry is also standard.

From our analysis of the CSV form factors in Section 7.6 it is clear that con-

tributions from GCSV are negligible for this calculation of the strange form factors

across the entire Q2-range of relevance. If we disregard our own calculation, which

constrains CSV to be an order of magnitude smaller than suggested by previous
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studies, and instead take values of GCSV from Ref. [286] (for Q2 < 0.3 GeV2 where

the calculation is valid) as a systematic uncertainty, our error bands increase by

less than 10%. A recent re-evaluation of GCSV using relativistic chiral perturbation

theory with a more realistic ω-nucleon coupling [285] found a significant reduction

in GCSV over the values in Ref. [286]. This confirms that the assumption of good

charge symmetry has a negligible effect on our results.

We discuss in turn each of the three inputs into Eq. (7.50):

• The lattice values for (up + dp)conn..

• The experimental p and n form factors.

• The ratio `Rs
d = `Gs/`Gd.

Lattice Determinations of up and dp

The connected quark-line contributions to the proton electric and magnetic form

factors are obtained as described in Section 7.4. Both statistical uncertainties and

systematic effects resulting from the chiral and infinite-volume extrapolations, in-

cluding an estimate of the model-dependence, are included. Additionally, we allow

for any unknown systematics on the combination (up + dp)conn. by estimating that

such effects will be similar in magnitude for the isovector combination (up−dp)conn.,

which may be directly compared with experiment. Because disconnected contri-

butions in the total form factors cancel in the combination (p − n), the difference

(up−dp)latt.− (p−n)exp. provides an estimate of any unaccounted-for uncertainty in

the lattice simulation results. We take the largest value of this difference, evaluated

over the entire range of discrete simulation Q2-values, as a conservative estimate.

This procedure is followed for both the electric and magnetic form factors. The

additional uncertainty included in this fashion is significant and larger than the

statistical uncertainty in the determination of the strange magnetic form factor.

For the electric form factor it is a modest contribution of a size similar to, or smaller

than, the statistical uncertainty (see Table 7.6 in Section 7.7.2).

Experimental p and n Form Factors

The total proton and neutron electromagnetic form factors p and n are taken from

the parameterisations of experimental results by Kelly [272] and Arrington and

Sick [308] (the latter is used only on its quoted range of validity, Q2 < 1 GeV2).

The entire calculation, including the additional estimate of lattice systematics, is

performed using each parameterisation. The average central value of the two sets of

results is taken as the best-estimate of the strange form factors. Half of the difference

between the two central values is included as an estimate of the parameterisation-

dependent uncertainty. As shown in Table 7.6 in Section 7.7.2, this contribution to

the uncertainty is small.
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(a) (b)

Figure 7.30: Loop diagrams which are included in the estimate of `Rsd from effective

field theory. Fig. 7.30(b) is included for the electric form factor only. The solid, dashed,

and wavy lines denote octet baryons, mesons, and photons, respectively.

Estimate of the Ratio `Rs
d

We derive an estimate for the disconnected quark-loop ratio `Rs
d = `Gs/`Gd using a

model based on chiral effective field theory, as was also done in Refs. [302,306,307].

In that formalism `Rs
d is given by the ratio of loop diagram contributions to the

electromagnetic form factors, where the relevant loop integrals are weighted by the

appropriate ‘disconnected’ chiral coefficients for the s and d quarks [252,306,307].

The primary loop diagram relevant to this calculation is depicted in Fig. 7.6(a).

For the electric form factor in particular, a higher-order diagram (Fig. 7.30(b)) is

important as it makes a significant contribution of the opposite sign to that of

Fig. 7.6(a), resulting in a large cancellation. While to the order of our chiral extrap-

olation this term contributes a constant to GE(Q2) (enforcing charge conservation

at Q2 = 0), this is not a good approximation for the large values of Q2 considered

in this work.

For this reason we include Fig. 7.30(b), with an estimate of its Q2-dependence,

explicitly in our calculation of `Rs
d for the electric form factor. This is achieved by

calculating the diagram in heavy-baryon chiral perturbation theory and modelling

theQ2-dependence of the photon-baryon vertex based on the lattice results described

in previous sections. Further details are given in Appendix J.3.

For both the electric and magnetic form factors the effect of additionally includ-

ing loops with decuplet baryon intermediate states is taken as an estimate of the

uncertainty in the ratio `Rs
d. The errors quoted for the numerical results in Table 7.6

in Section 7.7.2 combine this estimate in quadrature with that given by allowing the

dipole mass-parameter Λ used in the finite-range regularisation scheme to vary in

the range 0.6–1.0GeV. The final values for `Rs
d are shown in Fig. 7.31.
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Figure 7.31: Estimate of `Rsd from effective field theory with finite-range regularisation,

for the electric (dashed green) and magnetic (solid blue) form factors. Details are given

in Section 7.7.1.

7.7.2 Strange Form Factors at Q2 > 0

The results of this analysis (using Eq.(7.50)) for the strange electric and magnetic

form factors of the proton are summarised in Table 7.6 and are displayed in Fig. 7.32

alongside the latest experimental determinations of those quantities. All results

(away from Q2 = 0) are consistent with zero to within 2-sigma. The results for the

strange magnetic form factor favour negative values which are consistent with recent

experimental results. For the electric form factor, the two independent analyses

based on the two sets of lattice QCD simulations at different lattice spacings and

volumes are inconsistent at 1-sigma. As a result, simple estimates of the strange

electric charge radius of the proton using a straight-line fit in Q2 to the lowest-Q2

result for Gs
E give results with opposite signs for the two analyses:

〈r2
E〉s =

{
0.0086(79) fm2, Set I,

−0.0114(88) fm2, Set II.
(7.51)

Although we cannot make a conclusive statement without additional simulation

results, we expect that this difference is dominated by statistical fluctuations.

Since experimental determinations of the strange form factors are obtained as

linear combinations of Gs
E and Gs

M we also display results at the lowest values of

the momentum transfer, Q2 = 0.26GeV2 and 0.17GeV2 for simulation sets I and II,

respectively, in the Gs
M–Gs

E plane in Fig. 7.33. The available experimental results

for similar values of Q2 appear on this figure as ellipses. Both of our calculations

are consistent with experiment to within 2-sigma.
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(a) Strange magnetic form factor.
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(b) Strange electric form factor.

Figure 7.32: Strange contribution to the magnetic and electric form factors of the proton,

for strange quarks of unit charge. The blue circles and green crosses show the results of

independent analyses based on lattice simulation sets I and II (with lattice scales a =

0.074(2) fm and 0.062(2) fm), respectively. The experimental results (red stars) are taken

from Refs. [277,280,281,289,292,294].
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Figure 7.33: Comparison of the results of this work (to 1-sigma) at Q2 = 0.26GeV2 for

simulation set I (red ellipse), and at Q2 = 0.17GeV2 for simulation set II (orange ellipse),

with available experimental results at similar values of Q2. The dark (pale) green ellipse

shows 1-sigma (2-sigma) results from the A4 collaboration at Q2 = 0.23GeV2 [293], while

the blue ellipses show G0 collaboration results close to Q2 = 0.23GeV2 [288,289].
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Q2 (GeV2) Gs
M (µN) Gs

E

Set I 0.26 −0.069(12)(44)(15)(78) −0.010(4)(5)(2)(6)
0.50 −0.109(12)(59)(21)(112) −0.014(8)(8)(3)(7)
0.73 −0.136(15)(72)(24)(129) −0.008(15)(11)(1)(13)
0.94 −0.122(20)(83)(20)(136) −0.017(28)(16)(3)(20)
1.14 −0.103(16)(94)(17)(137) 0.053(34)(24)(40)(24)
1.33 −0.115(20)(103)(18)(135) 0.141(57)(35)(153)(36)

Set II 0.17 −0.080(20)(48)(19)(56) 0.0081(31)(29)(4)(46)
0.33 −0.111(20)(61)(24)(88) 0.023(7)(4)(3)(6)
0.47 −0.131(23)(73)(26)(109) 0.039(12)(6)(9)(6)
0.62 −0.153(28)(84)(29)(122) 0.056(20)(7)(18)(9)
0.75 −0.151(28)(94)(28)(130) 0.077(27)(9)(30)(12)
0.88 −0.145(35)(103)(25)(135) 0.104(40)(11)(50)(15)
1.13 −0.089(47)(119)(14)(137) 0.220(78)(17)(164)(24)

Table 7.6: Results for the strange electric and magnetic form factors of the proton at

the non-zero values of Q2 investigated here. The first uncertainty quoted is propagated

from the lattice values for the connected u and d quark contributions to the proton form

factors, while the second is the additional systematic uncertainty included as described in

Section 7.7.1. The third uncertainty is that propagated from the factor
(
`Rsd/(1−

`Rsd)
)

(see Section 7.7.1). The last uncertainty is that from the Kelly parameterisation of the ex-

perimental p and n form factors [272], combined in quadrature with the parameterisation-

uncertainty in those results for Q2 < 1 GeV2, where we use two parameterisations as

described in Section 7.7.1.
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7.7.3 Strange Magnetic Moment

Using the additional information available from experiment at Q2 = 0, where the hy-

peron form factors have been measured [30], we also determine the strange quark con-

tribution to the proton magnetic moment. We rearrange Eqs. (7.49a) and (7.49b),

using the assumption of charge symmetry, to express the nucleon strange magnetic

moment in terms of the hyperon moments [303,305]:

`Gs =

( `Rs
d

1− `Rs
d

)[
2p+ n− up

uΣ

(
Σ+ − Σ−

)]
, (7.52a)

`Gs =

( `Rs
d

1− `Rs
d

)[
p+ 2n− un

uΞ

(
Ξ0 − Ξ−

)]
. (7.52b)

This rearrangement minimises the propagation of lattice systematics as only the

ratios of form factors, not their absolute values, must be determined from lattice

QCD.

The ratios upM/u
Σ
M and unM/u

Ξ
M of connected up quark contributions to the hy-

peron form factors, at a range of non-zero values of the momentum transfer Q2,

are taken from the lattice QCD analyses described earlier (see Section 7.4). We

determine the Q2 = 0 values needed here using a linear extrapolation in Q2, with

an additional experimental constraint provided by the equality of Eqs. (7.52a) and

(7.52b):
upM
uΣ
M

=
unM
uΞ
M

(
µΞ0 − µΞ−

µΣ+ − µΣ−

)
+

(
µp − µn
µΣ+ − µΣ−

)
, (7.53)

where µB denotes the experimental magnetic moment of the baryon B [30]. The fit

is performed to the lattice results where Q2 < 1 GeV2, which display qualitatively

linear behaviour and for which the linear-fit χ2/d.o.f. is acceptable given the con-

straint of Eq. (7.53). Fitting to one less data point does not change the results to

the precision quoted. The extrapolation for data set I is illustrated in Fig. 7.34; the

same procedure is followed (independently) for data set II.

The best estimates of the ratios of the connected contributions to the baryon

magnetic form factors at Q2 = 0 are[
upM
uΣ
M

,
unM
uΞ
M

]
=

{
[1.096(16), 1.239(90)], Set I,

[1.095(17), 1.222(98)], Set II,
(7.54)

where the two sets of results correspond to our two independent analyses using lattice

QCD simulation results at different lattice spacings and volumes as described earlier.

These full-QCD numbers align remarkably well with those determined in Ref. [302],

given that that analysis was based on quenched lattice simulation results at rather

large quark masses, after the application of a theoretical ‘unquenching’ formalism

and FRR [309].
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Figure 7.34: Results for the ratios upM/u
Σ
M and unM/u

Ξ
M of connected contributions

to the baryon magnetic form factors for the simulations in data set I. The bands show

simultaneous fits, linear in Q2, to the lowest 4 (blue solid band) or 3 (green dashed band)

data points, constrained by Eq. (7.53) at Q2 = 0.
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The resulting values for the strange magnetic moment (from Eqs. (7.52a) and

(7.52b)), conventionally defined without the charge factor, are

Gs
M

(
Q2 = 0

)
=

{
−0.071(13)(25)(4)µN , Set I,

−0.073(14)(26)(4)µN , Set II.
(7.55)

The first uncertainty is propagated from the lattice simulation results, the second,

dominant, contribution comes from the ratio `Rs
d, and the last is that from the

experimental determination of the magnetic moments [30]. Clearly, the results of

our analysis using the two independent calculations performed at different lattice

spacings and volumes are in excellent agreement. Our final result, Gs
M(Q2 = 0) =

−0.07 ± 0.03µN , is non-zero to 2-sigma and an order of magnitude more precise

than the closest experimental results.

