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Abstract

Scattering amplitudes in theories with massless particles feature infrared (IR)
divergences. In QCD, gluons are massless and when their momenta tends to zero
the amplitude diverges. We call this a soft divergence. For massless external
particles there are further divergences called collinear divergences, when the
invariant jet mass of the external and a radiated gluon tends to zero. Even
in a UV finite theory such as N' = 4 super-Yang Mills there exists infrared
divergences. In fact, in the planar theory there exists an all-order ansatz for the
IR divergences called the BDS ansatz which amounts to the exponentiation of the
one loop result with anomalous dimensions that can be computed to all orders.
In this thesis we shall be considering the more complicated case of non-planar

QCD with both massless and massive scattering particles.

First, we shall review the IR factorisation formula for massive scattering
amplitudes. Here, soft divergences are described by the soft anomalous dimension
matrix. It is defined to be a vacuum expectation value of non-lightlike Wilson
lines. This object is calculable in perturbation theory. It exponentiates and
the exponent is a sum over webs. We will then focus on how to calculate the
individual integrals that appear in webs. The technique of differential equations
is explained and applied to integrals up to two loops for webs. We then discuss a
basis of functions for these specific integrals with the idea of creating an ansatz

for the soft anomalous dimension and other related quantities.

The second half of the thesis concerns massless scattering amplitudes. By
factorising not only the amplitude but also a parton distribution function we
find that they share the same hard collinear behaviour. They differ in their
pure soft poles which are governed by lightlike Wilson-line correlators that follow
different contours dictated by the kinematics. It allows us to explain an observed
relation between the subleading pole of the form factor, 74, and the coefficient
of 6(1 — z) in the DGLAP splitting kernels, Bs. We then argue that divergences
of lightlike Wilson-line correlators take a general form that only depend on local

features, individual line lengths, and not on the global geometry.



Lay Summary

The best description of the fundamental theory describing elementary particles
is the Standard Model. To test it, we collide particles and observe the outcome
at colliders such as the Large Hadron Collider (LHC). Many different final states
can appear and along with many intermediate states, a plethora of different
collision processes can occur. One way to test the Standard Model is to search
for new particles. If they are observed then one can easily conclude that the
Standard Model is not a complete description and new physics describing the
new particles needs to be included. However, as of present, no new particles have
been discovered at the LHC.

Another way to test the validity of the theory is to perform precision tests. We
do this by comparing highly accurate experimental data with similarly accurate
theoretical predictions. If they match then the theory describes nature well, up

to that precision. If they do not match then that hints at new physics.

As the LHC is one of the most advanced technological machines in the world,
theorists need to provide ever more accurate predictions. The problem is that
calculations become ever more difficult. In certain regions of particle momentum,
conventional approaches break down and are wildly inaccurate as divergences
arise. To fix this we resum these divergences to give a convergent result.
Resummation can be performed on quantities that factorise, where there is a
large separation of scales. For instance, when a heavy particle radiates a low

energy particle.

In this thesis we apply novel techniques to the required calculations for the
resummation. We also explore conceptual issues regarding the factorisation and

relations between various quantities that emerge.
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Chapter 1

Introduction and Background

In perturbative quantum field theories, one can calculate loop corrections to
scattering amplitudes. These are fundamental building blocks to perturbative
cross sections for scattering events which, in turn, can be compared or used as
input to experimental observations or measurements. As experimental machines
are becoming ever more accurate we need to increase the predictive power of our

theories.

The most complete description of the fundamental particles that constitute
matter is the Standard Model. One of its sectors is quantum chromodynamics

(QCD) which describes quark and gluon interactions,
1 apy a . N
Lqcp = _ZF a Fu,,—l—zzwq(ﬁ—mq)wq (1.1)
q

where the sum is over quark flavours. It is an SU(3) gauge theory where quarks are

in the fundamental representation and gluons are in the adjoint representation.

The field strength in eq. (1.1)) is defined as
Fo, = 0,A% — 9,A% + g, f AL A (1.2)

where A, is the gluon field and g; is the strong coupling. We compute amplitudes
perturbatively assuming small values in the coupling. For quark masses lower
than the scale at which perturbation theory breaks down, Aqcp, we can consider
them massless. However, the top-quark mass is roughly three orders of magnitude

greater than Aqep. As such, in QCD, we require amplitudes that have external



particles that are massless or massive, or both.

It is well known that perturbative QCD at fixed order in the coupling, which
is highly successful in describing hard processes at colliders, loses its predictive
power in kinematic regions and starts to diverge where there is a large hierarchy of
scales. Familiar examples are Drell-Yan or Higgs production near threshold, see
e.g. , or at small transverse momentum, which are dominated by soft-gluon
radiation. Another example is the high-energy limit of QCD scattering, where
the centre-of-mass energy is much larger than the momentum transfer [8-15]. In
each of these cases, and many others, the presence of scale hierarchies allows us to
factorise the contributions of the most relevant regions. In turn, we can derive all-
order resummation formulae, which extend the predictive power of QCD, leading

to highly successful phenomenology in many cases.

The theory underlying factorisation relies on identifying the origin of any
parametrically-enhanced corrections through operators, which capture the rel-
evant divergences. Independently of whether one uses QCD fields , or
Soft-Collinear Effective Theory ones, the relevant operators involve Wilson
lines, which follow the trajectory of fast-moving partons, and capture their
interactions with soft gluons. These operators obey evolution equations, governed
by corresponding anomalous dimensions, which are computable order by order in
QCD perturbation theory. Resummation formulae are obtained upon solving the
aforementioned evolution equations, leading to exponentiation. The anomalous
dimensions therefore have a central role in the predictive power of QCD, and
in certain cases their computation has been recently pushed to three-loop order,
e.g. |19-25], with very recent progress towards four loops (even more is
known in maximally supersymmetric N' = 4 Yang-Mills theory, see e.g. )

To quantify the above let us look at Drell-Yan near threshold. This process
involves the production of a colour-singlet state from two hadrons A(p;)+B(p2) —
DY(Q) + X with s = (p; + p2)? and X is an unobserved QCD final state.
Schematically the differential cross section factorisation takes the form ,

do ' i I Adep
dTQ? — ;/0 drydzs fia(z1) fip(x2) | Sy Hij + Ol log™ (1 —z))} +0 ( L )
(1.3)
where Q2 is the centre of mass energy of the outgoing state DY state, z = %2 and

§ = x1x9s. The function Spy is calculable in perturbation theory and resums the

distributions % and (1 — z) of the partonic cross section. Currently Spy is



known to three loops ,, which means that the cross section is known to next-
to-next-to-next-to-leading logarithmic accuracy [7}[43]. After convolution with the
parton distribution functions, f;;(x), we would yield higher precision in the region
(Q? — 5. There have been recent advances in understanding factorisation beyond
these distribution terms, namely the o”log™(1 — z) where n > m. Factorisation
of the leading logarithms, where n = m, has been demonstrated from either using
SCET , or a diagrammatic approach . The corrections of O(AéCD /Q%)
are known as higher-twist corrections and given explicitly in [47, for this

process.

In this chapter we will review the factorisation of scattering amplitudes,
considering massive and massless particles separately and derive the framework

that allows the computation of the anomalous dimensions.

1.1 Factorisation of Massive Gauge Theory

Amplitudes

We consider a generic n-particle massive scattering amplitude which we shall
denote as M,,. This object has two kinds of divergences: ultraviolet (UV) and
infrared (IR). The UV singularities occur because we approximate particles to
be point-like. We are unable to probe short distances or, correspondingly, high
energies. These divergences are well understood and we can absorb them into the
parameters of the theory through a process called renormalisation (eg. the fields
and masses in eq. ) From now on we consider that this has been performed

on M, i.e. it is a renormalised quantity.

The IR singularities are less well understood. In comparison to the UV they
occur because of states interacting at long distances. In the limit of vanishing
momenta, the so-called soft limit, a virtual exchange and unresolved radiation,
shown in Figures and respectively, are degenerate. Both quantities are
individually singular in this limit. The divergences are realised in the integration
over off-shell (Figure [1.1a]) or on-shell (Figure[L.1D]) degrees of freedom. Quantum
mechanics tells us to sum over all possibilities and, if properly regularised, we
will arrive at a meaningful result. This cancellation of infrared divergences was
first realised by Bloch and Nordsieck in 1937 when applied to quantum

electrodynamics. The generalisation to non-Abelian gauge theories such as QCD



(a) Virtual correction to M,, (b) Radiative M, 1 amplitude

Figure 1.1: Degenerate states in the limit £ — 0

is the so-called KLN theorem, which states that for a properly defined observable
it is infrared finite once all possible states are included [50L/51].

A perturbative factorisation theorem states the n-legged amplitude M,, can be

written as

M, =S, Hy, (1.4)

where H,, is the hard function and captures all the process dependent information
about the scattering amplitude M,, and is infrared finite. The function S, is the
universal n-particle soft function and captures all the divergence of M,,, regulated
by a suitable regulator €. For the present thesis, we shall solely use dimensional
regularisation, where spacetime is continued to d = 4 — 2¢ dimensions and the
divergences manifest themselves as poles of €. Equation separates the scales
between the energies of the external momenta, which are non-zero because of their
mass, and the internal soft gluons. For phenomenological uses, S, gives the virtual
corrections to soft functions for massive external states in factorisation formula

such as eq. ((1.3). As an example, resummation for heavy quark production given

in [52).

The soft function S, is given by the vacuum expectation value of n semi-infinite
Wilson lines
Sn = (0] T[Wg,(00,0) ® ... ® W;,(00,0)]|0) (1.5)

where the (; are the velocities of particle i. A Wilson line is defined as the

path-ordered exponential of the gauge field,

Wi(y,) = Pexp (g [ &A“(Zﬁ)) | (1.6)

where ( is the direction of the line and x and y are its endpoints. In the limit

of soft gluon radiation, radiative particles will follow their classical trajectory as



there is zero recoil momentum. Such an object that transports gauge information,
gluon radiation, along classical velocities is the Wilson line. The vector  can be
either lightlike 3% = 0 or non-lightlike 32 # 0. For massless particles it is lightlike
and for massive particles it is non-lightlike. It is path ordered because the gauge
field is for a general SU(NN) colour group and hence non-Abelian. We have to be
careful about the ordering of emissions of gluons. Notice that in an axial gauge,
f - A =0, the Wilson line in the direction of j is trivial Ws(y, ) = L

The representation of the gauge field A, = A{T® in eq. (1.6) is prescribed
.
state quarks it is (T);; = —t3; and for gluons (T*)s. = —ifape. The usefulness
of this so-called Catani-Seymour colour charge operator notation is to

produce representation-independent factorisation formula and only specialise

by the corresponding particle. For final-state quarks it is (T%);; = t, initial-

when required. The infrared-singular soft function S, in eq. ((1.4) is seen as an
operator in colour space acting on the finite hard function #,, to produce the full
scattering amplitude M,,. Importantly, Ws(y,x) and consequently S,, does not
depend on the spin of the underlying particles, only on their colour representation.
Under an infinitesimal local gauge transformation A* — A* — 9%8“04, eq.

transforms as

M, = M, + a*(0)S, (Z Tg) H,. (1.7)
=1

Gauge invariance or, equivalently, colour charge conservation in this formalism is

(Z T?) H, = 0. (1.8)

the statement

The function S, is invariant under the rescaling 8; — AS; which can be readily
checked using the definition of the Wilson line in eq. ((1.6). As a consequence of
this and Lorentz invariance we know that S,, can only depend on the so-called

cusp angles

oo 2B

and our factorisation theorem now reads

(1.9)

Mn({pz ’ pj}v {sz}v O‘(MQ)v E) = Sn({%j}v a(ﬂQ)’ 6) : Hn({pz : pj}’ {mZQ}’ a(/ﬂ))’
(1.10)
with S, depending on the scale p only through the running coupling a,(p?). As a

result of being scaleless the bare §,, is the identity in dimensional regularisation.



It does not mean that S, has no infrared divergence, instead it means that, in
perturbation theory, the infrared exactly cancels the ultraviolet behaviour. The
renormalised S,, which appears in eq. (|1.10)) is obtained through the multiplicative

renormalisation ,
Sn(Vij, €r) = S (Vigs €1rs €0v) Zn(Vigs €0v) = Zn (i, €UV)- (1.11)

Instead of calculating the infrared we shall calculate the ultraviolet. We can do
this by regulating the infrared which gives a well-defined function in perturbation
theory. We shall implement this by adding an exponential damping term to the
definition of the Wilson line in eq. ,

Wi (y,2) = Pexp (z’gs [ e BMA%zﬁ)eimZW) (1.12)

T

and define an infrared finite soft function given by
S\ (g} i), e;m) = (O T[W5 (00,0) @ ... @ Wi (00,0)]0). (1.13)

The argument of the exponential is chosen specifically to keep rescaling invariance.

The UV divergence of this object also renormalises multiplicatively with the same

factor as in eq.
S:zen({%j}? aé‘(:uQ): €, m) - Zn(%j? aS(:ug)v G)Sr(zm)({%j}’ Qs (M2)7 6, m) (1'14)

where we have made explicit the dependence on o, and € is the ultraviolet poles.
Using eq. we can calculate the pure counterterm Z,, from the poles of
the well defined function S{™ which, in turn, allows us to find S, = Z,, from
eq. (L.11). The anomalous dimension from the renormalisation group (RG)
evolution of S, in eq. ([1.11)) is called the soft anomalous dimension T',, which
is found from Z,, by

IudZn(%’jv Qs (M2>’ €)

dii = —Zn(vig, 0s(1%), )T (735, s (1)) (1.15)

An important property of soft functions is that they exponentiate. The Abelian
soft exponentiation was hinted at in Bloch and Nordsieck’s original paper [49]
and then reformulated in later papers by Yennie et al. and Weinberg .

The extension relevant for QCD, the non-Abelian exponentiation theorem was
found in [59-62]. In order to compute Z, in eq. (1.15) we use this property as



it allows to determine directly log Sim by computing only the webs that capture

the maximally non-Abelian colour factors of each Feynman diagram, as defined

in 62,
Sy(Lm) = exp <Z w™P) <%)nek> ) (1.16)
T
n,k

In the exponent there is an overall single pole, higher order poles are generated
by expanding the exponential in a power series. This allows the calculation of the
soft anomalous dimension directly using eq. and ensuring that the product
on the right hand side of eq. (1.14) is finite. Expanding ', asI',, = > "7, Y (Z‘—;)Z
we can solve for the coefficients I'"’ in terms of the web coefficients w(™*)

T = 91D (1.17a)
Fﬁf) — 4D Q[w(17_1)7w(170)] (1.17b)
FS) — w4 6130 [w(1,71)7w(1,1)} +3 [w(m)’ w(%l)} +3 [w(270)’ w(lfl)}

4 [w(l,o)’ [w(l,fl)’w(l,O)H . [w(l,fl)’ [w(l,fl)’w(l,l)ﬂ ) (1.17(3)

The soft anomalous dimension is given by single poles of webs plus counterterms of
lower order commutators. The one-loop beta function ISO is given in eq. and
appears from the renormalisation of the coupling, see eq. . The factorisation
in eq. (1.10) and the exponentiation of S, in eq. is shown schematically in

Figure [I.2]

~ exp (%]

Figure 1.2: A schematic picture of the amplitude factorisation and
exponentiation of the soft function

It is useful to define subtracted webs. These are webs with the subtraction of the
relevant commutator counterterms from subdivergences of the original web .
For instance, we shall study the so-called [1, 2, 1]-web in Section w91 Which
has the one-loop web, w»™ as a subdiagram. The subtracted [1, 2, 1]-web, using

eq. ({1.17Df), is then given by

B 1
iy = wigy 4 gl w0 (1.18)



Subtracted webs have a simpler functional form than unsubtracted webs.
We shall review this and extend this function space in Chapter [3] There are also
further constraints from the renormalisation between higher order poles of webs,
which ensures the overall single pole of the exponent. For instance, at three loops
the double pole of the sum over webs is equal to the commutator of the lower

webs

1
w(g,_g) _ 6 [w(Q,—l)’w(L—l)} . (]_]_9)

We will use this as a check in the study of the three loop [1,1,2,1]-web in
Section 3.4

1.2 Factorisation of Massless Gauge Theory

Amplitudes

In the previous section we discussed the infrared factorisation properties of
massive scattering amplitudes. We shall now discuss the case when massless
external particles are present. When this is the case there are additional, so-
called collinear, singularities which occur. These arise when the radiated gluon
in Figure becomes collinear with an external massless particle. For example

when k — pi, the total mass of the state vanishes (p; + k) — 0.

For outgoing states the KLN theorem tells us that we have to sum over all possible
final states, including any number of radiated gluons, in the cross section. This
is reasonable since, experimentally, given a certain detector resolution, we cannot
distinguish between a single particle and a sufficiently narrow jet consisting of

many radiative gluons.

Incoming states are more tricky. The KLN theorem still holds but we would need
to sum over all possible initial states. That is, run an experiment an infinite
number of times each with different initial states. What comes to the rescue is
that we cannot prepare a quark or gluon initial state, we can only do so with
bound states, e.g. hadrons. Factorisation, in eq. , allows us to absorb
the long distance singularities into non-perturbative parameters, the so-called
parton distribution functions (PDFs) which describe, in essence, the probability
of finding a parton in a hadron with a given momentum fraction. The scale
evolution of the PDFs are discussed, in detail, in Section [£.3]



At the perturbative level, the factorisation of the infrared divergences (soft and

collinear) in on-shell massless partonic scattering amplitudes takes the form

73

M ({pi -pi},e) = [ﬁ J; <%;M202,as(u2),e> 0 ;ﬁ(@ : f;i QSO(CS:/?L’ ;L)

o ({2l fOBE o)

where the jet function J;, one for each massless external leg, captures the

(1.20)

collinear singularities, the soft function §,, contains the contribution of any long-
wavelength gluons exchanged between the external particles and the eikonal jet
function J; captures all the singularities that are present both in §,, and in

the jet function J;, which are associated with exchanges that are both soft and

includes only the divergences associated with soft w1de—angle emissions. H is
the hard function, found from matching to the amplitude. Each other factor in
eq. (1.20) has an operator definition which dictates their functional dependencies
in eq. , involving the momenta p; of the external particles and their lightlike
velocities f;, defined by

P = QofY, (1.21)

where @) is an arbitrary normalisation and would typically be of the order of the
hard scale of the process, (). The operator definitions of S,,, J; and J; are written
in terms of the expectation values of Wilson lines, defined in eq. . In the
context of on-shell massless scattering amplitudes, we use lightlike kinematics for
the external legsﬂ % = 0, and along with the definition of S, in eq. we
define the functions entering the factorisation formula by:

(2p; - n;)?
u(p) J; (W

Z(M,as(u2) ) <0|T[ (00, 0) W, (0, oo)]|o>, (1.23)

i), ) = T [ (. 0000) I (122

n;

where n; is an auxiliary non-lightlike vector and the dependence on its choice must
cancel in eq. (1.20). In eq. (1.22]) we presented the jet function .J; for fermion
fields; for a definition of the gluon jet function see refs. [74H76]. Any function

'Note that the dependence of S, is no longer on 7;; in eq. l) but rather on 3; - 3;



built solely from Wilson lines, such as &, and J;, is called eikonal.

We shall consider an anomalous dimension for the infrared divergent terms of

eq. (1.20)
d m m
— s, 112 =-Ts,||Z 1.24

i=1
where 1l symbolises that it describes lightlike behaviour. The factorisation
functions in eq. are heavily constrained and satisfy equations which are
explained in Section By direct calculation it was shown that the tripole
colour structure fabchT?T,i vanishes at two loops in lightlike kinematics. As

such, T obeys the sum-over-dipole formula to two loops

1 = arma - i
P = =5 eusp () Y _log(B: - B)TITS + ) 76+ Ola). (1.25)
(i.4) =1

General arguments were then made as to why it had to vanish based on Bose
symmetry and scaling invariance [70,[72]. It has been claimed recently that there

are no colour structures with an odd number of generators at any loop order [77].

Higher order corrections to eq. depend on conformally-invariant cross ratios
(CICRs) defined as
g = BB )
(Bi - Br)(B; - Br)
The three-loop correction to eq. was completed in the highly ambitious
calculation of ref. and depends on one simple function

(1.26)

F(2) = Lior01(2) + 2¢2 [Loo1(2) + L1oo(2)] (1.27)

where it is written in terms of single valued harmonic polylogarithms (SVHPLs),
which we shall define in Section [1.3] with argument z which is a function of a

combination of p’s. The exact expression for the correction can be found in other

publications [2425][78].
The lightlike cusp anomalous dimension [79], Yeusp, in eq. (L.25) describes

double poles in massless amplitudes, originating in overlapping soft and collinear
singularities. This is related to the non-lightlike angle-dependent cusp anomalous
dimension I'¢ysp = I'y, from the two-leg soft function Ss in eq. , by the large
angle limit

Hm Teusp(7ig, @s) = Yeusp () log(7ij)- (1.28)

Yij o0
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The large angle limit is from taking the lightlike limit 32 — 0 in the definition of
7ij €q. (1.9). The function Teyg, itself is a widely researched quantity [79], known
to three loops , and we study it in detail in Section

While the lightlike cusp anomalous dimension occurs universally, governing
the leading singularities in any kinematic limit, single-logarithmic contributions
(7¢ in eq. ) characterising separately large-angle soft or hard-collinear or
rapidity divergences, are somewhat less universal, and yet recur in a variety of

physical quantities that are not a priori related.

In Chapter 4| we study two fundamental physical quantities, which are recurrent
ingredients in the factorisation of amplitudes and cross sections ,. The
first is the massless on-shell form factor, associated e.g. with an electromagnetic
vector current in the case of quarks, or effective Higgs production vertex, gg — H
(in the limit where the top mass is much larger than my), in the case of
gluons. It is essentially a two-leg scattering amplitude. The second is parton
distribution functions (PDFs), or more precisely, the large-z limit of diagonal
qq and gg Altarelli-Parisi splitting functions, governing the scale dependence
of PDFs according to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
evolution equation . Each of these physical quantities is important in
its own sake, and their infrared factorisation will be discussed in some detail
in Sections and respectively. The main motivation to our study comes
from the relation between the two, namely a particular combination of single-pole
anomalous dimensions, which respectively capture collinear singularities in these
two quantities. The relation holds separately for quarks and for gluons:

V6 — 2B5 = fa V6 —2B5 = [ (1.29)
where 7Y, (v%) is defined by the function G (see eq. (£.9)), which along with the
cusp anomalous dimension, governs the infrared structure of the quark (gluon)
form factor in eq. (L.27)); and Bf (B{) is the coefficient of the §(1—x) term, in the
large-z limit of the quark-quark (gluon-gluon) splitting function, see eq.
below. It was observed long ago , that while the separate perturbative
results for 7o and Bs are very different between quarks and gluons (this is
expected: collinear singularities are known to depend on the parton’s spin), the

combination ([1.29) vanishes at one loop in both cases, and admits a Casimir-

11



scaling relatimﬂ at two loops, namely

a N 2 101 14
eik __ Jeik __ % _ _ 3
CF_CA_(T['> [C (54 CQ C?’)J“Tf”f( o7 " @)}“9(0‘8)

(1.30)

The same Casimir-scaling property persists at three loops . This is a clear
indication that f. has an interpretation purely in terms of Wilson lines — hence
the name, an eikonal function. A Wilson-line-based definition would explain
why the result does not depend on the parton’s spin, while it depends on its
colour representation in proportion to the relevant quadratic Casimir through
three loops. The question we address in Chapter [4] is what is the Wilson-loop

correlator corresponding to feix.

1.3 Iterated Integrals

We now present a brief overview of functions that appear in scattering amplitudes

and, hence, the webs that we will compute in Chapters [2 and [3]

It is well-known that many Feynman integrals evaluate to functions that are
essentially generalisations of the logarithm. The first immediate generalisation

are the classical polylogarithms

Li, (2 Z k—. (1.31)
k=1

The generalisation that we will work with are called multiple polylogarithms
(MPLs) [87]. These are defined through the iterated integration

2 odt
G(ay, - an;2) = / G(ag, ... a,;t) (1.32)
0 t - CL1
with .
G(0,...,0;2) = —log" z. (1.33)
n times

Each a; are called letters and for a given Feynman integral are drawn from a finite
set called an alphabet. The tuple of letters (ai,...,a,) in eq. (1.32) is called a

2A Casimir-scaling relation similar to (1.29) and (1.30) was deduced from factorisation
already in ; in this analysis single-pole collinear singularities are controlled by the anomalous
dimension of the quark or gluon fields in axial gauge.
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word which we shall denote a. Each MPL has a number associated with it, known
as its weight which is the length of a, the number of iterated integrals. MPLs
satisfy the mathematical structure known as a Hopf algebra. We will not deal
with the subtleties in its construction but rather state results that we will use in
Chapters 2 and [3] One of these is the fact that MPLs satisfy the so-called shuffle
algebra

G(a;2)G(b;z) = Y G(w;z2) (1.34)

wealllb
where the symbol LLI is the shuffle product which mixes a and b in such a way
that it preserves their internal order. The sum is then over all possible words

obtained via this procedure. As an example we have

G(aq, ag; 2)G(b1, be; 2) = G(aq, az, by, be; 2) + G(aq, by, ag, be; 2) + G(aq, by, ba, as; 2)
+ G(bh ay, g, b2; Z) + G<b17 aq, b27 ag; Z) + G<b1a b27 ai, as; Z)
(1.35)

Note that the shuffle algebra preserves the weight. A given MPL of weight n is
an element of the algebra H,,, orthogonal to other spaces. Essentially saying that
there are no functional relations between MPLs of different weight. The algebra
of MPLs is known as a graded algebra, with the full algebra being sum over spaces
with different weight H = )~ | H,,.

The Hopf algebra H structure includes a decomposition-type operation called the
coproduct A : H - H® H.

A(Glar, .. an;2) =Y G(br,. .. b;2) @ Glei, .o i 2) (1.36)
which is coassociative
A(A(Glar, . an52) = D> AG(b, ..., b3 2) @ GlCign, .. ca52)  (1.37a)
= G(br,...,bi;2) @ AG(ciqr,... ca32)  (1.37D)
= ZG(bl, b 2) @ G(Cig, -, 63 2)

® G(djs1,...,dn;2).  (1.37c)

Each summand of eq. (1.37¢)) is known as an entry of the coproduct, labelled
according to the distribution of weights in each component A;,;_;,_;, of
G(ai,...,a,;2). One very useful property of the coproduct, that we will use

several times, is known as the symbol. This is formally the maximal iteration of

13



the coproduct A; ;. For practical purposes, for functions of one variable, the

-----

definition of ref. is more intuitive. This arises from the kernel in the definition

of the MPLs in eq. ((1.32)

S[G(ay,...,an;2)] =log(z —a,) ® ... ®log(z — a1) (1.38a)
=(z—a,)®...Q (2 —ay). (1.38b)

Between eqs. and we used the convenient shorthand notation that
drops the “log”. The symbol encodes the iterative branch cut behaviour of the
function. It is useful in finding functional relations between MPLs which, in
turn, helps find a minimal basis which spans the possible function space. As an

example consider G(1,0; %) Its symbol is readily computed to be

S{G (1,0;%)} =—2(l—-2)+2® =z (1.39)
Another function with this symbol is
S[-G(1,0;2) + G(0,0;2)] = —2®@ (1 —2) + 2 ® . (1.40)

Hence, at symbol level, they are equal. The only difference between the two at
function level are quantities that vanish under the symbol map. At weight two,

these are constants. A boundary condition is all that is needed to derive
1
G (1,0; —> =—G(1,0;2) + G(0,0; 2) + 2¢o. (1.41)
z

We will often use the shorthand notation G(a; z) = Ga(z).

An efficient numerical evaluation algorithm exists giving arbitrary precision for
MPLs . The work in this thesis made extensive use of the public package
PolyLogTools for the algebraic manipulations of the MPLs. In the above,
we have been nonchalant with mathematical subtleties of the algebra, these are
deferred to the review by Duhr and references therein.

A restricted set of MPLs with letters from the set {0,+1} are called harmonic
polylogarithms (HPLs) [92]. There are a subset of webs defined in eq.
which are known to evaluate to HPLs . These are called multiple gluon
exchange webs (MGEWSs) which are those without internal gluon vertices and a

conjectured functional basis exists for them.
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We wrote the three-loop correction to the lightlike soft anomalous dimension
in eq. (1.27) in terms of SVHPLs . These are combinations of HPLs such
that there are no branch cuts. The simplest SVHPL is the log plus its complex
conjugate

Lo(2) = G(0; |2]*) = G(0; 2) + G(0; 2). (1.42)

This gives a function space which is restrictive enough for finding the full
functional form in eq. by a process known as bootstrapping , where an
ansatz of SVHPLs is created and then constrained using a few known limits. In
Chapter 3] we extend this idea and construct a similar function space for functions,
not only of MGEW-type, appearing in the non-lightlike angle-dependent soft
anomalous dimension defined in eq. .

The MPLs are instances of an even wider class of functions called Chen iterated
integrals ,. The definition of which proceeds as follows. Let us first define
a curve 7 on a manifold M | v : [0,1] — M and a set of smooth one forms on
M, w; € QYM). Tf fi(t) is defined through the pullback v*(w;) = fi(t)dt then

the following is the iterated integral of wy ...w, along ~

Y 0<t1 <. <t <1

The above does not depend on the choice of parameterisation v, only on the
endpoints. MPLs are a subset of the above with w; being dlog forms w; =

dlog(x — a;).

One property of iterated integrals that we will use is that of path decomposition.
If we decompose the contour ~ into two piecewise components where we first
traverse y4 then g such that v(0) = v4(0), v4(1) = v5(0) and (1) = (1)
then the following path decomposition formula holds

/wl...wn:
~

n

A B

=0
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1.4 Thesis Overview

We conclude this introduction with a summary of the contents of the remaining

chapters.

In Chapter [2] we concern ourselves with the explicit computation of webs that
are present in the non-lightlike soft function. We use the technique of differential
equations. In Section [2.1] we explain the technique. The one-loop computation
in Section [2.2] serves as a pedagogical example. In Section we compute a two-
loop web depending on more than one variable using the method. The remaining
two-loop web is computed in Section using a modified approach. The results

are then consolidated in Section 2.5

In Chapter [3| we discuss an extension to the MGEW functional basis. We review
the basis in Section[3.1] In Section[3.2]we explain and construct the extension. We
perform speculative research into bootstrapping the non-lightlike cusp anomalous
dimension in Section [3.3] and a three-loop non-MGEW web in Section We

then conclude with future prospects of the technique in Section [3.5]

In Chapter [] we switch to discussing massless scattering amplitudes and
discuss as follows. Section provides further motivation to the study of
understanding fe in eq. . In Section we review the factorisation of
long-distance singularities of the massless QCD form factor and identify the
process-independent spin-dependent hard-collinear component of 74 in eq. .
In Section 3] we discuss the factorisation of PDFs in the limit x — 1. To
this end we perform an explicit two-loop calculation of the splitting functions
at large x (the details are presented in Appendix . Next we identify the
eikonal component of Bs as the anomalous dimension associated with a M-shaped
Wilson-line geometry, see Figure [4.1bl By using the known value of Bs along
with the hard-collinear anomalous dimension extracted from the form factor, we
then predict the subleading anomalous dimension of the M shaped contour I'n
at two loops. Then, in Section [£.4] we compute I'r directly to this order, finding
agreement with the extracted result of Section [£.3] In Section [£.5] we put together
our results for the factorisation of the form factor and the PDF, and establish the
relation of eq. to all orders identifying fe; with the anomalous dimension

associated with a parallelogram shaped contour, see Figure 4.1¢
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Chapter 2

Webs by Differential Equations

In this chapter we give an introduction to solving Feynman integrals by differential
equations. We then use this technique to compute the one-loop correction to
the soft function defined in eq. and the two-loop corrections that connect
multiple external legs (more than two). We will see that we need to modify the

technique for the most complicated contribution.

2.1 Solving Feynman Integrals by Differential

Equations

As mentioned in Chapter we need to compute integrals corresponding to
Feynman diagrams in perturbative quantum field theories to increase precision
in our theoretical predictions. Not only does the quantity of integrals increase
but also the complexity of the integrals and the functions they evaluate to.
The technique of evaluating integrals by differential equations is a powerful and
efficient technique . Rather than solving integrals individually by Feynman
parameters and variations thereof, the technique allows one to construct a system
of differential equations that can then be solved as a whole. The observation
by Henn in 2013 that the dependence on the dimensional regularisation
parameter € is trivial when selecting a convenient basis of integrals helped spark
renewed interest in this computational technique. Once a transformation is
achieved, integrals can then be solved order-by-order in e. We now proceed to

explain the method step-by-step with a pedagogical example.
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2.1.1 Differentiation

We shall consider a scalar Feynman integral I({s;}, €) that can depend on several
kinematic invariants s; and the dimensional regularisation parameter e. The
integral will have a known mass dimension \; which can be extracted to define a

dimensionless integral

~ Si£1

Pt =sor ({22} ) =1 (o o), 2.)
1

where we have chosen s; to scale out but this choice is arbitrary. We now want

to find I ({z;},€). To find the dependence on z; we take a derivative w.r.t. z;.

To do so we need to write these derivatives as derivatives with respect to the

external momenta present in the propagators. According to the chain rule we

have

0T
pka 2 Z Pi op” 81:1 (22)

As there will often be more pi than z; the equations in 1-) are linearly dependent.

After removal of these eq. can be inverted to find g - in terms of 3 8

As a simple example, let us consider the bubble integral with one mass on one

propagator T )
P = ) [ >

where the factor (m?)¢ ensures that the integral is dimensionless and depends

only on the ratio r = %. Using 20, = 2p“— and

i 0 1 o 2(p* — k- p)

Vo 2 —m)(p— k2~ (2 —m2)((p— k)?)?
o 1 B p2 o m2
(R —17712)(17 — k)2 (k2 =m?)((p — k)?)?

o= 24
we find
bub R S l1—x d?k m2
0 1P (z,€) = —%[ (x,€) + 5 / @) (2 = m2) (p — W)2)2 (2.5)

where we have used the fact that scaleless integrals vanish in dimensional

regularisation. In the differential equation eq. (2.5)) we have now a new unknown
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integral. It seems that we have just replaced our original unknown integral
TP (7, ¢) with a new integral with a new power on the propagator. It turns
out that there are relations between Feynman integrals that will allow us to deal

with the remaining integral.

2.1.2 Integration-by-parts (IBP) identities

Feynman integrals are related to one another by certain relations called IBP iden-

tities [101]. They arise from the following identity in dimensional regularisation

d%k 0
— o' f(K2 {k-p;},e) =0, 2.6
| G S ki3 (2.6
where p; are external or subsequent loop momenta and v can be chosen to be either
k or one of the p;. After explicitly performing the derivative on the integrand, f,
and then partial fractioning and reducing the numerator, such as in eq. (2.4)), we

find relations among integrals for each possible v.

One of the concepts in IBP relations is that of an integral family, where we let
propagators have arbitrary integer powers and the propagators span all possible
scalar products that can be made from momenta present in the integrand. We

can define the family corresponding to the bubble integral in eq. (2.3 as simply

bub (. o) — (y2)a+b—d/2 d’k 1
R E e e

where a and b are integers. Our differential equation eq. (2.5 is then

1
O, = I +

11—z

> b, (2.8)

At two loops and beyond it may not be possible to simply generalise propagator
powers to define a family from specific integrals. One may have to add new
propagators to span all possible scalar products. These are known as irreducible
scalar products (ISPs) in the literature. However, it is always possible to take a

Feynman integral and define a family.

There are two choices of v in this example of eq. (2.7) that give two IBP relations,
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v==Fkoruv=np,

(=20 — b+ )P + blw — 1IN, — IRy — 20125, =0 (2.99)

b= DI, — ae DI, — DI+ (b= a)I5° 4l =0 (2:90)
By setting @ = 1 and b = 1 in egs. (2.9a) and (2.9b) and « = 1 and b = 0 in
eq. (2.9a)) we can solve the equations for 1Py

d—2) (d—3)
]bub — ( [bub o ]bub 21

In fact, we can write any integral in this family in terms of the integrals I7¢" and
TP These are known as master or basis integrals because it spans the vector
space of the integral family. Notice that we have chosen these integrals, we could

also change basis, for instance, to (153", I73P).

In general, the decomposition of a generic integral belonging to a family into basis

integrals takes the following form

I({zi}.0) = Y po{ai} ) Ip({ai}. ) (2.11)

beb

where b is a vector of integers specifying the powers of the propagators in a given
basis integral and B is a set of vectors identifying a basis. The size of this set and
the coefficients pp, depend on the IBP system. The idea of IBP reduction is to
take a large expression with many numerators and different powers of propagators
and reduce it down to a sum over a smaller set of integrals. The unknowns now
are the basis integrals, for which we will use the differential equations technique

to evaluate in the next section.

A way to organise the resultant basis vectors is to define sectors. Two integrals
are in the same sector if they share the same set of positive indices i.e. ;1503
and Iy 37 are in the same sector but Iy 503 and I3241 are not. We will denote
the set of positive indices of sector S; as v;. The sector of I, 503 and 5,37 has

v ={1,2,4}.

A sector S; is said to be higher than sector Ss if vy, is contained in vy, i.e.

vy C 1. Notice that this will not fully order sectors. A convenient way to impose
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full sector ordering is to give a number, known as the sector id, to each sector,

ID[S;] =) 2. (2.12)

rev;
The main reason to organise by sector is that the act of differentiating an integral
will not create a new positive power propagator but may remove some and/or
induce numerators, negative powers. It means that through differentiation an

integral will never become a member of a higher sector.

Another concept is that of cuts. For the present thesis cutting an integral will
involve specifying a set of propagators and finding the residue at the poles of
those propagators in complex momenta space. If the propagator is not present
then

Cutp [, =0 if any b; ¢ v(a). (2.13)

Taking a cut on an integral is synonymous with selecting a specific sector and all

higher sectors. A mazimal cut is cutting all propagators present

MaximalCut [I,] = Cuty I, when v(b) = v(a) (2.14)

The IBP reduction process readies itself for automation. Using Laporta’s algo-
rithm [102] many publicly available codes exist . Recent developments
in multivariate rational reconstruction [106,[107], implemented in Kira and
FIRE6 , have helped push the efficiency for reduction at high loop orders.

2.1.3 Solving the differential equation system
We have reduced our generic integral down to a set of basis integrals in eq. (2.11]).

We first order the basis integrals by sector id, and call the vector of basis integrals

f. To find these integrals we take a derivative,
d= deii. (2.15)

We then reduce the resultant integrals back to the basis using the IBP system.

We obtain a system of first-order differential equations:

df({x;}, ) = A({x;}, e)f ({1}, €), (2.16)
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where A is a matrix-valued one-form. The system satisfies the consistency

condition

dANA—ANA=0, (2.17)

which says that partial derivatives commute and serves as a good check for

complex systems. For the two-dimensional bubble integral example we have

Iig® 0 0 [bub
ax Ibub — e—1 175($+1) Ibub (2 18)
1 (e—z  (e—-Dz 11

We have now derived a system of differential equations. Equation (2.18]) can be

solved to all orders in € and I’ evaluates to a » [} hypergeometric function. The

general system in eq. (2.16]) is not so simple. One approach to proceed is to find
a transformation of the basis f = T'g such that the differential equation for g has

trivial € dependence

dg({z:}, ) = eA({zi})g({xi} €), (2.19)

we will call this form e-form. The matrix A can be found from the original by
A=T71AT —T-'dT. (2.20)

As an example if we were instead to choose the basis

e (e = (- o ) 221
in eq. (2.18)) we would have the e-form

0 0
0, g™ (x,€) =€ ( ) " ) g"" () €). (2.22)

(z—1)2 z—2a?

We can rescale g by any function of € and leave eq. (2.19) unchanged. It is useful
to do so to render g finite. Then the system can then be solved order by order in
e by writing g({z;},€) = > .00, €'g® ({z;}), with the solution in term of iterated

integrals over A. Often A is also in the so-called dlog form,

4]
A=Y cidlog A, (2.23)
i=1
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where the A; are called letters, the set of all letters A is called the alphabet and
¢; are constant matrices. The iterated integrals can often be cast in terms of the
Goncharov polylogarithms defined in eq. . Note that eq. is not in
dlog form. For a differential system that is both in e-form and in dlog form we

shall call this canonical form.

The main challenge is finding the transformation 7. Methods of doing so are
scattered throughout the literature. The methods we will use in this thesis are

what we shall call the leading singularity method and the algorithmic approach.

Leading singularities

This method involves choosing integrals whose integrands (in four dimensions)
have what are called unit leading singularities. They are integrands whose
(multivariate-)residues are all equal to +1. As an example let us take the

integrand

g dands (2.24)

(ay—B)B
The integral [ would be a member of our original basis f. One can take a
residue at v = 3/~ and then 8 = 0 giving Resg_oRes,—3/, {2 = 1/7. Or the other
possible orders Res,—oResg_n, 2 = —1/7 and Res,—oResg_o 2 = 1/7. This tells

us that v [ Q is a good candidate for g. Alternatively, we can write v in a dlog

form,

v = dlog(ay — B) Adlog 5. (2.25)
Equivalently we can compute these by replacing all denominators with delta
functions .

—— = 0(B)0(ay — B 2.26

e~ e = ) (226)

these are then solved in four dimensions to find leading singularities or in d
dimensions for the maximal cut in eq. (2.14]).

The main difficulty when applying to Feynman integrals is finding the best
way to parameterise loop momenta such that square roots do not appear when
calculating residues. Once a convenient parameterisation is chosen, to find
candidate integrals in a given sector an ansatz for the numerator is established
and repeated residues are taken to fix the ansatz such that integrals give unit
leading singularities. A recent algorithm and computer implementation is given
in [110].
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Algorithmic approach

Another method is to create a rational ansatz for the transformation 7. An
algorithm to construct and fit such an ansatz was given by Meyer in |[111]. It
requires the condition that a rational transformation exists and that the alphabet
is rational. Other than that the only limitation is computer memory. Meyer also
provided a public implementation of the algorithm in the form of CANONICA .

