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Abstract. Over the next years, measurements at the LHC and the HL-LHC will provide us
with a wealth of new data. The best hope to answer fundamental questions, like the nature of
dark matter, is to adopt big data techniques in simulations and analyses to extract all relevant
information. On the theory side, LHC physics crucially relies on our ability to simulate events
efficiently from first principles. These simulations will face unprecedented precision requirements
to match the experimental accuracy. Innovative ML techniques like generative networks can help
us overcome limitations from the high dimensionality of the phase space. Such networks can
be employed within established simulation tools or as part of a new framework. Since neural
networks can be inverted, they open new avenues in LHC analyses.

1. Introduction
The interpretation of the huge amount of data measured in collider searches depends on the qual-
ity of associated precision simulations. A unique strength of high-energy physics is the ability to
build first principle based event generators. Starting from a fundamental Lagrangian they are
able to generate parton level events followed by parton showers and hadronization. Finally we
can simulate the interaction of the final particles with complex detectors. While demonstrating
impressive performance, computing resources become a limiting factor for precision simulations.
The complexity of loop calculations grows exponentially with the order in coupling strength as
well as the number of final state particles. At the same time the mapping of the underlying
phase space distributions becomes more challenging due to intermediate resonances and phase
space edges, which leads to poor unweighting efficiencies. Finally, full simulations of detector
responses are a major bottleneck of the simulations chain. It is therefore crucial to explore new
methods to increase the efficiency of the simulation chain, to fully exploit the collider data [1].

While the use of different kinds of neural networks has already been firmly established for
parton densities [2], their application for other building blocks of the simulation chain like the
estimation of amplitudes [3, 4, 5] is rapidly evolving. Generative networks open new possibilities
to enhance the efficiency of simulations [1, 6]. They are able to learn underlying distributions
with high precision [7, 8, 9, 10, 11, 12, 13, 14] and can therefore provide more efficient phase
space mapping [15, 16, 17, 18, 19, 20], amplify [21, 22] and compress data [23], serve as surrogate
models in phenomenological studies and provide fast detector simulations [24, 25, 26]. Finally
generative networks enable the inversion of the simulation chain [27, 28, 29]. This contribution
discusses the advantages of normalizing flows as a particular suitable type of generative networks
for precision simulations and their application to the generation of events in forward and inverse
direction.
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2. Normalizing flows
Neural network based generative models can be sorted into three main categories: variational
autoencoders [30], generative adversarial networks [31] and normalizing flows [32]. While the
focus of early studies in event generation and detector simulation was on GANs and VAEs, the
inherently high degree of control of normalizing flows has become an essential asset when moving
further in the implementation of neural networks for precision simulations and inference.

Normalizing flows consist of multiple bijective layers which induce an invertible mapping f
from a latent space Z to a target space X of equal dimension. In order to generate a distribution
of events in the target space, the normalizing flow requires as input a distribution in the latent
space Z which is typically chosen to be Gaussian. Since the normalizing flow provides a bijective
mapping, we can then evaluate the density of the generated distribution p(x) = p(f(z)) via

p(x) = p(z)

∣∣∣∣dxdz
∣∣∣∣−1

, (1)

relying on the known density of the multivariate Gaussian in the latent space and the ability to
efficiently compute the Jacobian of the flow.

This property of normalizing flows opens up two methods for their training. We can either
train a model on explizit density values, given for instance by the amplitude of a process, or
we can train on a representative sample of training data, i.e. events, that were drawn from the
target distributions. For the training on a target density, we have to minimize the difference
between target and generated density, parametrized within the loss function. Suitable choices
are given for instance by the mean squared error or the KL divergence via

Ldensity = −
〈
log

pgen(x)

ptrue(x)

∣∣∣∣
x=f(z)

〉
z∼N

. (2)

As we sample new points during each iteration of the training, this methods relies on our
ability to calculate the target density efficiently during training time. Expensive calculations
of the target density (for instance through loop-amplitudes) can hence become a bottleneck in
precision simulations. An alternative approach learns the target distribution from representative
samples. The network is trained in the inverse direction to map these samples to a gaussian
distribution in the latent space. The loss is therefore based on the posterior of the network
weights θ given training data.

