
PHYSICAL REVIEW RESEARCH 2, 023232 (2020)

Geometry of learning neural quantum states
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Combining insights from machine learning and quantum Monte Carlo, the stochastic reconfiguration method
with neural network Ansatz states is a promising new direction for high-precision ground-state estimation of
quantum many-body problems. Even though this method works well in practice, little is known about the learning
dynamics. In this paper, we bring to light several hidden details of the algorithm by analyzing the learning
landscape. In particular, the spectrum of the quantum Fisher matrix of complex restricted Boltzmann machine
states exhibits a universal initial dynamics, but the converged spectrum can dramatically change across a phase
transition. In contrast to the spectral properties of the quantum Fisher matrix, the actual weights of the network
at convergence do not reveal much information about the system or the dynamics. Furthermore, we identify
a measure of correlation in the state by analyzing entanglement in eigenvectors. We show that, generically,
the learning landscape modes with least entanglement have largest eigenvalue, suggesting that correlations are
encoded in large flat valleys of the learning landscape, favoring stable representations of the ground state.
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I. INTRODUCTION

Recently the fields of machine learning and quantum in-
formation science have seen a lot of crossbreeding. On the
one hand, a number of promising results have been obtained
suggesting the potential for performing quantum or classical
machine learning tasks on a quantum computer [1]. In par-
ticular, the variational quantum eigensolver [2]—perhaps the
most promising quantum algorithms for first-generation quan-
tum computers—is based on the variational optimization of a
cost function to be evaluated on a quantum device, providing
a new playground for hybrid quantum-classical learning [3,4].
However, arguably the most significant advances have been in
the field of classical variational algorithms for quantum many-
body systems. A number of studies have shown that machine-
learning-inspired sampling algorithms can reach state-of-the-
art precision, including ground-state energy estimation [5–8],
time evolution [5,9], identifying phase transitions [10–12],
and decoding quantum error correcting codes [13,14] (for a
recent review, see Ref. [15]).

A model that has gathered a particularly large amount of
attention is the complex restricted Boltzmann machine (RBM)
state Ansatz with stochastic reconfiguration optimization in-
troduced by Carleo and Troyer [5]. The authors show that
ground-state energy evaluations can outperform the state-of-
the-art tensor network methods on benchmark problems.

At present, however, there is lacking a theoretical un-
derpinning for explaining why the complex RBM—or any
other machine-learning-inspired parametrization—is a good
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Ansatz for describing ground states of physical Hamiltonians
or for accessing its features. This is sometimes referred to
as the “black box” problem of machine-learning-inspired
approaches, that theoretical understanding lags far behind the
numerical state of the art. In particular, it is difficult to assess
and quantify the role of entanglement in these new classes
of wave functions. This is to be contrasted with the density
matrix renormalization group (DMRG) [16], which was first
developed as an extension of the numerical renormalization
group. Subsequently, it was realized that the theoretical un-
derpinning of DMRG was the theory of tensor network states,
which connect the efficiency of simulation in one-dimensional
systems with the amount and nature of entanglement in the
spin chain. We are far from such a detailed understanding of
machine-learning-inspired methods.

Thus it is natural that some studies have related complex
RBM states to tensor network states [17,18]. But these studies
are mostly based on constructing abstract mappings between
RBM wave functions and tensor network states, and usually
provide at best existence proofs.

In this paper, we aim to obtain a better understanding of
the learning dynamics with complex RBM wave functions by
analyzing the geometry induced in parameter space. Indeed,
the stochastic reconfiguration method updates the variational
parameters of the wave function with gradient descent of the
energy, weighted by a “quantum Fisher matrix,” which is the
quantum analog of the Fisher information matrix. The Fisher
information matrix is known to be the unique Riemannian
metric associated to a probability space invariant under suf-
ficient statistics [19]. Hence it is the natural candidate for
associating an “information geometry” to a statistical model.

We analyze the spectral properties of the “quantum Fisher
matrix” for various lattice spin models. We argue that the
information geometry provides us with clues for both the
expressibility of the Ansatz state and the underlying physics,
provided the optimization converges. In particular, we identify
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a number of features which we believe to be universal for spin
models:

(i) The spectrum of the quantum Fisher matrix becomes
singular in phases connected to a product state (in the compu-
tational basis). The singularity is more pronounced the closer
one gets to the product state.

(ii) Critical phases have a smooth and extended spectrum,
which is also reminiscent of image recognition models in
classical machine learning.

(iii) Kinks in the spectrum reveal symmetries in the state.
(iv) The eigenvalues are exponentially decaying in value.

The largest eigenvalues have eigenvectors that are dominated
by first moments; i.e., they do not contain much information
about correlations in the system. This feature is accentuated
the sharper the spectrum profile of the quantum Fisher matrix.

The above insight was extracted from extensive numerical
data calculated using quantum spin Hamiltonians such as
transverse field Ising and Heisenberg spin-XXZ models as
well as coherent Gibbs states for the two-dimensional clas-
sical Ising model. Various Monte Carlo sampling strategies
were used to optimize the results on large system sizes.

Importantly, we observe that the bare values of the varia-
tional parameters reveal very little information about the phys-
ical properties of the system, contrary to what is often claimed
that “activations indicate regions of activity in the underlying
data.” We take this as evidence that there are many equivalent
representations of the states in the vicinity of the ground state,
suggesting that the optimizer preferentially chooses robust
representation of the ground state. Robustness of the Monte
Carlo methods might be related to the generalization property
in supervised learning. Our study shows that the spectrum of
the quantum Fisher matrix can be an essential diagnostic tool
for further exploration with complex RBM wave functions as
well as with other machine-learning-inspired wave functions.

A. Complex RBM and optimization
by stochastic reconfiguration

The complex restricted Boltzmann machine (RBM) neural
network quantum state specifies the amplitudes of a wave
function |ψθ 〉 = ∑

x ψθ (x)|x〉 in some chosen computational
basis {|x〉} by the exponential family

ψθ (x) =
∑

y

ea·x+b·y+xT wy/
√

Z, (1)

where the vectors {a, b} and the matrix w contain complex
parameters to be varied in the optimization, and y is a binary
vector indexing “hidden” units. Z = ∑

x |ψθ (x)|2 is a constant
guaranteeing normalization of the state ψ . The complex RBM
can be visualized as a binary graph (V, E ) between the visible
nodes x and the hidden nodes y (see Fig. 1). To each edge
e ∈ E we associate a variational parameter we, and at each
vertex v ∈ V we associate a bias weight a or b to a visible
(x) or hidden (y) binary degree of freedom. We will often
express the variational parameters as a concatenated vector
labeled θ = (a, b, vec(w)). For classical RBMs, the normal-
ization constant is the partition function of a joint probability
distribution on the hidden and visible units. This is generally
not true in the complex case.

The goal of variational Monte Carlo is to find the optimal
parameters θ that minimize the energy of a given Hamilto-
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FIG. 1. Complex RBM consisting of one hidden and one visible
layer. Visible, hidden biases, and weights are a ∈ CN , b ∈ CM , and
w ∈ CN×CM , respectively. x, y are binary vectors of length n and m,
respectively.

nian in the state |ψθ 〉. The standard approach would be to
use gradient descent, but this performs very poorly for spin
Hamiltonians, as the updates tend to get stuck oscillating back
and forth along steep wells of the energy landscape rather
than falling down the more shallow directions. The stochastic
reconfiguration (SR) method [20,21] for energy minimization
is derived as a second-order iterative approximation to the
imaginary time ground-state projection method (see Appendix
A for a self-contained derivation). In SR the parameters of the
Ansatz wave function are iteratively updated as

θ → θ − ηS−1∇θ 〈H〉, (2)

where η is a constant specifying the rate of learning. The
second-order effects which take curvature into account are
determined by the matrix

Sαβ = 〈O†
αOβ〉 − 〈O†

α〉〈Oβ〉 (3)

of the diagonal operators Oα , with α ∈ θ , which act, for
instance, as

Owi j |x〉 = ∂ log ψθ (x)

∂wi j
|x〉 (4)

in the computational basis {x}. We will call the matrix S the
quantum Fisher matrix, because of its connection with infor-
mation geometry as discussed in detail in the next section.
The quantum Fisher matrix can be reformulated as a classical
covariance matrix of the operators Oα, Oβ ,

Sαβ = E[O†
αOβ] − E[O†

α]E[Oβ], (5)

and similarly

∂α〈H〉 = E[OαHloc] − E[Oα]E[Hloc], (6)

where E[A] = ∑
x A(x)|ψθ (x)|2 is the classical expectation of

operator A in the state |ψθ (x)|2, and

Hloc(x) = 〈x|H |ψθ 〉
〈x|ψθ 〉 (7)

is called the local energy.
For the RBM Ansatz, the diagonal operators Oα take on the

following simple form:

Oai (x) = xi. (8)

Obj (x) = tanh χ j (x), (9)

Owi j (x) = xi tanh χ j (x), (10)
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where χ j (x) = b j + ∑
i wi jxi, and indices i run over

[1, . . . , N] visible vertices and j run over [1, . . . , M] hidden
vertices. Thus the size of the quantum Fisher matrix is N +
M + NM.

