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SUPERSTRING MODELS WITH REALISTIC CRITICAL DIMENSION
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Extra dimensions are predicted by Strings, but their existence does not experimentally verified. Such a situation
stimulates searching for signals from extra dimensions on modern factories on the one hand, on the other hand it
stimulates looking for String theories being already consistent in the observed number of space-time dimensions.
Models of superstrings with realistic critical dimension are discussed in this notes.

1 Introduction

One of the most fascinating predictions of String theory is the existence of extra dimensions required for quantum
consistency of strings. Extra dimensions, the presence of which was very sceptically conceived at early days of
String theory, have become the standard de facto in the construction of various Unification models of fields and
have received a lot of attention on the particle physics community side.

Searching for signals from extra dimensions on modern experimental factories is a good way to put String
theory on the test. Unfortunately, up to date there are not any experimental observations in favor of extra
dimensions. Therefore, a possibility of living in the World without extra dimensions has not a priori to be ruled
out. This fact stimulates searching for String based Unification models being already consistent in the observed
number of space-time dimensions.

In this notes I discuss models of supersymmetric strings which fall into such a criterion. To make the notes
self-contained I begin with a brief discussion of extra dimensions in frameworks of String theory. Then, I discuss
benefits and drawbacks of two most popular scenarios of Unification models with extra dimensions, the Kaluza-
Klein scenario and the Brane World model. Next, I consider a formulation of String theory which is consistent,
i.e. anomaly free, in D = 4, and outline some of features of the construction. My conclusions with summary of
the results are collected in the end of the paper.

2 Extra dimensions in Strings

As I have noted in the above, the quantum consistency of String theory implies living in extra-dimensional
world. This conclusion comes from an infinite-dimensional algebra of quantum operators [1]

[L̂m, L̂n] = (m− n)L̂m+n + A(m)δm+n, A(m) =
1
12

D(m3 −m), (1)

which corresponds to a classical infinite-dimensional algebra

{Lm, Ln} = −i(m− n)Lm+n, (2)

generating conformal transformations on a two-dimensional strings’ world-sheet.
The difference between quantum and classical Virasoro algebras (1), (2) consists in the central element of

the algebra A(m). This term is absent in (2), and appears after the normal ordering of quantum oscillators
entering the Virasoro generators L̂m. The central extension of (1) encodes the conformal anomaly in the
quantized theory, and it manifestly depends on the space-time dimension. In fact, A(m) is only a part of the
total anomaly coefficient, since the classical Virasoro operators generate the residual world-sheet symmetry
after the conformal gauge fixing. Following the Faddeev-Popov recipe ghosts have to be introduced, and their
contribution into the anomaly coefficient is [1]

Ab,c(m) =
1
6
(m− 13m3).

The total anomaly coefficient
Atotal(m) = A(m) + Ab,c(m) + 2aopenm. (3)

also contains the contribution from the open string intercept aopen.
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Figure 1. The Stringy World.
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Figure 2. The Kaluza-Klein picture.

The anomaly absence, i.e. Atotal(m) = 0, implies the space-time dimension D=26 and the string intercept
aopen = 1. The same result holds for a closed bosonic string [1].

In the case of Neveu-Schwarz-Ramond (open) superstring (NSR superstring [2]) the Virasoro algebra is
modified with two additional graded commutators, that leads to the set of two total anomaly coefficients.
Depending on boundary conditions on world-sheet fermions two sectors of quantum oscillators appears: the
Ramond (R) sector with





Atotal(m) = D
8 m3 + 1

6 (m− 13m3) + 1
12 (11m3 − 2m) + 2aR

openm

Btotal(m) = D
2 m2 − 5m2 + 2aR

open

(4)

and the Neveu-Schwarz (NS) sector, where




Atotal(m) = D
8 (m3 −m) + 1

6 (m− 13m3) + 1
12 (11m3 + m) + 2aNS

openm

Btotal(m) = D
2 (m2 − 1

4 ) + ( 1
4 − 5m2) + 2aNS

open

(5)

