

FIRST FULL BETA-STRENGTH MEASUREMENT WITH DTAS ACROSS N=126 AT FAIR PHASE-0

D.Rodriguez-Garcia^{1,}, J. L.Tain¹, A. I.Morales¹, G.Aggez^{2,3}, J.Agramunt¹, M.Alaqeel^{4,5}, B.Alayed^{5,6}, H. M.Albers², G.Alcala¹, A.Algora¹, A.Alharbi⁵, S.Alhomaidhi^{2,7}, F.Amjad², T.Arıcı², M.Armstrong⁸, M.Bajzek², A.Banerjee², G.Bartram², G.Benzoni⁹, Z.Chen², B.Das², T.Davinson¹⁰, T.Dicke², I.Dillmann¹¹, C.Domingo-Pardo¹, H.Ekawa¹², Z.Ge², W.Gelletly¹³, J.Gerl², M.Gorska², E.Haettner², O.Hall¹⁰, P.Herrmann², C.Hornung², N.Hubbard^{2,7}, C.Jones², E.Kazantseva², R.Knoebel², I.Kojouharov², G.Kosir²¹, D.Kostyleva², T.Kurtukian-Nieto¹⁵, N.Kurz², M.Labiche¹⁶, A.Mccarter⁵, M.Mikolajczuk², A. K.Mistry^{2,7}, I.Mukha², E.Nacher¹, M.Nakagawa¹², B.S.Nara-Singh²⁰, S.Nishimura¹², S. E. A. Orrigo¹, P.Papadakis¹³, S.Pietri², W.Plass², Z.Podolyak¹³, M.Polettini^{9,17}, R.Prajapati^{2,18}, E.Rocco², B.Rubio¹, E.Sahin^{2,7}, M.Satrazani⁵, H.Schaffner², C.Scheidenberger², A.Sharma¹⁹, Y.K.Tanaka¹², A.Tolosa-Delgado²¹, M.Vencelj¹⁴, J.Vesic¹⁴, P.Vi¹², J. A.Victoria¹, H.Weick², K.Wimmer², H. J.Wollersheim², A.Yaneva^{2,8}, and J.Zhao^{2,22}*

¹Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, E-46980 Paterna, Spain

²GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany

³Institute of Graduate Studies in Sciences, Istanbul University, 34452 Istanbul, Turkey

⁴Physics Department, Imam Mohammad Ibn Saud Islamic University (IMISU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia

⁵Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK

⁶Department of Physics, ArRass College of Sciences and Art, Qassim University, Saudi Arabia

⁷Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany

⁸IKP, University of Cologne, D-50937 Cologne, Germany

⁹INFN Sezione di Milano, I-20133 Milano, Italy

¹⁰School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK

¹¹TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada

¹²RIKEN Cluster for Pioneering Research, RIKEN, Saitama 351-0198 Japan

¹³Department of Physics, University of Surrey, Guildford, GU2 7XH, UK

¹⁴Faculty of mathematics and physics of the University of Ljubljana, SI-1000 Ljubljana, Slovenia

¹⁵Instituto de Estructura de la Materia, CSIC, E-28006, Madrid, Spain

¹⁶Science and Technology Facilities Council, Daresbury Laboratory, Daresbury, WA4 4AD, UK

¹⁷Dipartimento di Fisica, Università degli Studi di Milano - Milano, Italy

¹⁸Department of Physics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India

¹⁹Department of Physics, Indian Institute of Technology Ropar, Rupnagar - 140001, India

²⁰Paisley, University of the West of Scotland, High St, Paisley PA1 2BE, UK

²¹Faculty of Mathematics and Science, University of Jyväskylä, FI-40014 Jyväskylä, Finlandia

²²School of Physics, Peking University, Beijing 100871, China

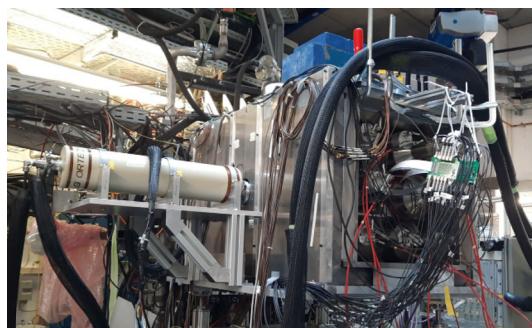
Abstract. An experiment was performed at GSI with the objective of measuring the β -intensity distribution in the decay of Hg, Au and Pt isotopes around N=126 using the total absorption gamma-ray spectroscopy technique. The aim is to benchmark theoretical models used to make predictions of half-life and neutron emission probabilities of exotic nuclei involved in the rapid neutron capture process, leading to the synthesis of very heavy elements. This paper presents some experimental details and the current status of the analysis.

1 Introduction

Our current understanding of the production of the heaviest elements in the Universe remains incomplete, especially with regards to the contribution of the rapid neutron capture (r -) process to the observed abundances of elements with $A>180$ and the astrophysical site responsible for this process. To shed light on this puzzle, a combination of astronomical observations, including gravita-

tional wave detection, nuclear physics laboratory experiments and theoretical modelling is necessary.