7.8 Summary and Discussion

In this chapter we have presented a 2+1–flavour lattice QCD study of the electro-

magnetic form factors of the octet baryons. The results are based on two indepen-

dent sets of simulations, with different lattice spacings and volumes, at a total of 13

discrete values of the momentum transfer in the range 0.17–1.3GeV2.

By performing simulations on configurations which ‘map out’ the ml–ms plane,

rather than following a single trajectory in this space, we are able to robustly con-

strain chiral extrapolations of the Sachs form factors to the physical pseudoscalar

masses. Independent extrapolations are performed at each simulation value of Q2

using a formalism based on connected heavy-baryon chiral perturbation theory. An

advantage of this method is that it requires no phenomenological input regarding

the Q2-dependence of the form factors. Systematic uncertainties are controlled by

evaluating finite-volume corrections using the same formalism. The uncertainties in-

herent in the determination of the lattice scale a, the shape of the ultraviolet cutoff,

and the value of the cutoff parameter Λ in the finite-range regularisation scheme,

are found to be negligible. Moreover, both sets of simulations, which one would

expect to suffer from different systematic finite-volume and finite-a effects, are en-

tirely consistent after extrapolation to the physical point. It is notable that, even

after extrapolation, the precision of these results rivals experimental measurements

of the nucleon form factors.

It is particularly notable that a pure dipole form in Q2 does not, in general,

provide a good fit to the extrapolated lattice simulation results for GE or GM . A

dipole-like fit function, with a more general polynomial in the denominator, fares

significantly better. In fact, by using a dipole-like fit form and taking the experimen-

tal values for the baryon magnetic moments as additional input in Q2-extrapolations

of GM , we are able to perform the first accurate extraction of the magnetic radii

of the entire outer-ring baryon octet. Our analysis suggests that meaningful deter-

minations of the magnetic moments and radii from lattice QCD alone requires a
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more careful analysis than the standard procedure using a pure dipole form in Q2

allows, unless simulations are performed for very small Q2-values much less than

0.2 GeV2. Analyses similar to that performed here may reveal that other existing

lattice simulations are in fact more compatible with experiment than the results of

the standard calculations indicate.

The connected proton and neutron form factors, extrapolated to the physical

pseudoscalar masses, agree remarkably well with the experimental determinations

of these quantities at all values of Q2 considered. This gives a good indication that

disconnected quark-loop contributions to the nucleon form factors are small relative

to the uncertainties of this calculation. By combining our lattice simulation results

with experimental input, we are able to quantify this claim; we deduce values for

the strange electromagnetic form factors of the proton which are consistent with

available direct measurements of these quantities but span a far larger range of

values of Q2. At Q2 above about 0.6 GeV2 our results are the first determinations

of the strange form factors, experimental or based on lattice QCD. Our calculation

of the strange magnetic moment is an order of magnitude more precise than the

closest experimental result and is non-zero to 2-sigma: Gs
M(Q2 = 0) = 0.07(3)µN .

We also determine the CSV electromagnetic form factors of the nucleon based

on our chiral extrapolations and a best value for the light-quark mass ratio mu/md.

Our results reveal that these quantities are at most 0.2% of the relevant proton form

factors to 1-sigma—an order of magnitude smaller than suggested by previous work.

Until now, the dominant uncertainty in experimental determinations of the strange

proton form factors has come from the assumption that the CSV form factors are

small; by quantifying this assumption, our precise results open the door for a new

generation of experimental tests of QCD through the proton’s strange form factors.





Chapter 8

Summary and Outlook

The strong-interaction properties of the nucleon are of broad interest; they directly

reveal the structure and interactions of hadrons, inform astrophysics, and are neces-

sary input into models of the evolution of the universe. Moreover, achieving percent-

level precision in Standard Model (SM) expectations for nucleon observables has be-

come essential in order to interpret modern direct and indirect experimental searches

for new physics. We have investigated the strong-interaction properties of hadrons,

in particular the nucleon, using lattice QCD and chiral effective field theory. Our

focus has been on nucleon strangeness and charge symmetry violation (CSV), both

associated with small deviations from approximate features of the nucleon in QCD.

Strange-quark effects in the nucleon provide a unique probe of the vacuum; as

the nucleon has no net strangeness, ss pairs can only appear through quantum

fluctuations. The contribution of s quarks to the mass of the nucleon—encoded

in the strange sigma term—is also relevant to searches for particle dark matter by

direct detection. Our precise new determination of this quantity using the Feynman-

Hellmann relation, σNs = 20(6) MeV, is in line with results from direct lattice

QCD simulations. We have also deduced values for the strange electromagnetic

form factors of the proton based on a comprehensive new lattice study of the octet

baryon Sachs form factors. Our results are consistent with available experimental

measurements of these quantities but span a far larger range of values of the probing

momentum scale, Q2. At Q2 above about 0.6GeV2 ours are the first determinations

of the strange form factors, experimental or based on lattice QCD. Our calculation

of the strange magnetic moment is an order of magnitude more precise than the

closest experimental result and is non-zero to 2-sigma: Gs
M(Q2 = 0) = 0.07(3)µN .

These investigations present a coherent picture; contributions from strange quarks

to both the mass and electromagnetic form factors of the nucleon appear at the

percent-level.

CSV effects are smaller still and affect observables at a scale which is typically

a fraction of a percent. Nevertheless, precise determinations of these quantities

are essential at the level of precision of current experiments searching for physics

beyond the SM. For example, our results reveal that the CSV contributions to the

electromagnetic form factors of the nucleon are at most 0.2% at 1-sigma—an order

of magnitude smaller than suggested by previous work. This revelation has removed

the dominant uncertainty in experimental determinations of the proton’s strange
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form factors and has hence opened the door for a new generation of tests of QCD.

Moreover, we have resolved CSV in the low spin-dependent and spin-independent

Mellin moments of parton distribution functions to be non-zero to 3-sigma, but,

again, these contributions appear only at the level of a fraction of a percent of

the total moments. In particular, CSV corrections to the Bjorken sum rule are

approximately 0.5%. This is an order of magnitude smaller than the uncertainty

of the current best experimental determination but will nevertheless be significant

in connection with proposed measurements at a future electron-ion collider. Proper

consideration of the small CSV effects in the spin-independent Mellin moments may

reduce the 3-sigma discrepancy with the SM reported by the NuTeV collaboration,

in neutrino-nucleus deep inelastic scattering experiments, by up to 1-sigma.

Our investigation of nucleon CSV effects proceeded using a novel formalism com-

bining the symmetries of QCD, encoded in the low-energy chiral effective field the-

ory, with the information gained from studying the entire baryon octet in isospin-

averaged 2+1–flavour lattice QCD simulations. In principle this method could

constrain the light-quark mass ratio R = mu/md, if the strong and electromag-

netic mass-splittings among members of the baryon isospin multiplets were precisely

known. Even at the level of precision of current determinations of these quantities

our analysis favours R = 0.553(43) over the slightly smaller number, R = 0.47(4),

obtained from a world-average of lattice simulation results. Clearly, more precise

determinations of the strong and electromagnetic CSV effects in the baryon masses

are of considerable interest.

In the course of our study we were also able to calculate a number of other

observables relevant to nucleon and hyperon structure which are of phenomenological

importance in their own right. Through a detailed analysis of the octet baryon

masses, based on several independent sets of lattice simulations, we determined the

pion-nucleon sigma term: σπN = 46(7) MeV. This result is in complete agreement

with the benchmark experimental value, 45(8) MeV, from an analysis by Gasser,

Leutwyler and Sainio in the early 1990s. Clearly, lattice simulations will be able

to rival experimental precision for this quantity in the near future. Furthermore,

our investigation of the lowest spin-dependent parton distribution moment can give

some insight into the resolution of the proton spin puzzle: we have revealed that

the fraction of spin carried by the quarks in the octet baryons varies, that is, that

the quark spin-fraction is structure-dependent. This result suggests that the spin-

suppression observed in the proton cannot be explained by the axial anomaly alone.

Our complete lattice study of the octet baryon electromagnetic form factors—

including careful consideration of meson mass, finite-volume, and lattice discretisa-

tion effects—allowed a detailed investigation of the hyperon form factors, which have

received little attention in the literature to date. These quantities are of interest

both in their own right and because they provide valuable insight into the environ-

mental sensitivity of the distribution of quarks inside a hadron. Importantly, we

performed the first accurate extraction of the magnetic radii of the entire outer-ring

baryon octet from lattice QCD. It is also notable that the precision of our results
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for the nucleon form factors, extrapolated to the physical point, rivals experimental

measurements.

In summary, we have determined precise new SM values for a number of strong

observables relevant to nucleon and hyperon structure. This investigation has been

guided by experiment. Not only do our results set benchmark values for tests of

QCD, but they provide input for direct searches for physics beyond the SM and in-

form the analysis of experimental measurements of poorly-known SM quantities. By

combining lattice QCD simulations with chiral effective field theory techniques we

have truly been able to probe QCD in the physically-relevant parameter space. We

have carefully corrected systematic effects in our simulations, such as unphysically-

large meson masses and finite lattice volumes, and have taken advantage of the infor-

mation provided by the baryon octet to investigate SU(3)-flavour–breaking effects.

Most notably, we have developed a formalism for determining nucleon CSV observ-

ables from isospin-averaged 2+1–flavour lattice simulations. A coherent picture has

emerged; CSV effects typically appear at the level of a fraction of a percent—an or-

der of magnitude smaller than most previous estimates. Our study of strange-quark

contributions to nucleon observables has revealed that these are of order 1%.





Appendix A

Formal Details of Heavy Mass

Techniques

In this appendix we explicitly derive the heavy-baryon Lagrangian for the interac-

tions of the spin-1
2

baryon octet with the octet mesons from the familiar relativistic

expression. For simplicity we omit electromagnetic terms and interactions with the

spin-3
2

decuplet; as the effective theory is represented by the most general Lagrangian

consistent with the broken chiral symmetry, it is in most cases simplest to construct

this directly in terms of the heavy-baryon fields. This is the approach which is taken

in Chapter 3.

Representing the octet baryons in matrix form, as in Section 3.3.2, the standard

relativistic Lagrangian for baryon-meson interactions is

L = B(i /D −MB) +DBγµγ5{Aµ, B}+ FBγµγ5[AµB]. (A.1)

Considering the baryons to be heavy, their four-momenta are expressed as pµ =

MBvµ +kµ, where vµ is a four-velocity satisfying v2 = 1, and kµ is a soft momentum

with v · k � {MB,Λχ}. One can then construct eigenstates of operators which

project the upper and lower components of the Dirac wavefunction, so that

B(x) = e−iMBv·x(H(x) + h(x)), (A.2)

where

H(x) = eiMBv·xP+B(x), (A.3a)

h(x) = eiMBv·xP−B(x), (A.3b)

and

P± =
1

2
(1± /v). (A.4)

In terms of these new fields, the Lagrangian of Eq. (A.1) assumes the form

L = HAH + hBH +Hγ0B†γ0h− hCh. (A.5)
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Using the projection operator identities

P±P∓ = 0, P±P± = P±, P± /DP± = ±v ·DP±, P± /DP∓ = /D − /vv ·D, (A.6)

one finds the explicit low-energy expansions

A = iv ·D + 2DBSµ{Aµ, B}+ 2FBSµ[Aµ, B] + . . . , (A.7a)

B = i( /D − /vv ·D)−DBγ5vµ{Aµ, B} − FBγ5vµ[Aµ, B] + . . . , (A.7b)

C = A+ 2MB + . . . . (A.7c)

Clearly the two field components H and h are coupled in the Lagrangigan of

Eq. (A.5). This can be resolved via the field-redefinition

h′ = h− C−1BH. (A.8)

In path-integral language it is clear that the ‘heavy’ field h, with a mass pa-

rameter of twice the baryon mass, can be integrated out: the generating functional

Z[sources] is given by

eiZ[sources] = const.

