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Abstract. This paper provides a technical description of the SuperNova Early
Warning System (SNEWS), an international network of experiments with the goal
of providing an early warning of a galactic supernova.
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1. Introduction

The famous supernova SN1987A in the Large Magellanic Cloud (LMC) brought the field of
supernova neutrino astrophysics to life. Two water Cherenkov detectors, Kamiokande II and
IMB, detected 20 events between them [1]–[4]; two scintillator detectors, Baksan and LSD [5, 6]
also reported observations. The sparse SN1987A neutrino data were sufficient to confirm the
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baseline model of gravitational collapse causing type II SNe and to put limits on neutrino
properties (such as a ν̄e mass limit of around 20 eV.) To make distinctions between different
theoretical models of core collapse and supernova explosions and to extract more information
about neutrino properties, we await the more copious neutrino signal which the new generation
of large neutrino experiments will detect from the next such event in our Galaxy.

When the core of a massive star at the end of its life collapses, less than 1% of the gravitational
binding energy of the neutron star will be released in the forms of optically visible radiation and
the kinetic energy of the expanding remnant. The remainder of the binding energy is radiated
in neutrinos, of which ∼1% will be electron neutrinos from an initial ‘neutronization’ burst
and the remaining 99% will be neutrinos from the later cooling reactions, roughly equally
distributed among flavours. Average neutrino energies are expected to be about 13–14 MeV
for νe, 14–16 MeV for ν̄e and 20–21 MeV for all other flavours. The neutrinos are emitted over
a total timescale of tens of seconds, with roughly half of them emitted during the first 1–2 s.
The expected features of a core collapse neutrino signal are summarized in [7]; more recent
simulation work can be found e.g. in [8, 9].

A core-collapse supernova in our Galaxy will bring a wealth of scientific information.
The neutrino signal will provide information about the properties of neutrinos themselves
and astrophysicists will learn about the nature of the core collapse. One unique feature of
the neutrino signal is that it is prompt: neutrinos emerge on a timescale of tens of seconds,
while the first electromagnetic signal may be hours or days after the stellar collapse. Therefore,
neutrino observation can provide an early alert that could allow astronomers a chance to
make unprecedented observations of the very early turn-on of the supernova light curve;
even observations of SNe as young as a few days are rare for extra-galactic supernovae. The
environment immediately surrounding the progenitor star is probed by the initial stages of the
supernova. For example, any effects of a close binary companion upon the blast would occur very
soon after shock breakout. UV and soft x-ray flashes are predicted at very early times. Finally,
there may be entirely unexpected effects—no supernova has ever been observed very soon after
its birth. Although the neutrino signal will be plentiful in practically all galactic core collapses,
it is possible that there will be little or no optical fireworks (the supernova ‘fizzles’); the nature
of any observable remnant would then be very interesting.

This paper focuses on the prompt alert which is possible using the neutrino signal. We will
describe the technical aspects of the system.

Section 2 gives an overview of SNEWS, and section 3 briefly covers the expected signal in
current detectors. Section 4 discusses some issues associated with SNEWS. Section 5 introduces
the individual experiments’ monitors. Section 6 covers SNEWS implementation and defines the
coincidence conditions and alert scheme. Section 7 describes the results of the ‘high-rate’ system
test performed in 2001. Section 8 describes the alert to the astronomical community. Section 9
gives future directions. The final section summarizes the results obtained.

2. SNEWS overview

The SNEWS (SuperNova Early Warning System) collaboration is an international group of
experimenters from several supernova neutrino-sensitive experiments. The primary goal of
SNEWS is to provide the astronomical community with a prompt alert for a galactic supernova.
An additional goal is to optimize global sensitivity to supernova neutrino physics, by such
cooperative work as downtime coordination.
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The idea of a blind central coincidence computer receiving signals from several experiments
has been around for some time (see e.g. [10]). In addition to the basic early warning advantages
of a neutrino detector, there are several benefits from a system involving neutrino signals from
two or more different detectors. First, if the supernova is distant and only weak signals are
recorded, a coincidence between signals from different detectors effectively increases the
sensitivity by allowing reductions in alarm thresholds and allowing one to impose a minimum
of (possibly model-dependent) expectations on the form of the signal. Secondly, even if a highly
sensitive detector such as Super-K is online, requiring a coincidence among several detectors
effectively reduces the non-Poissonian background present for any given detector and enormously
increases the confidence in an alert.16 Background alarms at widely separated laboratories are
highly unlikely to be correlated. Without the additional confidence from coincident neutrino
observations, it would be very difficult for any individual detector to provide an automated alert
to astronomers. Finally, using signals from more than one detector, there is some possibility for
determining the direction of the source when a single detector alone can provide no information
(see [11]). Unfortunately, triangulation is, in practice, quite difficult to do promptly, and cannot
point as well as individual detectors.

An important question for SNEWS is: how often is a galactic supernova likely to occur?
Estimates vary widely, but are typically in the range of about one per 30 years (see e.g. [12]).
This is frequent enough to have a reasonable hope of observing one during the next five or
10 years, but rare enough to mean that we must take special care not to miss anything when one
occurs.

The charter member experiments of SNEWS are Super-Kamiokande (Super-K) in Japan,
the Sudbury Neutrino Observatory (SNO) in Canada and the Large Volume Detector (LVD) in
Italy.17 Representatives from AMANDA, IceCube, KamLAND, Borexino, Mini-BooNE, Icarus,
OMNIS and LIGO participate in the SNEWS Working Group, and we hope will eventually join
the active coincidence.

