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Abstract 
Effects of synchro-betatron coupling (SBC) specific to 
large electron storage rings with low emittance lattices 
and high synchrotron tunes are considered. An adequate 
mathematical apparatus based on the Lie transform 
theory is briefly outlined. With HERA-e taken as an 
example the nonlinear SBC is shown to limit the off-momentum 
dynamic aperture and produce anomalous 
vertical emittance. 
1 INTRODUCTION 
The possible impact of the synchro-betatron coupling 
(SBC) on the performance of electron/positron storage 
rings has long been acknowledged [1]. There are 
common features of large e+e- rings used as circular 
colliders, synchrotron radiation sources and damping 
rings of linear colliders - low value of the natural 
emittance, high synchrotron tune, large amount of 
energy stored in longitudinal oscillations - which make 
influence of the SBC especially important. 

At large amplitudes the SBC can limit particle 
stability thus reducing the lifetime; at small amplitudes it 
can transfer energy from longitudinal to transverse 
oscillations increasing the transverse emittance. 

These effects can be studied by tracking with MAD 
[2], however, an analytical tool is desirable which would 
enable one to analyze mechanisms of the SBC in 
particular cases. 
2 SOURCES OF NONLINEAR COUPLING 
Introducing 6D phase space column vector of 
coordinates and momenta 

z = (x, px, y, py, σ, δp)τ (1) 
and θ=s/R we have the following equation of motion 

ż ≡ d z = F = s. ∂ H + F(rad), (2) ż ≡ dθ z = F = s. ∂z H + F(rad), (2) 

s = s2 s2 s2, s2 = 0 1 
, s = s2 s2 s2, s2 = -1 0 , 

which is governed by the radiation reaction force F(rad)  
and the Hamiltonian 

H = -hRx(1 + δp) + (1 + hx) 
p2R - eR As], (3) H = -hRx(1 + δp) + (1 + hx) 2(1 + δp) 

-
cp0 

As], (3) 

where As takes into account stationary magnetic and RF 
fields. 

The primary source of nonlinear SBC is the kinetic 
energy term in the square brackets; it contains resonance 
driving terms 2Q ± mQ, (Qα-Qα) ± mQ, α = x,y. In 
the quasi-static limit (|Q|→0) the effect of the former 
terms is the off-momentum beta-beating, whereas the 
latter produce chromaticity of the betatron tunes. When 
|Q| is comparable with fractional betatron tunes these 

concepts lose their validity, the synchrotron oscillations 
should be treated on an equal footing. 

Due to finite dispersion, when pα = pα(β) +Dα'δp, the 
kinetic energy term can drive sidebands Qα ± mQs of the 
integer betatron resonances as well. 

The adverse effects of the kinetic energy nonlinearity 
are compensated with the help of sextupole families [3], 
which in the presence of both vertical and horizontal 
dispersion introduce by themselves 3DoF coupling, 
Qx ± Qy ± Qs, 

A classical Hamiltonian mechanism driving linear 
synchro-betatron resonances is the RF field in the 
presence of finite dispersion [1]. Due to a shift in stable 
phase angle needed to compensate for the synchrotron 
radiation losses it can drive odd-order resonances. 

The (mean part of) radiation reaction force also 
contributes to the SBC due to its dependence on the 
particle transverse position in quadrupoles and/or 
nonlinear wigglers. This effect called radiative beta-synchrotron 
coupling [4] can even limit stable 
transverse amplitude at high energies. 

With increasing order the resonance strength 
provided directly by the mentioned mechanisms rapidly 
falls off, however their cross-talk described by high-order 
perturbation theory may lead to a strong 
excitation. To analyze such effects in 3DoF we follow 
the mathematical approach outlined in Ref. [5]. 
3 LIE-TRANSFORM METHOD 
Let us introduce into the vector field F a parameter ε so 
that at ε = 0 it is integrable, e.g. linear, and try to find a 
transformation to new dynamical variables 

u = (z,θ;ε)z = Z(z,θ;ε), (z,θ;0) = 1, (4) 
in which the equation of motion 

= G(u, θ; ε), G(u, θ; 0) = F(u, θ; 0), (5) 
is easier to analyze. 

