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Abstract. The inflaton field can be expected to couple to a number of additional fields whose
energy density does not play any significant role in driving inflation. Such couplings may lead to
isolated bursts of particle production during inflation, for example via parametric resonance or a
phase transition, and leave observable imprints in the cosmological fluctuations. I illustrate this
effect for a simple prototype interaction g2(φ− φ0)

2χ between the inflaton, φ, and iso-inflaton,
χ. Using both classical lattice simulations and analytical quantum field theory computations,
I show that this mechanism generates localized bump-like features in the power spectrum and
also a completely new type of nongaussianity. Observations are consistent with relatively large
features of this type and the nongaussianity from particle production may be observable in
future missions.

1. Introduction

The inflationary paradigm has become a cornerstone of modern cosmology. As measurements
of the Cosmic Microwave Background (CMB) radiation grow increasingly precise, it has become
topical to look beyond the simplest single-field, slow-roll inflationary scenario. In particular,
it is interesting to determine the extent to which non-minimal signatures, such as features
in the primordial power spectrum or observable nongaussianities, can be accommodated by
microscopically sensible inflation models. Efforts in this direction are valuable because they allow
us to test our theoretical prejudices and they provide observers with well-motivated templates for
departures from the standard scenario. If detected, such signatures might open an observational
window into fundamental particle physics at extremely high energy scales.

The motion of the inflaton may trigger the production of some non-inflaton (iso-curvature)
particle during inflation [1, 2, 3]. Inflationary particle production is a generic feature of models
from string theory (eg - brane/axion monodromy [4]) and also supersymmetric field theory
[5]. Examples have been studied where particle production occurs via parametric resonance
[1, 2, 3, 6, 7, 8, 9], as a result of a phase transition [10, 11], or otherwise [12]. These constructions
have attracted interest recently for a number of reasons, including the possibility to exploit the
dissipative effect of particle production to slow the motion of the inflaton on a steep potential
[9, 12] (see also [13]).

In this talk, which is based [1, 2, 3], I will discuss the observational signatures of inflationary
particle production. This scenario provides a simple, microscopically well-motivated mechanism
to generate features in the primordial power spectrum and also observably large nongaussianity.
The bispectrum from particle production is particularly novel: we find a completely new kind of
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nongaussian signature which has been overlooked in previous literature. For reasonable values
of model parameters, this should be detectable in future missions.

2. Particle Production During Inflation

To illustrate the basic physics of inflationary particle production, we consider the following
prototype action

S =

∫

d4x
√−g

[

−1

2
(∂φ)2 − V (φ)− 1

2
(∂χ)2 − µ2

2
χ2 − g2

2
(φ− φ0)

2χ2

]

(1)

which is understood to be minimally coupled to gravity. Here φ is the inflaton, χ is the iso-
inflaton and we leave the potential V (φ) unspecified expect to assume that it is sufficiently flat
to drive a long period of inflation with H ≡ ȧ/a ∼= const where a(t) is scale factor. Note that we
have included a “bare” mass µ2 for the iso-inflaton; even if χ is classically massless at φ = φ0,
then such a term will be generated by radiative corrections.

The scenario we have in mind is the following. Inflation starts with φ ≫ φ0 so that the
iso-inflaton is extremely massive m2

χ ≡ µ2 + g2(φ− φ0)
2 ≫ H2 and stays pinned in the vacuum,

χ = 0. At the moment when φ = φ0 the iso-inflaton mass varies non-adiabatically |ṁχ|/m2
χ

>∼ 1
and χ particles are produced quantum mechanically. To describe this burst of particle production
one must solve the following equation for the χ-particle mode functions:

χ̈k + 3Hχ̇k +

[
k2

a2
+ µ2 + k4⋆t

2

]

χk = 0 (2)

