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Abstract

Scattering amplitudes in theories with massless particles feature infrared (IR)

divergences. In QCD, gluons are massless and when their momenta tends to zero

the amplitude diverges. We call this a soft divergence. For massless external

particles there are further divergences called collinear divergences, when the

invariant jet mass of the external and a radiated gluon tends to zero. Even

in a UV finite theory such as N = 4 super-Yang Mills there exists infrared

divergences. In fact, in the planar theory there exists an all-order ansatz for the

IR divergences called the BDS ansatz which amounts to the exponentiation of the

one loop result with anomalous dimensions that can be computed to all orders.

In this thesis we shall be considering the more complicated case of non-planar

QCD with both massless and massive scattering particles.

First, we shall review the IR factorisation formula for massive scattering

amplitudes. Here, soft divergences are described by the soft anomalous dimension

matrix. It is defined to be a vacuum expectation value of non-lightlike Wilson

lines. This object is calculable in perturbation theory. It exponentiates and

the exponent is a sum over webs. We will then focus on how to calculate the

individual integrals that appear in webs. The technique of differential equations

is explained and applied to integrals up to two loops for webs. We then discuss a

basis of functions for these specific integrals with the idea of creating an ansatz

for the soft anomalous dimension and other related quantities.

The second half of the thesis concerns massless scattering amplitudes. By

factorising not only the amplitude but also a parton distribution function we

find that they share the same hard collinear behaviour. They differ in their

pure soft poles which are governed by lightlike Wilson-line correlators that follow

different contours dictated by the kinematics. It allows us to explain an observed

relation between the subleading pole of the form factor, γG, and the coefficient

of δ(1− x) in the DGLAP splitting kernels, Bδ. We then argue that divergences

of lightlike Wilson-line correlators take a general form that only depend on local

features, individual line lengths, and not on the global geometry.
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Lay Summary

The best description of the fundamental theory describing elementary particles

is the Standard Model. To test it, we collide particles and observe the outcome

at colliders such as the Large Hadron Collider (LHC). Many different final states

can appear and along with many intermediate states, a plethora of different

collision processes can occur. One way to test the Standard Model is to search

for new particles. If they are observed then one can easily conclude that the

Standard Model is not a complete description and new physics describing the

new particles needs to be included. However, as of present, no new particles have

been discovered at the LHC.

Another way to test the validity of the theory is to perform precision tests. We

do this by comparing highly accurate experimental data with similarly accurate

theoretical predictions. If they match then the theory describes nature well, up

to that precision. If they do not match then that hints at new physics.

As the LHC is one of the most advanced technological machines in the world,

theorists need to provide ever more accurate predictions. The problem is that

calculations become ever more difficult. In certain regions of particle momentum,

conventional approaches break down and are wildly inaccurate as divergences

arise. To fix this we resum these divergences to give a convergent result.

Resummation can be performed on quantities that factorise, where there is a

large separation of scales. For instance, when a heavy particle radiates a low

energy particle.

In this thesis we apply novel techniques to the required calculations for the

resummation. We also explore conceptual issues regarding the factorisation and

relations between various quantities that emerge.
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Chapter 1

Introduction and Background

In perturbative quantum field theories, one can calculate loop corrections to

scattering amplitudes. These are fundamental building blocks to perturbative

cross sections for scattering events which, in turn, can be compared or used as

input to experimental observations or measurements. As experimental machines

are becoming ever more accurate we need to increase the predictive power of our

theories.

The most complete description of the fundamental particles that constitute

matter is the Standard Model. One of its sectors is quantum chromodynamics

(QCD) which describes quark and gluon interactions,

LQCD = −1

4
F aµνF a

µν + i
∑
q

ψ̄q( /D −mq)ψq (1.1)

where the sum is over quark flavours. It is an SU(3) gauge theory where quarks are

in the fundamental representation and gluons are in the adjoint representation.

The field strength in eq. (1.1) is defined as

F a
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν (1.2)

where Aµ is the gluon field and gs is the strong coupling. We compute amplitudes

perturbatively assuming small values in the coupling. For quark masses lower

than the scale at which perturbation theory breaks down, ΛQCD, we can consider

them massless. However, the top-quark mass is roughly three orders of magnitude

greater than ΛQCD. As such, in QCD, we require amplitudes that have external
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particles that are massless or massive, or both.

It is well known that perturbative QCD at fixed order in the coupling, which

is highly successful in describing hard processes at colliders, loses its predictive

power in kinematic regions and starts to diverge where there is a large hierarchy of

scales. Familiar examples are Drell-Yan or Higgs production near threshold, see

e.g. [2–7], or at small transverse momentum, which are dominated by soft-gluon

radiation. Another example is the high-energy limit of QCD scattering, where

the centre-of-mass energy is much larger than the momentum transfer [8–15]. In

each of these cases, and many others, the presence of scale hierarchies allows us to

factorise the contributions of the most relevant regions. In turn, we can derive all-

order resummation formulae, which extend the predictive power of QCD, leading

to highly successful phenomenology in many cases.

The theory underlying factorisation relies on identifying the origin of any

parametrically-enhanced corrections through operators, which capture the rel-

evant divergences. Independently of whether one uses QCD fields [16, 17], or

Soft-Collinear Effective Theory [18] ones, the relevant operators involve Wilson

lines, which follow the trajectory of fast-moving partons, and capture their

interactions with soft gluons. These operators obey evolution equations, governed

by corresponding anomalous dimensions, which are computable order by order in

QCD perturbation theory. Resummation formulae are obtained upon solving the

aforementioned evolution equations, leading to exponentiation. The anomalous

dimensions therefore have a central role in the predictive power of QCD, and

in certain cases their computation has been recently pushed to three-loop order,

e.g. [19–25], with very recent progress towards four loops [26–36] (even more is

known in maximally supersymmetric N = 4 Yang-Mills theory, see e.g. [37–42]).

To quantify the above let us look at Drell-Yan near threshold. This process

involves the production of a colour-singlet state from two hadronsA(p1)+B(p2)→
DY(Q) + X with s = (p1 + p2)2 and X is an unobserved QCD final state.