The SR method is computationally efficient when the
following are true:

(1) The operators Oα (x) and Hloc(x) can be computed
efficiently for every point x.

(2) The probability distribution |ψθ (x)|2 can be sampled
from for any values of θ , meaning that any single Monte Carlo
update can be computed efficiently. In practice we require that
each Monte Carlo update is independent of system size; i.e.,
updates are local.

(3) The sampling procedure converges rapidly (in sub-
polynomial time) to the desired state |ψθ (x)|2.

The complex RBM Ansatz guarantees that (1) and (2) hold
whenever the number of hidden units is a constant multiple
of the visible units. However, like essentially any sampling
algorithm, provably guaranteeing (3) seems nearly impossible
in any practically relevant problem. However, experience has
shown that convergence often is rapid in practice, or can
be curtailed, whenever one steers clear of frustration or the
Fermionic sign problem. It is worth pointing out, though, that
convergence of the sampler can depend sensitively on the
chosen basis and the initial state, as evidenced in Sec. III C.

B. Natural gradient and SR

The SR method [20,21] can be interpreted geometrically
[22], which makes a direct connection to Amari’s natural
gradient optimization [23]. Plain vanilla gradient descent opti-
mizes a multivariate function L(θ ) by updating the parameters
in the direction of steepest descent:

θ → θ − η∇θL(θ ) (11)

at a certain rate η.
In systems where the landscape of the function L(θ ) is very

steep in certain directions and shallow in others, convergence
can be very slow as the updates fluctuate back and forth in a
deep valley but take a long time to “drift” down a shallow one.
The natural gradient method proposes to update the parame-
ters according to the natural (Riemannian) geometric structure
of the information space, so that the landscape is made locally
Euclidean before the update. Suppose the coordinate space is
a curved manifold in the sense that the infinitesimal square
length is given by the quadratic form

ds2 =
∑
αβ

gαβ (θ )dθαdθβ, (12)

where the matrix g(θ ) is the Riemannian metric tensor. Amari
showed that the steepest descent direction of the function L(θ )
in the Riemannian space is given by

−∇̃(θ ) = −g−1(θ )∇L(θ ). (13)

The action of the inverse of g can be heuristically un-
derstood as “flattening” out the space locally. For general
optimization problems, the Hessian is a natural choice for
g(θ ), as it reproduces Newton’s second-order method. In
machine learning applications, and with RBMs in particular,

the Hessian is hard to construct from sampling. It also appears
to be attracted to saddle points [24].

When the parameter space in question is naturally asso-
ciated with a classical probability distribution, the “natural”
geometry is chosen to be the Fisher information matrix as it
is the unique metric that is invariant under sufficient statistics
[19]. For pure parametrized quantum states, the natural Rie-
mannian metric is derived from the Fubini-Study distance:

γ (ψ, ϕ) = arccos

√
〈ψ |ϕ〉〈ϕ|ψ〉
〈ψ |ψ〉〈ϕ|ϕ〉 . (14)

Infinitesimal distances are given by

ds2 = γ (ψ,ψ + δψ )2 = 〈δψ |δψ〉
〈ψ |ψ〉 − 〈δψ |ψ〉

〈ψ |ψ〉
〈ψ |δψ〉
〈ψ |ψ〉 ,

(15)

which reproduces the quantum Fisher matrix for parametriza-
tion θ as ds2 = ∑

αβ Sαβdθ∗
αdθβ .

In particular, when the wave function is positive in a given
computational basis, the quantum state can be written as
|ψ〉 = ∑

x

√
pθ (x)|x〉, and the quantum Fisher matrix is

Sαβ = 1

4

〈
∂ log pθ (x)

∂θα

∂ log pθ (x)

∂θβ

〉
− 1

4

〈
∂ log pθ (x)

∂θα

〉〈
∂ log pθ (x)

∂θβ

〉
(16)

= 1

4
Fαβ, (17)

where 〈A〉 = E[A] and F is the Fisher information matrix
associated to the probability distribution pθ (x). Thus, the SR
method reproduces the natural gradient method for positive
wave functions. For this reason, we will call the S matrix
associated to a pure quantum state the quantum Fisher matrix.

C. Spectral analysis of the quantum Fisher matrix

In this paper, we will argue that spectral properties of the
quantum Fisher matrix reveal essential information about
the physical properties of the system under study as well as
the dynamics of optimization.

The quantum Fisher matrix is positive semidefinite, im-
plying that its spectrum is real and there exists a set of
orthonormal eigenvectors. The magnitude of an eigenvalue
determines how steep the learning landscape is in that par-
ticular direction. The spectrum will generically be sloppy
[25,26], with a spectral function bounded above by a decaying
exponential.

It is often argued in the machine learning community that
gradient descent algorithms favor regions in parameters space
where most eigenvalues are close to zero [27,28]. This implies
that at convergence, most directions in the landscape are
nearly flat, suggesting that nearby points in parameter space
encode much of the same physical properties. In classical
supervised learning, the flatness of the landscape has been
associated with the “generalization” ability of the learned
model [29]; in the physics setting we interpret it to mean that
the representation is robust.
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FIG. 2. Transverse field Ising model, variational ground-state energy optimization using the SR: (a) rescaled energy as a function of epochs
for different values of h ∈ [0.0, 0.6, 1.0, 1.4, 2.0] (from darkest to lightest). The energy is rescaled to have 0 at the exact ground-state energy
and 1 at initialization. (b) Ordered eigenvalues of the quantum Fisher matrix [Eq. (3)] at epochs 0 (solid), 25 (dashed), 100 (dot-dashed), 200
(dot-dot-dashed), and 2000 (dotted). Results from h = 0.0 (the leftmost) to h = 2.0 (the rightmost) are shown in each subplot. The spectrum
exhibits universal behavior for the first ∼25 epochs. After that, the eigenvalues slowly approach a model-dependent final profile (see main
text). (c) The 500 largest eigenvalues after convergence for different values of h as well as for randomly initialized RBM (black dotted curve).
Color coding is the same as in (a). The two vertical gray dashed lines indicate N = 28 and N (N + 1)/2 = 406. (d) Spectrum (blue solid) and
entanglement in the eigenvectors (red dotted) on log-log scale. The eigenvectors corresponding to the dominant eigenvalues have significantly
reduced entanglement, especially in the ferromagnetic phase. Hyperparameters η = 0.01 and ε = 0.001 are used.

Because of the bipartite graph structure of the RBM
Ansatz, it is natural to talk about correlations between the
visible and hidden units. The quantum Fisher matrix is a
square (N + M + NM ) matrix, with the first two blocks corre-
sponding to the biases a, b, and the third block corresponding
to the weights matrix w. The main w block describes the
orientations in parameter space that can affect correlations in
the model. We will see later that eigenvectors associated to
eigenvalues of large magnitude are typically close to a product
state between the visible and hidden part, meaning that they
mostly just affect the first moments of the spin variables.

To measure correlations in the eigenvectors {ψα}, we trun-
cate the first two blocks of the eigenvectors associated with the
biases and renormalize the “w” part to have Hilbert Schmidt
norm 1. We then calculate the entanglement in the eigenstate
ψw

α :

Ent(ψα ) = S
(
Trh

[
ψw

α

])
, (18)

where Trh is the partial trace over the hidden layer, and S(·) is
the von Neumann entropy of the reduced density matrix.