We shall now use the technique of differential equations to evaluate integrals

arising from the soft function defined in Section |1.1

2.2 The One-loop Soft Function

We will now explicitly calculate the soft function eq. to first order in
perturbation theory. It captures all the infrared singularities of massive scattering
amplitudes to one-loop. We will also use it as a pedagogical example of the
technique of differential equations. We first expand the Wilson line eq. to

first order in g,

Wi (oe,0) = L4 ig, T [ ang- a0)e VT o). (220)
0

The n-leg soft function S eq. ([1.13]) to this order is

S = (0|T {ﬁ W™ (oo, 0)} 10) (2.28)

= (0|1 +ig, > T¢ /Oo X B; - A%(A\B;)e"mMWBE |0) (2.28D)

i=1 0
= (00) +ig, > [T NG QLI e VT (280
i=1 0

=1 (2.28d)

?

where we used (0/0) = 1 and (0]A#(x)|0) = 0. The former holds because we

normalise our states to the vacuum, the latter is a standard result in QFT
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textbooks (e.g. ) Since S vanishes at O(gs) we go to the next order,

S =1 4 (ig, 3 TOT! / " dMdo BB (O[T {AZ(AB) AL (05,)} 10) £:(N) (o)

7;,'3'<:'1
n ’ o) A
+ig)? ST [ an [ dostar 0T {4508 08 HO) A S)
i=1 0 0
B ) " o [ A% iB; - B;
=1+ (ng)Qi; T5T; / @m)ak2(k - B —m + Z'g)(_Jk B —m+ic)
(igs)? — dk i
o ;Ci/(27r)dk2(k~ﬁi—m+ie) (229)

where f;(\) = e~ mMWB? s the exponential damping term. We have inserted the
gluon propagator in Feynman gauge [113],

I'(1—ce¢) 5“bnm,

OIT LA A0} 0) = == = 3 = o) 1 i

(2.30)

Fourier transformed to momentum space and performed the simple integrals over
A and o. In the third term of the first line we integrate o from 0 to A because of
the path ordering on the Wilson line. We have also explicitly broken the rescaling
invariance by setting 32 = 1. This is just for simplicity and the full dependence
can always be reinstated knowing that the result depends on the scale invariant
quantity in eq. . Also, T? = C; is the Casimir in the representation of Wilson

line 7. The +ie prescription on the momentum space quadratic propagators is

implicit.
Bi
B; Q ( Bi
(a) Diagram connecting two lines (b) Self energy on one line

Figure 2.1: Diagrams contributing to the one loop soft function

We can represent the two non-trivial terms in eq. (2.29) diagrammatically as
shown in Figure The first term connects both Wilson lines (5; and f;)
whereas the second term is of a self energy type. The Feynman rules for the

diagrams are the standard QCD rules plus rules for the emission of a gluon with
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momentum k and spin index p from the Wilson line g

1
_apH
g kB Hie
p

and the absorption is also eq. (2.31]) but with & — —k.

(2.31)

We calculate the integrals in eq. (2.29) by differential equations. We shall follow
the procedure outlined in Section Let us first define the following family of

integrals

dk 1
w2 () (k- B — ) (—k - B — m)
(2.32)

The factor of e /in%? is a convenient normalisation choice because it eliminates

‘[lll,t]z,ag(ﬂz ﬂ], >—667Em2“1+02+a3_d/

vE terms and 7 factors, readying the computation for MS coupling renormalisa-
tion. We now write the soft function in eq. (2.29)) as

m : p2e e arpa 1,1 11
S = 1 — (ig,)? <E> s Z T - B + - Zcz{w] . (2.33)
’z']<j1
Using eqs. ((1.14) and (1.15]), the one-loop coefficient of the corresponding soft

anomalous dimension is given by

o — -2 [ Y memes 0l z ar | @a
3,j=1
1<j

In the above we define the strong coupling constant

2

9s
s = ==, 2.35
@ 4 ( )

and the superscript (—1) means the % pole of the integral. In the following section

1]

we compute [ {111 using differential equations.
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2.2.1 Integration-by-parts relations

The IBP relations for the family in eq. (2.32) are,

1,1 1,1
—(2a1 + ay + a5 — d)ILY, 0 — (a1l 0+ aallh ) =0 (2.36a)
1,1 1,1 1,1 1,1
azf; - Bj]t[l1,a]27a3+1 B a2]t[11,a]2+1,a3 - 2a (If[ll,a]g—l,ag + ]c[u-&-}l,az,as) =0 (236b)
1,1 1,1 1,1 1,1
a3]£[l1,a]2,a3+1 - aQﬁi ’ let[ll,(l]g—l-l,ag + 2a, (I([ll,a]gj%_l + It[ll-&-}l,amag) =0 (2.36C)
Using these relations we can find the set of basis integrals to be
11 1,1 1,1
fiby — (—]1[10],]1[01],]{11]) ) (2.37)

where the integrals are ordered by sector ID as defined in eq. (2.12)). In the
kinematics of 2 = 1Vi, [ {11’01] =1 1[%)11 I'but we shall continue as if they are different
and have only solved the system in eqs. (2.36a]) to (2.36c]).

2.2.2 Differential system

The convenient variables to use for these integrals are not the natural (dimen-

sionless) scalar products f3; - 5; but rather the o;; variables which are defined

through [64],
1 1
BiBj=—3 (aij + a—) : (2.38)

j
These remove the presence of square roots in the differential equations. In
Chapter |3] we will explore why these are a good choice of variables. For now,

we take a derivative with respect to a;; of the vector of integrals f,

0 0 0
aai].f[l’l] = 0 0 0 flL1 (2.39)
2e—1  2e—1 1taf—(1-ai;)’e
1_0%2j 1_0‘12]' Qi (1_0@2]-)

The first two rows are 0 because 11[11’&} and I %11 I do not depend on «;;. We can

actually solve this system for general ¢ but for more complicated systems at
higher loops it is often impossible. As a pedagogical example we shall now take
the opportunity to find the transformation to canonical form ([2.19)) by integrand

analysis. To achieve this, we consider the integrals in turn.

We can compute the (eikonal) bubble integrals I 1[11’01] and [ 1[%)11 ] by simple Feynman
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integral techniques. We find,

1[171] _ 1[171} _ 24*26*2“1(—1)“1”@(2@1 +ay —4+ QE)F(Q —€— al)
a1,0,a2 ai,a2,0 F<a1)r(a2) .

(2.40)

By expanding in e we find that e(1 — 2¢)I {11’01] is an integral of uniform weight,

e(1—20) 100 = — 2+ 4elog(2) + € (=5, — 41og?(2))

3
+é (10g2 log(2) + 1‘;@’ + 810% (2)) + O(") (2.41)

and the same is true for e(1 — 26)[1[%)’11]. It means that e(1 — 26)[1[11’0” is a good
choice of basis integral. The log 2 terms appear because of the regulator m that

is used. If we were to rescale m by 2 then the log 2 terms would disappear.

J

To test the uniform weight potential of Iﬁll we shall compute its leading

singularity
LeadingSingularity[ /1] ~ / Ak 5(k*) 6(k - B; —m)o(—k- B; —m). (2.42)

We have removed overall numerical prefactors as they are irrelevant. We can
evaluate eq. (2.42)) by using Sudakov decomposition by setting k = v18; + 725, +

k). The Jacobian of this change of variables is given by,

J = \/ = /1= (8- 8)". (2.43)

After performing the delta function integrals we find that the leading singularity

Okr ok,
3(71, V2, ]ﬂ) 8(717 72, kl)

det

is
LeadingSingularity[11[11’11}] ~ g Y _ s(aj). (2.44)

The rational function s(«) often appears for these types of integrals and we

shall discuss it further in Chapter [3] If we normalise the integral by this factor,

defining ﬁ]ﬁ’fl, then we know it is a good candidate for a uniform weight
ij

integral because it has unit leading singularity. We then define our new basis and
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find for the system in eq. (2.19)

2
L1 = (1 —26) /Y e(1 — 2¢) 11, = it 2.45
= (120 e 208 ) 2450
dgl" (i, €) = eAM(a;) g™ (e, €) (2.45b)
0 0 0
ALt = 0 0 0 da; (2.45¢)
_1 1 oyl
agj i aj(a+l)
= "M dlog ay; + M dl ; d
o og o + ¢y og (1 + ), (2.45d)

where cv[;l’l] are constant matrices. Since we can write the system in dlog form
and can factor € out it proves that the elements of gl are uniform weight. We
can always choose the overall € normalisation such that gl''" admits an expansion

in € starting at €. The alphabet for the [1, 1]-web is AL = {5, 1+ oy}

2.2.3 Boundary conditions

In order to solve the differential equation system in eq. we need boundary
conditions. For this we choose the special configuration where the Wilson lines
are such that 3; = —3;. It is easy to see that this corresponds to a;; = 1 in
eq. . We shall explore the physical meaning of this limit in Section
when we use it as a constraint for bootstrapping functions. At this boundary

point, gz[))l’”(l, €) = 0 due to the rational prefactor. Whereas for ggl’l] and gg’l} we

already know their result from eq. ([2.40)).

2.2.4 Solution

We can solve the system in eq. (2.45) order by order in € by first expanding the

integrals in €

g a9 = 8" ay) " (2.46)

n=0

29



Plugging this into eq. (2.45b) and integrating along the contour from the

boundary a;; = 1 to an arbitrary value of «;; we find

g[lvl]v(o)(aij) — g[lvl]v(o)(l) (2473)

g[1,1],(1)(%_j> — / AL 1]( i) glh1 (01 + g[l,lL(l)(l) (2.47b)
1

g1 (o) = / AU (o) g0 ol + g (1) (247c)

and so on. Explicitly performing the integrals we have
g[1,1},(0)(@ij) = (—2,-2,0) (2.48a)
g W (ay;) = (41og 2, 41og 2, 4log(a;)) (2.48b)
g[l’l]’@) (Oéij) = ( - 5<2 - 410g(2)2, _5<2 - 410%(2)27

4<2 — 8G0(2)G0(O€z]) + 8G_1’0(Oéij) - 4G00(Oéij)) (248C)

where we have written the result of g(2)(az~j) in terms of the multiple polyloga-
rithms defined in eq. 1|1.32|). To go back to the original f basis of integrals we

simply invert eq. 1|2.45a . Using eqs. (|2.48b|) and 1) we have for 11[11’11},

11[11711] =4s;; {Go(jij) + (4"2 —2Go(2)Go(aj) + 2G 1 () — Goo(oz,-j)> + O(e)}
(2.49)

with s;; = s(a;;). We now have all the ingredients for the one-loop soft anomalous

dimension. Inserting eqs. ) and (| into eq. - we arrive at,

1+
=4 Z T“le it Y log(ay) +QZ(J (2.50a)

i,j=1,i<j ” i=1

J/

. ST Z v (2.50b)

pairs

Equation (2.50a)) captures all infrared divergences of massive scattering ampli-
tudes at one-loop. In eq. (2.50bf) we have decomposed 'Y into Fén))olc, which
(1)

captures correlations between two particles, and «,; ’ which captures self energies

and solely depends on the colour representation of line I. Both of these functions
extend to all loop orders with I'gipere calculated at two loops in and three loops
in and 7 can be found from I'gipole via Ward identities . The technique of
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differential equations was used in the three-loop two-line case of ng?}))ole . We
have written eq. (2.50b)) in that way to be clear where contributions are coming

from.

The constituent one-loop web functions defined in eq. ([L.16|) are,

w1 — —2TT% () log(av;) (2.51a)
w0 = —2T¢T% (o)) (@ — 2G(2)Go(vij) + 2G -1 9(c;) — Goo(aij)) (2.51b)

where we have defined the common rational function

_1+a2
1 —a?

r(a) (2.52)

At two loops there are also corrections to eq. (2.50b|) that connect three legs
which we shall call T*®)

tripole®
using differential equations.

In the following two sections we shall compute these

2.3 [1,2,1]-web

There are two two-loop corrections to the soft function that connect three lines,
contributing to ng)pole. The first that we shall consider is the so-called [1, 2, 1]-
web, wg)l There are two diagrams that contribute to such a web which are shown
in Figure Letting the colour and kinematic factor of each diagram be C and

F respectively,

s\2 1
wis) (%T) =§(CA —Cg)(Fa — FB) (2.53a)

1' aoc a C
= §1f P ITETS(Fy — Fp) (2.53b)

The two kinematic factors F4 and Fp are related by exchanging lines 1 and 3.

We proceed as before by defining the family of integrals,

1[1’2’1]a1a2a3a4a5a6a7a8a9 (61 . /82; ﬂl ' 6?” 52 : 637 6) =

d d
de62e'y/ d kl d kQ 1 (2.54)
ix?2 | ini2 D} Dy Dy Dy DY Dy DY Dy Dy’
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Dlzk'% Dzzkg D3:—k1~ﬁ1—m
Dy=ky-By—m D5 = (k1 +ks) - o —m Dg = —ky- B3 —m
D7 =k -3 Dg =ky - 34 Dy = Fky - ko

with M, fixed such that 1181 is dimensionless. The integral that appears in the
web in eq. is [ {11’121’111000. Note we are using a different regularisation scheme
than that in eq. . Only the gluon emitted last has an exponential damping
term. If it was attached to all gluons then D5 would have 2m instead of just m.
This would complicate the differential equations and, in momentum space, it is
simpler to add a single m to each eikonal propagator. It does not change the final

result.

A priori 1 {11’121’%}1000 depends on three variables, the scalar products between the
Wilson lines or the a variables {a1a, a3, a3} but as no gluon spans the angle

between [ and f3 it does not depend on «y3. We shall use shorthand notation

that drops trailing zeroes from the definition of the family 7121 je. 70510 =

1 1[11’121’?1000. We can then write the web in terms of this family

o — 61 abcra c )
wggl)(alg, g3, 1, 6) =1m 4 éf b TngTgﬁl . ,8262 . 53 (Il[llfﬁ]l —1 <« 3) (255)

where 1 <> 3 represents the exchange {ai2, a3} — {aas, a12}. We now proceed

to compute [ 1[11’121’111 by differential equations.

B B

B B

A 5

(a) Diagram A (b) Diagram B

Figure 2.2: Diagrams contributing to the [1,2, 1]-web

2.3.1 Differential equation

We go through the now standard procedure of taking a derivative with respect

to the two variables and reduce the resultant integrals down to a set of 12 basis

32



integrals. We write the differential equation as
AFL2 = g2 gl2.] (2.56)

where d is the exterior derivative with respect to the variables {ca, an3} such that
A has the form AP21 = AL dag, + ALY dass. The matrix A also respects
the consistency condition in eq. (2.17)). The basis integrals we have are

1,2,1] _ (7lb2,1] g[L2,1] 7[L,2,1] 7[1,2,1] 7[1,2,1] [1,2,1]
f = (Ii111  Tivoor > Tin1or > Tiviee » Jntin s Jiations

1,2,1 1,2,1 1,2,1 1,2,1 1,2,1 1,2,1
11[1001]17 [1[1001}27 1{1101}17 —7£1101]2= ]1[1102]1, —]1[1111]1 ) (2.57)

2.3.2 Solving the equation

Transformation to canonical form

In order to find the transformation we use Meyer’s algorithm [111] implemented
in the computer package CANONICA [112]. The algorithm gives the transformation

T[l,?,l] where f[1,2,1] — T[l,?,l]g[l,Q,l] and
dg[l,Q,l] — 614[1’271] g[17271]_ (258)

Furthermore, A%21 is in the dlog form

‘A[l,Q,I]‘
A2 Z c£1’2’1]d10g«4£1’2’1}, (2.59)

i=1

where the alphabet for the [1,2,1]-web is AM?1 = {agy — 1, a2, a1 + 1, a3 —
1, o3, o3 + 1, crpp + gz — 1, T+ qippigz — g, 14 pprag — Qigz, ijpiaz — g — Qi .
The matrices c£1’2’1] and the specific integrals gl™?! are given in Appendix .

The transformation 7> can also be found by analysing the integrands of f[*211.

Boundary

We will choose as our boundary ajs = a3 = 1 which corresponds to the Wilson
line configuration B = —fBs = f5. We shall define the boundary vector blt>1 =

g[1’2’1](a12 = 1, Qg3 = 1)
We use as a building block for the boundary calculations, the eikonal bubble
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result in eq. ([2.40)

/ ddk’ 1 o L((I a )Md—Zal—az
Z'ﬂ-d/Q (k%)al(k.l . Bl _ M)a2 - 1, U2 )

2d*2“1(—1)“f‘(2a1 + a9 — d)]_—‘(g — (1,1)

['(a1)T(az) 7

L(ay,as) = (2.60)

here M could depend on scalar products of external momenta and loop momenta

yet to be performed. Evaluating the integrals at the boundary we find

b[11,2,1} = — 2441 — 26)22e” T (1 — €)°T(2¢ — 1)?

2
= — 4+ 16¢elog(2) — 562 (57% 4 4810g(2)*) + O(€’) (2.61a)
1
pll-2] 2524—466(1 —26)(3 — 4€)(—1 + 4€)e* T (1 — €)*T(—3 + 4e)
2 8 1
=3~ gelog(Q) + 562(37'(2 +161og(2)?) + O(€?) (2.61Db)

and all the other g; vanish on the boundary. In egs. (2.61a)) and (2.61b]) we clearly

see the uniform weight nature of the integrals.

Integrating dlog forms

We now have what we need to explicitly integrate eq. (2.58)). We focus on the

twelfth component of g1,

1,2,1 1—a?y1—a3 1,2,1
952 I — e* = 23[1[1111]1, (2-62)
12 Q93

since we require the integral {11’121&]1. The first non-zero terms of this are

gl — g / (dlog ays dlog cgs + dlog assd log ags) (2.63a)
Y

g£12’2’1]’(3) = 16/ <dlog(ygg)dlog(a23)dlog(a12) — dlog(n12)d log(as)dlog(as)
v

+ dlog(az)dlog(mz)d log(ais) + dlog(na)d log(ais)d log(ass)

— dlog(yes)dlog(ai2)d log(ans) — dlog(ags)dlog(yas)d log (s ))
(2.63D)

14

where y;; = ooy and 7;; = 1622 . It is now worthwhile to explain how to

integrate the dlog integrals of multlple variables given in egs. (2.63al) and (|2 m
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Individual terms are not “integrable” in the sense that the contours are not
parameterisation invariant, only the sum does not depend on the choice of

contour.

To illustrate this we integrate the first term of eq. (2.63al) on a straight line
contour from (1,1) — (a9, e3). The contour is then parameterised as v;(t) =

((ag2 — 1)t + 1, (g3 — 1)t 4+ 1). Then applying the formula for iterated integrals
eq. (1.43)) we have,

1 t1 (g — 1) (o3 — 1)
dl dl = [ dt dt 2.64
/71 0g a2 d log i3 /0 1/0 2 (1o — D)ty + 1 (qgg — Dtg + 1 (2.642)

= Go(alz)Go(azs) - GO(CY23)Ga23(CV12) + Ga23,o(a12)

71'2

— Go(a12) — Goolags) + Giplass) — 5 (2.64b)

If we were to instead choose a contour 7, that first traverses ags then aqy i.e.
Ya = (1, (a3 — D)t + 1), 93 = ((a1z — 1)t + 1, a03) with 75 = yp 0 74. Both
contours v; and 7, are illustrated in Figure Using the path decomposition
formula of Chen’s iterated integrals given in eq. ((1.44]) we have

/ leg 192 leg Qo3 = / leg 0412/ leg g3 — IOg 12 IOg 93 (265)

2 B YA

It is clear that egs. (2.64b) and (2.65) are different. It is only when combined
with the other term in eq. (2.63a)) will they be the same. Integrating the other

term over v, we find

/legOégglegOé12:/ dlogagg/ dlog as = 0. (2.66)

V2 VB YA
We then find that
(1,2,1],(2)
9is = 8log(aq2) log(cas). (2.67)

If we were to integrate the other term over 7, then we result in a similar unwieldy
expression to eq. (2.67). Only in the total do we achieve the straightforward result
in eq. (2.67) which suggests that s is the simple contour to choose.
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a3’

(1.1

Y1
YA

a
(aq2, 23) VB

L a 4
0 1 12

Figure 2.3: Plot showing the contours 7; and v = 5 o y4 which originate at
point (1,1) to some arbitrary point (aqz, aag)

At the subsequent order in € we integrate eq. (2.63b|) and obtain

7.‘.2

9512’2’1}’(3) =16 (Go(au) <G—1,0(0423) — Gyo(ags) + Z)

+ Go(aas) (G—l,o(au) — Goo(az) + Gro(onz) — 210g(2)Go(n2) — 71T_;>>

(2.68)

The next order in € for gglf’l] is given in the Appendix . Given that we
know the boundary integrals to all orders in ¢ and that the differential equation

[1,2,1]

matrices are in canonical form we can find g in terms of MPLs to any order

n €.

2.3.3 Calculating the web

To find the web in eq. (2.55)) we first need to invert from the uniform weight basis
g2 back to the original basis fl>!. In the antisymmetric sum over s, aas
the leading double pole eq. (2.67) vanishes. The single pole of the web is then

proportional to

1,2,1],(~1 1,2,1],(~1
]1[1111]1( )(0412’0423) - ]1[1111]1( )(0423,a12) =
8oy
S (log(ars)S1(ai2) — log(ai2)Si(aas)), (2.69)

(O‘%Q - 1)(0433 —1)
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where we have defined
272
Sl<0412) = —2G070(0412) + 4G170(0512) — T (270)
Plugging eq. (2.69)) into eq. (2.55)) we get the following result for the web,

wg’fl) = ifabcT(ngTg 7"(0412)7”(0423) (log(@zs)sl (on2) — 108;(0612)51 (0423)) )

1+a12j

with r(a;;) = 7=+ The web agrees precisely with previous calculations , 114,
ij
115]. We can calculate the subtracted web which is defined in eq. (1.18))

_ 1
w3 = Y 5 [w®=D O] (2.71)

where the web functions w1 and w™®? were found in eqs. (2.51al) and (2.51h)).
Using these we find

- - raoc a C 1
wgi Y =if ’ T1T3T3 7”(0412)7“(0423)5

X (Mooo(cr23) Migo(a12) — Mooo(i2) Migo(cs)), (2.72)

where Mooy and Mgy are members of the basis of MGEW functions mentioned

in Section [1.3] Their explicit forms are

Mooo(a) =2Go(a) (2.73)
Migo() = — 2G5 + 4G_1 o) — 4Goo(a) + 4G10(a) (2.74)

These functions and their generalisations will be explored in greater detail in

Chapter [3]

2.4 [3gv]-web

The most difficult two-loop web is the three-gluon-vertex web which is shown
diagramatically in Figure[2.4] As opposed to the two-loop MGEW web calculated
previously in Section this is the first instance of a maximally-connected web
with full dependence on all three cusp angles. It was explicitly calculated in [115]
and again in using Mellin-Barnes techniques. In the novel unitarity
cut method was employed to evaluate the integral. Here we shall employ the

technique of differential equations.
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Figure 2.4: Diagram corresponding to the three gluon vertex web wsg,

2.4.1 Integral family

The expression for the three-gluon-vertex web is,

— aberparpb e 2m) 45D (ky + Ky + K
W3gy <47T) ngf / (27T)d (27T)d (27T)d< ﬂ-) ( 1+ Re + 3)

Gijkﬁi : 53‘]% : ﬁk
kiksks(ky - By —m) (kg - B2 —m) (k3 - Bz —m)
(2.75)

Writing the numerator out fully, we can write the web as

4e
W3gy = if“”cTi‘TSTé <%> (51 '/82[[3gv](a12> 13, 0423)
— - @3[[391}](@13, 12, 0423) — [ - @3[[391}](@23, 13, 0412))7 (2-76)

where we have defined the term proportional to 3 - 52 to be the integral

3 4e 2e
189 (19, 013, arg3) = m*e*7®

/ Ak, / Ak ( ) - Bs
ind/2 | imd/2 Tk (ky 4 ko)? (k1 - 1 — m) (ko - B2 — m)(—(k1 + k2) - B3 —m)
(2.77)

and the other terms can be found from cyclic permutations of the « variables.
From the definition in eq. (2.77]), we define the integral family

[3g7] — deGQE’Y ddkl ddk2 1
a1a2a3a4a5a6a070809 Z‘,]rd/Q Z‘,ﬂ_d/Q Plal P2(12 Pél‘s szx P;s Péze P7a7 P80,8 Pgag ’
(2.78)
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1 fi
f2 fa
1. | = :
f;6‘ fo6

off-diagonal

Figure 2.5: Schematic representation of the lower block-diagonal matrix AB9v.
The 20 x 20 block is itself lower block-diagonal, with the largest sub-block being
3 x 3. The 6 x 6 is the coupled system of the 6-dimensional top sector.

P, =k} Py =k Py = (ki + ke)?
Pi=k -Bi—m Ps=ky-fy—m Ps=—(k1+ ko) -Ps—m
P; =k - B Py =ky- 33 Py =Fky- B

with 32 = 1 and M, chosen such that I is dimensionless. Expressing the
numerator of eq. (2.77) as (ky — ko) - B3 = —2FP3 — Py — m, we can write the

integral 19 (a9, a3, aigs) in terms of this family,

v 3gv 3gv 3gv
1[39 ]((1/127 a3, a23) = _21{1911]110—10 - 1{1%1]10000 - 11[1911]11000' (279)

2.4.2 Differential equation

There are three variables that the family depends on: {12, a3, ans}. We find for
the whole system 26 basis integrals where 6 form the top sector. We then build

our system of differential equations,
AfB9 (e, g, g, ang) = APTN(€, ana, ang, o3 FB9 (€, ania, auig, aing), (2.80)

where APB9 satisfies the integrability condition eq. (2.17). It provides a non-
trivial check on the derived differential system. The differential equation is shown
schematically in Figure To extract the e dependence from A we seek a

transformation £} — T'gB9"! to canonical form such that,

dgl! (€, 12, 13, Qrp3) = € Al (012, a3, 0423)g[3gv] (€, 12, 13, ra3). (2.81)
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Leading singularity

To find such a transformation we will compute the leading singularity of the
three-gluon vertex web in an attempt to identify uniform weight integrals. The

integrand in four dimensions without numerators is given as

s _ d'kid ks

CkPkE(ky k)2 (ky - By — m) (kg - By — m)(—(ky + ko) - B3 —m) (2.82)

We decompose f; in terms of two lightlike vectors p; and p,. Then we

parameteriseﬂ the other Wilson lines in the following way,

b1 = p1+p2 (2.83a)
Ba = — LA Q12P2 (2.83b)
12
23) -~ 13) . -
B3 = aip1 + asps + as%)\ﬂw + a4§2—3§)\2)\1. (2.83c)

We have decomposed (3 into p; and ps but also into vectors that are in the
orthogonal space, p; = )\15\1- and have used the notation A\; — |i). The detailed
explanation for the parameterisation is deferred to Appendix[A.3] The kinematics

of the vectors are p? = 0 and 2p; - p» = 1. We can then solve for the coefficients

in eq. (2839

a :—04120413(1%3 — Q12013 + 04%3(—0@3) — (ug3
(1 = afy) aizas;

o :oﬁga%o&g + 02503 + o303, + 12013
(1 —afy) aizass

(2.84a)

(2.84b)

The integrand in eq. (2.82]) will only depend on {ays, a3, a3} or, equivalently,
{ai2,a1,a2}. The dependence on a3 and a4 is only on the product azas which, in
turn, is equal to 1 — ajas coming from 32 = 1. We then parameterise the loop
momenta in terms of p;, po and the momenta in the orthogonal space

(23) (13)

]{Zi = bupl + bQZ’pg + bgi@)\lj\g + b4i®)\25\1. (285)

"'We would like to thank Johannes Henn for suggesting this parameterisation
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The scalar products appearing in eq. (2.82)) are then

k? =by;b2; — b3iby; 2k; - 53 = a1by; + agby; — asby; — aqbs;
bai
2k; - 1 =bo; + by, 2k; - By = — 2 — by
Q19

(ky + k’2)2 = (b1 + b12)(ba1 + baa) — (bs1 + bsa)(ba1 + ba2)

The Jacobian of the transformation is simply a numerical factor
124
d*kyd*ky = T IT1] v (2.86)
j=1i=1

Now we have everything we need to take successive residues at the poles of the
denominators in eq. (2.82)) in the variables b;;. In doing so we arrive at

db
J~ 7{ VO —r) b —12)(b—13)(b— 1)

LeadingSingularity [I 3gv] (2.87)
where b is one of the original b;;. The r; are functions of a2, a3 and aos.
The appearance of the square root of a quartic polynomial in the denominator of
eq. heavily signifies an elliptic integral, one that does not evaluate to MPLs.
It then implies that there is no rational transformation to canonical form of the
six-dimensional differential equation. In order to solve the integral in eq.

we need to change our approach.

2.4.3 New strategy

Our new approach will be, rather than solving the system as a whole, we will only
look at functions that have physical relevance. In the three-gluon-vertex web it
is the single pole in € of the integral 19" defined in eq. which constitutes
the [1, 1, 1]-web. We shall define the following function

1— 042 ” 1-— 042 3qgv 3gv 3gv
Y= —12][39 J= — 12 (‘21{1911]110—1 - ]1[1911]1 - 11[1911]11> . (2-88)
a9 12

]

Now we observe that ]l[?igﬁn is finite. If ky and ky scale in the same way then

its integrand (see eq. (2.82))) in the UV scales as kk—di which vanishes as k — oo.
2d
o
Hence, there are no overall divergences. If, instead, ks is fixed then in the UV

Similarly in the IR the integrand scales as — 0 which vanishes as & — 0.
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d d
the k; integrand scales as :—é — 0 and in the IR as Z—; — 0. This shows that there
1 1

. . 3gv .
are no subdivergences present in [ {1911]11. We can then write

1-— 052 3gv 3gv
Y= 04—1212 (_2[1[1911]110—1 - 11[1911}1) + O(EO)- (2-89)

As we seek the pole of ¢ we do not require its evaluation and to this end we define

2

~ 3gv 3gv

¥ (‘211[1%1}110—1 - ]1[1%1}1> : (2.90)
a2

In order to calculate ¢ we will still use differential equations and IBP reduction

but only on ¢. We find d¢

9% 0% Op
d —d
Oaig a2t Oag st Oags

dp = das (2.91)
and reduce the right hand side down to a basis of integrals. We choose basis
integrals that are finite in the top sector because, as we will see, they do not
contribute to the leading pole of . A similar observation was made in . As
we have shown that I 1[31911{]11 is finite only integrals with additional numerators are
UV divergent. Hence we choose integrals without any numerators. Integrals with
a double propagator on the first three indices are not chosen because they have
unregulated infrared divergences. Only multiple powers on the last three indices
are finite because the infrared is being regulated by m. A basis that satisfies this

and one that we choose is

[3gv] 7[3gv]  7[3gv]  7[3gv] 7[3gv]  [3gv] [3gv] [3gv] [3gv] [3gv]
Ioi11s Iito1ns Liorrns Liotizs Ditinns Litot01 Lito1025 Li111015 Lit0011> Lit00125

I[3gv] I[3gv] I[3gv} ][3gv] [[3gv] ][3gv] I[3gv] I[3gv} I[3gv] I[3gv] (2_92)

111011»*110111>*110112>» #110121>» #101111>» #101121>» 4101211> 4011111> £011112> *011211>

[3gv] [3gv] [3gv] [3gv] [3gv] [3gv]
I ey Diinss Lz Dintizes Lios: -

We can solve the first 20 integrals by differential equations, the first two lines of
eq. (2.92)). Their evaluation is given in Appendix To extract the poles in €

we write the integrals as a series expansion in e,

o0

J139v] — Z [E’l’l}’(i)ei. (2.93)

a
i=—2
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The sum starts at i = —2 since some of the integrals in eq. (2.92)) have a term of

order 6% Expanding the differential equation for ¢ we find that it starts at e 3

ap =" 60 = 3 (ofdass + éfidas, + ofldaz) €. (2.94)

i=—3 i=—3

Written in terms of the basis we find that one of the terms evaluates to
015 (g, g, igg) o {agg <(O‘%3 +1) I (cus) + 204131{11’&1’%)]{(_2)@13))

—Q13 <<a§3 +1) Lo 2 (cus) + 20423[{11’361]{(_2)(04230 } :

(2.95)

Seemingly it is non-zero but the term vanishes upon the replacement of the values
of the integrals. The vanishing is due to the a3 <> ay3 anti-symmetry of the term

in square brackets.

The same also happens for the full ¢(=3) expression and for ¢(~2 as expected. This
serves as a good check of the evaluation of the lower sector integrals. If non-finite
integrals were chosen for the top sector then there may have been dependence on

them for these terms which is why finite integrals were selected.

For dg=") we find the first non-zero result

dgt=b =8 (dlog aq2d log avas3d log oz + perm. (2.96)
— dlog ajad log ay3d log a3 + perm.). '

The additional terms ensure that eq. is integrable. We also see no
dependence on the top sector because the rational prefactor in the definition
of ¢ in eq. removes homogeneous terms. The integration is on a contour
from the boundary (1,1,1) — (12,13, as3). Conveniently, ¢ vanishes at the

boundary due to the rational factor. This gives the immediate result,

95(71) = 4log(a12) (10g2(0@3) - logQ(a13)> (2.97)
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Using this result in eq. (2.76]) we find for the single pole of the [3gv]-web

wé;vl) — Ql'fabCT‘lngTg (r(alg) log(a2) (logz(am) — logQ(a23)) + perm.)

(2.98a)
= 2i fTYTETS > ejur(vy) log(aiz) log? (aue), (2.98b)

which agrees with previous calculations ,,. At the next order in e, dp(©®
depend on the top sector which would need to be evaluated to find w?()(;z), which

contributes to the three-loop soft anomalous dimension.

2.5 Conclusion

The complete two-loop coefficient of the tripole contribution to the soft anomalous

dimension I'yipote is €q. (1.17b]) which is the combination of egs. (2.72)) and ([2.98b)

and evaluates to

Tiiee = if " TYTYTS Y eijnr (i) Mooo () X

Z'7]‘7’6

[Mooo(cvij) Mooo(vjr) — 27 (i) Mago(cuig)] - (2.99)

The technique of differential equations is certainly a powerful one as it is now
almost trivial to find the [1,2,1]-web to any order in e. However, there are
clear limitations. The computation of the [3gv]-web by the standard technique
of finding a transformation to canonical form fails due to the appearance of
the elliptic integral eq. . Currently there is a major research focus in
understanding elliptic integrals and their application to Feynman integrals. An
interesting avenue to take would be to study the elliptic curve of eq. .
By computing the periods associated to an elliptic curve, Adams and Weinzierl
in were able to transform the differential equation of an elliptically-valued

Feynman integral into e-form. The transformation was non-algebraic.

Another avenue to continue is the idea that subtracted webs, webs with relevant
lower loop order counterterms, have a simpler structure. One would construct
a differential equation for these and use a basis of finite integrals for the harder

sectors such that one can extract the required poles. The method does not involve
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solving individual integrals where complicated symbol letters can appear, such
as the y symbol found in eq. . These cancelled in the full expression for
the [1,2, 1]-web. Other letters appear in the subsectors that depend on multiple
angles such as s + ag3 — 1. Although the appearance of such are expected, we
are complicating matters by calculating unnecessary integrals rather than focus
on physically relevant functions. The next chapter will explore this further by
constructing ansatze for functions arising from correlators of Wilson lines which
are based solely on their physical properties and then constraining them using

known limits.
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Chapter 3

Bootstrapping

Although the technique of differential equations is very powerful it tends to
overcomplicate matters. We are often not seeking the solution to all the integrals
in a certain sector but rather specific integrals that arise in the perturbative
expansion. One way to bypass integral evaluation entirely and to go straight to
the function is to bootstrap the integral. The methodology behind bootstrapping
quantities is to first write a general ansatz constructed from first principle

arguments and then constrain it using known limits.

The concept of bootstrapping first appeared in the context of planar N' = 4
super-Yang-Mills amplitudes. By now immense progress has been made on the
amplitudes and currently four-loop seven point symbols |118] or seven-loop six-
point symbols [119,[120] are the state-of-the-art. The idea was then extended to
lightlike Wilson-line correlators , namely the three loop QCD soft anomalous
dimension, in eq. . In this chapter we review what is known about the
function space for non-lightlike lines. We then explore an extension to the basis
using the analytical properties of the functions. Finally, we consider two different
types of applications. The first type is one that is a physical gauge-invariant
quantity, the angle-dependent non-lightlike (two-line) cusp anomalous dimension,
see the discussion around eq. . The second is an individual web comprising

of four lines.
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3.1 Multiple-Gluon-Exchange-Web Basis Functions

In order to construct a basis let us first define the kinematic variables. Diagrams
contributing to semi-infinite non-lightlike Wilson-line correlators depend only on
the angles where a gluon exchange occurs. Defining a Wilson line in direction [3;,

the most convenient variables are the a’s,

1 LB
- (f + %) = 200 ayl< L (3.1)

cf. eq. (2.38) where 57 = 1. Due to the a <+ £ symmetry in the definition we

have chosen « to lie in the unit circle.

The first step towards constructing a basis for non-lightlike Wilson-line correlators
was achieved in ref. . Analysis was performed on multiple gluon exchange webs
(MGEWSs) which are diagrams arising from correlators of Wilson lines that have
no three-gluon or four-gluon vertex. In [64] it was observed that subtracted webs

of this type have a highly constrained structure.

One constraint is that they are only sums of products of polylogarithms that
depend only on one «. Another is that the subtracted web is invariant under
a — —a up to terms arising from analytic continuation (im). It follows from the
fact that there should not be branch points from square roots of masses and means
that the symbol should be invariant since it is blind to these im terms. Note that
webs without subtraction terms, in general, will not obey this symmetry. These

we will call unsubtracted webs.

Subsequently, in it was conjectured that all subtracted webs in this family

can be written in terms of the following functions

Mygn(@) = TZ) /0 1 dz po(z, ) log" (@) log' (ﬁ) log" § (z,a), (3.2)

where the constituent functions py, ¢ and ¢ are defined as

1 1 1

T T (0%

po(z, ) = — (a + l) q(; (3.3b)

a T, )
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log 4 (z, a) = ﬁ / dy poly, )8z — ) (3.3¢)

1 1 1
:log(—+a—1>—log<—+——1). (3.3d)
T T«

Some explicit examples, My and Mgy, written in terms of MPLs, are given in
eqs. and . The My, () are pure transcendental functions that have
weight k+1+n+1. They have the alphabet {a, 7 = %5} and can be multiplied
by the rational function r(a) defined in eq. (2.52). They also have the inversion
property,

My (1/a) = (=)D My (a) (3.4)

and vanish at o = 1, My, (1) = 0. Taking into account dependencies between the
functions such as Mgy = %Mgoo, the basis functions suitable to three loops (up
to weight five) are given in Table . As opposed to we remove Mo, o< My,

from the basis to allow for any powers or products of the My, to appear.

Welght Mkln S[Mkln]

one Mogo | 2® «

two M100 —4OK®7]

three My, | —4a®@n® «

M020 405@0(@0(

Mogo 160(@77@77

four Mg | —32a R a®@a®n

M [8a@n®@a®@n+8@n@n®@a—16aR@a®@a® a
Mg | 8a®@a®a®n—8aR@n®@a® a

M300 —9604@77@77@77

five Mpiz | =960 @ a@a@n@a—-9%a®@a®@n®a®
—9a@NRa@a®a

Mpzo | 3200 nR@a@nR@a+9aR@a®@a®a®
Mys | 240 @ a@a@nR@a—24a@nQ0a®@ a® «
Moy | 8aR@a®@a®@a® a

Mspe | 128a@a®@a®@®n®n

Moy [6daRa@a@a®@n+320R0a@n® a® «
+3203NQ@aRaRa—320QNRQaRNRN
=320 NQa®@n—3203NNnRNQ «
My | 3200 a@a@n®@n+32003NRQaR@a®n
+320@NNQVa@a+320QaRaRa®
Moo 768(1@77@77@77@77

Table 3.1: The My, basis and the respective symbols

As we can write the non-MGEW, [1, 1, 1]-web in the My, basis eq. (2.98b)) it

seems natural to consider an immediate generalisation of the conjecture, that all
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webs that do not depend on CICRs, defined in eq. (|1.26)), evaluate to MGEW basis
functions. We know from the three-loop correction to the lightlike soft function
eq. (1.27), there is dependence that does not factorise into polylogarithms of

individual angles.

One source of information about functions that appear in Wilson-line correlators
is the explicit calculation of the three-loop cusp anomalous dimension [22}[23)].
All the coefficient functions, that are given in eq. (5.2) of ref. (the A; and B;)
can be written in terms of MGEW basis functions apart from A, and Bs. We

quote the functions that can in terms of the basis in Table

Ay(@) = 5r(0) Mao(c) (35
Agfa) = OV Do) 36
As(@) = 3Mons(@)r(a)? + 5 Ma(a)r(a) .7)
By(a) = = Mopo(a) Migo(a) + 7(a) ( Moonler)? M2i‘l)(o‘>> ~Myn(a)  (33)
As(@) = r(@)* (5 Masof) Misf? =  Mal) M) = 5 Mona()* M)
~ R S )~ 2L
(0 5 Mool Mo (@) = 25 M) () — 22250

The function A4 cannot be written solely in terms of the My, basis

11M102(Oé) 1

Ay(a) =r(a) ( — (3 Moo () — — = Mig(r) + §]\/[000(04)2]\4100(Oé)

8 2 8
3 *Mooo(Oé)4 Mooo(Oé)Mozo(Oé)
- iMooo(Oé)Mon(Oé)) + 96 - 1
+r(a)? (-%MOOO(Q)MOQO(Q) - %Maoo(a)‘l - Mm(a)) . (3.10)

Notice that there is a term r(a)(3Mpoo(r). Already here we see that we should
extend our basis by including ¢ values. It was also observed in an explicit
calculation by Waelkens [116] that along with the MGEW functions, (3 is present

in a connected web. By including ¢ values there are additional dependencies that
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need to be taken into account such as

Mogo(Oé) = 2§2M000(Oé) + %MOO()(O&)S. (311)

After removing all such redundant products of My there are still dependencies

which, to weight five, are

AMoooMorr — Mo Migo + 16¢s Mogg + 8Co Migg + 4 Mgy — 4Miz9 = 0 (3.12a)
24¢> Mooo Moo — 3Mgo Mioo + 12Moo Moz — 12 Moo Mizo
+ 483 M3y, + 96Co Moy1 + 16 My13 — 16 M3 = 0 (3.12b)
120 Moo M111 — 15M g Magy + 200C Mo + 2640Cs Moo + 7Mgy,
60 Maozs + 480CsMigo + 120Cs Magy + 60Mags — 60Ma = 0. (3.12¢)

These can be derived by finding the relations between the symbols of the
functions. The individual My, symbols can be found in Table 3.1 and the shuffle
relation in eq. can be used for products. The symbol matching is not all
that is required to find the functional relations. The symbol is not sensitive to

lower weight functions multiplied by ¢ values.