There is currently a single coincidence server, hosted by Brookhaven National Laboratory.
We expect that additional machines will be deployed in the future. The BNL computer
continuously runs a coincidence server process, which waits for alarm datagrams from the
experiments’ clients, and provides an alert if there is a coincidence within a specified time
window (10 s for normal running.) We have implemented a scheme of ‘GOLD’ and ‘SILVER’
alerts: GOLD alerts are intended for automated dissemination to the community; SILVER alerts
will be disseminated among the experimenters, and require human checking.

At the time of this writing, no inter-experiment coincidence, real or accidental, has ever
occurred (except in high rate test mode), nor has any core collapse event been detected within
the lifetimes of the currently active experiments.

3. The supernova signal and current detectors

There are several classes of detectors capable of observing neutrinos from gravitational collapse.
Most supernova neutrino detectors are designed primarily for other purposes, e.g. for proton

16 ‘Non-Poissonian’ refers to background alarms whose rate cannot be well predicted according to a constant-
background-rate Poisson distribution. Detector effects such as flashing phototubes and electronics problems fall
under this category. Rates may also be locally Poissonian, just non-stationary.
17 MACRO [13] was another charter member, and was involved with SNEWS until it turned off in 2000.
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Table 1. Supernova neutrino detector types and their primary capabilities.

Detector type Material Energy Time Point Flavour

Scintillator C, H y y n ν̄e

Water Cherenkov H2O y y y ν̄e

Heavy water D2O NC: n y n All
CC: y y y νe, ν̄e

Long string water Cherenkov H2O n y n ν̄e

Liquid argon Ar y y y νe

High Z/neutron Pb, Fe y y n All
Radio-chemical 37Cl, 127I, 71Ga n n n νe

decay searches, solar and atmospheric neutrino physics, accelerator neutrino oscillation studies
and high-energy neutrino source searches.

Table 1 gives a brief overview of the supernova neutrino detector types. More detailed
information about supernova detection capabilities can be found in [14]. To summarize briefly:
scintillator and water Cherenkov detectors are sensitive primarily to ν̄e; those with neutral current
capabilities (heavy water, high Z/neutron, and also water Cherenkov and scintillator to some
extent) are sensitive to all flavours. Water Cherenkov and heavy water detectors have significant
pointing capabilities. All except radiochemical detectors can see neutrinos in real-time. All have
energy resolution except long string water Cherenkov and radiochemical detectors.

Table 2 lists specific supernova neutrino detectors and their capabilities [15]–[23]. For a
summary of supernova neutrino capabilities of future detectors, see [24, 25].18 ,19

4. The three Ps

To make the best use of a neutrino burst supernova alert, the astronomical community needs the
‘three Ps’: ‘prompt’, ‘pointing’ and ‘positive’. We comment on each of these below.

4.1. Prompt

The alert must be as prompt as possible to catch the early stages of shock breakout, which occurs
within hours (or less) of core collapse. We estimate an alert dissemination time of 5 min or less

18 Note that the currently running Super-K II (after reconstruction in 2002) has nearly the same supernova sensitivity
as Super-K I; a slight increase in energy threshold due to loss of phototubes will cause only a few percent loss of
total signal events.
19 Gravitational wave detectors deserve some note here. Large interferometer experiments such as LIGO, Virgo,
GEO, TAMA and ACIGA [26] as well as cryogenic antennas belonging to the IGEC collaboration [27] may have
the capability of detecting gravitational wave signals from asymmetric supernova explosions (although the details
of a stellar collapse gravitational wave signal are not yet well understood). When these detectors reach maturity
over the next several years, they will become an important part of a stellar collapse network, and combined neutrino
and gravitational wave data will be an extremely valuable source of information for testing supernova models. The
gravitational wave signal may be even more prompt than the neutrino signal, and in fact, may provide a t = 0 for a
neutrino time-of-flight mass measurement (see e.g. [28]). The scientific potential from combined gravitational wave
and neutrino signals from stellar collapse is an exciting and largely unexplored territory.
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Table 2. Specific supernova neutrino detectors. The expected numbers of events
are approximate, and refer to yields in the dominant channels.

Detector Type Mass Location No. of events Status
(kton) @8.5 kpc

Super-K H2O Ch. 32 Japan 7000 Running
SNO H2O, 1.4 Canada 300 Running

D2O 1 450
LVD Scint. 1 Italy 200 Running
AMANDA Long string Meff ∼ 0.4 pmt−1 Antarctica Running
Baksan Scint. 0.33 Russia 50 Running
Mini-BooNE Scint. 0.7 USA 200 Running
KamLAND Scint. 1 Japan 300 Running
Borexino Scint. 0.3 Italy 100 200 ×
Icarus Liquid argon 2.4 Italy 200 200 ×
OMNIS High Z (Pb) 2 USA 2000 Proposed
LANNDD Liquid argon 70 USA 6000 Proposed
UNO/Hyper-K H2O Ch. 600–1000 USA/Japan >100000 Proposed

for an automated (GOLD) alert. A SILVER alert involving human-checked alarms would take
longer, optimistically 20 min or so, but perhaps longer.

4.2. Pointing

Clearly, the more accurately we can point to a core collapse event using neutrino information,
the more likely it will be that early light turn-on will be observed by astronomers. Even for the
case when no directional information is available (e.g. for a single scintillator detector online) it
is still useful for astronomers to know that a gravitational collapse event has occurred. However,
any pointing information is extremely valuable. The question of pointing to the supernova using
the neutrino data has been examined in detail in [11]. There are two ways of pointing with
neutrinos: first, individual detectors can make use of asymmetric reactions for which the products
‘remember’ the direction of the incoming neutrino. Second, the timing of the neutrino signals
in several detectors can be used to do triangulation. In [11], estimates of roughly 5◦ pointing
accuracy for Super-K and 20◦ pointing accuracy for SNO have been given for a galactic centre
core collapse. Triangulation is less promising, and presents practical difficulties: it requires
immediate and complete exchange of event-by-event information, which is difficult in practice,
and we do not plan to attempt it promptly.