II. RESULTS

In this section, we analyze the spectral properties of the
quantum Fisher matrix during the learning process of finding
the ground state of the transverse field Ising (TFI) model. The
TFI Hamiltonian is given by

H = −
N∑

i=1

σ i
zσ

i+1
z − h

N∑
i=1

σ i
x, (19)

where σ i = {σ i
x, σ

i
y, σ

i
z } are Pauli spin operators, and h is the

external field. The system has Z2 symmetry (σ i
z → −σ i

z ),

which is explicitly broken for h < 1 in the thermodynamic
limit (N → ∞). A second-order phase transition occurs at
h = 1. At zero external field the model has two degenerate
ground states |0〉⊗N and |1〉⊗N , whereas in the limit of h → ∞
the ground state is unique, given by |+〉⊗N .

We trained the RBM for this model with N = 28 and
α = M/N = 3. The spectral properties of the quantum Fisher
matrix as well as the energy during the learning process
obtained from the simulation are plotted in Fig. 2 (details
of the simulation are described in Appendix B). Figure 2(a)
confirms that the optimization procedure successfully finds
the ground state for all values of h, albeit at different speeds.
The quantum Fisher matrix is constructed approximately by
Monte Carlo sampling and its full spectrum is evaluated every
five epochs during learning. The eigenvalues at some repre-
sentative epochs are plotted in decreasing order in Fig. 2(b).

The dynamics of the learning process proceeds in two dis-
tinct stages. The first stage is observed at the very beginning
of the learning, lasting for roughly 25 epochs [30], and is the
same for all values of h. The initial shape of the spectrum has
two sharp drops located at N and N (N + 1)/2 [see Fig. 2(c)].
This is a consequence of the random initialization with small
weights. An analytic justification of this behavior is provided
in Appendix C. The spectrum then gets pushed up until
approximately the 25th epoch, revealing that more and more
dimensions in the information space become relevant.

The second stage of learning then slowly transforms the
distribution to that of the final converged state. We observe
that the spectrum falls off very sharply (exponentially) in
all cases examined [Fig. 2(b)], but the exact spectral profile
depends strongly on the details of the model, yet not on the
system size or on the specific values of the learned weights
(see Appendix C for an in-depth discussion). We take this
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as evidence that the learned state not only minimizes the
energy, but also closely matches the actual ground state of the
model (that we also checked using the spin-spin correlation
functions). The behavior of the spectrum of the quantum
Fisher matrix for each phase of the TFI model is discussed
in the next subsection.

A. Phases of the TFI model

1. The ferromagnetic phase (h < 1.0)

Let us start by considering the extreme case with h = 0.0.
The quantum Fisher matrix after convergence becomes a
pure state up to numerical precision. The singularity of the
quantum Fisher matrix in this case can be explained from the
properties of the ground state: When h = 0.0, the Hamiltonian
Eq. (19) has two ground states |0〉⊗N and |1〉⊗N . We first note
that the optimization consistently found a solution with a ≈ 0
and b ≈ 0, leading to a Z2 symmetric state. Let us therefore
assume that the solution we have exactly describes the Z2

symmetric ground state; i.e., a = b = 0. Then the ground
state is |0〉⊗N + |1〉⊗N leading to an RBM representation
|ψθ (x)|2 = 1/2 for x = x0 or x = −x0 where x0 = [1 · · · 1],
and zero otherwise.

Moreover, we have O(x0) = [x0, y0, x0 ⊗ y0] and
O(−x0) = [−x0,−y0, x0 ⊗ y0] where y0 := [tanh χ1(x0), . . . ,
tanh χm(x0)]. This gives

E[O] = (0 0 x0 ⊗ y0), (20)

E[O†O] = 1

2
[O(x0)†O(x0) + O(−x0)†O(−x0)]

=

⎛⎜⎝x†0x0 x†0y0 0

y†0x0 y†0y0 0

0 0 (x0 ⊗ y0)†(x0 ⊗ y0)

⎞⎟⎠. (21)

Thus, the quantum Fisher matrix is

S =

⎛⎜⎝x†0x0 x†0y0 0

y†0x0 y†0y0 0

0 0 0

⎞⎟⎠
= (x0 y0 0)†(x0 y0 0), (22)

which is rank 1. We note that the above argument does not
depend on the details of the weights w, rather only on its
magnitude |w|, so that any set of RBM weights that accurately
model the ground state will exhibit the same behavior. The SR
optimization typically favors small weights.

As the external field h increases, the number of terms
of the ground state in the computation basis increases; thus
we also expect that rank of S to increase as E[O†O] =∑

x |ψθ (x)|2O(x)†O(x). This is consistent with the results
from our numerical data in Fig. 2(b). Importantly, rank defi-
ciency is observed throughout the ferromagnetic phase, albeit
much more pronounced in the vicinity of h = 0. We interpret
this behavior as a signature that the phase is connected to a
product state in the physical basis. For values of h close to
one, the rank deficiency can only be seen at large system sizes
and after many training epochs.

2. The critical point (h = 1.0)

At the critical point, the distribution of eigenvalues after
convergence is smooth and decreasing exponentially. This
behavior is also seen in many classical image processing
tasks in machine learning [28,31], suggesting that it might be
signature of (critical) long-range order. Indeed, each element
of the quantum Fisher matrix can be expanded in terms of
correlation functions, all of which are sizable in the critical
case. This eigenvalue distribution is characteristic of “sloppy
model universality,” which has been shown to reflect systems
with certain forms of scale invariance [25,26], further corrob-
orating the claim. We will see in Sec. III B that this behavior is
seen in many other systems and reveals that the RBM is fine
tuning a solution with the help of a large number of hidden
units.

3. The paramagnetic phase (h > 1.0)

In this case, we see that the energy converges rapidly and
the eigenvalues almost do not change after the initial learning
stage. In particular the second jump in the spectrum of the
initial random RBM survives until the end. When h = 2.0,
the jump is located at N + N (N − 1)/2 = 406, revealing that
the quantum Fisher matrix has no support on the antisymmet-
ric subspace (see Appendix B). Precisely, the 406th eigen-
value has magnitude ≈4.08×10−2 and the next one has
magnitude ≈1.38×10−3 in our numerical data.

To understand the stepwise behavior, we first focus on
the randomly initialized RBM case, i.e., at epoch 0. As we
initialize the parameters of the RBM with small random Gaus-
sian values [sampled from N (0, σ 2) where σ ∼ 10−2], the
classical probability distribution |ψθ (x)|2 would be similar to
the case when all parameters are zero. When a = b = w = 0,
the RBM gives |ψθ (x)|2 = 1/2N , i.e., the identity distribution.
We can then perturbatively expand the quantum Fisher matrix
in terms of the parameters. The derivation up to O(σ 3) is
given in Appendix C. Our derivation gives N eigenvalues of
O(1) associated with the visible biases block of the matrix
and N (N − 1)/2 eigenvalues of order O(σ 2) in the weights
block of the quantum Fisher matrix. This explains the first and
the second jumps in the eigenvalue distribution of the random
RBM.

The randomly initialized RBM also hints at the fact that
the quantum Fisher matrix throughout the paramagnetic phase
strongly retains properties of the h � 1 limit with product
state |+〉N . We can compare the spectra of the quantum
Fisher matrix for h = 2.0 and the randomly initialized case
in Fig. 2(c). It shows that the second step is preserved but the
first step disappears. This is because the first step depends on
the details of weights, but the second one is the consequence
of the symmetry. We make a detailed comparison between
the quantum Fisher matrix for the paramagnetic phase and
randomly initialized RBM in Appendix D. We there show
that the converged matrix has larger diagonal elements in the
w part of the matrix than the random RBM case which also
support eigenvalues between N to N (N + 1)/2.

Throughout the phase diagram of the TFI, the spectrum
of the quantum Fisher matrix at convergence has two special
points at N and at N (N + 1)/2, as seen in Fig. 2(c). The
location of these points is independent of the number of
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hidden units, suggesting that they originate from the Z2 nature
of the physical system, and the overall bipartite structure of
the RBM, rather than any details of the RBM graph.

B. Eigenvectors

Above we have argued the eigenvalues of the quantum
Fisher matrix reveal signatures of the phase of matter be-
ing simulated. We now ask whether the eigenvectors can
teach us anything about how correlations are conveyed in the
learning landscape. In particular, since the complex RBM is
constructed from a bipartite graph with no connections among
the hidden and visible units, we know that all correlations have
to be mediated by weights. Entanglement in the information
manifold is therefore completely contained in the weights
block of the Fisher matrix.