Here we have approximated φ ∼= φ0 + vt and introduced the scale k⋆ ≡
√

g|v| =
√

g/(2πP1/2
ζ )H

where P1/2
ζ = 5×10−5 is the amplitude of the vacuum fluctuations from inflation. For reasonable

values of the coupling g2 >∼ 10−7 we have k⋆ > H and particle production is rapid as compared
to the expansion time. In this regime one can solve (2) very accurately for the occupation
number of the created particles [14, 15]

nk = e−π(µ2+k2)/k2⋆ (3)

Clearly particle production effects may be suppressed if µ2 is very large. For string theory or
supersymmetric models, one naturally has µ2 ∼ H2 ≪ k2⋆ and there is no suppression.

Following the initial burst of particle production, two distinct physical effects take place.
First, the energetic cost of producing a gas of non-equilibrium χ particles drains energy from the
inflaton, forcing φ̇(t) to drop abruptly. This velocity dip is a backreaction effect and contributes
a negligible “ringing” pattern to the power spectrum [8]. The second physical effect, which
yields the dominant contribution to the cosmological fluctuations, is called rescattering [1] and
will be the subject of the remainder of this talk.

3. Rescattering and Infra-Red Cascading

The importance of rescattering effects for the observable cosmological fluctuations in models with
particle production was first recognized in [1]. Fig. 1 illustrates the key process: bremsstrahlung
emission of long-wavelength δφ fluctuations from rescattering of the produced χ particles off the
condensate φ(t). The time scale for such processes, k−1

⋆ , is fast as compared to the expansion
time, H−1. Moreover, the production of inflaton fluctuations δφ deep in the IR is extremely
energetically inexpensive, since the inflaton is nearly massless. The combination of the short
time scale for rescattering and the energetic cheapness of radiating IR δφ leads to a rapid build-
up of power in long wavelength inflaton modes: infra-red (IR) cascading. These long-wavelength
inflaton modes freeze outside of the horizon and lead to a bump-like feature in the primordial
power spectrum.
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Figure 1. Rescattering
diagram

In [1] the model (1) was studied using lattice field theory
simulations, without neglecting any physical processes (that is to say
that full nonlinear structure of the theory, including backreaction
and rescattering effects, was accounted for consistently). However,
this same dynamics can be understood analytically [3] by solving the
equation for the inflaton fluctuations δφ in the approximation that all
interactions are neglected, except for the diagram Fig. 1:

δφ̈+ 3Hδφ̇ −
~∇2

a2
δφ+ V,φφδφ ∼= −g2 [φ(t)− φ0]χ

2 (4)

The solution of (4) may be split into two parts: the solution of the
homogeneous equation and the particular solution which is due to the
source term. Schematically we have

δφ(t,x) = δφvac(t,x)
︸ ︷︷ ︸

homogeneous

+ δφresc(t,x)
︸ ︷︷ ︸

particular

(5)

The former contribution is the homogeneous solution which behaves as δφvac ∼ H/(2π) on
large scales and, physically, corresponds to the usual scale invariant vacuum fluctuations from
inflation. The particular solution, δφresc, corresponds physically to inflaton fluctuations which
are generated by rescattering. The abrupt growth of χ inhomogeneities at t = 0 sources the
particular solution δφresc, leading to the production of inflaton fluctuations which subsequently
cross the horizon and become frozen. We have studied the dynamics of rescattering and IR
cascading in the model (1) using both fully nonlinear lattice simulations and also analytical
quantum field theory computations. We have found remarkable agreement between these two
independent approaches, for a wide range of model parameters [1, 3].

Notice that the particular solution δφresc of equation (4) is bi-linear in the gaussian field χ,
suggesting that the fluctuations from rescattering will be highly nongaussian. We have explored
the nongaussianity of the inflaton modes from rescattering in two different ways: by analytically
computing the bispectrum and also by numerical evaluation of the Probability Distribution
Function (PDF) [3]. We define the PDF, P (δφ), as the probability that the inflaton field has a
fluctuation of size δφ = φ− 〈φ〉. This is plotted in the left panel of Fig. 2 for several time steps
during the evolution. In order to make the physics of inflationary particle production clear, we
have subtracted off the usual vacuum fluctuations of the inflaton. That is, the PDF in the left
panel of Fig. 2 is associated only with the contribution δφresc in (5).