Taking into account the relations, we choose to eliminate Moy, Mooy and Mys;.
The My, functions present in this basis are then given in Table 3.2 Products
between any functions and any ¢ numbers are allowed. We call this basis the
(M + () basis. Taking these into account we are able to write all the coefficient
functions in egs. to in a unique way. The A;, Ay and Bs; do not
change but the others do

As(a) = r(a) (@MOOO(Q) n M) 1

24 + §M011(a)r(oz)2 (313)

A4(OZ) = T’(Oé) ( — 2M000(O!)M011(O() —f‘ %M@oo(a)QMloo(O[) — 3§3M000(0()

- GaMon(e) - )~ M) S aMoon(c)?

+7(a)? (—CzMooo(oz)2 - 1—16Mooo(a)4 — Mm(a)) (3.14)
As(a) = r(a)? (}lMOOO(a)QMon(a) - %CzMooo(Oé)Mloo(a)

5 M) M) — 2 Moo () M) — S Ml ? — 22

()" 55 Mol Mio(0)? — §Moon(@) Mo (@) = 55 M) Me(o)
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: Mooo()” + éMon(Oé)Mloo(Oé) - M)

384 16
+7(a) (_%1(2M000(Oz)3 — %@Mooo(oé) — ﬁleOOO(Q)E’) (3.15)

weight one Moo

weight two Moo

weight three | Moy, Mg

Welght fOUI' Mlog, Mlll; M300

weight five Moz, Moo, Mooz, Moy, Moo

Table 3.2: The My, functions in the (M + () basis

There is still one coefficient function that cannot be written in terms of these
basis functions which is Bs(a). This function also has a new rational function

which is not r(a)) but %5. We quote the result here for reference

«

Blo) =10

(36 (G1(@) = Go1() +26(G-rafa) = Grofe)
- 4G71,0,71,0,0(06) + 4G71,0,0,0,0(06) - 4G71,0,1,0,0(04)

+ 4G170,_1,070<04) - 4G170’0,0’0(Oé> -+ 4G1,071’0,0<05)) . (316)

The symbol of the transcendental part of eq. ([3.16]) is

1—a? 1
S{ aB5(a)}:4oz®oz®n®oz® o (3.17)
« 1l -«
Along with the expected letters a and 7, we see a new symbol letter y = i—g

It is clear from this new symbol that Bs(«) cannot be written in terms of the
Mkln(@)-

If we have any hope of constructing a general basis of functions for subtracted
webs then we need to extend the (M + () basis to include the new symbol y. In
the next section we will do so by using known physical properties of Wilson-line
correlators and will look to use the extension to perform prototypical bootstraps

of some quantities.
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3.2 Constructing the Basis

Let us now consider the general features of functions appearing in Wilson-line
correlators. We can discuss the branch cuts of such functions by studying the
branch cuts in normal Feynman diagrams. Branch cuts in Feynman integrals
occur when centre of mass energy is at threshold and extend towards infinity.
The energy for two incoming on-shell massive particlesﬂ with momentum p; and
p; is given by s;; = (p; + p;)? so that the threshold energy for particle creation is
4m? and the cut extends over all real s;; > 4m?. Using eq. and p; = mp;
we have )

% - % — s, £ ic < oy £ ic (3.18)

ij

which means that discontinuities in s;; map to discontinuities in c; . The

specific map is shown in Figure |3.1] For a given polylogarithm, the first entry of

2

dm _7 1

T S ———t—

Figure 3.1: The map between the Mandelstam invariants s;; to the « variables

its symbol captures its discontinuity. Our functions’ symbols will have first entry
«;j, capturing the branch point at 0. This is known as a first entry condition. As

can be seen from Table [3.1], all the My, functions obey this condition.

As observed in [64], any function appearing in subtracted webs that we want
to construct F(«) has to obey F(a) = F(—a) modulo terms from analytic
continuation (im). The symbol should be invariant since it is blind to these

i terms. This is crossing symmetry from spacelike to timelike kinematics.

14+«
11—«

have definite properties under this transformation, transforming to loga, logn

The letters previously mentioned loga, logn = log %5 and logy = log

and —logy respectively. These are natural symbol letters and our alphabet for
our functions will be A = {«,n,y}. Functions that have this property are the
harmonic polylogarithms (HPLs) [92], these are defined in Section

'We are only considering two particle correlations where there will not be any intricate
multi-particle discontinuities.
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Along with the transcendental functions, the HPLs, subtracted webs will also

have rational functions. As we have seen, the rational function

_1—|—oz2
T 1—a?

r(a) (3.19)

appears many times in calculations of non-lightlike correlators, see egs. (2.50al)
and (2.99). The MGEW basis functions in eq. (3.2) only have this factor.
However, in the three-loop cusp we have seen a new rational function eq. ((3.16))

which we will define as
o

= : 3.20
s(o) = =2 (3.20)
This factor comes from the topology involving the four-gluon vertex diagram
that first appears at three loops [23]. Notice that both r(«) and s(«) diverge

at a — +£1 which coincides with the divergences of the symbol letters y and 7.

A similar observation was made in the calculation of two-loop five-point QCD
amplitudes in [121], where denominator factors of rationals were the same as

symbol letters.

It is worthwhile to explain how the rational functions are generated. The factors

r(a) and s(«) are related by

T'(C(ij) =-2X BZ . 53‘ X S(Oéij) . (321)
kinematics integration

The factor s(a) appears from the integral of the gluon propagator, see the leading
singularity in eq. . Then multiplying this factor by ;- ; from the Feynman
rules we arrive at r(«) as in eq. (3.2I). There cannot be more scalar products
i - B; than factors of s(a). For MGEWs, this bound is saturated i.e. the number
of f; - B; equals the number of s(o) which equals the number of r(a). The
appearance of s(«) alone in Bs(«) of eq. can be explained by the above. It
is because the four-gluon-vertex diagram of the two-line cusp has for its kinematic
part (5;- 5]2 —1) x @ and three loop integrals, each with a factor of s(«). Thus,

overall, its rational factor is s(«).

A general function appearing in n-leg subtracted webs will schematically have

the form

subtracted webs = Z Hr(aij)“ x s(a;)? x HPL(ay;) (3.22)
)
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where the HPL has a symbol drawn from the alphabet A, whose first entry is «
and is of a prescribed weight. We conjecture that any function from non-lightlike
Wilson-line correlators, where angle-dependence is factorisable, can be written in
the form of eq. . We now explicitly construct a basis for subtracted webs

by applying the a — é and o — —a symmetries to the general expression of

eq. (3.22). We will see that the powers of a and b in eq. (3.22)) are constrained

and related to the transcendental function.

To be systematic in the construction of a basis we observe that there is a
correspondence between the rational prefactor and the numbers of y and « entries
in the symbol. For the correct property under &« — —a we require the rational
factor to be even/odd when the number of y entries is even/odd. Similarly for
a — é we require the rational factor to be even/odd when the number of «

entries is even/odd. Realising that,
r(a)? —4s(a)* =1, (3.23)

there are then only four different types of rational factors. We summarise this

even

analysis in Table where we have eliminated any possibility of s(«) using

eq. (3-23).

no. of a odd even
no. of y
Odd r(a)evens(a>odd T(@)OddS(Oé)Odd
even r(a)odd r(a)ever

)odd

Table 3.3: Rational to symbol correspondence, r(« means 7(«) raised to an

odd power.

As an illustration of the correspondence we consider an example symbol that can
appear
SFla)l=a@n®a®y. (3.24)

Under @ — —a we see that since the symbol drops im terms it is odd,

— 1
1—a2®<_a)®§

= —(a®NRa®y) (3.25)

SF(=a)] = (-a)®

Thus we need a rational factor that is odd under @« — —a to cancel this minus
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sign. From the choices it must be
s(ar)°dd, (3.26)

Since we only need invariant functions up to i7 then the classification of odd/even
number of y’s is sufficient to ensure the & — —a property. We now move onto

inversion, o — é, which is an exact symmetry from the definition of «,

sir(3)]—setnegocy
=a@NR@ay. (3.27)

So our symbol is even in inversion so our rational factor must be as well.
Combining with eq. (3.26]) we see that our rational factor should be

(r(e)s(e)™™, (3.28)

which is in agreement with the table.

Required for quantities up to three loops, all functions, with y present in the

symbol, up to weight five have been constructed. They are given in Appendix
(j)7

along with their respective symbols. We denote these as w, k, which describes

the 7-th function at weight j corresponding to a rational factor which is the k-th

element of the set

{T(a)even7 T(Oz)Odd, T(a)evens(a)odd’ T(a)OddS(a)Odd}. (329)

One further constraint can be applied on these functions. We can observe that
My, (1) = 0 for any k, [ and n. This ensures finite results when combined with
r(a) in @ — 1, where the lines become one line. We can also redefine the new

functions such that they obey this as well. For those with rational factor r(a)®ve",

wz(”)’l a simple subtraction of a constant is needed. This constant is given with the

functions in Appendix Bl Those with factors 7(a)° and r(a)®v*"s(a)°dd, w™?

7
)73

and wgn respectively, do not need subtraction, they already vanish at & = 1. For

those of 7(a)°ds(a)° type, wz(”)A, a subtraction is needed. However, because of
the odd number of y present in the symbol, see Table [3.3] any subtraction needs

to also have an odd number of y otherwise it will spoil the o — —a property. We
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demonstrate this by performing the subtraction
(r(@)s(e)" ™ () = (r(@)s(@))* (w™"(@) — (1)) . (3.30)

This means that the difference is no longer solely terms from analytic continuation

(r(@)s(e)™ (w!(a) = w(1)) = (r(=a)s(=a))*? (W (=a) = w™(1))
= (r(a)s(a))° (analytic continuation — 2w§n)’4(1)>
(3.31)

The functions in Appendix [B]are general and do not have the vanishing property.
(n),

I : 4 . : .
However, we will discard the functions w; ' entirely in future sections when we

bootstrap the cusp anomalous dimensions and an individual integral.

As an example of the basis, we can write Bs(a), in eq. (3.16)), in terms of these

functions
24 6
Bs(a) = s(a) <4wé5)’3(oz) - log(2) w§4)’3(0z) - g§2w§3)’3(a)) (3.32a)
SwP ) =a0anea®y (3.32b)
S (@) =a0a®a®y (3.32¢)
S’ (@) =an®y (3.32d)

where the new functions are drawn from those with a rational factor of the form
r(a)®vs(a)°dd. We needed to add log(2) to reconstruct Bs(a). The constants
Liy (%) and Lij (%) also show up in the functions. Powers of log(2), these constants
and higher-weight generalisations thereof will be added to the basis. A full basis
would involve these as well as the (M + ¢) basis in Table [3.2]

In the next two sections we use this full basis to create an ansatz for quantities

and constrain it using known limits.
3.3 Towards Bootstrapping the Cusp Anomalous
Dimension

In this section we explore the possibilities of bootstrapping the non-lightlike angle-

dependent QCD cusp anomalous dimension I'¢,g,. This is the special two-leg case
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of the general non-lightlike soft anomalous dimension, setting n = 2 in eq. .
We have seen in Section that this object governs the infrared behaviour of
massive form factors. It also describes a heavy quark interacting with a potential
in heavy quark effective theory (HQET) ,. A quark in the infinite
mass limit will follow its classical trajectory and radiate gluons as a Wilson line.
The velocity will transition from, say, 81 to (5, after interaction with the potential,

thus a correlator of two Wilson lines.

Using the functions constructed in Section [3.2] we create an ansatz for the one-
loop, two-loop and three-loop cases of I'c,sp and constrain them using known
limits. Although these functions are known, (see refs. , for the detailed
calculations) these are important steps to setup a bootstrap program to find the
four loop result which is almost entirely unknown [23|33}[125/[126] (see Table 1 in
ref. for an overview).

The object I'cysp is the anomalous dimension from renormalising the two-leg
Wilson-line correlator in eq. . It only depends on the angle between
the legs and we shall define o through eq. . As it only depends on this one
variable, there are no other symmetries other than o — é and o — —a which

were discussed in the previous section, Section [3.2

The n-loop coefficient Fgﬁgp has a maximal weight of 2n — 1. Its colour structure

is fairly straightforward and obeys Casimir scaling through to three loops,

3 .
Fewsp = Cn (Z (%) rgizsp) +0(al) (3.33)

=1

with the quadratic Casimir defined by T*T* = Cg1l, with T being defined in
Section It is a singlet in colour space. A generalised version of this scaling

occurs to all orders which accounts for quartic Casimirs which begin to contribute
at four loops (see Section for a detailed discussion).

In Section B.3.1] we discuss the various limits we can use to constrain an ansatz
for Teysp. In Sections [3.3.2] [3.3.3] and [3.3.4 we look at the one-loop, two-loop and

three-loop cases respectively.
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3.3.1 Limits of I'cysp

As is clear from the structure of the definition of « in eq. (3.1]), the limits that
correspond to physical properties are &« — 0, « — —1 and o« — 1.

The first is the lightlike limit (see eq. (1.28))), where the Wilson lines become
lightlike (32 — 0). In this limit ey () diverges as [79)
lim [epsp (@) = Yeusp log @ + const., (3.34)

a—0

where Yeyusp is the QCD lightlike cusp anomalous dimension which evaluates to
00 o, n .
,YCUSP(OZS) = (_) /Y(E,ugp

2
_as g 67 <2 5
=GO <7r) CZ{CA (36_ 2) _9”fo]

3
0\ o [on (2567, 11 1
+(7T)CZ|:CA< 36C2+24C3+8€4

96
209 5 7
+ C’Anfo (_fﬁ + §<2 - 6C3)
55 (nfo)2 4
+0anTf( E—I—C?’) 2—7 —|—O(O./S),

(3.35)

where C;, defined above, is the quadratic Casimir in the fundamental or the
adjoint representation for quarks and gluons, respectively, ny is the number
of light quarks and the normalisation of the generators t* in the fundamental
representation, Tr(£%¢°) = T;d,p, is conventionally set to Ty = 1/2. The three-loop
value of eusp Was computed in . After significant progress towards a four-loop
determination a complete result was recently calculated in refs. .

Note we expand the quantity 7eusp in terms of <= whereas I'cysp, is in terms of 2.

The second limit o« — —1 is when the three-velocities of the lines become anti-

parallel. This is the case for heavy quark-antiquark production near threshold
,, . We shall use as a constraint that, up to three loops, I'c,sp diverges

as
1% atlog(l+ )
lim T = = .

s cus (@) T+a © ( l1+a (3:36)

but not any faster. As the coefficient V' is found from I'cusp(a) we will not use

log’C (14

its explicit expression but will use the fact that there are no terms ® +1)n) for

58



n > 2 and any k in the limit.

The last limit is the o — 1 limit. In this case the lines become one single infinite
line and all diagrams that span both legs become the self-energy type. These
will be multi-loop generalisations of that seen at one-loop in Figure 2.1bl These
cancel the self energies already present on the individual lines due to a Ward
identity. As such as o — 1, I'¢ygp vanishes . Due to the finiteness of the limit,
one can expand the integrand in the limit and compute order by order in (o —1)"
the resulting integrals . This will be the main source of information at higher
loops. We will use this to reconstruct the full a dependence from this limit using

the ansatz.

3.3.2 One loop

As the first entry of the symbol is @ and we are restricted to weight one functions
the only transcendental function available is loga. Looking at Table the
only rational piece is 7(a)°d. Our ansatz for the one-loop correction to the cusp
anomalous dimension is

'Y (o) = c7(a) log o + ¢5. (3.37)

cusp

We exclude r(a)? because, as explained in eq. , to generate that factor one
would require three loop integrals. Let us expand the ansatz in eq. for
a—1

TV (@) = (—c1 4+ ¢) + O(1 — a). (3.38)

cusp

For vanishing @ — 1 we require ¢; = ¢y which gives

I (a) =¢ (r(a) log o + 1> : (3.39)

The remaining constant can be fixed from the lightlike cusp,

ngﬁsp(a) =ciloga + O(a?) = 47&11210 log a + O(a?). (3.40)
Using yéiép = (} in eq. 1) we find
I (a) = 4C; <r(a) log v + 1) : (3.41)
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Weight | Rational Transcendental
Zero 1 1
r? 1
one 1 log(2)
r Moo
r? log(2)
two 1 Cay Mo
r Moo, Mooolog(2)
r’ G2, Mo
three 1 Cg, M(?OO 10g(2), MQH, M000M100
r Mso0, MoooCa, Migolog(2), Mgoo
r? (3, M300 log(2), Mo11, Mooo Moo
< w®3

Table 3.4: The list of functions in the ansatz for Fg)sp we have used shorthand

notation that drops the functional argument.

replicating eq. (2.50b)). Although a rather trivial example, it illustrates the
powerfulness of the method since no explicit calculation was necessary, only the

analytical properties of I'.,s, and knowledge of its limits is required to reconstruct
the full expression of eq. (3.41)).

3.3.3 Two loop

Our ansatz at two loops includes the constants (5, (3 as well as log 2, which is
known to show up in computations involving massive particles. As there are two
loop integrations, the maximal power of the rational function r(«) will be two.
Including the possibility that the new functions with the letter y can appear,
we find there are 24 functions that can appear up to weight three and these are
displayed in Table [3.4]

We then apply constraints from o — —1, eq. (3.36), and o — 0, eq. (3.34)),
fitting to the two-loop lightlike cusp anomalous dimension in eq. (3.35). We give

results for these series expansions of the transcendental functions in the ansatz
in Table 3.5

After the constraints from the @ — —1, @ — 0 and also requiring vanishing in
a — 1 limits we find that there are still seven degrees of freedom. To fit the
rest of them we use the a — 1 expansion. We would require explicit calculation

of integrals in this limit. However as this is exploratory we will just expand the
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fla) lim, o f(a) lime,o f(€ —1)

Mgoo 2 10g(0&) —2§ + 2

M100 —2 log(a)2 — QCQ dam 10g(£) + 12C2 + dimw log(2)
Moy | —2log(a)® — 2¢log(ar) — 2¢3 | 4€(—imlog(§) — 3¢ + im — 4w log(2))
My | $log(a)® +8Glog(a) —4¢s | 8imlog?(€) 4 1610g(€)(4¢; + i log(2))
+48¢, log(2) — 4+ 8ir log?(2)
wP? 0 —Limlog?(€) + log (&) (i log(2) — 3¢2)
+3¢2log(2) + % — Lirlog?(2)

Table 3.5: Transcendental functions in Table expanded in the a — 0 limit

and a — —1. For the latter, they are given up to the order required such that

when combined with corresponding rational factors in Table they can be
1

expanded up to —5 = £

actual result in @ — 1. The result, written in terms of the basis, is [79)

Flpfe) = €| (~2Mn(a)? ~ 166+ 550 ) ~4Cu Mo (e (o~ 2
1 134.M,
r(a) (OA <_8<2M000(04) - gMooo(Oé)3 + %@ — 4M100(a))

_%%ﬂmeQO}(am)

The explicit functions Mgy and Migy are given in eqs. (2.73) and (2.74))
respectively. The expression for My can be found in eqs. (A.4) of ref. [65].

Comparing eq. (3.42) to the ansatz we find we need to go to (o — 1)® term in

order to fit the remaining seven terms.

Some simplifications to the ansatz in Table can be explored. One could be
removing explicit appearances of log(2) in functions. This would remove six
functions so that we would only have 18 functions in an ansatz. However doing
this, we find we still need to go to (a — 1)® to fit all the coefficients.

3.3.4 Three loops and beyond

At three loops there are 137 functions in a general ansatz for the cusp. This is
comprised of the (M + () basis in Table and the new functions with letter y
in Appendix We only allow the possibility of log(2) to appear in products with
the new functions. It is clear that this ansatz is large. To explore the practicalities

of a potential bootstrap we instead only include functions that comprise the A;

and B; in eqs. (3.5)), (3.6), (3.8)), (3.13)) to (3.15) and (3.32a)). After applying the
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constraints from the @ — —1 and o — 0 limits we find that we need to go to
O ((1 — a)?) to fit the remaining terms.

Trying to fit the general ansatz, would require even higher orders. At four loops
the ansatz would be greater and the required orders higher still. Of course, at four
loops, this expansion is unknown and would need input from the actual integrals
expanded in (1 — «). This does not seem currently achievable as the authors of
ref. were able to calculate certain colour terms in the expansion of four loop
integrals only to ~ O ((1 — «)%). Although for some colour terms the weight will

be less than seven and the size of an ansatz would be comparable to three loops.

A greater understanding of the potential rational terms by maximal cuts would
be one avenue to explore to limit the growth of the size of the ansatz when the
loop order is increased. It will then control the required maximum term in the

series expansion of the integrals around o = 1.

3.4 Fitting the [1,1,2, 1]-web

B3 B2 B3 B2

B4 B B4 B
(a) A (b) B

Figure 3.2: Diagrams contributing to the [1,1, 2, 1]-web

In this section we use what we have learned about the new functions to construct
an ansatz for the three-loop [1,1,2, 1]-web. We then constrain the ansatz using
known lightlike and collinear limits and fit remaining parameters numerically. A
first attempt at this exercise was performed in , fitting solely to the MGEW
basis functions My;,. A subsequent fit was performed in adding ¢, values
to the basis and using known constraints on the lightlike and collinear limits

|116] of the web.
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We will produce an ansatz for the subtracted [1, 1,2, 1]-web, which is given by

. 1 1
_(3,—1 3,—1 0 - -1
winz )= w§112 )~ b [w:(agl,w“’ 1)} + 2 [wégv)vw(170):| (3.43)
where w:g;l) is given in eq. (2.98b) and w™" =Y and w™?) are given in eqs. (2.51a
and (2.51bf). The functions wﬁ’{ll) and wg(g’{] are unknowns. Extracting the

common colour term — fo% freTYTETSTE from each term in eq. (3.43) we can

write the kinematic part of the subtracted web as

=(—1 1 -1 -1 I o - 1 -1
Fit =5 (~Fela+ Flols) - 3FaFE D+ SFOOFLD (3.44)

where Fi121,4 and Fiy9; g are the constituent diagrams to the [1, 1,2, 1]-web shown
in Figure It was shown in [12§] that by integrating out the one-loop gluon

exchange connecting [3; and 3, the subtracted web can be written as follows,

i 1
-7:1(1211) = 37“(0614) [t1(0423, a4, izq) Mooo(0r14) — 2t (v, o, c3a) Migo () | (3.45)

where ¢ is the kinematic function of w:(,);vl ) in eq. (2.98b),
to(@gg, oy, 0434> = —2 Z Eijk’f’(Oéij) IOg(Oéij) lOgQ(Oéik). (346)

(4,5,k)e{2,3,4}

We will construct an ansatz for the unknown function t;. We will assume that

the dependence of #; on the different variables factorises. These functions were
. . . . . . . l

the ones considered in Sectlon Along with the generic inversion (o — ) and

analytic (&« — —a) properties, t; also satisfies antisymmetry in s <+ 83 from the

three-gluon vertex. From which we have

t1(ag, oy, azg) = —t1 (a3, i3q, 2g). (3.47)

A collinear limit of the [1, 1,2, 1]-web is known. When 3||4 it becomes the [1, 3, 1]-
web which was computed in by unitarity cut methods. To compute this
limit, we first go to the physical region with £, incoming and the rest outgoing.
Here, instead of all the «;; > 0, we have as3 > 0 with the rest negative. Then we
take the limit 84 — — (3 because (4 is incoming and (3 is outgoing. As agqy — 1,
t1 goes to

t1(gs, raq, ar3q) —>3)ja 1 (Qrag, —ra3, 1). (3.48)

In order to connect with the previous result, we go back to the unphysical space,
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where all entries are positive. Hence we know that t1(ags, cas, 1) is the [1, 3, 1]-web

function which we quote here

117 (zg) =t (23, 123, 1)

=1 (crg3) <M000(a23) ( — + iMooo(0423)2M100(0423)

24

Moy (0423) . @)
12 2

1 Mioaa
+ 36 (24¢2 Moo (r23) + Mooo(azs)?) — %)

1 Mo11(a 4
+ —Mooo(agg)Mloo(a23) — % + %

5 e (3.49)

We have written the function #5°!(c3) in the (M + ¢) basis of Table 3.2 The
lightlike limit where all 82 — 0 (a;; — 0) is also known [78]. This is a

logarithmically divergent limit

hfilotl(@%, Qvag, (i34) = 1 (uag, vag, v34) (3.50)
Qg

1

:% (Mooo(a24) - Mooo(a34)) <4M000(@Qg)Mgoo(a24)M000(a34)

- 3M000(0423)2M000(0424) + Mooo(a23)Mooo(@24)2 - 3M000(0423)2M000(0434)
+ ]\4000(CV2:>,)]\/[000(CJ434)2 - 24C2M000(@23) - Mooo(Oé23)3
— 3Mooo(aza) Mooo(cusa)® — 3Mooo (va4)® Mooo(arza) + 24 Mogo(cvas)

+ Mooo(Oé24)3 + 245 Moo (cvz4) + Mooo(Oé34)3 — 96(3) - (3.51)

It is a striking property of webs that connect the maximum number of lines at a
given order are of uniform weight, see the previous results at two loops eqgs.
and and other calculations [64,/65]. As the [1,1,2,1]-web connects the
maximum number of lines at three loops, we shall assume that it is of uniform

weight. We first construct an ansatz built from the (M + () basis and write it as

5

thJrC) ansatZ(a237 oy, (i34) = Z cifi(os, g, asa) + foL(aos, s, azg)  (3.52)
i=1

such that each f; vanishes in both limits, with only fcr, replicating the limits.

There are five remaining degrees of freedom. Explicitly the functions are

fi= Mooo(0623)2(M100(0434)7’(0634) - M100(0424)7’(0424))
+ Mooo(t3a)* (Migo(caa)r(czs) — Migo(cvas)r(aas))
+ Mooo(0424)2(]\/[100(0423)7’(0423) - Mloo(a34)7’(0434))
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Jo= M000(023)(—6T(Oé23)M011(0424) - 7“(0423)M000(CY34)M100(6134)
+ Moo (cvas) Mooo(cusa)r(0esa) + 67 (vag) Mot (vsa))
+ Mooo(Oé24)(Mooo(0423)7"(6123)]\4100(0124) - Mooo(a23)M100(a23)7“(a24)
+6M011(0423)7°(CY24) +T(CY24)M000(0434)M100(0434) —M100(0424)M000(0434)7“(0434)
- 67"(0424)M011(0634)) + 6M000(0434)7’(0434)(M011(0624) - M011(0623))

f3 = Mooo(2a)? (r(cs) (Mooo(cuas)*r(ans) + 2Migo (i) — 2Migo(a)r(cras))
+ ]\4000(0434)2 (—Mooo(a23)27”(@23)2 - 2M100(0423)7°(CY23) + ]\/[000(0434)27"(0434)2
+ 2M100(0434)7“(0634)) — Mooo (1) r(r2q)?

Ji= ]\40()0(@24)2 (—Mooo(a23)27“(a24)2 - 2M100(0423)7“(Oé23) + T(a24)2M000(CV34)2
+ 2Mi00(c2a)7(24) — Mooo(cvza)*r(aza)?)
+ ]\/[000(0434)2 (7”(0434) (7'<Oé34) (Mooo(Oé23>2 - Mooo(Oé34)2) - 2M100(0434))
+ 2Mg0(0v23)r(cas)) + Mogo(aa) 1 (cas)”

f5 = Mooo(cuas)r(cvas) (12Mon1 (0v24) — 7(csa) Mopo(cusa)® — 12Mon (cvza))
+ 12 Moo (vsa) 7 (esa) (Mor1 (av2s) — Mor1(ceas))
+ Mooo(a24)7’(0424) (—T(CY23)M000(<123)3 - 12M011(0423) + M000(0434)37“(CY34)
+ 12Mo11(c34)) 4+ Mooo(cza)?r(s) (Mogo () (as) — Mooo(aza)r(cisa))
+ Mooo(a23)3r(@23)Mooo(Oé34)7’(@34)

1 1
fCL :T(a24) (—Mooo(0423)M100(0623)M000(0424) - —Mooo(Oé24)M011(0434)

24 12
1 1 9 1
- EM000(024)M011(0424) - 3—25M000(a24) Mloo(a24) - §C3M000(0424)
Mipa (v 1 Mipo(ax
— %) + (o) ( — ﬂMOOO(QZB)MmO(O‘%)MOOO(a/34) + %
1 1 1
+ EM011(<124)M000(0434) + EMOOO(Q34>M011(Q34) + §C3M000(0434)
5 1
+ 3—2M000(Oé34)2M100(0634)> + r(ass) <T(Oé24) [ggzMooo(Oézzs)Mooo(Om)
1 11
- @Mooo(0423)M000(0424)M000(0434)2 + %MOOO(CVZZS)SMOOO(O(M)
43 1
+ %Mooo(azzs)Mooo(Oém)S} + 7"(0434) [@Mooo(0423)M000(0424)2M000(0434)
1 11
- gCQMooo(CY%)Mooo(&M) - %Mooo(oéz?))?’Mooo(Om)
25 Mooo(azs) Mooo(a2)* | + —Mroo(cuss) Mogo(cuss)?
- — o a — o o
576 000 (@23 ) Moo\ (34 9% 100( Q23 ) Moo (Y24
7 1
+ EMOOO(O‘%)MOOO(O‘M)MIOO(0424) - %Mloo(%:s)Mooo(OéM)?
7

- 4_8M000 (@23)M000(0434)M100(0634))
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+ 7"(0624)2 (—iMooo(Oé24)4 — %C2M000(0424)2)

32
3M000(Oé34)4>

1
+ 7(cus)? <542M000(0434)2 + o

There have been previous, unsuccessful attempts at fitting this ansatz using solely
functions from the My, basis [128] or the (M + () basis [116]. Here, we now

consider the extension given in Appendix

t§u11 ansatz __ t§M+O ansatz A guew ansatz (3.53)
First we explore the combinations of any new functions not present in the (M +()
basis but can appear in an ansatz for ¢;. We start with noting that any new
function for ¢; has to be antisymmetric in 85 <+ 35. Also, from the collinear limit
3|/4 where azs — 1 and ang = oy there is no letter y in the symbol in eq. (3.49).
Therefore, if we were to include a new weight four function, including any rational

factor, Ky(a) in t; then the combination we would need to have is
Ky(aog) — Ky(asg) € AoV amsate, (3.54)

Taking asy — 1, ang = aag we see Ky(anz) — K4(1) would appear in the [1, 3, 1]-
web. However, as noted above no new function does appear. Thus we can exclude

any new function of weight four appearing in A ¢hew ansatz,

A weight-three new function can appear when it is multiplied by Myg. For the
weight-three new function, including a potential rational factor, we introduce two
unknown functions that are either symmetric in inversion (o — +), Kss() or
antisymmetric Ksas(a). The antisymmetric new function K3ag(cr) can appear
when multiplied by Mygp () such that the overall product is symmetric. After
applying the inversion symmetry in all variables and enforcing the antisymmetry

in By «> (3 we find that there is the potential for five independent combinations

A ansats = c1Mooo (a3 ) (aras) (Kzs(as) — Kas(asa))
+ co(Mooo(r34) Kzas(sa) — Mooo(a2a) K3as(024))
+ c3(Mooo (v24)7(vos) K3 (taa) — Moo (crsa)r(usa) Kss(cusa))
+ ca(K3s(aza) Mooo(vaa) 7 (v2s) — Mooo(usa)7(cvsa) Kzs(aizg))
+ 5 K35 (va3) (Mooo (vaa)7(v2a) — Mooo(za)r(crsa)) (3.55)

where ¢; are rational numbers. Now we take the collinear limit agy — 1 and
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Qg = (o3 of the above using r(a) Mogo(a) — —2 as a — 1,

A trllew ansatz, collinear _ 2(64 + C5)Kgs<0523) + CQMOOO(l)K3AS(1) + 2C3K38(1)

+ Mooo(cr23) <7‘(0423) ((01 + c3 + ¢5) Kss (o) + (€4 — 01)K38(1)> - C2K3As(0623)>

(3.56)

As there are no new functions beyond the (M + () basis in the actual collinear
limit in eq. (3.49) all terms that depend on as3 in eq. (3.56) have to vanish. This

leads to constraints on the coefficients of the functions Kszg(cas) and Ksas(aas)
01+Cg+C5:0 co =0 C4+C5:0. (357)

This leaves just A )V ansate collinear . jr (1) (2 4 r(ag3) Mogo(cra3)). There are
then only two possible combinations from eq. (3.55]) that are consistent with the

collinear limit

A trllew ansatz — (358)
dl(Mooo(a24)7"(a24) - Mooo(a34)7’(a34))(K38(0423) - K3S(CJ424) - K3S(Oé34))

+ dy | (Moo (cvga)r(oesa) (K3s(vas) — Kzs(ovoa))
+ Mooo(cv23)r (cras) (Ksg(avas) — Ksg(aiss))

+ Mooo(Oé24)7“(0424)(K38(0434) - K3s(0423))] . (3-59)

If the constant K3g(1) is also not present in eq. then we should remove
the first of these combinations from an ansatz of t;. There are two weight-
three functions that involve the letter y, i.e. not present in the MGEW-basis.
They are w§3)’3(a) and w%g)A(a) which are given explicitly in Appendix . The
rational functions accompanying them are r(a)®"s(a)°d and r(a)°dds(a)°dd.
As discussed below eq. (3.28]) we shall not consider the function w§3)’4(a). As
the [1,1,2,1]-web is a three-loop integral we expect at most three powers of
the rational function r(«). One is from the one-loop already integrated out in
eq. (3.45) and another from the factors in eq. . We then deduce we only

have one new function
Kss(a) = s(a)wi”*(a). (3.60)
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Taking the collinear limit (v — 1) we find
: 1
lim Kss(a) = Kss(1) = log(2) — =. (3.61)
a—1 2
As there is no log(2) present in t{°! in eq. (3.49) we can set d; = 0 in eq. (3.58)

A trfew ansatz — ds (Mooo(Oé34)7“(0434)(Kss(Oé23) - K3S<0424))

+ Mooo(a23)7’(0423)(K3s(0424) - Kss(Oé34))

+ Mooo (o) (voa) (Kss(vga) — K3s(0423))] :

(3.62)

This function vanishes in the lightlike limit. As such we will call this fg and

combine it with eq. 1) to arrive at an ansatz for f"l(fgll) in eq. 1)

6
i 1
«7:1(1211) = 7"(0414)M000(0414) Z Cz’fi + §7“(0414) (Mooo(Oé14)fCL - 2]\/[100(@14)750) .

i=1

(3.63)
We can now fit the ¢; based on numerical results. It is reminded that r, Mg,
Moo, fcu, fi and tg are known functions and can be evaluated to arbitrary
precision. The object that is unknown is ﬁl(lel) for which numerical values
are computed using pySecDec . This implements the sector decomposition
algorithm to expand Feynman integrals in €. The resultant integrals are then
numerically integrated using the CUBA library where the algorithm Vegas

was chosen. It is a robust integrator giving trusted error estimates.

Several checks were performed on the numerical data. First we check the
robustness of the results by changing the seed for random number generation.
From an initial grid of 276 points in the (a4, oy, (o3, ai34)-plane, 247 were within
in the error range of the two data sets generated by two different seeds. Of
these points, 158 had quoted errors of <5% in ]:"1(1_211). Further checks on this
data were carried out. The values of F=1  F1.0 and Fé;vl), were checked
against the analytical results eqgs. (2.51al), (2.51b]) and respectively. The
renormalisation condition of the cancelling of double poles eq. was also
checked

1 -2 -2 1 - -1
2 <_F1(121),A + ]:1(121),3) = 6]:(1’ 1)‘F?Egv) (3.64)
The most important check is the dependence on the regulator m. In eq. (3.44))

there is no dependence on the regulator as this is the function that will contribute
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Estimate Standard Error P-Value
c1 | -966944. 196136. 2.4243002938213373 x 107°
co | -9083.49 94130.4 0.923271
cs | 1.61558 x 107 4.83045 3.716807937163101 x 1076
cy | —1.53576 x 107 -4.83039 3.7177658610870355 x 10~°
cs | 475785. 121389. 0.000141816
ce | -298514. 27636.3 7.046531400600217 x 10~20

Table 3.6: The estimated value, standard error and p-value of the outcome of a

linear model fit on eq. (3.63)

to the anomalous dimension. This ensures that the correct combination of
integrals is used. At the point (aq4, ang, an3, azq) = (0.1,0.2,0.15,0.25), 20
random m values between 1 and 5 were used. These are plotted in Figure [3.34]

which clearly shows that .7:"1(;211) does not depend on m.

@24

0.0 0.5 B 1.0
1.0 = ] - |
Single pole of subtracted web ! = -

4212
4210 . ‘

. . ° . a3, 0.5 =

__________________________________
4.208 -
4.206 |-

| PE——————— - —+,0.0

404 T e e e e e e e ———— | {0,505

' ' ' . ~—m 0.0 “— = . o

1 2 3 4 5 B — 10

(a) (b)

Figure 3.3: a) Numerical values of ]:'1(1_211) as m varies. These are well within
the red bands that indicate 0.1% deviation from the mean 4.2084. b) The phase

points in the (g4, a3, a34)-plane that give less than 5% error for .7:"1(1_211) . Reliable
data is scarce for the region 1 > any > 0.5, 1 > a3y > 0.5 and for extreme values.

We normalise the functions in eq. by simply dividing by the sum of
the numerical evaluations f;(x) — % After performing the checks and
normalising we fit the ¢; in eq. using the LinearModelFit function in
Mathematica. The results of this are displayed in Table[3.6] As can be seen from
Table the standard error in ¢; is of the same order as the estimated value.

Realistically, the results are inconclusive.

One of the issues of the fit is that we do not have accurate numerical values in
all of the potential phase space. Figure [3.3b| shows the space that is covered if

5% accuracy is sought. Improving this would improve the accuracy of the fit.
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It may well be that the [1,1,2,1]-web does not evaluate to the basis functions
and we would need to relax certain conditions. These would be uniform weight
and the hypothesis that functions of different angles factorise. The first of which
would be the first to test. We assumed that the (subtracted) web evaluates to
a uniform weight function of weight five. It may not be the case and we would
need to allow, in our ansatz, for lower weight terms. The second condition is a lot
harder to implement. The study of the differential equations would be required to
see what type of extra letters appear and the maximal cuts for the corresponding

rational functions.

In this section we have constructed and constrained an ansatz for the [1, 1,2, 1]-
web using the MGEW basis as well as the new functions constructed in
Section [3.2] We found the potential for one these new functions to appear in the
web in a particular combination. The remaining degrees of freedom were fitted
to numerical results which gave disappointing results. Either better numerical

results or an expansion of the ansatz or both will be required in future studies.

3.5 Conclusion

In this chapter we explored the function space arising in non-lightlike angle-
dependent Wilson-line correlators. The functions we focused on were ones that
factorised the dependence on multiple angles. The transcendental part of these
functions are guided by the analytical behaviour of the correlators and are HPLs,
i.e. their alphabet is {a,a + 1}. We restricted the rational functions to be
of two known functions, r(a) and s(a). After mapping the alphabet to the
convenient {a, 7, y} we found an interesting interplay between the type of rational
and symbol that can appear after analysing the o — é and a — —a behaviour
of the functions. Along with the known functions of MGEW-type in eq.
there are new functions with the symbol letter y and are displayed up to weight

five in Appendix [B]

We then looked at the potential to bootstrap the non-lightlike cusp anomalous
dimension (the two-line correlator). Using the limits of & — —1 and the lightlike
limit to initially constrain an ansatz and then fit the rest using the finite o — 1
series expansion of the explicit integrals themselves. At higher loop orders the

ansatz exponentially grows along with the required terms in the expansion.
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We also examined the functions that could appear in the four-line three-loop
[1,1,2, 1]-web. We discovered one function that has the symbol letter y that has
the potential to be present in the web. We then constrained an ansatz based
on the known lightlike and collinear limits and fitted the rest of the parameters

numerically.

To improve both of the examples we may need to extend the basis. A greater
understanding of the types of rationals that can appear would involve the
computation of maximal cuts of multi-loop multi-leg diagrams. As was seen
in the case of the two-loop three-line [3gv]-web, its maximal cut in eq. may

involve elliptic functions.

We can also look at ways to limit the growth of the ansatz. The only condition of
the positions of letters in the symbol are that o appears in the first entry. There
are other conditions that are a possibility for the future studies. One is that since
the letter y does not appear to two loops (i.e. weight three) it can only appear
starting in the fourth entry of the symbol [120].
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Chapter 4

Lightlike Wilson lines

In this chapter we discuss and compare the factorisation properties of massless
form factors (essentially two-leg scattering amplitudes) and the large-x limit of
parton distribution functions. In the comparison we see that while the double
poles are equivalent there is a difference in the single pole behaviour. We show
that they exhibit the same hard-collinear behaviour so that this difference lies
solely in the geometry of the underlying soft function. The main question we will
answer is what is the Wilson-line correlator corresponding to fe in eq. ,
defined as the difference 7%, — 2B%.