In Fig. 2(d) we plot the entanglement between the visible
and hidden units of the w part of each eigenvector [see
Eq. (18)]. We observe that the first N eigenvectors have very
little entanglement when 0 � h � 1. This suggests that the di-
rections of largest curvature are almost exclusively associated
with the biases, or first moments, of the distribution. Note that
this does not imply that the values of the w weights are small,
as representations of the first moments are distributed over the
biases and the weights. Rather it is a reminder that the actual
values of the weights of the network reveal little information
of the correlations in the system, as is manifest in Fig. 7 in
Appendix C. This behavior is less pronounced for h > 1 as
the quantum Fisher matrix behaves more like a random matrix
whose eigenvectors are expected to have a more homogeneous
amounts of entanglement.

The entanglement increases in the bulk of the spectrum.
Interestingly, this means that the directions in parameter
space that encode information about correlations are typically
dense, smooth, and flat. In the context of classical ML,
these properties are akin to good generalization ability of the
learning models, whereas in the present physics context, we
interpret it to meant that the algorithm preferentially learns
stable configurations, where changes (even large) in most
directions in configuration space will not affect the physically
observable properties of the system. Similar conclusions have
been alluded to in the context of sloppy models universality in
statistical mechanics [25,26].

C. Predictions

From the spectral analysis of the quantum Fisher matrix
for the transverse field Ising model, we make the following
predictions, which we expect to hold more generally for
ferromagnetic quantum spin models:

(1) The spectral profile is universal within a phase of the
model and is only weakly dependent on system size away
from phase transition points. The spectrum of the quantum
Fisher matrix is therefore a good indicator of the existence of
a phase transition if it is possible to find two points in phase
space with vastly different spectral profiles.

(2) The first N eigenvectors are close to product states and
hence do not encode correlations in the system. They mostly
pertain to first moments of the distribution.

(3) A rank-deficient quantum Fisher matrix is evidence
that the state is in a phase connected to a product state in the
chosen computational basis. A smoothly decaying spectrum is
a sign that the system contains significant correlation, often a
critical phase with polynomial decaying correlation functions.

(4) Kinks in the spectrum reveal symmetries in the model.
In the case of the TFI, the persistent kink at N (N + 1)/2 is
a sign that the symmetric and antisymmetric subspaces are
strictly separated everywhere except at the critical point.

III. FURTHER EXPERIMENTS

In this section, we study three further models to test
whether the predictions made in Sec. II C extend to more
general spin systems. The first model is the two-dimensional
transverse field model, which is not known to be exactly solv-
able. The second is the coherent Gibbs state, whose quantum
Fisher matrix is evaluated exactly without having recourse to
learning. These two models exhibit Z2 symmetry breaking as
in the one-dimensional transverse Ising model that we studied
above. For these models, we find the similar quantitative
behaviors of the Fisher matrix, which strongly suggest the
universality of our predictions. Our last example is the XXZ
model, where we explore the Fisher matrix in all three phases.

A. Two-dimensional transverse Ising model

We consider the Hamiltonian defined in a L×L two-
dimensional lattice given as

H = −
∑
〈i, j〉

σ i
zσ

j − h
∑

i

σ i
x, (23)

where the first summation is over all nearest neighbors 〈i, j〉
of the lattice. The essential physics is the same as the one-
dimensional model; i.e., the system is in the ferromagnetic
phase when h < hc and paramagnetic phase when h > hc.
However, the critical point hc is only approximately known
≈3.00 ± 0.05 as the system is not exactly solvable in this case
[32,33].

For the system size L = 5 that we can directly compare
with the exact diagonalization, we simulated the system and
plot the normalized energy and the spectral profiles of the
Fisher matrix in Figs. 3(a) and 3(b). We clearly see the rank
deficiency for h = 0.0 and 1.5, smooth spectrum at h ≈ hc,
and kinks when h = 4.5 and 6.0, which confirms the univer-
sality of our predictions. In addition, Fig. 3(c) verifies that the
kinks are located at N (N + 1)/2 and Fig. 3(d) indicates low
entanglement between hidden and visible layers in leading
eigenvectors.

B. Coherent Gibbs state of the two-dimensional
classical Ising model

We next consider the RBM representation of the coherent
Gibbs state of the two-dimensional classical Ising model.
Recall the classical Ising model

H (x) = −J
∑
〈i, j〉

xix j, (24)

where x is the configuration of the spin and 〈i, j〉 are nearest
neighbors on a two-dimensional lattice. For convenience, we
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FIG. 3. Two-dimensional transverse field Ising model in 5×5 lattice: (a) Rescaled energy as a function of epochs for h =
[0.0, 1.5, 3.0, 4.5, 6.0] (from darkest to lightest). (b) Ordered eigenvalues of the quantum Fisher matrix [Eq. (3)] at epochs 0 (solid), 25
(dashed), 100 (dot-dashed), 200 (dot-dot-dashed), and 2000 (dotted). The results from h = 0.0 (leftmost) to h = 6.0 (rightmost) are shown in
each subplot. (c) The 500 largest eigenvalues after convergence and for randomly initialized RBM (black dotted curve). The same color coding
as in (a) is used. Two gray lines indicate N = 25 and N (N + 1)/2 = 325. (d) Spectrum (blue solid) and entanglement in the eigenvectors (red
dotted) on log-log scale. Hyperparameters η = 0.002 and ε = 0.001 are used.

set J = 1. We consider a system in thermal equilibrium with
inverse temperature β = 1/T . At high temperature β < βc,
the system exhibits a disordered paramagnetic phase charac-
terized by zero magnetization 〈x〉 = 0, whereas it shows a Z2

symmetry broken ferromagnetic phase with nonzero magneti-
zation at sufficiently low temperature β > βc [34]. The phase
transition takes place at β = βc ≈ 0.44 in the thermodynamic
limit and is second-order. We thus have polynomial decay of
the correlation function 〈xix j〉c ∼ 1/dist(i, j)α at the critical
point.

The coherent Gibbs state for the model with inverse tem-
perature β is given by

|ϕ(β )〉 =
∑
{x}

e−βH (x)/2

√
Z

|x〉 (25)

in a chosen computational basis {x}, and Z = ∑
{x} e−βH (x)

is the normalization factor, which is the same as the parti-
tion function of the classical model. A key observation is
that correlation functions of spin-z operators are exactly the
same as that of the classical model, i.e., 〈ϕ(β )|σ i

zσ
j

z |ϕ(β )〉 =
〈xix j〉x∼p(x) where p(x) = e−βH (x)/Z is the Boltzmann distri-
bution. Thus we also have polynomially decaying quantum
correlation functions for this state at β = βc. We also note
that even though this state is artificially constructed, the state
is a ground state of a Hamiltonian that is local in a two-
dimensional lattice [35].

It is known that coherent Gibbs states of Ising-type models
can be represented exactly as an RBM [36] by associating
each edge of the lattice to one hidden unit (we provide a
self-contained derivation in Appendix E). In particular, the
coherent Gibbs state of an Ising-type model defined on a graph
G = (V, E ) can be described using the RBM with parameters
a = b = 0 and a |V | by |E | sparse weight matrix w.

Using this mapping, we construct the quantum Fisher
matrix of the RBM representation for coherent Gibbs states.

To sample from the distribution, we have employed the Wolff
algorithm [37] instead of the usual local update scheme in this
case as it is more efficient close to the transition point. The
spectral profiles of the quantum Fisher matrix for different
values of β are shown in Fig. 4(a).

The figure shows a very similar shape to that of the TFI
case when they are deep in the ferromagnetic or paramagnetic
phase. The eigenvalues exhibit a collapsing distribution in the
ferromagnetic phase for large β and get progressively more
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FIG. 4. (a) Eigenvalue distributions of the quantum Fisher matrix
for coherent Gibbs states of two-dimensional classical Ising model.
The inverse temperature β ∈ [0.10, 0.50, 0.52, 0.55, 0.6, 0.9] (from
darkest to lightest) is used. We used a L×L lattice with L = 10, so
N = 100. The number of hidden units M is given by the number of
edges in the graph, which is 180 (open boundary condition is used).
The step is exactly located at N (N + 1)/2 = 5050. (b) The rank of
the quantum Fisher matrix and (c) the trace of the quantum Fisher
matrix as functions of β from L = 6 (lower dark curves) to L = 12
(upper light curves).
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singular as we increase β. Compare this behavior to the TFI
for h < hc depicted in Fig. 2. In the paramagnetic phase (β <

βc), we see a stepwise distribution where the step is exactly
located at N (N + 1)/2, very much like the TFI model at large
h. Thus for coherent Gibbs states that are deep in each phase,
we get the same qualitative behavior of the quantum Fisher
matrix in both models.

