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Abstract

Effects of synchro-betatron coupling (SBC) specific to
large electron storage rings with low emittance lattices
and high synchrotron tunes are considered. An adequate
mathematical apparatus based on the Lie transform
theory is briefly outlined. With HERA-e taken as an
example the nonlinear SBC is shown to limit the off-
momentum dynamic aperture and produce anomalous
vertical emittance.

1 INTRODUCTION

The possible impact of the synchro-betatron coupling
(SBC) on the performance of electron/positron storage
rings has long been acknowledged [1]. There are
common features of large e'e” rings used as circular
colliders, synchrotron radiation sources and damping
rings of linear colliders - low value of the natural
emittance, high synchrotron tune, large amount of
energy stored in longitudinal oscillations - which make
influence of the SBC especially important.

At large amplitudes the SBC can limit particle
stability thus reducing the lifetime; at small amplitudes it
can transfer energy from longitudinal to transverse
oscillations increasing the transverse emittance.

These effects can be studied by tracking with MAD
[2], however, an analytical tool is desirable which would
enable one to analyze mechanisms of the SBC in
particular cases.

2 SOURCES OF NONLINEAR COUPLING
Introducing 6D phase space column vector of
coordinates and momenta

2=(x p. ¥ Py 6. 8,) M
and 6=s/R we have the following equation of motion
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which is governed by the radiation reaction force F™
and the Hamiltonian
2
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where A, takes into account stationary magnetic and RF
fields.

The primary source of nonlinear SBC is the kinetic
energy term in the square brackets; it contains resonance
driving terms 20, mQ,, (Q,- Q,)tmQ, a=x,y. In
the quasi-static limit (IQ,/—0) the effect of the former
terms is the off-momentum beta-beating, whereas the
latter produce chromaticity of the betatron tunes. When
i0,) is comparable with fractional betatron tunes these

concepts lose their validity, the synchrotron oscillations
should be treated on an equal footing.

Due to finite dispersion, when p=p P +D’ 3, , the
kinetic energy term can drive sidebands @, + mQ; of the
integer betatron resonances as well.

The adverse effects of the kinetic energy nonlinearity
are compensated with the help of sextupole families [3],
which in the presence of both vertical and horizontal
dispersion introduce by themselves 3DoF coupling,
00,0,

A classical Hamiltonian mechanism driving linear
synchro-betatron resonances is the RF field in the
presence of finite dispersion [1]. Due to a shift in stable
phase angle needed to compensate for the synchrotron
radiation losses it can drive odd-order resonances.

The (mean part of) radiation reaction force also
contributes to the SBC due to its dependence on the
particle transverse position in quadrupoles and/or
nonlinear wigglers. This effect called radiative beta-
synchrotron coupling [4] can even limit stable
transverse amplitude at high energies.

With increasing order the resonance strength
provided directly by the mentioned mechanisms rapidly
falls off, however their cross-talk described by high-
order perturbation theory may lead to a strong
excitation. To analyze such effects in 3DoF we follow
the mathematical approach outlined in Ref. [5].

3 LIE-TRANSFORM METHOD
Let us introduce into the vector field F a parameter € so
that at € = 0 it is integrable, e.g. linear, and try to find a
transformation to new dynamical variables
u=T(2,0;6)2=2(2,6:6), T B:0)=1, (4
in which the equation of motion
u=Gu 6;e), G 06,0)=F(u6;0), 3
is easier to analyze.
Defining the transformation by the equation

5%;(;. 8:e) = V(2(z 8:€).0:¢)r (6)

V being called a Lie-dragging field, we obtain the
equation for the inverse operator

dpi f i, [ o=y 2 )
e’ TTRT L=V,

which has the formal solution
T =T, exp[—j L,de’] ®

1]

where operator ]"‘E orders compositions of the Lie-

derivative operators so that their €-arguments increase
from the right to the left. Arbitrary vector fields are
transformed with the help of the matrix operator
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which satisfies the equation
596_;*—1 - #, Bu=Lu-iy=-fy, (0
and can be presented in a form similar to (8).
The Lie-dragging field ¥ is related to the original

and new vector fields by the following basic equation

d - 2] ., 0

sor tH =5 EmF Rk (o
which in principle permits to find ¥ for a given G or
vice versa.

Having constructed its solution we may add the
fluctuating part to the radiation reaction force,
transform it with the help of operator (9) and solve the
Fokker-Planck equation in the new variables to find the

phase space distribution of radiating particles.

4 NEAR-HAMILTONIAN SYSTEM
If the synchrotron radiation is weak we may exclude it
from the normalization process and add afterwards.

In this case, putting in (2) F™ =0 and introducing
a new Hamiltonian, K, and a scalar generating
function, w, via the relations

g:s-éa—K, y=5. (12)

u u
we can reduce general equation (11) to Dewar’s
equation [6] which in turn by expanding everything in
power series

W=Z%W,.m Kzz%K", H:Zi_!HUH,___ (13)

n=0 78 n=0 %= n=t

can be reduced to Deprit’s equations (see e.g. [5])

K0]=KM_H0"_2", (14)
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where the Poisson brackets were introduced and
n—1 m
z =S ke (D) A =3

Deprit’s equations permit to build w and X in the same
recursive process so as to assure the existence of the
(formal) solution: K, absorbs terms from the r.h.s. of
eq.(14) which belongs to the null space of operator D,

and can not be relegated to w,, these being the detuning
and the close resonance terms.