From the point of view of the nuclear data, the situation is challenging, as the abundance distribution in the heavy mass region peaks at $A \sim 195$, the so-called 3rd abundance peak, which is related to the N=126 shell closure in very neutron-rich nuclei. There is a lack of experimental information in this remote region, and it is impossible at current facilities to fill the gap. As a result, we must rely on theoretical predictions, particularly for the important macroscopic quantities of half-life ($T_{1/2}$), neu-


*e-mail: David.Rodriguez@ific.uv.es

tron emission probability (P_n), and mass. P_n and $T_{1/2}$ are extracted from the calculated β -strength distribution, which depends on nuclear structure. However, the existence of a number of theoretical calculations providing largely conflicting results for both quantities when crossing $N=126$, see for example [1, 2], calls for additional studies to understand the origin of these differences.

To address this issue, we aim to contrast calculated and measured β -strength distributions, rather than $T_{1/2}$ and P_n , for the first time in this region. Total Absorption Gamma-ray Spectroscopy (TAGS) [3] is the most suitable technique to provide β -strength distributions in the decay energy window. This technique relies on the use of large calorimeters that are sensitive to γ cascades rather than individual γ rays, and a suitable analysis method [4] to extract feeding intensities as a function of daughter excitation energy E_x .

2 Experiment

The experiment, the first with the Decay Total Absorption Spectrometer (DTAS)[5] at the GSI facility, was performed in June 2022 as part of the FAIR Phase-0 DESPEC campaign. We measured the decay of ^{207}Hg , $^{204-206}\text{Au}$ and $^{203,204}\text{Pt}$ produced in fragmentation and relativistic charge-exchange reactions [6, 7] of a 1 GeV/u ^{208}Pb beam on a 1625 mg/cm² ^9Be target. The beam intensity was 10^9 pps with a time structure of 1.6 s spill every 3.8 s. The isotopes were selected using the FRagment Separator (FRS) and identified by the $B\rho - \Delta E - B\rho$ method [8].

Figure 1. Experimental set-up installed at the end of the FRS.

The Advanced Implantation Detector Array (AIDA) [9] was used to measure ion implantation and decay particles. In our experiment we employed two 1-mm thick silicon Double-Sided Strip Detectors (DSSD) separated 10 mm, each with 128 strips in X and Y direction and a strip pitch of 0.56 mm. Two position sensitive plastic scintillation detectors (β Plast [10]) were placed within the AIDA snout \sim 15 mm upstream and downstream from the DSSDs. With an area of 80 mm \times 80 mm and a thickness of 3 mm, they were used as subsidiary ion/ β detectors. Isomeric and β -delayed γ -ray cascades were measured with DTAS surrounding AIDA. It consisted of 16 independent NaI(Tl) modules with crystals of size 150 mm \times 150 mm \times 250 mm. The setup was completed with two X-ray sensitive HPGe detectors (LOAX), each 30 mm thick and 70-

mm diameter. They were inserted in DTAS to the left and right of the beam.

Up to five independent Data ACQuisition (DACQ) systems were used (FRS, AIDA, DTAS, β Plast, LOAX) all integrated into a Multi Branch System (MBS) using the White Rabbit (WR) common synchronization signal. For DTAS DACQ [11] this required encoding WR time information following developments made at Chalmers Technical University and GSI [12]. The progress of the measurement was controlled via Go4 based near-line analysis. Further details and references can be found in [10].

3 Status and outlook

The analysis of the data is at an early stage. Currently, we are working on the calibration of the FRS detectors in order to improve the identification of the nuclei of interest. At the same time, we are analysing DTAS data obtained from the measurement of several radioactive sources and comparing the results with detailed Monte Carlo simulations to benchmark the calculated spectrometer response. Next we will address the calibration of AIDA data and the reconstruction of ion and β events. Then the information from the three systems will be merged to obtain ion- γ and ion- β - γ correlations from which we will obtain the spectra to be analyzed.

Acknowledgements

Work partially supported by Spanish Ministry of Science grant PID2019-104714GB-C21 and Generalitat Valenciana grant PROMETEO/2019/007. D.Rodriguez-Garcia acknowledges FPI fellowship PRE2020-904341.

References

- [1] A.I. Morales et al., *Phys. Rev. Lett.* **113**, 022702 (2014)
- [2] R. Caballero-Folch et al., *Phys. Rev. Lett.* **117**, 012501 (2016)
- [3] B. Rubio et al., *J. Phys. G* **31**, S1477 (2005)
- [4] J.L. Tain et al., *Nucl. Instrum. Meth. Phys. Res. Sect. A* **571**, 728 (2007)
- [5] V. Guadilla et al., *Nucl. Instrum. Meth. Phys. Res. Sect. A* **910**, 79 (2018)
- [6] T. Kurtukian-Nieto et al., *Phys. Rev. C* **89**, 024616 (2014)
- [7] A. I. Morales et al., *Phys. Rev. C* **84**, 011601(R) (2011)
- [8] H. Geissel et al., *Nuclear Instruments and Methods in Physics Research Section B* **70**, 286, (1992)
- [9] O. Hall et al., *Nucl. Instrum. Meth. Phys. Res. Sect. A* **1050**, 168166 (2023)
- [10] A.K. Mistry et al., *Nucl. Instrum. Methods Phys. Res. Sect. A* **1033**, (2022) 166662
- [11] J. Agramunt, et al., *Nucl. Instrum. Methods Phys. Res., Sect. A* **807**, 69 (2016)
- [12] H. Johansson and S. Löher, private communication <http://fy.chalmers.se/f96hajo/rataser/>