In contrast to the learned TFI case in Sec. II, the drop-off
at N (N + 1)/2 survives also at criticality. This can be under-
stood by the fact that the quantum Fisher matrix is constructed
from the exact coherent Gibbs state, which is exactly sym-
metric in the exchange of spins. Hence the quantum Fisher
matrix has zero support on the antisymmetric subspace also
at criticality. In Fig. 4(c) we have plotted the quantum Fisher
information, which is simply the trace of the quantum Fisher
matrix for different values of β. We see that the quantum
Fisher information reaches a maximum in the vicinity of the
phase transition point, hence acting as an order parameter
reminiscent of the magnetic susceptibility. A more detailed
analysis of the quantum Fisher information as a witness of
phase transitions for this and other models will be presented
elsewhere.

C. The XXZ model

We now consider the Heisenberg XXZ model

H =
N∑

i=1

σ i
xσ

i+1
x + σ i

yσ
i+1
y + �σ i

zσ
i+1
z . (26)

This model is exactly solvable using the Bethe Ansatz. The so-
lution shows three distinct phases: (1) a gapped ferromagnetic
phase for � � −1.0, (2) a critical phase for −1.0 < � �
1.0, and (3) a gapped antiferromagnetic phase for � > 1.0.
The ground state when � � 1.0 is a superposition between
|0〉⊗N and |1〉⊗N . It is also known that the ground state is
in Jz := ∑

i σ
i
z = 0 subspace for � > −1.0. In the critical

phase (−1.0 < � � 1.0), the Hamiltonian is gapless in the
thermodynamic limit, and the correlation length diverges. The
phase transition at � = −1.0 is first order, and an infinite
order Kosterlitz-Thouless transition takes place at � = 1.0.

We will again look at the spectral properties of the Fisher
information matrix in this model for � = −1.0, 0.0, and 1.0.
For � = 0.0 and 1.0, we have restricted the wave function
to the U (1) symmetric subspace Jz = 0 by applying the swap
update rule in MCMC. Figure 5(a) shows the convergence of
sampled energy over SR iterations. We see that SR success-
fully finds the ground states in all cases, but the initial drift
starts later in the XXX case (� = 1.0). Slow initial learning
when � = 1.0 is also checked in the spectrum of the quantum
Fisher matrix shown in Fig. 5(b) where the spectrum begins
to change slowly compared to other cases. We suspect that
the SU(2) symmetry of the Hamiltonian is related to slow
learning in the initial stage. When we compare the quantum
Fisher matrices and the gradient of energies, which are two
main ingredients of SR, for different values of �, quantum
Fisher matrices do not differ much as they depend only on the
parameters of the RBM, but the gradient of the energy ∇θ 〈H〉
is much smaller when � = 1.0 than other cases.
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FIG. 5. (a) Rescaled energy as a function of epochs for the
XXZ model with � = −1.0, 0.0, and 1.0 (from darkest to lightest).
(b) Spectra of the quantum Fisher matrix at epochs 0 (solid), 5
(dashed), 40 (dot-dashed), 200 (dot-dot-dashed), and 2000 (dotted)
when � = −1.0 (left), 0.0 (middle), and 1.0 (right). (c) Spectra of
converged Fisher matrices. The same colors with (a) are used for �.
Hyperparameters η = 0.02 and ε = 0.001 are used for SR.

We plot the converged spectra in Fig. 5(c). Using this, we
can extract some information for the converged ground state
when � = −1.0. As the first-order phase transition occurs at
this point, the system has two different types of ground states:
one that is a superposition of |0〉⊗N and |1〉⊗N from � � −1.0
and the other one living in a subspace Jz = 0 from � > −1.0.
As the converged spectrum is singular, we can expect that
the ground state found in our simulation is ferromagnetic.
We indeed have calculated 〈J2

z 〉 from Monte Carlo samples,
and it gives 〈J2

z 〉/N2 ≈ 0.984, which means a large portion of
the state is in |0〉⊗N and |1〉⊗N . When � = 0.0 and 1.0, we
see broader converged spectra. We note that there is a small
step at ∼N (N + 1)/2 when � = 0.0 even though the whole
spectrum is dense. In comparison, a smoother spectrum is
obtained when � = 1.0.

One should also ask about the behavior of quantum Fisher
matrix in the antiferromagnetic phase. However, we found
that usual MCMC does not produce unbiased samples in the
antiferromagnetic phase, so SR does not converge to the real
ground state [38]. As a consequence, we checked the opti-
mization using the exactly constructed quantum Fisher matrix
for small enough systems from the probability distribution
|ψθ (x)|2. The result obtained from the exact simulation for the
system size N = 20 is shown in Appendix F. One observation
is that we see a dense converged spectrum when � = 2.0
despite the system being gapped. Thus the gap of the system
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alone does not implies a dense spectrum of the quantum Fisher
matrix.

IV. IMPLICATION FOR OPTIMIZATION

In this section, we use the insight gained about the structure
of the quantum Fisher matrix to construct an optimization
method for quantum spin systems. This method allows for
significant savings in evaluation time for solving the inverse
linear problem in the SR. Precisely, in each step of SR, we
need to solve the linear equation

Sv = ∇θ 〈H〉 (27)

for a given quantum Fisher matrix S. Even when the matrix
S is well conditioned, the complexity of solving this equation
scales as O(D2) where D is the dimension of the S matrix
or number of parameters. As D itself scales like O(αN2), the
time cost is quartic in N . This is one of the main reasons why
second-order methods, including natural gradient descent,
are not widely used in classical large-scale deep learning
applications.

Our optimization method can be seen as an extension of
RMSProp [39]. The method provides a significant advantage
in computation time as it does not involve solving a large sys-
tem of linear equations. However, the method is not always a
good approximation of the natural gradient, but rather depends
decisively on the structure of the quantum Fisher matrix.

Before describing our method, we briefly review RMSProp
for classical machine learning and how it is related to the
Fisher information metric from the viewpoint of Ref. [40].
For convenience, the original RMSProp is described in Ap-
pendix G. This algorithm improves a naive stochastic gradient
descent by using vt , the running average of the squared
gradients, to rescale the instantaneous gradient for updating
weights. An observation in Ref. [40] is that vt is a diagonal ap-
proximation of the uncentered covariance matrix of gradients
when the learning is in the steady state. When the function
we want to optimize f is the logarithmic likelihood (which is
typical in classical machine learning), vt recovers the diagonal
part of the Fisher information metric at stationarity. The
additional square root and ε prefactor in the last step are
added to correct for “poor conditioning” [41]. This provides a
plausible argument for why such a simple algorithm works
incredibly well. One can also argue that other popular and
efficient optimizers such as Adagard, Adadelta, and Adam
similarly use a type of diagonal approximation of the Fisher
information metric [40].

We now describe our variant of RMSProp applied to the
ground-state optimization problem. Using the same principle
as above, one may use 〈O〉 to estimate the diagonal part of
the uncentered quantum Fisher matrix S̃α,α = 〈O†

αOα〉. The
details of the algorithm are outlined in Algorithm I. A distin-
guishing property of this algorithm to the original RMSProp
is that it uses different vectors for a gradient decent direction
and estimating the curvature: vt is calculated by 〈O〉, but the
gradient of the energy is used for update in the last step. The
algorithm suggested here is also different from the method
used in Refs. [42,43] that put the energy gradient directly to
the classical optimizers.

Algorithm 1. RMSProp for ground-state calculation. Hyperpa-
rameters β = 0.9 and ε = 10−8 are used in our example.