From A(m) = 0, B(m) = 0 it follows the critical dimension D=10 and the string intercepts aR
open = 0, aNS

open = 1.
Therefore, the presence of extra dimensions is an intrinsic property of the consistently quantized String

theory. We get 22 space-like extra dimensions in bosonic string theory and 6 extra spatial dimensions for
superstrings. The superstring case is more preferable since we have not the tachyonic vacuum state here:
aopen = 1 corresponds to the tachyonic vacuum, while aR

open = 0 leads to a well-defined zero-energy vacuum
state. Though we have aNS

open = 1 in the Neveu-Schwarz sector of superstring, we get rid off the tachyon state
taking the Gliozzi-Scherk-Olive (GSO) projection [3]. Once the GSO projection is applied the spectrum of
states in NS+R sectors possesses D=10 space-time supersymmetry.

In what follows I will mainly focus on the superstring case, where the number of extra dimensions is 6.

3 Living with Extra Dimensions

From the String theory point of view, our World looks as follows
To make a contact of String theory living in ten-dimensional world to observable physics in D=4 a special

procedure of compactifying the extra dimensions has to be realized. There are many ways to this end, but
the right way, which would reproduce main properties of the Standard Model (or its minimal supersymmetric
extension), is up to date missed.

Dealing with extra dimensions one may wonder what is their size and what is the nature of extra dimensions?
In the Kaluza-Klein picture [4] the extra dimensions have a small size that leads to appearing very massive
particles after the compactification, with masses M ∼ 1/lcomp. (lcomp. is a characteristic length of a compactified
dimension).

Massive modes coming from the Kaluza-Klein compactification are too massive to be ever experimentally
observed, so the best one can do is to consider massless modes, corresponding in part to the gauge bosons of
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the SM symmetry group SU(3)× SU(2)× U(1), or an extended symmetry group including the SM group as a
subgroup.

Common drawbacks of the Kaluza-Klein scheme consist in:

• Unsatisfactory spectrum of particles appearing upon the reduction which does not fit well the spectrum of
the SM fields.

The desired spectrum of the Kaluza-Klein massless modes has to be realistic. A part of this spectrum
should correspond to the gauge bosons of the Standard Model that puts restrictions on the type of the
internal six-dimensional manifolds. However, the way of getting masses for the rest of the modes and
establishing their correspondence to other Standard Model fields is an open task [5].

• Gauge hierarchy problem still takes place.

The Kaluza-Klein scenario does not resolve the hierarchy problem, the gravity scale still remains near the
Plank scale.

• Typically four rather than three generations of quarks and leptons.

The exact number of generations coming after the dimensional reduction is strongly depended on geomet-
rical and topological characteristics of internal six-dimensional manifolds. Roughly speaking, the number
of fermion generations is twice less than the main topological number of the internal manifold (the Betti
number). It turns out that the minimal Betti number for phenomenologically relevant internal manifolds
is equal to 8 (Calabi-Yau manifolds), hence the number of generations is 4. A way to resolve this problem
is to consider special manifolds of a Calabi-Yau type with the relevant Betti number [6], or to reduce on
orbifolds [7] which are not manifolds in a common sense. Another perspective direction is to consider
branes intersections [8] within the Brane World scenario (see below).

• Masses and chiralities of fermions.

After the reduction fermions received masses of the compactification scale order, i.e. huge masses. Massless
fermions comes from the zero-eigenvalue states of the Dirac operator on a compact internal manifold. In
most phenomenologically interesting cases such zero-eigenvalue states do not exist. Another problem
is to recover chiral fermions after the reduction. It may not be correctly resolved within the standard
Kaluza-Klein scheme (see e.g. [9] and Refs. therein).

• Large cosmological constant.

This point becomes important in context of String theory application to Cosmology and astrophysics,
since we have definitely known that the right cosmological constant is small.

Problems with Kaluza-Klein motivated searching for other scenarios. One of them became popular last
decade is the Brane World scenario [10].