Schematically the differential cross section factorisation takes the form [2,3]

dσ

dQ2
=
∑
i,j

∫ 1

0

dx1dx2fiA(x1)fjB(x2)

[
S ijDYHij +O(αns logm(1− z))

]
+O

(
Λ2

QCD

Q4

)
(1.3)

where Q2 is the centre of mass energy of the outgoing state DY state, z = Q2

ŝ
and

ŝ = x1x2s. The function SDY is calculable in perturbation theory and resums the

distributions logn(1−z)
(1−z)+ and δ(1− z) of the partonic cross section. Currently SDY is
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known to three loops [19,20], which means that the cross section is known to next-

to-next-to-next-to-leading logarithmic accuracy [7,43]. After convolution with the

parton distribution functions, fij(x), we would yield higher precision in the region

Q2 → s. There have been recent advances in understanding factorisation beyond

these distribution terms, namely the αns logm(1− z) where n ≥ m. Factorisation

of the leading logarithms, where n = m, has been demonstrated from either using

SCET [44,45] or a diagrammatic approach [46]. The corrections of O(Λ2
QCD/Q

4)

are known as higher-twist corrections and given explicitly in [47, 48] for this

process.

In this chapter we will review the factorisation of scattering amplitudes,

considering massive and massless particles separately and derive the framework

that allows the computation of the anomalous dimensions.

1.1 Factorisation of Massive Gauge Theory

Amplitudes

We consider a generic n-particle massive scattering amplitude which we shall

denote as Mn. This object has two kinds of divergences: ultraviolet (UV) and

infrared (IR). The UV singularities occur because we approximate particles to

be point-like. We are unable to probe short distances or, correspondingly, high

energies. These divergences are well understood and we can absorb them into the

parameters of the theory through a process called renormalisation (eg. the fields

and masses in eq. (1.1)). From now on we consider that this has been performed

on Mn, i.e. it is a renormalised quantity.

The IR singularities are less well understood. In comparison to the UV they

occur because of states interacting at long distances. In the limit of vanishing

momenta, the so-called soft limit, a virtual exchange and unresolved radiation,

shown in Figures 1.1a and 1.1b respectively, are degenerate. Both quantities are

individually singular in this limit. The divergences are realised in the integration

over off-shell (Figure 1.1a) or on-shell (Figure 1.1b) degrees of freedom. Quantum

mechanics tells us to sum over all possibilities and, if properly regularised, we

will arrive at a meaningful result. This cancellation of infrared divergences was

first realised by Bloch and Nordsieck in 1937 [49] when applied to quantum

electrodynamics. The generalisation to non-Abelian gauge theories such as QCD

3



Mn

· · ·

p1pn

k

(a) Virtual correction to Mn

Mn+1

· · ·

p1pn

k

(b) Radiative Mn+1 amplitude

Figure 1.1: Degenerate states in the limit k → 0

is the so-called KLN theorem, which states that for a properly defined observable

it is infrared finite once all possible states are included [50,51].

A perturbative factorisation theorem states the n-legged amplitude Mn can be

written as

Mn = Sn · Hn, (1.4)

where Hn is the hard function and captures all the process dependent information

about the scattering amplitudeMn and is infrared finite. The function Sn is the

universal n-particle soft function and captures all the divergence ofMn, regulated

by a suitable regulator ε. For the present thesis, we shall solely use dimensional

regularisation, where spacetime is continued to d = 4 − 2ε dimensions and the

divergences manifest themselves as poles of ε. Equation (1.4) separates the scales

between the energies of the external momenta, which are non-zero because of their

mass, and the internal soft gluons. For phenomenological uses, Sn gives the virtual

corrections to soft functions for massive external states in factorisation formula

such as eq. (1.3). As an example, resummation for heavy quark production given

in [52].

The soft function Sn is given by the vacuum expectation value of n semi-infinite

Wilson lines

Sn ≡ 〈0|T[Wβ1(∞, 0)⊗ . . .⊗Wβn(∞, 0)]|0〉 , (1.5)

where the βi are the velocities of particle i. A Wilson line is defined as the

path-ordered exponential of the gauge field,

Wβ(y, x) ≡ P exp

(
igs

∫ y

x

dz βµA
µ(zβ)

)
, (1.6)

where β is the direction of the line and x and y are its endpoints. In the limit

of soft gluon radiation, radiative particles will follow their classical trajectory as

4



there is zero recoil momentum. Such an object that transports gauge information,

gluon radiation, along classical velocities is the Wilson line. The vector β can be

either lightlike β2 = 0 or non-lightlike β2 6= 0. For massless particles it is lightlike

and for massive particles it is non-lightlike. It is path ordered because the gauge

field is for a general SU(N) colour group and hence non-Abelian. We have to be

careful about the ordering of emissions of gluons. Notice that in an axial gauge,

β · A = 0, the Wilson line in the direction of β is trivial Wβ(y, x) = I.

The representation of the gauge field Aµ = AaµT
a in eq. (1.6) is prescribed

by the corresponding particle. For final-state quarks it is (Ta)ij = taij, initial-

state quarks it is (Ta)ij = −taji and for gluons (Ta)bc = −ifabc. The usefulness

of this so-called Catani-Seymour colour charge operator notation [53, 54] is to

produce representation-independent factorisation formula and only specialise

when required. The infrared-singular soft function Sn in eq. (1.4) is seen as an

operator in colour space acting on the finite hard function Hn to produce the full

scattering amplitude Mn. Importantly, Wβ(y, x) and consequently Sn does not

depend on the spin of the underlying particles, only on their colour representation.

Under an infinitesimal local gauge transformation Aµ → Aµ − 1
gs
∂µα, eq. (1.4)

transforms as

Mn →Mn + αa(0)Sn
(

n∑
i=1

Ta
i

)
Hn. (1.7)

Gauge invariance or, equivalently, colour charge conservation in this formalism is

the statement (
n∑
i=1

Ta
i

)
Hn = 0. (1.8)

The function Sn is invariant under the rescaling βi → λβi which can be readily

checked using the definition of the Wilson line in eq. (1.6). As a consequence of

this and Lorentz invariance we know that Sn can only depend on the so-called

cusp angles

γij =
2βi · βj√
β2
i

√
β2
j

(1.9)

and our factorisation theorem now reads

Mn({pi · pj}, {m2
i }, α(µ2), ε) = Sn({γij}, α(µ2), ε) · Hn({pi · pj}, {m2

i }, α(µ2)),

(1.10)

with Sn depending on the scale µ only through the running coupling αs(µ
2). As a

result of being scaleless the bare Sn is the identity in dimensional regularisation.
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It does not mean that Sn has no infrared divergence, instead it means that, in

perturbation theory, the infrared exactly cancels the ultraviolet behaviour. The

renormalised Sn which appears in eq. (1.10) is obtained through the multiplicative

renormalisation [55,56]

Sn(γij, εIR) = Sbare
n (γij, εIR, εUV)Zn(γij, εUV) = Zn(γij, εUV). (1.11)

Instead of calculating the infrared we shall calculate the ultraviolet. We can do

this by regulating the infrared which gives a well-defined function in perturbation

theory. We shall implement this by adding an exponential damping term to the

definition of the Wilson line in eq. (1.6),

W
(m)
β (y, x) ≡ P exp

(
igs

∫ y

x

dz βµA
µ(zβ)e−imz

√
β2

)
(1.12)

and define an infrared finite soft function given by

S(m)
n ({γij}, α(µ2), ε,m) ≡ 〈0|T[W

(m)
β1

(∞, 0)⊗ . . .⊗W (m)
βn

(∞, 0)]|0〉 . (1.13)

The argument of the exponential is chosen specifically to keep rescaling invariance.