Defining the transformation by the equation 
∂ Ζ(z,θ;ε) = V(Ζ(z,θ;ε),θ;ε). (6) ∂ε Ζ(z,θ;ε) = V(Ζ(z,θ;ε),θ;ε). (6) 

V being called a Lie-dragging field, we obtain the 
equation for the inverse operator 

∂ = -?, ≡V. ∂ (7) 
3ε = -?, ≡V. ∂u (7) 

which has the formal solution 

= exp[-dε'], (8) 

where operator orders compositions of the Liederivative 
operators so that their ε-arguments increase 
from the right to the left. Arbitrary vector fields are 
transformed with the help of the matrix operator 
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= ∂Z , (9) = 
∂z 

, (9) 

which satisfies the equation 
∂ = , U ≡ U υ - V_ = - V , (10) ∂ε = , U ≡ U υ - V_ = - V , (10) 

and can be presented in a form similar to (8). 
The Lie-dragging field V is related to the original 

and new vector fields by the following basic equation 
∂ V + V = ∂ G - ∂ F (11) ∂θ V + V = ∂ε G - ∂ε F (11) 

which in principle permits to find V for a given G or 
vice versa. 

Having constructed its solution we may add the 
fluctuating part to the radiation reaction force, 
transform it with the help of operator (9) and solve the 
Fokker-Planck equation in the new variables to find the 
phase space distribution of radiating particles. 
4 NEAR-HAMILTONIAN SYSTEM 
If the synchrotron radiation is weak we may exclude it 
from the normalization process and add afterwards. 

In this case, putting in (2) F(rad) = 0 and introducing 
a new Hamiltonian, K, and a scalar generating 
function, w, via the relations 

G = S. ∂ Κ, V = S∙ ∂ w, (12) G = S. ∂u Κ, V = S∙ ∂u 
w, (12) 

we can reduce general equation (11) to Dewar's 
equation [6] which in turn by expanding everything in 
power series 
w = ∞ ε

n 
wn+1, K = ∞ ε

n 
Κn, Η = 

∞ εn H0n,... (13) w = Σ 
εn wn+1, K = Σ 

εn Κn, Η = Σ 
εn H0n,... (13) w = Σ n! wn+1, K = Σ n! Κn, Η = Σ n! H0n,... (13) w = 

n=0 n! 
wn+1, K = 

n=0 n! 
Κn, Η = 

n=0 n! 
H0n,... (13) 

can be reduced to Deprit's equations (see e.g. [5]) 
wn ≡ ∂ wn + [wn,Κ0] = Κn - H0n-Σn, (14) wn ≡ ∂θ wn + [wn,Κ0] = Κn - H0n-Σn, (14) 

where the Poisson brackets were introduced and 
Σn = n-1 {( 

n-1 )[wm,Kn-m] + ( n-1 )Hm.n-m}, Hm.n = m ( m-1 )[wj,Hm-j.n] Σn = Σ {( 
n-1 )[wm,Kn-m] + ( n-1 )Hm.n-m}, Hm.n = Σ ( m-1 )[wj,Hm-j.n] Σn = Σ {( m-1 )[wm,Kn-m] + ( m )Hm.n-m}, Hm.n = Σ ( j-1 )[wj,Hm-j.n] Σn = 

m=1 {( m-1 )[wm,Kn-m] + ( m )Hm.n-m}, Hm.n = j=1 ( j-1 )[wj,Hm-j.n] 
Deprit's equations permit to build w and Κ in the same 
recursive process so as to assure the existence of the 
(formal) solution: Kn absorbs terms from the r.h.s. of 
eq.(14) which belongs to the null space of operator and can not be relegated to wn, these being the detuning 
and the close resonance terms. 

As a preliminary step it is convenient to introduce 
the linear normal form variables which are essentially 
the coefficients of expansion in the eigenvectors 
(assumed here to be 2π-periodic) of the transfer matrix: 

Ζ = Σ aανα(θ) + c.c, aα=-iνα+(θ)∙5·z, (15) Ζ = 
α 
aανα(θ) + c.c, aα=-iνα+(θ)∙5·z, (15) 

where index α numbers the normal modes, which we 
still denote as x,y,s for simplicity. 

Equations of motion for aα and its complex 
conjugate can be cast into the Hamiltonian form 

= ∂ , = - ∂ (16) = ∂aα* , = -∂aα 
(16) 

with an imaginary Hamiltonian 

= iΣ Qαaαaα
* + iH(h.o.t) (17) 

α where H(h.o.t) stands for the nonlinear part of the 
original Hamiltonian, Qs < 0 above transition. 