Within the Brane World (BW) scenario it is supposed that fields of the SM do confine on a 4-dimensional
brane (3-brane). A 3-brane is embedded in a higher-dimensional World. Gravity takes a special place in the
BW picture since gravity does not confine on a 3-brane and gets trapped in high dimensions.

From the String theory point of view the BW picture looks like
A 3-brane is embedded into ten-dimensional space-time, a connection between 3-brane and extra dimensions

is realized through strings. What is important in such a scheme is that extra dimensions are large. It leads to
essential decreasing of the effective Plank scale on a Brane, that resolves the hierarchy problem.

Substantial progress in the Stringy BW has been achieved, nevertheless several important problems still
remain open:
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• How to break Supersymmetry in a correct way?

Indeed, once we are talking about a 3-brane, it naturally appears in type IIB supersymmetric String
theory. One may wonder why it is so necessary to deal with Superstring theory? The answer is we would
like to have a joint coupling constant in high energies that provides by supersymmetry, and we would like
to have a unified theory of gravity and the SM fields that is realized in String theory. However, the SM
is not a supersymmetric theory, hence the way of supersymmetry breaking has to be found.

• How to set up the right cosmological constant in the end?

I recall that Anti-de-Sitter space is actively exploited within the BW. Hence, all the machinery of the
AdS/CFT correspondence is applied here. But we have to recover the right, de-Sitter space, cosmological
constant in the end, which is the experimentally verified cosmological constant driving the late-time
acceleration of Universe.

• The predicted gravity scale is over TeV, but should we believe in that?

The BW scenario is a proposal for the resolving the hierarchy problem. However, we have not any signals
on TeV quantum gravity (as well as on extra dimensions) up to date that makes the point questionable.

4 Living without Extra Dimensions

Living in extra dimensional World makes possible to resolve some of the fundamental problems of the Standard
Model. At the same time the major worry on extra-dimensions is the absence of any experimental signals in
favor of their existence. Once living in extra-dimensional World will be experimentally verified, it will get rid
of any doubts on them, and on String theory, which predicts extra dimensions, as well. Currently, all possible
ways of constructing Unification models, with or without extra dimensions, are needed to be taken into account
on equal footing.

4.1 SUSY algebra and supersymmetric strings in extended superspaces

I have noted String theory is good enough to unify gravity with other interactions. But could we find a
comprehensive String theory with realistic critical dimensions?

To get an answer let me begin with reviewing an irrelevant at first sight subject. In 1988 Curtright [11]
made an analysis of the maximally extended SUSY algebra in D=11 (M-theory algebra [12], [13]). The algebra
in particular includes [13]

{Q,Q} = γaPa + γabPab + γabcdePabcde. (6)

The right hand side of (6) contains different types of ‘momenta’. Dynamical charge Pa corresponds to the
standard momenta, other ‘momenta’ are topological charges corresponding to ‘electrically’ charged membrane
and ‘magnetically’ charged 5-brane. Clearly,

Pab = −Pba, Pabcde = P[abcde].

Membranes and five-branes appear in eleven-dimensional M-theory, however there is not a room for strings
there.

What happens if charges on the r.h.s. of (6) will be treated in more democratic way? They are different, of
course, the dynamical momenta have the conjugated coordinates, whilst topological charges have not. To reach
charges democracy Curtright proposed, instead of the standard D=11 superspace (Xa, θα), an ‘extended’ D=11
superspace (Xa, Zab, Zabcde, θα) [11], where Zab, Zabcde are “coordinates” conjugated to topological charges
Pab, Pabcde. Curiously enough, there exists a room for superstrings in such an extended superspace.