We do not anticipate that SNEWS will disseminate pointing information as part of the initial
alert message in the short term (although this may change); this information will come from the
individual experiments, and may not be available immediately. Each experiment establishes its
own protocol for making estimated pointing information available.

4.3. Positive

There must be no false supernova alerts to the astronomical community. A single experiment
cannot realistically decrease the false alert rate to zero, since there will always be some residual
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Figure 1. Average interval between accidental alerts for an n-fold coincidence
of N experiments, for a 10 s coincidence window and a uniform individual
experiment background alarm rate of one per week.

rate of false alerts from Poissonian and non-Poissonian sources. However, by requiring an inter-
experiment coincidence, the false alert rate can be decreased to nearly zero: this is the great
strength of SNEWS. We have chosen the nominal acceptable average false alert rate to be one
per century. The following section is devoted to the question of ensuring a false alert rate which
is sufficiently low.

4.3.1. False alerts. The fundamental motivation for the SNEWS coincidence is the reduction
of false alerts. We categorize the possibilities for false alerts below:

(i) Accidental coincidences: accidental (random) coincidences imply that there was no actual
association with an astronomical event and that the coincidence occurred by chance. The
rough expected rate of accidental coincidences can be calculated by assuming equal,
constant, uncorrelated alarm rates for each experiment.

Figure 1 shows the average interval between accidental alerts for an n-fold coincidence
of N experiments, for a 10 s coincidence window and an individual experiment background
alarm rate of one per week. This plot shows that an individual experiment alarm rate of
one per week is acceptable only if four or fewer experiments are online, or if a three-fold
coincidence if required; otherwise a lower individual experiment rate is required. Based
on these considerations, the requirement for an experiment to participate in SNEWS is an
average alarm rate of no more than one per week. We may adjust the criteria defined in
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this paper if more than four experiments are running. In reality, individual alarm rates are
not strictly Poissonian and change with time. However, they may be Poissonian on shorter
time scales, and so long as instantaneous individual rates do not exceed a certain value, the
accidental coincidence rate can be made as small as desired. In section 6.6, we detail how
we deal with potentially changing alarm rates.

(ii) Non-astrophysical correlated bursts: the possibility of some correlation between bursts seen
in the individual detectors, which is not astrophysical in origin, exists to the extent that some
credible coupling can be shown to exist between detectors. For participating detectors that
may be physically close to one another there are a large number of possible couplings from a
shared local environment (electrical noise, ambient pressure, seismic, etc). For participating
detectors that are very well separated from one another one has to invoke more fanciful and
substantially less probable couplings such as solar activity, solar flares, or widescale upper
atmospheric electrical disturbances. The most credible coupling for separated detectors may
well be the seismic one, but even that is not really plausible.

(iii) Malicious actions: a fake alert sent to the astronomical community by hackers breaking into
our machines is a remote possibility, but one which we view seriously. Breaching several
machines at the individual experiments and creating false alarms at the client datagram
level would have the same end effect, but would require more knowledge of the detailed
and widely different operation of several detectors, so we feel this is much less of a concern.
To prevent malicious actions, we take a serious approach to the security of the server and
the connections to it. We require that the server be housed at a national laboratory with
designated personnel to take responsibility for the security and maintenance of the machine.

4.4. Privacy

Another ‘P’ (relevant to experimenters more than to astronomers) is ‘Privacy’. To satisfy inter-
experiment privacy needs (and in addition to help ensure secure data transmission), we have set
up a formal set of rules for data sharing and have structured the collaboration around these rules.
The ‘SNEWS subgroup’ is a working group of a few people per experiment, designated by our
Advisory Board (spokespeople of the active experiments). Only subgroup members have access
to the alarm data from all experiments. Subgroup members agree not to propagate information
without explicit approval from the Advisory Board.

5. Description of individual experiments’ supernova triggers

In this section we will describe briefly the online supernova monitoring systems of Super-K, SNO
and LVD, which provide alarm input to the SNEWS coincidence. The supernova capabilities of
the detectors are well known and details can be found elsewhere [14]; other details of the triggers,
monitoring systems and analyses are also described elsewhere [29]–[31]. Although each of these
three experiments takes a somewhat different approach to real-time monitoring, every one is
sensitive to a galactic supernova and can provide an alarm on a timescale of minutes.

A note on SNEWS terminology: an ‘alarm’ refers to a supernova neutrino burst candidate
detected by an individual experiment, according to conditions defined for that experiment. An
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‘alert’ refers to a coincidence between alarms, and the conditions which define an alert are
described in section 6. This section describes the individual experiment alarm conditions only.
The detailed neutrino event information comprising the alarm bursts is not sent to the coincidence
server.

5.1. Super-K supernova online monitor

The Super-K supernova alarm system involves software that does a prompt pre-analysis before
full reconstruction. Roughly 2-min chunks of data called ‘subruns’ are sent from the event
builder via ‘express-line’ to a dedicated supernova burst monitor machine, skipping the usual
steps required before data are sent to the offline processes. The low energy trigger events are
then searched for clusters in several time windows (0.5, 2 or 10 s).

