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Abstract

Drawing a reliable QCD phase diagram enables to elucidate the origin of
matter and the cosmogony and so on. For drawing a QCD phase diagram,
the quark-hadron transition is an essential factor. In low density, the quark-
hadron transition is crossover. For the crossover, it is difficult to determine
the transition temperature clearly. Many authors regarded restoration and
breaking of chiral and Z3 symmetries as indicators of the quark-hadron tran-
sition. However, these symmetry breaking and restoration do not stand for
the direct transition from the hadron degree of freedom to the quark degree
of freedom.

In this thesis, we construct the effective model which has quark and
hadron degrees of freedom explicitly. We determine the quark-hadron tran-
sition temperature by using the model, and compare the resulting transition
temperature with chiral and Zs transition temperatures. The comparison
shows that chiral and Zj transition occur in hadron phase.

Finally, we draw a QCD phase diagram by using our model. At the
time, we draw three QCD phase diagrams for baryon number B, isospin
number I, hypercharge number Y, respectively. This drawing shows that the
quark-hadron transition has the same reaction for changing B, I and Y in
low density. We call the phenomenon “BIY approximate equivalence”, and
discussed the BIY approximate equivalence.
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Chapter 1

Introduction

1.1 Quantum chromodymanics

Quarks and gluons are fundamental particles in nature. They are confined
into hadrons by strong interaction. In hadron physics, it is one of the ul-
timate goals to elucidate the confinement mechanism based on the strong
interactions among quarks and gluons.

The Quantum Chromodynamics (QCD) is a remarkable theory of the
interaction among quarks and gluons. Its Lagrangian density is defined as

1
L = q(iy, D" —m)q— —F; F" (1.1)

4#1/0,7

where ¢ is the quark field, m is the current quark mass matrix and quark
fields interact with gluon fields A, = Af\,/2 through the covariant derivative
D, = 0,+igA, with the gauge coupling constant g. Here, A\, (a =1,2,---,8)
are the Gell-Mann matrices in color space. The gluon dynamics are governed
by the field strength tensor Ff, = 9,A% — 0, A% — g facALAS with the anti-
symmetric structure constant fupc.

Quarks are classified with six species called by “flavors”: up (u), down
(d), strange (s), charm (c), bottom (b), and top (t). c¢-, b- and t-quark
masses are much larger than the typical energy scale of QCD, Agcp ~ 200
MeV. Then these quarks hardly affect low-energy dynamics of our interest.
Therefore, we focus on only u, d and s quarks.

From the analysis of the perturbative renormalization group method,
QCD has asymptotic freedom. At high energy or at the short distance,
quarks behave as non-interactive particles since the coupling constant of
QCD becomes small. This asymptotic freedom is characterized by a running
(effective) coupling constant of quark-gluon vertex.The coupling constant be-
comes, in contrast, large at low energy. The coupling constant is described
as
)

4 7

a(—k*) = (1.2)
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where

2
2(12) — 9
9K = T Tos (2 17)"
11 2
A= Nexp(—1/bg}), b= (?Ne - ng) /167> (1.3)

QCD well consists the experimental data in the perturbative region real-
ized at high temperature (7).

1.2 QCD phase diagram

Since the QCD running coupling decreases with respect to increasing the
energy scale, it is natural to consider that the QCD matter at high energy
density undergoes the phase transition from a confined state with the chiral
symmetry breaking (hadron state) to a deconfined state with the chiral sym-
metry restoration (quark-gluon plasma state) . Since the typical scale of QCD
is Aqcp ~ 200 MeV, the quark-hadron transition may take place around tem-
perature 7' ~ Aqcp or the baryon number density pp ~ Adcp ~ 1fm™. In
the early universe about 10~ s after the Big Bang, the hot universe has
experienced the quark-hadron transition. The core of neutron stars may be
the relevant place where dense QCD matter at low temperature would be
realized. Experimentally, the heavy-ion collisions in the Relativistic Heavy-
ion Collider (RHIC) at Brookhaven National Laboratory (BNL), the Large
Hadron Collider (LHC) at CERN and Japan Proton Accelerator Research
Complex (J-PARC) at JAEA and KEK provide us with a chance to create
hot and/or dense QCD matter.

Figure 1.1 sketches a schematic picture of the QCD phase diagram in
the plane of temperature 7" and quark chemical potential p,. At present,
our knowledge is limited only in the asymptotically high p, region where the
perturbative calculation is available, and the small i, /T << 1 region where
the numerical calculation on lattice is available.

1.3 Chiral symmetry

A nonperturbative feature of QCD is the spontaneous breaking of chiral
symmetry. This phenomenon occurs at low energy. As a consequence of the
symmetry breaking the gap between hadron and quark mass are explained.
For example, current u- and d-quark masses are too light to provide nucleon
mass. Now, we consider the fermion part of QCD in the massless limit,

L4 = Gi7"Dug. (14)
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Temperature (T)

Chemical potential (uq)

Fig. 1.1: Prediction of QCD phase diagram

Here, the field ¢ can be divided into the left- and right-handed parts based
on the chirality operator 75 = 1y9y17273:

11— 147
qr = 25% qr = 25(]- (1-5)

The Lagrangian of Eq. (1.4) is then rewritten into
Ly = qriv" Dyuqr + qrin" Dyugr. (1.6)

The Lagrangian (1.6) has invariance under the following phase transforma-
tions,

T —1iT

q—qp=e " %q,  qr — qp = e PRqp. (1.7)

where 6 g is arbitrary parameters and 7° and 7 (i = 1, 2, 3) are the
2 x 2 unit and Pauli matrices, respectively. These transformations are ele-
ments of the Up,(2) ® Ugr(2) group, and the invariance is called chiral symme-
try. The chiral group is decomposed into Uy (1) ® Ua(1) ® SUy(2) ® SUA(2).
Uy(1) symmetry is related to the baryon-number conservation, while U (1)
is anomalous in the sense that it is broken by quantum effects. The remainder
SUA(2) is spontaneously broken when the chiral condensate,

(qq) = (qrgr + qrar), (1.8)
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is finite. This spontaneous breaking of chiral symmetry generates massless
Nambu-Goldstone bosons, and makes quarks massive. The mass is called
“dynamical quark mass”. Since the current (bare) quark mass is not zero in
the real world, chiral symmetry is broken explicitly but weakly.This makes
pion massive, although the mass is much lighter than those of other hadrons.

1.4 73 symmetry

One cannot find color charged particles such as quarks and gluons explicitly,
but see colorless particles such as pion, proton, and neutron. This phe-
nomenon is called color confinement. This is a representative feature of the
non- perturbative QCD vacuum. To describe the confinement-deconfinement
transition at finite 7", we first introduce an order parameter in the pure Yang-

Mills (YM) limit. The YM action for finite 7" is

1/T 1
SYM :/ dT/dS.szEVFuya, (19)
0

where the gauge field Aj(7,x) has the periodic boundary condition for imag-
inary direction time 7 as

A(0,x) = A%(1/T,x), (1.10)

The Syy is invariant under the periodic gauge condition transformation by
definition. Also, one can consider the following gauge transformation,

Ay — Al (x) = U(x)(Au(x) + ig0,)U" (2), (1.11)
where
U(r+1/T,x) = z,U(7,x%), (1.12)
U(r,x) € SU(3), (1.13)
zn € Zs C SU(3). (1.14)

The Zs is the discrete center subgroup of SU(3) and its element z,(n = 0,1, 2)
commutes with any element of SU(3). The explicit form of z, is

zp = €2IN/3, (1.15)

with n = 0, 1, 2. The transformation (1.11) is called the Zj transformation.
Because the Zj transformation is a part of the gauge transformation, it is
one of the symmetry transformations of the YM action (1.9). Therefore the
YM partition function is also invariant under the Zs transformation, because
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it preserves the boundary condition for the gauge field. This is called Zs
symmetry. Its order parameter is the Polyakov loop,

1 1T
O = gtrc(L), L =exp z/ drA, (1.16)
0
The ¢ is transformed under the Zs transformation as
¢ = 2. (1.17)

In the heavy quark limit, the expectation value of Polyakov loop ®(= (¢))
can be written with the quark free energy Fy [1];

P = e Fo/T (1.18)

If Fig = o0, a single quark can’t be produced, and ® = 0. The system is in
the confined phase. In the pure YM theory the conferment-deconfinement
transition is thus understood by Zs symmetry, and the order parameter is
the expectation value of Polyakov loop (®). This is summarized as
Confined phase : ® = 0, Fy = 00, Z3 symmetric state.
Deconfined phase : ® # 0, Fp < 0o, Z3 symmetry is spontaneously broken.

1.5 Lattice QCD

Lattice QCD (LQCD) simulation is the first-principle calculation of QCD. In
this section, we briefly review the method and its difficulty. LQCD is one of
regularization scheme in quantum field theories, in which fermion fields are
defined on each lattice site and gauge fields are on each lattice link to preserve
local gauge invariance. In LQCD simulations, the path integral is evaluated
by the Monte Carlo (MC) method. LQCD simulations successfully reproduce
existing experimental values on hadron masses and their decay constants
and the qualitative behavior of nuclear force. However, LQCD simulations
have the so-called sign problem at finite quark chemical potential (y,). For
simplicity, we use the notation of continuum QCD without loss of generality.
The QCD partition function is given by

Z) = [ DADGDT expl- (S, + 5, (1.19)
Sy = /dT/d3X (j(’y#Du—i-mo — Yalbq)q, (1.20)

1
S, = /drd3x ZFSVF;‘”, (1.21)



where the S; is the fermion action with the covariant derivative D,,, mg is
the bare fermion mass and f, is the chemical potential. The .S, is the gauge
action with the strength FJ,. The path integration is evaluated by the MC
method. Practically, one can use the important sampling method for the

gluon-field configuration after integrating the quark field:

Zw) = [ DAdet M) expl-5,) (1.22)
M(pg) = YDy +m — Yaptq. (1.23)

The fermion determinant det M (y,) should be a real number to use the
important sampling method. For finite 1, the determinant is not real but
satisfies the relation,

(det M (p1q))" = det M (—pu). (1.24)

Hence the important sampling method is not feasible at finite 1, This is
so-called “sign-problem” . At p, = 0, reality of det M(u, = 0) is easily
derived. Equation (1.24) shows that the fermion determinant is real in the
case of pure imaginary chemical potential [2,3].