A general form of the Curtright’s superstring action looks as follows [11]

S =
∫

d2ξ
√
−det(ωa

µωνa + αωab
µ ωνab + βωabcde

µ ωνabcde) + SWZ . (7)

The building blocks of the action consist of the pull-back of D=11 Volkov-Akulov superform ωa
µ = ∂µXa +

iθ̄γa∂µθ, its extensions to tensorial-type coordinates ωab
µ = ∂µZab+iθ̄γab∂µθ and ωabcde

µ = ∂µZabcde+iθ̄γabcde∂µθ.
Two parameters α, β are constants fixed by supersymmetry in the end, and the last terms of the action is the
Wess-Zumino term. The term by Wess and Zumino was introduced in (7) to reach the invariance of the action
under a local fermionic symmetry, the so-called kappa-symmetry, taking an important place in theory of super-
symmetric extended objects. Nevertheless, in the original Curtright’s paper the kappa-invariance of the action
was rather claimed than exactly proved.

Now what about D=4? A similar extension of D=4 superspace was considered by Amorim and Barcelos-Neto
[14], and a line of they reasoning was almost the same.
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The maximally extended N=1 D=4 superalgebra in particular contains [12]

{Q,Q} = γaPa + γabPab. (8)

Adding new tensor-type coordinates Zab = −Zba, which are conjugated to ‘momenta’ Pab, we get an extended
superspace (Xa, Zab, θα). Pab is commonly treated as a topological charge (due to a D=4 membrane), but
treating it dynamically it’s possible to construct a Green-Schwarz-type superstring in the extended superspace

S =
∫

d2ξ
√
−det(ωa

µωνa + αωab
µ ωνab) + SWZ . (9)

The notation in (9) is that of (7).
I postpone the discussion of (9) to the end of the paper, currently focussing on the superconformal algebra

in the extended superspace and on the superstring critical dimension.

4.2 Superconformal algebra in tensorial superspace and superstring’s critical dimension

To calculate the critical dimension of tensorial superstring let us turn back to the bosonic string case. As it has
been noted in the above the total conformal anomaly coefficient (eq. (3))

Atotal(m) =
1
12

D(m3 −m) +
1
6
(m− 13m3) + 2aopenm

contains contributions from bosonic fields Xa, conformal (anti)ghosts and the string intercept.
One could notice that

• The critical dimension is calculated from setting the terms proportional to m3 to zero.

• D bosonic coordinates Xa contribute the relative coefficient D.

• The conformal (anti)ghosts contribute the relative coefficient ‘−26’ independently on the number of space-
time dimensions.

Hence, we need 26 bosonic coordinates Xa to compensate the ghosts contribution, +26− 26 = 0.
In the NSR superstring case one of the total superconformal anomaly coefficients has the following form

Atotal(m) =
(

D

12
· 1 +

D

12
· 1
2

)
m3 +

1
6
(m− 13m3) +

1
12

(11m3 − 2m) + 2aR
openm. (10)

It’s easy to recognize the contributions of bosonic Xa, fermionic conformal (anti)ghosts, bosonic superconformal
(anti)ghosts and the contribution of the string intercept. But what about the second term of (10)?

This term contains the contribution of the world-sheet fermionic superpartners ψa of the bosonic coordinates
Xa. Clearly, the fermionic superpartners contribute only 1/2 of the corresponding bosonic coefficient.

Hence, to calculate the critical dimension the following mnemonic rule may be used [1]:

• D bosons get the coefficient D.

• The input of D fermions (boson’s superpartners) is D/2.

• The (super)conformal ghosts give ‘−26’ for conformal (fermionic) ghosts, and superconformal (bosonic-
type) ghosts contribute ‘+11’.

The difference ‘−26+11 = −15’ has to be compensated with contributions of additional bosonic and/or fermionic
fields, one of the realizations of which are bosonic coordinates Xa and their world-sheet superpartners ψa.

Let us fix the space-time dimension D = 4. Four bosonic coordinates Xm and their four world-sheet
superpartners ψm contribute the coefficient 4 + 4/2 = +6. On account of ghosts contribution it is necessary to
compensate the coefficient equal to−15 + 6 = −9. There are different routes to this end. Say, if one were to use
6 ‘internal’ coordinates yi and their superpartners ψi (i = 1, . . . , 6), this choice would be transformed into the
standard 4 + 6 = 10 set of coordinates of the NSR superstring in the end.