If the ‘pre-multiplicity’ thresholds are exceeded for any of these time windows, then the
‘pre-candidate’ is passed to a second monitor program for further analysis. Standard noise
reduction algorithms similar to those applied for solar neutrino analysis [32] are applied, and
the search is performed again, this time on events passing the cuts and with a higher energy
threshold. Full energy reconstruction is not done (to save time), but vertices and directions are
reconstructed. If any cluster passes a second pass multiplicity threshold, the multiplicity N in a
20 s time window is counted; in addition, the mean distance between event positions in the cluster,
Rmean = (1/C)

∑N−1
i=1

∑N

j=i+1 |�ri − �rj|, where C is the number of pairs, is calculated. Background
supernova alarms arise from muon spallation events and ‘flashing’ tubes. Both of these types
of fake clusters have event vertex distributions which are highly non-uniform, and which will
yield small Rmean values. Candidate clusters with sufficiently high N and R are considered to be
supernova candidates.

Because reconstruction of thousands of events in a real supernova burst (∼5000 events)
could require an hour or more to analyse fully, pre-alarms are generated after 100 events if a
candidate is found (roughly a 1 min timescale).

If an alarm burst candidate is found, a datagram is sent to the SNEWS server, and
shiftworkers are alerted. Detailed information about the candidate is made available to
shiftworkers (present 24 h a day onsite). The shiftworker checks for the existence of spallation
muons, examines reconstructed vertices and their goodness, and also checks the exploded view
of the PMT hit pattern. A preliminary estimate of the supernova direction from elastic scattering
is available at this point. If a good supernova candidate is identified, an offline process will
re-analyse to provide full, precise reconstruction within a few hours.

5.2. SNO supernova online monitor

At SNO, custom readout electronics collect the PMT data underground and pass that information
to an event builder. Built events are then sent to an event dispatcher process running on a
surface computer, which is used for online monitoring. A fully detailed description will be
found elsewhere [30]. Summarized here is the basic machinery of the trigger, which consists of
three distinct levels which are fast and completely automated:

• Level 1: this is the burst monitor which looks in the datastream for a certain number of events
above a certain energy threshold within a certain time window. At present, the multiplicity
threshold is set to 30 events above approximately 4 MeV in a 2 s time window which provides
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a good sensitivity to a galactic supernova. Dynamic thresholds are used whenever calibration
sources are introduced in the detector. Bursts satisfying the multiplicity criteria are written to
a data file and then transferred to an analysis machine.

• Level 2: at this level events are calibrated and analysed on an event-by-event basis. The main
task of this second-level trigger is to identify events with anomalous time and charge as well
as events with geometric signatures of particular detector pathologies in order to cut them
from the burst data set. For example, events with low charge to number-of-hits ratio usually
indicate electrical pickup. A set of data cleaning cuts are applied which are meant to reject
known instrumental background with a very high efficiency. Cherenkov events pass those cuts
with very little sacrifice.

• Level 3: if more than 35% of the events composing a burst survive the data cleaning cuts, an
alert is sent to the SNEWS server and a dialout computer contacts the members of the SNO
supernova trigger group. In the meantime, a more in-depth analysis is performed to extract
fitted vertices and direction cosines. The relative event fractions occurring in the D2O/H2O
volumes are extracted and a search algorithm uses the events’ direction cosines to find the
electron scattering (ES) events, which are expected to best convey information about the
direction of the possible supernova.

The Level 2 analysis produces a set of histograms which are mainly useful for a quick
burst diagnostic by the operator and any interested party. Besides hit and time distributions,
crate/slot/channel occupancies are provided, which are expected to be flat for a supernova
signal. The Level 3 analysis produces a set of histograms using fitted vertices in both the light
and heavy water volumes as well as angular distribution of the events’ fitted directions. Each
burst is catalogued and automatically archived on the SNO private WWW server.

5.3. LVD supernova online monitor

In the LVD experiment the scintillator counting rate is continuously monitored by a DAQ task,
which examines all data collected in real time. A simple and fast muon rejection algorithm makes
a pre-selection of ν-candidate signals, registered by the experiment with a 12.5 ns time precision.
This first selection level does not apply cuts on pulse energy and topological distribution.

A separate on-line monitor task looks for burst candidates from the reduced data stream. The
search algorithm is based on a pure statistical analysis of the time sequence of events including
some additional cuts. The code processes the sequence in order to extract significant clusters
of pulses having an expected frequency, induced by the accidental background, lower than a
predefined threshold.

At this level, pulse energy is required to be in the 7–100 MeV range in order to avoid
fluctuation effects at the edge of energy threshold and problems due to electronic noise, as well
as to reject single counter muon signals. After these cuts the background pulse frequency is
found to be very stable and corresponds, for the full LVD configuration, to fB = 0.2 Hz. The
resulting ν -pulse candidate time sequence, collected inside a 1000-pulse deep circular buffer, is
processed by the alarm module of the monitoring code. Buffered events are processed in fixed
time windows �T = 20 s originating at the start run time. For each asynchronous window the
number Nν of contained single pulses is obtained. Then the Poissonian probability PC to have
k � Nν events in the cluster is calculated according to PC(k � Nν, λ) = ∑∞

k=Nν
λke−λ/k!, where

λ = fB × 20 is the mean expected number of pulses due to background rate. To optimize
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sensitivity, the online frequency fB is evaluated each time a new pulse is inserted into the buffer.
The alarm threshold probability is obtained from the above expression by fixing a global alarm
frequency fA. The predictive capability of the selection algorithm has been checked with real
and simulated data as a function of the required global alarm frequency (fA = 1 h−1, . . . ,1 yr−1).

Finally, to reduce the number of false alarms, for each selected candidate a topological
check is applied. For a real supernova burst candidate, a uniform distribution of pulses between
involved counters is expected. If not, counters with abnormal high counting are excluded and
the resulting cluster is re-analysed. Surviving clusters are considered to be candidate alarms, and
corresponding datagrams are sent to the SNEWS servers; all related information is saved for
further analysis. Online event buffering and processing gives less than 2 min delay between the
burst time and the alarm notification. The LVD shiftworker and experts within the collaboration
are notified.