1.6 Strategy

A state of matter in high temperature and/or density is defined by the QCD
phase diagram. In the QCD phase diagram, a quark-hadron transition line is
essential to distinguish hadron state and quark state. In this thesis, we aim
to draw a reliable quark-hadron transition line in the QCD phase diagram.
It is also important to elucidate the dynamics of quark-hadron transi-
tion for understanding the high-density region of QCD phase diagram where
LQCD simulation doesn’t work sufficiently. In low density, various thermo-
dynamic quantities were calculated by LQCD simulations. The calculations
show that the quark-hadron transition is crossover in low density [4]. How-
ever it is difficult to clear the behavior of hadron and quark contributions
on various quantities with LQCD simulations. Hence, by using an effective
model, we try to clear the dynamics of quark-hadron transition. Then we
determine the parameters of the effective model by reproducing LQCD data.
In this thesis, we construct “Hadron-Quark Crossover (HQC) model”
by combining Independent Quark (IQ) model and Hadron Resonance Gas
(HRG) model. The IQQ model (HRG model) describes quark (hadron) state.
One can stand for quark and hadron contributions in physical quantities
explicitly by using the HQC model. We define the quark-hadron transition
by using the HQC model, and draw a QCD phase diagram by the ratio
between the number of quarks state and the number of hadron states.
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This thesis is constructed as follows: In chapter 2, we construct the HQC
model and compare the quark-hadron transition of HQC model with chi-
ral and Zs transitions. In chapter 3, we draw a QCD phase diagram with
the quark-hadron transition derived by the HQC model. In chapter 4, we
summarize the present study.



Chapter 2

Effective model approach for
quark-hadron transition
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Fig. 2.1: Schema of quark-hadron crossover (upper panel) and pressure of
lattice QCD simulation in Ref. [11] (lower panel)



2.1 Introduction

It has been predicted by N. Cabibbo and G. Parisi [5] that a transition from
hadrons to quarks occurs in the extremely high temperature and/or high
pressure density. For example, in high temperature just after Big Bang up
to 1075 s, matters were quark-gluon plasma (QGP). Also, in high density
as the core of neutron star, it is considered that hadrons melt into quarks.
These behaviours in the finite temperature and density are illustrated in
Fig. 1.1, and called “quark-hadron transition”. For investigating the revolu-
tion of universe and the structure of inner core of neutron star, phenomena
in which the quark-hadron transition may be important, it is essential to
determine the position of a quark-hadron-transition line in the QCD phase
diagram. For temperature less than 7" ~ 150 MeV, quarks and gluons are
confined into a hadron. For temperature more than 7" ~ 250 MeV, quarks
and gluons become QGP. The resent LQCD result showed that the transition
between quark and hadron is smoothly continuous [4]. This means that the
quark-hadron transition is crossover. However, one is not able to find how
high temperature hadrons survive from LQCD simulations. Regarding the
study to determine the transition temperature of quark-hadron, usually, T’
dependence of chiral condensate and/or Polyakov loop are regarded as indi-
cators of the quark-hadron transition. Chiral condensate (Polyakov loop) is
an order parameter of chiral (Zs) symmetry. The chiral condensate corre-
lates an effective quark mass, and also the Polyakov loop is related to the
excitation energy of solo quark. However, it is unclear how the restoration
and the breaking of these symmetries relate to the quark-hadron transition.
We discuss the quark-hadron transition by using thermodynamic quantities
which are observables. In this thesis, we construct the model which con-
sists with LQCD data, and determine the quark-hadron transition line by
using the constructed model. Treating the number of states of quarks and
hadrons visibly, we consider instinctively the quark-hadron transition. We
use thermodynamic quantities as good indicators of the quark-hadron tran-
sition. And based on the model, we suggest a new definition of quark-hadron
transition temperature. In Chap. 2, we construct an effective model, and
suggest a new definition of quark-hadron transition temperature. We also
determine the transition temperature for some thermodynamic quantities.
In Chap. 3, we determine the transition line in QCD phase diagram. Using
the constructed model, we expand the results of LQCD simulations from zero
chemical potential to finite chemical potential.



2.2 Model

2.2.1 Hadron-quark crossover model

The pressure obtained by LQCD simulations in low temperature can be well
described by the hadron gas model, while the pressure in high temperature
can be described by perturbative QCD (pQCD). In Ref. [6], the authors
proposed a new model to describe the pressure P between high temperature
and low temperature by introducing a switching function v:

P = U(T> {/LX})PH(T7 {/LX})
+[1 = o(T, {ux )] Po(T, {px}), (2.1)

where the Py (Pq) means the pressure for pure hadrons (quarks and gluons).
The hadron contribution Py is calculated with the HRG model. The quark-
gluon contribution P is obtained by using pQCD [6]. They have introduced
the switching function v to combine Py and Pq. In the case of v = 0, we have
quark-gluon plasma. The case of v = 1 corresponds to pure hadronic matter.
In the case of 0 < v < 1, we have a mixed state of hadrons and quarks. In
Ref. [6], they determined the v(T,{ux}) so as to reproduce LQCD data on
P and the interaction measure. The other thermal quantities are obtainable
from P. However, this model has two problems for treating the quark-hadron
transition. When T dependence of v is determined to reproduce LQCD
results, the hadronic contribution of P is decreased in the high temperature
region. The entropy density s (= 0P/0T) of hadron then becomes negative
at high temperature. Hence the hadron contributions are not understood as
the degree of freedom. Also, the v controls the quark-hadron transition and
depends on the method of renormalization.

To avoid these problems, in this thesis, we start with the entropy den-
sity s.

s = fu(T,{px})su(T, {px}) + 1 = fu(T, {ux})] sq(T,{nx}),
(2.2)

and calculate the other thermal quantities from s [26]. The sy means the
entropy density of pure hadronic matter. The sq is the entropy density
of quark-gluon plasma. The models describing sy and sq are explained in
later sections. The transition function fy describes the occupancy of hadron
contribution in the system. The range of fy is set as 0 < fgp < 1. In
this model, the pure hadronic matter (quark gluon plasma) corresponds to
fu=1(fu=0). We call the model “hadron-quark crossover (HQC) model”.
In this chapter, we take 241 flavor system which is composed of u, d, s quarks
and consider isospin symmetry.

10



2.2.2 Hadron resonance gas model for Hadron phase

We adopt the hadron resonance gas (HRG) model [8,9] for hadronic con-
tribution sy. The HRG model describes non-interacting stable hadrons and
resonances. The thermodynamic potential density is obtained as

where (25 means the baryonic part and €2y; does the mesonic part. Each part
is given by
Qg = — Y dp,T / 3{1og (1 + e~ Foimuma)/T)

i€Baryon

+ log(l + 6_(EB,7L+MB,Z’)/T) };

EB,i = v/ p2 + mBﬂ‘Q, (24)

and

vy = Z dm ;T / 3{log (EM,J'—MM,]')/T)

JjEMeson

+ log(1 —6_(EM,j+NM,j)/T)};

EM,]' = \/pQ—i-mM,jQ, (25)

with baryon masses mp; and meson masses my;, where the subscripts ¢
and j represent kinds of baryon and meson, respectively. The dg; and dy
stand for the degeneracy of baryon and meson. The model parameters are
mg, M, dg, dy, and are quoted from the 2015-year edition of the Particle
Data Book [10], where their hadron masses are considered up to 2.5 GeV.

The chemical potential pup; () for the i-th baryon (j-th meson) is
defined by

p = Bug + Tpn + Yy (2.6)

where up, pp, py are chemical potentials for the corresponding conserved
charges, i.e., baryon number B, the z component of isospin I, hyper charge
Y. Here the subscript H means kinds of hadron (B, or M, j). For example,
the chemical potential of proton , is

1
Hp = pB o+ S s (2.7)

and the chemical potential of pion g+ is
firt = fi1. (2.8)

11



From the thermodynamic potential density, we obtain the pressure Py, Py
as

Py =-Qp,  Py=—-0u, (2.9)

and the entropy density sg, sm as

8QB> (8QM>
SB = — | =+ s SM = — | =&+ s (210)
( T /v fuxy O/ vux)

with {ux} = (us, pu1, pry). The total pressure Py and the entropy density sy
are then represented by

Pu = Ps+ Pu, (2.11)
Sg = 8B+ Swum- (212)
The HRG model reproduces the LQCD data [11] in low temperature

without additional parameter. One of the successful examples is the pressure
of Fig. 2.2.

— HRG
—*— Jattice 5 ¥ 3 ¥

T

50 100 150 200 250 300 350 400
T[MeV]

Fig. 2.2: T dependence of the pressure of the HRG model (solid line) and
LQCD data (dots with error bars) at ug = ur = p, = 0. The LQCD data
are taken from Ref. [11].

2.2.3 Independent Quark model for Quark phase

It is considered that pQCD is the suited method for quark phase in very
high temperature. However, we have a problem as follows: In the quark-
hadron transition region, pQCD gives uncertainty for the pressure. Then,

12



to avoid this problem, we propose a new model to be applicable for the
region of transition temperature. The model is described as follow. The
model describes that quarks propagate in background gluonic fields. The
Lagrangian density is given by

Lo =3 {ar "Dy —mp)as} —UT, @, D), (2.13)
!
where the subscript f means flavor of quarks as u, d and s. The mass my
is f-flavored current quark mass. The Covariant derivative is defined by
D, = 0, —igA%226"" with the Gell-Mann matrix A,. Namely, we neglect
the spatial parts of gluon field and treat its temporal part A4 as a stationary
and uniform background field. The Polyakov loop is then defined by A4 as
follow
o= NicTrceiA“/T, o= NicTrceMUT, (2.14)
with the number of colors N, = 3 and the trace Tr. in the color space. The
pure gluonic contribution is described by the effective potential U of the
Polyakov-loop. The Polyakov-loop potential U is given by

UT.2.®)  aT) o b(T) log{1 — 60 + 4(d° + &) — 3(dd)?);

T4 2
(2.15)
a(T) = ap + ay (?) +ay <%>2 , (2.16)

b(T) = by (%)3 (2.17)

where ag, a1, as, bs and Tj are the constant parameters. The form of Polyakov
potential is derived from the measure of integration of gluon field, see Ap-
pendix B . We use the parameter set summarized in Table 2.1. This param-
eter set has been determined so as to reproduce LQCD data on the equation
of state for the pure gluonic system in Ref. [12].

ao aq as b3 To
351 247 152 -1.75 270[MeV]

Table 2.1: Parameters of Polyakov-loop potential ¢ [12].