Another productive choice suggested by D = 4 N = 1 superalgebra structure is to consider 6 additional
tensorial-type coordinates Zmn = −Znm together with their world-sheet superpartners Ψmn = −Ψnm [15]. This
set of coordinates contribute the required coefficient +9, hence we arrive at the consistent quantum formulation
of superstring in the observable number of space-time dimensions.
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5 New set of coordinates and benefits of their introduction

We have established the existence of a NSR-type superstring formulation with realistic critical dimension. The
price we paid to this end is the extension of the conventional space-time with additional tensorial-type bosonic
coordinates. Let me take an extensive treatment of new coordinates in the so extended space.

Note that the bosonic subset (Xm, Zmn) could be embedded into the unique set of tensorial coordinates
ZMN , but in D = 5.

Zm̃5 Ã Xm, Zm̃ñ Ã Zmn, m̃ = 0, . . . , 3 (11)

The world-sheet superpartners of Xm and Zmn can also be recasted into the single world-sheet fermion ΨMN

Ψm̃5 Ã ψm, Ψm̃ñ Ã ψmn, m̃ = 0, . . . , 3

Therefore, in the NSR-type formulation we are dealing with tensorial-type coordinates ZMN which are scalars
w.r.t. the world-sheet diffeomorphisms, and with their superpartners ΨMN which are a world-sheet spinors. If
we calculate the Virasoro-like superalgebra of the NSR-type string with embedding coordinates (ZMN , ΨMN )
when we get





Atotal(m) = 1
12 (D(D−1)

2 + D(D−1)
4 )m3 + 1

6 (m− 13m3) + 1
12 (11m3 − 2m) + 2aR

openm

Btotal(m) = D(D−1)
4 m2 − 5m2 + 2aR

open.

(12)

Clearly, the critical dimension is D = 5 in the case, and we arrive at new formulation of superstring theory
living in five-dimensional space-time endowed with coordinates ZMN . This parametrization includes, as a four-
dimensional part, the standard set of vector-type coordinates Xm, hence coordinates ZMN are more fundamental
than Xm, and the tensorial string theory in D = 5 is more fundamental than its four-dimensional analog. This
situation may be considered as a remnant of the M-theory–String theory relation, when the more fundamental
theory is formulated in a space-time of one spatial dimension higher.

Another consequence of introducing the new space-time parametrization may be viewed from the following
observation. Calculating the Virasoro-like superalgebra for the NSR-type D = 5 tensorial string theory we have
used the canonical relation between ZMN and their conjugate generalized momenta PMN

{PMN (σ), ZKL(σ′)}PB =
1
2
T−1

(
ηMKηNL − ηMLηNK

)
δ(σ − σ′),

When we pass to operators, the generalized momenta become P̂MN = −i∂MN , ∂MNZMN = 1
2D(D − 1).

Hence, in tensorial space there is an exotic one-form of the Yang-Mills-type A = AMNdZMN . Its strength
tensor is

FMN,KL = ∂MNAKL − ∂KLAMN + i[AMN ,AKL] (13)

and the action functional for such a field looks like

S =
1
4
Tr

∫
dΩD FMN,KLFMN,KL,

where dΩD is the invariant volume form in a tensorial space. The one-form field A is an analog of a non-abelian
Yang-Mills gauge field in the conventional space-time. It corresponds to the massless mode in the spectrum of
open tensorial string.

In the spectrum of the closed tensorial superstring we meet other exotic massless modes GMN |PQ and
BMN |PQ corresponding to graviton and the Kalb-Ramond antisymmetric tensor fields of the standard super-
string spectrum.

The ‘graviton’ mode GMN |PQ possesses the following properties

GMN |PQ = −GNM |PQ = −GMN |QP = GPQ|MN

which formally the same as that of the curvature tensor in the conventional space.
For a ‘Kalb-Ramond’ field we have

BMN |PQ = −BNM |PQ = −BMN |QP = −BPQ|MN .