6. SNEWS coincidence implementation

This section describes the hardware setup and software developed for SNEWS.

6.1. The coincidence server

There is currently a single SNEWS workstation running Linux at Brookhaven National
Laboratory, which serves as the coincidence server. Previously, we had servers at LNGS and
Kamioka, but moved to BNL in the fall of 2003, for ease of security and maintenance with the
resources available there. The software has capabilities for dealing with multiple servers, and
more may be added in the future. A second, identical machine is kept running and in synch with
the primary server, so that immediate failover is possible in case of a problem with the primary
server.

The coincidence server remains behind the BNL firewall. Only very limited access to
SNEWS subgroup members and the BNL system administrator is permitted. In addition, the
server is housed in a physically secure location. If additional servers are added to the network,
they will be subject to similar security requirements.

6.2. Coincidence software

The SNEWS software involves client and server programs which implement a simple datagram
exchange via socket, employing TCP/IP protocol, and encrypted via OpenSSL. The code is
designed to be easily portable to diverse operating systems.

The client software is provided to the individual experiments in the form of a library of
subroutines that may be called by an experiment’s supernova watch software to initiate a datagram
transfer. The package also provides standalone tools for testing.

The server software runs in a standalone mode, and most of the time simply waits to receive
datagrams from the clients. It maintains two queues: a normal queue and a ‘high-rate’ queue, for
test alarms. When an alarm datagram is received, it is placed on a queue according to its flag (see
section 6.5). One month’s worth of alarms are stored in the queue. Received alarms are written
to disk, and are read in from disk if the server is stopped and restarted.

Every time an alarm is received, the last 24 hours’ worth of alarms on the queue is searched
for a coincidence. See section 6.6 for detailed coincidence conditions.

New Journal of Physics 6 (2004) 114 (http://www.njp.org/)

http://www.njp.org/


12 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

When a client initiates a connection, the server employs several layers of checks to validate
the origin of the datagram. Only the IP addresses of the client machines of the involved
experiments are allowed to submit packets. In addition, the client and server exchange certificates
which have been verified by the SNEWS Certificate Authority, and the server rejects the
connection if any check fails.

6.3. SNEWS shifts

SNEWS subgroup members share shiftwork on a regular cycle. Shift duties include a check twice
daily to ensure that the server is running, that network connectivity is up, and that communication
capability is in good order.

Individual experiment alarm rates are monitored by SNEWS subgroup members, so that
any long term increase of rate over the one per week limit may be addressed.

6.4. SNEWS operational modes

We have established a well-defined operational mode for SNEWS, which we expect to develop
in a series of managed transitions between operational modes. For instance, new experiments
or new coincidence servers will be added or removed. Each operational mode is identified by
a number and the date when it came into effect, and will specify in detail the participants, the
coincidence conditions, the alert classifications, and the procedures for action in case of different
alarm conditions. The following sections outline the conditions for the operational mode we
anticipate for the near future.

6.5. SNEWS packet types and flags

Each participating experiment may generate and send to the server different types of alarm
datagrams. The alarm datagrams include a packet type and a level flag. The packet type can
be PING, ALARM, or RETRACTION. The level flag can be TEST, GOOD, POSSIBLE,
RETRACTED or OVERRIDE. Datagrams having packet field values which do not belong to
any of these categories are discarded by the server.

Packet types

• PING: these packets are used for test purposes only and cause nothing more than a message
printed to the coincidence server log.

• ALARM: these packets contain information about individual experiment alarms; what the
server does with them depends on the level flag.

• RETRACTION: these packets contain information about previously sent alarms to be retracted
from the server’s alarm queues.

Level flags

• TEST: this flag indicates a datagram packet intended for test use as well as for any high-rate
test mode.

• POSSIBLE: this flag indicates an alarm generated during scheduled operations (i.e.
maintenance, calibration, tests, etc) or other known anomalous conditions. It is up to each
experimental collaboration to set this flag inside the packet when appropriate.
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• GOOD: this flag indicates an alarm generated during normal detector conditions.

• RETRACTED: this flag is set for retraction packets. (Note that this information is
redundant—all packets of RETRACTION type will be retracted regardless of level flag.)

• OVERRIDE: this flag indicates an alarm that has been confirmed as good.

6.6. Coincidence definition

The general coincidence definition implemented in the coincidence code may generate either of
the two types of alert: GOLD or SILVER.

A GOLD alert is generated if all of the following conditions (1–4) are met.

(1) There is a two- or more-fold coincidence (by UT time stamp) within 10 s, involving at least
two different experiments. (The time window refers to the maximum separation of any of
the alarms in the coincidence.)

(2) At least two of the experiments involved are at physically separated laboratories. This
condition is automatically satisfied for the current operational mode.

(3) Two or more of the alarms in the coincidence are flagged as GOOD. It is the responsibility
of each participant experiment to flag the alarm sent to the SNEWS server(s) appropriately.
The specific criteria for GOOD/POSSIBLE alarms are locally defined by each experiment.

(4) For at least two of the experiments involved in the coincidence, the rate of good alarms
for several past time intervals {T i} = {10 min, 1 h, 10 h, 1 day, 3 days, 1 week, 1 month}
preceding the first alarm of the coincidence candidate, must be consistent with the λmax =
1 week−1 requirement.20 We define the precise condition as follows: if an experiment sent
{ni} alarms in each of the last intervals {T i} before the first event of the coincidence, then
the Poisson probabilities Pi for ni or more alarms in T i,

Pi =
∞∑

n=ni

(λmaxTi)
ne−λmaxTi/n!,

for each interval T i, must each be greater than Pthr = 0.5%. This corresponds to the condition
that each {ni} must be less than {1, 2, 2, 3, 4, 5, 11} for the preceding intervals {T i} for an
alarm to be GOLD.