Lsamples = − log p(θ|x) (3)

= − log p(x|θ)− log p(θ) + log p(x) (4)

= − log p(z|θ) ·
∣∣∣∣dxdz

∣∣∣∣−1

− log p(θ) + const . (5)

In the second line we have applied Bayes’ theorem to replace the posterior of the network
weights with a conditional probability of the data given network parameters. The remaining
terms include a prior on the network parameters and the likelihood of the data which yields
only a constant contribution to the loss, as it is independent of the network parameters. In the
last line we use the change of variables formula in eq. (1). The resulting conditional probability
of the latent variable z = f−1(x) is given by a Gaussian which simplifies to a contribution to
the loss proportional to z2. From the derivation of the loss function it becomes apparent that
an efficient training requires not only a bijective network, but also short evaluation time in the
inverse direction. In the following we will therefore refer to these networks as invertible neural
networks (INN) [33, 34]. Suitable architectures are given for instance by affine coupling layers
or cubic splines.
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Figure 1. Discriminator-reweighted INN distributions of the jet transverse momenta in the
Z + 1 jet exclusive channel (left), and the angular distance of jets in the Z + 3 jets exclusive
channel (right) from a combined Z+ jets generation. The bottom panels show the average
correction factor obtained from the discriminator output. A detailed description can be found
in the original publication [8].

While many advances in machine learning have been achieved through overall improvements
of the performance in regression or classification problems, precision simulations make it
essential to evaluate in addition the uncertainties of their predictions. By replacing network
weights with parametrized weight distributions, Bayesian networks have demonstrated their
ability to estimate uncertainties coming from noisy data as well as limited convergence of
the network [35, 36]. The corresponding loss is extended to include a prior on the weight
distributions, parametrized by their mean and standard deviation. The combination of Bayesian
networks with normalizing flows enables uncertainty estimates of generative networks [37].
Sampling from the network weights generates a distribution over distributions which encodes the
uncertainty of the network. Furthermore through inversion we can access directly the uncertainty
on the density of any phase space point.

3. Precision flows at work
The control over generated phase space densities combined with efficient training due to stable
loss functions, have spawned multiple applications of normalizing flows for simulations in high-
energy physics.

3.1. Optimizing the phase space sampling
The computation of cross sections for specific processes relies on the numerical integration of
amplitudes. While holes and complex phase space structures make naive integration methods
highly inefficient, a suitable remapping of the integration variable can lead to nearly constant
integrands and increase the efficiency of the integration procedure. The optimal remapping is
hence equivalent to the minimization of the density loss in eq. (2) making normalizing flows an
ideal choice for the optimization of phase space mapping [15, 16, 17, 18, 19, 20].

3.2. Event generation with uncertainties
Once the calculation of amplitudes becomes expensive, the recycling of training data within
a sample based training becomes particularly advantageous. However, without the direct
evaluation of the phase space density, we do not have access to exact predictions. It therefore



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012004

IOP Publishing
doi:10.1088/1742-6596/2438/1/012004

4

10°4

10°3

10°2

n
or

m
al

iz
ed

Z + 1 jet exclusive

True

BINN

Train

1.00
1.25

M
o
d
el

T
ru

th

25 50 75 100 125 150
pT,j1

[GeV]

10°1
100
101

±[
%

]

0.0

0.2

0.4

n
or

m
al

iz
ed

Z + 3 jet exclusive

True

BINN

Train

1.00
1.25

M
o
d
el

T
ru

th

0 2 4 6 8
¢Rj1j3

10°1
100
101

±[
%

]
Figure 2. BINN densities and uncertainties of the jet transverse momenta in the Z + 1 jet
exclusive channel (left), and the angular distance of jets in the Z + 3 jets exclusive channel
(right) from a combined Z+ jets generation. A detailed description can be found in the original
publication [8].

becomes particularly important to achieve high precision with respect to underlying training
data and establish a suitable framework to estimate uncertainties.

Fig. 1 shows the results of a standard invertible network trained on Z+jets data at shower
level. In the left panel we see that the decreasing distribution of the transverse momenta is
captured with high accuracy.

Limitations of the naive INN approach can arise however when the networks is not sufficiently
expressive to learn specific features of the dataset. An example is shown in the right panel of
Fig. 1, where the INN was unable to learn the topological holes in the distance between two jets
induced by the jet algorithm. The treatment of such deviations requires an additional helper
network. Classifiers trained to distinguish between generated and training data via a standard
binomial cross entropy

L = −
∑

x∼pdata

log(D(x))−
∑

x∼pINN

log(1−D(x)) (6)

= −
∫

dx pdata(x) log(D(x)) + pINN(x) log(1−D(x)) , (7)

learn to estimate the density ratio of generated and training data

pdata(x)

pINN(x)
=

D(x)

1−D(x)
. (8)

The resulting classifier can be used either to estimate systematic deviations between training and

generated distributions or directly correct for the difference by assigning a weight w = D(x)
1−D(x)

to each generated event x.
The resulting reweighted distributions are indicated by the red lines in Fig. 1. In order to

avoid large reweighting factors we can reuse the obtained weighted as feedback in a weighted
training [38, 39, 8] to improve the accuracy of the original simulation, resulting in turn in
weights closer to 1.