The remaining massless mode in the spectrum is a ‘dilaton’ Φ.
Having such exotic modes in the spectrum it is very important to understand the dynamics of these fields.

The action functional for the ‘dilaton’ and the ‘Kalb-Ramond’ fields is more or less predictable. It is likely

S =
∫

dΩ5

(
1
2

∂MNΦ∂MNΦ +
1
12

HMN, KL|PQHMN, KL|PQ

)
,
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where the ‘Kalb-Ramond’ field strength is defined by

HMN, KL|PQ = ∂MNBKL|PQ + ∂PQBMN |KL + ∂KLBPQ|MN .

As for the effective action of ‘graviton’ GMN |PQ, its structure is unclear. It could be recovered from calculations
of the 3-point tree amplitude of interacting strings in the low-energy approximation (as, for instance, in [17])
and I postpone this task for further studies.

6 Summary and Conclusions

We have discussed a reformulation of superstring theory, the critical dimension of which coincides with the
observable space-time dimension.

To recover the critical dimension D = 4 an extension of the standard space-time is required. New elements
which have to be taken into account are tensorial-type bosonic coordinates. From the point of view of the string
world-sheet theory, it does not matter what kind of bosonic coordinates need to be added to compensate the
superconformal anomaly. They could be scalars, vectors or tensors under the space-time Poincare. The main
point is that they are scalars with respect to the world-sheet diffeomorphisms.

One may wonder, that is a rule for selecting new coordinates then? What kind of the coordinates have to
be selected to parameterize the target space? It turns out that the choice of the string’s coordinates describing
an immersion of the string world-sheet into a target superspace is governed by the structure of a target space
superalgebra.

Let me discuss the target-space – world-sheet correspondence in more detail. There are two independent
formulations of superstrings:

1. Neveu-Schwarz-Ramond with the world-sheet supersymmetry;

2. Green-Schwarz with the manifest target-space supersymmetry.

As I have noted these formulations are equivalent in D = 10, since their quantum spectra coincide (after
truncation of the NSR spectrum with the GSO projection) and their critical dimensions are the same.

The world-sheet SUSY in the NSR formulation just says that there are world-sheet scalars and their su-
perpartners under the world-sheet supersymmetry. However, it doesn’t say anything on properties of these
variables under the target-space Poincare transformations.

In its turn, properties of the string coordinates in the Green-Schwarz formulation are fixed. Indeed, a part
of the space-time SUSY algebra is

{Q,Q} = γaPa + . . .

and string coordinates are defined as ones conjugated to Pa. They are vector-type coordinates Xa with respect
to the target-space Poincare. Precisely this type of the coordinates enter the standard NSR string action. Ex-
tending the space-time to superspace recovers the rest of the coordinates entering the Green-Schwarz superstring
action, the space-time fermions θα. They are the target-space superpartners of Xa.

Hence, the relation between NSR and GS superstrings observes an independent interpretation, in which prop-
erties of the space-time SUSY, manifest in the GS formulation, govern the choice of the space-time coordinates
to describe the NSR string.

Let me now turn to the Green-Schwarz-type action (9). This action is based on the target space supersym-
metry algebra involving the supercharges anticommutator (8). If we give a credit to having a correspondence
between NSR and GS formulations in the extended superspace (Xm, Zmn, θα), the NSR-type tensorial super-
string variables are (Xm, Zmn) together with their world-sheet superpartners (ψm,Ψmn).

As for the NSR-type tensorial superstring the bosonic subset (Xm, Zmn) of the Green-Schwarz-type tensorial
superstring coordinates could be embedded into the unique set of tensorial coordinates ZMN , but in D = 5.

Zm̃5 Ã Xm, Zm̃ñ Ã Zmn, m̃ = 0, . . . , 3 (14)
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The # of fermionic target-space superpartners θα is the same in D = 5 and D = 4. Therefore, it is possible
to reformulate the superstring model solely in terms of (ZMN , θα) coordinates that essentially simplifies the
Green-Schwarz-like tensorial superstring action [16] and proving its kappa-invariance. Moreover, the consistency
of the Green-Schwarz-type superstring model in D = 5 tensorial superspace (ZMN , θα) (kappa-invariance of the
action) also requires [16]

GM [N |PQ] = 0

This condition just says that the field GMN |PQ is in the [2,2] irreducible rep. over the Lorentz in D = 5 tangent
space.