One can obtain the thermodynamic potential density (g for the quark
phase based on the Lagrangian (2.13), i.e.,

Y Feud,s | IPISA (2m)? / pl<ar (27)3 825 g 25

+ U(T,®,P), (2.18)
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where we introduce the partition functions zjf and the energy Ey as

Z’;cr = 14 3Pe Erte)/T L 3pe2Estup)/T

e BBt (2.19)
z; =1 4+ 3PeEr—np)/T | 3pe2Es—ns)/T

e 3 Er—r)/T. (2.20)

Ep = /p?+m?. (2.21)

The first term of the right-hand side of Eq. (2.18) stands for the zero-point
energy, and the second term is the thermal excitation term. The A and Ar
mean cutoff for the vacuum and the thermal excitation term, respectively.
The ® and ® are determined so as to minimize Qq. From the thermodynamic
potential density {1q, we obtain the pressure Pq and the entropy density sq
as follows.

Py = —Qq, (2.22)
aQQ>

5q = —(— , (2.23)
or Vi{iis}

with {fif} = (fu, pla, p1s). In Eq. (2.18), we use the cutoff A to regulate the
vacuum term

d*p
/ G T (2.24)

It is noted that this vacuum term doesn’t affect the thermodynamic quantities
since the term is independent of temperature, and is always subtracted in
LQCD calculations of P. Hence, we drop the term.

Figure 2.3 shows T' dependence of entropy density calculated with the
IQ model with cutoff At = 1.95 GeV and without cutoff (A = o00). We
find that in no cutoff, the IQQ model overestimates the LQCD data in T" >
250 MeV. It is reasonable that quark and gluon contributions are small in
the low temperature region (T < 170 MeV), and rapidly increase around
T = 200 MeV. We phenomenologically introduced the cutoff At into thermal
excitation term. The Ar is determined to reproduce the entropy density
at T = 300 MeV obtained by LQCD simulations. The resultant value is
Ar = 1.95GeV. Then, sq/T? decreases in T > 300 MeV, see Fig. 2.4.
This means that the IQ model has a limit of application for the temperature
range since the sq/T? does not reach the Stefan-Boltazmann limit at 7 — oo.
However, we take no notice of the difficult in this chapter since the IQ model
is applicable in T" < 300 MeV where LQCD data exist. We will discuss the
improvement of the IQQ model in high temperature range at Chap. 3.

14
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Fig. 2.3: T dependence of the entropy density s of the IQ model with At =
1.95 GeV (solid line), At = oo (dashed line), and LQCD data (dots with
error bars) at ug = pu; = p, = 0. The LQCD data are taken from Ref [11].
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Fig. 2.4: T dependence of the entropy density s in the 241 flavor system
with zero chemical potential in 100MeV < T" < 400MeV. The dashed line
means the result of the IQ model for Ar = 1.95 GeV. The LQCD data are
taken from Ref [11].
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2.3 Numerical results

In this section, we show numerical results in the framework of HQC model.
LQCD calculations [11,13-15] showed that the crossover transition occurs on
the chiral condensate and the other thermodynamic values. The crossover
is a smoothly continuous and mixed transition between hadron state and
quark state. It is difficult to define the quark-hadron transition temperature
without ambiguity. Here, we determine the quark-hadron transition temper-
ature by comparing the number of quark states with the number of hadron
states for any temperature. Comparing the quark-hadron transition temper-
ature with chiral or Z3 transition temperatures, we show that chiral or Zgs
transitions occur in hadron phase.

2.3.1 Determination of the transition function from
entropy density calculated with LQCD simula-
tions

First, we determine the parameters of HQC model. In the HQC model, the
calculation of quantities is started from the entropy density with Eq. (2.25),

s = fu(T)su(T)+[1 - fu(T)] so(T).

The value of entropy density corresponds to the number of states in statistical
mechanics. The sy is the entropy of pure-hadronic matter and calculated by
using the HRG model. The sq is the entropy of QGP and calculated by using
the IQ model. The transition from hadrons to quarks is then shown by fy.
We assume the explicit form of fy as

Fu(T) = % {1 + tanh ((b — T)e<%)d/a)} . (2.25)
T dependence of fy is organized by four parameters a, b, ¢,d, and the value
of fu smoothly changes from 1 to 0 as temperature increases; see Fig. 2.2
for schematic figure of fy. The parameter b is sensitive to the quark-hadron
transition temperature since fg becomes 1/2 at T' = b, and QGP and hadrons
equally contribute to the entropy. The other parameters a, c and d are used
for describing the behavior around 7" = b. The slope of fy is controlled by
¢,d. The parameter a represents the width of the transition region for our
model.

The parameter set of the fy is determined so as to reproduce the entropy
density s calculated with the LQCD simulation [11]. Figure 2.6 shows the
entropy density s calculated with the HQC model (red line) and the LQCD
simulation (dots with error bar). The parameters of fy are determined by
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Fig. 2.5: Schema of T" dependence of fy.

x? fit since the LQCD data have error bars. The obtained parameter set is
summarized in Table 2.2. The T" dependence of fy is shown in Fig. 2.7. One
can see that the quark-hadron transition gets started at 7' = 180 MeV and
finished at T" = 260 MeV.

Here we propose two transition temperature 7 c(fH), 7. The temperatures
TS s defined with fy = 1 /2. This is the temperature at which the total
entropy density s with LQCD simulation is equal to the arithmetical mean
of sy and sq,

mtsq (2.26)
2

and obtained as T\/® = b ~ 205 MeV. Another one is defined as follow.
The entropy density in Fig. 2.6 is divided into hadron part fysy (dotted
line) and the quark part (1 — fu)sq (dashed line). The T is defined as a
temperature at the crosspoint of the quark and hadron parts, i.e., fgsyg =
(1 — fu)sq. The value thus obtained is To” = 215 MeV. This definition
means the balance between the number of hadron states and the number of
quark states in the system, since the entropy means the number of states
in thermodynamic theory. The difference of about 10 MeV between 7™
and T is not significant since the crossover region 180 < 7" < 260 MeV
is enoughly broad for containing the difference. Thus, the quark-hadron
transition temperature is defined instinctively by the rate of the number
of hadron and quark states. Hence, we conclude that fy and s are good
indicators of the quark-hadron transition.
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a b c d
27.0326[MeV] 205.458MeV] 174.154[MeV] 17

Table 2.2: Parameters of fy.
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Fig. 2.6: T dependence of the entropy density at ugp = pur = p, = 0. The
solid line means total value of entropy density in the HQC model framework.
The dashed line and dotted line mean quark-gluon contribution and hadron
contribution for the HQC-model result. The dots with error bars mean the
LQCD data in Ref [11].

2.3.2 Pressure

In Sec. 2.3.1, it is found that fy and s are good indicators of the quark-
hadron transition. In this section, we discuss about the relation between the
pressure, which is a fundamental quantity, and the quark-hadron transition.

We calculate the pressure P given by the following equation:
T
P(T)—P(T=0) = / dT's(T"). (2.27)
0

Figure 2.8 shows 7" dependence of s (left panel) and P (right panel). The
figure of s is same as Fig. 2.6, and we set to compare with P. For P, the

results of HQC model agree with the LQCD data [11] denoted by dots with
error bars.

For determination of transition temperature, the P is divided into the
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Fig. 2.7: T dependence of the fy at zero chemical potential.

contributions of hadron Padron and quark Pouark,

T
PHadron (T) - / dT,fH (T/>SH(T,)7
0

PQuark (T)

/0 4T/ (1 = fu(T"))so(T). (2.28)

The transition temperature is then defined by the condition Pgaqron =
Pquark. The obtained value is T, C(P) = 249MeV, and this temperature is obvi-
ously higher than T, () = 215MeV. Also focusing respective hadron contribu-
tions Pygadron and fysy, one can found that Pyadron is not zero for T° > 300

MeV even though fysy is almost zero in 7" > 280 MeV.

In our calculation, P is obtained by integrating s from T" = 0 to T'. Hence,
even if in high temperature region, P has the contribution of s at the low
temperature region. The P shows that the hadron contribution remains even
in the high temperature (7" > 280 MeV). Also, P contains the effect of energy
density € beccause of thermodynamic relation, P = T's —e. The P shows not
only the number of states of hadrons or quarks. We conclude that fi and s
are better than P to indicate the quark-hadron transition.
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Fig. 2.8: T" dependence of the pressure and the entropy density at zero chem-
ical potential. The solid line means the total value for the HQC model. The
dotted (dashed) line means hadron (quark) contribution of s and P for the
HQC model. The LQCD data (dots with error bars) is taken from Ref. [11].

2.3.3 Interaction measure

Next, we calculate the interaction measure I. The I quantifies the strength
of interactions among quarks and gluons and is defined by

I = ¢—3P, (2.29)

where € means the energy density and is calculated by using the thermody-
namic relation,

e = Ts—P, (2.30)

for zero chemical potential.

Figure 2.9 shows 7" dependence of I for LQCD data [11] and the HQC
model. The HQC result is represented by a solid line, and LQCD data are
denoted by dots with error bars. We see that the HQC-model results consist
with the LQCD data. Then it is possible to divide I into the hadron and
quark contributions as the cases of s and P. However, such dividing [ is
not understood physically. Hence, we do not divide I into hadron and quark
contributions.