Even when corrections based on the classifier are taken into account, uncertainty estimates
via the Bayesian INN remain crucial, to capture effects of limited training statistics, imperfect
optimization and fluctuations in the training. Fig. 2 shows how the deviations between generated
data and truth are captured by the uncertainties modeled by the Bayesian implementation.
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Figure 3. Comparison of truth level and unfolded distributions for 2-jet exclusive (left) and
inclusive channels(right). A detailed description can be found in the original publication [29].

3.3. Detector simulations
Full simulations of detector responses model every individual component of a detector, making
them highly computing intensive. Normalizing flows have demonstrated promising performance
for detector simulations, for instance in the simulation of e+, γ and π+ showers [25, 26]. The
performance evaluated in terms of a classifier metric demonstrated significant improvements
with respect to standard GAN trainings.

4. Inverting the simulation chain with invertible networks
While the conceptual development of precise generative networks including a framework for
uncertainty estimates has direct applications in event generation, it also serves as a basis for
further applications like the inversion of the simulation chain.

Due to the probabilistic nature of shower and detector simulation, the inversion of the
simulation can not be solved with a deterministic mapping. Instead, a given detector level
measurement, can be induced by various parton level events configurations. Hence, the inversion
needs to be implemented as a conditional event generator that produces a probability distribution
over possible parton level configurations for any given detector level measurement [29]. Due to
the flexible format of conditional information we can simultaneously train on data with varying
number of jets. Fig. 3 shows the unfolded distributions for a Z+jets dataset with up to three
hard jets. The left panel shows the unfolded distribution for the training on events with exactly
2 jets. Instead we can train the cINN on the full inclusive dataset and evaluate it afterwards
separately for the individual exclusive channels. The results of this study are displayed in the
right panel of Fig. 3 and show an excellent agreement between truth distribution and unfolded
data.

5. Outlook
Precision requirements of the upcoming LHC Runs will challenge current event simulation and
analysis tools. At the same time, first-principles simulations are more important than ever
to extract the relevant physics from the vast LHC dataset. New machine learning methods,
like dedicated generative networks for precision simulations, can enhance the efficiency of
established methods and open up new ways to analyze data. Multiple applications have already
demonstrated that normalizing flows can provide the control that is necessary for precision
simulations. We have established a comprehensive framework to estimate different types of
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network related uncertainties, which will be essential for any LHC application from optimized
importance sampling to event generation and the inversion of the simulation chain. Given these
recent developments, we expect normalizing flows to become the work horses in modern LHC
simulations and their conditional counterparts to transform LHC analyses related to unfolding
and optimal data exploitation.
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2020 SciPost Phys. 9 074 (Preprint 2006.06685)
[30] Kingma D P and Welling M 2014 (Preprint 1312.6114)
[31] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y 2014

(Preprint 1406.2661)
[32] Kobyzev I, Prince S and Brubaker M 2020 IEEE Transactions on Pattern Analysis and Machine Intelligence

1–1 ISSN 1939-3539 URL http://dx.doi.org/10.1109/TPAMI.2020.2992934



ACAT-2021
Journal of Physics: Conference Series 2438 (2023) 012004

IOP Publishing
doi:10.1088/1742-6596/2438/1/012004

7

[33] Ardizzone L, Kruse J, Wirkert S, Rahner D, Pellegrini E W, Klessen R S, Maier-Hein L, Rother C and Köthe
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[35] Bollweg S, Haußmann M, Kasieczka G, Luchmann M, Plehn T and Thompson J 2020 SciPost Phys. 8 006

(Preprint 1904.10004)
[36] Kasieczka G, Luchmann M, Otterpohl F and Plehn T 2020 SciPost Phys. 9 089 (Preprint 2003.11099)
[37] Bellagente M, Haußmann M, Luchmann M and Plehn T 2021 (Preprint 2104.04543)
[38] Backes M, Butter A, Plehn T and Winterhalder R 2021 SciPost Phys. 10 089 (Preprint 2012.07873)
[39] Stienen B and Verheyen R 2021 SciPost Phys. 10 038 (Preprint 2011.13445)