Require: η: Learning rate
Require: β: Exponential decay rate
Require: θ0: Initial parameter vector
1: t ← 0 (Initialize time step)
2: v0 ← 0 (Initialize second moment vector)
3: while θt is not converged
4: t ← t + 1
5: gt ← Gradient of the energy
6: Ot ← 〈O〉
7: vt = βvt−1 + (1 − β )O∗

t � Ot

8: θt = θt−1 − ηgt � 1/(
√

vt + ε)
9: end while

We have tested the proposed version of RMSProp using
different learning rates η for the TFI. The results for the
ferromagnetic phase and the critical case (h = 0.0 to 1.0) are
shown in Fig. 6. For small h, we see that RMSProp gets
easily stuck in local minima unlike SR. When h = 0.0 and
0.2, the figure shows that the energy converges to that of
the ground state for some learning rate η. However, such a
convergence is probabilistic. For h = 0.0, 0.2, and 0.4, we ran
the same simulation several times and found that, for any η,
some instances converge to the ground state whereas others
get stuck in local minima. In contrast, SR works properly for
a wide range of hyperparameters and h, for which the energy
converges to the ground state regardless of the choice of the
learning rates η = [0.005, 0.01, 0.02].

For larger h such as h = 0.6, 0.8, the proposed RMSProp
shows better convergence behaviors for most values of η, but
it still shows stepwise dynamics. In the critical case h = 1.0,
the learning curves of RMSProp are smooth and insensitive to
the choice of the learning rate, suggesting that the system no
longer gets stuck in problematic local minima.
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FIG. 6. Epochs versus rescaled energies obtained from the RM-
SProp (dot-dashed) with different learning rates and the SR with
η = 0.01 (black solid). The TFI with the transverse fields from
(a) h = 0.0 to (f) 1.0 are used. For the RMSProp, we used learning
rates η = 1.4×10−3 (the darkest) to 2.2×10−3 (the lightest) with the
interval 0.2×10−3.

023232-9



CHAE-YEUN PARK AND MICHAEL J. KASTORYANO PHYSICAL REVIEW RESEARCH 2, 023232 (2020)

Our results suggest that preserving the singular nature
of the quantum Fisher matrix is essential for ensuring con-
vergence to the ground-state energy. Indeed, the converged
quantum Fisher matrices studied in Appendix D show that
the diagonal of the Fisher matrices give rank N + M = 112
for h = 0.0 and full rank (NM + N + M = 2464) for other
values of h. In contrast, the real ranks of the quantum Fisher
matrices (measured by counting the number of eigenvalues
larger than 10−10) are given as 1, 78, 242, 726, 1698, 2464 for
h = 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively.

We still note that even though the rank provides a plausible
argument for the behavior of the learning curves, it does
not for the converged energies; the converged energies for
h = 0.8 and 1.0 are slightly larger than the ground-state ener-
gies. Moreover, the convergence behavior in the paramagnetic
phase (h > 1.0) is more complicated and cannot be solely
explained from the quantum Fisher matrix. A partial reason
is that the path taken by RMSProp deviates from that of the
SR in initial stage of learning (see Appendix G). Detailed
investigations in this regime remain for future work.

V. CONCLUSION

We have initiated a detailed study of the quantum infor-
mation geometry of learning ground states of spin chains
in the artificial neural network framework. We have focused
on complex restricted Boltzmann states and the stochastic
reconfiguration method, which implements a quantum version
of Amari’s natural gradient update scheme. Our main result is
that the eigenvalues and eigenvectors of the quantum Fisher
matrix reflect both the learning dynamics, which is unsurpris-
ing, as well as the intrinsic static phase information of the
model under study, which is rather surprising. In particular,
we found that in the entire noncritical ferromagnetic phase
of a number of models, the spectrum of the quantum Fisher
matrix has reduced rank. The matrix becomes highly singular
in regions of the phase that are close to product states. In
critical phases, the spectrum becomes smooth with more and
more eigenvectors contributing to the information geometry
landscape.

We have identified a universal behavior of the leading
eigenvectors of the quantum Fisher matrix: they all convey
little entanglement, as measured by the entanglement entropy
between the visible and hidden layers. This, in combination
with the insight that critical models have smooth spectra,
suggests that correlations in the complex RBM Ansatz are
preferentially represented in the bulk of the information ge-
ometry space. Our interpretation of this key dynamical feature
of RBM learning is that the model preferentially chooses
stable representations, where the entropy of the landscape
dominates over the energy. A similar phenomenon is clas-
sical supervised machine learning is frequently observed in
discussion of “generalization.” Finally, we explored strategies
for diagonal approximations of the quantum Fisher matrix and
found that their success crucially depends on the phase of the
model under study. We therefore do not expect any diagonal
approximation of the quantum Fisher matrix to be effective in
general.
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APPENDIX A: STOCHASTIC RECONFIGURATION

For the reader’s convenience, we derive the stochastic
reconfiguration method of Sorella [20,21]. The main idea of
stochastic reconfiguration (SR) is to modify the parameters
of a trial wave function in such a way that it approaches the
ground state along a path dictated by the projection 1 − εH ,
where ε is chosen such that 1 − εH � 0.

Let |ψθ 〉 be a state in our Ansatz class, with θ its vector of
parameters. From now on, we will suppress the parameters θ .
Then, for sufficiently small ε, we can write

(1 − εH )|ψ〉 = e0|ψ〉 +
∑

α

eα|ψα〉 + |ψ⊥〉, (A1)

where |ψα〉 = ∂
∂θα

|ψ〉, {eα} are coefficients, and |ψ⊥〉 is a state
in the orthogonal subspace. Note the identity |ψα〉 = Oα|ψ〉,
where the operators Oα are defined as

Oα|x〉 = ∂ log(〈x|ψ〉)

∂θα

|x〉, (A2)

where |x〉 is the computational basis.
We can now obtain a system of linear equations for the eα

coefficients by multiplying Eqn. (A1) by 〈ψ | and by 〈ψα| to
get

1 − ε〈H〉 = e0 +
∑

α

eα〈Oα〉, (A3)

〈O†
α〉 − ε〈O†

αH〉 = e0〈O†
α〉 +

∑
β

eβ〈O†
αOβ〉. (A4)

The averages are taken in the states |ψ〉. We can then solve
for e0 to get ∑

β

Sα,βeβ = −εRα, (A5)

where the matrix S is given by

Sα,β = 〈O†
αOβ〉 − 〈O†

α〉〈Oβ〉, (A6)

and the vector Rα is given by

Rα = 〈O†
αH〉 − 〈O†

α〉〈H〉. (A7)

We can now identify the coefficients eα as the update
coefficients for the variables θα , up to an overall constant e0,
which can be interpreted as the learning rate. The SR update
scheme can then be summarized as

θα → θα − η
∑

β

(S + ε1)−1
α,βRβ, (A8)

for some learning rate η. Here ε is regularization constant that
is typically ∼10−3.
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TABLE I. Parameters used for the simulations.

Model Lattice size Monte Carlo update η ε

1D TFI 28 Spin flip 0.01 0.001
2D TFI 5×5 Spin flip 0.002 0.001
XXZ 28 Swap 0.02 0.001

APPENDIX B: NUMERICS

For numerical simulation, we set the ratio between the
numbers of hidden units and visible units of the complex
RBM to α = M/N = 3. Thus the RBM has (α + 1)N + αN2

parameters overall (N and αN for biases and αN2 for the
weight matrix w). To sample from the RBM, the Markov
chain Monte Carlo (MCMC) method enhanced with parallel
tempering was employed [45]. We used 16 parallel Markov
chains with linearly divided temperatures from 1/16 to 1.
For each Markov chain, we used local spin flip updates
for the transverse field Ising models (1D and 2D) and total
magnetization-conserving swap updates for the XXZ model.
To directly compare the results from variational Monte Carlo
with exact diagonalization, we have used the size of system
N = 28 for 1D models, L×L with L = 5 for 2D TFI, and
imposed the periodic boundary condition. In our case, SR
has two hyperparameters: the learning rate [η in Eq. (2)] and
the regularization ε. These hyperparameters in our simulation
results are summarized in Table I.

APPENDIX C: QUANTUM FISHER MATRIX
OF RANDOM RBM

We provide an explanation of the stepwise structure of the
spectrum of the quantum Fisher matrix upon small random
initialization of the weights. The quantum Fisher matrix is
broken up into three main sectors: [a, b,w], corresponding to
the visible biases, the hidden biases, and the weights.