4.1 Initial Observations

Let us first note that the combination in has a direct physical interpretation
as the soft anomalous dimension associated with Drell-Yan production near
partonic threshold , namely ¢ — 2B} = 1lpy. Similarly 7% — 2B is
associated with Higgs production through gluon-gluon fusion near threshold.
The corresponding soft function is defined at cross-section level, by replacing the
energetic partons, which move in opposite lightlike directions (before annihilating
at the hard interaction vertex), by Wilson lines that follow the same trajectory,
in both the amplitude and its complex conjugate, see eq. . The cusp where
the complex-conjugate amplitude Wilson lines meet is displaced by a timelike

distance with respect to the amplitude: this distance is the Fourier conjugate
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variable to the energy fraction carried by soft partonsEl Initial-state radiation,
namely the set of soft particles connecting the amplitude side to the complex-
conjugate amplitude side, are described by cut propagators. This soft function
admits an evolution equation governed by 7eusp and I'py (see e.g. eq. (9) in
ref. [4], or eqs. (43-44) in ref. [7]). The latter was computed through three loops
directly based on the aforementioned Wilson-line definition ,, and the
results agree with the combination of anomalous dimensions in , which were
extracted from independent QCD computations of the form factor [84][85[137] and
DGLAP splitting functions [138-{145]. Thus, from this perspective, this physical
quantity is well understood, and its Casimir-scaling property simply follows from

the above-mentioned Wilson-line definition.

Our own investigation starts with the simple observation that the two-loop result
for 7¢ —2 B in also agrees, up to an overall factor of 4, with the result for
the parallelogram Wilson loop made of four lightlike segments (see Figure ,
which was computed in 1992 by Korchemsky and Korchemskaya . It is a
highly appealing proposition thatﬂ

I'g

feik = V¢ — 2Bs = Z ) (4-1)

holds to all ordersﬂ. The parallelogram Wilson loop, is a very simple object: being
compact it has no infrared divergences, so the singularities arise here from short
distances, and the calculation can be done directly in dimensional regularisation.
Importantly, in contrast to the Drell-Yan soft function described above, real
corrections and cut propagators do not arise here. The natural questions to ask
then are first, does the relation in indeed hold to all orders, and second, can
we see how a parallelogram Wilson loop arises from the definitions of the objects
on the left-hand side of eq. , the form factor and the PDF. Establishing this

relation is one of the main goals of this chapter.

The amplitude factorisation in eq. ([1.20) gives rise to a different Wilson-line
configuration, Sy, which is a couple of semi-infinite lightlike Wilson lines (with
different 4-velocities) meeting at the hard-interaction vertex, see Figure We

IAn additional displacement of the two cusps in transverse space can be used to resum
transverse-momentum logarithms . The corresponding anomalous dimensions can be
related to the DY soft function via a conformal transformation [77 .

ZNote that we systematically omit the superscript ¢/g in (4.1)) and below, and specify the
representation only when needed.

3While the two-loop result for 'y has been known for a while, we are not aware that the
proposition was made before. Unfortunately, there is no direct three-loop computation of
I'y available at this point.
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(a) A geometry (b) M geometry (c) O geometry

Figure 4.1: Contours of lightlike Wilson loops that contain semi-infinite Wilson
lines, which arise in the factorisation of the form factor (a) and the parton
distribution function (b).  Contour (c), the parallelogram, which consists of
four finite lightlike segments, gives rise to the anomalous dimension on the right-

hand-side of eq. (4.1)).

shall refer to this contour as the A geometry. We emphasise that in contrast
with the Drell-Yan soft function described above, where the cross section was
considered ,, here the Wilson-line configuration is defined at amplitude
level. At a difference with the parallelogram of [146], the A geometry is non-
compact, and thus gives rise to infrared divergences, in addition to ultraviolet
ones, much like the non-lightlike soft function in Section [L.1} We shall return
to the A geometry and its properties below. At this point it suffices to say
that considering the infrared factorisation of the form factor, the origin of the
relation between v — 2Bs and the parallelogram geometry remains obscure: the
A geometry has no finite segments while the parallelogram consists exclusively of

such.

An important step in explaining the eikonal nature of fe in , based on the
infrared factorisation properties of the form factor and the PDF, was taken in 2008
in a paper by Dixon, Magnea and Sterman . The fundamental explanation
is that spin-dependent hard-collinear contributions are common to both 4 and
2 Bs and drop in the difference, leaving behind a purely eikonal component. This
is the premise we shall follow. However, ref. relied on the assumption that
Bs, as the coefficient of 6(1 — z), is a purely virtual quantity and hence the
factorisation of the PDF could be done at “amplitude level”. According to the
factorisation outlined in the eikonal component of Bs should correspond to
Wilson lines with a A—geometry, much like the form factor. Taking this at face
value, if the eikonal components of 7 and Bs on the right-hand side of
indeed both correspond to the A—geometry, one concludes that the A and the
O anomalous dimensions must be proportional to each other, at least through

two loops, or, put differently, one may deduce the anomalous dimension of the

74



A—geometry from (|1.30)).

The first direct two-loop computation of A—geometry Wilson loop was performed
only in 2015, by Erdogan and Sterman . This calculation is an important
step forward also in the sense that it presents a new method for dealing directly
with (semi)-infinite lightlike Wilson lines in configuration space (which a priori
lead to scaleless integrals) without resorting to an extra regulator. This is
done by cleverly using the exponentiation properties and isolating a well-defined
integrand, before renormalising ultraviolet divergences by means of a suitable
cutoff. We shall adopt and generalise this method in Section .4 below. The result
of ref. is that the anomalous dimension corresponding to the A—geometry
Wilson loop is given by

Iy:(%ﬁ%}ku(%%—%@—i@)+(—%+%@)nm}+omg

(4.2)
where C; = C'r for Wilson lines in the fundamental representation and C4 for the
adjoint. As with fe and I'y above, we omit the superscript ¢/g for I', wherever
it is not necessary. While the result in bears a striking resemblance to fu
in , it is evidently not identical; the coefficient of the (3 term is entirely
different. The authors of ref. further provided a detailed diagrammatic
analysis, comparing their calculation to that of the parallelogram in ref. ,
and explaining the origin of the difference in the coefficient of (5 as emanating
from endpoint contributions that are present in finite lightlike segments, but are
absent in infinite ones. This conclusion can be confirmed by a momentum-space

computation.

It is useful to bear in mind that infinite and semi-infinite Wilson-line config-
urations (but not finite ones!) are of direct relevance to partonic scattering
amplitudes in the high-energy limit (the Regge limit) [12H15].  Also, the
explicit two-loop combination in appeared in the literature in that context
long before the computation of the A configuration in ref. [148]. Specifically,
considering gg — g9, q¢ — qq or qg — qg scattering in the limit where the
centre-of-mass energy is much larger than the momentum transfer, s > —t,
the leading and next-to-leading logarithms in s/(—t) in the (real part of the)
amplitude exponentiate according to a simple replacement of the ¢-channel gluon

propagator (dubbed gluon Reggeisation):

a(t,e)
1 1
¥%-<i> , (4.3)

t \—1

1)



where a(t, €) is the gluon Regge trajectoryEl |150/{154] given by:

alt) =2 () T -5

T 2¢ €

g(1) 21 [; g(2) ~
LI (L) (‘ Cabo {2050 1 919® 1 04iy | +O(ad) (4.4)

where ag = a(—t, €), with € = (4—d) /2 the dimensional regularisation parameter,
130 is the one-loop QCD beta function of 7 ygu(gp) are the coefficient of the
cusp anomalous dimension of eq. for the gluon, and Ff\@) is the two-
loop coefficient in eq. , again with C; = Cy. We further recall that the
overall similarity between the parallelogram Wilson loop in and the gluon
Regge trajectory in , as well as the peculiar difference between them in the
coefficient of (3, were already observed early on, in ref. , where an evolution
equation for the Regge trajectory was derived, considering the forward limit of
crossed Wilson lines. However, this raises no difficulty: as stressed above, it is the
infinite Wilson-line geometry which is expected to be relevant for the factorisation

of partonic scattering amplitudes, not the parallelogram.

A real puzzle arises, however, upon considering the explicit result for the
A—geometry anomalous dimension in eq. in view of eq. (L1.30), if the
conclusion of ref. is taken at face value. Given that the factorisation of the
form factor is well understood, and the eikonal component of v is determined
by the A—geometry, we are compelled to revisit the assumption of ref. that
Bs is a purely virtual quantity, systematically establish the infrared factorisation
of the PDF's at large x, and identify the eikonal component of Bs, which clearly

must not be proportional to I',.

We now review the factorisation properties of the form factor and parton

distribution function separately.

4.2 Infrared Factorisation of the On-shell Form

Factor

Let us first specialise the generic factorisation of massless scattering amplitudes
in eq. ((1.20)) to the case of the QCD colour-singlet on-shell form factor of coloured

massless particles (quarks or gluons). Historically this was known before that of

4See also a more recent observation in ref. \\ that the two-loop coefficient Ff\@) occurs
also in the QCD impact factor.
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the generic case , , , , ,. We label the external momenta by p;

(incoming) and p, (outgoing) with the momentum transfer Q? = —(p; —p»)?, and,
as usual, we renormalise all ultraviolet singularities in the MS scheme, denoting

the renormalisation scale by u?.

The quark form factor is defined in terms of the electromagnetic vector current,
proportional to 1/_1%1/1, which does not renormalise. The gluon form factor in
turn is defined using an effective local interaction vertex with the Higgs field,
HGY,,G"*, and it does renormalise, proportionally to the QCD beta function |]
The distinct ultraviolet properties of the quark and gluon form factors will be of
little relevance for us: we focus instead on the infrared singularities of the form

factor, which have a rather similar structure for massless quarks and gluons.

For large Q% the form factor F (Q*/u?, as(p?),€) features large logarithms in
the ratio Q*/p?, and fixed-order perturbation theory breaks down. These
large logarithms can be resummed using a renormalisation-group equation (see
e.g. [150]), giving the following all-order formula for the form factor,

P (1@ = e [ 2[00 (600,000 el o G ) |
(4.5)

where we set the renormalisation scale ;2 = Q? for simplicity. Note that we have
absorbed into the function GG any operator renormalisation terms — see
for more details. Infrared singularities are generated in eq. through an
integration, from A\? = 0, over the d = 4 — 2¢ dimensional running coupling

as(p?, €), which obeys
d as (4 €) — a, (1%, €) _ i b as (4 €) " (4.6)
dIn p? T B T — " T ' '

We report the coefficients Z;O, by and by of the QCD beta function respectively at
one [157H160], two [161H164] and three loops [165,[166], because we will use them
in the rest of this chapter

11 1
bop=—-Cy — = 4,
0 12@1 5Ly, (4.7a)
.17, 5 1

=—C%* - —CyTin; — -CpT 4.
by =5 C4 — 5CaTny — L CFTymy, (4.7b)
. 9857 . 1415 205 1
by = 4= ATimg — — T —C3T 4.
2= 305601~ Tras CALIM T g CaCrTymy 35 CrTyny (4.7¢)
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Equation applies for both quarks and gluons, but with distinct functions
Yeusp(@s) and G(Q?/p?, ag, €), which do depend on the type of particles (although
this is suppressed in our notation). The former, which captures all double poles,
depends solely on the colour representation of the particles (fundamental and
adjoint for quarks and gluons, respectively) while the latter, which controls single
poles, depends also on their spin. This distinction will be crucial in what follows
and it is a direct consequence of the fact that 7c,sp is an eikonal quantity, namely
one that can be defined exclusively in terms of Wilson lines, while G(Q?/u?, a, €)
instead, contains hard-collinear effects, which cannot fully be described by Wilson
lines. Through three loops, the cusp anomalous dimension, much like other
quantities that are defined exclusively in terms of Wilson lines, depends on the
colour representation proportionally to the quadratic Casimir C;, as in (3.35)),
adhering to the so-called Casimir scaling property. Starting at four loops quartic
Casimirs, dg.l) = d?dedgde, appear as well, making the dependence of the colour
representation more involved. Differently from ve,sp, the function G(1, ags(A\?, €), €)

has an expansion both in a4 and €, as follows

G (1,05 (N €) €) = ZZG(Z,TL) (M) €", (4.8)

m
=1 n=0

therefore it generates both infrared poles and non-negative powers of ¢ upon
integrating over the scale A\? of the running coupling as in eq. (4.5)). We isolate the
divergent contribution order-by-order in ay, by defining the anomalous dimension

Yg such that

1N ) H N2 , ]
/0 VG(L%(/\ ,€),€) :/o 5V [70 (ozs ()\ ,6))] + 0 (6 ), (4.9)

where 7o depends on e only through the coupling. Once 7g is defined, using
eq. the expression for the infrared poles I'y in eq. can be derived. The
coefficients v for the quark and for the gluon are well known in the literature;
they are referred to sometimes as “collinear anomalous dimensions” and were

denoted by G in || by Gy in and by v? and ¢ in appendix I of . The
latter has a conventional factor of —2. In practice, we derive here v to four loops

by substituting the d—dimensional running coupling of eq. (4.6]) into eq. (4.9) and
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then identifying the singularities arising on the two sides of equation (4.9)), getting

e :?G(l,o) (i) [G(2,0)—30G(171)}
(%) [os.0) - he@y - b o) +B6.2)]
") (4.10)
+(2) |60 = b G631 — b GE21) — G + B G2,2)

+ 2boby G(1,2) — BBG(1, 3)} +0(a?)
where G(I,n) are defined in eq. (4.8) and their values can be extracted from
refs. [84[85[137] where the form factors have been computed to three loops. For

the purpose of this thesis we only need explicit results for the collinear anomalous

dimensions through two loops, which read

() oo (o)

o (e (Y e (-5 )

32 CrTim
+ CaTyng (% - 2—7) - FT”} +0(ay),

(4.11)

where we added superscripts ¢ = ¢, g to distinguish between quarks and gluons.

4.2.1 Infrared factorisation

We specialise the general factorisation of massless scattering amplitudes in

eq. (1.20) to that of the form factor

F (L au(Q?).c) =H (Q— M,am) HJ (Mam)

K N n; p

S (B Ba, as(p?), €)
[T 7 (2222 au(u?). )

X

(4.12)

The operator definitions for J; and J; are given in egs. (1.22) and ([1.23))

respectively and n; is an auxiliary non-lightlike vector and the dependence on
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its choice must cancel in eq. (4.12). The soft function is the two-leg specialisation
of eq. (|1.5)) which for this chapter we simply name S,

S (81 os (), €) = (O[T [ W, (00, 0)Wp, (0,50) | 0) (4.13)

and §; in this context are lightlike lines 3? = 0. The contour defining S is shown
in Figure As mentioned in the context of the cusp anomalous dimension,
one of the properties of eikonal quantities is that they admit Casimir scaling
up to three loops; this is a consequence of non-Abelian exponentiation. Beyond
three loops there are quartic (and eventually higher order) Casimir contributions,
but given that the same Wilson-line diagrams contribute for quarks and gluons,
differing just by the representations of the Wilson lines, one expects a relation
between these quantities. Indeed, a conjectural relation was proposed in [30]
based on partial four-loop computations; we shall return to this in Section 4.5.2

below.

The individual eikonal functions in eqs. ((1.23) and (4.13)) are heavily constrained
by kinematic considerations, such as the dependence on the auxiliary vectors n;,

and by renormalisation group evolution. These constraints can be solved to give

explicit formulae , ,

i exp{ = ¥ (FJ (04(1%,)) + syl (32, ) log 2 niW) }

4 nf)@
(4.14)
B 1 [ d\2 B - Bop®
S = exp{ - 5/0 v (FA<a()‘2a 6)) + ")/Cusp(as()\276)) log (T)) },
(4.15)

where [' 7 and I', are constants to be determined by direct calculation. Note that
', was denoted in the literature [147,[148] as —Gey. As in eq. ([.F)), the infrared
singularities of J; and S are generated by integrating over the d dimensional
running coupling (A2, €) from A? = 0. We notice that the soft function and the
product of the eikonal jets share the same dependence on 7eusp In u? /A%, which is
associated with the overlapping soft-collinear singularities of these two quantities.
This fact ensures that the ratio —=— is free of overlapping divergences and depends

J1J2
only on the logarithm of the kinematic variable

(B - 52)2 "%”%
A(B1 - m1)2(B2 - ma)?’

K= (4.16)
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which is insensitive to the normalisation of the vectors (; in the definition
eq. (1.21). Using the factorisation equation eq. (4.12]), we determine the partonic
jet function by dividing the form factor in eq. 1) by the ratio ﬁ, yielding

1 [P% d)\2 ) 1 [P% d)\2 ) P2
J; = exp {hJ + §/M V%’(QS(A )) + Z/O V < - f)/cusp(as()‘ ,6)) log (ﬁ)

2

+ Talas(A,€)) — Tr(as(A2€) + G(1, as(\?) 6), (—:)) }, (4.17)
where we introduced the variable p? = (21;'—?)2. The function hy = hy(as(p?)) is

a matching coefficient that captures the finite parts of the jet function and ~;,
with ¢ = ¢ for the quark and 7 = ¢ for the gluon, is the anomalous dimension
of the field 7 in axial gauge. The latter is only concerned with the ultraviolet
behaviour of the jet function and indeed it is not associated with any IR pole,
because the contribution from the IR region A\? ~ 0 is absent in the second term
of eq. . All the IR poles of the form factor are generated by the second
integral in the equation above, involving the anomalous dimensions Yeusp, I'n, I's

and the resummation function G(1, as,€). The dependence on 7eysp is such that

the combination with ﬁ reconstructs the kinematic dependence of the form
factor eq. (4.5)) through
Q° v, vy
2log (ﬁ = log(k) + log )\—21 + log )\—22 . (4.18)

4.2.2 Isolating hard-collinear singularities

The contribution of I' 7 in eq. (4.17)) is associated to the soft singularities of .J;,
which cancel in the ratio of J; and J; eq. (4.12). It is therefore convenient to

focus on the poles of pure hard-collinear origin, defined as

Jz' ole
=T (4.19)
where J;|poe means only the poles of the jet function. We extract the function
Jijg for i = q and i = g from the form factor of the quark and of the gluon,
respectively, thus providing the process-independent components containing the
purely collinear singularities associated with massless external partons. In order

to determine J;, 7, we isolate the pole part of the jet function J;, by replacing in
eq. (4.17)) the function G(1, a, €) with ¢, according to the definition in eq. (4.9)),
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and we get the ratio

(Bi - mi)?u?
s

o (4.20)

= /0 o (WGmS(A?,e)) +Ta(s (A%, €)) = eusp log (M))
% v (as(N€))

2

where on the last line we have defined the anomalous dimension v,z

27519 = 7a + L. (4.21)

As mentioned above, the collinear anomalous dimension g is known to three
loops [84}85][137] for both quarks and gluons, and we quoted the corresponding
expressions through two loops in eq. (4.11)). The anomalous dimension T',, in

turn, is derived from the renormalisation of the soft function S, that can be read

off eq. (4.15)

I 2
108 = = [ S (0(0) = [0 (0406%) + Somplas (7)o 31 - 52)].
(4.22)
The equation above clarifies the meaning of the subscript A, which symbolises
the contour of the lightlike Wilson loop in the definition of the soft function in
eq. that defines I'y. This notation will be used throughout this chapter
and it will be generalised for different contours. I', is known to two loops

by direct computation of the equation above

as\2 C; 202

- 56
')y = <?> Z (—2[)04-2 — 2—7Tfnf +Cy |:2_7 - C3:|) + O(O{Z’), (423)

where C; is the quadratic Casimir dependent on the representation of the Wilson

lines in eq. (4.13). Using the results in eqs. (4.11]) and (4.23) we determine v,/ 7
to two loops. First for quarks we have

¢ _ (2 3CF | (0s)? 16 76 1769
7J/J_(7r> 4 +<7r> CaCr 24 1 864

+ Ch (—37@ + 3743 + 3%) — CpTing (9 + E) } +0(a)). (4.24)
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Then for gluons,

o (Vi oy (9N e (MG G 13T
s =(5) 0+ (5) {CA( 21 45
CQ 23)_CFTfTLf

+Catyny (E “w)

} +O(a?). (4.25)
We have thus isolated the hard-collinear singularities of the form factor and
found the quantity 7,7 that governs this behaviour for quark and for gluons
according to eq. . We emphasises that in contrast to the conventional
collinear anomalous dimension 74 given in eq. , which is specific to the
form factor (recall egs. and ([4.7))), the hard-collinear anomalous dimension
vy, defined here is process independent. This universality will now be put to
use. In the next section we will consider the factorisation of parton distribution
functions (PDFs) at large « where we will use the above two-loop results for 74 17

and 9 /7 &iven in egs. 1} and 1) respectively, and ultimately identify the
eikonal anomalous dimension relevant to the PDF evolution.

4.3 Parton Distribution Functions at Large x

Parton distribution functions, f4p(z), describe the probability of finding parton
A with momentum fraction x inside hadron (or parton) B. We will be interested
here in PDF evolution, which is the same for the partonic and for the hadronic
quantities, and will therefore consider partonic PDFs. PDFs are inherently
defined at cross-section level with the need to combine real and virtual radiation
to cancel soft singularities such that only pure collinear singularities associated
with the massless initial-state parton are kept. We will see that in the elastic
limit, x — 1, the contributions from different regions factorise and claim that
the hard-collinear behaviour of the initial-state partons is described by 7,7, the

same anomalous dimension we identified in the factorisation of the form factor.
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4.3.1 Definition

The light-cone PDF for a quark (gluon) in a parton P of momentum p with

longitudinal momentum fraction z is given by [168]

1 [dy _, -
3 (@0 = [ She P Pl (yu)y Vol 0140 P) (4.26)
1 dy _.
30,0 = — [ L PG ) W 0GP OIP) . (427

The Wilson-line operator W, is defined in eq. and |P) is either an on-
shell quark or gluon, P = ¢q,g. We take the lightlike momentum p to be in the
(+) direction and then the velocity four-vector u is in the (—) direction. It is
worthwhile noting here that the bare PDFs j'??re(:c,e) are scaleless. This will
be used later in the context of factorisation. They are renormalised through a

convolution,

fir(z, 1) / —ZJ] z as,e)f;’are(x/z €), (4.28)

where Z;; is a renormalisation factor, removing the UV divergences from the
bare PDF in the MS scheme and fj, is the renormalised PDF. From Z;;(z, v, €)

we can get the splitting functions,

d

Vdz
dlogquk(x’aS’e) = 2;/1 ?]Djj/<25,Oés)Zj/k(aj/z’a&e). (429)

The RG evolution of the PDFs is governed by the DGLAP equations [81-83]:

dlog ;Lfﬂ’“ - 22 / (2, 5) fr(/ 2, o). (4.30)

The DGLAP splitting kernels Pj;, are known to three loops [19,[33}[138
with some recent results at four loops ,,.
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p+(1*x*w) p+(l— )
+ = Disc
p+w

Figure 4.2: The vertex correction for the one-loop quark PDF. The left-hand
side is the standard sum over cuts equating to the discontinuity of the amplitude.
The double line is the Wilson line while the solid black line is a quark.

4.3.2 Perturbative calculation at large x

In the limit # — 1 the diagonal terms in the splitting functions, F,, and P,
feature divergent contributions [86}[173H175], namely

Py = 2 1 B §(1— x) + O (log(1 - 7)), (4.31)
(1—2)s
where the label ¢ = ¢, g indicates quarks and gluons, respectively, and the plus

distribution is defined as usual, see e.g. [83].

The splitting functions are determined from the UV singularities of the PDF's
defined in egs. (4.26)) and , which can be computed perturbatively. We can

relate these definitions to time-ordered products by the discontinuity in x,

1

;qare(:c,e) = Discxé / ;iyre’y‘”p" (PIT [1hg(yu)y - uWu(y, 0)0q(0)] |p) . (4.32)

This relation, which is illustrated diagrammatically in Figure [£.2], can be derived
as follows. One first splits the Wilson line in eq. into two Wilson lines that
extend to infinity, W, (y, co)W, (00, 0), one then inserts a complete set of states
between them and finally identifies the result as the discontinuity of the time-
ordered product. This relies on the fact that the condition z < 1 selects the cuts
with positive energy ,. One can think that the coefficient By in eq.
is entirely determined by the contribution of the virtual diagrams, such as the
second term in the left-handside in Figure however the explicit calculation

will lead to a different conclusion.

At one loop, the relevant diagram is shown in the right-hand side of Figure [4.2]

which in Feynman gauge reads

fig.1 iscds ddq pi(Py —q4)
Ju =D OF/ e @) (=) (0—F) -0 (g 5
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where we used p and k respectively to denote the incoming and outgoing quark
momenta, and ¢ the gluon momentum. For brevity, we also drop the superscript
bare and the -+i0 prescription on each propagator. It is straightforward to
compute the integral over ¢_ by complex analysis. This places a bound on ¢, i.e.
p+ > q+ > 0. The qp integral is scaleless but as we are interested only in the UV

divergence it is simply a matter of replacing,

dd72 1 “E ]
/ ar ‘ (4.34)

——— = -
@y (@m)ie

We then scale out p, by defining ¢, = p,w to produce an elegant integral

representation,

. ey 111 1—w

w' = Dise = CFEZ/O e T )1 -7 —w i) (4.35)
where we have absorbed the (e7#47)¢ factors in the MS coupling and reinstated
the —+i0 prescription. The representation in eq. has the advantage of
compactly displaying the sum over cuts: individual cuts can be isolated by
computing the residues corresponding to each of the propagator poles. Using

partial fractioning,

1 1 1 1 1
| - _ | (4.36)
l-z2+i0l-2—-—w+10 w\l—-z—-—w+i0 1—-2+10
so the full discontinuity of the integrand equals,

1 1 1
Di = —(—27mi) (0(1 —z —w) — (1 — 4.
lscl—a:—l—zOl—x—w—l—iO w< mi) (01 —z —w) =o(1 —z))  (4.37)

and we find

2T € 11—z w

. %%( —— 1 dwl‘—“’). (438)
0

Here the first term is a real emission cut, while the second, a virtual correction. As
usual, the endpoint divergence in the first term is combined with the divergence

as w — 0 in the second to give,

1

f fig. 1 _ %OF
4 4t €

((L +26(1 — ) — 2) . (4.39)

1—x).

We emphasise that it is ambiguous to determine which cuts have contributed to

the 0(1 — x) term, as its coefficient is only finite after the cancellation of the soft
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divergences between the real and the virtual cuts.

We combine eq. with the mirror diagram representing the correction of the
right vertex, which yields an identical result, and with the box-type diagram,
which does not contribute to divergent terms at large x. We complete the
calculation of the (bare) PDF by including the two diagrams featuring radiative

corrections on the external legs

SE:(ZQ—1)5(1—;E):—4

aq

> Cré(l —x), (4.40)
e

where we used the wavefunction renormalisation Z5 at one loop. The expression

of the UV singularities of the bare PDF at one loop reads

O‘S(/ﬁ)

bare _ 6(1 . ZL') +
dme

qq

4
Cr ( +35(1—$)+O((1—x)0)) + 0(a?).
(1—ax)+
(4.41)
Following eq. (4.28), we derive the renormalisation factor Z,, that cancels the

ultraviolet divergence in the equation above

as(p1?)
4re

Zy=0(1—2x)— Cr ((1 —4x)+ +30(1 —x)+ O((1 — :13)0)) + 0(a?).

(4.42)
Finally, we obtain the splitting function by computing the derivative with respect
to the renormalisation scale eq. , which yields the well-known result for the
qq splitting function

A

4 0 Oé2
Pyo() = 7Cr (m +35(1 —2) + O((1 — 2) )> + 0@,  (4.43)

The one-loop calculation with on-shell states is straightforward but at two loops
and beyond it becomes complicated to disentangle the UV from the IR in the
transverse integrals. To regularise the IR we can take the initial states to be off-
shell p? # 0. The intermediate expressions become more verbose but introduce no
major conceptual issues. As the states are now unphysical the correlators become
gauge dependent. It means that the running of the gauge parameter, £ — Z4€ has
to be taken into account in O(€°) finite terms. A similar observation was made
in [33]. Using this method we are able to arrive at the integral representation
similar to eq. for each two-loop diagram. For two loops it is a two parameter

integral with integrals over the plus component of the two loop momenta. As an
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Figure 4.3: The diagram f\2"©.

example, the diagram in Figure can be represented as

i L(e)(26) [* ~ _ e
(2),(e -D LC C / dud 1=2e(1 _ \1=¢(] — €.,—¢€
Jaq iseo LAl T(l+e Jo ydzy (1 —y) (1 —2)"%

1-—2z
Mz +i0)(1—z—y+i0)(1—z—yz+i0)

(4.44)

The three denominators correspond to the three Wilson-line propagators after
integration over the (—) and transverse components of the two loop momenta.
We distinguish the contribution of the real emission and the ones of the virtual
corrections by applying partial fractioning as in eq. (4.36). The discontinuity of
the first propagator in eq. is proportional to §(1 — ) and it determines the
virtual contribution. The other two propagators in eq. correspond to real
emissions. Each term features infrared divergences, which cancel in the sum of
all cuts. Furthermore, we notice that the real emission cuts yield UV poles that
are proportional to 6(1 —z) and therefore contribute to the P,, splitting function.
This particular calculation is detailed in Appendix [C.1], where we also present the

full two-loop results for quarks and gluons, diagram by diagram.

Our final result for the splitting functions egs. (C.19) and (C.22) reproduces
the known results [83,[1381145][169-171]. These previous splitting function

calculations have been performed using different methods, including extracting

them from corresponding deep inelastic structure-function calculations [145], by
means of the operator product expansion [138-141}/144}169171], by means of

light-cone axial gauge [L77,[178], or by relating them to splitting amplitudes [179].
To our knowledge, our direct calculation is the first of its kind. This method

has the advantage to show that not all the diagrams contribute to the singular
behaviour of the splitting functions in eq. (4.31) and that the coefficient Bs

includes both the virtual and the real corrections.
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4.3.3 Factorisation

As r — 1 the momentum of the final-state parton tends to the initial-state
one, meaning that the contribution from soft gluon radiation dominates. It then
implies a factorisation of the renormalised PDF's at large x, allowing us to separate
the hard-collinear divergences from the soft divergences [86}[180]. In the following
we shall only consider diagonal splitting functions and since the formulae apply
to both quarks and gluons we shall drop the subscript j7 on the partonic PDF
and related quantities and only specialise when needed. To factorise the PDFs

we shall transform into Mellin space,

FIN) = /O dra 1 f(z), (4.45)

where convolutions become products. In this space the divergent terms become,

N
(1—2):

The large-z limit corresponds to the large-N limit. The factorisation works in

(l—z)—1 — —log N — g (4.46)

much the same way as the form factor by defining two jet functions and two
corresponding eikonal jet functions along with a soft function ,

(2p-n)? 2
~ 2p.n2 Jz 22 7058(/1’ )76
F(N, ) —H((nz—z),as(/f)) 11 <(25:)2 )
M i:L,R\JL( n2 7as(M2)7€>
& B up 2 log N
« 5 (N, ) e) + 0 (2

where the four-velocity 3 is in the p direction and L and R indicate which
side of the cut the jet functions are (see Figure . The renormalised parton
distribution functions are defined as pure counterterms in minimal subtraction
schemes, because they can only depend on the factorisation scale. Since the hard
function H and the jet functions J; are the only functions with finite terms it
must mean that their non-divergent terms cancel such that eq. contains
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only poles,

+0 (IO]gVN> (4.48)

where J|p0le has the same meaning as in eq. , that it is only the poles of the
jet function. As in the case of the form factor, the soft function S resums the
emission of gluons with vanishing momenta in the eikonal approximation. We
shall shortly see however that while its ultraviolet behaviour is qualitatively the
same as that of the form-factor soft function in eq. , its infrared behaviour

is qualitatively different, as it presents only single poles.

The function Sy is defined by the Mellin transform of the z—space soft function

S (0 2 ()] = () [ 2O (5 i 12),6).
(4.49)

where W is the Wilson loop with M—shaped contour, see Figure (in ref.

it is defined in the axial gauge),
Wi (8- i, u(12),€) = (O] [Wi(+00,5)Waly, 0)Ws(0, ~00)] [0) .~ (4:50)

Note that the time-ordering operation here acts on the product of the three Wilson
lines together. The soft function can be written in this way, despite coming from

a cross-section definition because of the particular relation between path-ordering

and time-ordering [173].

The definition determines two important properties concerning the analytic
structure of Wp, as argued in [173]. First of all, the soft function has support in
the physical region with x < 1 only if the singularities of W are located on the
positive imaginary axis in the complex y—plane. Indeed, if this is the case, for
x > 1 we can close the integration contour in y in eq. through the lower
half-plane getting a vanishing result. Furthermore, the reality of the soft function
implies that Wp is unchanged by the transformation y — —y followed by complex

conjugation. Both these conditions are satisfied if W is a holomorphic function
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in the variable
ply) =i(u- By —i0) = (p(—y))". (4.51)

In Section [4.4 we show that we can write the renormalised Wr as,

log Wi = —% /OMQ dA—Aj {2%usp(ozs (A%, €))log <%) + T (22, 6))} :
(4.52)

where the factor v/2 was introduced in order to identify y as the MS renormal-
isation scale. The quantity I'n will admit Casimir scaling to three loops and
the scaling is determined by the representation of the Wilson lines in eq. (4.50).
Following ref. , the soft function S in the limit of large N, which is conjugate
to the behaviour of W at large y through the Fourier transform in eq. , is
obtained to leading power in N by replacing y — —i/N in eq. , which leads
to

. 1 [# d\2 NuB -u
log S = — 5/0 5% {2’Ycusp(6¥s (AQ,e))log ( N u) + T ()\2’6))}

+0 (bva) (4.53)

so that S, admits the following evolution equation

d & 2 f-u _ 2
Ndu lOg SI_I - 2f>/cusp (as (:u )) log (Nlu\/ip . u) FFI (as (PJ ))

N2 ) log N
- /0 Vq/cusp (as (/\ 7€)> + O < N ) . (454>

Note that the UV behaviour of Sn is double logarithmic: the right-hand side of
eq. is dominated by Yeusp(cvs(1?)) log u? and therefore it has the same UV
behaviour as the one of the form-factor soft function S in eq. . However, in
contrast with eq. , the argument of the logarithm in eq. is independent
of A and thus the IR behaviour in eq. is single logarithmic. Of course, it
must be so also in view of eq. : there both the renormalised PDF on the
left-hand side and the hard-collinear factor J|,oe/J feature single poles. The

distinct UV and IR behaviour in S is associated to the presence of a length scale
y in the definition of the soft function eq. . The soft function of the form
factor does not involve any scale and therefore eq. has double logarithmic
behaviour both in the UV and in the IR.
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As before with the form factor, we seek to isolate the hard-collinear and the purely
soft contributions from the Mellin transform of the splitting functions
in eq. (£.29), P(N, ). The following argument is in the spirit of . As
mentioned earlier, the bare PDFs fbare(N ,€) formally vanish because they are
scaleless in dimensional regularisation . They feature UV divergences which
are renormalised by the splitting functions P(N,a,) through Z(N,as,€), see
eq. . They are also infrared divergent because there are massless on-shell
incoming partons. The IR divergences are the same as in the renormalised PDF's
described by eq. . In perturbation theory it must mean that in fbare(N ,€)
the IR poles match the UV poles. In a minimal subtraction scheme the factor Z
in eq. ([£.28) consists of only poles. We are then able to construct f*¢(N, ) in a
way that separates the UV from the IR,

Foure(N) = Z(N)! { ( 11 J‘—l> 50(V) + O <1°§VN ) } (4.55)

- i
uv R i=L,R ,

-~

IR

where we have suppressed the dependence on «y, the renormalisation scale p, the
kinematic dependence of the functions and €. Let us now consider the logarithm
of both sides of eq. and compute the derivative with respect to log (1),
using the evolution equation for the ratio of jet functions in eq. . The terms

of the form ,
B d\? 9
[ 02 02.9), (4.56)

cancel between u% log S and ,u% log % The bare PDFs do not depend on the

renormalisation scale so by using eqgs. (4.54)), (4.30)), and (4.20]) we get,

0 = u-L 1og e ()

Y

- V2p-n B-u (10gN)
= —2P(N)+2 — 2Ycusp | N]|-Tr+0
(N) + 27577 — 27 p0g< 5n Varu n N

(4.57)

The kinematic dependence in the argument of the logarithm cancels upon

identifying % = %i = g—:. We now require the Mellin transform of eq. (4.31]) at

large N [B6,173 [173),

- log N
P(N) = —Yeusplog N + Bs + O ( Oif ) . (4.58)
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Substituting this into eq. the dependence on ~eus, drops. This shows that
the factor v/2 present in eq. is indeed necessary for j to be identified as MS
scale. Comparing the non-logarithmic terms in eqgs. and we finally
arrive at the relation,

2Bs = 2v5/5 — I'n. (4.59)

The above equation mirrors the form factor equation for v in eq. .

both equations the same hard-collinear anomalous dimension 7,7 is present. We
now proceed to use its universality to extract I'n at two loops from the above
equation. As in the form factor case to specialise to quarks or gluons we simply

add a superscript © = ¢,g. Up to two loops the expressions for By may be read
off the results in eq. (C.19) and eq. (C.22)) of the calculation in the appendix, in
agreement with refs. [138-145]. They read

2
g _ [ %s As 16 3¢ 17
B6_(7r) CF+(7T) {CACF<12 1 +96
3G, 3G G2
2 —_—— —
+CF( 1 + 5 +32) CFTfnf<3+24>}—|—O( )

g _ % ~ g 3<3 _ C’ATfnf _ C’FTfnf 3
35_(W)b0+(ﬁ) {aa(Pg+3) -5 sl | o),
(4.60)

Substituting these results into eq. ([£.59) along with the values of +/ /7 calculated
in eq. (4.24)) and eq. (4.25) we arrive at the same quantity for I'n for quarks and

gluons up to an overall Casimir scaling:

S ? Cz 7
o= (%) {S (-2t~ F1ims+ 0 [ 32 - 46 ) b +0@d. o

The fact that Casimir scaling is recovered is expected of course, as this quantity
is defined by Wilson lines. Nevertheless, recovering it by subtracting non-eikonal
quantities is a non-trivial consistency check. It is worthwhile noting that only the
(3 term is different between X2 and I', in eq. - The factor of two is present
because there are two cusp Contrlbutlons for the ' contour as opposed to one for

the A contour. The different coefficient in front of (3 will be discussed further in

Section [4.5

We have found the anomalous dimension that controls the non-collinear soft
divergences of the diagonal DGLAP kernels by separating it from the hard-

collinear behaviour that is identical to that in the form factor. We shall now
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verify the above result, eq. (4.61)), by computing it directly.

4.4 Explicit Calculation of I'

In this section we derive the integral representation of the renormalised
Wilson loop W defined in eq. and we verify the two-loop result of eq.
for the anomalous dimension I'm with a direct calculation. This provides a
consistency check of eq. , which follows from the all-order factorisation

in eq. (@47,

The derivation of eq. consists of two parts: firstly we will compute the bare
diagrams and the UV counterterms related to the renormalisation of the QCD
coupling constant, then we will subtract the short-distance singularities associated
with the Wilson-line operators, thus completing the renormalisation of log Wp.
The non-Abelian exponentiation theorem [59H61,[182] allows us to determine
directly log Wr by computing only the webs that capture the maximally non-
Abelian colour factors of each Feynman diagram, as defined in . Moreover,
log Wr has a simpler singularity structure compared to W, which allows us to

setup the renormalisation procedure directly at the level of the webs.

We introduce the following parameterisation for the contour of the Wilson loop
Wn

0 y Brt t € (—00,0)
B B x“(t) = utt t e (O,y) (462)
yul + Bt —y) t € (y,+o0)

We use the following Feynman rules in configuration space (c.f. the momentum
space rule in eq. (2.31])) for the gluon propagator in Feynman gauge and for the
gluon emission from the eikonal lines, respectively

N

S . 4.63
[—CEQ + Z-O]lfe gﬂ ( )

% =19, T"v" /ddz / d\ 0%z — 29 — M), (4.64)
0

zo

where T is the SU(N) generator in the appropriate representation and N =
T'(1—e¢)
T 4p2—e
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In Section we consider the one-loop calculation of log (Wn) and then
establish its general form before and after renormalisation. In Section [4.4.3] we
perform the calculation at two loops, verifying the general structure and obtaining
an explicit result for ' consistent with eq. .