The UV divergence of this object also renormalises multiplicatively with the same

factor as in eq. (1.11)

Sren
n ({γij}, αs(µ2), ε,m) = Zn(γij, αs(µ

2), ε)S(m)
n ({γij}, αs(µ2), ε,m) (1.14)

where we have made explicit the dependence on αs and ε is the ultraviolet poles.

Using eq. (1.14) we can calculate the pure counterterm Zn from the poles of

the well defined function S(m)
n which, in turn, allows us to find Sn = Zn from

eq. (1.11). The anomalous dimension from the renormalisation group (RG)

evolution of Sn in eq. (1.11) is called the soft anomalous dimension Γn which

is found from Zn by

µ
dZn(γij, αs(µ

2), ε)

dµ
= −Zn(γij, αs(µ

2), ε)Γn(γij, αs(µ
2)). (1.15)

An important property of soft functions is that they exponentiate. The Abelian

soft exponentiation was hinted at in Bloch and Nordsieck’s original paper [49]

and then reformulated in later papers by Yennie et al. [57] and Weinberg [58].

The extension relevant for QCD, the non-Abelian exponentiation theorem was

found in [59–62]. In order to compute Zn in eq. (1.15) we use this property as

6



it allows to determine directly logS(m)
n by computing only the webs that capture

the maximally non-Abelian colour factors of each Feynman diagram, as defined

in [62],

S(m)
n = exp

(∑
n,k

w(n,k)
(αs

4π

)n
εk

)
. (1.16)

In the exponent there is an overall single pole, higher order poles are generated

by expanding the exponential in a power series. This allows the calculation of the

soft anomalous dimension directly using eq. (1.15) and ensuring that the product

on the right hand side of eq. (1.14) is finite. Expanding Γn as Γn =
∑∞

i=1 Γ
(i)
n

(
αs
4π

)i
we can solve for the coefficients Γ

(i)
n in terms of the web coefficients w(n,k) [63]

Γ(1)
n =− 2w(1,−1) (1.17a)

Γ(2)
n =− 4w(2,−1) − 2[w(1,−1), w(1,0)] (1.17b)

Γ(3)
n =− 6w(3,−1) + 6b̂0

[
w(1,−1), w(1,1)

]
+ 3

[
w(1,0), w(2,−1)

]
+ 3

[
w(2,0), w(1,−1)

]
+
[
w(1,0),

[
w(1,−1), w(1,0)

]]
−
[
w(1,−1),

[
w(1,−1), w(1,1)

]]
. (1.17c)

The soft anomalous dimension is given by single poles of webs plus counterterms of

lower order commutators. The one-loop beta function b̂0 is given in eq. (4.7a) and

appears from the renormalisation of the coupling, see eq. (4.6). The factorisation

in eq. (1.10) and the exponentiation of Sn in eq. (1.16) is shown schematically in

Figure 1.2.

∼M Hexp Σ

Figure 1.2: A schematic picture of the amplitude factorisation and
exponentiation of the soft function

It is useful to define subtracted webs. These are webs with the subtraction of the

relevant commutator counterterms from subdivergences of the original web [64].

For instance, we shall study the so-called [1, 2, 1]-web in Section 2.3, w121 which

has the one-loop web, w(1,n) as a subdiagram. The subtracted [1, 2, 1]-web, using

eq. (1.17b), is then given by

w̄
(2,−1)
121 = w

(2,−1)
121 +

1

2
[w(1,−1), w(1,0)]. (1.18)
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Subtracted webs have a simpler functional form [64,65] than unsubtracted webs.

We shall review this and extend this function space in Chapter 3. There are also

further constraints from the renormalisation between higher order poles of webs,

which ensures the overall single pole of the exponent. For instance, at three loops

the double pole of the sum over webs is equal to the commutator of the lower

webs

w(3,−2) =
1

6

[
w(2,−1), w(1,−1)

]
. (1.19)

We will use this as a check in the study of the three loop [1, 1, 2, 1]-web in

Section 3.4.

1.2 Factorisation of Massless Gauge Theory

Amplitudes

In the previous section we discussed the infrared factorisation properties of

massive scattering amplitudes. We shall now discuss the case when massless

external particles are present. When this is the case there are additional, so-

called collinear, singularities which occur. These arise when the radiated gluon

in Figure 1.1b becomes collinear with an external massless particle. For example

when k → p1, the total mass of the state vanishes (p1 + k)2 → 0.

For outgoing states the KLN theorem tells us that we have to sum over all possible

final states, including any number of radiated gluons, in the cross section. This

is reasonable since, experimentally, given a certain detector resolution, we cannot

distinguish between a single particle and a sufficiently narrow jet consisting of

many radiative gluons.

Incoming states are more tricky. The KLN theorem still holds but we would need

to sum over all possible initial states. That is, run an experiment an infinite

number of times each with different initial states. What comes to the rescue is

that we cannot prepare a quark or gluon initial state, we can only do so with

bound states, e.g. hadrons. Factorisation, in eq. (1.3), allows us to absorb

the long distance singularities into non-perturbative parameters, the so-called

parton distribution functions (PDFs) which describe, in essence, the probability

of finding a parton in a hadron with a given momentum fraction. The scale

evolution of the PDFs are discussed, in detail, in Section 4.3.
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At the perturbative level, the factorisation of the infrared divergences (soft and

collinear) in on-shell massless partonic scattering amplitudes takes the form [66–

73]

Mn({pi · pj}, ε) =

[
n∏
i=1

Ji

(
(2pi · ni)2

n2
iµ

2
, αs(µ

2), ε

)] Sn ({βi · βj}, αs(µ2), ε)∏n
i=1 Ji

(
2(βi·ni)2

n2
i

, αs(µ2), ε
)


×H
({

(pi · pj)2

µ2

}
,

{
(2pi · ni)2

n2
iµ

2

}
, αs(µ

2)