∫
δH δH δh δh exp

(
i

∫
d4x (L+ source terms)

)
= const.

∫
δH δH δh δh exp

(
i

∫
d4x

(
H
(
A+ γ0Bγ0C−1B

)
H

−h′Ch′ + source terms
))

= const.

∫
δH δH det(C) exp

(
i

∫
d4x

(
H
(
A+ γ0Bγ0C−1B

)
H

+ source terms
))

, (A.9)

where the integrated determinant generates an (uninteresting) overall constant. Fi-

nally, we have derived an effective Lagrangian in terms of the ‘light’ field components

H only:

Leff. = H
(
A+

(
γ0B†γ0

)
C−1B

)
H. (A.10)

Expanding C−1 in a power series in 1/MB, to leading order, gives the Lagrangian

presented in Eq. (3.29). The first 1/MB corrections are generated by

L(1/MB) = H
γ0B†γ0B

2MB

H. (A.11)

Of course, when loop contributions are calculated, a set of counterterms is re-

quired to absorb the various divergences which arise. These are constructed in the

heavy-baryon formalism just as they are in the relativistic framework: by considering

all possible local terms allowed by the symmetry requirements of parity transforma-
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tions, charge conjugation, hermitean conjugation, overall Lorentz-invariance, and

invariance under chiral vector and axial-vector transformations.





Appendix B

Definitions and Identities

Here we collate a number of identities and relations which were used to simplify the

expressions which arose in the derivation of the results presented in Chapters 4, 6,

and 7. As defined in Chapter 3, vµ denotes the four-velocity of a heavy baryon, Pauli-

Lubanski spin operators are denoted by Sµ, and P µν is a spin-polarisation projector

that acts on the decuplet baryon field tensor T µ to project out the positive spin-1
2

solutions to the equation of motion.

v · S = 0, S2B = −3

4
B, (B.1)

vµTµ = 0, SµTµ = 0, (B.2)

P µνP λ
ν = −P µλ, P µνgµν = −2, (B.3)

P µνSµ = −4

3
Sν , SνP

µν = −4

3
Sµ, (B.4)

{Sλ,Sσ} =
1

2

(
vλvσ − gλσ

)
, P µν = (vµvν − gµν)− 4

3
SµSν , (B.5)

P µνvν = P µνvµ = 0, P µνSν = SµP
µν = 0. (B.6)

Throughout this work we employ a compact notation for field bilinear invariants

which was originally employed by Labrenz and Sharpe in Ref. [270]. In the following

expressions, A is an operator with the transformation properties of the axial current

Aµ, while Γ is an arbitrary Dirac matrix, e.g., the spin operator Sµ. The octet and

decuplet baryon tensors Bijk and T µijk are as defined in Eqs. (3.39) and (3.32).(
BΓB

)
≡ B

α

kjiΓ
β
αBijk,β, (B.7)(

BΓAB
)
≡ B

α

kjiΓ
β
αAii′Bi′jk,β, (B.8)(

BΓBA
)
≡ B

α

kjiΓ
β
αAkk′Bijk′,β × (−1)(i+j)(k+k′), (B.9)(

BΓAµTµ
)
≡ B

α

kjiΓ
β
αA

µ
ii′T

β
µ,i′jk, (B.10)(

T
µ
ΓTµ

)
≡ T

µ

kji,αΓαβT
β
µ,ijk, (B.11)(

T
µ
ΓAνTµ

)
≡ T

µ

kji,αΓαβA
ν
ii′T

β
µ,i′jk. (B.12)
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Appendix C

Derivations for Chapter 3

In this appendix we give the details of several derivations relevant to the discussion

of Chapter 3.

C.1 Loop Integral Transform

Here we show the simplification of a loop integral required in Section 3.6.

I =

∫
d4k

(2π)4

kikj
(k0 − iε)(k2 −m2 + iε)

=

∫
d3~k

(2π)4

∫
dk0

kikj
(k0 − iε)(k2 −m2 + iε)

=

∫
d3~k

(2π)4

∫
dk0

kikj
(k0 − iε)(k0 − ω + iε)(k0 + ω − iε)

, where ω =

√
~k2 +m2,

= −(2πi)

∫
d3~k

(2π)4

{
kikj

k0(k0 + w)

∣∣∣∣
k0=ω

}

= −(2πi)

∫
d3~k

(2π)4

{
kikj
2ω2

}
= −i

∫
d3~k

(2π)3

{
kikj

2(~k2 +m2)

}

= −iδij
6

∫
d3~k

(2π)3

~k2

~k2 +m2

= −i2πδij
3

∫ ∞
0

dk

(2π)3

k4

k2 +m2
.

(C.1)

C.2 Example of Finite-Volume Correction

Here we explicitly derive the finite-volume correction expression presented in Sec-

tion 3.6. We consider the integral of Eq. (3.55), with a dipole regulator in the FRR
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scheme:

Idip.
π =

2

π

∫
dk

k4

k2 +m2

(
Λ2

Λ2 + k2

)
=

1

2π2

∫
d3k

k2

k2 +m2

(
Λ2

Λ2 + k2

)
. (C.2)

The finite-volume correction to the associated loop-integral expression can be mod-

eled as

δL
(
Idip.
π

)
=

1

2π2

(2π)3

L3

∑
~k

k2

k2 +m2

(
Λ2

Λ2 + k2

)4

−
∫
d3k

k2

k2 +m2

(
Λ2

Λ2 + k2

)4


=
1

2π2

(2π)3

L3

∑
~k

(
Λ2

Λ2 + k2

)4

−
∫
d3k

(
Λ2

Λ2 + k2

)4


+
1

2π2

(2π)3

L3

∑
~k

−m2

k2 +m2

(
Λ2

Λ2 + k2

)4

−
∫
d3k

−m2

k2 +m2

(
Λ2

Λ2 + k2

)4


=4πΛ8

 1

L3

∑
~k

(
1

k2 + Λ2

)4

−
∫

d3k

(2π)3

(
1

k2 + Λ2

)4


− 4πm2Λ8

 1

L3

∑
~k

1

(k2 +m2)(k2 + Λ2)4
−
∫

d3k

(2π)3

1

(k2 +m2)(k2 + Λ2)4

.
(C.3)

The final step is to use Feynman parameters to express the second term in the

expression in the standard form:

1

(k2 +m2)(k2 + Λ2)4
= 4

∫ 1

0

dx
(1− x)3

(x(k2 +m2) + (1− x)(k2 + Λ2))5

= 4

∫ 1

0

dx
(1− x)3

(k2 + xm2 + (1− x)Λ2)5 , (C.4)

giving the result stated in Section 3.7:

δL
(
Idip.
π

)
= 4πΛ8δL(Λ, 4)− 16πm2Λ8

∫ 1

0

dx(1− x)3δL

(√
xm2 + (1− x)Λ2, 5

)
.

(C.5)



Appendix D

Additional Figures for Chapter 4

In this appendix we display several additional figures relevant to the discussion of

Chapter 4.
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Figure D.1: Locations of the lattice simulations in the ml–ms plane. The symbols are as

in Fig. 4.1. The arrows show the chosen projection of the lattice simulation results onto

the trajectories plotted in Figs. 4.2 and 4.3.
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Figure D.2: Fit to the QCDSF-UKQCD collaboration baryon octet data (also shown

in Fig. 4.3), plotted along the trajectory of fixed (physical) strange quark mass. The

error bands are as in Fig. 4.3. The red stars show the experimental values of the baryon

masses [30]. This figure may be directly compared with Fig. 4.2, which shows the fit to

the PACS-CS collaboration lattice results along the same trajectory in mπ–mK space.



Appendix E

Additional Results for Chapter 5

In this appendix we give some additional results of the work presented in Section 5.3.

σBq (MeV)
B u d s

p 19(3) 24(4) 53(8)
n 13(2) 35(5) 50(8)
Λ 11(2) 20(3) 185(11)
Σ0 9(1) 16(2) 227(14)
Σ+ 16(2) 3(1) 231(14)
Σ− 2(1) 30(4) 224(13)
Ξ0 9(1) 1.15(41) 339(16)
Ξ− 0.78(23) 16(2) 335(15)

Table E.1: Octet baryon sigma terms, derived using the Feynman-Hellmann relation

applied to the chiral extrapolation of PACS-CS collaboration lattice simulation results

described in Chapter 5, with the lattice scale set using the mass-independent prescription

(c.f., Table 5.3).

σBq (MeV)
B u d s

p 17(3) 21(4) 27(15)
n 11(2) 30(5) 25(15)
Λ 10(2) 17(3) 163(14)
Σ0 8(1) 14(2) 234(14)
Σ+ 15(2) 1(1) 236(14)
Σ− 1(2) 27(3) 231(14)
Ξ0 9(1) 0.00(81) 336(14)
Ξ− 0.11(44) 16(2) 332(14)

Table E.2: As in Table E.2, based on the extrapolation of QCDSF-UKQCD collaboration

lattice simulations of the octet baryon masses.
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Appendix F

Tables of Chiral Coefficients

The tables in this appendix give explicit expressions for the various chiral coefficients

used in this body of work, particularly in Chapters 6 and 7. Coefficients which vanish

are either omitted from the tables, or their positions are left blank.

F.1 Strong Interaction Vertices

Tables F.1–F.14 give the Clebsch-Gordan coefficients CBB′φ and CBTφ (defined in

Eqs. (3.40d) and (3.40e)), which correspond to leading-order strong interaction ver-

tices coupling an octet-baryon to octet-baryon or octet-baryon to decuplet-baryon

through the emission of a meson. These vertices are illustrated in Figs. 3.1(a) and

3.1(b). The coefficients are expressed in terms of the parameters D, F , and C, which

are defined in the Lagrangians of Eq. (3.29) and (3.37) in Chapter 3.

F.2 Twist-Two Operator Insertion Vertices

The Clebsch-Gordan coefficients corresponding to insertions of the twist-two oper-

ators relevant to our exploration of parton distribution moments in Chapter 6 are

given in Tables F.15–F.24. The coefficients are defined in Eqs. (6.17) and (6.18),

and the associated vertices are illustrated in Fig. 6.1. Superscripts (n) on every

coefficient C and on every unknown parameter α, β, σ, and bi (defined in the La-

grangians derived in Section 6.2) have been suppressed for clarity of notation. We

have displayed the coefficient tables for the spin-independent case only; the spin-

dependent coefficients are recovered by the trivial re-labelling α(n) → ∆α(n) etc.

The labels ‘Doubly’, ‘Singly’, ‘Triply’, and ‘Other’ denote the status of the indi-

cated quark flavour in the baryon B or T , i.e., whether it is the doubly, singly or

triply-represented quark, or does not appear at all.

F.3 Electromagnetic Form Factor Extrapolation

In Tables F.25–F.37 we present expressions for the coefficients αBq, αBq(q
′), and

β
Bq(φ)
O/D/T which appear in the chiral extrapolation expressions for the magnetic and

electric Sachs form factors, Eqs. (7.30) and (7.39), derived in Chapter 7. These
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parameters take the same form in terms of the undetermined chiral-limit form factors

c
E/M
i and µα/β/γ (defined in Section 7.3.2) for the magnetic and electric form factors

(under the replacements µF → bF and µD → bD for GE). Of course, the numerical

values of the chiral-limit form factors differ not only for the electric and magnetic

cases, but at each fixed value of Q2 at which the extrapolation is applied. As

above, the labels ‘Doubly’, ‘Singly’, and ‘Other’ indicate whether the quark q′ or q

is doubly-represented, singly-represented, or not at all represented in the baryon B.