Considering the behavior of I in Fig. 2.9, one can see that interactions
among quarks and gluons become weak in high temperature, since the I
decreases by the cancellation of € and P in Eq. (2.29). The I also becomes
small for 7" — 0, but the cause is that the total values of s, P are small in
low temperature, with Eqs. (2.29) and (2.30). The I then has a maximum
around T = TL-LRCD — 900MeV, which is close to T/% = 205 MeV. We

max
discuss the coincidence in Sec. 2.3.5.
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Fig. 2.9: T dependence of the interaction measure at ug = u; = py = 0. The
solid line means the HQC result. The LQCD data (dots with error bars) are
taken from Ref [11].

2.3.4 Polyakov loop and renormalized chiral conden-
sate

We showed the consistency of HQC model with LQCD simulations for s, P, [
in the previous subsections. Here, we analyze renormalized chiral conden-
sate Ajs and Polyakov loop ® which are order parameters of chiral and Zj
transitions.

We first calculate ® which is the order parameter of Zs transition. In
pure gauge theory, ® is related to the excitation energy of solo quark by
Eq. (2.14). ® =0 (P = 1) means that the excitation energy becomes infinity
(finite value).

Figure 2.10 shows 7" dependence of & at zero chemical potential. The
HQC-model result is represented by a solid line, and dots with error bars
stand for LQCD data [15]. Our model result consists with the LQCD data
without any adjustable parameter. This means that Zs transition can be
described quantificaly within the framework of HQC model. With this model,
the Zs transition temperature T2 is determined as the maximum value of
od/0T.

Figure 2.11 shows T' dependence of T,d®/dT with T,, = 170 MeV. The
value of T, is the Zj transition temperature in LQCD simulations [13,16] for
2+1 flavor system. We found that the 7,d®/dT has a peak at T' = 198 MeV.
We then obtain 7% = 198 MeV, whose value is larger than Zj transition
temperature of LQCD simulations T3P = 170 + 7 MeV. However, in
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Fig. 2.10: T dependence of the Polyakov loop at ug = ur = puy = 0. The
solid line means the HQC-model result. The dots with error bars mean the
LQCD data in Ref. [15].

Fig. 2.10, the HQC model roughly reproduces LQCD data on .
Next, we calculate the renormalized chiral condensate A :

a(T) — (7)os(T)

Al = 0~ (@)

(2.31)

which is the order parameter of chiral symmetry restoration. A3 =1 (A5 =
0) means that chiral symmetry of the system is broken (restored). And the
o, (o) is chiral condensate for light quark (s quark). In the case of o, # 0
(o5 #0), the chiral symmetry of light quark (s quark) is broken.

We first calculate chiral condensates oy, 05 by differentiating pressure P
with current quark mass my, and derive T dependence of A;s. The chiral
condensate oy (f=l,s) is obtained as

0
op(T) —os(0) = “Om; (P(T,my) — P(0,my))
a T
= _8_mf/o dT"[(1 = fu)sq + fusn]
T ool 9o
QT / f !
= [oYT+ [ ar' | L, (@232
o3+ | H<8T, aT,) (2.32)
where we define
0P
o= 19 (2.33)

3mf
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Fig. 2.11: T dependence of the derivative of the Polyakov loop with respect
to T" at zero chemical potential.

The o (0?) means the pure hadronic (quark) contribution of chiral conden-
sate. Here we used

Osnq 0 OPuq O OPugq 9oy

= = . 2.34
8mf 8mf oT oT 8mf or ( )
The hadronic contribution 0}{ is written by
0P,
B 7 H
Uf N amf
OMg,; 0P, oMy ; 0P,
= = 2 G 9k, T 2 omy O
i€Baryon f By jE€Meson f M,j
(2.35)

Here we introduce quark-mass my dependence to hadron masses My ;, and
OMpy,;/Omy is described by using constant parameters C]Ic{’z:
OMpy,;
8mf

=C}"y H=B,M. (2.36)

Here, the CJIZI’i corresponds to be the number of quarks inside of hadrons. For

example, a proton is composed of 2 up-quarks and 1 down-quark: Then, C? =

2, CY =1and C? = 0. For the octet NG bosons, 7, K and 7 mesons, the Gell-

Mann-Oakes-Renner (GMOR) relation [17] is used to determine C;/I’j [15,18].
The renormalized chiral condensate A is defined by

(T, {ux}) = (FH)os(T, {px})
a1(0,{ux}) = (H)os(0, {ux})

Al,s (T> {NX}) =

(2.37)
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where m; = % is the average value of current quark mass of light quarks.
When one puts m, = mq = m; and uses a quantity

Ef(T) = —ai,rnf/o dT’ [(1 — fH)SQ + fHSH]
— oy(T) — o;(0). (2.38)
Eq. (2.37) is rewritten as
A (T) =1+ 20 = (o) 2T (2.39)

1(0) = (7)os(0)

where 0,(0), 05(0) are derived by the GMOR relation for 7 and K.

0.05 ‘
_ Z?
— 3
0.04 |
- - On/nk)Zg
- = (my/my)Z

5, (M/MYZ, [GeV’]
o o
o o
N w

o
O
=

O _______
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Fig. 2.12: T dependence of X} and (m;/mg) X of the numerator of the second
term in Eq. (2.39) at zero chemical potential. The solid lines stand for X1
(blue) and X (red). The dotted lines stand for (m;/mg) ™ (blue) and X9
(red).

Figure. 2.12 shows T' dependence of X and (m;/ms)Xs of Eq. (2.39) in
hadron contribution,

0 T ,
1) = g [T e, (2.40)
and in QGP contribution,
o) = -2 /TdT’[(l—f)S] (2.41)
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Figure 2.12 shows that u, d quarks are included in hadrons mostly contribute
for Ajg.

Figure. 2.13 shows T dependence of A, at zero chemical potential. The
HQC-model result explains the LQCD data up to T"= 160 MeV. Above T' =
170 MeV, A, calculated by our model becomes negative, and this behavior
is unphysical since chiral symmetry must be restored in high temperature.

Here, we focus the fact that A of LQCD data almost vanishes at TJ/1 =
205 MeV. This means that chiral symmetry is already restored in “hadron
phase”. Hence, it is difficult to explain hadron suppression in 4,4 only by
using fy (quark-hadron transition), and improvements of HRG model is nec-
essary. We then introduce 7" dependence of Mg ;/0my and dMy ;/Omy in
Eq. (2.35) as follows:

a]\/[Bi B,i

- =C7"g(T 2.42
G = CPla(D) (242)
OMyi; iy

2 = Yg(T 2.4
T = (1), (2.43)

where ¢(T') is assumed by the following equation,

o(T) = % {1+ tanh (b — T)e(3)™ o)} (2.44)
The explicit form of ¢g(T') is similar to that of fy. The ¢g(7") has four pa-
rameters ay, bu, e, dyv, which are determined so as to reproduce the LQCD
results on 4, 5. We show resulting parameters in Table 2.3 and 7" dependence
of g(T') in Fig. 2.14. The T dependence of g(T') seems to be reasonable be-
cause hadrons should disappear in high T'. Figure 2.15 shows the final results
of our model on A4 and ®. Our model quantitatively agrees with LQCD
simulations for both A;¢ and ®.

In the framework of HQC model, we define the chiral transition tem-
perature TX whose value is determined from a peak position of 0A,s/0T.
Obtained value TX = 160 MeV consists with LQCD data TXLQP = 154 +
6MeV [13,16].

In this section, we found that the mechanism of quark-hadron transition is
different from the mechanism of chiral or Zs transitions since T¢* > TX, T,
We obtain this conclusion in first time.

amM bM CM dM
66.6654[McV] 198.644[MeV] 172.781[MeV]  4.78939

Table 2.3: Parameters of g.
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Fig. 2.13: T" dependence of the renormalized chiral condensate A4 at zero
chemical potential. The solid line means the HQC-model result. The LQCD
data (dots with error bars) is taken from Ref. [15]. The left panel shows the
results in 0 < A; 4 < 1, and the right panel shows the results in —2 < A < 1.

2.3.5 Transition temperature

In this section, we compare our quark-hadron transition with chiral and Z3
transition in order to discuss a relationship between the quark-hadron tran-
sition and the chiral and Zs transitions. About the chiral and Zs transition
temperatures, we apply the temperatures of LQCD simulations but not those
of HQC model since LQCD simulations are reliable than the HQC model.
The Z; transition temperature of HQC model, T2 = 198 MeV, is different
from the temperature T2**QCD = 170 £7 MeV, but it is not a problem since
the HQC model consists with LQCD data on Polyakov loop . We show
the transition temperatures Tc(fH)7 T,;(s)7 T in the HQC model and T)XLQP
TZLQCD i LQCD simulations [13,16] in Table 2.4.

TC(S) TC(P) Tc(fH) TCX’LQCD TCZS,LQCD
215[MeV] 249[MeV] 205[MeV] 154+ 6[MeV] 170+ 7[MeV]

Table 2.4: Tc(f H), Tc(s) and TC(P) are quark-hadron transition temperatures
determined from fy, s and P. TXLRCD and TZLQCD are chiral and Zs

transition temperature of LQCD simulations in Refs. [13,16].

We find that TXVQCP = 154+ 6 MeV is obviously smaller than 72" = 215
MeV. In Table 2.4, this result indicates that the chiral symmetry restoration
occurs in hadron phase. In fact, in Fig. 2.12, we saw that the rapid decrease of
A} is mainly induced by light pseudo-scalar mesons in 7' < TXTRCD = 15446
MeV, and the quark degree of freedom hardly contributes to A;4. It seems
that this phenomenon resembles “partial restoration of chiral symmetry” in
nuclear matter [19]. In fact, the QCD sum rule at finite density predicts the
partial restoration of chiral symmetry even in the normal nuclear matter [20].
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Fig. 2.14: T dependence of g(T)).

We conclude that the chiral restoration observed in LQCD simulations does
not strongly correlate to the quark-hadron transition. It is also noted that our
conclusion is quite different from those obtained by NJL-like models [21,22].
In the NJL-like models, the renormalized chiral condensate 4, is explained
by taking the quark degree of freedom only, and the hadron degree of freedom
is neglected. In our model, both quarks and hadrons are explicitly taken into
account to analyze LQCD data.