When the first criterion is satisfied, but at least one of the other criteria is not satisfied,
the generated alert is flagged as SILVER. In this case the alert has to be checked by the
individual experiment collaborations before any public announcement. No alert will be sent
to the community by SNEWS until (and if) there is an upgrade to GOLD.

6.7. Rate-dependent GOLD coincidence suppression

The last criterion—demotion to SILVER based on past rate history—deserves some additional
discussion. The purpose of this criterion is to protect against short term rate increases from one
or more experiments. The suppression is effective: see figure 2. However, it comes at a slight

20 These intervals represent real time, not live time, since full live time information will not be available to the
coincidence server.
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Figure 2. The green dashed line shows the maximum allowed accidental
coincidence rate (one per century). The red line shows the expected accidental
coincidence rate of 2 out of 3 experiments (for a 10 s coincidence window), under
the assumption that one of the three experiences an increase in rate by a factor f

(and the others maintain a one per week rate), as a function of rate increase factor
f . The blue dotted line shows the expected coincidence rate after the past rate
history suppression has been applied.

cost: if one assumes a constant Poisson background rate of one per week for all three
experiments, criterion 4 will result in demotion of about 4% of true GOLD alerts to SILVER,
just due to Poisson fluctuations in the previous time windows. However, the protection against
unexpected increases in background rate is probably worth this small loss (note that typically
individual experiment alarm rates will be less than one per week in any case).

One might also worry that long term rate increases might cause increased demotion of
true GOLD to SILVER. We have evaluated the overall average rate increase from any single
experiment that would result in 90% of true coincidences being demoted. Figure 3 shows the
effect of changing Pthr. The value of Pthr chosen was 0.5%, which gives fairly low true GOLD
suppression (4%); and at this threshold any overall single experiment rate increase of more than
a factor of 4 will result in demotion of 90% of coincidences.21

We feel that this GOLD and SILVER scheme strikes the right balance between danger
of losing true coincidences due to too-stringent criteria and danger of issuing false alerts to
astronomers.

21 Note that long-term average alarm rates will be monitored by shiftworkers, and subgroup members will be notified
if rates of their experiments exceed the nominal one per week limit, so any such rate increase will be temporary.
Also note that if alarm rate increases have clearly been corrected, by subgroup agreement on a case-by-case basis
individual alarms may be retracted after the fact, so as not to decrease true GOLD coincidence efficiency.
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Figure 3. Upper panel: total probability of demoting a true GOLD coincidence
as a function of Pthr, assuming three experiments with the one per week alarm
rate. Lower panel: factor by which average rate of any single experiment would
have to increase in order for 90% of coincidences to be demoted. The Pthr chosen
is 0.005.

6.8. Demotion and promotion

Although we hope to avoid ever being in the situation where retraction of a GOLD alert is
necessary, any experiment may reflag from GOOD (or POSSIBLE) to RETRACTED its own
alarm after data checking. The server will then automatically reevaluate and reissue the alert
based on alarms in the previous day of its memory: the result may be still GOLD, demotion
to SILVER, or no alert at all. For the latter case, the SNEWS subgroup is notified, and a
RETRACTED alert will be issued to the same mailing list as for GOLD and posted on the public
web page.

Experiments may also send OVERRIDE packets: a GOLD alert may also be generated if
condition 1 is satisfied and at least one alarm in the coincidence is OVERRIDE and at least one
is GOOD, regardless of whether the other conditions are satisfied. This case allows an override
of past high-rate history demotion (or other conditions that could tag an alarm as POSSIBLE)
for a human-checked alert.

Figure 4 summarizes the sequence of events and GOLD versus SILVER decisions.
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Figure 4. Flowchart summarizing the sequence of events and decisions that
determine whether an alert is GOLD or SILVER.

7. High rate test results

During an approximate two-month period in April–June of 2001, Super-K, LVD and SNO
subgroup members performed a ‘high rate test’ of the coincidence software. The purpose was
two-fold: first, to check the robustness of the software and work out any remaining bugs; and
second, to increase confidence in our understanding of the expected coincidence rates. The test
was highly successful.

The idea of the high rate test was to lower the thresholds of the experiments’ supernova
monitors such that coincidence alerts increased to a non-negligible rate, due to the Poissonian
nature of the data. Each experiment set its supernova monitor burst search parameters to yield a
test alarm rate somewhere in the range of 10–100 per day. In addition, to increase artificially the
coincidence rate, the coincidence window was increased from its standard value of 10–400 s.

The individual experiment alarm and coincidence rates were somewhat non-stationary,
which was not unexpected. The results were analysed via a ‘time-shift’ method (see below)
to show that alarms were uncorrelated, and that recorded coincidences were consistent with
expected rates.
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Figure 5. Number of alarms received from the individual experiments, plotted
in 11 h bins.

The alarms received as a function of time, and coincidences as a function of time, are shown
in figures 5 and 6. The numbers of individual alarms, and numbers of 2- and 3-fold coincidences
are shown in table 3. The rates are roughly constant over most periods, although there is clearly
some ‘burstiness’.

Experiments can be ‘dead’ to SNEWS for many reasons: actual detector deadtime, online
supernova monitor problems, network problems, or coincidence server problems. To estimate
the deadtime, we used the data themselves and counted improbably long gaps as deadtime. This
method automatically takes into account dead time from all causes.