As in the main text, we use N = |a| and M = |b| to
indicate the number of visible and hidden units, respectively.
In our simulations, the weights are initialized to be Gaussian
distributed with an average magnitude of order σ = 10−2.
We therefore make the following assumption about the initial
state: the classical probability distribution associated with the
initial quantum state is close to the identity, and in particular
is separable. This implies that each spin has zero expectation
value at initialization 〈x j〉 = 0 for all j, and that 〈x jxk〉 ∝ δ jk

for all jk.
As the entries of the visible biases block are

Sai,a j = 〈xix j〉 − 〈xi〉〈x j〉 = δi j, (C1)

we get the identity matrix for the a part. The covariance
between the visible and hidden units involves the term
〈xi tanh[χ j (x)]〉. Recall that the argument of the hyperbolic
tangents are

χ j (x) = b j +
∑

i

wi jxi, (C2)

where b j are the hidden biases and wi j are the weights
connecting the hidden and visible units. Under the assumption
that all parameters are small, we approximate tanh[χ j (x)] ≈

χ j (x). Then

〈xi tanh[χ j (x)]〉 ≈ 〈xiχ j (x)〉 = b j〈xi〉 +
∑

k

wk j〈xixk〉

≈
∑

k

wk jδik = wi j . (C3)

Likewise, we can obtain the full unary part ([a, b]) of the S
matrix as

Sun =
(
1N w

w† w†w

)
. (C4)

We can easily see this is rank N as the first N row generates the
remaining rows. This explains the first N eigenvalues, which
are O(1).

Next, the w part of the quantum Fisher matrix is given by

(Sw )i j,i′ j′ = 〈xi tanh[χ j (x)]∗xi′ tanh[χ j′ (x)]〉
− 〈xi tanh[χ j (x)]∗〉〈xi′ tanh[χ j′ (x)]〉, (C5)

where i, i′ label the visible units and j, j′ label the hidden
units. Using the expansion

〈xi tanh[χ j (x)]∗xi′ tanh[χ j′ (x)]〉
≈ b∗

jb j′δii′ +
∑
kk′

w∗
ki′wk′ j′ 〈xixkx jxk′ 〉, (C6)

we have

Sw(b) = (1 ⊗ w†)X (1 ⊗ w) + 1n ⊗ |b〉〈b|, (C7)

where w is the N×M matrix of weights, |b〉 = ∑
j b j | j〉

is a vector form of the bias b, and X = ∑
i jkl xik jl |ik〉〈 jl|

with xik jl = 〈xixkx jxl〉 − 〈xixk〉〈x jxl〉. Using the assumption of
small initial weights, we have

xik jl = δi jδkl + δilδ jk − 2δik jl . (C8)

Then the X matrix is approximately

X =
∑

jk

(| jk〉〈 jk| + | jk〉〈k j|) − 2
∑

j

| j j〉〈 j j|

= 1 + V − 2
∑

j

| j j〉〈 j j|, (C9)

where V = ∑
jk | jk〉〈k j| is the swap operator. The rank of X

is given by N (N − 1)/2. Moreover, X is the projector that
preserves the symmetric states except the copied state, i.e.,
X (|ab〉 + |ba〉) ∝ |ab〉 + |ba〉 when a �= b but X |aa〉 = 0.

When b = 0, the whole covariance matrix is given by
S = Sun ⊕ Sw, and the matrix Sw [Eq. (C7)] has rank N (N −
1)/2. This explains the small subleading eigenvalues of order
O(σ 2).

However, the block-diagonal assumption breaks down
when we have nonzero bias in the hidden layer (b �= 0) as
we have off-diagonal blocks between the unary and w part.
An additional 1 ⊗ |b〉〈b| also enters into Sw. Still, it is not
difficult to see that this does not change the overall rank. A
precise calculation gives

S(b) =
⎛⎝ 1N w 1 ⊗ 〈b|

w† w†w w ⊗ 〈b|
|b〉 ⊗ 1 |b〉 ⊗ w Sw(0) + 1 ⊗ |b〉〈b|

⎞⎠ (C10)
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FIG. 7. (a) Converges weights (a, b, w) for the TFI model with different values of h. The large rectangle shows the weights w, whereas
the small strips show the biases a and b, which are much weaker in magnitude than the leading weights. (b) Real and imaginary parts of the
quantum Fisher matrix after convergence for the TFI as well as randomly initialized RBM. Insets show the correlation between unary variables.
The whole matrix is order N + M + NM = 2464, and the unary part is order N + M = 112. The covariance between visible units are small
left bottom corner of the unary part.

up to third-order corrections. It is simple to see that first N
rows still generate the next M rows. Moreover, applying |b〉
to the first N rows gives the additional terms in the last NM
rows so the rank of the S matrix from the w part also does not
change. Thus we have exactly the same rank even when we
turn on hidden biases b.

APPENDIX D: FURTHER PROPERTIES
OF THE QUANTUM FISHER MATRIX

In this section, we investigate further properties of the
quantum Fisher matrix. We use the same numerical data as
in the main text; the TFI with system size N = 28.

1. Converged weights

Converged parameters of neural networks are often
claimed to reveal features of the data or system under study
[5,46]. We compare the converged weights and the quantum
Fisher matrix for different values of h in Fig. 7. We find
that, in contrast with the spectral information of the quantum
Fisher matrix, it is difficult to infer any information from the
converged weights of the network. For example, converged

weights for h = 0.6, 1.0, and 1.4 are not sensibly different,
whereas the quantum Fisher matrices reveal essential features
of the phase of the system.

This brings to light one the of the key subtleties of RBM
Ansätze, which is the extreme redundancy of representation.
Let us illustrate this fact by constructing three completely dif-
ferent solutions of the RBM parameters that (approximately)
represent the same quantum state |0〉⊗N + |1〉⊗N . As a first
solution, consider the one obtained from our numerical simu-
lation Fig. 7(a). This solution is fully complex, i.e., real and
imaginary parts of the weights are both nonzero. On the other
hand, a real solution can be found from the coherent Gibbs
states for classical Ising model as discussed in Appendix E.
The state is obtained by letting Ji j = −1 and β → ∞ for
a classical Ising model defined on any graph that does not
have an isolated vertex. We note that the parameters obtained
using this scheme are real as e−βJi, j � 1 (see Appendix E
for details). Finally, it is also possible to represent this state
only using pure imaginary parameters. By letting a = 0, b =
(iπ/2, . . . , iπ/2), and the weight w as

wi, j =
{

iπ/4, if j = i + 1
0, otherwise . (D1)
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It is clear from these examples that inferring information of
quantum states solely from the activation parameters of the
RBM is very ambiguous.

2. Nonzero elements of Fisher information matrix

We investigate the rank of the quantum Fisher matrix more
closely. Let us first focus on the ferromagnetic phase (h < 1.0).
In the main text, we have shown that the rank of the quantum
Fisher matrix increases as h increases. A question we are
interested in is how nonzero elements are distributed in unary
and w parts of the matrix. To answer this question, we use
the quantum Fisher matrix itself after convergence plotted
in Fig. 7(b). When h = 0.0, we see that the Fisher informa-
tion matrix has nonzero elements only in the unary part. In
contrast, the w part of the matrix shows nonzero elements
(especially in diagonal part) when h = 0.6. To see this clearly,
we have counted the number of diagonal elements of the
quantum Fisher matrix that are larger than 10−4. It shows
there are N + M = 112 such diagonal elements when h = 0.0
but N + M + NM = 2464 for all larger h = 0.2, 0.4, 0.6, 0.8.
As the rank of the full matrix is small even for larger h,
the nonzero elements in the w part in this case imply the
eigenvectors with dominant eigenvalues have compelling w

part. In addition, this provides an argument why RMSProp,
which is studied in Sec. IV, works badly for small h.

Next, we consider the paramagnetic phase (h > 1.0). In the
main text, we have shown that the Fisher information matrix
when h = 2.0 shows a step at N (N + 1)/2. The whole shape
of the spectrum remains similar for smaller h even though
the location of step can be little shifted. Compared to the
randomly initialized RBM, we see larger diagonal elements
in w part. As Fig. 2 shows that eigenvalues between N th
to N (N + 1)/2 are much larger for the converged Fisher
information matrix than the random RBM, we expect that the
w part of the matrix contributes to these eigenvalues. To test
this, we have diagonalized only the w part of the quantum
Fisher matrix when h = 2.0 where we could observe a step at
N (N − 1)/2. Thus despite that the whole spectrum does not
show a clear step at the N th eigenvalue, we may still consider
that N eigenvalues are from the unary part and N (N − 1)/2
are from the w part. We also found that all diagonal elements
of the quantum Fisher matrix are larger than 10−2 when
h � 1.0, so the diagonal approximation of the quantum Fisher
matrix is full rank.