Deprit's equations can be easily solved in terms of 
the eigenfunctions of operator 

Ψl.m = Π aαaα*, Ψl.m* = Ψm.l,lα,mα ≥ 0, (18) 
α which will be referred to by a 6-tuple of their indices, 

(lx, mx, ly, my, ls ms). 
Table 1 

lx mx ly my ls ms wl.m(0)[m-1] Δεy [nm] 
000102 -0.0220 - 0.1972 i 0.03 
000201 0.6440 + 1.8924 i <0.01 
000210 -0.3404 - 2.2283 i <0.01 
001101 1.5418 - 24.873 i 0.10 
011001 6.9705 + 1.1064 i 0.07 
012000 586.37 + 113.43 i 0.33 
020001 -0.7459 + 7.8636 i -
020010 0.6088 - 8.0303 i -

Table 1 shows some terms in the first-order 
generating function at θ = 0 obtained for the HERA-e 
HE_REV2_NONINT3 lattice with the arc cell phase 
advances μx/μy = 90°/60° and the tunes Qx,= 58.2105, 
Qy =46.1219, |Qx| =0.0452 in the presence of errors [7]. 
5 OFF-MOMENTUM DYNAMIC APERTURE 
Large values of 020001 and 020010 terms suggest 
strong modulation of the horizontal amplitude by 
energy oscillations which may limit a particle stability, 
both horizontal and vertical due to a large cross-detuning 
∂Qy/∂Wx= -3.3-104 m-1, Wx being the Courant-Snvder 
invariant. 

Figure 1. Maximal vertical stable amplitude vs. initial 
phase angles at Wx = 1 μm, δp = 0.5% and Φy0 = 0. 
Results obtained by tracking with radiation at 

E0= 27.5 GeV are presented in Fig.1 as "swamp" plots, 
with the color changing from white to black as the 
maximal stable vertical amplitude is reducing from 
ƒy= (Wy[µm])½ > 1.5 to a vanishing one. 

Along with the importance of SBC these findings 
show necessity to employ nonlinearly normalized 
variables to eliminate uncertainty arising from the 
dependence on the initial phase angles. 
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Figure 2. Dynamic aperture in the first order normal 
form variables with and without chromatic functions 
correction at different synchrotron amplitudes. The 
dotted line shows the 10σ ellipse for εx= 24 nm, εy = εx/2. 

The dynamic aperture calculated in these variables gives 
a really available volume of the phase space. Fig.2 
shows effect of the chromatic functions correction (by 
only some 20% achievable with the sextupole families 
foreseen in the considered lattice). 
6 NONLINEAR VERTICAL EMITTANCE 
In the case of a canonical transformation the radiation 
reaction force transforms according to 

Gi() = ()i = Σ Fj(rad)(u)Sik ∂ (S∙u)j (19) Gi() = ()i = Σ Fj(rad)(u)Sik ∂uk (S∙u)j (19) Gi() = ()i = 

j.k 
Fj(rad)(u)Sik ∂uk (S∙u)j (19) 

Due to the transformation the nonlinear coupling 
enters the diffusion coefficients modifying the 
equilibrium distribution. For example in the non-resonant 
case terms of the type (hmayasm - c.c.) in the 
original Hamiltonian (17) contribute to the apparent 
emittance of the (almost) vertical mode as 

Figure 3. Averaged values of the action variables (in units of 
the linear emittances) vs. number of turns of averaging. 

εy.=<ayay*> ≈ εy0 + m!(|w1(0)|2 + mJs )εs0m (20) 
εy.=<ayay*> ≈ εy0 + m!(|w1(0)|2 + Jv )εs0m (20) 

≈ εy0 + m!(1 + mJs ) 
εs0m 

≈ εy0 + m!(1 + Jy ) ∆2m 
εs0m 

where Jα are the damping partition numbers and ∆m= Qy-
m|Qs| - n is the distance from the resonance. 

Analytically calculated contributions from several 
terms are cited in Table 1. Table 2 shows emittances 
obtained with the MAD EMIT routine (linear) and by 
tracking for 50000 turns (≈ 80 transverse damping 
times) with quantum fluctuations (see Fig.3). 

Table 2 
case εx [nm] εy [nm] εs [μm] 

EMIT, ideal lattice 25.66 0.685 8.069 
EMIT, misaligned 34.93 2.478 8.023 
quantum tracking 29.97 8.495 8.195 

The large nonlinear vertical emittance can be attributed 
to the Qy =QX- 2|Qy| resonance reached at Wx/2≈26nm≈ 
0.7εx0 due to the high cross-anharmonicity. Deprit's 
algorithm permits to calculate the resonance strength 
and find the phase space trajectories which for initial 
values of the action variables I= Ix0 + Iy0 = εx0 + εy0, Is0 
= εx0 are shown in Fig.4. 

Figure 4. Phase space trajectories on Qy = Qx - 2|Qs| resonance. 

For a particle trapped into the large resonance island 
<Iy> ≈ 0.24 1 = 9 nm in a fair agreement with the 
tracking data. Trapping can also explain the steep rise of 
the mean vertical action variable seen in Fig.3b. 

The largest contribution to the resonance strength 
comes from the cross-talk of the 011001 and 110001 
terms so the main cure in the considered case is a 
reduction of the vertical dispersion. 
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