4.4.1 One-loop calculation

As a direct consequence of the Feynman rules given above, all the diagrams that
feature a gluon exchange between two lines with the same lightlike velocity v are
proportional to v? and therefore they are automatically zero. At one loop there

will be only two non-vanishing webs contributing to log (W)

0 Y 0 Y

dg) _ : dg) _

which differ only by a translation and therefore yield the same result

1D (0 5y = () (- 8) CT =) [t [ ds (<28 us a0y
0 0
(4.65)

where C;, with ¢« = A, F is the quadratic Casimir in the adjoint or in the
fundamental representation. We notice that the integral over the parameter
t diverges both in the UV limit ¢ — 0 and in the IR regime ¢t — oo. This
fact is a consequence of the absence of any scale associated with the integration
over an infinite Wilson line and it implies that the bare diagram in eq.
yields a vanishing contribution. Nevertheless, the diagram is non-trivial after the
renormalisation procedure, which subtracts the divergence for ¢ — 0 and allows
us to define uniquely the integrand in eq. . In order to expose the analytic
structure of eq. in terms of the variable p defined in eq. , we rotate
the path along the negative imaginary axis in the complex t—plane. Then we
change variables t = —1 \/§)\, s = —1 \/§ui, obtaining

o T —e¢) [* d\ (V3 do
400 p.6) = =2 a2y 0 |75 awm

The complete result for log (Wr) at one loop is given by twice the contribution
of eq. (4.66)). It is convenient to write it with the factor (4me?#)¢ absorbed into
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the MS running coupling as follows

bare ozs(,uz) —€ < dA % do 2\ € 2
logWhare = — =2 2em7E O (1 — ) — — (Aop®)" + O(a?). (4.67)
7 o ANJo O

The label “bare” reminds us that eq. (4.67) still has the UV divergences associated
to the cusps of the Wilson loop in eq. (4.62), which must be subtracted before
IR singularities can be identified. Indeed, it is convenient to show explicitly that
eq. (4.67) is independent on the renormalisation scale, by writing the running

coupling as

o) e

—€ 1 8 —4€ € ’
as (1?) = (PAo) ™ o ( ) + 2 (o) (1= (u*Xo)) as (—) +O(a?),
which leads to the expression

4N [V do ag (L&
log Wr™ = _Ci/o By /0 ) ?U # e T(1—€) + 0(a7).  (4.69)

4.4.2 Exponentiation and renormalisation

The integrand in eq. is finite in the limit ¢ — 0 and the singularities of
log W arise only after the integration over A\, . In particular, following the
coordinate-space analysis of refs. [148,[183,[184], we distinguish three possible
types of singular behaviour: cusp singularities, which are associated to the limit
A ~ ¢ — 0 in which all the vertices approach a cusp of the Wilson loop;
collinear singularities, which arise if either A or o approaches the cusp, while
the other parameter stays finite; finally, the large-distance region with A\ — oo,
which determines the IR pole. At higher perturbative orders, individual diagrams
feature soft and collinear subdivergences when a subset of the vertices approaches
one of these limits, which give rise to poles of higher order compared to those
in eq. . However, owing to its exponentiation property, upon considering
the logarithm of the Wilson-line correlator, all the subdivergences cancel in the
sum of webs at each perturbative order [148][180},/184/186]. It is always possible

to organise the calculation of log (Wr) such that the integral over the position of

the vertex that is located at the largest distance along the infinite Wilson line is
performed last. Thus, the single infrared pole will be generated only in the final
integration, while all the subdivergences of individual diagrams cancel in the sum
of webs. This procedure, which follows the prescriptions of ref. , allows us
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to generalise the representation of eq. (4.69)) to all orders

0o £ 1
log Whare = / ar [ d—aw as | — ) ,€), (4.70)
0o ANJo O Ao

where the integrand w has an expansion in e that involves only non-negative

OB S S CLE) P

The representation eq. (4.70) is analogous to the one derived in [14§] for the
soft function of the form factor, defined in eq. (4.13)), with the difference that in

the latter case the integrals over both the parameters are unbounded. This is

powers

consistent with the presence of a double pole of long-distance origin in the form
factor, as compared to the single pole of this type arising in eq. (4.52)).

We now proceed with the renormalisation of the singularities of short-distance
origin that are present in the bare expression of eq. . Following , we
notice that the integral of wy in eq. generates double UV poles, which are
subtracted by cutting the integration domain with A < i, o< i in eq. (4.70)),
where p defines the subtraction point. The contributions of w; with ¢ > 1
generate at most one UV singularity, which we subtract in the last integration.
In conclusion we derive the representation for the sum of renormalised webs in

configuration space

<A\ (V5 do 1 > d\ 1
s W) = 5 7 e (&S (r)> A (“5 (r)>
’ ) ' (4.72)

where we performed the integral over o by expanding the coupling constant

Qg (/\—10) at the scale %, as in eq. (4.68)

1 1Y /A 1\ b [N\ > A€
s\ Y] —Ws | 1o - s | o — | — 1—(— O 3 .
(4.73)
Eq. (4.72) directly leads to the result eq. (4.52) from the web integrals in

coordinate space and it allows us to extract the coefficients vYeusp and I'm. At
one-loop order, we expand the web in eq. (4.69) and we get

w <as (i> ,e) S ST%) Ci[1+0()]+0(al). (4.74)

Ao
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Applying the renormalisation procedure described above we find

log Wier = _G[rdd [ d—aas S O(a?)
™ Jiu By Yp O Ao
as(1?) C; PR
= -1 4.
AW +0(a), (4.75)

where we have used the fact that Wr consists of pure poles. The pole is infrared

and is exactly the one that replicates the soft divergence of the PDF. We compare
eq. (4.75) with the poles of eq. (4.52)) getting

Yeusp = % Cz +0 (0{3) )

(4.76)
In=0-a,+0(a?).

4.4.3 Two-loop calculation

We now apply the renormalisation procedure to the two-loop webs. Only a few

diagrams contribute to this order and they are represented below

d(2)

o
£\

d(2)

dy) = dy) =

</

where we omit the configurations that are simply obtained by mirror symmetry.
The diagrams in the first row of eq. are computed following the same steps
as the one-loop case. As in the one-loop case, we write the bare webs using the
representation in eq. and we define the integrand w§2) of diagram dl(?) as

< d\ (V3 d 1/\ 2
Panpa= [ 5 [TL(HED ) w0,
o AJo o

7
From now on we drop the arguments on d; and w; which are understood to have
the above arguments unless otherwise stated. The first diagram, dé% is obtained

from eq. (4.65) by replacing the gluon propagator eq. (4.63]) with the one-loop
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expression

Cal5 = 3¢) — AngTy(1 — €)|

17 g,

X [—;1:2 +40
(4.79)

where we discarded the longitudinal components of the propagator, that are

proportional to 0,0,, because they decouple from the amplitude via Ward
identities [148]. The result is

w(2) el F2(1 - E)
SE "8e(1 — 2¢)(3 — 2¢)

[OA(S — 3¢) — dn;Ty(1 — e)], (4.80)

in agreement with the results of [146,[148]. We notice immediately that,
at two-loop level, the representation eq. of the individual webs has
subdivergences, which are manifest as explicit poles in the integrand w;. In this
case the subdivergence is cancelled by the coupling renormalisation in the QCD
Lagrangian of eq. that will be taken into account later in this section. The

double gluon exchange diagrams give

r2(1 -

W) = ~C; CA%, (4.81)
201 —

W) = —C; 0A¥ E — B(e,1+ e)} . (4.82)

Both results are in agreement with the maximally non-Abelian contributions of

the diagrams W, and W, reported in [146]. The integrand of the diagram d% in
eq. ([4.81]) has poles of short-distance origin, associated to the configuration shown

below, where the two innermost vertices on the Wilson lines are in proximity of

the cusp

(2),subdiv
UJX2 —

These subdivergences are not related to QCD renormalisation and they will cancel
in the sum of all webs. Eq. (4.82)) is finite when ¢ — 0 as we discuss more in
detail in Appendix |C.2.2, The diagrams in the second row of eq. (4.77)) involve
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the three-gluon vertex, whose Feynman rule in configuration space reads

aiaza . 0 . 0
vﬂll,u;u?? (Il, X, ZL’3) = gsfa1a2a3 |: (_Zax_lf?’ + Zax—?) G pa

(00N, (oo
Zﬁxgl Z@a?g” Guaps Zax§2 Zax’f2 Gpzpa | -

(4.83)

We notice that the diagrams dgs) and d%) are not related by symmetry
transformations, because the former has two gluon attachments on the segment
of finite length y, while the latter has two emissions from the semi-infinite line.

We begin with the calculation of dgi)

dy; —Ky/dd/ dtsu {/ dsl/ sz (852u> /dSQ/ o ((%m)

[—(usy — 2)* +i0] e [—(us; — 2)* +i0] e [—(Bts — 2)* +i0] e

(4.84)

—

where we introduced the normalisation factor Ky = igtSEaN3y - 3. We write

the differential operators in eq. (4.84) in terms of total derivatives as follows

1+e d

[~ 42z usm + 0] = a

—2% +2z-usy +i0] T, (4.85)

u.
0s9 1

which allows us to perform immediately the integrals over s; and over si,
respectively in the first and in the second term in curly brackets, by evaluating the
appropriate propagator at the endpoints of the integration interval. Eq. (4.84))

becomes
dg/i) = dg) (yu,u-B)+ dg)(O,u - B) — ng)(u ), (4.86)
in terms of the functions
0 y L
di? (v, u- B IKY/ddZ/ dt/ ds [—(Bt — 2)*]"
—o0 0
x [—(us — 2)*]" ' [—(v— z)2]6_1 , (4.87)

d?( Ky/dd / dt/ ds [— (Bt — 2)2] 7" [~ (us — 2)°]* 7%, (4.88)

where the prescription +:¢0 is understood in every factor appearing in the

integrals. Each function has a clear diagrammatic interpretation, because the
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integrands are products of scalar propagators in coordinate space. Thus, dgfs)
is decomposed in a sum of diagrams, as discussed in [14§], giving in one-to-one
correspondence with the three terms in eq. (4.86)

: (4.89)

where the dashed lines represent scalar propagators and dotted vertices on the
Wilson line indicate that the position of the endpoint of the propagator is not
be integrated over. We integrate eqs. and over the position z
of the three-gluon vertex and write the results in the two-dimensional integral
representation in eq. . We obtain

wg> (yu,u-B) = C’ZCAF(%;E%) [B(—e, 1—¢€)— B(—¢1+ e)], (4.90a)

w@(0,u- §) = CiCy L= ?26(1 ~ 2910, (4.90b)
@) I )

wg (u-f) = OZCA16€(1 o) (4.90c)

Let us discuss the singularity structure of the separate integrals above. The only
one which is separately finite is eq. , which corresponds to the integrand of
the first diagram in eq. (4.89). Eq. has single and double poles that will
cancel the corresponding singularities in eq. . Indeed, the second diagram in
eq. , which is associated to the integrand in eq. , has subdivergences
of short distance origin when the three-gluon vertex approaches the cusp, similarly
to the behaviour shown by diagram d% The single pole in eq. is entirely
due to the presence of a one-particle-irreducible UV divergent subgraph in the last
diagram in eq. . Therefore, this singularity is removed by the counterterms
of the QCD Lagrangian. Using these results, the total contribution of the diagram

dgi) in eq. (4.86) agrees with the corresponding expression for diagram W, in [146
and in the notation of eq. (4.78) it reads

['(1—¢)

(2) - OO —— )
. AT6e2(1 — 2¢)

[F(l ) —2ar(2 - 200(1 + o). (4.91)

The next diagram, d%), differs from eq. (4.84]) only by the presence of the two

gluon attachments on the semi-infinite Wilson line rather than on the finite one.
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Once again, we write the three gluon vertex in terms of total derivative and we

decompose the diagram as

Y

42 = dP0,u- ) —2d3 (u- ) =

where we have used the functions defined in egs. and . The
comparison of eqs. and shows that two diagrams differ only by
the term featuring a scalar propagator connected to the endpoint of the Wilson
line. In the case of dgL), the Wilson line is infinite and this term is absent. This
result was shown in , by introducing a cutoff on the infinite line and carefully
taking the limit to infinity, which does not commute with the integration over z.

The same conclusion is found by computing d%) in momentum space, as shown
in Appendix [C.2.1} Using eqs. (4.90a)), (4.90bf) and (4.90c]) we get

T(1—e€) [T(1-2e)T() T(1—
wi) = C,Cy (86 9 11 26) © _ 1(_2:) . (4.93)

By construction, the expression above has the same singularities as wg,i ), because
the integrand of the diagram d%) differs from dg,zs) only by the function in
eq. (4.90al), which is finite.

We compute the diagram d:(a? using the same procedure

dy) = 2d2 (yu,u- B) = / + \ (4.94)

wl) = CZCAW [B(—e, 1—¢)— B(—e,1+ e)], (4.95)
€

getting

which is finite because it involves only the function in eq. (4.90a). We renormalise
the UV divergences associated with the QCD vertices and propagators by means

of the one-loop counterterm

11 4
|:§CA - § fnf] d(l), (496)

As

40—
ct 47re

where d™) is the result of the one-loop diagram eq. (4.66)).
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Finally, we sum all the diagrams depicted in eq. (4.77)), including the symmetric

configurations which are not shown there, getting

log WP = 24 + (2d§2§ +2d) + 2dY) + 245 + d) + d) + 2d§f)>,

= 2{d(1> +di) +2d) + dY) + dc?} +2d%) +d), (4.97)

where to get to the second line we used the identity 2d§i) = 2d§/2L) + d:(fs) that
is obtained by comparing eqs. , and eq. . The terms in curly
brackets in the final expression are the same that appear in the calculation of
the cusped Wilson loop with two semi-infinite lightlike lines, discussed in [148].
The last two contributions in eq. are special to the configuration of Wp,
where the semi-infinite lines are connected by a finite lightlike segment. The
final expression in eq. follows the decomposition of polygon-shaped Wilson
loops presented in . The distinction between the terms inside and outside the
curly brackets in eq. stems from the structure of their singularities. The
former ones give rise to cusp configurations characterised by double UV poles
and therefore they can be written in terms of the representation in eq.
with a finite integrand. The last contributions in eq generate at most a
single pole, associated to the configurations where all the vertices simultaneously
approach a lightlike segment, and therefore their combination will give rise to an
integrand of order € in eq. , as we verify by expanding eqs. (4.82)) and (4.95))

3
20f) + wy) = 5€CiCa G (4.98)

Substituting the results in eqs. (4.80]), (4.81), (4.82), (4.93) and (4.95) into
eq. (4.97)), the integral representation of the bare diagrams reads

s - 1 1y
IOgWIEare :Oz/ %/‘f {70-{045 (AG)HF(l _ 6)|:— 1+ Qs (Aa) @:|
0 0

™ ™ €

o (20 o (o - ez ()

T 4€%(3 — 8e + 4€?)

— Tyny F?E2__8?£(4_€2€)} } (4.99)

where kK = e~“72. By expanding the equation above in ¢ we get
X d\ [Vido [ (s (55) €
1 Wbare — - - Ao 1 s O 3
og W /0 A/0 g{( - >[+2c2+ (€)
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- (as ST%)Y {véuip +e(F OQ) +0(& )] }

(4.100)
where F is the two-loop contribution to I'n eq. -
Ci 56 202

e = 5 ( 2boCa — S s+ Ca [7 - 4@}) (4.101)

Now we renormalise using the procedure outlined in the one-loop case, see
eq. (1.72). For the terms of O(e?), the cusp terms, we integrate from 1/u on
both integrals. For all the subsequent terms, the o integral is performed first,

integrating from 0 to \%. Then the parameter A integrated from % By doing

(%)
V2
-G () 217 e (29)

(4.102)

this we get,

1
log Wi = (%) 1

Again it is reminded that we have used the fact that Wn consists of pure poles.
The above is reproduced by eq. (4.52))

og W~ | . e premlan@ o)tog (22) + Tofaule ). (@103)

By this point we have determined the anomalous dimension ' in two different
ways, first by extracting it from the evolution of PDF's using the universality of the

hard-collinear poles J/J and now by a direct computation of the renormalisation

of the corresponding Wilson-line correlator.

4.5 Relating Wilson-line Geometries to Physical

Quantities

In this section we establish a set of relations between different physical quantities,
based on the properties of the Wilson loops discussed in Section In

Section [4.5.1] we will show that the single infrared poles in the quark and in
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the gluon form factors are related to the corresponding diagonal term in the
DGLAP kernels by a precise eikonal quantity that is associated to the geometry
of the Wilson loops with lightlike lines. The latter emerges as the difference
between the anomalous dimensions associated with a wedged Wilson loop with
two semi-infinite lines and a M—shaped Wilson loop. This difference, in turn, can
be expressed as the anomalous dimension associated with a parallelogram (or
more generally) a polygon with lightlike segments. In Section we use this
relation to extract the anomalous dimensions associated with a polygon Wilson
loop to three loops, which is related to the soft anomalous dimension appearing
in the resummation of threshold logarithms in the Drell-Yan process. Finally we

extract the fermionic components of the four-loop result in the planar limit.

4.5.1 Relating the form factor with the DGLAP kernels

The direct calculation of the anomalous dimension I'ry in Section [£.4] confirms the

identity in eq. (4.59))
2B5 = 27J/j - Fm, (4104)

which follows from the factorisation of the parton distribution functions for large
x. This identity is interpreted as a decomposition of Bs, which was defined in
eq. (4.58)) as the coefficient of the delta distribution in the splitting functions
in the limit z — 1, into the contribution of the hard-collinear radiation, 7,7,
and the purely soft one, which is encoded by I'. In eq. we suppressed
the dependence on the external parton: the relation holds for both quarks and
gluons. The hard-collinear contribution v, is process independent, as discussed

in Section [4.2.2] in the context of the infrared factorisation of the form factor.

Indeed, eq. (4.21)) provides the analogue of eq. (4.104])
Ve = 2757 —Th, (4.105)

where 7 is the anomalous dimension that determines the single poles of the form

factor. By comparing eq. (4.104) and eq. (4.105)) we derive the relation
Y6 —2Bs =THh — T'4, (4.106)

which connects the single poles in the form factor with the diagonal DGLAP
kernels. The two quantities appearing on the left-hand side of eq. (4.106)) depend

on both the spin and the colour representation of the external particles in a non-
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trivial way. In contrast, the right-hand side involves the anomalous dimensions
of two eikonal quantities, which depend only on the colour representation of the
particles and obey Casimir scaling up to three loops. Therefore, eq. allows
us to interpret the function fu eq. , which was introduced in , as the
difference fe = 7 — 2Bs, in terms of the anomalous dimensions of Wilson-line
correlators. By substituting the two-loop expressions of I'n and I', from direct
calculations, respectively in eqs. (4.61) and , into the right-hand side of
eq. (4.106]) we reproduced the two-loop result obtained from the difference of v
and Bjs in ref. , namely

_ (% o e 7. 101 e 1 3
felk—<?> Cz|:OA< o 43+ 54)+Tfnf(6 27):|+O(as)’

(4.107)

thus verifying eq. (4.106]) through two loops.

The difference of anomalous dimensions appearing on the right-hand side of
eq. has also a geometric interpretation, which suggests to define it as
universal quantity. Following the analysis of the singularities of the Wilson loops
with lightlike lines detailed in ref. and the calculation in Section above,
the anomalous dimensions I' and I', receive contributions only from the singular
configurations, in which all the vertices approach one lightlike line. In this
sense, these anomalous dimensions depend only on the features of each lightlike
line separately and they are insensitive to the global shape of the Wilson loop.
Both I'7 and I'\ encode the collinear singularities associated with the two semi-
infinite lightlike lines, but the former receives an additional contribution from
the configurations that are collinear to the finite segment. Such singularities
differ from the ones originating from infinite lines by the presence of endpoint
contributions, as we showed by computing the diagrams dgs ) and d%) in eqs.
and . It is therefore useful to define the difference of I'm and I's as the
anomalous dimension that captures the collinear singularities of a finite lightlike
segment. Similarly, we define also the collinear anomalous dimension associated

to infinite lines in terms of I', only

o =1, —T,, (4.108)
e T
rinf = 7A (4.109)

The two-loop expression of ' coincides with the right-hand side of eq. (4.107),
while T2 to the same order is obtained from eq. (4.23). Comparing the two
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expressions we get

3 s\’
rfin — o pinf _ 3 (O‘—> CiCalz+ 0O (a?). (4.110)
T
The factor of two multiplying ' is consistent with the fact that the finite
Wilson line is obtained as a contour involving two semi-infinite lines. The

remaining discrepancy proportional to (3 is related to the endpoint contributions

in eq. ([I99).

The geometric interpretation of I'i' and I allows one to derive the anomalous
dimensions of Wilson loops with the contour consisting of arbitrary, possibly
open, polygons with lightlike lines. The first example is the parallelogram-
shaped Wilson loop W4 that features four lightlike segments of finite length (see
Figure , whose renormalisation was given in [146]

dlog (Wo)

G = Y [log (4*(x - y +i€)) +log (u?(—x -y +ig))] — o,

(4.111)

where x and y are the four-vectors that define the sides of the parallelogram.

,u

I'o receives contributions from the collinear divergences of four finite segments in

lightlike directions, therefore it is
o =470 =4 (T —T,). (4.112)

By replacing in the equation above the two-loop value of ' in eq. ([#.107), we
reproduce the results of 'y in ref. [146]. In the case of a generic polygonal Wilson
loop W; with lightlike lines the evolution equation in eq. (4.111]) generalises [146)

148
dlog W,

=g — ;%usp log (1’4 - Ta-1) — T, (4.113)

where the sum is extended over all the cusps in the contour and z,, x,_; define the
sides adjacent to the cusp a. The anomalous dimension I'; collects all the collinear
contributions and it can be derived by summing the appropriate multiples of '

and ' given by the number of finite and infinite sides, respectively.

Finally, having identified the difference I'n — ', = %D in eq. (4.112), we may

notice that eq. (4.106]) provides yet another identity relating the form factor, the

107



DGLAP kernel and the Wilson loop W5 computed in ref. |146], namely

r
g — 2Bs = ID’ (4.114)

thus explaining the numerical agreement of these two quantities computed

respectively in ref. and in ref. [146].

4.5.2 The Drell-Yan soft function and I'; beyond two loops

We move to relate the abstract W5 to a physical quantity relevant for soft-
gluon resummation. It is known that the Drell-Yan cross-section factorises near
threshold (see also the more recent literature in the Soft Collinear Effective
Theory [7,[18]). The hard-collinear region is described by the PDFs, the hard
function by a squared timelike form factor and the soft region by Wilson lines
in the DY configuration [136]. See eq. for the schematic formulation. This
leads to the all-order relation v — 2Bs = I'py/2, where I'py is the anomalous
dimension associated to the DY configuration of Wilson lines (see e.g. [61[7]).

Using eq. (4.114]) we have,
Mpy = Io. (4.115)

The ideas in Section will allow us to test the identification in eq. (4.115).
The three-loop value for v4 — 2B; was first extracted in using the three-loop

results for 74 and By. If we expand I'g as,

ro=3% (O‘?) T, (4.116)

n=0

using the values in we can then state

rd) =o (4.117)
116 202 20, 56
IO =C|Cy | ——22 =T+ == ) +T = 4.118
0 A R T R L N T (4.118)
2202 11GC;  6325C 329 136781
re =c;|c? 2 — — 12
o’ =G {CA 5 3 648 12 25T e

12¢2 707¢,  91¢; 5921
CansTy | ——22 —
T+ Cany f( 5 162 27 2916
A2 G 38¢G 1711
T 24 22 >
+ Crny f<5 +2+ 9 516
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+n3T? (—1352 - 2§§3 - ‘;’;8) } (4.119)
As mentioned in Section the two-loop I'?Y was calculated explicitly using
Wilson lines in and agrees with the extracted value in eq. . The
three-loop e displayed in eq. should be regarded as a prediction to be
verified by direct calculation. For the Drell-Yan configuration of Wilson lines,
I'py was computed at two loops in and three loops in [21]. The three-
loop I'py coincides with eq. . This is a non-trivial three-loop test of the
identification in eq. , we arrive at the same value for ['Y) by two different
paths: the difference v — 2Bs = I'n — I'x = I'n/4 and the explicit calculation of

At four loops the complete picture in QCD for I'g is unknown but in planar
N = 4 super Yang-Mills the four-loop result for the difference 75 — 2Bs was
found in [42]. We identify this as [R2e V=4 and quote the result here,

lanar N'=4 g 2 Qg 3 11
I'y =— (_CA) 7(3 + (_CA> (12C5 + —C2C3>
T T 3
. t 7495 13 45
- (%CA) (1—6§7 + 7@&, + Z<3<4) + O(a?) (4.120)

It is well-known that to reach the above result one can simply take the QCD result

and take the limit N, — oo and the maximal transcendental weight term at each
order in agz. We can do this at two and three loops by looking at eqgs. (4.107)) and

(4.119) respectively.

Above three loops, strict Casimir scaling has been proven to fail ,. As
such, we need to distinguish between quarks and gluons or rather particles in
the fundamental and adjoint representation. We focus on the quark case. To
compute T we need B and 7, at four loops. The state of the art is that some
colour structures are known for both B , and v} in the planar limit,
N, — oco. Using the values in , we can extract the following terms in that

limit for F(D4)’Q,

247315 51529 102205 7589
F(Sl)’q|N§nf= G2 N G G4

55296 11664 31104 768
185¢;  103CCs  15611¢s  22¢2
- - 4.121
288 144 3456 9 ( )
329069  22447¢,  6325(; 35Cs  107¢; 116G
| IR - - - 4.122
o INEE = 5030188 T 03312 | 7776 906 144 72 ( )
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. 5056 G 25G | G
[m]

Nend= T 06244 648 1044 T 27

(4.123)

where we have used Ty = 3. We are unable to deduce the N, In§ term as it is
unknown for v but it is known for By . In the planar limit N. — oo the
quartic Casimirs d%)p = (d“Fde)2 contribute to the colour factor in eq. (4.121)

since,

N} 7N, 4 3
>. (4.124)

F 4 c
ZFF _ T _ = 2
" Ng ”ff((a 6 N, N

It means that we are unable to fully construct the Casimir scaling of N2n;. The
full (planar and non-planar) contribution of the quartic Casimir colour factor d&f}
to v¢ is known but not to Bs. Only the low-N values of the splitting functions
O Yeusp 18 known . In it was also found that, within numerical errors,
quartic Casimir contribution to the cusp anomalous dimension did not depend on
the representation, i.e. it is the same for gluons and quarks. It was conjectured
that although Casimir scaling is violated there is a generalised version where

quartic factors are simply exchanged depending on gluon or quarks,

quarks <+ gluons

4 4

Np Na
dyy  dyy
—_ H —_
ny Nr nyg N4

(4.125)

where Np/4 denote the dimensions of the corresponding representations, namely
Nr = N, =Cy and Ny = N> — 1 = 2N.Cp. The relation in eq. (4.106) may
be used as an interesting test for a generalised Casimir scaling extension to the

anomalous dimension I'.

However, the quartic Casimirs do not appear in the nfc or ni} terms of eqgs. (4.122))
and (4.123). We are then able to use these terms for a leading- N, Casimir-scaling
part of Y. We put these terms together with the conjectured generalised scaling

to create an ansatz for I’ (54),

505 G 25C 20
MW= nd|-—— 22 223 O
0 "\ T13122 324 972 | 27

329069 22447 6325 35 107 11
G, 63256 35C 107G, 4243)#__]

N.n? —
+ Ny (1119744 46656 3888 48 72 36
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dY o gW ,
+ nfifrg*%d“ + Afrg»w (4.126)

N; N;
where the ellipsis represents all terms subleading in N,, including the n} and ng)c

terms, which are not found from the quartic Casimirs when they are expanded

in N,.

4.6 Conclusion

In this chapter we have presented a detailed study of the infrared factorisation of
form factors and PDF's at large x using a common formalism. By identifying the
universal contributions from the hard-collinear region in both quantities, those

controlled by the anomalous dimension v;,7, we were able to derive the relation

in eq. (4.106]),

r
Yo —2Bs=Th—T) = ID : (4.127)

That is, the difference between anomalous dimension describing single poles
in the on-shell form factor of quarks (gluons) and that associated with the
d(1 — ) term in the large-z limit of the quark (gluon) diagonal DGLAP splitting
function, reduces to a difference between corresponding eikonal quantities, ',
and I'n defined directly in terms of Wilson loops. Furthermore, based on the
configuration-space origin of the contributions to these two eikonal quantities we
concluded that their difference simply corresponds to the anomalous dimension
associated with a closed polygonal Wilson loop, such as the parallelogram
analysed first in ref. [146]. The contributions of the semi-infinite Wilson lines
in W and W, cancel in the difference. We emphasise that while each of the
quantities on the left-hand side of eq. depends in a non-trivial way on
the spin of the partons, in addition to their colour representations, yielding very
different results for quarks and for gluons, the eikonal quantities, by definition,
depend only on the colour representation of these partons, and in particular admit
Casimir scaling through three loops. We stress that the relation in eq. is
expected to hold to all orders in perturbation theory. An obvious next step is to

compute I'g to three loops in order to check it explicitly to this order.

In establishing the relation between I'y and I'n — I'y we used the fact that
singularities arise only from configurations where all the vertices approach a cusp

or one where they all approach a particular lightlike segment [148]. This underlies
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the cancellation of the two infinite segments, isolating a remaining finite segment.
The very same logic may be applied to other, more complicated Wilson-line
geometries involving both finite and semi-infinite lightlike segments. Specifically,
the double pole is always governed by 7eusp while the single-pole anomalous
dimension is written as a sum of terms, building blocks, each corresponding to

either a finite or semi-infinite segment, which contribute I'i* and ' respectively.

o o’
An example of such a construction with only finite segments can be found in
refs. [187-189], where polygons of up to six sides were computed to two loops.
Following our discussion in Section it may interesting to explicitly compute
other Wilson-line configurations involving both finite and infinite segments. A
simple example of direct relevance to physics is the non-forward amplitude,

generalising the M configuration.

One interesting aspect that we have encountered is that Wy behaves very
differently in the ultraviolet as compared to the infrared, as can be seen explicitly
in eq. . In the ultraviolet, one encounters a double logarithmic dependence
on the scale p2, originating from the cusp singularity, while in the infrared there
is just a single pole. This stands in sharp contrast to the W, corresponding to
the soft function of the form factor (or more generally, in soft functions
corresponding to multi-leg amplitudes) where the infrared behaviour entails a
double pole, mirroring the ultraviolet. The absence of any distance scale in
the relevant Wilson-line contour implies such mirroring. Indeed the symmetry
between the ultraviolet and the infrared is broken in Wy due to the presence
of the scale 3 -y. The single-pole character of W can be seen as intermediate
in comparing Wy, which lacking infinite rays, is infrared finite, to W,, which is

double logarithmic.

The relation in eq. between the soft anomalous dimension in Drell-Yan
production and the parallelogram Wy is interesting in its own right. The Drell-
Yan soft function involves real gluon emission diagrams where the propagators
connecting the amplitude side to the complex-conjugate one are cut, while in
Wpg there are no cut propagators. A possible way to explairﬂ this is to recall
that a parallelogram made of four lightlike segments features two cusps where
the exchanged gluons span timelike distances and two others where gluons span
spacelike distances. The latter correspond to diagrams that feature in wirtual
corrections to the Drell-Yan process (these propagators are not cut). In turn, the

former are naturally time-ordered, because there path-ordering coincides with

®We would like to thank Gregory Korchemsky for proposing this explanation.
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time-ordering (just as in the case of the Wp, discussed below eq. ) and
could be computed using either cut propagators or ordinary ones, giving the
same answer. This way the calculation of the parallelogram can be mapped into
that of the Drell-Yan soft function. It would be interesting to turn this argument
into a proof relating the two Wilson line configurations directly. It would also

be interesting to explore in this context the conformal mapping techniques of

ref. ,.

Another interesting direction to explore is the connection between partonic
amplitudes in the Regge limit and anomalous dimensions of Wilson lines. In
particular, one would like to derive the relation between the Regge trajectory

and W, in eq. (4.4) and understand its generalisation to higher orders.

113



Chapter 5

Concluding Remarks

In this thesis we studied the infrared divergent properties of scattering amplitudes

by examining Wilson line correlators. The correlators appear in factorisation

formula, see egs. (1.10]) and ([1.20)), which can be computed in perturbation theory.

One main use for the study of infrared singularities is the ability to resum large

logarithms that appear in special kinematic limits of processes.

Aside from the phenomenological motivation, the correlators themselves exhibit
interesting mathematical structure. For non-lightlike lines we have calculated the
first orders in the perturbative expansion of the n-leg soft function S,,, defined
in eq. . Although the two-loop result has been known for some time ,
in Chapter [2] we calculated it using the novel differential equations method. We
found that the regulator employed complicates the resulting system. Focusing
solely on the contribution to the physical quantity, the single pole, allowed for its
calculation. However, if one was to employ this method at three loops we need
higher order terms in the e expansion and similar simplifications would not be

seel.

With three loop calculations of multiple non-lightlike Wilson line correlators in
mind we looked at another approach, which was called bootstrapping. In Chapter[3]
we presented new observations on the types of functions that can appear, which
extended the known work applying to multiple gluon exchange webs . We
saw an interesting interplay between the rational and transcendental part of the
functions. Bypassing the Feynman integral expansion entirely and concentrating
solely on the analytical structure of the correlators is clearly the efficient method.

Greater understanding of the function space, including rational factors, is needed
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to limit the growth of a potential ansatz at high loop orders.

In Chapter [] we switched attention to the factorisation of massless scattering
amplitudes. Here, lightlike Wilson line correlators capture the relevant diver-
gences. In studying an often misunderstood relation between single poles of form
factors and of §(1 — x) in diagonal splitting functions, we found an intriguing
result about the singular regions of these correlators, see eq. . They are
completely localised, either at a cusp or collinear to a line. They do not depend

on the global geometrical configuration of the lines.

Continuing to improve our understanding of Wilson line correlators, whether that
be the types of functions that appear or the origin of divergences, will aid the
deeper question of infrared singularities and give insights into some aspects of the

rich mathematical structure of scattering amplitudes.
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Appendix A

Differential Equation Details

A.1 [1,2, 1]-web Differential Equation

In this section we give the explicit constituents of the differential equation for the

(1,2, 1]-web in eq. (2.58).

A.1.1 Uniform weight basis

The integrals in the uniform weight basis g»?! written in terms of the 71121

family are
1,2,1 1,2,1
9% = _62(25 - 1)21£111 :
1,2,1 1 . 1,2,1
ghh? = —gel(2e = 1)(de — 3)(de - 3)ikvt
G2 _ QeI @I (ense+3e— 1) (2 = 1) (e = 3)elipg) (darze — a1z — Ge+ 1)
3 3(a12 — 1) 6a12 6(a12 — 1)
1,2,1 1,2,1 1,2,1
G2 _ (3¢ — 1)e2rlh 21 | 2Aenz +1)(2e — 1)(de - 3)e2rit2 N 2ar + 1)(2¢ — 1)2e211 2
4 3s(a12) 3(a2 — 1) 3(a2 — 1)
3 .[1,2,1 1,2,1
1,2,1] _ 631{1102] (2¢ — 1)63&1111]
5 s(a2) s(a1z2)
1,2,1
[1,2,1] _ (2 — 1)1?1110]1
96 = ————

s(aa3)
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1,2,1 1,2,1
9[17271] B (2e — 1)6241001]1 (a2se —3e+1) 62I£1001]2((123€ +3¢—1)
7

3(a23 — 1)avas 63
(26 —1)(4e - 3)5]%11’0261] (4aoze — a3 — 6e + 1)
6(0423 — 1)

9[1’271] _ 2(a23 + 1)(2¢ — 1)621£11’()261]1 (30(%36 — agg — 4anze + ag3 + 3e — 1)
8 3(a23 — 1)aas
 (Be— el 4 o2 +1)(2¢ = 1)(4e 3)e2 501

3s(aa3) 3(aag — 1)
1,2,1 1,2,1 1,2,1
g[1’2’1] _ (o2 — 1)631£1102]1 (4e — 1)6341101]1 63I£1101]2
o 20128(23) 2s(a23) 25(aa3)
3 ,[1,2,1] 3 ,[1,2,1]
9[1,271] __ € Iiioer € Iiiioie
10 2a23s(a12) 28(0412)
3[[1a271]
gzt = 3¢ e
11 4s(a12)s(a23)
[1,2,1]
m21 _ i
12 s(a12)s(aes)

A.1.2 Matrices

The dlog matrices c£1’2’1] corresponding to the uniform weight basis in eq.
are
000 0000000 0 0 0 0 0 0 000 0 0 0 0 0
000 0000000 0 0 00 0 0 000 0 0 0 0 0
00 -2 0000000 0 0 01 0 -1 000 0 0 0 0 0
000 2000000 0 0 0 4 -4 1 000 0 0 0 0 0
000 0200000 0 0 —2 =6 12 -3 =20 0 0 0 0 0 0
Jr2a_ [ 0o 0 0000000 0 0 2 00 0 0 000 0 0 0 0 0
1 000 0000000 0 O 2 000 0 0 000 0 0 0 0 0
000 0000000 0 0 00 0 0 000 0 0 0 0 0
000 000000020 00 0 0 000 -0 0 % 0
000 0000002 0 0 -1 0 3 =2 0 0-30 -1 -1 -2 0
000 0000000 2 0 00 0 0 000 ¢ 3 0 1 0
000 0000000 0 2 0 0 0 0 020 0 —4 0 -4 -2
(A.1la)
0000000000 0 0 0000000 000 0 0
0000000000 0 0 0000000 000 0 0
0002000000 0 0 0000000 000 0 0
0002000000 0 0 0000000 000 0 0
0000200000 0 0 0000000 000 0 0
21| 0000000000 0 0 2l 0000000 000 0 0
3 0000000000 0 0 4 000000 -21000 0 0
0000000000 0 0 000000 0 200 0 0
0000000000 20 0000000 020 0 0
0000000002 0 0 0000000 0 00 20
0000000000 2 0 0000000 0 00 2 0
0000000000 0 2 0000000 0 00 %0
(A.1b)
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A.1.3

e* term of g[12 2

The integral 912 21 evaluates to eqs. (2.67) and 1} at order € and ¢

respectively. The order e result is

1,2,1],(4
g£2 1,(4) _

*8C3(5G(0, a12) + G(O, Ozzg) — 2G(1, Oz23)) + 32G(71, —1,0, alg)G(O, a23)
—32G(-1,0,0,a12)G(0, a23) + 32G(-1, 1,0, 0412)6'(0 ag3) — 32G(0,—1,0,a12)G(0, a23)
~32¢4(0, 1,0, a12)G(0, azs) + 16G(0, aa3) G (0 0, a12> —16G(0, a23)G(0, 1 — az3, 0, a12)

71— a23

—16G(0, a3)G (0, "‘332;1,0,0412> + 16G(0, a23)G ( 7_1,0 0412)

+ 32G(1,-1,0, Oqg)G(O, @23) — 32G(1, 0,0, a12)G(0, a23) + 32G(1, 1,0, 0412)G(07 0423)

— %iﬂB(G(O, a12) — G(1,a23)) + 16G(0,0, a12)(G(0,0, aa3) — 2G(—1,0, ae23))

+in2 (G(o, @12)(3G(0, a3+ 2ir) +2G (0, = a12) 12G(0,1—ass, a12) —2G (o, a1 ,m)
e ( g2z, a12> — 2inG(1, ag) + 2G(0,0, ans) — 2G(0, 1, az3) — 2G(1,0, an3) + 7r2)

+ 32G(—1,0,212)(G(—1,0, 23) — G(1,0, 23)) + 32G(1,0, 12)(G(—1,0, a23) — G(1,0, v23))

~16(G(0,0,a25) ~G(1,0,02))G (0, %21, 615) ~16(G(0,0, a28) ~ G(1,0, 023))G (0, 52225, 12 )

@23

1 16G(1,0, a23)G (0 a12> 1 16G(1,0, a23)G(0,1 — azs, a12)

R
T
= 572 (=3G(0,012)G(~1, a23) + G(0,012)G(0, a23) + G(0, 012)G(1, a35) + G(~1,012)G(0, a23)
+ G(1,212)G(0, a23) + 2G(0,1 — ap3, av12) + 2G ( 71,!112> —3G(—1,0,a12) + G(0,0, a12)
—3G(1,0, 012) + G(—1,0, a23) — 2G(0,0, arz3) + 3G(1,0, aa3) — 2G(1, 1, m))

+ 16G(0, a12)(2G(—1,—1,0, aa3) — 2G(—1,1,0, a23) + G(0, 1,0, aa3) — 2G(1, 1,0, a23)
1 G(1,0,0,a23)) + 16G ( I

(e 5}

,0,0 a12)

—16G (0, #, 1,0,a12) £ 16G(0,1 — ass, 1,0, a12) — 16G< az=1 o, a12>

- 16G< 2222.0,0, a12> + 16G(  222i01,0, a12> + 6410g2(2)G(0, 012)G(0, aas)
+ L log(2) ((—120(—1,0,a12) + 12G(0,0, a12) — 12G(1,0, a12) + 72) G(0, a23)

—3G(0,012) (4G(—1,0, a23) — 4G(1,0, cv23) + 72))
+ ].GG(O, 0,0,0, 0423) — 166’(07 0,1,0, a23) — ].GG(O, 1,0,0, 0423) + ].GG(O, 1,1,0, 0423)

—16G(1,0,0,0, a23) + 16G(1,0,1,0, a23) + 16G(1,1,0,0, ans) — 32G(1,1,1,0, an3) + %

which has been checked numerically using pySecDec [129].

A.2

[3gv]-web Differential Equation

In this section we solve the lower sectors of the [3gv]-web system. One set of basis
integrals for this 20-dimensional system are the first 20 integrals in eq. (2.92)). We

shall label these 20 as f9’l. Proceeding as before we find a transformation to

a uniform weight basis f39?) = TgB9’l The new basis satisfies the differential

equation

| ABgv]|
dgll = " cidlog (AP gl (A.2)

i=1



The alphabet is

3gv
ABgY] ={ons — 1,2, 002+ 1,003 — 1, 003, 03 + 1, o2 + aq3 — 1, aqp013 — a0 + 1,
a3 — a3 + 1, aary — g — s, e — 1, oz, crps + 1, g + arpg — 1,
o3 + oy — 1, o0 — g + 1, aaaz — oz + 1, appraz — aga — s,

303 — iz + 1, aigrag — oz + 1, aryzraz — iz — CY23} (A~3)

with | AB9!|= 21. Note that this is just the alphabet for the lower integrals. The

20 uniform weight integals are

1
g = 5 (3267 —48¢% 1 22¢ - 3) 5y

1
GBIl = (1 - 26)2e21139Y) — 5626 — 1) (16€° — 16¢ +3) eyl

B (1— 2022150 7 21839 (a12 + 3)e — 1) N (8¢2 — 10 + 3) e1[}9%) (a2 (4 — 1) — 6e + 1)
3 3(az — 1) 6art2 6(a12 — 1)
o __2ona £ 1) (8 <10+ 3) I 2ann + )0 —20% L @e- sl
* 3(a12 — 1) 3(a12 — 1) 3s(a12)
3
oo _ ST
5 s(a12)
g3 — (1= 2022190 L0 ((aas +3)e — 1) 4 (8% ~ 10+ 3) eI58 ) (a5 (de = 1) — 6e +1)
6 3(a1z3 — 1) 6a13 6(a13 —1)
oo __2ens +1) (8 =103 I 2fana + 10— 202, - Dl
7 3(a13 — 1) 3(a13 — 1) 3s(a13)
3
8 s(a13)
Gl _ _ (1 —2¢)2e211394) | B 2B (o +3)e — 1) N (862 — 10 + 3) eI[39%) (a3 (4e — 1) — 6 4 1)
o 3(aa3 — 1) 6oz 6(cvaz — 1)
sgu] _ 223 +1) (8¢ —10c 4 3) 215 2(azs + 11— 20°ING,  (Be = DELG
10 3(aaz — 1) 3(aaz — 1) 3s(a3)
3
[Bgv] _ _%
11 S(O{23)
g[3gv] _ (a13 — 1)53I£1%7{]12 (4e — 1)631£1%qi]11 631{1%1{]21
12 2a138(23) 2s(a23) 2s(a23)
3
[3gv] _ 35341%1{]12
13 4s(a13)s(a23)
3 3
[3gv] _ 53[%1%1{]12 _ 53[%1%1{]21
14 -

_2a23s(a13) 2s(a13)
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3 7[3gv] 3 7[3gv] 3 7[39v]
[3gv] _ (23 = 1)e’ I 19, (4e = De*ligi11 | € Ligian

B 20238(12) 2s(a12) 2s(a12)
[3gv]

g[SHU] _ 3¢’ I1g1191

16 4s(a12)s(aa3)
[3gv] [3gv]

9[3791)]_ 151191 76311091311

i =

7201125(0[23) 2s(a23)

3 3 3
[3gv] (012 — 1)631([)1912]11 (4e — 1)531([)1%11]11 E31([)1%]12

18 2a128(@13) 2s(a13) 2s(a13)
[3gv] [3gv]

g[‘ gvl _ 6310191211 . 63101917112

19 20i138(av12) 2s(av12)
[3gv]

9[39v] _ 3¢3 151511

20 4s(a12)s(a13)

The boundary for solving the system is chosen to be ajo = 1, ay3 = 1 and apg = 1.