CBB′π+

HH
HHHHB′

B
p Λ Σ0 Σ+ Ξ0

n 2(D + F )

Λ 2
√

2
3
D

Σ0 −2
√

2F

Σ− 2
√

2
3
D 2

√
2F

Ξ− 2(D − F )

Table F.1: Clebsch-Gordan coefficients for the leading-order strong coupling of octet

baryons B and B′ through the emission of the pseudoscalar meson π+.

CBB′π−
H
HHH

HHB′
B

n Λ Σ0 Σ− Ξ−

p 2(D + F )

Λ 2
√

2
3
D

Σ0 2
√

2F

Σ+ 2
√

2
3
D −2

√
2F

Ξ0 2(D − F )

Table F.2: Clebsch-Gordan coefficients for the leading-order strong coupling of octet

baryons B and B′ through the emission of the pseudoscalar meson π−.
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C
B
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′ K
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CBTπ+ × C−1

HHH
HHHT
B

p n Λ Σ0 Σ+ Ξ0

∆0 1√
3

∆− 1

Σ∗0 − 1√
6

Σ∗− − 1√
2

1√
6

Ξ∗− − 1√
3

Table F.8: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet

baryon B to a decuplet baryon T through the emission of the pseudoscalar meson π+.

CBTπ− × C−1

HH
HHHHT

B
p n Λ Σ0 Σ− Ξ−

∆++ −1

∆+ − 1√
3

Σ∗0 1√
6

Σ∗+ 1√
2

1√
6

Ξ∗0 1√
3

Table F.9: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet

baryon B to a decuplet baryon T through the emission of the pseudoscalar meson π−.

CBTK0 × C−1

H
HHH

HHT
B

p n Λ Σ0 Σ− Ξ−

Σ∗0 − 1√
6

Σ∗+ − 1√
3

Ξ∗0 1√
2

1√
6

Ξ∗− 1√
3

Ω− 1

Table F.10: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet

baryon B to a decuplet baryon T through the emission of the pseudoscalar meson K0.
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CBTK+ × C−1

HHH
HHHT
B

p n Λ Σ0 Σ+ Ξ0

Σ∗0 1√
6

Σ∗− 1√
3

Ξ∗0 − 1√
3

Ξ∗− − 1√
2

1√
6

Ω− −1

Table F.11: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet

baryon B to a decuplet baryon T through the emission of the pseudoscalar meson K+.

CBTK− × C−1

H
HHH

HHT
B

Σ0 Σ+ Σ− Ξ0 Ξ−

∆++ 1

∆+ −
√

2
3

∆0 − 1√
3

Σ∗0 − 1√
6

Σ∗+ 1√
3

Table F.12: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet

baryon B to a decuplet baryon T through the emission of the pseudoscalar meson K−.

C
BTK

0 × C−1

HH
HHHHT

B
Σ0 Σ+ Σ− Ξ0 Ξ−

∆+ 1√
3

∆0 −
√

2
3

∆− −1

Σ∗0 1√
6

Σ∗− − 1√
3

Table F.13: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet

baryon B to a decuplet baryon T through the emission of the pseudoscalar meson K
0
.
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CBTφ × C−1

HHH
HHHBT
φ

π0 η

p∆+
√

2
3

cos ε −
√

2
3

sin ε

n∆0
√

2
3

cos ε −
√

2
3

sin ε

ΛΣ∗0 − 1√
2

cos ε 1√
2

sin ε

Σ0Σ∗0 1√
2

sin ε 1√
2

cos ε

Σ+Σ∗+ − 1√
6

(
cos ε+

√
3 sin ε

)
1√
6

(
sin ε−

√
3 cos ε

)
Σ−Σ∗− 1√

6

(√
3 sin ε− cos ε

)
1√
6

(√
3 cos ε+ sin ε

)
Ξ0Ξ∗0 − 1√

6

(
cos ε+

√
3 sin ε

)
1√
6

(
sin ε−

√
3 cos ε

)
Ξ−Ξ∗− 1√

6

(√
3 sin ε− cos ε

)
1√
6

(√
3 cos ε+ sin ε

)
Table F.14: Clebsch-Gordan coefficients for the leading-order strong coupling of an octet

baryon B to a decuplet baryon T through the emission of the pseudoscalar meson π0 or

η. The π0–η mixing parameter ε is defined in Eq. (4.5).

CBBOq

Doubly Singly Other

1
6
(5α + 2β + 6σ) 1

6
(α + 4β + 6σ) σ

Table F.15: Clebsch-Gordan coefficients for the leading-order interaction of the twist-

two operator defined in Eq. (6.4a) with an outer-ring octet baryon B. Labels ‘Doubly’,

‘Singly’, and ‘Other’ indicate whether the quark flavour q is doubly, singly, or not at all

represented in B.

CBB′Oq
HHH

HHHBB′
q

u d s

ΛΛ 1
4
(α + 2β + 4σ) 1

4
(α + 2β + 4σ) 1

2
(α + 2σ)

ΛΣ0 1
4
√

3
(α− 2β) − 1

4
√

3
(α− 2β)

Σ0Σ0 1
12

(5α + 2β + 12σ) 1
12

(5α + 2β + 12σ) 1
6
(α + 4β + 6σ)

Table F.16: Clebsch-Gordan coefficients for the leading-order interaction of the twist-two

operator defined in Eq. (6.4a) with the Λ and Σ0 baryons.
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CBBOqM ×m−1
q′

H
HHH

HHq′
q

Doubly

Doubly −b1 + b2 − b3 + b4 + b5 + b7 + b9

Singly b7

Other b1 + b2 + b3 + b4 + b7 + b8

Singly

Doubly b9

Singly b5

Other b8

Other

Doubly b1 − b2 − b3 + b4 + b6 + b9

Singly b6

Other −b1 − b2 + b3 + b4 + b5 + b6 + b8

Table F.17: Clebsch-Gordan coefficients for the O(mq) counterterms relevant to effective

matrix elements of the twist-two operator defined in Eq. (6.4a). Labels ‘Doubly’, ‘Singly’,

and ‘Other’ indicate whether the quark flavours q and q′ are doubly, singly, or not at all

represented in the outer-ring octet baryon B.
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CBBφφ′Ou
HHH

HHHB
φφ′

π+π− K+K−

p 1
3
(β − 2α) 1

6
(−5α− 2β)

n 1
3
(2α− β) 1

6
(−α− 4β)

Λ 1
4
(α− 2β)

Σ0 1
4
(2β − α)

Σ+ 1
6
(−5α− 2β) 1

3
(β − 2α)

Σ− 1
6
(5α + 2β) 1

6
(α + 4β)

Ξ0 1
6
(−α− 4β) 1

3
(2α− β)

Ξ− 1
6
(α + 4β) 1

6
(5α + 2β)

Table F.20: Clebsch-Gordan coefficients for the coupling of the u-quark twist-two oper-

ator defined in Eq. (6.4a) to the octet baryon B through the emission of two mesons.

CBBφφ′Od
HH

HHHHB
φφ′

π+π− K0K
0

p 1
3
(2α− β) 1

6
(−α− 4β)

n 1
3
(β − 2α) 1

6
(−5α− 2β)

Λ 1
4
(α− 2β)

Σ0 1
4
(2β − α)

Σ+ 1
6
(5α + 2β) 1

6
(α + 4β)

Σ− 1
6
(−5α− 2β) 1

3
(β − 2α)

Ξ0 1
6
(α + 4β) 1

6
(5α + 2β)

Ξ− 1
6
(−α− 4β) 1

3
(2α− β)

Table F.21: Clebsch-Gordan coefficients for the coupling of the d-quark twist-two oper-

ator defined in Eq. (6.4a) to the octet baryon B through the emission of two mesons.
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CBBφφ′Os
HH

HHHHB
φφ′

K0K
0

K+K−

p 1
6
(α + 4β) 1

6
(5α + 2β)

n 1
6
(5α + 2β) 1

6
(α + 4β)

Λ 1
4
(2β − α) 1

4
(2β − α)

Σ0 1
4
(α− 2β) 1

4
(α− 2β)

Σ+ 1
6
(−α− 4β) 1

3
(2α− β)

Σ− 1
3
(2α− β) 1

6
(−α− 4β)

Ξ0 1
6
(−5α− 2β) 1

3
(β − 2α)

Ξ− 1
3
(β − 2α) 1

6
(−5α− 2β)

Table F.22: Clebsch-Gordan coefficients for the coupling of the s-quark twist-two oper-

ator defined in Eq. (6.4a) to the octet baryon B through the emission of two mesons.

CTTOq × 3
(
γ − γ′

3

)−1

Singly 1
Doubly 2
Triply 3

Table F.23: Clebsch-Gordan coefficients for the leading-order interaction of the twist-

two operator defined in Eq. (6.4a) with a decuplet baryon T . Labels ‘Doubly’, ‘Singly’,

and ‘Triply’ indicate whether the quark flavour q is doubly, singly, or triply-represented

in T . The low-energy constants γ and γ′ are defined in Eq. (6.11).
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CBTO∆q
× ω−1

HH
HHHHBT

q
u d s

p∆+ 1√
3
− 1√

3

n∆0 1√
3
− 1√

3

ΛΣ∗0 −1
2

1
2

Σ0Σ∗0 1
2
√

3
1

2
√

3
− 1√

3

Σ+Σ∗+ − 1√
3

1√
3

Σ−Σ∗− 1√
3
− 1√

3

Ξ0Ξ∗0 − 1√
3

1√
3

Ξ−Ξ∗− 1√
3
− 1√

3

Table F.24: Clebsch-Gordan coefficients for the transition between an octet baryon B

and decuplet baryon T via an insertion of the twist-two operator defined in Eq. (6.4b).

The low-energy constant ω is defined in Eq. (6.16).

αBq

Doubly Singly

2µF µF − µD

Table F.25: Expressions for the coefficients αBq which appear in the chiral expansion for

the magnetic Sachs form factor GM (Eq. (7.30)). The labels ‘Doubly’ and ‘Singly’ indicate

whether the quark flavour q is doubly or singly-represented in the outer-ring octet baryon

B.

αBq
HH

HHHHB
q

u d s

Λ µF − 2µD
3

µF − 2µD
3

µD
3

+ µF
Σ0 µF µF µF − µD

Table F.26: Expressions for the chiral coefficients αBq, defined in Eq. (7.30), for the Λ

and Σ0 baryons.
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αBq(q
′)

HH
HHHHmq′

q
Doubly

mDoubly
1
6
(c10 + c11 + c12 + 18c3 + 45c4 + 2c5 + 5c6 + c9)

mSingly
1
6
(−2c10 + c11 − 2c12 + 18c3 + 45c4 + 4c9)

mOther
1
2
(6c3 + 15c4)

Singly

mDoubly
1
6
(−2c10 + 4c11 − 2c12 + 36c3 + 9c4 + c9)

mSingly
1
6
(36c3 + 9c4 + 4c5 + c6)

mOther
3
2
(4c3 + c4)

Table F.27: Coefficients of terms in the chiral expansion for the magnetic Sachs form

factor GM (Eq. (7.30)) which are linear in the quark masses. The labels ‘Doubly’, ‘Singly’,

and ‘Other’ indicate whether the quark flavour q or q′ is doubly, singly, or not at all

represented in the outer-ring octet baryon B.