Next, we consider the relation between T.® and T%. It is unclear why
T is obviously larger than 7. However, this may indicate simply that Z3
symmetry is not relevant symmetry for the quark-hadron transition in QCD
and the Polyakov loop is not a good indicator for the transition.

Furthermore, it is interesting that Tc(f 1) is close to the temperature where
the interaction measure is maximum, and interactions among quarks and
gluons are strongest there. Hence, this result shows that the quark-hadron
transition rapidly proceeds when the quarks and gluons much strongly cor-
relate with each other. The relation between the fy and the interaction
measure may be an impressive problem as a future work.

2.4 Short summary

In this chapter, we constructed the quark-hadron crossover model that is
combined by the hadron resonance gas model and the independent quark
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Fig. 2.15: T dependence of the renormalized chiral condensate A4;¢ and
Polyakov loop ® at pup = 1 = py = 0. The solid line means A4 of the
HQC model. The dashed line means ® of the HQC model. The HQC-model

result is obtained by using the improved model with 7" dependent Msi and

omy
aé\fx’j . The LQCD data (dots with error bars) are taken from Ref [15].

model. By using the model, we discussed the following four subjects:
1. When do hadrons melt?

2. Determination of quark and hadron contributions for each thermody-
namic quantity

3. Relation between the chiral symmetry restoration and the quark-hadron
transition

We first determined the quark-hadron transition function fy so as to repro-
duce LQCD data on T" dependence of the entropy density s at zero chemical
potential. T dependence of fy indicates that the hadron degree of freedom
survives up to 1" ~ 250 MeV.

We divided thermodynamic quantities into the hadron and quark contri-
butions with our model. The quark-hadron transition temperature is defined
for three quantities s, P, fy. The obtained temperatures are T ") = 205 MeV
and T\ = 215 MeV; T g fairly close to T¥. This result is reasonable
since both fy and s change together with the transition of the degree of free-
dom in system. On the other hand, 7, ) = 249 MeV is explicitly larger than
Tc(f " and Tc(s). The difference can be interpreted that the pressure contains
some effects other than the effects of the number of states.
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The relation between the chiral symmetry restoration and the quark-
hadron transition was discussed. Our model results are consistent with
LQCD data on the renormalized chiral condensate A;s and the Polyakov
loop. It is noted that TC(S) is larger than the chiral transition temperature
TX = 154 + 6 MeV calculated with LQCD simulation [13,16]. The gap
between T and T X indicates “partial restoration of chiral symmetry” in
hadron phase.
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Chapter 3

QCD phase diagram

In this chapter, by using the Hadron Quark Crossover (HQC) model, we
will draw the QCD phase diagram through analyses of the equation of state
(EoS) and the susceptibilities.

In the previous chapter, we have constructed the HQC model in order
to describe the quark-hadron crossover by the number of hadron and quark
states. The HQC model is defined with lattice QCD (LQCD) on the entropy
density s as s = fusu + (1 — fu)sq. The sy (sq) is the entropy density of
Hadron Resonance Gas (HRG) model (Independent Quark (IQ) model). The
transition function fy is determined from LQCD data on s and susceptibili-
ties for the baryon number (B), the isospin number (I) and the hypercharge
number (Y) in the 2+1 flavor system. The HQC model is successful in re-
producing LQCD data on the EoS and conserved-charge susceptibilities up
to T'= 300 MeV.

After the calculation in the previous chapter, updated LQCD data [23] is
published. The updated data is calculated up to T' = 500MeV. We calculate
the EoS and susceptibilities in the HQC model with the updated LQCD data.
However the entropy density s of the present HQC model does not reproduce
the updated LQCD results in T" > 300 MeV, see Fig. 2.4. This disagreement
is caused by Ar which is the momentum cutoff of the thermal excitation
term of thermodynamic potential in the IQQ model. The momentum cutoff
Ar suppresses quark and gluon contribution for physical quantities in high 7.
In this chapter, we also improve the IQQ model in order to reproduce LQCD
data in 7" > 300 MeV.

3.1 Improving Independent quark model

In this subsection, we extend the upper limit of temperature from 7" = 300
MeV to T'= 500 MeV.
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We do not simply extend the IQQ model for the high temperature region.
In Chap. 2, it was shown that s/T® of the present IQ) model decreases and
disagrees with LQCD data in T > 300 MeV, see Fig. 2.4. This means that
the original 1QQ model has a limit of application for the high temperature
region where QGP contribution is dominative. Here we improve the IQ
model so as to reproduce the entropy density s of LQCD data in T > 300
MeV. As a result, this improvement raises reliability of HQC model for QGP
description. It is explained that finite At causes the decrease of s of the
present HQC model in 7" > 300 MeV. In Fig. 3.1, we compare the HQC
model for At = 1.95 GeV with for Ar = oo.

25
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Fig. 3.1: T dependence of the entropy density s in the 241 flavor system in
100MeV < T < 500 MeV at zero chemical potential. The solid line means
the result of IQQ model for At = co. The dashed line means the result of 1Q
model for Ar = 1.95 MeV. The cross dots with error bars are LQCD data in
Ref. [23]. The circle dots with error bars are LQCD data in Ref. [11].

Figure 3.1 shows that the s/7° of IQ model doesn’t decrease for the case of
Ar = o evenin T > 500 MeV. However, the result for At = oo overestimates
the LQCD data in 7" > 300 MeV. We consider that this is caused by the
parameters of Polyakov potential &. The U controls the value of s in the
high T region. The present parameters of U are determined from s, P, € in
pure gauge theory [12]. However, we now consider the system which has
dynamical quarks. The dynamical quark effects may be possible to decrease
the value of U in high T'. In fact, s of LQCD calculations doesn’t reach the
Stefan-Boltzmann limit even at T" = 500 MeV. Hence, we improve the 1Q
model by changing ay = 3.51 which is a parameter of & and controls the high
temperature limit value of . The obtained value is ag = 0.7 x 3.51 = 2.457;
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see Table 3.1 for the values of new parameters in #. As shown in Fig. 3.2,
the result with ag = 2.457 well explains LQCD data on s in 400MeV <T <
500 MeV.

) a1 az b3 Ty

2457 -247 152 -1.75 270[MeV]

Table 3.1: Parameters in the improved Polyakov-loop potential U.
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Fig. 3.2: T dependence of the entropy density (a) s and the pressure (b)
P for the 241 flavor system with zero chemical potential. The dashed line
denotes the IQ model with the original value ag = 3.51, and the solid line
corresponds to the IQQ model with ag = 2.457. LQCD data of Ref. [23] are
denoted by dots with error bars.

3.2 Improved Hadron quark crossover model

We improved the IQ model in order to explain LQCD data for T" > 300 MeV.
The HQC model is improved by using the new IQ model. In this section, we
calculate physical quantities by using the improved HQC model in the 2+1
flavor system. And to draw the QCD phase diagram, we introduce chemical
potential dependence to the HQC model. Hereafter, {ux} means {ug, 1, py }
for the 241 flavor system.

For later convenience, we define several kinds of chemical potentials. For
the 2+1 flavor system, the chemical potentials of u, d, s quarks are repre-
sented by ., g and ps. These potentials are related to the conserved-charge
chemical potentials ug, ur, pty as

UB = My T+ Hd + Us,
fir = o — Hd, (3.1)
pry = 5t + fra — 2415),
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for the 241 flavor system. For p; and gy, the coefficients of flavor chemical

potentials on the right-hand side of Eq. (3.1) can be the diagonal elements

of the matrix representation of Cartan algebra in the special unitary group

SU(3)7 i'e'7 H1 = (17 _17 0)(,uua Hd, NS)t and Hy = (1/2)(17 17 _2)<,U’u7 Hd; Ns)t‘
Equation (3.1) gives

Ha = %,UB + %MI + %,uy,
fta = 308 — 341 + 310y, (32)

[is = 3/B — 3y

The coefficients on the right-hand side of Eq. (3.2) correspond to the quantum
numbers of u, d, s quarks. In this sense, the definition (3.1) is natural.

3.2.1 Transition function, entropy density and pres-
sure

First, we introduce chemical potential dependence to the transition function

fu in the 2+1 flavor system. Taylor expansion of the transition function

fu(T, {ux}) up to the second order with {ux} is taken as

FulT, (i) :f@@Wﬁﬁﬁﬂ(ﬂ§2+ﬁ%n<%92hﬁaﬂ(&02

(3.3)

where T, = 170 MeV is a normalization constant. The value of T, is the
Z3 transition temperature in LQCD simulations [13,16] for the 2+1 flavor
system.

The form of Eq. (3.3) comes from two properties;
(i) s(= (1 — fu)sq + fusu) is invariant under charge conjugation, i.e., the
transformation (up, 1, by) — (—ps, —p1, —pry)-
(ii) The system is also invariant under the interchange p, <> pq (isospin
invariant), i.e., the transformation (ug, pr, ty) — (4B, — i1, fy)-

In particular, for ug = puy = py = 0, the s reduces to

s(T) = A (T)su(T) + {1 — £1(1)}sq(T). (3.4)

Here, we deduce the equation of fl(io) from Eq. (3.4) and LQCD data on
s [23] as follow.
LQCD _
o= == (3.5)

SH — SQ
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Fig. 3.3: T dependence of fl({o) (T'). The solid line is the smooth function
obtained with the cubic spline interpolation. LQCD data on fI(JO) (dots with
error bars) are deduced from those [23] on s by using Eq. (3.4).

In Fig. 3.3, we show the fl({o) (dots with error bars) of Eq. (3.5). The
smooth plot which passes through the mean values is made by the cubic
spline interpolation for the mean values of LQCD data. Here, the mean
values have been taken in 170MeV < T < 400 MeV where the mean values
are set from 0 to 1, and have been set to 0 in 7" > 400 MeV where the
mean values are very small. In 7" < 170 MeV, LQCD data have large error
bars and the mean values are not so reliable; in fact, the mean values are
accidentally larger than 1 in 140MeV < T' < 170 MeV. For this reason, we
have set the value of fi to 1 in T" < 170 MeV. The obtained smooth function
(solid line) is consistent with LQCD data. Figure 3.3 denotes that the mixed
phase appears in 170MeV < T <400 MeV at zero chemical potential.