)
,

(1.20)

where the jet function Ji, one for each massless external leg, captures the

collinear singularities, the soft function Sn contains the contribution of any long-

wavelength gluons exchanged between the external particles and the eikonal jet

function Ji captures all the singularities that are present both in Sn and in

the jet function Ji, which are associated with exchanges that are both soft and

collinear to the massless external particles. Therefore, the ratio Sn∏
Ji in eq. (1.20)

includes only the divergences associated with soft wide-angle emissions. H is

the hard function, found from matching to the amplitude. Each other factor in

eq. (1.20) has an operator definition which dictates their functional dependencies

in eq. (1.20), involving the momenta pi of the external particles and their lightlike

velocities βi, defined by

pµi = Q0β
µ
i , (1.21)

where Q0 is an arbitrary normalisation and would typically be of the order of the

hard scale of the process, Q. The operator definitions of Sn, Ji and Ji are written

in terms of the expectation values of Wilson lines, defined in eq. (1.6). In the

context of on-shell massless scattering amplitudes, we use lightlike kinematics for

the external legs1, β2
i = 0, and along with the definition of Sn in eq. (1.5) we

define the functions entering the factorisation formula (1.20) by:

u(p) Ji

(
(2pi · ni)2

n2
iµ

2
, αs(µ

2), ε

)
= 〈0|T

[
Wni(∞, 0)ψ(0)

]
|p〉 , (1.22)

Ji
(

2(βi · ni)2

n2
i

, αs(µ
2), ε

)
= 〈0|T

[
Wni(∞, 0)Wβi(0,∞)

]
|0〉 , (1.23)

where ni is an auxiliary non-lightlike vector and the dependence on its choice must

cancel in eq. (1.20). In eq. (1.22) we presented the jet function Ji for fermion

fields; for a definition of the gluon jet function see refs. [74–76]. Any function

1Note that the dependence of Sn is no longer on γij in eq. (1.9) but rather on βi · βj
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built solely from Wilson lines, such as Sn and Ji, is called eikonal.

We shall consider an anomalous dimension for the infrared divergent terms of

eq. (1.20)

µ
d

dµ

(
Sn

n∏
i=1

Ji
Ji

)
= −Γll

n

(
Sn

n∏
i=1

Ji
Ji

)
(1.24)

where ll symbolises that it describes lightlike behaviour. The factorisation

functions in eq. (1.24) are heavily constrained and satisfy equations which are

explained in Section 4.2. By direct calculation [69] it was shown that the tripole

colour structure fabcTa
iT

b
jT

c
k vanishes at two loops in lightlike kinematics. As

such, Γll
n obeys the sum-over-dipole formula to two loops

Γll
n = −1

2
γcusp(αs)

n∑
(i,j)

log(βi · βj)Ta
iT

a
j +

n∑
i=1

γiG +O(α3
s). (1.25)

General arguments were then made as to why it had to vanish based on Bose

symmetry and scaling invariance [70,72]. It has been claimed recently that there

are no colour structures with an odd number of generators at any loop order [77].

Higher order corrections to eq. (1.25) depend on conformally-invariant cross ratios

(CICRs) defined as

ρijkl =
(βi · βj)(βk · βl)
(βi · βk)(βj · βl)

. (1.26)

The three-loop correction to eq. (1.25) was completed in the highly ambitious

calculation of ref. [24] and depends on one simple function

F(z) = L10101(z) + 2ζ2 [L001(z) + L100(z)] (1.27)

where it is written in terms of single valued harmonic polylogarithms (SVHPLs),

which we shall define in Section 1.3, with argument z which is a function of a

combination of ρ’s. The exact expression for the correction can be found in other

publications [24,25,78].

The lightlike cusp anomalous dimension [79], γcusp, in eq. (1.25) describes

double poles in massless amplitudes, originating in overlapping soft and collinear

singularities. This is related to the non-lightlike angle-dependent cusp anomalous

dimension Γcusp ≡ Γ2, from the two-leg soft function S2 in eq. (1.5), by the large

angle limit [79]

lim
γij→∞

Γcusp(γij, αs) = γcusp(αs) log(γij). (1.28)
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The large angle limit is from taking the lightlike limit β2
i → 0 in the definition of

γij eq. (1.9). The function Γcusp itself is a widely researched quantity [79], known

to three loops [22], and we study it in detail in Section 3.3.

While the lightlike cusp anomalous dimension occurs universally, governing

the leading singularities in any kinematic limit, single-logarithmic contributions

(γG in eq. (1.25)) characterising separately large-angle soft or hard-collinear or

rapidity divergences, are somewhat less universal, and yet recur in a variety of

physical quantities that are not a priori related.

In Chapter 4 we study two fundamental physical quantities, which are recurrent

ingredients in the factorisation of amplitudes and cross sections [17, 80]. The

first is the massless on-shell form factor, associated e.g. with an electromagnetic

vector current in the case of quarks, or effective Higgs production vertex, gg → H

(in the limit where the top mass is much larger than mH), in the case of

gluons. It is essentially a two-leg scattering amplitude. The second is parton

distribution functions (PDFs), or more precisely, the large-x limit of diagonal

qq and gg Altarelli-Parisi splitting functions, governing the scale dependence

of PDFs according to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

evolution equation [81–83]. Each of these physical quantities is important in

its own sake, and their infrared factorisation will be discussed in some detail

in Sections 4.2 and 4.3, respectively. The main motivation to our study comes

from the relation between the two, namely a particular combination of single-pole

anomalous dimensions, which respectively capture collinear singularities in these

two quantities. The relation holds separately for quarks and for gluons:

γqG − 2Bq
δ ≡ f qeik , γgG − 2Bg

δ ≡ f geik, (1.29)

where γqG (γgG) is defined by the function G (see eq. (4.9)), which along with the

cusp anomalous dimension, governs the infrared structure of the quark (gluon)

form factor in eq. (1.25); and Bq
δ (Bg

δ ) is the coefficient of the δ(1−x) term, in the

large-x limit of the quark-quark (gluon-gluon) splitting function, see eq. (4.31)

below. It was observed long ago [84, 85] that while the separate perturbative

results for γG and Bδ are very different between quarks and gluons (this is

expected: collinear singularities are known to depend on the parton’s spin), the

combination (1.29) vanishes at one loop in both cases, and admits a Casimir-
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scaling relation2 at two loops, namely

f qeik

CF
=

f geik

CA
=
(αs
π

)2 [
CA

(
101

54
− 11

24
ζ2 −

7

4
ζ3

)
+ Tfnf

(
−14

27
+

1

6
ζ2

)]
+O

(
α3
s

)
(1.30)

The same Casimir-scaling property persists at three loops [85]. This is a clear

indication that feik has an interpretation purely in terms of Wilson lines – hence

the name, an eikonal function. A Wilson-line-based definition would explain

why the result does not depend on the parton’s spin, while it depends on its

colour representation in proportion to the relevant quadratic Casimir through

three loops. The question we address in Chapter 4 is what is the Wilson-loop

correlator corresponding to feik.