After removing the dead intervals, we calculated the overlapping live periods for each pair
of detectors, as well as the three-experiment overlap time. Note that there are some dead intervals
common to all detectors due to network trouble; in particular, the period 22–25 May represents
a problem with network availability to the test server at the Kamioka site. (Note that we expect
very high uptime at the current BNL server site.)

Based on these known alarm rates and live periods, we then calculate expected accidental
coincidence rates. For the purpose of comparison with expected coincidence rates, we have
calculated the ‘raw’ number of coincidences from the individual experiment alarms arriving at
the server: the number of raw coincidences is defined as the number of times the individual
experiment alarms are separated by a maximum test time window of τ = 400 s.

Note that in the real case, according to the rate history-based demotion algorithm described
above, the coincidence server will suppress redundant alerts. If there is more than one alarm
from a given experiment within the time window, the server will send only one GOLD alert,
corresponding to the coincidence of the first alarm from each experiment (assuming all conditions
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Table 3. Alarm and coincidence summary.

Experiment Common SK/SNO/LVD Ncoinc Ncoinc Ncoinc
combinationa live time alarmsc expected expected observed raw

(days)b (eqn)d (shift)e (unique)f

SK/SNO 24.1−0.5
+1.1 334/187/– 24.1−2.2

+1.0 24.9 ± 7.0 30 (17)

SK/LVD 44.6−0.9
+ 1.1 576/–/1025 122.6−5.8

+ 4.9 133.8 ± 13.7 149 (112)

SNO/LVD 27.7−0.6
+ 0.7 –/189/646 40.8−2.0

+ 1.6 46.4 ± 9.2 52 (41)

SK/SNO/LVD 19.6−0.6
+ 1.1 276/144/431 2.9−0.5

+ 0.3 4.2 ± 2.9 4 (4)

a Indicates the 2- or 3-fold experiment combination.
b The overlap live time for the combination in column 1 with estimated uncertainties.
c The numbers of alarms from the experiments which are within the overlap live time.
d The number of expected coincidences according to equation (1); the error reported is the
systematic error only, from uncertainty in the live-time estimate.
e The expectation and its RMS based on the time-shift method.
f The observed number of coincidences during the test; the number outside parentheses indicates
the ‘raw’number of coincidences defined as the number of alarms with maximum time separation
of 400 s (to be compared with the predictions); the number in parentheses is the number of
‘unique’ coincidences tagged by the coincidence server (see text).

are satisfied), whereas multiple ‘raw’coincidences would be counted for this cluster. Subsequent
coincidences would be demoted to SILVER. The number of ‘unique’ coincidences is the number
of coincidences with different first alarm times.
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The final column of table 3 shows both ‘raw’ and ‘unique’ (in parentheses) numbers of
coincidences. Figure 6 shows ‘unique’coincidences. The coincidence server output was checked
to verify consistency with the calculated raw coincidences.

For stationary, uncorrelated Poisson point processes, the rate of N-fold coincidences
between N detectors is given by

λcoinc = N

(
τN−1

T N
obs

) N∏
i=1

Ni, (1)

where τ is the coincidence window (the maximum separation of events for a coincidence), T obs is
the total common observing time and Ni is the number of events observed by the ith detector. For
example, for a 2-fold coincidence between detectors i and j, the expected number of coincidences
is 2NiNjτ/Tobs ij.

The uncertainties on the expectated rate values are calculated by propagating the
uncertainties on the live time.

However, (1) is strictly valid only for stationary processes, and this assumption is clearly
violated in our case (see figure 5). Therefore, we take a different approach to calculate expected
coincidence rates: to predict more generally the number of accidental coincidences from these
non-stationary alarm sequences, we apply a ‘time-shift’ method [33]–[35]: for any pair of
detectors, we shift all of one experiment’s alarm time values by an offset �t, and determine
the number of coincidences nc for that time offset value. This procedure is repeated for many
values of �t; the mean and standard deviation of the distribution of nc values then gives both the
expected number of observed coincidences and its expected spread, which we then compare with
the observed number of raw coincidences. Similarly, we time-shift one of the three experiment’s
alarm time series by �t to determine the expected 3-fold coincidence rate.

The plot of nc versus time offset value should be flat, and show no spike at zero (or any
other) offset, if there are no correlations between the different experiments’ alarm times. The
results of this analysis for 2-fold coincidences are shown in figure 7 (a similar plot, although
with lower statistics, results for 3-fold coincidences). We use time shifts ranging from −150 to
150 h at 1000 s intervals. Live time is taken into account in the time-shifted sample by shifting
the offset experiment’s live period by the same offset and then re-evaluating the overlap time.
The mean and RMS values of the resulting shifted coincidence rates are used to determine the
expected number of coincidences for each combination in table 3.

Table 3 shows the expected and observed numbers of events. The expected numbers of
coincidences from (1) do not exactly match the expected numbers from the time-shift method,
even after considering the live-time estimate uncertainty. Presumably, this is due to the somewhat
non-stationary nature of the alarm sequence. The number of observed coincidences do match the
time-shift expectations well within the expected spread. In addition, the time shift plots show no
evidence of correlations between experiments, as expected.

Although these somewhat non-stationary data, taken at lowered threshold, do not necessarily
imply that rates will also be non-stationary when thresholds are raised and running conditions
are normal, one can never be completely sure that individual experiment rates will not increase
unexpectedly. This is the motivation for the rate-dependent GOLD suppression scheme of
section 6.7.

The coincidence server now has capability for continuous high rate testing, using tagged
TEST alarms in parallel with normal alarms.
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Figure 7. Rate of 2-fold coincidences for each experiment pair, as a function of
time offset in hours. The rate was determined using overlap live time after the
time offset.