At the same time I should note that the Green-Schwarz-type formulation of tensorial superstring in D = 4
(or equivalently in D = 5) extended superspace faces with several questionable points. First of all one may
encounter an apparent mismatch between bosonic and fermionic degrees of freedom in the case. Hence, it
is necessary to understand the root of the problem. A helpful way to this end is to recover the spectrum of
open/closed tensorial strings in different formulations and to figure out an analog of the GSO projection to relate
spectra of tensorial superstrings. Perhaps, applying the machinery of the twistor-like superembedding approach
[18], [19] (and Refs. therein), which ‘closes’ the diagram on Fig.4, may be useful to this end. Another intriguing
problem is to construct the effective action of massless modes to check a correspondence of the approach to that
of [20] where a new concept of the area metric was introduced.

Acknowledgements. It is a pleasure to thank Organizers of NPQCD09 School-Seminar for the kind hospitality
in Dnipropetrovsk. I am very thankful to Vladimir Skalozub and Vladimir Vanyashin for numerous conversations
during the School-Seminar, and to Igor Bandos and Victor Berezovoj for enlightened discussions on the subject
of this notes. Partial support from the INTAS Grant # 05-08-7928 and the NASU-RFFI project # 38/50-2008
is acknowledged.

References

[1] M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, (Cambridge, Cambridge University Press,
1987).

[2] P. Ramond, Phys. Rev. D 3, 2415 (1971);
A. Neveu and J.H. Schwarz, Nucl. Phys. B 31, 86 (1971).

[3] F. Gliozzi, J. Scherk and D. Olive, Nucl. Phys. B 122, 253 (1977).
[4] M.J. Duff, B.E.W. Nilsson and C.N. Pope, Phys. Rep. 130, 1 (1986).
[5] V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, JHEP 0605, 043 (2006) [hep-th/0512177].
[6] P. Candelas and R. Davies, New Calabi-Yau Manifolds with Small Hodge Numbers, arXiv:0809.4681[hep-

th].
[7] S. Ramos-Sanchez, Towards Low Energy Physics from the Heterotic String, arXiv:0812.3560[hep-th].
[8] T. Kimura and S. Mizoguchi, Yet Another Alternative to Compactification – Heterotic Five-branes Explain

Why Three Generations in Nature, arXiv:0905.2185[hep-th].
[9] F. Cianfrani and G. Montani, Review on Extended Approaches in the Kaluza-Klein Model,

arXiv:0904.0574[gr-qc].
[10] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [hep-ph/9905221]; ibid. 83, 4690 (1999)

[hep-th/9906064].
[11] T. Curtright, Phys. Rev. Lett. 60, 393 (1988).
[12] J.W. van Holten and A. van Proeyen, J. Phys. A 15, 3763 (1982).
[13] E. Sezgin, Phys.Lett. B 392, 323 (1997) [hep-th/9609086].
[14] R. Amorim and J. Barcelos-Neto, Z. Phys. C 64, 345 (1994).
[15] R. Amorim and J. Barcelos-Neto, Z. Phys. C 58, 513 (1993).
[16] A.J. Nurmagambetov, Visnyk of Kharkov Natl. Univ. 1(41), 21 (2009).
[17] R.I. Nepomechie, Phys. Rev. D 32, 3201 (1985).
[18] D.P. Sorokin, Phys.Rept. 329, 1 (2000) [hep-th/9906142].
[19] I.A. Bandos, J.A. de Azcarraga and C. Miquel-Espanya, JHEP 0607, 005 (2006) [hep-th/0604037].
[20] F.P. Schuller and M.N.R. Wohlfarth, Nucl. Phys. B 747, 398 (2006) [hep-th/0508170].