1.3 Iterated Integrals

We now present a brief overview of functions that appear in scattering amplitudes

and, hence, the webs that we will compute in Chapters 2 and 3.

It is well-known that many Feynman integrals evaluate to functions that are

essentially generalisations of the logarithm. The first immediate generalisation

are the classical polylogarithms

Lin(z) =
∞∑
k=1

zk

kn
. (1.31)

The generalisation that we will work with are called multiple polylogarithms

(MPLs) [87]. These are defined through the iterated integration

G(a1, · · · , an; z) =

∫ z

0

dt

t− a1

G(a2, . . . , an; t) (1.32)

with

G(0, . . . , 0︸ ︷︷ ︸
n times

; z) =
1

n!
logn z. (1.33)

Each ai are called letters and for a given Feynman integral are drawn from a finite

set called an alphabet. The tuple of letters (a1, . . . , an) in eq. (1.32) is called a

2A Casimir-scaling relation similar to (1.29) and (1.30) was deduced from factorisation
already in [86]; in this analysis single-pole collinear singularities are controlled by the anomalous
dimension of the quark or gluon fields in axial gauge.
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word which we shall denote a. Each MPL has a number associated with it, known

as its weight which is the length of a, the number of iterated integrals. MPLs

satisfy the mathematical structure known as a Hopf algebra. We will not deal

with the subtleties in its construction but rather state results that we will use in

Chapters 2 and 3. One of these is the fact that MPLs satisfy the so-called shuffle

algebra

G(a; z)G(b; z) =
∑

w∈attb

G(w; z) (1.34)

where the symbol tt is the shuffle product which mixes a and b in such a way

that it preserves their internal order. The sum is then over all possible words

obtained via this procedure. As an example we have

G(a1, a2; z)G(b1, b2; z) = G(a1, a2, b1, b2; z) +G(a1, b1, a2, b2; z) +G(a1, b1, b2, a2; z)

+G(b1, a1, a2, b2; z) +G(b1, a1, b2, a2; z) +G(b1, b2, a1, a2; z)

(1.35)

Note that the shuffle algebra preserves the weight. A given MPL of weight n is

an element of the algebra Hn, orthogonal to other spaces. Essentially saying that

there are no functional relations between MPLs of different weight. The algebra

of MPLs is known as a graded algebra, with the full algebra being sum over spaces

with different weight H ∼=
⊕∞

n=1Hn.

The Hopf algebra H structure includes a decomposition-type operation called the

coproduct ∆ : H → H⊗H.

∆ (G(a1, . . . , an; z)) =
∑

G(b1, . . . , bi; z)⊗G(ci+1, . . . , cn; z) (1.36)

which is coassociative

∆ (∆ (G(a1, . . . , an; z))) =
∑

∆G(b1, . . . , bi; z)⊗G(ci+1, . . . , cn; z) (1.37a)

=
∑

G(b1, . . . , bi; z)⊗∆G(ci+1, . . . , cn; z) (1.37b)

=
∑

G(b1, . . . , bi; z)⊗G(ci+1, . . . , cj; z)

⊗G(dj+1, . . . , dn; z). (1.37c)

Each summand of eq. (1.37c) is known as an entry of the coproduct, labelled

according to the distribution of weights in each component ∆i,j−i,n−j, of

G(a1, . . . , an; z). One very useful property of the coproduct, that we will use

several times, is known as the symbol. This is formally the maximal iteration of
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the coproduct ∆1,...,1. For practical purposes, for functions of one variable, the

definition of ref. [88] is more intuitive. This arises from the kernel in the definition

of the MPLs in eq. (1.32)

S [G(a1, . . . , an; z)] = log(z − an)⊗ . . .⊗ log(z − a1) (1.38a)

≡ (z − an)⊗ . . .⊗ (z − a1). (1.38b)

Between eqs. (1.38a) and (1.38b) we used the convenient shorthand notation that

drops the “log”. The symbol encodes the iterative branch cut behaviour of the

function. It is useful in finding functional relations between MPLs which, in

turn, helps find a minimal basis which spans the possible function space. As an

example consider G(1, 0; 1
z
). Its symbol is readily computed to be

S
[
G

(
1, 0;

1

z

)]
= −z ⊗ (1− z) + z ⊗ z. (1.39)

Another function with this symbol is

S [−G (1, 0; z) +G(0, 0; z)] = −z ⊗ (1− z) + z ⊗ z. (1.40)

Hence, at symbol level, they are equal. The only difference between the two at

function level are quantities that vanish under the symbol map. At weight two,

these are constants. A boundary condition is all that is needed to derive

G

(
1, 0;

1

z

)
= −G (1, 0; z) +G(0, 0; z) + 2ζ2. (1.41)

We will often use the shorthand notation G(a; z) = Ga(z).

An efficient numerical evaluation algorithm exists giving arbitrary precision for

MPLs [89]. The work in this thesis made extensive use of the public package

PolyLogTools [90] for the algebraic manipulations of the MPLs. In the above,

we have been nonchalant with mathematical subtleties of the algebra, these are

deferred to the review by Duhr [91] and references therein.

A restricted set of MPLs with letters from the set {0,±1} are called harmonic

polylogarithms (HPLs) [92]. There are a subset of webs defined in eq. (1.16)

which are known to evaluate to HPLs [64, 65]. These are called multiple gluon

exchange webs (MGEWs) which are those without internal gluon vertices and a

conjectured functional basis exists for them.
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We wrote the three-loop correction to the lightlike soft anomalous dimension

in eq. (1.27) in terms of SVHPLs [93]. These are combinations of HPLs such

that there are no branch cuts. The simplest SVHPL is the log plus its complex

conjugate

L0(z) = G(0; |z|2) = G(0; z) +G(0; z̄). (1.42)

This gives a function space which is restrictive enough for finding the full

functional form in eq. (1.27) by a process known as bootstrapping [25], where an

ansatz of SVHPLs is created and then constrained using a few known limits. In

Chapter 3 we extend this idea and construct a similar function space for functions,

not only of MGEW-type, appearing in the non-lightlike angle-dependent soft

anomalous dimension defined in eq. (1.15).