We can understand physically the behaviour of PDF plotted in the left panel of Fig. 2.
Shortly after the initial burst of particle production the inflaton perturbations δφ are extremely
nongaussian, due to the sudden appearance of the source term J ∝ χ2 in the equation of motion
(4). Very quickly, in less than an e-folding, nonlinear interactions begin to drive the system
towards gaussianity. A very similar behaviour has been observed in lattice simulations of out-
of-equilibrium interacting scalar fields during preheating [16]. In the case of rescattering during
preheating, the system will eventually become gaussian when the fields thermalize. However,
in our case the universe is still inflating during the process of rescattering and IR cascading.
As a result, nongaussian inflaton fluctuations generated by rescattering are stretched out by
the quasi-de Sitter expansion and must freeze once their wavelength crosses the Hubble scale.
Hence, at late times the PDF does not become completely gaussian, but rather freezes-in with
some non-trivial skewness. Within a few e-foldings from the moment of particle production the
time evolution of the PDF has become completely negligible.
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Figure 2. The left panel show the PDF of the inflaton fluctuations generated by rescattering
and IR cascading, at a series of different values of the scale factor, a. The dotted black curve
shows a Gaussian fit at late times and we have normalized the scale factor so that a = 1 at the
moment when particle production occurs. The right panel shows the PDF of the total curvature
fluctuation ζ, evaluated at late times (well after all relevant modes have crossed the horizon and
frozen). The solid black curve is the exact result and the dotted red curve is a gaussian fit. We
have also plotted the leading correction to the gaussian result in the Edgeworth expansion. For
illustration, we have chosen g2 = 0.1 and a standard chaotic inflation potential V (φ) = m2φ2/2
in both panels.

4. Features and Nongaussianity

Let us now consider the observational signatures associated with the dynamics described in the
last section. The primordial power spectrum in the model (1) is well approximated by [2]

Pζ(k) = As

(
k

k0

)ns−1

+AIR

(πe

3

)3/2
(

k

kIR

)3

e
−

π

2

(

k

kIR

)

2

(6)

The first term corresponds to the usual vacuum fluctuations from inflation (with amplitude
As and spectral index ns). The second term in (6) corresponds to the bump-like feature from
particle production with amplitude AIR (that depends on g2) and location kIR (that depends
on φ0). Current observational data are compatible with features as large as AIR/As ∼ 0.1 for
kIR corresponding to CMB scales, whereas even larger features are allowed on smaller scales. In
Fig. 3 we plot the power spectrum (6) for a representative choice of parameters.

Nongaussian statistics have attracted a considerable amount of interest recently, owing to
their potential as a tool for observationally discriminating between the plethora of inflationary
models in the literature. Nongaussianity is often characterized using the bispectrum [17], defined
as the 3-point correlation function of the fourier transform of the curvature fluctuation:

〈ζk1
ζk2

ζk3
〉 = (2π)3δ(3)(k1 + k2 + k3)Bζ(ki) (7)

Translational invariance ensures that Bζ(ki) depends on three wave-numbers which form a
triangle: k1 +k2 +k3 = 0. A general bispectrum Bζ(ki) may be characterized by specifying its
size (amplitude of Bζ), shape (whether Bζ peaks on squeezed, equilateral or flattened triangles)
and running (the dependence of Bζ on the size of the triangle) [18].