Figure 3.4 shows T' dependence of s(T") and P(T') in ug = pug = py = 0.
Of course, the HQC-model results (solid line) with the fl({o)(T) determined
by Eq. (3.3) reproduces LQCD data automatically.

3.2.2 Susceptibilities

In this section, we calculate baryon-, isospin- and hypercharge-number sus-
ceptibilities xp, x1 and yy and baryon-hypercharge correlation ygy with zero
chemical potential. To draw the QCD phase diagram, one should explore the
chemical potential dependence of quark-hadron transition as well as temper-
ature dependence. Here, the susceptibilities have the information of the
chemical potential dependence even if the data at zero chemical potential.
The susceptibility of conserved charges is defined as the second derivative
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Fig. 3.4: T dependence of the entropy density (a) s and the pressure (b) P
calculated by the HQC model for the 2+1 flavor system with zero chemical
potential. The solid line is the HQC result with the fl({o)(T) determined
in Fig. 3.3. The dotted line stands for the result of the HRG model, the
dashed line corresponds to that of the IQ model. In Ref. [23], LQCD data
are available for P but not for s. The entropy density s is then evaluated by
differentiating P with respect to T

of P with respect to each charge chemical potential ux (X = B, I, Y), i.e.,
xx = 0*P/0u%. In the HQC model, the explicit form for susceptibility is

82
Xx (T {px}) = xx(0,{ux}) = e [P(T,{nx}) — PO, {nx})]
T 82

= W+ [ | SR o)

Ofu O(su — sq) 0*(su — sq)

+28#X px *Ju O ] '
(3.6)
In particular at {ux} = 0, we obtain

T , 62 82 _

D) =) = B+ [ ar [ SR = s + 1

T , 82 _
= DS [ ar 2 - s + 70 ),

(3.7)

by using Eq. (3.3).
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Similarly, the BY correlation is

82
X (T, L)) = X (0, {ux}) = [P(T, {ux}) = PO, {ux})]
OupOpry
= DS+ [ | ST
= Xx\<LMx5)lo ; D0y H Q
8fH 8(sH — SQ) 8fH 8(81{ — SQ) (‘92(5H — SQ)
+ + + fu—m
Oun Opry Opry Oup fu OOy
(3.8)
for finite {ux} and
T 0?(sy— s
D) =30 = DR+ [ | (on—sq) + T2,
0 HUBO Y
(3.9)

for {ux} = 0. Other correlation susceptibilities are prohibited by isospin
invariance of the system.

We first analyze the LQCD data on yg, X1, xy and ygy by using the HQC
model with no ux (X=B, I, Y) dependence of fy, i.e., fl(f()l =0(a=B, 1Y,
BY).

All the results of HQC model explicitly overestimate the LQCD ones
above T' = 170 MeV, as shown in Fig. 3.5. We overcome the disagreement
by introducing ff(fl # 0.

Using Egs. (3.7) and (3.9), one can determine f}(&, fI(ng from LQCD

data on s, X§f), X](gz\)( at {ux} = 0, respectively: Namely,

o 82),LQCD
o = (1= )
or

2), 2),H
8)(& )Q (0) (9x& )

or R oar

o 1

w(sy — sq) ’

(3.10)

for a = X, BY, where the superscript “LQCD” means LQCD data, w = 2
for o« = X and w = 1 for « = BY, and

0P, 0P,
Hx {px}=0 HUBO Ly {ux}=0
The fl(fzy(T)(a = B,1,Y,BY) are deduced from LQCD data [23] on

& (T') by the same procedure with Eq. (3.10). And the cubic spline in-

terpolation is made for the mean values of the fI({ZL(T) In T < 127 MeV,

we have simply assumed fl(fl (T') = 0 since we are not able to obtain LQCD
data. In Fig. 3.6, the resulting smooth lines are drawn.
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Fig. 3.5: T dependence of the baryon number susceptibility (a) yg, isospin
number susceptibility (b) xi, hypercharge number susceptibility (c¢) yxy and
baryon-hypercharge correlation (d) xpy at ug = pur = gy = 0. The solid
lines mean HQC-model results without chemical potential dependences of
fu. The LQCD date (dots with error bars) are taken from Ref. [14].

Figure 3.6 shows that all the fI(fL(T ) have same 7" dependence in 7' 2 200 MeV.
This property plays an important role when we draw the QCD phase diagram
in ug—T', u1—T', py—T planes. This will be discussed later in Sec. 3.3

In order to confirm the accuracy of the cubic spline interpolation, HQC
results (solid line) for susceptibilities are compared with original LQCD data

on XS) (T'), see Fig. 3.7. As expected, good agreement is seen between them.

The HRG model (dotted line) reproduces the LQCD data in 7' < 170 MeV,
the 1Q model (dashed line) is also close to the data at T'= 400 MeV.

We succeeded in determining uyx dependence of fy. The dependence of
flavor chemical potential pf (f = u, d, s) are obtained through Eq. (3.1).
The fy can be expanded with respect to puy (f=u, d, s):

falT ) = S oy (“ﬁ) ('”}—f) (3.12)

f,f'eud,s
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Fig. 3.6: T dependence of fHQX that are deduced from LQCD data [23] on
Xg?) by using Eq. (3.10). The results are plotted by the solid line for fHB,
the dashed line for fl({z}, the dotted line for ny, and the dot-dashed line for

(2)
HBY"

with

BT = FET) 4 HT) + AT + AT, (313)
)

Fo(T) = (D) + S () = fiihy (7). (3.14)
D) = 2ET) —2T) + S FRT) + (D), (315)
FELT) = 2EUT) — ST — (T (3.16)

note that fipa,(T) = fina(D)s fiaa(T) = fiina(T) and fih(T) = fia(T)

from isospin symmetry.

Flgure 3.8 shows the f m.rp @s a function of T that are derived from the
Ha by using Egs. (3.13)—(3.16). We find that all |f}(12}f,| (f, f = u,d,s)
have a peak around T = 200 MeV like fl(fl (o =B, 1, Y, BY). On the other
hand, the values of f w ¢ are different from each other unlike f}(fl This fact

suggests that the cause of the f}(fl agreement is not the restoration of flavor
symmetry.
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The flavor diagonal and off-diagonal susceptibilities X?f)/ (T, {ux}) are ob-
tained from P of Eq. (2.27) by using Eq. (3.12) as fu:

XPH (T A}

82
= —— Py(T,
a,ufa,uf’ Q( {MX}>
T asz 8fH 8(31{ — SQ) afH 8(3H — SQ)
+ dT | ———(sg — s + +
/0 0Mf3uff( nosa) Opy  Opg Opyr Opg

for finite chemical potential and
2
XPH(D)

T
2 b
X(ff)fQ(T, {1x Pl guxy=0 + / dT’
0

0?(su — sq)
wih (s — sq) + fI({O)W

(3.18)

for zero chemical potential, where w = 2 for f = " and 1 for f # f'. It is
known that the off-diagonal flavor susceptibilities X?},’Q(T) of the PNJL-type
model are negligibly small [24]. Hence, for simplicity of calculation, we put
XFHUT) =0 for f 4 f.

In Fig. 3.9, we show 7" dependence of the flavor diagonal and off-diagonal
susceptibilities ngf), in the 2+1 flavor system at puy = 0. The solid line
indicates the HQC-model result. The results of the IQ and HRG models are
also described by dashed and dotted lines respectively for comparison. The
HQC model should reproduce LQCD data on the X;Qf)/ automatically, because
of the consistency between flavor and conserved charge chemical potentials.
This is satisfied, in spite of X;Zf),’Q = 0, as already mentioned in the previous

paragraph. The results mean that X;Qf), is contributed only by hadrons, and

|X§c2f),\ > 0 stands for surviving the hadrons. This behavior is understood as
quarks have strong correlation in hadron, but the correlation becomes weak
by melting the hadron. Hence, the off-diagonal susceptibilities are regarded
as the indicator of quark deconfinement. One can note from 7' dependence
of the off-diagonal susceptibilities that most of hadrons disappear at T =
400 MeV. These results mean that the quark-hadron transition finishes at

T ~ 400 MeV.

3.2.3 transition function for finite chemical potential

Up to the previous section, we obtained temperature and chemical potential
dependence of fy with LQCD date for zero chemical potential. In this section,
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Fig. 3.9: T dependence of diagonal and off-diagonal susceptibilities, X;Zf),, in

the 2+1 flavor system with zero chemical potential. The HQC result is drawn
by the solid line. The dotted line stands for the result of HRG model, the
dashed line corresponds to that of IQ model. LQCD data (dots with error
bars) are taken from Ref. [14].

we calculate T" dependence of fy and the physical quantity in finite chemical
potential.

Figure 3.10 shows T dependence of fy for (up, u1, py) = (0,0,0) (solid
line), (300[MeV],0,0) (dashed line), (0,300[MeV],0) (dotted line),
(0,0,300[MeV])(dashed dotted line). We find that fi decreases for increasing
any ux (X=B, I, Y). Hence, hadrons melt more easily, and fy decreases at
lower temperature.

Note in particular for 7" = 200 MeV, fy has same 7' dependence for all the
results since the T" dependence of fI(f%( have same property. This means that
the quark-hadron transition has same reaction for changing any conserved
charge numbers in high temperature 7" 2 200 MeV. We discuss the agreement

in high 7" at Sec. 3.4.
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Fig. 3.10: T dependence of the fy at zero chemical potential and finite
chemical potential. The solid line shows the result at zero chemical po-
tential. The dashed line means (ug, u1, py) = (300[MeV],0,0). The dot-
ted line means (ug,pur, py) = (0,300[MeV],0). The dashed line means
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Fig. 3.11: T dependence of the pressure at (ug, pu1) = (0[MeV],0[MeV]) and
(1B, 1) = (300[MeV],0[MeV]). The solid line shows the HQC-model result
at (us, 1) = (300[MeV],0[MeV]). The dashed line shows the HQC-model
result at (g, u1) = (0[MeV],0[MeV]). The square dots with error bars are
LQCD date (ug, p1) = (300[MeV],0[MeV]). The cross dots with error bars
are LQCD date (ug, 1) = (300[MeV],0[MeV]). The LQCD data are taken
from Ref. [11]. 42



Figure 3.11 shows T" dependence of pressure P at ug = 300 MeV and
pur = py = 0. The HQC model reproduces the LQCD data very well. In this
case, the transition temperature TC(P) is 245 MeV, and the value is smaller
than that of zero chemical potential case T. C(P) = 259 MeV.