The MPLs are instances of an even wider class of functions called Chen iterated

integrals [94, 95]. The definition of which proceeds as follows. Let us first define

a curve γ on a manifold M , γ : [0, 1] → M and a set of smooth one forms on

M, wi ∈ Ω1(M). If fi(t) is defined through the pullback γ?(wi) = fi(t)dt then

the following is the iterated integral of w1 . . . wn along γ∫
γ

w1 . . . wn =

∫
0≤t1≤...≤tn≤1

f1(t1)dt1 . . . fn(tn)dtn. (1.43)

The above does not depend on the choice of parameterisation γ, only on the

endpoints. MPLs are a subset of the above with wi being dlog forms wi =

d log(x− ai).

One property of iterated integrals that we will use is that of path decomposition.

If we decompose the contour γ into two piecewise components where we first

traverse γA then γB such that γ(0) = γA(0), γA(1) = γB(0) and γB(1) = γ(1)

then the following path decomposition formula holds∫
γ

w1 . . . wn =
n∑
i=0

∫
γA

w1 . . . wi

∫
γB

wi+1 . . . wn. (1.44)
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1.4 Thesis Overview

We conclude this introduction with a summary of the contents of the remaining

chapters.

In Chapter 2 we concern ourselves with the explicit computation of webs that

are present in the non-lightlike soft function. We use the technique of differential

equations. In Section 2.1 we explain the technique. The one-loop computation

in Section 2.2 serves as a pedagogical example. In Section 2.3 we compute a two-

loop web depending on more than one variable using the method. The remaining

two-loop web is computed in Section 2.4 using a modified approach. The results

are then consolidated in Section 2.5.

In Chapter 3 we discuss an extension to the MGEW functional basis. We review

the basis in Section 3.1. In Section 3.2 we explain and construct the extension. We

perform speculative research into bootstrapping the non-lightlike cusp anomalous

dimension in Section 3.3 and a three-loop non-MGEW web in Section 3.4. We

then conclude with future prospects of the technique in Section 3.5.

In Chapter 4 we switch to discussing massless scattering amplitudes and

discuss as follows. Section 4.1 provides further motivation to the study of

understanding feik in eq. (1.29). In Section 4.2 we review the factorisation of

long-distance singularities of the massless QCD form factor and identify the

process-independent spin-dependent hard-collinear component of γG in eq. (1.25).

In Section 4.3 we discuss the factorisation of PDFs in the limit x → 1. To

this end we perform an explicit two-loop calculation of the splitting functions

at large x (the details are presented in Appendix C.1). Next we identify the

eikonal component of Bδ as the anomalous dimension associated with a u-shaped

Wilson-line geometry, see Figure 4.1b. By using the known value of Bδ along

with the hard-collinear anomalous dimension extracted from the form factor, we

then predict the subleading anomalous dimension of the u shaped contour Γu

at two loops. Then, in Section 4.4 we compute Γu directly to this order, finding

agreement with the extracted result of Section 4.3. In Section 4.5 we put together

our results for the factorisation of the form factor and the PDF, and establish the

relation of eq. (1.29) to all orders identifying feik with the anomalous dimension

associated with a parallelogram shaped contour, see Figure 4.1c.
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Chapter 2

Webs by Differential Equations

In this chapter we give an introduction to solving Feynman integrals by differential

equations. We then use this technique to compute the one-loop correction to

the soft function defined in eq. (1.5) and the two-loop corrections that connect

multiple external legs (more than two). We will see that we need to modify the

technique for the most complicated contribution.

2.1 Solving Feynman Integrals by Differential

Equations

As mentioned in Chapter 1, we need to compute integrals corresponding to

Feynman diagrams in perturbative quantum field theories to increase precision

in our theoretical predictions. Not only does the quantity of integrals increase

but also the complexity of the integrals and the functions they evaluate to.

The technique of evaluating integrals by differential equations is a powerful and

efficient technique [96–99]. Rather than solving integrals individually by Feynman

parameters and variations thereof, the technique allows one to construct a system

of differential equations that can then be solved as a whole. The observation

by Henn in 2013 [100] that the dependence on the dimensional regularisation

parameter ε is trivial when selecting a convenient basis of integrals helped spark

renewed interest in this computational technique. Once a transformation is

achieved, integrals can then be solved order-by-order in ε. We now proceed to

explain the method step-by-step with a pedagogical example.
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2.1.1 Differentiation

We shall consider a scalar Feynman integral Ĩ({si}, ε) that can depend on several

kinematic invariants si and the dimensional regularisation parameter ε. The

integral will have a known mass dimension λd which can be extracted to define a

dimensionless integral

Ĩ ({si}, ε) = sλd1 I

({
si 6=1

s1

}
, ε

)
= sλd1 I ({xi} , ε) , (2.1)

where we have chosen s1 to scale out but this choice is arbitrary. We now want

to find I ({xi} , ε). To find the dependence on xj we take a derivative w.r.t. xj.

To do so we need to write these derivatives as derivatives with respect to the

external momenta present in the propagators. According to the chain rule we

have

pµk
∂

∂pµj
=
∑
i

pµk
∂xi
∂pµj

∂

∂xi
. (2.2)

As there will often be more pi than xi the equations in (2.2) are linearly dependent.

After removal of these eq. (2.2) can be inverted to find ∂
∂xi

in terms of ∂
∂pµj

.

As a simple example, let us consider the bubble integral with one mass on one

propagator

Ibub(x, ε) = (m2)ε
∫

ddk

(2π)d
1

(k2 −m2)(p− k)2
, (2.3)

where the factor (m2)ε ensures that the integral is dimensionless and depends

only on the ratio x ≡ p2

m2 . Using x∂x = 1
2
pµ ∂

∂pµ
and

pµ
∂

∂pµ
1

(k2 −m2)(p− k)2
=− 2(p2 − k · p)

(k2 −m2)((p− k)2)2

=− 1

(k2 −m2)(p− k)2
− p2 −m2

(k2 −m2)((p− k)2)2

+
1

((p− k)2)2
(2.4)

we find

∂xI
bub(x, ε) = − 1

2x
Ibub(x, ε) +

1− x
2x

∫
ddk

(2π)d
m2

(k2 −m2)((p− k)2)2
(2.5)

where we have used the fact that scaleless integrals vanish in dimensional

regularisation. In the differential equation eq. (2.5) we have now a new unknown
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integral. It seems that we have just replaced our original unknown integral

Ibub(x, ε) with a new integral with a new power on the propagator. It turns

out that there are relations between Feynman integrals that will allow us to deal

with the remaining integral.

2.1.2 Integration-by-parts (IBP) identities

Feynman integrals are related to one another by certain relations called IBP iden-

tities [101]. They arise from the following identity in dimensional regularisation∫
ddk

(2π)d
∂

∂kµ
vµf(k2, {k · pi}, ε) = 0, (2.6)

where pi are external or subsequent loop momenta and v can be chosen to be either

k or one of the pi. After explicitly performing the derivative on the integrand, f ,

and then partial fractioning and reducing the numerator, such as in eq. (2.4), we

find relations among integrals for each possible v.