As remarked above, the fluctuations generated by rescattering and IR cascading are highly
nongaussian. This nongaussianity is very different from other models, such as the local,
equilateral or enfolded shapes, which have been studied in the literature [3]. The bispectrum
Bζ(ki) peaks strongly for triangles with a characteristic size ∼ kIR, corresponding to the location
of the bump in the power spectrum (6), and is therefore very far from scale invariant. The shape
of Bζ(ki) is also novel [3].
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Figure 3. The left panel shows a sample bump in the power spectrum with amplitude AIR =
2.5× 10−10, which corresponds to a realistic coupling g2 ∼ 0.01, and location kIR = 0.01Mpc−1.
This example represents a distortion of O(10%) as compared to the usual vacuum fluctuations
and is consistent with the data at 2σ. The right panel shows the corresponding CMB angular
TT power spectrum.

The unusual shape/running of the bispectrum from particle production makes it difficult to
compare the magnitude of the nongaussianity in our scenario to more familiar models, such as
the local template. In order to quantify the nongaussianity from particle production we find
it useful to compute the cummulants of the Probability Distribution Function (PDF). In the
right panel of Fig. 2 we plotted the PDF of the inflaton fluctuations from rescattering. However,
the quantity that is relevant for observations is the PDF of the total curvature perturbation,
ζ, including both the contributions in (5). In the right panel of Fig. 2 we plot this quantity,
evaluated at very late times, well after all relevant modes have crossed the horizon and become
frozen.

Let us define the central moments of the PDF as

〈ζn〉 ≡
∫

ζnP (ζ)dζ (8)

These moments carry information about the correlation functions of ζ integrated over all
wave-numbers, and therefore provide a useful tool to compare models with very different
shape/running properties [19]. The dimensionless skewness, κ̂3 ≡ 〈ζ3〉/〈ζ2〉3/2, and kurtosis,
κ̂4 ≡ 〈ζ4〉/〈ζ2〉2 − 3, encode departures from gaussianity. These are summarized in Table 1.
We have also computed an “equivalent f local

NL ” which, for a given g2, is the magnitude of fNL

necessary to reproduce the skewness κ̂3 with a local ansatz ζ = ζg +
3
5fNL

[
ζ2g − 〈ζ2g 〉

]
.

Table 1. Moments of the Probability Distribution Function

g2 skewness kurtosis “equivalent”
(κ̂3) (κ̂4) f local

NL

1 −0.51 0.2 −4500
0.1 −0.49 −0.1 −4300
0.01 −0.006 < O(10−3) −53
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The coupling, g2, controls both the nongaussianity and also the magnitude of the bump-like
feature in (6). A key question is whether nongaussian effects can be observable in a regime where
the feature is small enough to have evaded detection. The answer seems to be affirmative: for
g2 = 0.01 the spectrum (6) fits the data at 2σ [2] while κ̂3 = −0.006. This level of skewness would
be produced by a local model with fNL ∼ −53, which is comparable to current observational
bounds and is well within the accuracy of future missions.

5. Conclusions

Particle production during inflation is a simple and microscopically well-motivated mechanism
that generates localized features in the primordial power spectrum and also significant
nongaussianities. Such signatures provide a novel example of non-decoupling,1 suggesting a
possibility to probe extremely high scale physics with cosmology. The new type of nongaussianity
that we have discovered is phenomenologically interesting and can be large even without tine-
tuning the inflationary trajectory or appealing to re-summation of an infinite series of high
dimension operators.

The key process that generates cosmological perturbations in our model, IR cascading, is
interesting it its own right: it is qualitatively different from other mechanisms in the literature
(in that we do not rely on the quantum vacuum fluctuations of some light iso-curvature fields) and
the underlying dynamics are relevant also for preheating, moduli trapping and non-equilibrium
quantum field theory more generally.

I am grateful to the organizers of PASCOS 2010 for providing me with the opportunity to
present this material.
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1 The produced χ particles are extremely massive for (almost) the entire history of the universe, however, their
effect cannot be integrated out due to the non-adiabatic time dependence of the χ modes.
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