We conclude that the increase of chemical potential makes the quark-

hadron transition temperature decrease.

3.3 QCD phase diagram
We draw the QCD phase diagram in pux —7" (X=B, I, Y) plane and p;—T(f =
u,d,s) plane.

The transition temperature 7, is defined with fu (T, {ux}) = 1/2. The T,
is also determined for each chemical potential in 0 MeV < p, < 250 MeV,
where ~ is physical quantities B, I, Y and flavors u,d,s.

Figure 3.12 shows the QCD phase diagram in pux—71" planes. The symbol
T.(px) stands for the pseudocritical temperature of the quark-hadron tran-
sition in pux—1 plane, where the pseudocritical temperature is defined with
fu=1/2.

In virtue of Fig. 3.12, the three transition lines almost agree with each
other. Thus, the relation

TC(/J’B) ~ Tc(,ul) ~ TC(H‘Y)’ (319)

is satisfied in ux < 250 MeV. In this thesis, we named the relation (3.19)
“BIY approximate equivalence”.

250
—200 | Dt - S
> =
Q
=)
F1s0f :
e Tolhy
100 | | | - —\ TC(HY)
0 50 100 150 200 250

Ho [MeV]

Fig. 3.12: Phase diagram in pug—T1, ur—1', py—T planes.

BIY approximate equivalence comes from the agreement of fl({zzy (o =B,
LY, BY) in T 2 200 MeV. We discuss this behavior in Sec. 3.4.
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Fig. 3.13: Phase diagram in p,~7T and pusT planes. Note that T.(u,) =
Te(pa) pru = ptq because of fI({%Lu(T) = fl(led(T) and fI(f?lS(T) = fl(fzis(T).

Next, we evaluate the value of the quark-hadron transition temperature
for a flavor chemical potential. Figure 3.13 shows the QCD phase diagram in
ps—T" planes. The symbol T,(yuf) stands for the pseudocritical temperature in
ps—T plane. In the 241 flavor system, note that T, (u,) = Te(pa) for p, = pa
is established by fl(fzm(T) = 1({2,21d<T) and fl(f)us(T) = fI(leS(T). Hence, we
plotted T.(u,) and T.(us) only in Fig. 3.13. The transitions take place at
higher T" in ps—T plane than in p,—7T plane. This may stem from the fact
that mg > m, = mq. Hence, u, d quarks are easier to become deconfinement

state than s quark for increasing density of the same quark.

We conclude that the quark-hadron transition has flavor dependence in
spite of BIY approximate equivalence.

3.4 BIY approximation equivalence

In this section, we discuss BIY approximate equivalence. The BIY approx-
imate equivalence occurs with the agreement of f1(12%< (X=B, I, Y, BY) in
T =2 200 MeV; see Fig. 3.6.

The agreement of fI(f%( comes from hadron effects, as shown below.
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Figure 3.14 shows T dependence of 9y P /0T (solid lines), (1 —
I({O))ax((f)’Q/ﬁT (dashed lines) and fl({o)é?xg)’H/@T (dotted lines) in Eq. (3.10).
The definition of fl(le is

1 aX(2),LQCD

2 e 0
o - )

9y 20 o oy DH
w(sy — sq) oT '

oT BT

We find that the 0)(&2)’LQCD/8T and the (1 — I({O))axg)’Q/(()T cancel each
other, and the fl({o) ax,(f)’H /OT agree with each other in high 7. Hence, we
find that the agreement of fl(f)a ( = B, I, Y, BY) is caused by hadron
contributions.

Also, in the high temperature region 7" 2 200 MeV, one can define fl(f,zlighT
as

2) _ (2 (2) 2) 2
f}(l,highT = I({,B = Ju1 — 1({,Y = fI({,])BY' (3-20)

We can then obtain from Egs. (3.1) and (3.3) that

0 2
fu = O+ F e (U2 + 12 4 1+ ).
(3.21)

Equation (3.21) shows that pup and py are exchangeable each other. This
means to disappear strangeness number since Y = B + S for hypercharge
number Y, baryon number B, strangeness number S. However we are not
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able to explain BIY approximate equivalence with only the disappearance
of the strangeness number, since u; dependence of fy becomes the same
dependence as ug and puy dependence in high T'. Strangeness number don’t
relate to isospin number.

Hence, it is not easy to explain the agreement of fl({% The BIY approxi-
mate equivalence influences experimental phenomenon. This is an interesting
future work.

3.5 Short Summary

In this chapter, we discussed the following three subjects:
1. Reconstructing the HQC model of Chap. 2 for updated LQCD data.
2. Introducing the chemical potential dependence to fy.

3. Drawing the QCD phase diagram in ux — 7 (X=B, I, Y) planes and
pr—T (f=u, d, s) planes.

The Hadron quark crossover (HQC) model is defined by Eq. (2.25). In
the model, the hadron contribution sy(7,{ux}) is calculated by the hadron
resonance gas (HRG) model, and the quark-gluon contribution sq(7, {ptx }) is
calculated by the independent quark (IQ) model, where {ux} = (us, p1, fy)-

We improved the 1Q model of the previous chapter by using newer LQCD
data [14,23] in the 2+1 flavor system. The 1Q model in this chapter is rather
reliable, since it explains LQCD data on the EoS in 300MeV <T" MeV. This
was impossible in chapter 2.

The behavior of fy (7T, {ux}) stands for the quark-hadron transition. The
fu(T, {ux}) was determined by LQCD data on s for 7" dependence and the
susceptibilities Xg? ) for wx dependence. Accordingly, the improved HQC
model automatically reproduces LQCD data on the EoS and the susceptibil-
ities. In particular, the off-diagonal susceptibilities X?}/ (f # f') can be a
good indicators to see how hadrons survive as T  increases, since the 1QQ model

hardly contributes to the off-diagonal susceptibilities. Hence, X?f)/ — 0 means

vanishing hadron contributions. In fact, X;Qf), show that most of hadrons
disappear at T" ~ 400 MeV. We then determined, from 7" dependence of
I({O) (T') and the off-diagonal susceptibilities, that the transition region is
170MeV < T <400 MeV.

In this thesis, we defined the quark-hadron-transition temperature
by the condition fu(7,{ux}) = 1/2. For the 2+1 flavor system with zero
chemical potential, T is 207 MeV. As mentioned above, the HQC model
well explains LQCD data on the EoS and the X§§). In the 2+1 flavor system,
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we then drew the phase diagram in pup—71, ur—71', puy-1 planes and found
then “BIY approximate equivalence”: Namely, the transition lines 7.(ux)
are almost accorded in these planes. We also drew the phase diagram in
pu—T and ps—T planes. We then found that T.(u,) < Te(ps) when p, = ps.
This result shows that the quark-hadron transition takes place at higher T'
for heavier quark. Furthermore, we investigate a cause of BIY approximate
equivalence. We found that hadrons mainly contribute to the BIY approxi-
mate equivalence, and that the number of strangeness become zero in high
T since pup and uy are exchangeable in Eq. (3.21). However, it is mysterious
that p; dependence becomes also the same dependence for up and gy in the
fu. Hence, it is difficult to explain the cause of BIY approximate equivalence
perfectrly.

We conclude that the quark-hadron transition has a flavor dependence,
but has BIY approximate equivalence. It is difficult to discover the flavor
dependence by experimental approach, hence we suggest LQCD simulations
for the flavor dependence.
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Chapter 4

Summary and Outlook

Elucidation of QCD phase diagram is important for hadron physics. In par-
ticular, the quark-hadron transition line is essential for the QCD phase di-
agram. In this thesis, we try to treat explicitly the number of quark and
hadron states, when determining the quark-hadron transition.

We made the hadron quark crossover (HQC) model which is able to divide
thermodynamic quantities into the hadron and quark contributions. Hence,
one can treat the numbers of quark and hadron states explicitly by the HQC
model. The HQC model is constructed by combining the hadron resonance
gas (HRG) model and the independent quark (IQ) model with the transition
function fy. The HRG (IQ) model well reproduces LQCD data in the low
(high) temperature region. The fy means the occupancy of hadron contri-
bution in the system. The fy is determined so as to reproduce the LQCD
data on T dependence of entropy density s at zero chemical potentials. T’
dependence of fy indicates that the hadron degree of freedom survives up to
T ~ 250 MeV.

We defined the quark-hadron transition temperature in which the hadron
contribution is equal to the quark contribution in physical quantities. Actu-
ally, the quark-hadron transition temperature is defined for three quantities
s, P, fg. The temperatures thus obtained are 7Y™ = 205 MeV, T = 215
MeV, and Tc(f i) g fairly close to TC(S). This result is reasonable since both fy
and s change together with the transition. In addition, T = 249 MeV is
explicitly larger than Tc(f H), TC(S). This is understood since the pressure is the
product of the degree of freedom and the kinetic contributions. Light hadrons
largely contribute to the pressure in high temperature. Hence hadrons con-
tribute even for small fg.

We improved the IQ model for new LQCD data [14,23]. The improvement
makes the IQ model more reliable. The IQ) model explains LQCD data on the
EoS in 400 <T" < 500 MeV and is close to the Stefan-Boltzmann limit in the
high 7" limit. We then obtain the transition temperature 7 1) — 207 MeV.
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The fu(T,{ux}) was determined by LQCD data on s for 7' dependence
and the susceptibilities ng) for pux dependence. The fy(T,{ux}) is an indi-
cator of quark-hadron transition. The HQC model points out also that the
the off-diagonal susceptibilities ngf), (f # f') is good indicators of quark-

hadron transition. The X;Qf), can indicate to see how hadrons survive as

T increases, since the 1Q model hardly contributes to the X;Qf),. Hence,

X;Qf), — 0 means vanishing hadrons. And the X;Qf), show that most of hadrons

disappear at T ~ 400 MeV. We then determined, from T dependence of

I({O) (T') and the off-diagonal susceptibilities, that the transition region is
170MeV < T <400 MeV.