8. The alert to the astronomical community

At the supernova early alert workshop of 1998, the conclusion from the astronomer working group
[36] was that ‘the message will spread itself’ and that SNEWS will need to do no more than
send out e-mails to as many astronomers as possible. SNEWS maintains a mailing list of interested
parties, including both professionals and amateurs, to be alerted in the case of a coincidence.

In an ideal case, the coincidence network provides the astronomical community with an event
time and an error box on the sky at which interested observers could point their instruments. In
a realistic case, the size of the error box is dependent on the location of the supernova and the
experiments which are online, and may be very large (and at this time will not be available in the
initial alert message). However, members of the mailing list with wide-angle viewing capability
(satellites, small telescopes) should be able to pinpoint an optical event quickly. Although an
unknown fraction of galactic supernovae will be obscured by dust, many will be visible to
amateurs with modest equipment.

Regardless of the quality of neutrino pointing available, however, the advance warning alone
gives observers of all kinds valuable time to get to their observatories and prepare to gather data
as soon as an accurate position is determined.

A Target of Opportunity proposal for the Hubble Space Telescope, ‘Observing the Next
Nearby Supernova’, aiming to take advantage of early supernova light based on an early warning,
was approved [37] for Cycle 13 and was operational for Cycles 8–12.
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8.1. Amateur astronomers

The large pool of skilled and well-equipped amateur astronomers is also prepared to help locate
a nearby supernova. The editors of Sky & Telescope magazine have set up a clearinghouse for
amateur observers in search for first light (and a precise optical position as early as possible)
[38], via their AstroAlert service [39]. This was started by former editor-in-chief Leif Robinson,
and has the continued support of current editor-in-chief Rick Fienberg. In collaboration with
the American Association of Variable Star Observers, they have developed a set of criteria for
evaluating amateur responses to an alert, so that a reliable precise position can be disseminated
as early as possible. For instance, there must be at least two consistent reports, demonstrated
lack of motion, lack of identification with known asteroid and variable star databases, variability
consistent with supernova light curves and, if the information is available, a spectrum consistent
with known supernova types.

On 14 February 2003, Sky & Telescope performed a test for amateurs. A transient target
(the asteroid Vesta at a near-stationary point in its retrograde loop) was selected, which at the
time was about magnitude 6.7. Sky & Telescope issued an alert (very carefully tagged as a test)
to their mailing list, with a given 13◦ uncertainty radius. They received 83 responses via the web
response form, and more by e-mail. The responses were of world-wide distribution, and although
many observers experienced poor conditions, six were successful in identifying the target. From
this experience, they have suggested refinements to optimize amateur astronomer strategy. A
second test is planned soon, and should be a regular occurrence.

8.2. SNEWS alerts

We maintain two alert mailing lists which will be sent automatically by the SNEWS coincidence
software in the case of an alert. The first is the GOLD alert list, which includes all astronomers who
have signed up, including Sky & Telescope and the HST astronomers, and will be an ‘automated’
alert. The second mailing list will be for SILVER alerts, and will be sent to neutrino experimenters
only. These alerts will be checked out by shiftworkers at their respective experiments before an
alert is issued; each experiment is responsible for making sure the SILVER alert messages reach
shiftworkers. Each experimental collaboration defines its own protocol for acting on a SNEWS
SILVER or GOLD alert.

For both SILVER and GOLD cases, a message containing the following information will
be automatically sent by the server to the SNEWS subgroup members:

• UTC time of the coincidence,

• all detectors involved in the coincidence, and

• the types of alarms (GOOD, POSSIBLE) for each experiment involved in the coincidence.

The information may also be posted to a restricted SNEWS subgroup page for SILVER, and a
public page for GOLD.

To allow the confirmation of a SNEWS alert as really coming from SNEWS, any alerts will
be public key signed using the SNEWS key. This key has the ID# 68DF93F7, and is available
on the network of public PGP keyservers such as http://pgp.mit.edu/.

Note that there is no restriction on individual experiments making any announcement based
on individual observation in the case of absence of a SNEWS alert, SILVER or GOLD, or
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preceding or following any SNEWS alert message. Any individual experiment may publicly
announce a supposed supernova signal following a dispatched SILVER alert which has not yet
been upgraded to GOLD. In this case, the information that a previous SILVER alert from the
SNEWS server(s) has been received should be cited.

9. Status and future prospects

At the time of this writing, SILVER alerts only between Super-K and LVD have been activated.
We are working towards having the operational mode described in this paper to be activated in
a very short term, comprising automated GOOD alarms from Super-K and LVD, but automated
POSSIBLE alarms only from SNO, such that SNO will participate in a GOLD alert only if at
least two other experiments’ GOOD alarms are present.

We also expect SNEWS to incorporate more galactic-supernova-sensitive neutrino detectors
over the next few years. In addition, we may expand the network of servers with additional secure
sites.

10. Summary

In summary, several supernova neutrino detectors are now online. If a stellar core collapse
occurs in our Galaxy, these detectors will record signals from which a wealth of physical and
astrophysical information can be mined.

An early alert of a gravitational collapse occurrence is essential to give astronomers the best
chance possible of observing the physically interesting and previously poorly observed early
turn-on of the supernova light curve. A coincidence of several neutrino experiments is a very
powerful technique for reducing ‘non-Poissonian’ false alarms to the astronomical community,
in order to allow a prompt alarm. We have implemented such a system, currently incorporating
several running detectors: LVD, SNO and Super-K. We expect to expand the network in the near
future, and move to a more automated mode in the near future.
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