One of the concepts in IBP relations is that of an integral family, where we let

propagators have arbitrary integer powers and the propagators span all possible

scalar products that can be made from momenta present in the integrand. We

can define the family corresponding to the bubble integral in eq. (2.3) as simply

Ibub
ab (x, ε) = (m2)a+b−d/2

∫
ddk

(2π)d
1

(k2 −m2)a((p− k)2)b
, (2.7)

where a and b are integers. Our differential equation eq. (2.5) is then

∂xI
bub
11 = − 1

2x
Ibub

11 +
1− x

2x
Ibub

12 . (2.8)

At two loops and beyond it may not be possible to simply generalise propagator

powers to define a family from specific integrals. One may have to add new

propagators to span all possible scalar products. These are known as irreducible

scalar products (ISPs) in the literature. However, it is always possible to take a

Feynman integral and define a family.

There are two choices of v in this example of eq. (2.7) that give two IBP relations,
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v = k or v = p,

(−2a− b+ d)Ibub
ab + b(x− 1)Ibub

a,b+1 − bIbub
a−1,b+1 − 2aIbub

a+1,b = 0 (2.9a)

b(x− 1)Ibub
a,b+1 − a(x+ 1)Ibub

a+1,b − bIbub
a−1,b+1 + (b− a)Ibub

ab + aIbub
a+1,b−1 = 0 (2.9b)

By setting a = 1 and b = 1 in eqs. (2.9a) and (2.9b) and a = 1 and b = 0 in

eq. (2.9a) we can solve the equations for Ibub
12

Ibub
12 =

(d− 2)

2(x− 1)
Ibub

10 −
(d− 3)

x− 1
Ibub

11 (2.10)

In fact, we can write any integral in this family in terms of the integrals Ibub
10 and

Ibub
11 . These are known as master or basis integrals because it spans the vector

space of the integral family. Notice that we have chosen these integrals, we could

also change basis, for instance, to (Ibub
20 , Ibub

12 ).

In general, the decomposition of a generic integral belonging to a family into basis

integrals takes the following form

I({xi}, ε) =
∑
b∈B

pb({xi}, ε)Ib({xi}, ε) (2.11)

where b is a vector of integers specifying the powers of the propagators in a given

basis integral and B is a set of vectors identifying a basis. The size of this set and

the coefficients pb depend on the IBP system. The idea of IBP reduction is to

take a large expression with many numerators and different powers of propagators

and reduce it down to a sum over a smaller set of integrals. The unknowns now

are the basis integrals, for which we will use the differential equations technique

to evaluate in the next section.

A way to organise the resultant basis vectors is to define sectors. Two integrals

are in the same sector if they share the same set of positive indices i.e. I1,5,0,3

and I2,1,−3,7 are in the same sector but I1,5,0,3 and I3,2,4,1 are not. We will denote

the set of positive indices of sector Si as νi. The sector of I1,5,0,3 and I2,1,−3,7 has

ν = {1, 2, 4}.

A sector S1 is said to be higher than sector S2 if ν2, is contained in ν1, i.e.

ν2 ⊂ ν1. Notice that this will not fully order sectors. A convenient way to impose
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full sector ordering is to give a number, known as the sector id, to each sector,

ID[Si] =
∑
r∈νi

2r−1. (2.12)

The main reason to organise by sector is that the act of differentiating an integral

will not create a new positive power propagator but may remove some and/or

induce numerators, negative powers. It means that through differentiation an

integral will never become a member of a higher sector.

Another concept is that of cuts. For the present thesis cutting an integral will

involve specifying a set of propagators and finding the residue at the poles of

those propagators in complex momenta space. If the propagator is not present

then

Cutb Ia = 0 if any bi /∈ ν(a). (2.13)

Taking a cut on an integral is synonymous with selecting a specific sector and all

higher sectors. A maximal cut is cutting all propagators present

MaximalCut [Ia] = Cutb Ia when ν(b) = ν(a) (2.14)

The IBP reduction process readies itself for automation. Using Laporta’s algo-

rithm [102] many publicly available codes exist [103–105]. Recent developments

in multivariate rational reconstruction [106,107], implemented in Kira [108] and

FIRE6 [109], have helped push the efficiency for reduction at high loop orders.

2.1.3 Solving the differential equation system

We have reduced our generic integral down to a set of basis integrals in eq. (2.11).

We first order the basis integrals by sector id, and call the vector of basis integrals

f . To find these integrals we take a derivative,

d =
∑
i

dxi
∂

∂xi
. (2.15)

We then reduce the resultant integrals back to the basis using the IBP system.

We obtain a system of first-order differential equations:

df({xi}, ε) = A({xi}, ε)f({xi}, ε), (2.16)
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where A is a matrix-valued one-form. The system satisfies the consistency

condition

dA ∧ A− A ∧ A = 0, (2.17)

which says that partial derivatives commute and serves as a good check for

complex systems. For the two-dimensional bubble integral example we have

∂x

(
Ibub

10

Ibub
11

)
=

(
0 0
ε−1

(x−1)x
1−ε(x+1)

(x−1)x

)(
Ibub

10

Ibub
11

)
(2.18)

We have now derived a system of differential equations. Equation (2.18) can be

solved to all orders in ε and Ibub
11 evaluates to a 2F1 hypergeometric function. The

general system in eq. (2.16) is not so simple. One approach to proceed is to find

a transformation of the basis f = Tg such that the differential equation for g has

trivial ε dependence

dg({xi}, ε) = εÃ({xk})g({xi}, ε), (2.19)

we will call this form ε-form. The matrix Ã can be found from the original by

Ã = T−1AT − T−1dT. (2.20)

As an example if we were instead to choose the basis

gbub(x, ε) =

(
(1− ε)Ibub

10 ,
ε x

1− xI
bub
11

)
(2.21)

in eq. (2.18) we would have the ε-form

∂x gbub(x, ε) = ε

(
0 0
1

(x−1)2
1+x
x−x2

)
gbub(x, ε). (2.22)

We can rescale g by any function of ε and leave eq. (2.19) unchanged. It is useful

to do so to render g finite. Then the system can then be solved order by order in

ε by writing g({xi}, ε) =
∑∞

i=0 ε
ig(i)({xi}), with the solution in term of iterated

integrals over Ã. Often Ã is also in the so-called dlog form,

Ã =

|A|∑
i=1

ci d logAi, (2.23)
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where the Ai are called letters, the set of all letters A is called the alphabet and

ci are constant matrices. The iterated integrals can often be cast in terms of the

Goncharov polylogarithms defined in eq. (1.32). Note that eq. (2.22) is not in

dlog form. For a differential system that is both in ε-form and in dlog form we

shall call this canonical form.