Defining the boundary vector b*9*! to be gl*9*! evaluated at the boundary we find

) 9 8 16
b[13g l _ _ g -+ §€ log(2) RPN S ? log2<2>
o (1246 64 log®(2)

9 9

+ 4m%log(2) | + O(eh) (A.4a)

o 14 56
b[23g ] :E — Eelog(2) + 62

s (292G 448

o g los'(2) - %”2 log(2) | + O(€") (A.4b)

bR = O(e")  Vi>3 (A.4c)

1372 N 1121og*(2)
3 3

and, as a simple check, we notice that they are of uniform weight. The specific

matrices that appear in are
000 000000000000 0000 0 000 0 00000000000 0 0 0 0 0
000 000000000000 0 000 0 000 0 00000000000 0 0 0 0 0
00-2000000000000 0000 0 100 -3 00000000000 0 0 0 0 0
000 200000000000 0 000 0 4041 00000000000 0 0 0 0 0
000 020000000000 0 000 0 1164 20000000000 0 0 0 0 0
000 000000000000 0000 0 000 0 00000000000 0 0 0 0 0
000 000000000000 0 000 0 000 0 00000000000 0 0 0 0 0
000 000000000000 0000 0 000 0 00000000000 0 0 0 0 0
000 000000000000 0 000 0 000 0 00000000000 0 0 0 0 0

0[3971]: 000 000000000000 0 000 0 6[3971]: 000 0 00000000000 0 0 0 0 0

1 000 000000000000 0000 0 2 000 0 00000000000 0 0 0 0 0
000 000000000000 0000 0 000 0 00000000000 0 0 0 0 0
000 000000000000 0000 0 000 0 00000000000 0 0 0 0 0
000 000000000000 0000 0 000 0 00000000000 0 0 0 0 0
000 000000000002 0 000 0 1134 0000300000-1-2-10 0 0
000 000000000000 2 000 0 000 0 00000-200000 1 3 0 0 0
000 000000000000 -2000 0 000 0 00000%00000 2 0 0 0 0
000 000000000000 0 000 2 000 0 00200000000 0 0 0 0 2
000 000000000000 0 002 0 1333 03000000000 0 0 -1 -1 -3
000 000000000000 0 000 2 000 0 00-200000000 0 0 3 0 1




000000000000000 0 000 0 00000 0 0000000000000 0

000000000000000 0 000 0 00000 0 0000000000000 0
000200000000000 0 000 0 00000 0O O 000000000000 0
000200000000000 0 000 0 00000 0 O O0ODODODOCO O O0CO0O0O0O0O0 0
000020000000000 0 000 0 00000 O O ODO0DODO0OO0O0O0OO0DO0O0O0O0 0
000000D00DO0O0OO0OO0DO O 000 0 00000 -2 0 00000 0 000000 0
000000D00DO00DOO0COO0DO O 000 0 00000 0 200000 0 000000 0
00000000D00DO00COO0DO O 000 0 00000 0O 020000 0 000000 0
000000000000000 0 000 0 00000 0 0000000000000 0
6[39’11]7 000000000000000 0 000 0 C[ng]f 00000 0 0000000000000 0
3 0000000000O0O0COO0O 0O 000 0 4 00000 0O O 000000000000 0
00000000DO00O0OO0O 0 000 0 000000 0 00000-2000000 0
3
000000D00DO0O0OO0OO0DO 0O 000 0 00000 O OODODODO0O0 2 000000 0
000000D00DO00DOO0OO0O O 000 0 00000 0O O ODO0DODO0O0 0 200000 0
000000D00D00O0O0OO02 0 000 0 00000 0O O 000000000000 0
000000000000000 2 000 0 00000 0 0000000000000 0
000000000000000-2000 0 00000 0 0000000000000 0
000000000000000 0 000 -2 00000 0O 000000 O0CO00DO0O020 0
00000000O00DO0COO0DO 0 002 0 00000 0O O 000000 00O0O0GO0O0 5‘
000000D00DO0O0O0OO0DO 0 000 2 00000 O O ODODODO0DO0O0O0O0DO0O0O0O0 2
000 00O O O0O0OO0OO0OCO0OD O 0OCO00O0TO0C 0 0 000000000000 0 0O0O0O0O0O0 0
000 0 00O 0O 0O0OO0OO0OCO0OD O 0OCO00O0O0 0 0 000000000000 0 00O0O0O0CO0 0
000 000 0 00000 0 00000 0 0 0000000000000 000000 0
000 000 0 00000 0 00000 0 0 0000000000000 000000 0
000 000 0 00000 0 00000 0 0 000000000000 0 000000 0
100 0 0 0 100000 0 00000 0 0 000000300000 0 000000 0
4000 0-41 0O0O00O0O0DO0O O0CO0CD0DO0DTO0C 0 0 000000200000 0 000000 0
% % 0 0 0 -6 % -2 0 0 0 0 0 0 O0OO0O0O O 0 000000020000 0 000000 0
000 0 00O O 0O0OO0OO0OCO0OD O 0OCO00O0O0C 0 0 000000000000 0 0O0O0O0O0O0 0
000 00O O O0OODO0OODOTO0O 0O0O0CO0UO0D 0 0 I [SQU] 000000000000 0 000000 0

0000000000000 000000 0

000000 0 00%00 2 00000 0 0 000000000000 -2000000 0
000000 0 00203 1 00000 0 0 000000000000 2 000000 0
1400033 0300-1-2-10000 0 0 0000000000000 200000 0
000000 0 00000 0 00000 0 0 0000000000000 000000 0
000000 0 00000 0 00000 0 0 0000000000000 000000 0
000000 0 00000 0 00000 0 0 0000000000000 000000 0
133 00 3 00000 0 0000-1-1-% 000000000000 0 000020 0
000 %00 0 00000 0 00000 0 % 000000000000 0 000000 —2
000-200 0 00000 0 00000 3 1 0000000000000 000000

0 0 0000000000000000 00 0 0 0 00 0000000000000 0 0
0 0 0000000000000000 00 0 0 0 000000000000000 0 0
0 0 0000000000000000 00 0 0 0 000000000000000 0 0
0 0 0000000000000000 00 0 0 0 000000000000000 0 0
0 0 0000000000000000 00 0 0 0 000 000000000000 0 0
0 0 000 0 000000000000 0 0 0 0 0 0 0 0 000000000O0DO0C 0 0 0
0 0 000 0 00000000000 O0 0 0 0 0 0 0 0 0 00000000000 0 0 0
0 0 000 0000000000000 0 0 0 0 0 00 0000000000000 0 0
0 0 0000000000000000 00 0 0 0 00 0000000000000 0 0
0 0 0000000000000000 00 6[391’] 0 0 0 00 0000000000000 0 0
0 0 0000000000000000 00 0 0 0 000000000000000 0 0
0 0 0000000000000000 00 0 0 0 000 000000000000 0 0
0 0 0 00 0O OCOODODOOO0OO0OO0OOO O 0 0 0 0 0 0O 0 0 00000000O0DO0DO0 0 0 0
0 0 0O 00 0 000000000000 0 0 0 0 0 0 0 0 00000000000 0 0 0
0 0 000 0000000000000 0 0 0.0 0 000 000000000000 0 0
0 0 000 0000000000000 00 0 0 0 00 0000000000000 0 0
0 0 0000000000000000 00 0 0 0 00 0000000000000 0 0
I L -300-300000000000 -1 -10 0 0 0 00 0000000000000 0 0
L L 300-300000000000-1-10 ~1 -+ 3 20 300000000000 1 -1 %
% 3 200 300000000000 % % 0 4 2 4 2 0300000000000 -3 3 -1
0 0 0 00 0 0O 0000000000 0 0o 0 0 0O 0 0 00 0 0000000000 0 0 0
0 0 0 00 0 0 00000000000 (U 0 00 0 00 0 0000000000 0 0 0
0 0 0000 000000000000 0 0 0 00000 000000000000 0 0
0 0 0000 000000000000 0 0 0 00 000000000000000 0 0
0 0 0000 000000000000 0 0 0 00 000000000000000 0 0
0 0 0000 000000000000 0 0 0 00 000000000000000 0 0
0 0 0000 000000000000 0 0 0 00 000000000000000 0 0
0 0 0 00 0 0 00000000000 (U] 0 00 0 00 0 0000000000 0 0 0
0 0 0 00 0 0 0000000000 0 0 0 0 00 0 00 0 0000000000 0 0 0
6[3911]: 0 0 0000 000000000000 0 0 C[3QU]: 00 00 0000000000000 0 0 0
9 0 0 0000 000000000000 0 0 10 0 00 000000000000000 0 0
0 0 0000 000000000000 0 0 0 00 000000000000000 0 0
0 0 0000 000000000000 0 0 0 00 000000000000000 0 0
0 0 0000 000000000000 0 0 0 00 000000000000000 0 0
0 0 0 00 0 000000000000 0 0 0 00 0 00 0 0000000000 0 0 0
0 0 0 00 0 0 0000000000 0 0o 0 0 0O 0 0 00 0 0000000000 0 0 0
0 0 00 0 0O 0000000000 0 0o 0 0 0O 0 0 00 0 0000000000 0 0 0
13003 20000000000 -1 1 2 0 00 000000000000000 0 0
0 0000 00000000000 0 0 0 0 000000 0000000000
4 2 2£00-4 20000000000 % -3 -1 L34 204 20000000000
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000000000 00000000000 000000000 0 0 0 0 0 0 0 000

00000000 O 000 0 00 0 0000 000 0 00 0 00 0 0 0 0 0 0 0 0 00
000000000 0000000 0000 000000000 0 0 0 0 0 0 0 000
000000000 0000000 0000 000000000 0 0 0 0 0 0 0 000
000000000 0000000 0000 000000000 0 0 0 0 0 0 0 000
000000000 0000000 0000 000000000 0 0 0 0 0 0 0 000
000000000 00000000000 000000000 0 0 0 0 0 0 0 000
000000000 00000000000 000000000 0 0 0 0 0 0 0 000
00000000 -2 00010 000 0000 100 0 00 0 0 0 7% 0 0 0 0 0 0 0 00

C[ng]: 0O000O0ODODODO0OD 0O =200 0 00 0 0000 C[ng]: 100 0 00 0 0 -4 1 0 0 0 0 0 0 0 00
11 000000000 0200000 0000 12 100000062 20 0 0 0 0 000
000000000 0020000 0000 110003 00-33 0 -1 ~1 0 0 0 00
000000000 0002 000 0000 0000 00-200 0 0 0 3.0 0 0 00

1

000000000 000-20010 0000 000000 %00 0 0 0 0 0 0 0 00
000000000 00000020000 000 2% 00000 0 0 0 0 0 0 2 000
000000O0CO0C O 000 0 00 2 0000 000 7% 00 0 00 0 0 0 0 0 3 1 0 00
00000000 O 000 0 00 0 2000 % % 30 00 0 0 -3 ,; 0 0 0 0 -1 7% -1 0 0
000000000 00000000000 000000000 0 0 0 0 0 0 0 000
000000000 0000000 0000 000000000 0 0 0 0 0 0 0 000
000000000 0000000 0000 000000000 0 0 0 0 0 0 0 000
0000000000000 000 0000 0 0 0000000000000 0 0 00
0000000000000 000 0000 00 0000000000000 00 00
000D00D0O0D0O0DO0OD00O0 00 0 0000 0 0 000000 000000 O0O0O0O00
0O0000OD0OD0O0OD0OO0DO0D0D 0D 00 0 0000 0 0 000000 000000 O0OO0OO0OO0O0
0O0000OD0OD0OD0OD0ODO0DO0DO0D OD 00 0 0000 0 0 000000 000000 O0OO0ODO0OO0O0
0000000000000 000 0000 0 0 0000000000000 00 00
0000000000000 000 0000 0 0 0000000000000 0 0 00
0000000000000 000 0000 0 0 0000000000000 0 0 00
0000000005000 0000000 00 0000000000000 0 0 00

C[3QU]_ 000000000200 0 000 0000 C[ng] 0 0 000000 00000000000
13 000D00D00D00D0D20 0 00 0 0000 14 0 0 000000 0 00000 O0O0O0O00
0O000D0OD0OD0OD0OD0ODO0ODO02 0 00 0 0000 0 0 000000 000000 O0OO0OO0OO0O0
000000000000 2 00 0 0000 0 0 0000000000000 00 00
000000000000 -2000 0000 0 0000000 0000000000
000000000000 0 0020000 1 300000 -300000-10-100

3 H
0000000000000 00 2 0000 3 200000 00000 % 0 % 00
0000000000000 000 2000 L 300000 -300000-10-100
H
000D0O0D0O0DO0O0DO0ODO00O0 00 0 0000 0 000000 0 00000 O0O0O0 00

0000000000000 000 0000 0 0 000000 000000 00 0 00
000000000000 0 00 0 0 00 0 00000000 00

)

0 0000000000000 000000 0 0 0 000000000000 0 000

0 0000000000000 0000O00O 00 0 000000000000 0 000

0 0000000000000 O0000O00O 00 0 000000000000 0 000

0 00000000 000D00000000O 00 0 000000000000 0 000

00 000000000000 0000O00O 00 0 000000000000 0 000

00 000000000000 000000 00 0 000000000000 0 000

0 0 0000000000 00000000 0 0 0 000000000000 0 000

0 0 000 0 00 000000000 0 0 0 000000000000 0 000

0 0 000 0 00 000000000 0 0 0 000000000000 0 000

6[35’1’]_ 0 0 000 0 00 000000000 0[391’] 00 0 000000000000 0 000
15 0 0 000 0 00 000000000 16 00 0 000000000000 0 000
I Lt 000 -3 00-10-1000000 00 0 000000000000 0 000

L —2000 % 00 2 0 2000000 0 0 0 00000 0 000000 0 0 00

I L1000 -3 00 -10-1000000 0.0 0 000000000000 0 000

0 0000 0 0 00 0 00 000000 -5 -3 3 30000 3 00000 -1 % 100

0 0000 00 00 000000000 Z 2 5 20000300000 % -1 -200

0 000000 00000000000 0 0 0 000000000000 0 000

0 0000 00 00000000000 00 0 000000000000 0 000

0 00000 0000000000000 0O 00 0 000000000000 0 000

0 0000000000000 0000O00O 00 0 000000000000 0 000

0 0 0000000 000000 0 0000 00 0000000000000 0 000

0 0 0000000 000000 0 0000 0 000 00000000000 0 0 00

0 0 0000000 000000 0 0000 0.0 0000000000000 0 0200

0 0 0000000 000000 0 0000 0 00 000000000000 0 0200

0 0 0000000 000000 0 0000 000 000000000000 0 000

0 0 0000000 000000 0 0000 000 000000000000 0 000

0.0 0000000 000000 0 0000 0 00 000000000000 0 000

00 0000000 000000 0 0000 00 0000000000000 0 000

0 0 0000000 000000 0 0000 0 0 0000000000000 0 0 00

6[391’]_ 0 0 000000 000000 0 0000 C[3QU]_ 0 000 00000000000 0 0 00
17 00000000 000000 0 0000 18 000 000000000000 0 0200
00000000 000000 0 0000 00 000000000000 0 000
00000000 000000 0 0000 000 000000000000 0 000

00 000000 000000 0 0000 000 000000000000 0 000
00000000 000000 0 0000 000 000000000000 0 000

2 200000 -3 2 0000-2-14%2 000 -2 24 -20000%-20000-3-2-3200

1 3000003 20000 1 % <1000 0 0 0000000000000 0 0 00

0 0 000000 000000 0 0000 000 000000000000 0 0200

0 0 0000000 000000 0 0000 0.0 0000000000000 0 000

0 0 0000000 000000 0 0000 0 00 000000000000 0 000
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0 00000 00O0O00O0 0 0000000 0 0 0000000 000 0 0000000

0 0 000 0 00 0 00 0 0 0 00O0O0CO0O0 0 0000 0 00 0 0O 0 0 0 0 000000

0 0 000 0 00 0 00 0 0O 0 000000 0 0000 0 00 0 0O 0 0 0 0 000000
000000 000000 0 0000000 000000000 000 0 0000000

0 00000 000000 0 0000000 0 00000000 000 0 0000000

0 00000 000000 0 0000000 0 00000000 000 0 0000000

0 0 000 0 00 0 00 0 0 0 000O0O0O0 0 0000 0 00 0 00 0 0 0 O00DO0O0DO0CO

0 0 000 0 00 0 00 0 0 0 O00O0O0CO0O0 0 0000 0 00 0 0O 0 0 0 0 0000O0OO

0 0 000 0 00 0 00 0 0 0 00O0O0CO0O0 0 0000 0 00 0 0O 0 0 0 0 000000

[ng] — 0 0 000 0 00 0 00 0 0 0 O00O0O0OO0O0 [ng] — 0 0000 0 00 0 0O 0 0 0 0 000000
Clg - 0 0 000 0 0 0 0 00 0 0 0 000000 C20 - 0 0000 0 00 0 00 0 0 0 00O0O0O0CO
000000 000000 0 0000000 ~I 0003003 -$0-12 1000000

4 2 000-3 2 0-300-%-13%000000 42 2 000-300-3 % 0% 132000000

-1 -f000 3 %0 3001 % -1000000 0 00000000 000 0 0000000

0 0 000 0 00 0 000 0 0 O00O0O0OCO0CO 0 0000 0 00 0 0O 0 0 0 0 000O0DO0OO

0 0 000 0 00 0 00 0 0 0 000O00O0O0 0 0000 0 00 0 0O 0 0 0 0 0000O0O0

0 0 000 0 00 0 00 0 0 0 00O0O0O0O0 0 0000 0 00 0 0O 0 0 0 0 000000

0 0 000 0 00 0 000 0 0O O00O0O0OO0CO 0 0000 0 00 0 0O 0 0 0 0 000000
000000 000000 0 0000000 000000000 000 0 0000000

0 00000 000000 0 0000000 0 00000000 000 0 0000000

0 00000 O0OO0OO0OOOCO O 0 O00O0O0CO0TO0
0 00000 000000 O 0000000
0O 00000 000000 0 0000000
0O 00000 0 00000 0 0000000
0O 00000 0 00000 0 0000000
0 00000 O0OO0OO0OODCO O 0 O00O0O0COO
0 0O0000O0OO0OO0OO®ODO O 0 O00O0O0COO
0 00000 O0OO0OO0OO® OO O 0 O00O0O0COO
0 00000 O0OO0OO0OODOCO O 0 O00O0O0CO0TO0
C[SQU]: 0 00000 000 000 0O 0000000 (A 5k)
21 0 00000 000000 0 0000000 :
0O 00000 0 00000 0 0000000

0 00000 O0OO0OO0O®ODO O 0 O00O0O0COO
0 00000 O0OO0OO0OO®OO O 0 O00O0O0COTO
0 0O 0000O0OO0OO0OOOCO O 0 O00O0O0CO0O0
0 00000 000000 O 0000000
0 00000 000000 0 0000000
0O 00000 0 00000 0 0000000
0O 00000 0 00 000 0 0000000

A.3 Parameterisation of the [3gv]-web Integrand

In this appendix we explain in more detail the parameterisation used in

. We first decompose f; in terms of two lightlike vectors p; and po

B = p1+ po. (A.6)

Since 37 = 1 we have 2p;-p, = 1. Next, we parameterise 3, as a linear combination
of these vectors. As we define the a variables through 23, - By = — [ == — s
then

P2 = - Q12P3. (A.7)

a2
We have one Wilson line left to parameterise, 3. The vectors p; and p, do not
span fully the space occupied by §; and 3. We need vectors other than p; and
p2 in order to do so. To achieve this we will use the constituent spinors of p; and
po to define the new vectors. The following formalism is referred to the spinor-

for a more detailed introduction). Since both are

helicity formalism (see eg.

lightlike we can write them as

Plotd = N (A.8)

i%u =




where o# = (1,0) is the usual four-dimensional Pauli matrices and \; and ); are
two-dimensional vectors. In eq. we use the fact that rank 1 matrices can
be written as a product of two vectors. We then define new vectors from these
spinors, )\15\2 and )\25\1. These are both orthogonal to p; and p, which allows us
to parameterise 3 in terms of all of them

f3 = aipr + agps + a3%)\15\2 + @4%)\25\1- (A9)
The a; are given in egs. and . We have also used the angle-bracket
notation where A* — |i)* and (ij) = (i, |j)*. The explicit appearance of the
spinor products in eq. keeps it little group invariant without the need to
transform the pararmeters a;. In the spinor language, this transformation is
A — 2 and A — ;.
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Appendix B

Functions with letter y

In this section we present the functions that have at least one occurence of
the letter y in their symbol. These are constructed in Section [3.2 Each pure
polylogarithm functions in this class is labelled as wz(j )’k, which describes the i-th
function at weight j corresponding to a rational factor which is the k-th element
of the set

(r(a)een, r(@)°, ()= s()°M, ()0 ()0, (B.1)

The ng)’k functions are written in terms of MPLs and for brevity of the
expressions we drop the functional argument i.e. G, .0, = Goy.oa, ().

(n),2

i

(n),

; ! we give its value at o = 1. The types w and

For those of the first type w

wE")’g already vanish at @ = 1. As explained in Section [3.2] subtraction constants
(n),4

for the fourth type w; " are not consistent with symmetries.

B.1 Weight Three Functions

There are two functions at weight three. The only function at weight 3 with

rational factor r(a)®* s(a)° is

(3),3
w”" =G 10+ G100 — G110+ Gi—10 — Groo + G

1 1
+21og(2)G_1 — 210g(2)G1 + §C2G—1 - §C2G1

S[w?)’?’} =a®N®yY
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The only function at weight three with rational factor r(a)°d(a)s®d is

3),4
w§ M= G—LO,O - GLO,O

S[wig)’A‘] =a®@aly

B.2 Weight Four Functions

There are nine functions at weight four.

The only function at weight four with rational factor r(a)®V*" is

7 7 7
w§4)’1 =G_1-100— G-1100— G1-100+ Gr100 + ZC?’G_l - ZC?’GO + ZLCBGl

/1 23 1
w(1) = —4Li, (5) + (o log?(2) + 6% 6 log*(2)

S =a®avyay

The only function at weight four with rational factor r(a)°d¢ is

w§4)’2=*G71,71,71,0+G71,71,0,0*G71,71,1,0+G71,1,71,0*G71,1,0,0+Gfl,1,1,0+G1,71,71,0*G1,71,0,0
+G1,-1,1,0-G1,1,-1,0+G1,1,0,0—G1,1,1,0+2log?(2)G_1,0—2log?(2) Go,0+210g?(2)G1,0
—121log(2)G—1,—1,0+141og(2)G—1,0,0—1610og(2)G—-1,1,0+1410g(2)Go,—1,0+1410g(2)Go,1,0
—161l0g(2)G1,~1,0+1410g(2)G1,0,0—1210g(2)G1,1,0+ 332G 1,0+ 5CG -1, 1— 3G 11

!
*%CQGO,O*%<2G1,—1+%<2G1,0+%<2G1,1+7<2 log(2)G_1+7¢2 log(Z)G1*4Li4(%)*#

S =aeneyoy

even

There are three functions at weight four with rational factor r(a)®v"s(a)°% are

4),3 1 1
w§ ) =G-1,0,0,0—G1,0,0,0—5¢2G-1,0t5¢2G1,0

S[w§4)’3] =aRaRa®y

4),3 3 3
wé ) =G0,-1,0,0—Go,1,0,0+5C2G-1,0—5¢2G1,0

Swi?=a®a®y®a
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w§4)’3=3G71,71,71,0*3G71,71,0,0+3G71,71,1,0*2G71,0,71,0+2G71,0,0,0*2G71,0,1,0+G71,1,71,0
—G_-1,1,00+G-1,1,1,0—Go,-1,-1,0+Go0,-1,0,0—Go,-1,1,0+Go,1,—-1,0—Go0,1,0,0+G0,1,1,0
—G1,-1,-1,0+G1,-1,0,0—G1,-1,1,0+2G1,0,-1,0—2G1,0,0,0+2G1,0,1,0—3G1,1,-1,0
+3G1,1,0,0—3G1,1,1,0—410g*(2)G—1,0+410g?(2)G1,0—210g(2)G-1,~1,0+210g(2)G-1,1,0
+21og(2)Go,~1,0—210g(2)Go,1,0—210g(2)G1,-1,0+210g(2)G1,1,0— 2 2G_1,_1+2 G -1
—362G 11436G0,-1—-10Go14+36G1, 1-10G10+30G11—- 353G 1+ 3(Gh

Sw’ | =aeneyen+2a0n0ney

There are four functions at weight four with rational factor 7(a)°%s(a)° are

4),4 1 1
W= G_1,1,0,0+G-1,0,00-G=1,1,0,0+G1,-1,0,0—G1,0,0,0+G1,1,00~ 1 (3G_1+1 (3G

Sw=a0a0noy

(4)4 —G_-1,-1,0,0+G-1,1,0,0+Go,-1,0,0—Go,1,0,0—G1,-1,0,0+G1,1,0,0— 4C3G 1+g T¢3Gh

S =a0a0yon

(4)4 —Go,-1,-1,0+Go,~1,0,0—Go,-1,1,0+Go,1,—1,0—G0,1,0,0

+Go,1,1,0+210g(2)Go,—1,0—21log(2 )G0,1,0+§C2G0,—1*§C2G0,1

S[w§4)’4] =a®nya

(4)4 -G -1,0,-1,0+G-1,0,00—G-1,0,1,0+G1,0,—1,0—G1,0,0,0

+G1,o,1,0+§C2G71,0*§C2G1,0+563G71*§C3G1

Sw’=aeneay

B.3 Weight Five Functions

There are 32 functions at weight five.

There are six functions at weight five with rational factor r(a)®*" are

w§5)’1:—G’—1,—1,—1,0,0+G—1,—1,1,o,o-i-G—1,1,—1,0,0—G—1,1,1,0,0+Go,—1,—1,0,0—G'o,—1,1,0,0
—Go,l,—1,o,o+Go,1,1,o,0—G1,—1,—1,0,0+G'1,—1,1,0,0+G1,1,—1,0,0—G1,1,1,0,0—%10g4(2)G—1
+5 log*(2)Go—¢ log*(2)G1+210g? (2) G —1,0,0—210g?(2)Go,—1,0—2l0g*(2)Go,1,0
+210g2(2)G1,0,074Li4(%)G +4L14( )GO 4L14( )G1+53(22G 1+33¢264
%CQG—LO,O*%@GO,—1,0*ECQGO,1,0+@CQG1,O,0+C2 log?(2)G_1+¢2 log?(2)G1
—IGG 1,1+ 5GG 10— 536G 1,1+ 5¢3G0, -1+ 5¢3G01—5(3G1, 14+ 5(3G1,0—5(3G1 1

w7 (1)=8Lis (1)~ %253 4 2 (5 1og® (2)+ 33 Ca log (2) — 2ozt — 8 (s log?(2) — 1 log® (2)
S[wf’)’l] =aRalyyemn
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5),1
wé ), =—G_-1,-1,-1,0,0+G-1,-1,1,0,0+G-1,0,-1,0,0—G-1,0,1,0,0—G ~1,1,-1,0,0+G-1,1,1,0,0+G1,—-1,-1,0,0
9 -2 9 2 9
—G1,-1,1,0,0—G1,0,-1,0,0+G1,0,1,0,0+G1,1,-1,0,0—G1,1,1,0,0+ 53 G-1+ 55 G1+ 532G -1,0,0

9 9 9 7 7 7 7
—362Go0,—1,0—762Go,1,0+5C2G1,0,0— 1C3G-1,-1+ 503G 1,1+ 3(3G1,—1— 1 (3G 11

Wi (1)=—272% 1 43¢, 1og(2) - 2165

S =a®avyenay

w;(f))’1:—G’71,71,71,0,0+G71,71,0,0,0—Gf1,71,1,0,0+G71,1,71,0,0—071,1,0,0,0-&-6’71,1,1,0,0
+G1,-1,-1,0,0—G1,-1,0,0,0+G1,-1,1,0,0—G1,1,-1,0,0+G1,1,0,0,0—G1,1,1,0,0
+5 log(2)G-1—5 log*(2)Go+5 log* (2)G1—21og? (2)G—1,0,0+210g*(2)Go, 1,0
+210g?(2)Go,1,0—210g?(2)G1,0,0+4Lia ( § ) G—1—4Lia (3 ) Go+4Lis (3 )G
*%CSG—I*%ggGl*%CQG—1,0,0+%<2G0,—1,0+%C2GO,1,O*%C2GI,O,O
—(2l0g?(2)G-1—(210g%(2)G1— (3G —1,-14+ 353G -1,1+5GG1,-1—1(3G11

, . 159 31 log®
w§5) ! (1):—16L15(%)+75 8C02C3 —%Cg 10g3(2)—%g4 log(2)+—2c5 +%§3 log2(2)—|-72 0%5(2)

S =avaeneyoy

wfls)’1=—G—1,—1,0,—1,0+G—1,—1,0,0,0—G—1,—1,0,1,0+G—1,1,0,—1,0—G—1,1,0,0,0+G_1,1,0,1,0
+G1,—1,0,—1,0*Gl,—1,0,0,0+Gl,—1,0,1,0*G1,1,0,—1,0+G1,1,0,0,O*G1,1,0,1,0*%CSG—1
—2C2G14+1 G 1, —1,0- 962G _1,0,0—3¢2G 11,0+ 2¢2Go,-1,0+7¢2Go,1,0
*%<2G1,—1,0*%C2G1,0,0+%<2G1,1,0+%CBG—l,fl*%CSGfl,l*%CSGl,—lﬁL%CSGl,I

5),1 41 31
Wit (1)=2182% | 1(_45)¢, log(2)— 225

S =a@n@avyay

wéS)’l:—Gf1,0,71,71,0+G71,0,71,0,0—G71,0,71,1,0+G71,0,1,71,0—071,0,1,0,0+G71,0,1,1,0
+G1,0,71,71,0—G1,0,71,0,0+G1,0,71,1,0—G1,0,1,71,0+G1,0,1,0,0—G1,0,1,1,0—% log*(2)G_1
+2 log*(2)Go— 3 log*(2)G1+410g?(2)G_1,0,0—410g? (2)Go, —1,0—410g?(2)Go,1,0+410g*(2)G1,0,0
+log(16)G—1,-1,0,0+log(16)G1,1,0,0+log(4)G —1,0,—1,0-log(4)G —1,0,1,0—log(4)G1,0,-1,0
+log(4)G1,0,1,0—410g(2)G ~1,1,0,0—410g(2)G1,-1,0,0—8Lia (5 ) G-1+8Lia () Go—8Lis (3 )G
Jr%CgG—1JF%CSGI+%C2G—1,0,—1+%C2G—1,0,0*%<2G—1,0,1*%C2GO,—1,O
*%CQGO,LO*%C2G1,0,—1+%§2G1,0,0+%CQG1,0,1+2CQ log?(2)G 1 +2¢2 log?(2)Gh

5),1 8log(2)3 410g(2)° 257 log(2 . 593CoCq  465¢
wiP (1) = B2 3 log(2)2 ¢y — HFL 4 BEEIU L gppig (1) 25 A0

S =aowneyeay

w((as)’1=*G0,—1,—1,—1,0+G0,—1,—1,0,0*G0,—1,—1,1,0+G0,—1,1,—1,0*Go,—1,1,0,0+Go,—1,1,1,0+G0,1,—1,—1,0
—G0,1,-1,0,0+G0,1,-1,1,0—Go0,1,1,-1,0+G0,1,1,0,0—Go0,1,1,1,0— & log*(2)Go—210g?(2)G_1,0,0
+210g?(2)Go,—1,0+210g?(2)Go,1,0—210og?(2)G1,0,0+1210g(2)G—1,—-1,0,0—1410g(2)G—1,0,0,0
+161og(2)G-1,1,0,0—1210g(2)Go,—1,—1,0—1610g(2)Go,—1,1,0+1410g(2)Go,0,—1,0
+1410g(2)Go,0,1,0—1610g(2)Go,1,—1,0—1210g(2)Go,1,1,0+16 1og(2)G1,-1,0,0—1410g(2)G1,0,0,0
+12 10g(2)G1,1,0,0—4Li4(%)Go—%§2G71,0,0+%C2G0,71,71+%C2G0,71,0—%CQGo,fl,l

—3¢2G0.1,-1+352¢2Go.1,0+5¢2G0,1,1— 55 ¢2G1,0,0+7¢2 log(2)Go, —1+7¢2 1og(2)Go 1

N 2 5
w§ ! (1)=—21log(2)3¢o + 218 s 4 108D | g10g(2)Liy (4 ) S8R | 229a¢s 5165
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S =a®neyy®a

There are 4 functions at weight 5 with rational factor r(a)° are

5),2 1 1
wi® =G-1,-1,0,0,0-G~1,1,0,00-G1,-1,0,0,0+G1,1,0,00— 352G ~1,-1,0+ 560G -1.1,0

31¢5
+3¢2G1,-1,0—5¢2G1,1,0+5¢3G—1,0— 53G0,0+ 5(3G1,0— 15;‘

S =a0a®a0y®y

):2 3 3
"=G-1,0,-1,0,0—G-1,0,1,0,0—G1,0,-1,0,0+G1,0,1,0,0+ 502G -1,-1,0— 52G-1,1,0

31
*%C2G1,—1,0+%CQGI,LO*%CSG—LOJF%CSGO,O*%CSGLOJF%

(5
Wy

SwP?=a0a0y0a®y

(5),2 7 7 7 31¢
wy"=Go,~1,-1,0,0—G0,-1,1,0,0=G0,1,-1,0,0+G0,1,1,0,0+ 73 Go,~1— 7 (3Go,0+ 1 3Go,1 — 5>

S[w§5)’2]:a®a®y®y®a

wi?=—log?(2)(2G1+4Lia (1) G143 10g* (DG 144G _1,-1,1,-1,0—4G1,-1,-1,00+4G_1,1,-1,1,0
—2G_-1,-1,0,-1,0+2G-1,-1,0,0,0—2G-1,-1,0,1,0—G-1,0,-1,-1,0+G-1,0,—1,0,0—G-1,0,—1,1,0
+G_-1,0,1,-1,0—-G-1,0,1,00+G-1,0,1,1,0—2G-1,1,-1,-1,0+2G-1,1,-1,0,0—2G -1,1,—1,1,0
+2G-1,1,0,-1,0—2G'~1,1,0,0,0+2G-1,1,0,1,0—2G -1,1,1,-1,0+2G -1,1,1,0,0—2G-1,1,1,1,0
—Go,~-1,-1,-1,0+Go,-1,-1,00—Go,—-1,-1,1,0+Go,-1,1,-1,0—Go,-1,1,0,0+Go0,-1,1,1,0
+Go,1,-1,-1,0—Go,1,-1,0,0+Go,1,—-1,1,0—Go,1,1,—1,0+G0,1,1,0,0—Go,1,1,1,0—2G1,-1,-1,—-1,0
+2G1,-1,-1,0,0—2G1,-1,-1,1,0+2G1,-1,0,-1,0—2G1,-1,0,0,0+2G1,-1,0,1,0—2G1,-1,1,—1,0
+2G1,-1,1,0,0—2G1,-1,1,1,0+G1,0,-1,-1,0—G1,0,—-1,0,0+G1,0,-1,1,0—G1,0,1,—1,0+G1,0,1,0,0
—G1,0,1,1,0—2G1,1,0,-1,0+2G1,1,0,0,0—2G1,1,0,1,0+4G1,1,1,-1,0—4G1,1,1,0,0+4G1,1,1,1,0
—20—1,—1,—1C2—%G—1,—1,0€2+%G—1,0,—1C2+%G—1,0,042—%G—1,o,1CQ+G—1,1,—1C2
—%G—1,1,0C2+G—1,1,1C2+%G0,—1,—1C2+%G0,—1,042—%Go,—m@—%Go,l,—lCz-i-%Go,l,oCz
+%G0,1,1<2+G1,—1,—1C2*%Gl,—l,OCZ‘FGI,—l,lCZ*%Gl,O,—1C2+%G1,0,OC2+%G1,0,1C2
~55G1,1,002-2G1,1,162~G110g” (2)(2—6G —1, -1 10g(2)¢2—8G 1,1 log(2)¢2+7G0, 1 10g(2) ¢
+7Go,110g(2)¢2—8G1,—110g(2)(2—6G1 1 log(Q)sz%*%G—1,—1C3+%G—1,0C3
+%G71,1C3*%GO,OCS‘F%Gl,flC3+%Gl,OCS*%G1,1C3+4G1Li4(%)‘F%Gl log*(2)
+8G_1,-1,-1,0log(2)—12G_1,-1,0,0 log(2)+16G_1,-1,1,0 log(2)—12G _1,09,—1,0 log(2)
+2LG_1,0,0,0108(2)—16G_1,0,1,0 10g(2)+16G_1,1,-1,0 log(2)—16G _1,1,0,0 log(2)
+16G_1,1,1,0 log(2)—12Go,—1,~1,0 log(2)+22 Go,—1,0,0 log(2)—16Go,—1,1,0 log(2)
+14Go,0,-1,0 log(2)+14Go,0,1,0 log(2)—16Go,1,-1,0 log(2)+%G07170,0 log(2)—12Go,1,1,0 log(2)
+16G1,—1,-1,0 log(2)—16G1,-1,0,0 log(2)+16G1,-1,1,0 log(2)—16G1,0,—1,0 log(2)
+2LG1,0,0,0l0g(2)—12G1,0,1,0 log(2)+16G1 1, 1,0 log(2)—12G1,1,0,0 log(2)+8G1,1,1,0 log(2)

S =00y yen+a0nynOyY+200n8 7YY
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There are 11 functions at weight 5 with rational factor r(a)®¥"s(a)° are

(5),3 1
wy " ==G-1,-1,0,0,0+G~1,1,0,0,0+G0,-1,0,0,0—G0,1,0,0,0—G1,-1,0,0,0+G1,1,0,0,0+ 562G ~1,-1,0

1
—%C2G71,1,0—5{26’0,71,0+%C2G0,1,0+%C2G1,71,0—%CzGl,l,o—%C3G71,0+£C3G1,0

S =a®a0a@y®n

(5),3
wy 7 ==G-1,-1,0,0,0+G-1,0,0,00—G-1,1,0,0,0+G1,-1,0,0,0—G1,0,0,0,0+G1,1,0,0,0

+§ log(2)G,1,0,0,0—§ IOg(Q)Gl,O,O,0+%CZG—L—LO_TIOC2G—1,O,O
+1L0C2G71,1,0—%CZGI,—1,0+T10<2G1,0,0—%<2G1,1,0—%CBGfl,O"FiCSGI,O

Sl =a0a0a0noy

5),3
wé) =—G_-1,0,-1,0,0+G-1,0,1,0,0+G0,0,—1,0,0—G0,0,1,0,0—G1,0,—1,0,0+G1,0,1,0,0
+log(64)G1,0,0,0—6108(2)G-1,0,0,0— 5C2G—1,-1,0+5¢2G 1,10

+3¢2Go,-1,0-32G0,1,0—2¢2G1,—1,0+3¢2G11,0+5¢3G1,0—5(3G10

S =a®avy®aany

5),3
wfl) =—Go,-1,-1,0,0+G0,-1,1,0,0+G0,0,-1,0,0—G0,0,1,0,0—G0,1,-1,0,0

+Go,1,1,0,0+10g(64)G—1,0,0,0—6108(2)G1,0,0,0— 5 ¢3Go, -1+ 5¢3Go,1

S =a0avyon®a

(5),3
wy " ==G_1,0,-1,0,0+G-1,0,0,0,0—G—-1,0,1,0,0+G1,0,-1,0,0—G1,0,0,0,0+G1,0,1,0,0

+510g(2)G-1,0,0,0— £ 108(2)G1,0,0,0— 152G -1,-1,0+ 156G -1,0,0
*%CQG—1,1,0+%C2G1,—1,0*%CQGI,O,O+%CQG1,1,O+%CSG—I,O*%CBGI,O

Smgﬂ:a®a®n®a®y

(5),3
wg " =—Go,-1,-1,0,0+Go0,-1,0,0,0—Go,-1,1,0,0+G0,1,-1,0,0—G0,1,0,0,0

+Go,1,1,0,0+10g(64)G1,0,0,0—6108(2)G-1,0,0,0— 5 (3G0,~1+ 5 (3Go,1

Smpﬂ:a®a®n®y®a

(5),3
wy " =~G-1,0,0,-1,0+G-1,0,0,0,0—G-1,0,0,1,0+G1,0,0,-1,0—G1,0,0,0,0+G1,0,0,1,0