3. System-size dependence of the spectral profile

When we use the same parameter α = M/N and the
Hamiltonian, we observe that spectra of the converged Fisher
information matrix behave almost the same for varying N . In
Fig. 8 we show the spectra of the converged quantum Fisher
matrix for different values of N = [28, 32, 36, 40] using the
TFI with different values of h = [0.0, 0.6, 1.0, 1.4, 2.0]. We
clearly see that eigenvalue distributions for the same h vary
only little with the change of the system size N . Still, it is
not easy to make an exact correspondence between the results
from different N as the order of the quantum Fisher matrix is
given by αN2 + (α + 1)N , which is not monomial. Thus there
is no single constant scale factor we can use for rescaling the
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FIG. 8. Normalized eigenvalues λi/N of the converged quantum
Fisher matrix for the TFI with system sizes N = 28 to 40 [from
(a) to (d)]. The transverse fields h = 0.0 (solid), 0.6 (dashed), 1.0
(dot-dashed), 1.4 (dot-dot-dashed), and 2.0 (dotted) are used. The
shapes of the distributions are independent to N .

results. Still, this suggests that the spectrum of the quantum
Fisher matrix can be used as a faithful diagnostic tool with
small systems to infer qualitative behavior on larger systems.

APPENDIX E: COHERENT GIBBS STATES
FOR CLASSICAL ISING MODELS

We consider a classical Ising model defined on a graph G =
(V, E ) where V = {i} is the set of vertices and E = {(i, j)}
is the set of edges. We assign binary values xi = 1 or −1 to
each vertex and interaction strengths Ji, j ∈ R to each edge
e = (i, j) ∈ E . The Hamiltonian of this model is given by

H (x) =
∑

(i, j)∈E

Ji, jxix j . (E1)

Then our objective is finding parameters of the RBM
[a, b,w] that describe coherent Gibbs states for the given β,
i.e., solving the equation

ψθ (x) = ea·x
M∏

j=1

2 cosh χ j (x) = c exp[−βH (x)/2] (E2)

for all x = {−1, 1}N . Here χ j (x) = ∑
i wi jxi + b j and c is a

constant that can be freely chosen as our RBM does not use a
specific normalization.

As the H (x) is symmetric under overall flip (x → −x), we
first consider Z2 symmetric RBM that has zero biases, i.e.,
a = b = 0. Then we can simplify the equation to

M∏
j=1

2 cosh

(∑
k

wk jxk

)
= c

∏
(i, j)∈E

exp[−βJi, jxix j/2]. (E3)

We can find such a w easily by letting M = |E | and equating
each term using a column of w in the left-hand side to the term
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in the right-hand side using an edge. In other words, we solve

2 cosh

(∑
k

wkexk

)
= ce exp[−βJi, jxix j/2] (E4)

for all e ∈ E where ce is a constant assigned to each edge e
that gives c = ∏

e∈E ce. Setting all wke = 0 if k �= i, j, we then
need to solve the coupled equations

2 cosh(wie + w je) = cee−βJe/2, (E5)

2 cosh(wie − w je) = ceeβJe/2. (E6)

These equations can be solved for any βJi, j as w is a complex
matrix.

For the two-dimensional Ising model we consider in the
main text, Ji, j = −1 for all edges (i, j) ∈ E that connect any
neighboring vertices in 2D lattice. In this case, we can easily
get a real solution wie = w je = cosh−1[eβ]/2.

APPENDIX F: THE XXZ MODEL USING EXACT
WAVE FUNCTIONS

In the main text, we studied the Heisenberg XXZ model
using variational quantum Monte Carlo. There the observables
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FIG. 9. Numerical results of the XXZ model with size N = 20
using exactly constructed wave functions. (a) Normalized energy
Ẽ = (〈E〉 − Eed )/(E0 − Eed ) as a function of epochs. The interac-
tion strengths from � = −1.0 (the darkest) to 2.0 (the lightest)
are used. (b) Dynamics of the spectrum of the Fisher information
matrix at epochs 0 (solid), 5 (dashed), 40 (dot-dashed), 200 (dot-
dot-dashed), and 2000 (dotted). Interaction strengths from � = −1.0
(the leftmost) to 2.0 (the rightmost) with the interval 1.0 are used.
(c) Spectrum of converged Fisher information matrix. The same
colors with (a) are used to indicate �.

such as the quantum Fisher matrix and the energy gradient are
calculated from the samples obtained from MCMC. In this
section, we study the same system using exactly constructed
wave functions instead of MCMC. A modified step of each
iteration of SR is as follows. First, we calculate all compo-
nents of the wave function ψθ (x) = ea·x ∏

j 2 cosh χ j in the
computational basis. Then we obtain the normalization factor
by calculating the exponential sum Z = ∑

{x} |ψθ (x)|2. Using
this result, the energy gradient and the Fisher information ma-
trix are also calculated by computing Eqs. (5) and (6) exactly,
and parameters are updated accordingly. As we do not sample
from the distribution, the algorithm is not stochastic anymore.
Thus we would call this method exact reconfiguration (ER)
instead of SR. We note that ER is extremely expensive in
computation since we need to calculate several exponential
sums for each iteration.

Using ER, we have simulated the XXZ model with the
system size N = 20, which is tractable using current CPUs.
The result is shown in Fig. 9. There are two noteworthy
features: First, the converged spectrum when � = −1 shows
a broader spectrum as compared to Fig. 5. We conjecture that
this is related to the fact that the ground state found using ER
has more component in Jz = 0 subspace compared to SR case.
Indeed, we have 〈J2

z 〉/N2 ≈ 0.963, which is slightly smaller
than what is found in the SR case in the main test. Second, the
converged quantum Fisher matrix shows a smooth spectrum
when � = 2.0 even though the system has a gapped antifer-
romagnetic ground state. It implies that a smooth spectrum of
the converged quantum Fisher matrix is not sufficient to infer
criticality.

APPENDIX G: RMSPROP IN
THE PARAMAGNETIC PHASE

We study in this Appendix RMSProp introduced in Sec. IV
for the paramagnetic phase of TFI. The learning curves for
five different values of h are shown in Fig. 10. We can see
that the learning curves are more complex than those from
the ferromagnetic and the critical cases. Specifically, we have
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FIG. 10. Rescaled energy Ẽ as a function of epochs for TFI in
the paramagnetic phase using the RMSProp (dot-dashed) and the
SR with the learning rate η = 0.01 (black solid). Results from the
transverse field (a) h = 1.2 to (e) 2.0 are shown. Learning rates
1.4×10−3 (the darkest) to 2.2×10−3 (the lightest) are used for the
RMSProp.
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three distinct observations, as follows. First, there is a spike of
the rescaled energy that goes up in the initial stage of learning.
In addition, the size of the spike grows with h. This means that
an initial direction that the optimizer selects is different from
the optimal direction. Second, the properties of the quantum
Fisher matrix are not very relevant to the learning dynamics
of the RMSProp. In Appendix D, we have shown that the
properties of the quantum Fisher matrix do not change much
within the paramagnetic phase. However, the learning curves
from the RMSProp do not show a similarity between different
values of h. Third, the converged energy can be as low as that
of the SR case. This is interesting as the optimizer sometimes
finds the proper solution even though the learning dynamic
shows poor behavior.

From these observations, we suspect that RMSProp takes a
different learning pathway than SR in the paramagnetic phase.
To understand the applicability and details of the learning
dynamics of the algorithm better, more detailed investigations

such as tracking the path of optimization are required. We
leave such a detailed investigation of this optimizer and the
comparison to other optimizers for future work.

Algorithm 2. RMSProp. Here � is the element-wise product of
two vectors.

Require: η: Learning rate
Require: β: Exponential decay rate
Require: θ0: Initial parameter vector
1: t ← 0 (Initialize time step)
2: v0 ← 0 (Initialize second moment vector)
3: whileθt is not converged
4: t ← t + 1
5: gt ← 〈∇θ f (θt−1)〉
6: vt = βvt−1 + (1 − β )gt � gt

7: θt = θt−1 − ηgt � 1/(
√

vt + ε)
8: end while
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