αΛq(q′)

HHH
HHHmq′

q
u

mu
1
4
(18c3 + 9c4 + 2c5 + c6)

md
1
4
(−c12− c10 + c11 + 18c3 + 9c4 + c9)

ms
1
4
(c11 + 9(2c3 + c4))

d

mu
1
4
(−c12− c10 + c11 + 18c3 + 9c4 + c9)

md
1
4
(18c3 + 9c4 + 2c5 + c6)

ms
1
4
(c11 + 9(2c3 + c4))

s

mu
1
4
(18c4 + c9)

md
1
4
(18c4 + c9)

ms
1
2
(9c4 + c6)

Table F.28: Coefficients of terms in the chiral expansion for the magnetic Sachs form

factor of the Λ baryon (Eq. (7.30)) which are linear in the quark masses.
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αΣ0q(q′)

HHH
HHHmq′

q
u

mu
1
12

(18c3 + 45c4 + 2c5 + 5c6)

md
1
12

(c10 + c11 + c12 + 18c3 + 45c4 + c9)

ms
1
12

(−2c10 + c11 − 2c12 + 18c3 + 45c4 + 4c9)

d

mu
1
12

(c10 + c11 + c12 + 18c3 + 45c4 + c9)

md
1
12

(18c3 + 45c4 + 2c5 + 5c6)

ms
1
12

(−2c10 + c11 − 2c12 + 18c3 + 45c4 + 4c9)

s

mu
1
12

(−2c10 + 4c11 − 2c12 + 72c3 + 18c4 + c9)

md
1
12

(−2c10 + 4c11 − 2c12 + 72c3 + 18c4 + c9)

ms
1
6
(36c3 + 9c4 + 4c5 + c6)

Table F.29: Coefficients of terms in the chiral expansion for the magnetic Sachs form

factor of the Σ0 baryon (Eq. (7.30)) which are linear in the quark masses.

β
Bq(φ)
OPPPPPPPPPB−1mφ

q
Doubly Singly

mDoubly +mSingly 4(D2 + F 2) −2
3
(D2 + 6DF − 3F 2)

mSingly +mOther 2(D − F )2

mDoubly +mOther
4
3
(D2 + 3F 2)

2mDoubly
4
3
(D2 + 3F 2)

2mSingly 2(D − F )2

Table F.30: Coefficients of terms in the chiral expansion for the magnetic Sachs form

factor (Eq. (7.30)) corresponding to loop contributions with octet baryon intermediate

states. The labels ‘Doubly’, ‘Singly’, and ‘Other’ indicate whether the quark flavour q is

doubly, singly, or not at all represented in the outer-ring octet baryon B.
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β
Λq(φ)
OPPPPPPPPPB−1mφ

q
u d

mu +md
2
9
(7D2 − 12DF + 9F 2) 2

9
(7D2 − 12DF + 9F 2)

md +ms
2
9
(D2 − 12DF + 9F 2)

mu +ms
2
9
(D2 − 12DF + 9F 2)

2mu
2
9
(7D2 − 12DF + 9F 2)

2md
2
9
(7D2 − 12DF + 9F 2)

s

md +ms
2
9
(7D2 + 6DF + 9F 2)

mu +ms
2
9
(7D2 + 6DF + 9F 2)

2ms
2
9
(D + 3F )2

Table F.31: Coefficients of terms in the chiral expansion for the magnetic Sachs form

factor of the Λ baryon (Eq. (7.30)) corresponding to loop contributions with octet baryon

intermediate states.

β
Σ0q(φ)
OPPPPPPPPPB−1mφ

q
u d s

mu +md
2
3
(D2 + 3F 2) 2

3
(D2 + 3F 2)

md +ms 2(D2 + F 2) 2
3
(D2 − 6DF + 3F 2)

mu +ms 2(D2 + F 2) 2
3
(D2 − 6DF + 3F 2)

2mu
2
3
(D2 + 3F 2)

2md
2
3
(D2 + 3F 2)

2ms 2(D − F )2

Table F.32: Coefficients of terms in the chiral expansion for the magnetic Sachs form

factor of the Σ0 baryon (Eq. (7.30)) corresponding to loop contributions with octet baryon

intermediate states.
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β
Bq(φ)
D × C−2

PPPPPPPPPB−1mφ

q
Doubly Singly

mDoubly +mSingly
2
9

−5
9

mSingly +mOther −2
9

mDoubly +mOther −1
9

2mDoubly −1
9

2mSingly −2
9

Table F.33: Coefficients of terms in the chiral expansion for the magnetic Sachs form

factor (Eq. (7.30)) corresponding to loop contributions with decuplet baryon intermediate

states. The labels ‘Doubly’, ‘Singly’, and ‘Other’ indicate whether the quark flavour q is

doubly, singly, or not at all represented in the outer-ring octet baryon B.

β
Λq(φ)
D × C−2

PPPPPPPPPB−1mφ

q
u d s

mu +md −1
6
−1

6

md +ms −1
3

1
6

mu +ms −1
3

1
6

2mu −1
6

2md −1
6

Table F.34: Coefficients of terms in the chiral expansion for the magnetic Sachs form

factor of the Λ baryon (Eq. (7.30)) corresponding to loop contributions with decuplet

baryon intermediate states.

β
Σ0q(φ)
D × C−2

PPPPPPPPPB−1mφ

q
u d s

mu +md − 1
18
− 1

18

md +ms
1
9

− 7
18

mu +ms
1
9

− 7
18

2mu − 1
18

2md − 1
18

2ms −2
9

Table F.35: Coefficients of terms in the chiral expansion for the magnetic Sachs form

factor of the Σ0 baryon (Eq. (7.30)) corresponding to loop contributions with decuplet

baryon intermediate states.
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β
Bq(φ)
T

HHH
HHHmφ

q
Doubly Singly

mDoubly +mSingly 2 1
mSingly +mOther 1
mDoubly +mOther 2
2mDoubly 2
2mSingly 1

Table F.36: Coefficients of terms in the chiral expansion for the electric Sachs form factor

(Eq. (7.39)) corresponding to tadpole-loop contributions. The labels ‘Doubly’, ‘Singly’,

and ‘Other’ indicate whether the quark flavour q is doubly, singly, or not at all represented

in the outer-ring octet baryon B.

β
Bq(φ)
T

H
HHH

HHmφ

q
u d s

mu +md 1 1
md +ms 1 1
mu +ms 1 1
2mu 1
2md 1
2ms 1

Table F.37: Coefficients of terms in the chiral expansion for the electric Sachs form factor

of the Λ or Σ0 baryon (Eq. (7.39)) corresponding to tadpole-loop contributions.



Appendix G

Deep Inelastic Scattering and the

Operator Product Expansion

Here we sketch the connection between inclusive deep inelastic scattering (DIS),

hadron structure functions, and parton distribution functions (PDFs). We focus in

particular on the use of the operator product expansion to separate the hard (per-

turbative) and soft (nonperturbative) physics, and the relation of PDFs to matrix

elements of local operators which is the result used in Chapter 6. Further details

can be found in Ref. [30].

G.1 DIS and the Compton Forward Scattering

Amplitude

At lowest order in perturbation theory, the double-differential cross section for DIS of

polarised leptons on polarised nucleons can be factorised into leptonic and hadronic

components:
d2σ

dx dy
=

2πyα2

Q4

∑
j

ηjL
µν
j W

j
µν . (G.1)

Here x = Q2/2Mν, where q is the four-momentum transferred to the nucleon

through the virtual gauge boson with Q2 = −q2 > 0, ν is the lepton’s energy

loss in the nucleon’s rest frame, and y = ν/E. The summation in j is over the

exchanged bosons (γ and Z for neutral-current processes, W for charged-current

processes), and the factors ηj denote ratios of the corresponding propagators and

couplings to the photon propagator and coupling (squared). The lepton tensor Lµν
encodes the coupling of the exchanged boson to the leptons and is explicitly calcu-

lable in electroweak theory. The hadronic tensor, on the other hand, encodes all of

the internal structure of the nucleon that is probed by the electroweak currents. It

may be expressed as

Wµν(q, p, S) =
1

4π

∫
d4z eiq·z

〈
p, S

∣∣[J†µ(z), Jν(0)
]∣∣p, S〉, (G.2)
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where p and S denote the momentum and polarisation vector of the nucleon, re-

spectively, and p · S = 0. The hadronic currents, Jµ(z), are electromagnetic or

weak quark currents which couple to the exchanged gauge boson. For example, the

electromagnetic hadronic current is

J (γ)
µ (z) =

∑
q

eqψq(z) γµ ψq(z), (G.3)

where the sum runs over all quark flavours q.

The hadronic tensor can be decomposed into a sum of distinct Lorentz tensor

structures multiplied by dimensionless quantities, known as structure functions, ac-

companied only by kinematic variables. This decomposition is given explicitly in

Ref. [30]. Of interest to us here is the relationship between moments of these struc-

ture functions and a series of nucleon matrix elements of local operators composed

of quark and gluon fields. To derive this relationship using the operator product

expansion it is useful to consider the virtual Compton forward scattering amplitude,

defined by the time-ordered product of hadronic currents:

Tµν(q, p, S) = i

∫
d4z eiq·z

〈
p, S

∣∣TJ†µ(z)Jν(0)
∣∣p, S〉. (G.4)

By the optical theorem, this quantity is related to the hadronic tensor by

Wµν(q, p, S) =
1

2π
ImTµν(q, p, S), (G.5)

i.e., considered as a function of q2 and ω = 1/x, Wµν is given by the discontinuity

of Tµν across the branch cuts in the complex plane for ω (which lie on the real

axis where −∞ < ω ≤ −1 and 1 ≤ ω < ∞). The operator product expansion

described in the next section uses the result that the leading Q2-behaviour of Wµν

is determined by the light-cone singularities of the time ordered product of currents

in Tµν .

G.2 The Operator Product Expansion

Wilson’s operator product expansion gives a factorisation of the hadronic tensor

into hard and soft components by a formal expansion of the product of hadronic

currents in coordinate space and a systematic analysis of its light-cone behaviour.

Explicitly, the time-ordered product of hadronic currents can be expanded near the

light-cone as

iTJ†(z)J(0)
z2→0
≈
∑
i

C(i)
(
z2
)
O(i)(z, 0), (G.6)

where Lorentz indices have been suppressed for clarity. The Wilson coefficients

C(i)(z2) are complex-valued functions which are, in general, singular for z2 → 0.

The sum runs over all bilocal operators O(z, 0) with the same quantum numbers
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and transformation properties as the product of currents on the left hand side. The

expansion can be further re-written in terms of local operators by a Taylor expansion

about z2 = 0:

iTJ†(z)J(0)
z2→0
≈
∑
i

C(i)
n

(
z2
)
zµ1 · · · zµnO(i)

µ1···µn(0). (G.7)

Because components of z might be large even where z2 → 0, all higher-order terms

in this expansion are important. The set of local operators chosen here is generally

taken to be totally symmetric and traceless in the Lorentz indices, in order to project

onto definite spin n. The singular behaviour of the coefficient functions C(i)(z2) for

z2 → 0 can be derived by naive dimensional counting to be

C(i)
(
z2
) z2→0∼

(
1

|z|

)2dJ−
(
d

(i)
n −n

)
. (G.8)

Here d
(i)
n denotes the mass-dimension of the local operators O, and dJ that of the

currents. Clearly, for a given product of currents, the singular behaviour of the

coefficient functions C(i)(z2) scales with the difference of the mass dimension and

spin of the associated operators. This dimension is named twist: τ
(i)
n = d

(i)
n −n, and

the operators with the lowest twist are dominant in the Bjorken limit (where Q2

and ν →∞ with x fixed). As operators are at least bilinear in the parton fields, the

smallest possible twist is two. Higher-twist contributions are suppressed by powers

of Q2.

Re-writing the Compton amplitude T (Eq. (G.4)) using the operator product

expansion, the dominant contributions are thus

T ≈
∑
i,n

∫
d4x qiq·z C(i)

n

(
z2
)
zµ1 · · · zµn

〈
p
∣∣O(i)

µ1···µn(0)
∣∣p〉 (G.9)

≈
∑
i,n

(
2

Q2

)n
C(i)
n

(
Q2
)
qµ1 · · · qµn

〈
p
∣∣O(i)

µ1···µn(0)
∣∣p〉− Tr . (G.10)

Here we have simplified the notation by dropping Lorentz indices on the currents and

suppressing any spin-dependence. The symbol Tr denotes trace terms proportional

to gµiµj . The coefficient functions C
(i)
n (Q2) are essentially Fourier transforms of the

C
(i)
n (z2). Parameterising the matrix elements of the local operators as〈

p
∣∣O(i)

µ1···µn(0)
∣∣p〉 = 2O(i)

n (pµ1 · · · pµn − Tr), (G.11)

the Compton forward scattering amplitude thus becomes a Laurent series in (1/x):

T = 2
∑
i,n

C(i)
n (Q2)O(i)

n

(
1

x

)n
+ . . . , (G.12)



196 Deep Inelastic Scattering and the Operator Product Expansion

where the ellipsis denotes the contributions from higher-twist terms. The reduced

matrix elements O
(i)
n generally depend on the renormalisation scale µ2 of the corre-

sponding operators.