As a preliminary step it is convenient to introduce
the linear normal form variables which are essentially
the coefficients of expansion in the eigenvectors
(assumed here to be 2n-periodic) of the transfer matrix:

z=Y a, v,(O)+cc., a,=-iv;(8)-S-z» (13)

where index o numbers the normal modes, which we
still denote as X, y, s for simplicity.
Equations of motion for a, and its complex

conjugate can be cast into the Hamiltonian form

% h oa=-%q (16)
¢ Oa ‘" Qa,

with an imaginary Hamiltonian

a
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H= iz Q.a.a, +iH"™" (17)
a

where H"™**) stands for the nonlinear part of the
original Hamiltonian, Q, < 0 above transition.

Deprit’s equations can be easily solved in terms of
the eigenfunctions of operator D,

\Pl.m = Ha:;na;’"u’ lyl?m = lIJm.l ’ Iu’ rnu 2 0 ’ (1 8)

which will be referred to by a 6-tuple of their indices,
(1.\', my, [_vs ”1_)'1 l.h m\)

Table 1
lemd.m. I, m, Wim (0) [m"] Ag, [nm]
000102 -0.0220-0.1972 i 0.03
000201 0.6440 + 1.89241| <0.01
000210 -0.3404 - 2.22831| <0.01
001101 1.5418 - 24.873 i 0.10
011001 6.9705 + 1.1064 i 0.07
012000 586.37 + 113431 0.33
020001 -0.7459 + 7.8636 i -
020010 0.6088 - 8.0303 i -
Table 1 shows some terms in the first-order

generating function at 6 = 0 obtained for the HERA-e
HE_REV2 NONINT3 lattice with the arc cell phase
advances w/w,=90°/60° and the tunes Q.= 58.2105,
0,=46.1219, |0,/ =0.0452 in the presence of errors [7].

5 OFF-MOMENTUM DYNAMIC APERTURE
Large values of 020001 and 020010 terms suggest
strong modulation of the horizontal amplitude by
energy oscillations which may limit a particle stability,
both horizontal and vertical due to a large cross-
detuning Q,/0W. = -3.3-10* m”', W, being the Courant-
Snyder invariant.
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Figure 1. Maximal vertical stable amplitude vs. initial
phase angles at W, =1 pm, §,=0.5% and ¢,n=0.

Results obtained by tracking with radiation at
Ey=27.5 GeV are presented in Fig.1 as "swamp" plots,
with the color changing from white to black as the
maximal stable vertical amplitude is reducing from
fi= (W,[um]D'” > 1.5 to a vanishing one.

Along with the importance of SBC these findings
show necessity to employ nonlinearly normalized
variables to eliminate uncertainty arising from the
dependence on the initial phase angles.
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Figure 2. Dynamic aperture in the first order normal

form variables with and without chromatic functions

correction at different synchrotron amplitudes. The

dotted line shows the 100 ellipse for e;= 24 nm, g, = £, /2.
The dynamic aperture calculated in these variables gives
a really available volume of the phase space. Fig.2
shows effect of the chromatic functions correction (by
only some 20% achievable with the sextupole families
foreseen in the considered lattice).

6 NONLINEAR VERTICAL EMITTANCE
In the case of a canonical transformation the radiation
reaction force transforms according to
G'_(rud) :(_ﬁ—lfuml))i - zf}(m)(i--lg) S,'k _a_(s_j‘-—lz)j (19)
ik du,

Due to the transformation the nonlinear coupling
enters the diffusion coefficients modifying the
equilibrium distribution. For example in the non-
resonant case terms of the type (h.a.a,” - c.c.) in the
original Hamiltonian (17) contribute to the apparent
emittance of the (almost) vertical mode as
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Figure 3. Averaged values of the action variables (in units of
the linear emittances) vs. number of turns of averaging.

g, =(a,a}) = £, +m! (w,(0)*+ mJ, lw,1)em
g 20)

mi, b 1*
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where J, are the damping partition numbers and A,= Q,-
mlQJ - n is the distance from the resonance.

Analytically calculated contributions from several
terms are cited in Table 1. Table 2 shows emittances
obtained with the MAD EMIT routine (linear) and by
tracking for 50000 turns (=80 transverse damping
times) with quantum fluctuations (see Fig.3).

=g, +m!(1+

Table 2
case €, [nm] €, [nm} € [um]
EMIT, ideal lattice 25.66 0.685 8.069
EMIT, misaligned 34.93 2.478 8.023
quantum tracking 29.97 8.495 8.195

The large nonlinear vertical emittance can be attributed
to the O, = Q,- 2iQ, resonance reached at W, /2~26nm=
0.7¢,0 due to the high cross-anharmonicity. Deprit’s
algorithm permits to calculate the resonance strength
and find the phase space trajectories which for initial
values of the action variables /= I,g + L= €, +£,0, I 0
= g0 are shown in Fig.4.
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Figure 4. Phase space trajectories on Q= Oy - 20| resonance.

For a particle trapped into the large resonance island
< I,>=024 1 =9 nm in a fair agreement with the
tracking data. Trapping can also explain the steep rise of
the mean vertical action variable seen in Fig.3b.

The largest contribution to the resonance strength
comes from the cross-talk of the 011001 and 110001
terms so the main cure in the considered case is a
reduction of the vertical dispersion.
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