72 10%(2)G71,0,0,0+g log(Q)G1,0,0,0+%42071,71,0+%C2G71,0,0

1
+%C2G71,1,0—%CQGI,—l,O_gCQGl,O,O—%CZGLLO“'%CSG—1,0_%C3G1,0

Smgﬁ:a®n®a®a®y

(5),3
wg " =—=Go,-1,0,—1,0+G0,-1,0,0,0—G0,-1,0,1,0+G0,1,0,—1,0—G0,1,0,0,0+G0,1,0,1,0

+%C2G0,71,0—%C2Go,1,0—%C3G71,0+%C300,71—% 3G0,1+%C3G1,0

Swi?=aonea0y®a

5),3
w3 =—Go0,1,-1,04G0,0,-1,0,0—G0,0,-1,1,0+G0,0,1,-1,0—G0,0,1,0,0+G0,0,1,1,0

+log(4)Go,0,—1,0—10g(4)Go0,0,1,0+ 2 (2G0,0,—1— 1 2Go,0,1+2¢3G_1,0—T¢3G10
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S =a@neyeaa

wi‘Z)’S:—4Li4(é)G71—élog4(2)G71—071,71,71,71,o+G71,71,71,0,0—6‘71,71,71,1,0+G71,71,1,71,o
-G_1,-1,1,00+G-1,-1,1,1,0+G-1,1,-1,-1,0-G-1,1,-1,00+G-1,1,-1,1,0—G-1,1,1,-1,0
+G-1,1,1,00—-G-1,1,1,1,0+G1,-1,-1,-1,0—G1,-1,-1,0,0+G1,-1,-1,1,0—G1,-1,1,—-1,0
+G1,-1,1,00—G1,-1,1,1,0—G1,1,-1,-1,0+G1,1,-1,00—G1,1,-1,1,0+G1,1,1,-1,0—G1,1,1,0,0
+G1,1,1,1,0+%G—l,—l,—ICQ'f‘%G—1,—1,OC2_%G—l,—1,1C2_%G—l,O,OCQ_%G—l,l,—ICZ
+%G—1,1,0C2+%G—1,1,1C2—%G1,—1,—1Cz—%GL—1,0C2+%G1,—1,1C2+%G1,0,0C2
+2G11,-1G—2G11,00-3G1,11¢+3 G1,_110g(2)Ca+ 3G 1,1 10g(2)¢2— L Go,—1 log(2)¢2
+2Go,110g(2)¢2— 5 G1,-110g(2)¢2— 2 G1,110g(2)¢2— § G —1,0¢3+5 G1,0G3+4G1 Lia (5 )
+G1,-1,-1,010g(32)+ 2+ G1 log*(2)+24G 1 ¢ log®(2)—24G1 o log®(2)+16G _1, 1,0 log?(2)
—2G_1,0,0l0g%(2)—12G_1 1,0 log?(2)—14Go,—1,0 log?(2)+14Go 1,0 log?(2)+12G1, 1,0 log?(2)
+2G1 0,0 log?(2)—16G1,1,0 log?(2)—19G_1,—1,—1,0 log(2)+21G_1,_1,0,0 log(2)
—23G_1,-1,1,0108(2)+14G 1,0, 1,0 l0g(2)— 22 G _1,0,0,0 10g(2)+14G _1 0,1,0 log(2)
—9G_1,1,-1,010g(2)+7G _1,1,0,0 log(2)—5G—1,1,1,0 l0g(2)+7Go,-1,—-1,0 10g(2)+7Go,—1,1,0 log(2)

»4,U, sy

—700,1,7170 10g(2)—7G0 1.1.0 10g(2)—7G1771’0,0 10g(2)+9G1,,17170 10g(2)—14G1107,170 log(2)

IEEES)

+%G1,0,O,O 10g(2)—14G1,071’0 10g(2)+23G1,17,1,0 10g(2)—21G1,17010 10g(2)+19G171’1’0 10g(2)

5),3
S’ =aoneyeyoy

wﬁ)’gi—% log(2)¢2G—1,-1+2¢G—1,-1—6G 1, -1,-1,-1,0+6G—1,-1,-1,0,0—6G—1,-1,-1,1,0

+5G-1,-1,0,-1,0—5G -1,-1,0,0,0+5G -1,-1,0,1,0—4G-1,-1,1,-1,0+4G-1,-1,1,0,0—4G-1,-1,1,1,0
+4G_-1,0,-1,-1,0—4G-1,0,-1,0,0+4G -1,0,-1,1,0—3G-1,0,0,-1,0+3G-1,0,0,0,0—3G'~1,0,0,1,0
+2G-1,0,1,-1,0—2G-1,0,1,0,0+2G-1,0,1,1,0—2G-1,1,-1,-1,0+2G -1,1,-1,00—2G-1,1,-1,1,0
+G_-1,1,0,-1,0-G-1,1,0,00+G—-1,1,0,1,0+3Go0,—-1,-1,-1,0—3G0,—-1,-1,0,0+3Go,—-1,-1,1,0
—2Go,-1,0,—-1,0+2G0,-1,0,0,0—2G0,-1,0,1,0+Go,-1,1,—1,0—Go,-1,1,0,0+Go0,-1,1,1,0
—Go,0,—-1,-1,0+Go,0,-1,0,0—Go,0,—1,1,0+Go0,0,1,—1,0—G0,0,1,0,0+G0,0,1,1,0—Go,1,—-1,—-1,0
+Go,1,-1,0,0—Go,1,-1,1,0+2G0,1,0,—1,0—2G0,1,0,0,0+2Go,1,0,1,0—3G0,1,1,-1,0+3G0,1,1,0,0
—3Go,1,1,1,0—G1,-1,0,-1,0+G1,-1,0,00—G1,-1,0,1,0+2G1,-1,1,—1,0—2G1,-1,1,0,0+2G1,-1,1,1,0
—2G1,0,-1,-1,0+2G1,0,-1,0,0—2G1,0,—1,1,0+3G1,0,0,—1,0—3G1,0,0,0,0+3G1,0,0,1,0—4G1,0,1,—1,0
+4G1,0,1,0,0—4G1,0,1,1,0+4G1,1,-1,-1,0—4G1,1,-1,0,0+4G1,1,-1,1,0—5G1,1,0,—-1,0+5G1,1,0,0,0
—5G1,1,0,1,o+6G1,1,1,71,0—6Gl,1,1,0,0+6G1,1,1,1,0+3Gf1,71,71C2—%G71,71,0C2+2G71,71,1C2
—QG—1,0,—1C2+%G—l,O,OC2_G—1,0,1C2+G—1,1,—1C2+%G—1,1,0C2_%GO,—I,—1<2+%GO,—1,OCQ
—2Go,-1.16+3G0,0,-162—3G0,01C2+2Go,1,-1¢2—2Go,1,062+2Go,1,1C2— 55 G1,-1,0C2
*G1,—1,1C2+G1,0,—1C2*%G1,0,042+2G1,0,1C2*2G1,1,—1C2+;73)G1,1,0C2*3G1,1,1C2
+3G—1,1108(2)¢2+5Go,—110g(2)(2— 5 Go,1 l0g(2)¢2— 5 G1,—1 log(2)(2+ 5 G1,1 log(2)¢2
+iG71,1C3*%G0,71C3+%G0,1C3*iGl,f1C3*%G1,1C3+G71,71,71,0 log(8)—G -1,1,1,0log(8)
—Go,-1,-1,0log(8)+Go,1,1,0 log(8)+G1,—-1,—1,0 log(8)—G1,1,1,0 log(8) —G—1,0,—1,0 log(4)
+G-1,0,1,0l0g(4)+Go,0,—1,0 log(4)—Go,0,1,0 log(4)—G1,0,—1,0 log(4)+G1,0,1,0 log(4)

+4G_1,0 log3(2)—4G1’0 10g3(2)+2G,1,,170 10g2(2)—2G,1,170 log2(2)—2G0,,1,0 log?(2)
+2Go,1,0 log?(2)+2G1,-1,0 log?(2)—2G1,1,0 log?(2)—G _1,-1,0,0 log(2)—G—_1,—1,1,0 log(2)

—2LG 1,0,0,0108(2)+G—1,1,-1,010g(2)+G—1,1,0,0 log(2)+Go,~1,1,0 10g(2)~Go,1,-1,0 log(2)
—G1,-1,0,0108(2)—G1,-1,1,0108(2)+ 2 G1,0,0,0108(2)+G1,1,-1,0 l0g(2)+G1,1,0,0 log(2)

S =a0neyenen+200n8n0y0n+3a0n8nnY
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There are 11 functions at weight 5 with rational factor r(a)°ds(a)°dd are

(5),4
w; =G -1,0,0,0,0—G1,0,0,0,0

S =a0a0a®a®y

(5),4 1 1
wy " =G0,-1,0,0,0—G0,1,0,0,0— 5¢2G0,-1,0+5¢2Go,1,0

8[wé5)’4]:a®a®a®y®a

(5),4 3 3
wy” " =G0,0,-1,0,0—G0,0,1,0,0+5¢2G0,-1,0—5¢2G0,1,0

S[w§5)’4]:a®a®y®oz®a

)4
T=G_1,-1,-1,00—-G-1,-1,1,00—-G-1,1,-1,0,0+G-1,1,1,0,0—G1,-1,-1,0,0

+G1,—1,1,0,0+G1,1,—1,0,0*01,1,1,0,0+% 10g4(2)G_17é log(2)G1
+4Lia (3)G-1—4Lis (§)G1- 323G 1+ 53¢3G1— (2 log? (2)G 142 log? (2)Gh
+£CSG—1,—1*%CSG—1,0+%CSG—1,1*ZC3G1,—1+£43G1,0*%43G1,1

5
Wy

S =avavyoyey

(5),4
wg " =G—-1,-1,-1,00—G-1,-1,1,0,0—G-1,0,-1,0,0+G-1,0,1,0,0+G-1,1,-1,00—G-1,1,1,0,0

—Go,-1,-1,0,0+Go,-1,1,0,0+G0,0,—1,0,0—G0,0,1,0,0—Go,1,-1,0,0+G0,1,1,0,0
9 -2
+G1,-1,-1,0,0—G1,-1,1,0,0—G1,0,-1,0,0+G1,0,1,0,0+G1,1,-1,0,0—G1,1,1,0,0— 5 (3G -1
9 -2 7 7 7 7 7 7
+356G1+53G-1,—-1—3GG-1,1—1(3G0,—1+3(3G0,1+ 31 (3G1,-1— 33611

S =a®avyenn

wé5)’4:G71,71,71,0,0—G71,71,0,0,0+Gfl,71,1,0,0—Gf1,1,71,0,0+G71,1,0,0,0—G71,1,1,0,0
—Go,~1,-1,0,0+G0,-1,0,0,0—Go,-1,1,0,0+Go,1,-1,0,0—Go,1,0,0,0+Go,1,1,0,0+G1,-1,-1,0,0
—G1,71,0,0,0+G1,71,1,0,0—01,1,71,0,0+G1,1,0,0,0—G1,1,1,0,0—% log?(2)G_1
+31og(2)G1—4Lia(3)Go14+4Lia(3)Gr1+ 323G 1 - 33¢2G1+¢a 10g2(2)G 1
—C2 10g2(2)G1+%C3G—1,—1—%C3G—1,1—%C3Go,—1+%CBG0,1+%C3G1,—1—%C3G1,1

Sw=a®avn@y®n

(5),4
wy " =G-1,-1,-1,00—G-1,-1,0,00+G-1,-1,1,0,0—G~1,0,-1,0,0+G-1,0,0,0,0—G-1,0,1,0,0

+G-1,1,-1,0,00—G-1,1,0,0,0+G-1,1,1,00—G1,-1,-1,0,0+G1,-1,0,0,0—G1,-1,1,0,0
3 2
+G1,0,-1,0,0—G1,0,0,0,0+G1,0,1,0,0—G1,1,-1,0,01+G1,1,0,0,0—G1,1,1,0,0— 553G -1
3 2 1 1 1 1 1 1
+456G1+76G-1,-1—7GG-1,0t703G-1,1—70G1,-1+7(3G1,0—7¢3G1,1

S[w§5)’4]:a®a®n®n®y

(5),4
wg " =G-1,-1,0,~1,0-G-1,-1,0,0,0+G-1,-1,0,1,0—G-1,1,0,-1,0+G-1,1,0,0,0—G~1,1,0,1,0

—Go,-1,0,—-1,0+G0,-1,0,0,0—Go,-1,0,1,0+Go,1,0,—1,0—G0,1,0,0,0+G0,1,0,1,0
+G1,71,0,71,0*Gl,—1,0,0,0+G1,—1,0,1,0*Gl,l,O,—1,0+G1,1,0,0,0*G1,1,0,1,0+%C§G71
—%C%G —%@Gf1,71,0+%C2071,1,0+%C2G0,71, _%CQGO,l,O_%§2G1,71,O
+%C2G1,1,0_%C3G71,71+%C3G71,1+%C3G0,7 —%CBGO, _%<3G1,71+%C3G1,1
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S =a@n@aey@n

5),4
w{(; T=G-1,-1,0,-1,0-G-1,-1,00,0+G-1,-1,0,1,0-G-1,0,0,-1,0+G-1,0,0,0,0-G-1,0,0,1,0+G-1,1,0,-1,0

-G -1,1,0,00+G-1,1,0,1,0-G1,-1,0,-1,0+G1,-1,0,0,0—G1,-1,0,1,0+G1,0,0,—1,0—G1,0,0,0,0
11 11 1 1
+G1,0,0,1,0—G1,1,0,-1,0+G1,1,0,0,0—G1,1,01,0+ 55 (3G 1— 15 (3G1—5CG 1, 10—50G 110
1 1 1 1 1 1 1 1
+502G1,-1,0+502G1,1,0— 503G -1,-1+53G-1,0- 503G -1,1+50G1,-1—5(3G1,0+50G11

SwP =avna0ney

4
) =G_-1,0,-1,-1,0-G-1,0,-1,00+G-1,0,-1,1,0-G~-1,0,1,—1,0+G~1,0,1,0,0—G-1,0,1,1,0

wis
—Go,0,-1,-1,0+G0,0,-1,0,0—Go,0,-1,1,0+Go,0,1,-1,0—G0,0,1,0,0+G0,0,1,1,0+G1,0,-1,-1,0
—G1,0,—1,0,0+G1,0,—1,1,0—G1,0,1,—1,o+G1,o,1,o,o—G1,o,1,1,o+% log?(2)G_1
f% log*(2)G1—810g%(2)Go,—1,0+810g2(2)Go,1,0+Hlog(16)G -1 ,1,0,0-+log(16)Go,—1,-1,0
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Appendix C

Lightlike Wilson-line Calculations

C.1 Direct Calculation of the Splitting Functions

at Large x

In this appendix we present a calculation for parton distribution splitting
functions directly using the definitions and . As explained in the
main text we take incoming partons to be off shell p? # 0 but with zero transverse
momentum p = (p,, %, 04_2). This regulates the infrared such that we are only

exposed to UV poles.

To calculate a single diagram there is a general strategy talked through in the

main text with a slight change for the off shell case:

e Write down the integral using Feynman rules

e Integrate over the minus component of all loop momenta using Cauchy’s
residue theorem. This provides constraints on the plus component of loop

momenta due to the location of the poles.

e Integrate over the transverse component of all loop momenta. As we are
only interested in the UV divergent terms, this can be simplified to just
calculating iterated bubbles at two loops. Although we do need to calculate

the finite terms of one loop graphs to perform the renormalisation.
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e Rescale the plus component to arrive at a general form such as,

N(z,y, z,¢)
(1—z+ic)(l—ax—y+ie)(l—z—yz+ie)

1
Disc/ dydz (C.1)
0

The denominators correspond to the Wilson line propagators.

e Now we take the discontinuity in  and perform the final integrations. Often

these integrals evaluate to o F7 functions at two loops.

e Finally we expand in € using,

(1 — x)_l—me _ _L(g(l _ :L’) + 1; + Z (_mﬁ)n <log(1 - x)") .

me (I-2)+ = nl l—x
(C.2)
For brevity of results we shall define,
1 log" (1 — z)
0=0(1-2x P=—+—+ L= ————. C.3
( ) (1—ax)+ (1—2), (©3)

Also, all the following expressions are valid up to but not including terms that

diverge as slowly as log(1 — z).

For PDF's we expand in powers of (Z_fr)>

%W. (C.4)

Example. Let us illustrate the above steps. For this we choose the two loop

diagram in Figure [C.1¢ The Feynman rules for the diagram, in Feynman gauge,

give,
.4 d d
. g d%q d®qs P+(p+ - C]1+)(2Q2+ - Q1+)
Disc==C,C / /
or T ) @)l | @r)d gt (e — @)2(p — @)
1
X )
(p—k)-u(p—k—q) u(p—Fk—q) u

(C.5)

where k - u = xp, and the +ie prescription is implied. It is reminded that the

Wilson line direction w is in the (-) direction, u = (0,1, 04-2).

We shall define fq(?’(e) to be the contribution to fq((?) of diagram When
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integrating the ¢;_ and ¢ components using the residue theorem, constraints

are placed on the plus momenta,

Py > Gy > goy > 0. (C.6)

The integrations over the transverse components are just iterated bubbles.

Rescaling the plus component we arrive at,

2),(e : i F(E)F(2E) ! 1—2¢ 1—e —€ . ,—€
féq)( ) = DlSC%OACFm ; ddey (]_ - y) (1 - Z) z

» 1—22
(1—z+ice)(l—x—y+ie)(l—2z—yz+ie)

(C.7)

Taking the discontinuity we use,

i 1
DlSC%(1—x+i5)(1—x—y+is)(1—x—yz—l—ie)
B (1 —x) (1—z—y) 01—z —yz2)
- ((1—x—y><1—:c—yz>+<1—x><1—x—yz>*(1—x><1—x—y>)'
(C.8)

There are three separate terms now to calculate. The first is the virtual cut and

evaluates to,

. 1 1 1/7 ¢ 8¢
fq(g)’()’(v)—CACF(44+_+€—2<§—Z2) 6( C2—73+ 2)>5 (C.9)

The second and third are real cuts,

. 5 P—-¢§ 1 G
fg)’()7(R1):C’ACF(—F+ 53 +€—2<(—Z—1>5+P—L)

1 CE(E G
+E(5(_5+?—2)+<5+2)P—2L+L2)> (C.10)

—0 — P 1 1 3
féq)( (F2) = CACF( 62 <<C2 - 1)5 + P+ L)

2¢3 2 2
1 ) 1 7
Ao ()t ) e

In the sum we find,

@) _ Co 3 1
0 =cace( (($+3)+50+52)
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+

A | =

(5 (—2¢2 — % + %) +(3—20)P — gL — ZLQ) )
(C.12)

4 and

Above we see a salient feature of two loop diagrams: individual cuts are €~
€3 divergent. These are poles from when the emitted gluon goes soft and cancel
in the sum of real and virtual cuts. The remaining divergences are UV, whose
renormalisation gives the splitting functions. The L and L? terms are present

in individual diagrams but cancel in the combination such that the splitting
functions diverge as in eq. (4.58]).

Another feature is that we found that the real cuts, eqgs. (C.10) and (C.11]),
contribute to Bs. Rather than inferring the coefficient of ¢ from sum or
momentum conservation rules, we are able to state that for the off-shell extraction

of the splitting functions, real cuts contribute to d(1 — x).

We now calculate the two loop diagonal splitting functions at large x for quarks

and gluons.

C.1.1 Calculating P,

The one loop contributions are Figures[C.1a]and [C.15 and the self energy on each

external leg. They sum to,

f(l) — fé;):(a) + Qfé;)’(b) 4 fq(;),SE ext

= Cp (% (4P — (£ =3)0) — 6(E+ 4G —T) + (E—1)P — 4L> . (C.13)

where £ is the gauge parameter in a general covariant gauge. The two loop
contributions are shown in Figures [C.I¢HC.Im] They exclude self energies on
external legs. Their calculation was performed in Feynman gauge £ = 1 and the

results are,

1

Fa©) = Op(Cy — 2Cp) [612 (2G20) + . (—4(36 — 4@13)}

aq

1
f2 = o2 L—2 ((4 — 8(2)6 + 8P + 8L)

+

A | =

((16 — 8¢2)d + (8¢ +16) P — 8L — 12L7) }
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(a) 1 (b) 2 (c) 1
f—\ N
(d) 1 (e) 2 (f) 2
V-V
(8) 2 (h) 2 (i) 2
\ ¢~
@)1 (k) 1 :;& 2
o ey 8
(m) 2
=N
Figure C.1: Large-z divergent contributions to the quark-quark parton

distribution up to two loops. The grey

blob represents a self energy insertion.

Each diagram has a multiple factor displayed. Insertions on external legs are

excluded.

139



1 3 3 1
Fae) = CyCr [—2 ((§2 + 5) §+ =P+ —L)
G

€ 2 2
1 5 15 5 3 5
+6<5( 2¢, 2+2>+(3 2(,)P 2L 4L)}

1 1
fO0) = 04Cp L-Q (5 +2P + §L)

N A T

F29) = Cp(Ca — 2CF) {i (1—=¢)d+P+ L)

q 62

+% (5(—2@ —3(3+5)+2P—-L— gLQ)]

aq

1
f&m = c2 L_? ((2 = 2G)6 + 2P + 2L)

- % (6(—4¢ — 6¢3 4 10) + 4P — 2L — 3L?) ]
2).6) _ _ 1 1 1
F20 = cp(Cy 2OF)[62 G5 )0+ 5P

1 1
k
o - oo (e Lo )
1 5C An T 5C dn T
2),() — — s 22A - 2EF p2=A 20 S
Jaa CFL? ( ( 3 3 >+ 3 3
1 50,4{2 GICA 4 4471fo
“(s(= T Co —
+ 6( ( 5ty tauliG 5
6

p 1 OA _ 8nfo nyy 871fo - 1OCA
9 9 3 3

+
i =3 (-5 6+ P)+ H(2a- 05— P4 D))

(2),F ext _ 612 (=2 (CaCp +3C}) 6 — 8CEP)

qq

1/1
+ - (55 (=25CACp + 16C¢ — 37CF + ACpn,Ty)

€

—8C:P + 80§L>
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Summing the two loop contributions with the factors shown in Figure we
find,

o =r {5 (9OA Cr(2 - 8G) — 2nfo> e (220“‘ 802 - —8nfo)

“w T 2 3 3
22 12
1] + % [o{on (22 o 12)
27 8, 26
+ CF (—14C2 4<3 -+ 9 ) —i—nfo (? — ?) >
P ((JA (% - 4@) + 240 — 28”9f 1y )
+ L (—4430A — 8Cr + 16”3f Iy ) — 24(JFL2] (C.14)

At two loops we need to take into account the running from the one loop contribu-
tion ) agf . This is found by replacing §& — (1 + 2= (1600,4 — %Tfnf)) 19

’ 47r 4me

and oy — (1 + o‘;—’éo)as. We then specialise to Feynman gauge & = 1.

We then find the Z,, that minimally subtracts the divergences in ¢ + 7= fq(;)’R
(Z‘—;)2 fq(g). As the renormalisation is multiplicative, convolutions need to be taken

into account for one loop squared terms. For example,

P®L=—(GP+ gLZ + (30. (C.15)

Equivalently the renormalisation can be transformed to Mellin space, eq. [£.45]

where the convolutions become products ensuring that,

qu( T ( )f(“‘)) (C.16)

is finite in e. We can then extract the splitting functions to two loops from,

. b\ d .
P, = ( — ey — az;o) log(Z,42,), (C.17)

where Z, is the wavefunction renormalisation in MS for the quark. Up to two

loops,

(N

Qg 2 1 CF 170,4 ?)CF
+ (E) Cr (6_2 <CA -+ 7) + . (— 1 + T —i—Tfnf)) . (018)
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Converting back to x space we find,

Q@
P, =-2Cr (30 + 4P)
47
2
Qg 44 17 3
+ <E) |:(5 (CACF (TQ — 123 + 6 ) + C% <—12C2 + 24(3 + 5)

16 268 0C T
— CFTfnf ( 3€2 + 3) > + P (OACF (7 — 8<2) — %)}

(C.19)

Notice that we find that all L™ terms cancel. This reproduces Bf, the coefficient
of 0 in eq. (4.60)), and shows that the coefficient of P is 7usp as in eq. (3.35]).

C.1.2 Calculating P,

The one loop contributions for the gluon gluon distribution function are shown
in Figures [C.2a] and [C.20] The total one loop contributions are,

=1 [5 (— Cag | 35Ca 8nfo) + 4CAP1
€ 2 6 3

98CA . 4071fo
9 9

+6 <—4CA§2 + ) +(Caf — C)P —AC4L.  (C.20)

The two loop contributions are shown in Figures C.2pl The two loop

contributions are,
1 9 1/9 9 9
i CA( CUEHEER )
F =y <—2 (2¢20) + % (—4¢30 — 4C2P))
flane 02{ ((1 —8(2)6 + 4P +8L)

% ((4—4¢)0 + (8¢ +8)P — 4L — 12L7) }

G 3 1
a1 (6 +2)a+2r 1)
3¢ G ) 9 3
5(—7—— 4)+(§—2@)P—ZL—ZL2)]
9
8

1

€
( (.9 _9p 9_52_4_5) _9 _>)
fos ™ <2(8 8> e(<4 5 )0l Tl

+
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Figure C.2: Large-x divergent contributions to the gluon-gluon parton
distribution up to two loops. The grey blob represents a self energy insertion.
Insertions on external legs are excluded. The clockwise ghost is included in h).
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@, 2 [ [—§5—- —_p 22 ) f—ZP+ [
Jog CA(&( R )+ <(24 288)5 9" 24 ))
3G 1
£ i{ ((4 >6+3P+2L)
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The total two loop contribution is,

1 7591 527
= . {5 (O}; (—36@— 1OC3+W) +CansT (1642 - ?) —4Cpn Ty

160n2T7? 496 176C yn T
O (g (a0 - O

+L (16CansTy — 36C3) —24CE,L2}

1 ) 101\  71Can;Ty 160377

2
+P (865“ - 400“3"f i > + 160314

The extraction of the splitting function from above is the same as in the quark

case. Instead of Z; we use the gluon field renormalisation in MS,

Qg 1 5CA 4nfo
Ip=14—-| —— —— 21
AT Adm e ( 3 3 (©-21)
2
Qg 1 23031 5C’Anfo 1 5C’Anfo 2503‘
Bt I et _ _9 T il _
" (zm) L ( 8 2 CrngTy | + 5 3 12
Performing those steps we find,
Qg 110A 471fo
Pog =1 - 4C4 P
99 = (5( 3 3 +4C,
2
s 32C% 160 n,T
+ (Z‘—) [5 <12031§3+ g A ‘;)”f ! —40anTf)
s

(C.22)

268C% T
+P (_803,@ + 6890/4 - 806/;”1” ! ) }

Again this aligns with B in eq. (4.60]) and 7eusp in eq. (3.35).

We have replicated previous splitting function calculations at large = directly
from the definitions and in a covariant gauge. By taking the
incoming partons off shell, p? # 0, we regulate the infrared divergences allowing
the extraction of the UV poles of the PDFs. Although the divergent terms remain
gauge independent the finite terms become gauge dependent. It means that we
need to take into account the running of the gauge parameter & — Z4£ in finite

terms, even when working in Feynman gauge.
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C.2 Particular Two-loop Diagrams Contributing to
Whn

In this appendix we elaborate on aspects of the calculation of Wq presented in

Section 4.4l We consider two specific diagrams where some subtle points arise. In

Section [C.2.1f we discuss the endpoint contributions in diagram dgi) in Figure .77

using momentum space, and in Section we show the single IR divergent

behaviour of dg?g

C.2.1 Endpoint contribution in the diagram dgsz)

In Section we revisited the analysis of non-Abelian contributions to the
correlators of finite and semi-infinite Wilson lines . Specifically, we derived
the representations of the two-loop diagrams that contain a three-gluon vertex
and made a clear distinction between ones where two gluons are emitted from a
finite Wilson-line segment as compared to the case where two emissions emerge
from a semi-infinite line, corresponding respectively to diagrams dgj and dgL)
in . The difference is that in the former case both endpoint contributions
appear, as in , while in the latter case there is no endpoint contribution

from infinity, so the representation of d%) simplifies to (4.92). Let us now present

this calculation in detail using momentum space and show explicitly that this

endpoint contribution is indeed absent.

Using the Feynman rules given in Section diagram d@ in (4.77) reads

d(2) K/dd/ d81/ d82/ dt3{' D33 5.38815}

[~ (18— 2)" +i0] o [— (528 — 2)* 4+ i0] T [—(uts — 2)* + Z.O}—He’
(C.23)

which is analogous to eq. (4.84). In the equation above, we integrate over z using

the momentum-space representation of the propagators

9 | a1—lte [ Ak e
- -y | — 24
N [—2* +10] z/(%)wﬂo, (C.24)
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obtaining

d%k,dk 0
d%)—gs 5/ . 2/ dSl/ dSz/ dt3[ : D523 _5‘8315

—iky- 5516 lk)Q ,6’526 (k1+k2)-uts3

kik3 (k1 + ks)?

CCA

X (—2)3 (C.25)

After taking the derivatives with respect to s13, soff and integrating over the

infinite line we get

a2 — g G OA B / d'kydks / (it by 5 k-
n 27T 2d ksz(l{Zl + kg) /{?2 . B + 10

1
X {—z(kl B+140)  —i[(ky + ko) - B + 40] } ; (C.26)

where the prescription 440 in the denominators ensures the convergence of the

integrals for s; — —o0. The expression above may be conveniently rewritten as

oe; d'kydk (—i)?
d(2) o AiA / 1 2/ dts e i(k14ka)-uts
S Rl e K2K2(ky + k)2

1 2
) { —i(ky - B +10) e (k1 + ko) - B +10] } : (C.27)

This directly leads to the representation of eq. (4.92)), as we now show. Upon
introducing an auxiliary integration constrained by momentum conservation we

obtain:

, dy. 3dy. d 3
dg?L) — 4CZCAU, /d kld de k3 ( )d(sd(kl +k2 +k33) ( )

S (271‘)3d kzkzkz

Y 0 A A A
X { / dts / dsy e ksuts [emibvfsn _ g gmilkitha)fs] } (C.28)
0 —00

The representation of the delta function (27)40%(ky +ka+k3) = [ d?z etlkrthatha)=
is interpreted as an integral over the position of the scalar “three gluon” vertex
in eq. (4.92). Using eq. (C.24) we recover the expression of the three gluon

propagators in coordinate space, carrying momenta kq, ko and ks, obtaining

Y ) = Ky /dd/dtg/ dsy [—(z — ut3)? +i0]

{ —(z = Bs1)* +1i0] " [ z —HO] 2 [—(z = Bs1)? —I—iO]QE*Z}.
(C.29)
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Substituting the definitions in eqs. (4.90al), (4.90b)) and (4.90c|) we verify the result

in eq. (4.92).

C.2.2 The diagram dg?g connecting three Wilson lines

In this section we derive the representation of eq. of the diagram dg?g
that connects two cusps with a lightlike segment of finite length. Following the
discussion of ref. , the singularities of the webs of this kind are associated with
the configuration where all the vertices approach the lightlike segment of finite
length. These webs do not contribute to the cusp singularities because there is
not any region of configuration space where all the vertices are in proximity of

the cusp. By using the Feynman rules in eq. (4.63)), the diagram dg?i reads

+oo —+o00
dg?g = —gsu CACF / / dtg/ dsl/ dss

X [—20 - ut152+20] "[=28 - uts(sy — y) + 0] (C.30)

where the factor —CAQCF corresponds to the maximally non-Abelian part of the
colour factor of the diagram, which is exponentiated [59H61}[182]. We expose the
overall infrared singularity in the last integration by rewriting the integration
domain using 0(t; — t3) + 0(t3 — 1) = 1 and changing the order of integrations.

Thus we obtain

“+o00o
dY) = — glp* CACrN2 (B / dt/ dt'(t 1) 1*6/ dsl/ ds,

X [<28 - usy 4+ i0] " [—=26 - u(sy — y) + 0] (C.31)

We stress that the expression above still has infrared singularities from the limit
t — oo in the upper bound of the ¢ integral. Therefore we decouple the infrared

contributions by applying the changes of variables

2
=t (5) ., S1=yay, Sy =1ydas, (C.32)

which yields

+o0 Y
d% = gt u* CACrN*(B - u) / dt/ ds[—28 - uts + Z'O]zef1
0 0
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! d Ld
x/ n_ / = (C.33)
0 (1 - 0/1) ¢ al a2

The parameters a; and a, are integrated immediately, leading to
(2) _ g e 111
dx, = gt CACr N*(B - )— ——B(e 1+e¢)
+oo
/ dt/ ds [—20 - uts +i0]* " . (C.34)

Thus we apply the change of variables introduced before eq. (4.66]) and we get

€

dg?g — glute C’ACF./\/2 {— — B(e, 1+ 6)1

o dr (V5 d ;
x / —T/ C 22 (drop?) (C.35)
0 T Jo O
By replacing the normalisation N' = —%7 we absorb the factor (4we®)¢ into

the coupling constant, which we expand at the scale i by means of eq. (4.68]),
thus getting

w [1 —B(e,l—i—e)}

€

2
+00 N 1
TR (e a0
0 T Jo g ™

which is written in terms of the representation in eq. (4.78) and reproduces the

dY) = — CaCr

result of eq. (4.82)). By expanding the integrand for e — 0 we get
w? = —Cu4Cp [Q— - eg] (C.37)
X3 = 3 - .

We notice that the first term in the equation above, once integrated with A
and o — 0, would yield a double UV pole, which is expected to arise only from
single cusp singularities. By summing the contribution of wgg above with the one
originated from the other webs connecting three lines, namely wgi), we verify that
the cusp term cancels, leaving only the subleading pole in eq. associated

with collinear configurations around the finite segment.

149



Bibliography

1]

2]

3]

[4]

[5]

[10]

[11]

[12]

G. Falcioni, E. Gardi and C. Milloy, Relating amplitude and PDF
factorisation through Wilson-line geometries, |JHEP 11 (2019) 100
[1909.00697].

G. F. Sterman, Summation of Large Corrections to Short Distance
Hadronic Cross-Sections, Nucl. Phys. B281 (1987) 310.

S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series
for Hard Processes, |Nucl. Phys. B327 (1989) 323.

G. P. Korchemsky and G. Marchesini, Resummation of large infrared
corrections using Wilson loops, Phys. Lett. B313 (1993) 433.

H. Contopanagos, E. Laenen and G. F. Sterman, Sudakov factorization
and resummation, Nucl. Phys. B484 (1997) 303| [hep-ph/9604313|.

E. Laenen and L. Magnea, Threshold resummation for electroweak
annihilation from DIS data, |Phys. Lett. B632 (2006) 270
[hep-ph/0508284].

T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement
and Resummation in Drell-Yan Production, JHEP 07 (2008) 030
[0710.0680).

I. I. Balitsky and L. N. Lipatov, The Pomeranchuk Singularity in
Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822.

E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Multi - Reggeon Processes in
the Yang-Mills Theory, Sov. Phys. JETP 44 (1976) 443.

V. S. Fadin, E. A. Kuraev and L. N. Lipatov, On the Pomeranchuk
Singularity in Asymptotically Free Theories, Phys. Lett. 60B (1975) 50.

L. N. Lipatov, Reggeization of the Vector Meson and the Vacuum
Singularity in Nonabelian Gauge Theories, Sov. J. Nucl. Phys. 23 (1976)
338.

I. A. Korchemskaya and G. P. Korchemsky, High-energy scattering in
QCD and cross singularities of Wilson loops, Nucl. Phys. B437 (1995)
127 [hep-ph/9409446].

150


https://doi.org/10.1007/JHEP11(2019)100
https://arxiv.org/abs/1909.00697
https://doi.org/10.1016/0550-3213(87)90258-6
https://doi.org/10.1016/0550-3213(89)90273-3
https://doi.org/10.1016/0370-2693(93)90015-A
https://doi.org/10.1016/S0550-3213(96)00567-6
https://arxiv.org/abs/hep-ph/9604313
https://doi.org/10.1016/j.physletb.2005.10.038
https://arxiv.org/abs/hep-ph/0508284
https://doi.org/10.1088/1126-6708/2008/07/030
https://arxiv.org/abs/0710.0680
https://doi.org/10.1016/0370-2693(75)90524-9
https://doi.org/10.1016/0550-3213(94)00553-Q
https://doi.org/10.1016/0550-3213(94)00553-Q
https://arxiv.org/abs/hep-ph/9409446

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[. Balitsky, Operator expansion for high-energy scattering, Nucl. Phys.
B463 (1996) 99 [hep-ph/9509348].

S. Caron-Huot, When does the gluon reggeize?, JHEP 05 (2015) 093
[1309.6521].

S. Caron-Huot, E. Gardi and L. Vernazza, Two-parton scattering in the
high-energy limit, JHEP 06 (2017) 016 [1701.05241].

J. C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys. 5
(1989) 573 [nep-ph/0312336].

J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys.
Nucl. Phys. Cosmol. 32 (2011) 1.

T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear
FEffective Theory, Lect. Notes Phys. 896 (2015) pp.1 [1410.1892].

S. Moch, J. A. M. Vermaseren and A. Vogt, The Three loop splitting
functions in QCD: The Nonsinglet case, Nucl. Phys. B688 (2004) 101
[hep-ph/0403192].

S. Moch, J. A. M. Vermaseren and A. Vogt, Higher-order corrections in
threshold resummation, Nucl. Phys. B726 (2005) 317 [hep-ph/0506288|.

Y. Li, A. von Manteuffel, R. M. Schabinger and H. X. Zhu, Soft-virtual
corrections to Higgs production at N*LO, Phys. Rev. D91 (2015) 036008
[1412.2771].

A. Grozin, J. M. Henn, G. P. Korchemsky and P. Marquard, Three Loop
Cusp Anomalous Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006
[1409.0023).

A. Grozin, J. M. Henn, G. P. Korchemsky and P. Marquard, The
three-loop cusp anomalous dimension in QCD and its supersymmetric
extensions, JHEP 01 (2016) 140 [1510.07803|.

O. Almelid, C. Duhr and E. Gardi, Three-loop corrections to the soft
anomalous dimension in multileg scattering, |Phys. Rev. Lett. 117 (2016)
172002/ [1507 . 00047].

O. Almelid, C. Duhr, E. Gardi, A. McLeod and C. D. White,
Bootstrapping the QCD soft anomalous dimension, JHEP 09 (2017) 073
[1706.10162).

J. Davies, A. Vogt, B. Ruijl, T. Ueda and J. A. M. Vermaseren, Large-ns
contributions to the four-loop splitting functions in QCD, Nucl. Phys.
B915 (2017) 335/ [1610.07477].

J. M. Henn, A. V. Smirnov, V. A. Smirnov and M. Steinhauser, A planar
four-loop form factor and cusp anomalous dimension in QCD, JHEP 05
(2016) 066 [1604.03126].

151


https://doi.org/10.1016/0550-3213(95)00638-9
https://doi.org/10.1016/0550-3213(95)00638-9
https://arxiv.org/abs/hep-ph/9509348
https://doi.org/10.1007/JHEP05(2015)093
https://arxiv.org/abs/1309.6521
https://doi.org/10.1007/JHEP06(2017)016
https://arxiv.org/abs/1701.05241
https://doi.org/10.1142/9789814503266_0006
https://doi.org/10.1142/9789814503266_0006
https://arxiv.org/abs/hep-ph/0312336
https://doi.org/10.1007/978-3-319-14848-9
https://arxiv.org/abs/1410.1892
https://doi.org/10.1016/j.nuclphysb.2004.03.030
https://arxiv.org/abs/hep-ph/0403192
https://doi.org/10.1016/j.nuclphysb.2005.08.005
https://arxiv.org/abs/hep-ph/0506288
https://doi.org/10.1103/PhysRevD.91.036008
https://arxiv.org/abs/1412.2771
https://doi.org/10.1103/PhysRevLett.114.062006
https://arxiv.org/abs/1409.0023
https://doi.org/10.1007/JHEP01(2016)140
https://arxiv.org/abs/1510.07803
https://doi.org/10.1103/PhysRevLett.117.172002
https://doi.org/10.1103/PhysRevLett.117.172002
https://arxiv.org/abs/1507.00047
https://doi.org/10.1007/JHEP09(2017)073
https://arxiv.org/abs/1706.10162
https://doi.org/10.1016/j.nuclphysb.2016.12.012
https://doi.org/10.1016/j.nuclphysb.2016.12.012
https://arxiv.org/abs/1610.07477
https://doi.org/10.1007/JHEP05(2016)066
https://doi.org/10.1007/JHEP05(2016)066
https://arxiv.org/abs/1604.03126

[28]

[29]

[30]

[31]

[33]

[34]

[35]

[36]

[39]

[40]

[41]

S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, Four-Loop
Non-Singlet Splitting Functions in the Planar Limit and Beyond, | JHEP
10 (2017) 041] [1707 .08318|.

A. Grozin, J. Henn and M. Stahlhofen, On the Casimir scaling violation
in the cusp anomalous dimension at small angle, JHEP 10 (2017) 052
[1708.01221)].

S. Moch, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, On quartic
colour factors in splitting functions and the gluon cusp anomalous
dimension, |Phys. Lett. B782 (2018) 627 [1805.09638].

R. N. Lee, A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Four-loop
quark form factor with quartic fundamental colour factor, JHEP 02
(2019) 172 [1901.02898].

J. M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence
of the four-loop cusp anomalous dimension, Phys. Rev. Lett. 122 (2019)
201602 [1901.03693].

R. Briiser, A. Grozin, J. M. Henn and M. Stahlhofen, Matter dependence
of the four-loop QCD cusp anomalous dimension: from small angles to all
angles, JHEP 05 (2019) 186/ [1902.05076].