Using the optical theorem (see discussion surrounding Eq. (G.5)), we thus reveal

a relationship between the nth moments of the hadronic tensor, or equivalently the

nth moments of the structure functions, and the nucleon matrix elements of the

spin-n operators in the operator product expansion1:∫ 1

0

dx xn−1W (x,Q2) =
∑
i

C(i)
n (Q2)O(i)

n + · · · . (G.13)

Factorisation appears clearly here; the hadronic tensor has been separated into hard

and soft parts. The Wilson coefficients C
(i)
n (Q2) encode the hard physics, are inde-

pendent of the target state, and their dependence on Q2 is perturbatively calculable.

The reduced matrix elements O
(i)
n (µ2) contain all of the information about the soft

physics of the process and the internal structure of the target. These quantities

are inherently nonperturbative, and, as we describe in the next section, may be

identified with the PDFs of the QCD-improved parton model.

G.3 The QCD-Improved Parton Model

As outlined in the introduction to Chapter 6, a proton is described in the parton

model as being composed of a number of point-like quark and gluon constituents

named partons. Approaching the infinite-momentum frame of the proton, these

partons behave as quasi-free, non-interacting particles with collinear momenta. The

DIS structure functions can then be described as the incoherent sum of all virtual-

photon–parton cross-sections, weighted by the probability of finding each parton

in the proton with a given longitudinal momentum fraction x. The (nonperturba-

tive) momentum distribution number-density functions are the PDFs. In general, a

structure function F may thus be decomposed as

F (x) =
∑
q

Cq(x) q(x), (G.14)

where q(x) generically denotes a combination of PDFs. In general one writes q(x)

for quarks, q(x) for antiquarks, and ∆q for the spin-dependent combination (the

difference of the distributions with the quark spin parallel and antiparallel to the

proton spin) of flavour q.

This intuitive picture is modified by our understanding of QCD. In particular, the

radiation of hard gluons from the quarks violates the assumption that the transverse

momentum of the partons in the infinite-momentum frame of the proton is small.

1In fact, because of some details of the Cauchy integration in ω = 1/x in the derivation, this holds
only for certain values of n (even or odd) depending on amplitude under consideration. Details
are given in Ref. [30] or in standard textbooks.
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This leads to logarithmic scaling violations (particularly at small x). That is, the

structure functions in fact evolve with the probing scale and are not functions of x

alone. In this ‘QCD-improved’ parton picture, the structure functions still factorise,

but are now described in terms of scale-dependent PDFs f(x, µ2), where f denotes

the gluons g or some flavour of quark q, and µ is the scale of the probe2.

From Eq. (G.13) applied to the structure functions it is clear that moments of

the QCD-improved parton model PDFs may be directly identified with the scale-

dependent reduced matrix elements of local operators. As an explicit example we

consider the current Jµ = qγµq for a single quark flavour q. At twist-two, the Lorentz

structure of the operators that can contribute to the operator product expansion

can be either qγµq or qγµγ5q (in the limit that light quark masses can be neglected),

because the operator product JµJν does not change chirality. The conventional

basis of twist-two spin-n operators is

Oµ1···µn
q = in−1qγµ1

←→
D µ2 · · ·

←→
D µnq, (G.15a)

Oµ0···µm
∆q = imqγ5γ

µ0
←→
D µ1 · · ·

←→
D µmq. (G.15b)

These operators basically assess the one-particle properties of the quarks in some

state, e.g., in a baryon B. At n = 1 they reduce to the usual vector and axial-vector

currents which measure the coresponding baryon charges. Matrix elements of these

operators:〈
B(~p)

∣∣[O{µ1···µn}
q − Tr]

∣∣B(~p)
〉

= 2〈xn−1〉Bq
[
p{µ1 · · · pµn} − Tr

]
, (G.16a)〈

B(~p)
∣∣[O{µ0···µm}

∆q − Tr]
∣∣B(~p)

〉
= 2〈xm〉B∆qMB

[
S{µ0pµ1 · · · pµm} − Tr

]
, (G.16b)

are matched to moments of the spin-independent (qB) and spin-dependent (∆qB)

quark distribution functions in B (where we have suppressed the dependence on the

scale µ2):

〈xn−1〉Bq =

∫ 1

0

dx xn−1(qB(x) + (−1)nqB(x)), (G.17a)

〈xm〉B∆q =

∫ 1

0

dx xm(∆qB(x) + (−1)m∆qB(x)). (G.17b)

Higher-twist effects have no single-particle interpretation within the parton model.

For example, twist-four (next-to-leading order) contributions are understood to orig-

inate from two sources: the influence of nonperturbative background gluon fields on

the quark propagators, i.e., the correlation of a quark and gluon with total momen-

tum fraction x, and four-quark operators.

2The generalisation of Eq. (G.14) in fact involves the convolution of the perturbatively-calculable
hard scattering cross-section term and the PDFs.





Appendix H

Chiral Extrapolation Formulae for

Moments of PDFs

In this appendix we give explicit expressions for the chiral extrapolation of several

PDF-moment observables which were discussed in Chapter 6.

H.1 gA and 〈x〉pu−d
To facilitate direct comparison with, and use of, the master expressions given in

Eqs. (6.38) and (6.39), we write out the chiral expansions for the isovector ob-

servables 〈1〉p∆u−∆d = gA and 〈x〉pu−d explicitly. These expressions match earlier

work [171, 310] in the limit ε → 0. As outlined in Chapter 6, the integrals J̃

correspond directly to logarithmic contributions of the form m2log(m2) in DR. In

matching with familiar notation, we identify ∆γ(0) = 2H and impose the SU(6)

relation H = −3D.

gA = a+ bM +
1

16π2f 2
π

(
d+ d′C2

)
, (H.1)

a =D + F, (H.2a)

bM =
1

2

[(
−∆b

(0)
1 + ∆b

(0)
2 −∆b

(0)
3 + ∆b

(0)
4 + ∆b

(0)
5 + ∆b

(0)
7

)
Bmu

+
(
−∆b

(0)
5 + ∆b

(0)
7

)
Bmd

+
(

∆b
(0)
1 + ∆b

(0)
2 + ∆b

(0)
3 + ∆b

(0)
4 + ∆b

(0)
7

)
Bms

]
, (H.2b)

d =− 1

9
(D + F )

[
−3(D + F ) cos ε+

√
3(D − 3F ) sin ε

]2

J̃
(
m2
π0

)
− (D + F )

[
(D + F )2 J̃

(
m2
π±

)
+ J̃T

(
m2
π±

)]
− 1

2
(D − F )

{
[2F + 3(D + F )](D − F ) J̃

(
m2
K0

)
+ J̃T

(
m2
K0

)}
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− 1

3

[
2D3 +D2F + 12DF 2 + 9F 3

]
J̃
(
m2
K±

)
− F J̃T

(
m2
K±

)
− 1

9
(D + F )

[
3(D + F ) sin ε+

√
3(D − 3F ) cos ε

]2

J̃
(
m2
η

)
, (H.2c)

d′ =
30

81
D
[
(cos2 ε) J̃2

(
m2
π0 , δ

)
+ 4 J̃2

(
m2
π± , δ

)
+ J̃2

(
m2
K0 , δ

)
+ (sin2 ε) J̃2

(
m2
η, δ
)]

− 1

6
(D + F )

[
4(cos2 ε) J̃2

(
m2
π0 , δ

)
+ 8 J̃2

(
m2
π± , δ

)
+ 2 J̃2

(
m2
K0 , δ

)
+ J̃2

(
m2
K± , δ
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H.2 Charge Symmetry Violation

This section gives formulae for the spin-dependent and spin-independent charge

symmetry violating quark distributions as functions of quark and meson mass. The

expression for δ∆um was presented as Eq. (6.50) in Chapter 6. All integrals and

constants are defined in that chapter.

H.2.1 Spin-Dependent CSV PDFs
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H.2.2 Spin-Independent CSV PDFs
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Appendix I

Lattice Simulation Results for the

Electromagnetic Form Factors

This section presents tables of raw lattice simulation results, and basic derived quan-

tities, for the electromagnetic form factors F1 and F2 for the simulation parameters

tabulated in Section 7.2.1. The Dirac and Pauli mean-squared charge radii 〈r2〉B,q1,2 ,

and anomalous magnetic moments κB,q, extracted using naive dipole-like fits to the

raw lattice data as discussed in Section 7.2.3, are shown in Tables I.1–I.7. The raw

data for simulation set I is given in Tables I.8–I.10, that for simulation set II is

presented in Tables I.11–I.13, and raw lattice results on the orphan ‘ensemble 10’

are given in Tables I.14–I.16.

B, q 〈r2〉B,q1 (fm2) 〈r2〉B,q2 (fm2) κB,q (µN)

p, u 0.467(16) 0.391(91) 0.0414(53)
p, d 0.558(19) 0.502(39) −0.0616(27)
Σ, u 0.441(10) 0.374(40) 0.0615(37)
Σ, s 0.4008(69) 0.319(14) −0.0598(11)
Ξ, s 0.3732(35) 0.283(16) 0.0482(11)
Ξ, u 0.5208(69) 0.450(13) −0.0679(11)

Table I.1: Dirac and Pauli mean-squared charge radii and anomalous magnetic moments,

extracted from dipole-like fits (Eqs. (7.10a) and (7.10b)) to ensemble 10 at (mπ,mK) =

(220, 540)MeV. Details are given in Section 7.2.3.
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(mπ,mK) (MeV) Q2 (GeV2) F p,u
1 F p,d

1 F p,u
2 F p,d

2

(465,465) 0.26 1.434(24) 0.666(11) 0.932(20) −1.113(11)
0.51 1.134(19) 0.4873(94) 0.722(18) −0.8298(94)
0.73 0.936(17) 0.3744(88) 0.589(19) −0.6525(88)
0.95 0.804(16) 0.3014(75) 0.474(21) −0.5547(75)
1.15 0.697(15) 0.2491(72) 0.392(16) −0.4621(72)
1.35 0.616(15) 0.2058(73) 0.328(15) −0.3956(73)

(360,505) 0.26 1.3982(91) 0.6425(40) 0.822(28) −1.081(18)
0.51 1.089(12) 0.4588(51) 0.651(23) −0.792(12)
0.72 0.884(17) 0.3412(66) 0.535(26) −0.622(13)
0.92 0.781(32) 0.284(11) 0.396(36) −0.527(24)
1.12 0.656(26) 0.2219(81) 0.341(22) −0.426(17)
1.3 0.551(26) 0.1719(81) 0.324(23) −0.339(15)

(310,520) 0.26 1.382(18) 0.6253(75) 0.885(58) −1.034(33)
0.49 1.075(20) 0.4433(82) 0.620(39) −0.792(24)
0.71 0.883(29) 0.316(13) 0.528(41) −0.586(34)
0.91 0.754(41) 0.268(15) 0.409(59) −0.519(38)
1.1 0.633(29) 0.194(11) 0.346(34) −0.435(25)
1.29 0.535(36) 0.158(17) 0.343(43) −0.342(30)