In this thesis, we defined the quark-hadron transition temperature

by fu(T,{pux}) = 1/2. As mentioned above, the HQC model well explains

LQCD data on the EoS and the ng). In the 241 flavor system, we drew the

phase diagram in ug—T, ur—71', py—1T planes. Eventually, we found “BIY ap-

proximate equivalence”. The transition lines T,(ux) are almost accorded in
these planes. We also drew the phase diagram in u,—71 and ps—1 planes,and
found that T,(u,) < Te(ps) when p, = ps. This results show that the quark-
hadron transition takes place at higher T' for heavier quark. Furthermore,
we investigate the BIY approximate equivalence. It is found that hadrons
mainly contribute to the BIY approximate equivalence. The BIY approxi-
mate equivalence suggests that the quark-hadron transition is not affected
by s flavor in high 7". The cause of BIY approximate equivalence is explained
considerably.
We conclude that:

1. The chiral and the Z3 transition occur in hadron phase.

2. In p, <250 MeV (y =B, 1, Y, u, d, s), the QCD phase diagram has
flavor dependence, but not has physical-quantities dependence because
of BIY approximate equivalence.

It is difficult to discover the flavor dependence by experiments. Hence
we suggest that the approach of LQCD simulations is essential to clarify the
flavor dependence.
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Appendix

A Application to 24141 flavor system

Reference [23] in Ch. 3 has results for 2+1+1 flavor system. 2+1 flavor
system has only three kinds of flavor, i.e. u (up), d (down), s (strange). In
case of 2+1+1 flavor system, the system includes u,d,s and ¢ (charm). 24+1+1
flavor system is more realistic system than 2+1 flavor system since the real
system has six kinds of flavor (u, d, s, ¢, t (top), b (botom)). However, in
thermodynamics, heavier particle is difficult to excite and affects hardly for
other light particles. Namely, it is predicted that ¢ quark has too small effects
to u, d, s quarks.

In this section, we calculate entropy density s, pressure P, and suscep-
tibilities in 24141 flavor system with fy which determined in 241 flavor
system. Note that fy is indicator of quark-hadron transition. We estimate
the ¢ quark effects for quark-hadron transition by comparing the HQC model
calculation with LQCD data in 24141 flavor system.

A .1 HRG model in 2+141 flavor system

In 24+1+1 flavor system, the sort of hadrons in the HRG model includes
hadron resonances which have charm quark.

Figure A.1 describes entropy density s and pressure P, but for 24+1+1
flavor system with zero chemical potential. The 2+1+1 flavor HRG model
well explains LQCD data [23] in the same low T range as the 241 flavor
model.

A .2 1IQ model in 24141 flavor system

In the IQ model, it is very easy to extend from 2+1 flavor system to 24141
flavor system, only adding ¢ quark in the flavor summation term of Eq. (2.13).
Since HQC model don’t have flavor mixing, the ¢ quark effect is added simply
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Fig. A.1: T dependence of the entropy density (a) s and the pressure (b) P
in the 2+141 flavor system with zero chemical potential. The dotted line
means the result of the HRG model. In Ref. [23], LQCD data are available
for P but not for s. The entropy density s is then evaluated by differentiating
P with respect to T

to the model for 241 flavor system. Namely, for the IQ model lagrangian,

Lo = Z qr(iv" Dy — my)qr — U for 2+ 1 flavor system

feu7d7s
— Lo = Z qr(iv" D, —my)qr —U for 241+ 1 flavor system (A.1)
fEu,d,s,C
T T T T 7 T T T T
25| (a) Stefan-Boltzmann limit — 6 7(b) Stefan-Boltzmann limit ——
5 e
4 .
T
as3r 7
/
2 /
sl | / —— LQCD
— 1Q(ay=2.457) 1t — 1Q(ay=2.457)
— — IQ(ay=3.51) ——1Q(ay=3.51)
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Fig. A.2: T dependence of the entropy density (a) s and the pressure (b) P
for the 2+141 flavor system with zero chemical potential. The dashed line
denotes the 1QQ model with the original value ay = 3.51, and the solid line
corresponds to the IQ model with ag = 2.457. LQCD data of Ref. [23] are
denoted by dots with error bars.

Figure A.2 shows the same quantity as Fig. 3.2 for the 2+1+1 flavor
system. LQCD calculations for P were done in Ref. [23]. We evaluate s from
the data by differentiating P with respect to 7. Even at T = 1000 MeV,
LQCD data are about 20% less than the Stefan-Boltzmann limit. The IQ
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model with the original value ay = 3.51 (dashed line) reaches about 90%
of the Stefan-Boltzmann limit value at 7' = 1000 MeV. The results of our
model with ap = 2.457 (solid line) reproduce LQCD data in 400MeV < T <
1000 MeV pretty well. Thus, the pure QGP may be realized in T" 2 400 MeV
also for the 2+1+1 flavor system. The lower limit of the pure QGP can be
determined precisely with 7" dependence of X;Qf), (f £ 1.

A .3 Numerical results for 2+1+41 flavor system

We extend HQC model 2+1 flavor system to 2+1+1 flavor system with the
HRG model and the IQ model in 24141 flavor system, but fy is not changed.
We then calculate s, P and susceptibilities by using the HQC model.

Entropy density and pressure

(b)
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Fig. A.3: T dependence of s and P in the 2+1+41 flavor system with zero
chemical potential. The solid line is the result of the HQC model. LQCD
data (dots with error bars) are taken from Ref. [23]. The result of the 1Q
(HRG) model is denoted by a dashed (doted) line.

Figure A.3 shows T dependence of s and P in the 2+1+1 flavor system.
The HQC results (solid line) has good agreement with LQCD data (dots with
error bars). This agreement supports the assumption fﬁ““ = fu.

Flavor susceptibilities

In calculations of susceptibilities for the 2+1+1 flavor system, we define the
chemical potential relations by using Cartan algebra in the special unitary
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group SU(4) for pr, py and py,:

s = 5 + pa + ps + pie),
K1 = Hu — Hd,
pry = 3(pu + pta — 2415,

3
fry, = 5 (ftu + fta + f1s — 3ptc),

(A.2)

where the quantum number Y, has been defined by Y. = (3/4)B — C with
baryon number B and charmness number C. The relation (A.2) can be
rewritten as

fro = 5hB + 31+ py + fhy.,
fa = /B — 11+ 5Hy + iy,
Hs = 3hB = FHy + 1A,

fe = 3B — S/,

(A.3)

This final form is also natural, since the coefficients on the right-hand side
of Eq. (A.3) are that u, d, s, ¢ quarks have the quantum numbers of own.
In Fig. A.4, we show the flavor diagonal and off-diagonal susceptibilities

Xﬁff), as a function of 7" in the 2+1+1 flavor system. For the 241 flavor sector,

good agreement is seen between LQCD data and the HQC results, i.e., X(fu),
X&), ng ), X1(12s)- On the other hand, Xé?) and Xl(lzc) are not consistent with LQCD
data, its directly relate to ¢ quark. However, HQC model results is same
order as LQCD data without ¢ quark dependence of fy, i.e. fI({%if(f =u,s,¢).
These supports the statement that ¢ quark does not have a effect for the 2+1
flavor subsystem composed of u, d, s quarks.

Above all, the behavior of ¢ quark is isolated from the dynamics among

u, d, s quarks and makes no change the quark-hadron transition.
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Fig. A.4: T dependence of flavor diagonal and off-diagonal susceptibilities,
X;Qf),, in the 2+1+1 flavor system with zero chemical potential. The solid line
denotes the HQC result. The dotted line stands for the result of the HRG
model, the dashed line corresponds to that of the IQ model. LQCD data

(dots with error bars) are taken from Ref [23].

B A brief derivation of Polyakov potential

In Polyakov potential of this thesis,

UT0.8) o) g 4 o1 ogf1 - 608 + 4(@° + 87) — 3(@3)7),

T4 2
(B.1)

parameters a(7"), b(T) are determined by reproducing pressure, entropy den-
sity and energy density of LQCD simulations [12].

On the other hand, the coefficients of 1 — 60® + 4(®* + &%) — 3(®P)? in
Eq. (B.1) are determined by Fadeev-Popov determinant of gluon-field mea-
sure [32,33].
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In this section, we show a brief derivation of 1 —6®®+4(P3+P3)—3(P)2.
Using Wilson-loop matrix SU(3) 5 L(z) = Pexp [ig fol/T dTA4(17)i| with the
temporal gauge field Ay = AJ(A\./2) (Gell-mann matrices A,(a = 1 ~ 8)),
the partition function is described as

7 = / DL / DqDge ", (B.2)

where ¢ is quark field, Sg is a Euclidean action.
One can make always a diagonal matrix Lgi,s from L by finding a b €
SU(3) as L = bLgieb". Then, we are able to write the Lgiag as follow;

67/¢1
Ldiag - €i¢2 ) (B?))
el¢3
where ¢1, ¢, @3 are real parameters.
Using the parameters, the integration of L becomes
2% ey dpy dps 1
/dL — / ﬂﬁﬂn e~ — ek |2
o 2m 2m 2m -
i<k
27 3 o
[ idndes 1 (92—
o 2m 2m 2m - 2
i<k
2m
do1 dgs dos
= — " . B.4
| SR Mo 6n00) (B.1)

Furthermore, we rewrite the M with ® = ((1/3)tr.Laiag) = (1/3)(e* +
e%2 4 ¢'%3) and ® = O as

M =C(1 - 60D + 4(P* + 0°) — 3(2D)?), (B.5)

where C' is a constant overall factor.
Finally, the partition function becomes

Z:/%%%/DQDQG_SE'H(%M(@’@). (BG)
27 2w 2w

Hence, we obtain the Polyakov potential (B.1).
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