A. von Manteuffel and R. M. Schabinger, Quark and gluon form factors in
four loop QCD: The NJ% and Ny Ny contributions, |Phys. Rev. D 99 (2019)
094014 [1902.08208].

J. M. Henn, G. P. Korchemsky and B. Mistlberger, The full four-loop cusp
anomalous dimension in N' = 4 super Yang-Mills and QCD,|JHEP 04
(2020) 018/ [1911.10174].

A. von Manteuffel, E. Panzer and R. M. Schabinger, Cusp and collinear
anomalous dimensions in four-loop QCD from form factors, |Phys. Rev.
Lett. 124 (2020) 162001 [2002.04617).

N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing,
J. Stat. Mech. 0701 (2007) P01021| [hep-th/0610251].

R. H. Boels, T. Huber and G. Yang, Four-Loop Nonplanar Cusp
Anomalous Dimension in N=/ Supersymmetric Yang-Mills Theory, Phys.
Rev. Lett. 119 (2017) 201601/ [1705.03444].

D. Fioravanti, P. Grinza and M. Rossi, Beyond cusp anomalous dimension
from integrability, Phys. Lett. B675 (2009) 137 [0901.3161].

L. Freyhult and S. Zieme, The virtual scaling function of AdS/CFEFT, Phys.
Rev. D79 (2009) 105009 [0901.2749].

L. Freyhult, A. Rej and M. Staudacher, A Generalized Scaling Function
for AdS/CFT, J. Stat. Mech. 0807 (2008) P07015 [0712.2743|.

152


https://doi.org/10.1007/JHEP10(2017)041
https://doi.org/10.1007/JHEP10(2017)041
https://arxiv.org/abs/1707.08315
https://doi.org/10.1007/JHEP10(2017)052
https://arxiv.org/abs/1708.01221
https://doi.org/10.1016/j.physletb.2018.06.017
https://arxiv.org/abs/1805.09638
https://doi.org/10.1007/JHEP02(2019)172
https://doi.org/10.1007/JHEP02(2019)172
https://arxiv.org/abs/1901.02898
https://doi.org/10.1103/PhysRevLett.122.201602
https://doi.org/10.1103/PhysRevLett.122.201602
https://arxiv.org/abs/1901.03693
https://doi.org/10.1007/JHEP05(2019)186
https://arxiv.org/abs/1902.05076
https://doi.org/10.1103/PhysRevD.99.094014
https://doi.org/10.1103/PhysRevD.99.094014
https://arxiv.org/abs/1902.08208
https://doi.org/10.1007/JHEP04(2020)018
https://doi.org/10.1007/JHEP04(2020)018
https://arxiv.org/abs/1911.10174
https://doi.org/10.1103/PhysRevLett.124.162001
https://doi.org/10.1103/PhysRevLett.124.162001
https://arxiv.org/abs/2002.04617
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://arxiv.org/abs/hep-th/0610251
https://doi.org/10.1103/PhysRevLett.119.201601
https://doi.org/10.1103/PhysRevLett.119.201601
https://arxiv.org/abs/1705.03444
https://doi.org/10.1016/j.physletb.2009.03.053
https://arxiv.org/abs/0901.3161
https://doi.org/10.1103/PhysRevD.79.105009
https://doi.org/10.1103/PhysRevD.79.105009
https://arxiv.org/abs/0901.2749
https://doi.org/10.1088/1742-5468/2008/07/P07015
https://arxiv.org/abs/0712.2743

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

L. J. Dixon, The Principle of Mazimal Transcendentality and the
Four-Loop Collinear Anomalous Dimension, |JHEP 01 (2018) 075
[1712.07274).

S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and
Higgs boson production, Phys. Lett. B 631 (2005) 48 |hep-ph/0508265].

M. Beneke, A. Broggio, M. Garny, S. Jaskiewicz, R. Szafron, L. Vernazza
et al., Leading-logarithmic threshold resummation of the Drell-Yan process
at next-to-leading power, JHEP 03 (2019) 043|[1809.10631].

M. Beneke, A. Broggio, S. Jaskiewicz and L. Vernazza, Threshold
factorization of the Drell-Yan process at next-to-leading power, JHEP 20
(2020) 078 [1912.01585).

N. Bahjat-Abbas, D. Bonocore, J. Sinninghe Damsté, E. Laenen,
L. Magnea, L. Vernazza et al., Diagrammatic resummation of

leading-logarithmic threshold effects at next-to-leading power, JHEP 11
(2019) 002 [1905.13710].

J.-w. Qiu and G. F. Sterman, Power corrections in hadronic scattering. 1.
Leading 1/Q**2 corrections to the Drell-Yan cross-section, |Nucl. Phys. B
353 (1991) 105.

J.-w. Qiu and G. F. Sterman, Power corrections to hadronic scattering. 2.
Factorization, Nucl. Phys. B 353 (1991) 137.

F. Bloch and A. Nordsieck, Note on the radiation field of the electron,
Phys. Rev. 52 (1937) 54.

T. Kinoshita, Mass singularities of feynman amplitudes, |Journal of
Mathematical Physics 3 (1962) 650
Ihttps://doi.org/10.1063/1.1724268).

T. D. Lee and M. Nauenberg, Degenerate systems and mass singularities,
Phys. Rev. 133 (1964) B1549.

N. Kidonakis, Resummation for heavy quark and jet cross-sections, Int. J.
Mod. Phys. A 15 (2000) 1245 [hep-ph/9902484].

A. Bassetto, M. Ciafaloni and G. Marchesini, Jet Structure and Infrared
Sensitive Quantities in Perturbative QCD, Phys. Rept. 100 (1983) 201.

S. Catani and M. Seymour, A General algorithm for calculating jet
cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291
[hep-ph/9605323].

A. Polyakov, Gauge fields as rings of glue, |Nuclear Physics B 164 (1980)
1711

153


https://doi.org/10.1007/JHEP01(2018)075
https://arxiv.org/abs/1712.07274
https://doi.org/10.1016/j.physletb.2005.09.061
https://arxiv.org/abs/hep-ph/0508265
https://doi.org/10.1007/JHEP03(2019)043
https://arxiv.org/abs/1809.10631
https://doi.org/10.1007/JHEP07(2020)078
https://doi.org/10.1007/JHEP07(2020)078
https://arxiv.org/abs/1912.01585
https://doi.org/10.1007/JHEP11(2019)002
https://doi.org/10.1007/JHEP11(2019)002
https://arxiv.org/abs/1905.13710
https://doi.org/10.1016/0550-3213(91)90503-P
https://doi.org/10.1016/0550-3213(91)90503-P
https://doi.org/10.1016/0550-3213(91)90504-Q
https://doi.org/10.1103/PhysRev.52.54
https://doi.org/10.1063/1.1724268
https://doi.org/10.1063/1.1724268
https://arxiv.org/abs/https://doi.org/10.1063/1.1724268
https://doi.org/10.1103/PhysRev.133.B1549
https://doi.org/10.1142/S0217751X00000574
https://doi.org/10.1142/S0217751X00000574
https://arxiv.org/abs/hep-ph/9902484
https://doi.org/10.1016/0370-1573(83)90083-2
https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://doi.org/https://doi.org/10.1016/0550-3213(80)90507-6
https://doi.org/https://doi.org/10.1016/0550-3213(80)90507-6

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

R. A. Brandt, F. Neri and M.-a. Sato, Renormalization of loop functions
for all loops, Phys. Rev. D 24 (1981) 879.

D. Yennie, S. Frautschi and H. Suura, The infrared divergence phenomena
and high-energy processes, Annals of Physics 13 (1961) 379 .

S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516.

G. F. Sterman, Infrared divergences in perturbative QCD, AIP Conf. Proc.
74 (1981) 22.

J. G. M. Gatheral, Ezponentiation of Eikonal Cross-sections in
Nonabelian Gauge Theories, Phys. Lett. 133B (1983) 90.

J. Frenkel and J. C. Taylor, Nonabelian eikonal exponentiation, Nucl.
Phys. B246 (1984) 231,

E. Gardi, J. M. Smillie and C. D. White, The Non-Abelian Exponentiation
theorem for multiple Wilson lines, JHEP 06 (2013) 088 [1304.7040].

E. Gardi, J. M. Smillie and C. D. White, On the renormalization of
multiparton webs, JHEP 09 (2011) 114][1108.1357].

E. Gardi, From Webs to Polylogarithms, JHEP 04 (2014) 044
[1310.5268].

G. Falcioni, E. Gardi, M. Harley, L. Magnea and C. D. White, Multiple
Gluon Exchange Webs, JHEP 10 (2014) 10 [1407.3477].

S. Catani, The Singular behavior of QCD amplitudes at two loop order,
Phys. Lett. B427 (1998) 161 [hep-ph/9802439].

G. F. Sterman and M. E. Tejeda-Yeomans, Multiloop amplitudes and
resummation, |Phys. Lett. B552 (2003) 48 [hep-ph/0210130].

S. M. Aybat, L. J. Dixon and G. F. Sterman, The Two-loop anomalous
dimension matrixz for soft gluon exchange, Phys. Rev. Lett. 97 (20006)
072001] [nep-ph/0606254].

S. M. Aybat, L. J. Dixon and G. F. Sterman, The Two-loop soft
anomalous dimension matriz and resummation at next-to-next-to leading
pole, Phys. Rev. D74 (2006) 074004 [hep-ph/0607309].

T. Becher and M. Neubert, Infrared singularities of scattering amplitudes
in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [0901.0722].

T. Becher and M. Neubert, On the Structure of Infrared Singularities of
Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [0903.1126].

E. Gardi and L. Magnea, Factorization constraints for soft anomalous
dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079
[0901.1091].

154


https://doi.org/10.1103/PhysRevD.24.879
https://doi.org/https://doi.org/10.1016/0003-4916(61)90151-8
https://doi.org/10.1103/PhysRev.140.B516
https://doi.org/10.1063/1.33099
https://doi.org/10.1063/1.33099
https://doi.org/10.1016/0370-2693(83)90112-0
https://doi.org/10.1016/0550-3213(84)90294-3
https://doi.org/10.1016/0550-3213(84)90294-3
https://doi.org/10.1007/JHEP06(2013)088
https://arxiv.org/abs/1304.7040
https://doi.org/10.1007/JHEP09(2011)114
https://arxiv.org/abs/1108.1357
https://doi.org/10.1007/JHEP04(2014)044
https://arxiv.org/abs/1310.5268
https://doi.org/10.1007/JHEP10(2014)010
https://arxiv.org/abs/1407.3477
https://doi.org/10.1016/S0370-2693(98)00332-3
https://arxiv.org/abs/hep-ph/9802439
https://doi.org/10.1016/S0370-2693(02)03100-3
https://arxiv.org/abs/hep-ph/0210130
https://doi.org/10.1103/PhysRevLett.97.072001
https://doi.org/10.1103/PhysRevLett.97.072001
https://arxiv.org/abs/hep-ph/0606254
https://doi.org/10.1103/PhysRevD.74.074004
https://arxiv.org/abs/hep-ph/0607309
https://doi.org/10.1103/PhysRevLett.102.162001, 10.1103/PhysRevLett.111.199905
https://arxiv.org/abs/0901.0722
https://doi.org/10.1088/1126-6708/2009/06/081, 10.1007/JHEP11(2013)024
https://arxiv.org/abs/0903.1126
https://doi.org/10.1088/1126-6708/2009/03/079
https://arxiv.org/abs/0901.1091

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

E. Gardi and L. Magnea, Infrared singularities in QQCD amplitudes, Nuovo
Cim. C32N5-6 (2009) 137 [0908.3273.

T. Becher and M. D. Schwartz, Direct photon production with effective
field theory, JHEP 02 (2010) 040 [0911.0681].

T. Becher and G. Bell, The gluon jet function at two-loop order, Phys.
Lett. B695 (2011) 252 [1008.1936).

L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and
S. Uccirati, Factorisation and Subtraction beyond NLO, JHEP 12 (2018)
062/ [1809 . 05444].

A. Vladimirov, Structure of rapidity divergences in multi-parton scattering
soft factors, JHEP 04 (2018) 045 [1707.07606].

O. Almelid, The three-loop soft anomalous dimension of massless multi-leg
scattering, Thesis (2016) .

G. P. Korchemsky and A. V. Radyushkin, Renormalization of the Wilson
Loops Beyond the Leading Order, Nucl. Phys. B283 (1987) 342.

A. H. Mueller, ed., Perturbative Quantum Chromodynamics, vol. 5. WSP,
Singapore, 1989, 10.1142/0494.

Y. L. Dokshitzer, Calculation of the Structure Functions for Deep
Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in
Quantum Chromodynamics., Sov. Phys. JETP 46 (1977) 641.

V. N. Gribov and L. N. Lipatov, Deep inelastic e p scattering in
perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438.

G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, | Nucl.
Phys. B126 (1977) 298,

V. Ravindran, J. Smith and W. L. van Neerven, Two-loop corrections to
Higgs boson production, Nucl. Phys. B704 (2005) 332 [hep-ph/0408315].

S. Moch, J. A. M. Vermaseren and A. Vogt, Three-loop results for quark
and gluon form-factors, Phys. Lett. B625 (2005) 245 [hep-ph/0508055].

G. P. Korchemsky, Asymptotics of the Altarelli-Parisi-Lipatov Evolution
Kernels of Parton Distributions, Mod. Phys. Lett. A4 (1989) 1257.

A. B. Goncharov, Multiple polylogarithms, cyclotomy and modular
complezes, Mathematical Research Letters 5 (1998) 497516 [1105.2076].

A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical
Polylogarithms for Amplitudes and Wilson Loops, |Phys. Rev. Lett. 105
(2010) 151605 [1006.5703)].

155


https://doi.org/10.1393/ncc/i2010-10528-x
https://doi.org/10.1393/ncc/i2010-10528-x
https://arxiv.org/abs/0908.3273
https://doi.org/10.1007/JHEP02(2010)040
https://arxiv.org/abs/0911.0681
https://doi.org/10.1016/j.physletb.2010.11.036
https://doi.org/10.1016/j.physletb.2010.11.036
https://arxiv.org/abs/1008.1936
https://doi.org/10.1007/JHEP12(2018)062
https://doi.org/10.1007/JHEP12(2018)062
https://arxiv.org/abs/1809.05444
https://doi.org/10.1007/JHEP04(2018)045
https://arxiv.org/abs/1707.07606
https://doi.org/10.1016/0550-3213(87)90277-X
https://doi.org/10.1142/0494
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/10.1016/j.nuclphysb.2004.10.039
https://arxiv.org/abs/hep-ph/0408315
https://doi.org/10.1016/j.physletb.2005.08.067
https://arxiv.org/abs/hep-ph/0508055
https://doi.org/10.1142/S0217732389001453
https://doi.org/10.4310/mrl.1998.v5.n4.a7
https://arxiv.org/abs/1105.2076
https://doi.org/10.1103/PhysRevLett.105.151605
https://doi.org/10.1103/PhysRevLett.105.151605
https://arxiv.org/abs/1006.5703

[39]

[90]

[91]

[92]

[93]

[94]
[95]

[96]

[97]

98]

[99]

100]

101]

[102]

[103]

J. Vollinga and S. Weinzierl, Numerical evaluation of multiple
polylogarithms, Comput. Phys. Commun. 167 (2005) 177
[hep-ph/0410259].

C. Duhr and F. Dulat, PolyLogTools — polylogs for the masses, JHEP 08
(2019) 135 [1904.07279).

C. Duhr, Mathematical aspects of scattering amplitudes, in Proceedings,
Theoretical Advanced Study Institute in Elementary Particle Physics:
Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI
2014): Boulder, Colorado, June 2-27, 2014, pp. 419-476, 2015,
1411.7538, |DOI.

E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod.
Phys. A 15 (2000) 725/ [hep-ph/9905237].

F. C. Brown, Polylogarithmes multiples uniformes en une variable, Compt.

Rend. Math. 338 (2004) 527.
K.-T. Chen, [lterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.

F. Brown, lterated integrals in quantum field theory, in Proceedings,
Geometric and Topological Methods for Quantum Field Theory : 6th
Summer School: Villa de Leyva, Colombia, July 6-23, 2009, pp. 188-240,
2013, DOL.

A. V. Kotikov, Differential equations method: New technique for massive
Feynman diagrams calculation, Phys. Lett. B254 (1991) 158.

A. V. Kotikov, Differential equation method: The Calculation of N point
Feynman diagrams, Phys. Lett. B267 (1991) 123|

7. Bern, L. J. Dixon and D. A. Kosower, Dimensionally requlated
pentagon integrals, Nucl. Phys. B412 (1994) 751 [hep-ph/9306240].

T. Gehrmann and E. Remiddi, Differential equations for two loop four
point functions, Nucl. Phys. B580 (2000) 485 [hep-ph/9912329].

J. M. Henn, Multiloop integrals in dimensional regularization made simple,
Phys. Rev. Lett. 110 (2013) 251601 [1304.1806].

K. G. Chetyrkin and F. V. Tkachov, Integration by Parts: The Algorithm
to Calculate beta Functions in 4 Loops, Nucl. Phys. B192 (1981) 1509.

S. Laporta, High precision calculation of multiloop Feynman integrals by

difference equations, Int. J. Mod. Phys. A15 (2000) 5087
lhep-ph/0102033).

R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals,
J. Phys. Conf. Ser. 523 (2014) 012059 [1310.1145].

156


https://doi.org/10.1016/j.cpc.2004.12.009
https://arxiv.org/abs/hep-ph/0410259
https://doi.org/10.1007/JHEP08(2019)135
https://doi.org/10.1007/JHEP08(2019)135
https://arxiv.org/abs/1904.07279
https://arxiv.org/abs/1411.7538
https://doi.org/10.1142/9789814678766_0010
https://doi.org/10.1142/S0217751X00000367
https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://doi.org/10.1016/j.crma.2004.02.001
https://doi.org/10.1016/j.crma.2004.02.001
https://doi.org/10.1017/CBO9781139208642.006
https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1016/0370-2693(91)90536-Y, 10.1016/0370-2693(92)91582-T
https://doi.org/10.1016/0550-3213(94)90398-0
https://arxiv.org/abs/hep-ph/9306240
https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/S0217-751X(00)00215-7, 10.1142/S0217751X00002157
https://arxiv.org/abs/hep-ph/0102033
https://doi.org/10.1088/1742-6596/523/1/012059
https://arxiv.org/abs/1310.1145

[104] A. von Manteuffel and C. Studerus, Reduze 2 - Distributed Feynman
Integral Reduction, 1201.4330.

[105] A. V. Smirnov, FIRES: a C++ implementation of Feynman Integral
REduction, Comput. Phys. Commun. 189 (2015) 182 [1408.2372).

[106] A. von Manteuffel and R. M. Schabinger, A novel approach to integration
by parts reduction, Phys. Lett. B744 (2015) 101 [1406.4513|.

[107] T. Peraro, Scattering amplitudes over finite fields and multivariate
functional reconstruction, JHEP 12 (2016) 030 [1608.01902].

[108] P. Maierhoefer, J. Usovitsch and P. Uwer, Kira - A Feynman Integral
Reduction Program,|1705.05610.

[109] A. V. Smirnov and F. S. Chuharev, FIREG: Feynman Integral REduction
with Modular Arithmetic,|1901.07808.

[110] J. Henn, B. Mistlberger, V. A. Smirnov and P. Wasser, Constructing d-log
integrands and computing master integrals for three-loop four-particle
scattering, |JHEP 04 (2020) 167 [2002.09492].

[111] C. Meyer, Transforming differential equations of multi-loop Feynman
integrals into canonical form, JHEP 04 (2017) 006 [1611.01087].

[112] C. Meyer, Algorithmic transformation of multi-loop master integrals to a
canonical basis with CANONICA, 1705.06252.

[113] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field
theory. Addison-Wesley, Reading, USA, 1995.

[114] A. Mitov, G. F. Sterman and 1. Sung, The Massive Soft Anomalous
Dimension Matriz at Two Loops, Phys. Rev. D79 (2009) 094015
[0903 . 3241].

[115] A. Ferroglia, M. Neubert, B. D. Pecjak and L. L. Yang, Two-loop
divergences of massive scattering amplitudes in non-abelian gauge theories,
JHEP 11 (2009) 062/ [0908.3676].

[116] A. Waelkens, Calculation of webs in non-abelian gauge theories using
unitary cuts, Thesis (2017) .

[117] L. Adams and S. Weinzierl, The e-form of the differential equations for
Feynman integrals in the elliptic case, Phys. Lett. B781 (2018) 270
[1802.05020L

[118] J. Drummond, J. Foster, O. Giirdogan and G. Papathanasiou, Cluster
adjacency and the four-loop NMHV heptagon, JHEP 03 (2019) 087
[1812.0464OL

157


https://arxiv.org/abs/1201.4330
https://doi.org/10.1016/j.cpc.2014.11.024
https://arxiv.org/abs/1408.2372
https://doi.org/10.1016/j.physletb.2015.03.029
https://arxiv.org/abs/1406.4513
https://doi.org/10.1007/JHEP12(2016)030
https://arxiv.org/abs/1608.01902
https://arxiv.org/abs/1705.05610
https://arxiv.org/abs/1901.07808
https://doi.org/10.1007/JHEP04(2020)167
https://arxiv.org/abs/2002.09492
https://doi.org/10.1007/JHEP04(2017)006
https://arxiv.org/abs/1611.01087
https://arxiv.org/abs/1705.06252
https://doi.org/10.1103/PhysRevD.79.094015
https://arxiv.org/abs/0903.3241
https://doi.org/10.1088/1126-6708/2009/11/062
https://arxiv.org/abs/0908.3676
https://doi.org/10.1016/j.physletb.2018.04.002
https://arxiv.org/abs/1802.05020
https://doi.org/10.1007/JHEP03(2019)087
https://arxiv.org/abs/1812.04640

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

128]

[129]

[130]

[131]

[132]

S. Caron-Huot, L. J. Dixon, F. Dulat, M. von Hippel, A. J. McLeod and
G. Papathanasiou, Siz-Gluon amplitudes in planar N = 4
super-Yang-Mills theory at siz and seven loops, JHEP 08 (2019) 016
[1903.10890).

S. Caron-Huot, L. J. Dixon, F. Dulat, M. Von Hippel, A. J. McLeod and
G. Papathanasiou, The Cosmic Galois Group and Extended Steinmann
Relations for Planar N =4 SYM Amplitudes, JHEP 09 (2019) 061
[1906.07116].

S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic
Form of Planar Two-Loop Five-Gluon Scattering Amplitudes in QCD,
Phys. Rev. Lett. 122 (2019) 082002 [1812.04586].

G. P. Korchemsky and A. V. Radyushkin, Infrared factorization, Wilson
lines and the heavy quark limit, Phys. Lett. B279 (1992) 359
lhep-ph/9203222].

W. Kilian, T. Mannel and T. Ohl, Unimagined imaginary parts in heavy
quark effective field theory, Phys. Lett. B 304 (1993) 311
[hep-ph/9303224].

M. Neubert, Heavy-quark symmetry, Physics Reports 245 (1994) 259 .

A. Grozin, Leading and next-to-leading large-ny terms in the cusp
anomalous dimension and quark-antiquark potential, PoS LL2016 (2016)
053 [1605.03886].

A. Grozin, Four-loop cusp anomalous dimension in QED, JHEP 06
(2018) 073 [1805.05050).

R. Briiser, A. Grozin, J. Henn and M. Stahlhofen, Four-loop results for the
cusp anomalous dimension, PoS LL2018 (2018) 018|[1807.05145].

M. Harley, Multiparton webs in non-abelian gauge theories at three-loops
and beyond, Thesis (2015) .

S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk
et al., pySecDec: a toolbox for the numerical evaluation of multi-scale
integrals, Comput. Phys. Commun. 222 (2018) 313 [1703.09692].

T. Binoth and G. Heinrich, An automatized algorithm to compute infrared
divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741
[hep-ph/0004013)].

T. Hahn, CUBA: A Library for multidimensional numerical integration,
Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043].

J. C. Collins, D. E. Soper and G. F. Sterman, Transverse Momentum
Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl.
Phys. B250 (1985) 199.

158


https://doi.org/10.1007/JHEP08(2019)016
https://arxiv.org/abs/1903.10890
https://doi.org/10.1007/JHEP09(2019)061
https://arxiv.org/abs/1906.07116
https://doi.org/10.1103/PhysRevLett.122.082002
https://arxiv.org/abs/1812.04586
https://doi.org/10.1016/0370-2693(92)90405-S
https://arxiv.org/abs/hep-ph/9203222
https://doi.org/10.1016/0370-2693(93)90301-W
https://arxiv.org/abs/hep-ph/9303224
https://doi.org/https://doi.org/10.1016/0370-1573(94)90091-4
https://doi.org/10.22323/1.260.0053
https://doi.org/10.22323/1.260.0053
https://arxiv.org/abs/1605.03886
https://doi.org/10.1007/JHEP01(2019)134
https://doi.org/10.1007/JHEP01(2019)134
https://arxiv.org/abs/1805.05050
https://doi.org/10.22323/1.303.0018
https://arxiv.org/abs/1807.05145
https://doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692
https://doi.org/10.1016/S0550-3213(00)00429-6
https://arxiv.org/abs/hep-ph/0004013
https://doi.org/10.1016/j.cpc.2005.01.010
https://arxiv.org/abs/hep-ph/0404043
https://doi.org/10.1016/0550-3213(85)90479-1
https://doi.org/10.1016/0550-3213(85)90479-1

[133] Y. Li, D. Neill and H. X. Zhu, An Exzponential Regulator for Rapidity
Divergences, Submitted to: Phys. Rev. D (2016) [1604.00392].

[134] Y. Li and H. X. Zhu, Bootstrapping Rapidity Anomalous Dimensions for
Transverse-Momentum Resummation, Phys. Rev. Lett. 118 (2017) 022004
[1604.01404].

[135] A. A. Vladimirov, Correspondence between Soft and Rapidity Anomalous
Dimensions, |Phys. Rev. Lett. 118 (2017) 062001 [1610.05791].

[136] A. V. Belitsky, Two loop renormalization of Wilson loop for Drell-Yan
production, Phys. Lett. B442 (1998) 307 [hep-ph/9808389].

[137] R. V. Harlander, Virtual corrections to g g —; H to two loops in the
heavy top limit, Phys. Lett. B492 (2000) 74 [hep-ph/0007289].

[138] E. G. Floratos, D. A. Ross and C. T. Sachrajda, Higher Order Effects in
Asymptotically Free Gauge Theories: The Anomalous Dimensions of
Wilson Operators, |Nucl. Phys. B129 (1977) 66.

[139] E. G. Floratos, D. A. Ross and C. T. Sachrajda, Higher Order Effects in
Asymptotically Free Gauge Theories. 2. Flavor Singlet Wilson Operators
and Coefficient Functions, Nucl. Phys. B152 (1979) 493.

[140] A. Gonzalez-Arroyo, C. Lopez and F. J. Yndurain, Second Order
Contributions to the Structure Functions in Deep Inelastic Scattering. 1.
Theoretical Calculations, |Nucl. Phys. B153 (1979) 161.

[141] A. Gonzalez-Arroyo and C. Lopez, Second Order Contributions to the
Structure Functions in Deep Inelastic Scattering. 3. The Singlet Case,
Nucl. Phys. B166 (1980) 429.

[142] G. Curci, W. Furmanski and R. Petronzio, Evolution of Parton Densities
Beyond Leading Order: The Nonsinglet Case, Nucl. Phys. B175 (1980)
27

[143] W. Furmanski and R. Petronzio, Singlet Parton Densities Beyond Leading
Order, |Phys. Lett. 97TB (1980) 437.

[144] E. G. Floratos, C. Kounnas and R. Lacaze, Higher Order QCD Effects in
Inclusive Annihilation and Deep Inelastic Scattering, Nucl. Phys. B192
(1981) 417.

[145] S. Moch and J. A. M. Vermaseren, Deep inelastic structure functions at
two loops, Nucl. Phys. B573 (2000) 853/ [hep-ph/9912355].

[146] I. Korchemskaya and G. Korchemsky, On light-like wilson loops, Physics
Letters B 287 (1992) 169 .

[147] L. J. Dixon, L. Magnea and G. F. Sterman, Universal structure of
subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022
[0805.3518].

159


https://arxiv.org/abs/1604.00392
https://doi.org/10.1103/PhysRevLett.118.022004
https://arxiv.org/abs/1604.01404
https://doi.org/10.1103/PhysRevLett.118.062001
https://arxiv.org/abs/1610.05791
https://doi.org/10.1016/S0370-2693(98)01249-0
https://arxiv.org/abs/hep-ph/9808389
https://doi.org/10.1016/S0370-2693(00)01042-X
https://arxiv.org/abs/hep-ph/0007289
https://doi.org/10.1016/0550-3213(78)90367-X, 10.1016/0550-3213(77)90020-7
https://doi.org/10.1016/0550-3213(79)90094-4
https://doi.org/10.1016/0550-3213(79)90596-0, 10.1016/0550-3213(79)90466-8
https://doi.org/10.1016/0550-3213(80)90207-2
https://doi.org/10.1016/0550-3213(80)90003-6
https://doi.org/10.1016/0550-3213(80)90003-6
https://doi.org/10.1016/0370-2693(80)90636-X
https://doi.org/10.1016/0550-3213(81)90434-X
https://doi.org/10.1016/0550-3213(81)90434-X
https://doi.org/10.1016/S0550-3213(00)00045-6
https://arxiv.org/abs/hep-ph/9912355
https://doi.org/https://doi.org/10.1016/0370-2693(92)91895-G
https://doi.org/https://doi.org/10.1016/0370-2693(92)91895-G
https://doi.org/10.1088/1126-6708/2008/08/022
https://arxiv.org/abs/0805.3515

[148]

[149]

[150]

[151]

[152]

[153)]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

163

O. Erdogan and G. Sterman, Gauge Theory Webs and Surfaces, |Phys.
Rev. D91 (2015) 016003 [1112.4564].

V. Del Duca, Iterating QCD scattering amplitudes in the high-energy
limit, JHEP 02 (2018) 112/ [1712.07030].

V. S. Fadin, M. I. Kotsky and R. Fiore, Gluon Reggeization in QCD in
the next-to-leading order, Phys. Lett. B359 (1995) 181,

V. S. Fadin, R. Fiore and M. 1. Kotsky, Gluon Regge trajectory in the two
loop approximation, Phys. Lett. B387 (1996) 593/ [hep-ph/9605357].

V. S. Fadin, R. Fiore and A. Quartarolo, Reggeization of quark quark
scattering amplitude in QCD, Phys. Rev. D53 (1996) 2729
lhep-ph/9506432].

J. Blumlein, V. Ravindran and W. L. van Neerven, On the gluon Regge
trajectory in O alpha-s**2, Phys. Rev. D58 (1998) 091502
[hep-ph/9806357].

V. Del Duca and E. W. N. Glover, The High-energy limit of QCD at two
loops, |JHEP 10 (2001) 035/ [hep-ph/0109028].

I. A. Korchemskaya and G. P. Korchemsky, Evolution equation for gluon
Regge trajectory, Phys. Lett. B387 (1996) 346 [hep-ph/9607229].

L. Magnea and G. F. Sterman, Analytic continuation of the Sudakov
form-factor in QCD, Phys. Rev. D42 (1990) 4222,

V. S. Vanyashin and M. V. Terentev, The Vacuum Polarization of a
Charged Vector Field, Zh. Eksp. Teor. Fiz. 48 (1965) 565.

I. B. Khriplovich, Green’s functions in theories with non-abelian gauge
group., Sov. J. Nucl. Phys. 10 (1969) 235.

D. J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge
Theories, |Phys. Rev. Lett. 30 (1973) 1343.

H. D. Politzer, Reliable Perturbative Results for Strong Interactions?,
Phys. Rev. Lett. 30 (1973) 1346.

W. E. Caswell, Asymptotic Behavior of Nonabelian Gauge Theories to
Two Loop Order, Phys. Rev. Lett. 33 (1974) 244.

D. R. T. Jones, Two Loop Diagrams in Yang-Mills Theory, Nucl. Phys.
B75 (1974) 531,

O. V. Tarasov and A. A. Vladimirov, Two Loop Renormalization of the
Yang-Mills Theory in an Arbitrary Gauge, Sov. J. Nucl. Phys. 25 (1977)
585.

160


https://doi.org/10.1103/PhysRevD.91.016003
https://doi.org/10.1103/PhysRevD.91.016003
https://arxiv.org/abs/1112.4564
https://doi.org/10.1007/JHEP02(2018)112
https://arxiv.org/abs/1712.07030
https://doi.org/10.1016/0370-2693(95)01016-J
https://doi.org/10.1016/0370-2693(96)01054-4
https://arxiv.org/abs/hep-ph/9605357
https://doi.org/10.1103/PhysRevD.53.2729
https://arxiv.org/abs/hep-ph/9506432
https://doi.org/10.1103/PhysRevD.58.091502
https://arxiv.org/abs/hep-ph/9806357
https://doi.org/10.1088/1126-6708/2001/10/035
https://arxiv.org/abs/hep-ph/0109028
https://doi.org/10.1016/0370-2693(96)01016-7
https://arxiv.org/abs/hep-ph/9607229
https://doi.org/10.1103/PhysRevD.42.4222
https://doi.org/10.1103/PhysRevLett.30.1343
https://doi.org/10.1103/PhysRevLett.30.1346
https://doi.org/10.1103/PhysRevLett.33.244
https://doi.org/10.1016/0550-3213(74)90093-5
https://doi.org/10.1016/0550-3213(74)90093-5

164]

[165]

[166]

[167]

168

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

E. Egorian and O. V. Tarasov, Two Loop Renormalization of the QCD in
an Arbitrary Gauge, Teor. Mat. Fiz. 41 (1979) 26.

O. V. Tarasov, A. A. Vladimirov and A. Yu. Zharkov, The
Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys.
Lett. 93B (1980) 429,

S. A. Larin and J. A. M. Vermaseren, The Three loop (QCD Beta function
and anomalous dimensions, Phys. Lett. B303 (1993) 334
[hep-ph/9302208].

T. O. Eynck, E. Laenen and L. Magnea, Ezxponentiation of the Drell-Yan
cross-section near partonic threshold in the DIS and MS-bar schemes,
JHEP 06 (2003) 057 [hep-ph/0305179].

J. C. Collins and D. E. Soper, Parton distribution and decay functions,
Nuclear Physics B 194 (1982) 445 |

D. J. Gross and F. Wilczek, Asymptotically Free Gauge Theories - I,
Phys. Rev. D8 (1973) 3633.

H. Georgi and H. D. Politzer, Electroproduction scaling in an
asymptotically free theory of strong interactions, Phys. Rev. D9 (1974)
416.

R. Hamberg and W. L. van Neerven, The Correct renormalization of the
gluon operator in a covariant gauge, |Nucl. Phys. B379 (1992) 143.

A. Vogt, S. Moch and J. A. M. Vermaseren, The Three-loop splitting
functions in QCD: The Singlet case, Nucl. Phys. B691 (2004) 129
[hep-ph/0404111].

G. P. Korchemsky and G. Marchesini, Structure function for large x and
renormalization of Wilson loop, |Nucl. Phys. B406 (1993) 225
lhep-ph/9210281].

Yu. L. Dokshitzer, G. Marchesini and G. P. Salam, Revisiting parton
evolution and the large-x limit, |Phys. Lett. B634 (2006) 504
[hep-ph/0511302].

A. V. Belitsky, G. P. Korchemsky and R. S. Pasechnik, Fine structure of
anomalous dimensions in N=4 super Yang-Mills theory, Nucl. Phys.
B809 (2009) 244 [0806.3657].

M. D. Schwartz, Quantum Field Theory and the Standard Model.
Cambridge University Press, 2014.

G. Heinrich and Z. Kunszt, Two loop anomalous dimension in light cone
gauge with Mandelstam-Leibbrandt prescription, Nucl. Phys. B519 (1998)
405 [hep-ph/9708334].

161


https://doi.org/10.1016/0370-2693(80)90358-5
https://doi.org/10.1016/0370-2693(80)90358-5
https://doi.org/10.1016/0370-2693(93)91441-O
https://arxiv.org/abs/hep-ph/9302208
https://doi.org/10.1088/1126-6708/2003/06/057
https://arxiv.org/abs/hep-ph/0305179
https://doi.org/https://doi.org/10.1016/0550-3213(82)90021-9
https://doi.org/10.1103/PhysRevD.8.3633
https://doi.org/10.1103/PhysRevD.9.416
https://doi.org/10.1103/PhysRevD.9.416
https://doi.org/10.1016/0550-3213(92)90593-Z
https://doi.org/10.1016/j.nuclphysb.2004.04.024
https://arxiv.org/abs/hep-ph/0404111
https://doi.org/10.1016/0550-3213(93)90167-N
https://arxiv.org/abs/hep-ph/9210281
https://doi.org/10.1016/j.physletb.2006.02.023
https://arxiv.org/abs/hep-ph/0511302
https://doi.org/10.1016/j.nuclphysb.2008.10.013
https://doi.org/10.1016/j.nuclphysb.2008.10.013
https://arxiv.org/abs/0806.3657
https://doi.org/10.1016/S0550-3213(98)00089-3
https://doi.org/10.1016/S0550-3213(98)00089-3
https://arxiv.org/abs/hep-ph/9708334

[178]

[179)

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189)]

[190]

A. Bassetto, G. Heinrich, Z. Kunszt and W. Vogelsang, The Light cone
gauge and the calculation of the two loop splitting functions, |Phys. Rev.
D58 (1998) 094020 [hep-ph/9805283].

D. A. Kosower and P. Uwer, Evolution kernels from splitting amplitudes,
Nucl. Phys. B674 (2003) 365/ |hep-ph/0307031].

C. F. Berger, Higher orders in A(alpha(s))/[1-x]+ of nonsinglet partonic
splitting functions, Phys. Rev. D66 (2002) 116002 [hep-ph/0209107].

J. C. Collins, D. E. Soper and G. F. Sterman, Factorization of Hard
Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1
lhep-ph/0409313].

E. Gardi, E. Laenen, G. Stavenga and C. D. White, Webs in multiparton
scattering using the replica trick, JHEP 11 (2010) 155 [1008.0098].

O. Erdogan, Coordinate-space singularities of massless gauge theories,
Phys. Rev. D89 (2014) 085016 [1312.0058].

O. Erdogan and G. Sterman, Ultraviolet divergences and factorization for
coordinate-space amplitudes, Phys. Rev. D91 (2015) 065033/ [1411.4588].

J. Frenkel, J. G. M. Gatheral and J. C. Taylor, Is quark-antiquark
annihilation infrared safe at high-energy?, Nucl. Phys. B233 (1984) 307.

C. F. Berger, Soft gluon exponentiation and resummation, Ph.D. thesis,
SUNY, Stony Brook, 2003. hep-ph/0305076.

J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, On
planar gluon amplitudes/Wilson loops duality, Nucl. Phys. B795 (2008)
52 [0709.2368].

J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev,
Conformal Ward identities for Wilson loops and a test of the duality with
gluon amplitudes, Nucl. Phys. B826 (2010) 337 [0712.1223|.

J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, Hexagon
Wilson loop = siz-gluon MHV amplitude, Nucl. Phys. B815 (2009) 142
(0803 . 1466].

H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and
Gravity. Cambridge University Press, 2015,
10.1017/CBO9781107706620.003.

162


https://doi.org/10.1103/PhysRevD.58.094020
https://doi.org/10.1103/PhysRevD.58.094020
https://arxiv.org/abs/hep-ph/9805283
https://doi.org/10.1016/j.nuclphysb.2003.09.044
https://arxiv.org/abs/hep-ph/0307031
https://doi.org/10.1103/PhysRevD.66.116002
https://arxiv.org/abs/hep-ph/0209107
https://doi.org/10.1142/9789814503266_0001
https://arxiv.org/abs/hep-ph/0409313
https://doi.org/10.1007/JHEP11(2010)155
https://arxiv.org/abs/1008.0098
https://doi.org/10.1103/PhysRevD.89.085016, 10.1103/PhysRevD.90.089902
https://arxiv.org/abs/1312.0058
https://doi.org/10.1103/PhysRevD.91.065033
https://arxiv.org/abs/1411.4588
https://doi.org/10.1016/0550-3213(84)90418-8
https://arxiv.org/abs/hep-ph/0305076
https://doi.org/10.1016/j.nuclphysb.2007.11.007
https://doi.org/10.1016/j.nuclphysb.2007.11.007
https://arxiv.org/abs/0709.2368
https://doi.org/10.1016/j.nuclphysb.2009.10.013
https://arxiv.org/abs/0712.1223
https://doi.org/10.1016/j.nuclphysb.2009.02.015
https://arxiv.org/abs/0803.1466
https://doi.org/10.1017/CBO9781107706620.003

	Abstract
	Lay Summary
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction and Background
	Factorisation of Massive Gauge Theory Amplitudes
	Factorisation of Massless Gauge Theory Amplitudes
	Iterated Integrals
	Thesis Overview

	Webs by Differential Equations
	Solving Feynman Integrals by Differential Equations
	The One-loop Soft Function
	[1,2,1]-web
	[3gv]-web
	Conclusion

	Bootstrapping
	Multiple-Gluon-Exchange-Web Basis Functions
	Constructing the Basis
	Towards Bootstrapping the Cusp Anomalous Dimension
	Fitting the [1,1,2,1]-web
	Conclusion

	Lightlike Wilson lines
	Initial Observations
	Infrared Factorisation of the On-shell Form Factor
	Parton Distribution Functions at Large x
	Explicit Calculation of Gamma-cap
	Relating Wilson-line Geometries to Physical Quantities
	Conclusion

	Concluding Remarks
	Differential Equation Details
	[1,2,1]-web Differential Equation
	[3gv]-web Differential Equation
	Parameterisation of the [3gv]-web Integrand

	Functions with letter y
	Weight Three Functions
	Weight Four Functions
	Weight Five Functions

	Lightlike Wilson-line Calculations
	Direct Calculation of the Splitting Functions at Large x
	Particular Two-loop Diagrams Contributing to W-cap

	Bibliography