(440,440) 0.26 1.3994(79) 0.6540(40) 0.823(38) −1.080(24)
0.5 1.078(11) 0.4689(56) 0.590(31) −0.804(20)
0.73 0.871(15) 0.3548(79) 0.451(31) −0.623(21)
0.94 0.733(21) 0.2827(92) 0.336(32) −0.479(20)
1.14 0.616(19) 0.2264(89) 0.270(24) −0.403(17)
1.33 0.545(25) 0.189(11) 0.236(23) −0.349(20)

(400,400) 0.26 1.3974(91) 0.6411(53) 0.854(56) −1.027(29)
0.5 1.084(12) 0.4564(62) 0.692(38) −0.744(24)
0.72 0.888(20) 0.3377(89) 0.506(33) −0.596(25)
0.93 0.787(28) 0.286(12) 0.412(47) −0.533(28)
1.13 0.668(20) 0.2299(85) 0.361(32) −0.411(21)
1.32 0.585(27) 0.184(10) 0.296(26) −0.356(26)

(330,435) 0.26 1.367(11) 0.6303(80) 0.819(46) −1.029(28)
0.5 1.057(14) 0.437(10) 0.651(30) −0.773(16)
0.72 0.875(17) 0.324(13) 0.511(31) −0.593(20)
0.92 0.726(33) 0.267(16) 0.340(45) −0.473(31)
1.12 0.614(26) 0.207(13) 0.296(27) −0.395(21)
1.3 0.544(29) 0.170(13) 0.271(30) −0.319(24)

Table I.8: Raw lattice simulation results for the nucleon: data set I.
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(mπ,mK) (MeV) Q2 (GeV2) FΣ,u
1 FΣ,s

1 FΣ,u
2 FΣ,s

2

(465,465) 0.26 1.434(24) 0.666(11) 0.932(20) −1.113(11)
0.51 1.134(19) 0.4873(94) 0.722(18) −0.8298(94)
0.73 0.936(17) 0.3744(88) 0.589(19) −0.6525(88)
0.95 0.804(16) 0.3014(75) 0.474(21) −0.5547(75)
1.15 0.697(15) 0.2491(72) 0.392(16) −0.4621(72)
1.35 0.616(15) 0.2058(73) 0.328(15) −0.3956(73)

(360,505) 0.26 1.4008(72) 0.6829(21) 0.996(24) −1.126(10)
0.5 1.0839(97) 0.5058(31) 0.770(21) −0.8620(89)
0.73 0.871(13) 0.3882(43) 0.615(20) −0.680(10)
0.95 0.774(23) 0.3301(73) 0.479(27) −0.587(15)
1.15 0.646(20) 0.2611(60) 0.414(19) −0.479(13)
1.34 0.545(21) 0.2092(68) 0.367(18) −0.393(13)

(310,520) 0.26 1.372(12) 0.6776(36) 1.062(38) −1.095(14)
0.51 1.055(14) 0.5074(56) 0.796(25) −0.855(17)
0.73 0.855(20) 0.3937(82) 0.657(29) −0.681(24)
0.95 0.731(24) 0.327(10) 0.507(35) −0.592(21)
1.15 0.641(22) 0.2667(94) 0.439(25) −0.515(20)
1.35 0.563(30) 0.222(14) 0.419(33) −0.442(27)

(440,440) 0.26 1.3994(79) 0.6540(40) 0.823(38) −1.080(24)
0.5 1.078(11) 0.4689(56) 0.590(31) −0.804(20)
0.73 0.871(15) 0.3548(79) 0.451(31) −0.623(21)
0.94 0.733(21) 0.2827(92) 0.336(32) −0.479(20)
1.14 0.616(19) 0.2264(89) 0.270(24) −0.403(17)
1.33 0.545(25) 0.189(11) 0.236(23) −0.349(20)

(400,400) 0.26 1.3974(91) 0.6411(53) 0.854(56) −1.027(29)
0.5 1.084(12) 0.4564(62) 0.692(38) −0.744(24)
0.72 0.888(20) 0.3377(89) 0.506(33) −0.596(25)
0.93 0.787(28) 0.286(12) 0.412(47) −0.533(28)
1.13 0.668(20) 0.2299(85) 0.361(32) −0.411(21)
1.32 0.585(27) 0.184(10) 0.296(26) −0.356(26)

(330,435) 0.26 1.3678(86) 0.6557(48) 0.915(41) −1.076(16)
0.5 1.053(11) 0.4731(66) 0.714(24) −0.815(13)
0.73 0.864(13) 0.3598(81) 0.555(27) −0.633(17)
0.94 0.734(24) 0.297(11) 0.414(34) −0.529(20)
1.14 0.624(22) 0.238(10) 0.343(23) −0.442(17)
1.33 0.554(27) 0.198(11) 0.296(24) −0.368(21)

Table I.9: Raw lattice simulation results for the sigma baryon: data set I.
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(mπ,mK) (MeV) Q2 (GeV2) FΞ,s
1 FΞ,u

1 FΞ,s
2 FΞ,u

2

(465,465) 0.26 1.434(24) 0.666(11) 0.932(20) −1.113(11)
0.51 1.134(19) 0.4873(94) 0.722(18) −0.8298(94)
0.73 0.936(17) 0.3744(88) 0.589(19) −0.6525(88)
0.95 0.804(16) 0.3014(75) 0.474(21) −0.5547(75)
1.15 0.697(15) 0.2491(72) 0.392(16) −0.4621(72)
1.35 0.616(15) 0.2058(73) 0.328(15) −0.3956(73)

(360, 505) 0.26 1.4537(51) 0.6457(27) 0.940(18) −1.129(10)
0.51 1.1536(76) 0.4607(35) 0.747(15) −0.8270(78)
0.74 0.948(10) 0.3437(45) 0.616(14) −0.6411(82)
0.96 0.841(20) 0.2909(69) 0.481(18) −0.531(13)
1.17 0.712(19) 0.2278(58) 0.422(16) −0.436(11)
1.36 0.608(20) 0.1789(65) 0.376(16) −0.354(11)

(310,520) 0.26 1.4475(58) 0.6317(38) 0.974(18) −1.114(13)
0.51 1.1557(86) 0.4468(51) 0.762(16) −0.825(11)
0.74 0.960(13) 0.3347(78) 0.630(18) −0.640(14)
0.96 0.834(17) 0.2742(66) 0.513(18) −0.524(16)
1.17 0.728(18) 0.2169(61) 0.442(17) −0.449(17)
1.37 0.647(26) 0.179(10) 0.403(21) −0.376(20)

(440,440) 0.26 1.3994(79) 0.6540(40) 0.823(38) −1.080(24)
0.5 1.078(11) 0.4689(56) 0.590(31) −0.804(20)
0.73 0.871(15) 0.3548(79) 0.451(31) −0.623(21)
0.94 0.733(21) 0.2827(92) 0.336(32) −0.479(20)
1.14 0.616(19) 0.2264(89) 0.270(24) −0.403(17)
1.33 0.545(25) 0.189(11) 0.236(23) −0.349(20)

(400,400) 0.26 1.3974(91) 0.6411(53) 0.854(56) −1.027(29)
0.5 1.084(12) 0.4564(62) 0.692(38) −0.744(24)
0.72 0.888(20) 0.3377(89) 0.506(33) −0.596(25)
0.93 0.787(28) 0.286(12) 0.412(47) −0.533(28)
1.13 0.668(20) 0.2299(85) 0.361(32) −0.411(21)
1.32 0.585(27) 0.184(10) 0.296(26) −0.356(26)

(330,435) 0.26 1.4094(62) 0.6283(41) 0.892(28) −1.082(14)
0.5 1.1030(87) 0.4418(56) 0.684(18) −0.795(11)
0.73 0.911(11) 0.3313(63) 0.546(19) −0.623(13)
0.95 0.792(19) 0.273(10) 0.430(25) −0.501(16)
1.15 0.677(19) 0.2178(86) 0.352(18) −0.424(13)
1.34 0.594(23) 0.1794(86) 0.306(20) −0.354(17)

Table I.10: Raw lattice simulation results for the cascade baryon: data set I.
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(mπ,mK) (MeV) Q2 (GeV2) F p,u
1 F p,d

1 F p,u
2 F p,d

2

(405,405) 0.17 1.5427(36) 0.7270(22) 1.038(28) −1.193(14)
0.33 1.2593(63) 0.5578(35) 0.856(23) −0.9420(90)
0.48 1.0658(90) 0.4448(46) 0.714(22) −0.7663(99)
0.62 0.940(12) 0.3724(57) 0.606(24) −0.655(12)
0.76 0.822(12) 0.3100(56) 0.513(19) −0.555(11)
0.89 0.730(15) 0.2620(64) 0.440(18) −0.480(11)
1.14 0.568(19) 0.1888(70) 0.331(22) −0.358(12)

(340,430) 0.17 1.5070(88) 0.7110(35) 0.988(39) −1.150(27)
0.32 1.2138(99) 0.5420(51) 0.759(29) −0.875(19)
0.47 1.018(12) 0.4302(64) 0.613(28) −0.711(18)
0.61 0.878(18) 0.3522(90) 0.493(34) −0.590(19)
0.75 0.767(19) 0.2971(90) 0.405(25) −0.495(16)
0.87 0.694(25) 0.256(10) 0.354(27) −0.440(19)
1.12 0.547(32) 0.190(12) 0.244(30) −0.339(25)

(265,450) 0.17 1.507(11) 0.7002(58) 0.872(75) −1.155(41)
0.32 1.224(15) 0.5298(72) 0.709(43) −0.869(30)
0.47 1.036(22) 0.4239(99) 0.504(47) −0.696(31)
0.61 0.870(24) 0.329(12) 0.380(59) −0.603(31)
0.74 0.778(26) 0.288(11) 0.337(34) −0.499(28)
0.86 0.686(32) 0.238(13) 0.315(36) −0.425(30)
1.1 0.518(40) 0.170(15) 0.217(49) −0.301(32)

Table I.11: Raw lattice simulation results for the nucleon: data set II.
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(mπ,mK) (MeV) Q2 (GeV2) FΣ,u
1 FΣ,s

1 FΣ,u
2 FΣ,s

2

(405,405) 0.17 1.5427(36) 0.7270(22) 1.038(28) −1.193(14)
0.33 1.2593(63) 0.5578(35) 0.856(23) −0.9420(90)
0.48 1.0658(90) 0.4448(46) 0.714(22) −0.7663(99)
0.62 0.940(12) 0.3724(57) 0.606(24) −0.655(12)
0.76 0.822(12) 0.3100(56) 0.513(19) −0.555(11)
0.89 0.730(15) 0.2620(64) 0.440(18) −0.480(11)
1.14 0.568(19) 0.1888(70) 0.331(22) −0.358(12)

(340,430) 0.17 1.5105(72) 0.7381(28) 1.107(39) −1.207(17)
0.33 1.2179(85) 0.5780(44) 0.849(28) −0.952(15)
0.48 1.021(10) 0.4690(57) 0.682(27) −0.788(14)
0.62 0.887(16) 0.3929(78) 0.553(31) −0.668(16)
0.76 0.775(17) 0.3333(80) 0.458(24) −0.567(14)
0.89 0.699(21) 0.2892(96) 0.397(26) −0.504(17)
1.14 0.558(27) 0.219(11) 0.275(27) −0.389(21)

(265,450) 0.17 1.5108(79) 0.7485(27) 1.132(53) −1.172(26)
0.33 1.212(10) 0.5920(42) 0.894(37) −0.950(21)
0.48 1.019(13) 0.4846(60) 0.682(34) −0.791(21)
0.62 0.881(14) 0.4033(82) 0.543(37) −0.668(23)
0.76 0.761(16) 0.3411(82) 0.459(26) −0.576(20)
0.89 0.680(20) 0.2927(96) 0.409(26) −0.507(22)
1.14 0.525(28) 0.213(10) 0.296(33) −0.385(26)

Table I.12: Raw lattice simulation results for the sigma baryon: data set II.
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(mπ,mK) (MeV) Q2 (GeV2) FΞ,s
1 FΞ,u

1 FΞ,s
2 FΞ,u

2

(405,405) 0.17 1.5427(36) 0.7270(22) 1.038(28) −1.193(14)
0.33 1.2593(63) 0.5578(35) 0.856(23) −0.9420(90)
0.48 1.0658(90) 0.4448(46) 0.714(22) −0.7663(99)
0.62 0.940(12) 0.3724(57) 0.606(24) −0.655(12)
0.76 0.822(12) 0.3100(56) 0.513(19) −0.555(11)
0.89 0.730(15) 0.2620(64) 0.440(18) −0.480(11)
1.14 0.568(19) 0.1888(70) 0.331(22) −0.358(12)

(340,430) 0.17 1.5483(42) 0.7144(27) 1.027(26) −1.197(18)
0.33 1.2730(67) 0.5471(39) 0.808(22) −0.920(13)
0.48 1.0816(95) 0.4364(51) 0.655(21) −0.746(13)
0.62 0.947(13) 0.3622(66) 0.529(23) −0.625(14)
0.76 0.833(15) 0.3066(69) 0.449(19) −0.528(12)
0.9 0.752(19) 0.2654(84) 0.393(20) −0.466(14)
1.15 0.613(26) 0.2021(99) 0.283(21) −0.367(18)

(265,450) 0.17 1.5672(39) 0.7074(25) 0.970(24) −1.232(18)
0.33 1.2997(65) 0.5384(35) 0.779(19) −0.933(14)
0.48 1.1059(94) 0.4278(44) 0.642(18) −0.742(13)
0.63 0.976(12) 0.3525(55) 0.523(21) −0.633(15)
0.77 0.856(14) 0.2954(59) 0.454(18) −0.529(12)
0.9 0.758(18) 0.2515(64) 0.396(16) −0.450(15)
1.16 0.616(26) 0.1905(88) 0.313(25) −0.338(16)

Table I.13: Raw lattice simulation results for the cascade baryon: data set II.

(mπ,mK) (MeV) Q2 (GeV2) F p,u
1 F p,d

1 F p,u
2 F p,d

2

(220,540) 0.12 1.612(12) 0.7631(50) 0.93(12) −1.251(46)
0.23 1.342(12) 0.6122(75) 0.717(76) −1.006(36)
0.34 1.165(16) 0.5103(93) 0.606(74) −0.877(32)
0.44 1.016(21) 0.424(12) 0.604(85) −0.709(38)
0.54 0.906(18) 0.359(10) 0.534(53) −0.635(29)
0.63 0.822(20) 0.311(11) 0.465(45) −0.563(26)
0.81 0.678(36) 0.244(15) 0.345(54) −0.452(36)

Table I.14: Raw lattice simulation results for the nucleon calculated on ensemble 10

(Table 7.1), at (mπ,mK) = (220, 540)MeV.
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(mπ,mK) (MeV) Q2 (GeV2) FΣ,u
1 FΣ,s

1 FΣ,u
2 FΣ,s

2

(220,540) 0.12 1.6270(77) 0.8219(21) 1.294(88) −1.314(21)
0.23 1.3616(92) 0.7040(38) 1.120(60) −1.147(18)
0.35 1.178(10) 0.6109(52) 0.952(49) −1.010(17)
0.45 1.037(15) 0.5335(74) 0.896(49) −0.898(19)
0.56 0.924(16) 0.4723(80) 0.772(35) −0.810(18)
0.66 0.829(16) 0.4202(87) 0.681(30) −0.731(19)
0.85 0.687(25) 0.338(11) 0.530(34) −0.610(21)

Table I.15: Raw lattice simulation results for the sigma baryon calculated on ensemble

10 (Table 7.1), at (mπ,mK) = (220, 540)MeV.

(mπ,mK) (MeV) Q2 (GeV2) FΞ,s
1 FΞ,u

1 FΞ,s
2 FΞ,u

2

(220,540) 0.12 1.6759(21) 0.7779(20) 1.062(26) −1.410(19)
0.24 1.4772(47) 0.6288(27) 0.955(21) −1.155(16)
0.35 1.3183(71) 0.5251(33) 0.862(19) −0.982(16)
0.46 1.1835(94) 0.4400(47) 0.756(19) −0.848(14)
0.56 1.079(11) 0.3800(46) 0.691(17) −0.734(13)
0.67 0.987(13) 0.3310(48) 0.636(17) −0.648(13)
0.87 0.840(18) 0.2594(61) 0.518(17) −0.512(14)

Table I.16: Raw lattice simulation results for the cascade baryon calculated on ensemble

10 (Table 7.1), at (mπ,mK) = (220, 540)MeV.





Appendix J

Additional Results for Chapter 7

This appendix gives further details of the study of the electromagnetic form factors

which was presented in Chapter 7.

J.1 Fit Parameters

Figures J.1 and J.2 show the values of the chiral parameters determined by our fits

to the magnetic and electric Sachs form factors. The parameters µD and µF (bD
and bF ) are defined in Eq. (7.28) (Eq. (7.35)), while the ci appear in Eqs. (7.29) and

(7.36). The di are relevant linear combinations of the ci:

d1 = c5 −
1

4
c11, d2 = c6 + c11, (J.1a)

d3 = c6 + c11, d4 = c10 −
5

2
c4 + c12. (J.1b)

We note that the numerical values of the parameters shown here are unrenormalised.

They are included merely to illustrate their approximately linear form in Q2. Recall

that the fits at different values of Q2 are independent.

J.2 Octet Baryon Form Factors: Figures

Figures J.3, J.4 and J.5 show the connected part of the octet baryon electromagnetic

form factors, extrapolated to infinite volume and the physical pseudoscalar masses.

The fits shown are those used in Sections 7.5.2 and 7.5.3 to extract the magnetic

moments and magnetic and electric mean-square radii.

215



216 Additional Results for Chapter 7

��� ��� ��� ���
-�

-�

�

�

�

�� (����)

μ
�

��� ��� ��� ���
-�

-�

�

�

�

�� (����)
μ
�

��� ��� ��� ���
-�

-�

�

�

�

�� (����)

�
�
(�
��

-
�
)

��� ��� ��� ���
-�

-�

�

�

�

�� (����)

�
�
(�
��

-
�
)

��� ��� ��� ���
-�

-�

�

�

�

�� (����)

�
�
(�
��

-
�
)

��� ��� ��� ���
-�

-�

�

�

�

�� (����)

�
�
(�
��

-
�
)

��� ��� ��� ���
-�

-�

�

�

�

�� (����)

� �
(�
��

-
�
)

��� ��� ��� ���
-�

-�

�

�

�

�� (����)

� �
(�
��

-
�
)

Figure J.1: Q2-dependence of the unrenormalised fit parameters for the chiral extrapo-

lation of the magnetic Sachs form factors—see Eqs. (7.28) and (7.29).
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Figure J.2: Q2-dependence of the unrenormalised fit parameters for the chiral extrapo-

lation of the electric Sachs form factors—see Eqs. (7.35) and (7.36).
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Figure J.3: Connected part of the octet baryon magnetic form factors. The blue circles

(left-hand column) and green crosses (right-hand column) denote the results of simulation

sets I and II, respectively, extrapolated to infinite volume and the physical pseudoscalar

masses. The red stars indicate the experimental magnetic moments. The lines show

dipole-like fits in Q2 using Eq. (7.40) (dashed red) and Eq. (7.41) (solid blue or green).
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Figure J.4: As in Fig. J.3.
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Figure J.5: Connected part of the octet baryon electric form factors. The blue circles

and green crosses denote the results of simulation sets I and II, extrapolated to infinite

volume and the physical pseudoscalar masses. The lines shown for the charged baryons

correspond to dipole-like fits in Q2 using Eq. (7.42).
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J.3 Details of the Calculation of `Rs
d

In this section we give further details of our model for the ratio of disconnected loop

contributions to the electromagnetic form factors of the proton, `Rs
d = `Gs/`Gd.

This quantity is needed for the calculation of the strange form factors performed in

Section 7.7.

The loop diagram shown in Fig. 7.6(a) gives contributions to the magnetic and

electric form factors of the proton which depend on the integrals IM and IE, respec-

tively:

IM(m,Q2) =

∫
d~k
k2
y u(~k + ~q/2)u(~k − ~q/2)

2ω2
+ω

2
−

, (J.2)

IE(m,Q2) =

∫
d~k

(~k2 − ~q 2/4)u(~k + ~q/2)u(~k − ~q/2)

ω+ω−(ω+ + ω−)
, (J.3)

where

ω± =

√
(~k ± ~q/2)2 +m2, (J.4)

~q is defined to lie along the z-axis, Q2 = −q2 and u(~k) is the ultraviolet regulator used

in the FRR scheme. As was done for the chiral extrapolation of the lattice results

used in this calculation [240, 241], we choose a dipole regulator, u(k) =
(

Λ2

Λ2+k2

)2

,

with a regulator mass Λ = 0.8 ± 0.2 GeV. The dipole form is suggested by a

comparison of the nucleon’s axial and induced pseudoscalar form factors [78] and

the choice of Λ is informed by a lattice analysis of nucleon magnetic moments [99].

For the electric form factor we also consider Fig. 7.30(b), as discussed in Sec-

tion 7.7. In the formalism used here, this diagram contributes a constant to the

electric form factor which is equal in magnitude and opposite in sign to the con-

tribution from Fig. 7.6(a) at Q2 = 0, ensuring that the electric charge remains

unrenormalised. We model the Q2-dependence of Fig. 7.30(b) by scaling that con-

stant by an appropriate form factor. This results in a contribution to GE which is

identical to that of Fig. 7.6(a) under the replacement

IE
(
mφ, Q

2
)
→ −IE(mφ, 0)Gq

E

(
Q2
)
. (J.5)

Here Gq
E (for q = {d, s}) is the q quark contribution to the ‘intermediate’ baryon

form factor; it is the average contribution of q quarks to the form factors of the

intermediate baryons in the loop with a proton external state, weighted by the

appropriate Clebsch-Gordon coefficients. We approximate this for the s quark by

the form factor GΣ0,s
E , taken from our lattice simulations. Similarly, we set Gd

E to

the same quantity, but where the strange quark mass is set equal to the light quark

mass in the chiral extrapolation of Section 7.4.
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The contributions of the loop diagrams of Fig. 7.30 to the proton electric and

magnetic form factors are given by the loop integrals defined above, weighted by the

appropriate chiral coefficients. As the disconnected chiral coefficients for the d and

s quarks are the same (and cancel in the ratio), the central values of `Rs
d at each Q2

are given simply by the ratio of the integrals I(mφ, Q
2) with pion and kaon masses

in the loops:

`Rs
d,M(Q2) =

IM(mπ, Q
2)

IM(mK , Q2)
, (J.6)

`Rs
d,E(Q2) =

IE(mπ, Q
2)− IE(mπ, 0)Gd

E(Q2)

IE(mK , Q2)− IE(mK , 0)Gs
E(Q2)

. (J.7)

The dominant uncertainty in `Rs
d comes from allowing the regulator mass Λ

to vary in the range 0.6–1.0 GeV. This is combined in quadrature with half of

the shift that results from additionally allowing decuplet intermediate states in the

loops. The calculation including the decuplet loops proceeds as described above,

with additional terms—the relevant decuplet-intermediate-state loop integrals (given

in Section 7.3.2)—in both the numerator and denominator of Eqs. (J.6) and (J.7),

weighted by the appropriate relative disconnected chiral coefficients which may be

found in Ref. [306].
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[173] I. C. Cloët et al., Phys. Lett. B714, 97 (2012).

[174] J. -W. Chen and M. J. Savage, Nucl. Phys. A707, 452 (2002).

[175] J. -W. Chen and X. Ji, Phys. Lett. B523, 107 (2001).

[176] D. Arndt and M. J. Savage, Nucl. Phys. A697, 429 (2002).

[177] B. Borasoy, B. R. Holstein, R. Lewis, and P. P. A. Ouimet, Phys. Rev. D66,

094020 (2002).

[178] M. Diehl, A. Manashov, and A. Schäfer, Eur. Phys. J. A31, 335 (2007).
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