The main challenge is finding the transformation T . Methods of doing so are

scattered throughout the literature. The methods we will use in this thesis are

what we shall call the leading singularity method and the algorithmic approach.

Leading singularities

This method involves choosing integrals whose integrands (in four dimensions)

have what are called unit leading singularities. They are integrands whose

(multivariate-)residues are all equal to ±1. As an example let us take the

integrand

Ω =
dα ∧ dβ

(αγ − β)β
. (2.24)

The integral
∫

Ω would be a member of our original basis f . One can take a

residue at α = β/γ and then β = 0 giving Resβ=0Resα=β/γ Ω = 1/γ. Or the other

possible orders Resα=0Resβ=αγ Ω = −1/γ and Resα=0Resβ=0 Ω = 1/γ. This tells

us that γ
∫

Ω is a good candidate for g. Alternatively, we can write γ Ω in a dlog

form,

γ Ω = d log(αγ − β) ∧ d log β. (2.25)

Equivalently we can compute these by replacing all denominators with delta

functions
1

(αγ − β)β
→ δ(β)δ(αγ − β) (2.26)

these are then solved in four dimensions to find leading singularities or in d

dimensions for the maximal cut in eq. (2.14).

The main difficulty when applying to Feynman integrals is finding the best

way to parameterise loop momenta such that square roots do not appear when

calculating residues. Once a convenient parameterisation is chosen, to find

candidate integrals in a given sector an ansatz for the numerator is established

and repeated residues are taken to fix the ansatz such that integrals give unit

leading singularities. A recent algorithm and computer implementation is given

in [110].
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Algorithmic approach

Another method is to create a rational ansatz for the transformation T . An

algorithm to construct and fit such an ansatz was given by Meyer in [111]. It

requires the condition that a rational transformation exists and that the alphabet

is rational. Other than that the only limitation is computer memory. Meyer also

provided a public implementation of the algorithm in the form of CANONICA [112].

We shall now use the technique of differential equations to evaluate integrals

arising from the soft function defined in Section 1.1.

2.2 The One-loop Soft Function

We will now explicitly calculate the soft function eq. (1.5) to first order in

perturbation theory. It captures all the infrared singularities of massive scattering

amplitudes to one-loop. We will also use it as a pedagogical example of the

technique of differential equations. We first expand the Wilson line eq. (1.12) to

first order in gs,

W
(m)
βi

(∞, 0) = 1 + igsT
a
i

∫ ∞
0

dλ βi · Aa(λβi)e−imλ
√
β2
i +O(g2

s). (2.27)

The n-leg soft function S(m)
n eq. (1.13) to this order is

S(m)
n = 〈0|T

{
n∏
i=1

W
(m)
β (∞, 0)

}
|0〉 (2.28a)

= 〈0|1 + igs

n∑
i=1

Ta
i

∫ ∞
0

dλ βi · Aa(λβi)e−imλ
√
β2
i |0〉 (2.28b)

= 〈0|0〉+ igs

n∑
i=1

Ta
i

∫ ∞
0

dλ βi · 〈0|Aa(λβi)|0〉 e−imλ
√
β2
i (2.28c)

= 1, (2.28d)

where we used 〈0|0〉 = 1 and 〈0|Aµ(x)|0〉 = 0. The former holds because we

normalise our states to the vacuum, the latter is a standard result in QFT
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textbooks (e.g. [113]). Since S(m)
n vanishes at O(gs) we go to the next order,

S(m)
n =1 + (igs)

2

n∑
i,j=1
i<j

Ta
iT

b
j

∫ ∞
0

dλdσβµi β
ν
j 〈0|T

{
Aaµ(λβi)A

b
ν(σβj)

}
|0〉 fi(λ)fj(σ)

+ (igs)
2

n∑
i=1

Ta
iT

b
i

∫ ∞
0

dλ

∫ λ

0

dσβµi β
ν
i 〈0|T

{
Aaµ(λβi)A

b
ν(σβi)

}
|0〉 fi(λ)fi(σ)

=1 + (igs)
2

n∑
i,j=1
i<j

Ta
iT

a
j

∫
ddk

(2π)d
iβi · βj

k2(k · βi −m+ iε)(−k · βj −m+ iε)

+
(igs)

2

2m

n∑
i=1

Ci

∫
ddk

(2π)d
i

k2(k · βi −m+ iε)
(2.29)

where fi(λ) = e−imλ
√
β2
i is the exponential damping term. We have inserted the

gluon propagator in Feynman gauge [113],

〈0|T
{
Aaµ(λβi)A

b
ν(σβj)

}
|0〉 = −Γ(1− ε)

4π2−ε
δabηµν

(−(λβi − σβj)2 + iε)1−ε , (2.30)

Fourier transformed to momentum space and performed the simple integrals over

λ and σ. In the third term of the first line we integrate σ from 0 to λ because of

the path ordering on the Wilson line. We have also explicitly broken the rescaling

invariance by setting β2
i = 1. This is just for simplicity and the full dependence

can always be reinstated knowing that the result depends on the scale invariant

quantity in eq. (1.9). Also, T2
i = Ci is the Casimir in the representation of Wilson

line i. The +iε prescription on the momentum space quadratic propagators is

implicit.

βi

βj

(a) Diagram connecting two lines

βi

(b) Self energy on one line

Figure 2.1: Diagrams contributing to the one loop soft function

We can represent the two non-trivial terms in eq. (2.29) diagrammatically as

shown in Figure 2.1. The first term connects both Wilson lines (βi and βj)

whereas the second term is of a self energy type. The Feynman rules for the

diagrams are the standard QCD rules plus rules for the emission of a gluon with
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momentum k and spin index µ from the Wilson line β

k

µ

β

=
i βµ

k·β + iε

(2.31)

and the absorption is also eq. (2.31) but with k → −k.

We calculate the integrals in eq. (2.29) by differential equations. We shall follow

the procedure outlined in Section 2.1. Let us first define the following family of

integrals

I [1,1]
a1,a2,a3

(βi · βj, ε) = eεγEm2a1+a2+a3−d
∫

ddk

iπd/2
1

(k2)a1(k · βi −m)a2(−k · βj −m)a3
.

(2.32)

The factor of eεγE/iπd/2 is a convenient normalisation choice because it eliminates

γE terms and π factors, readying the computation for MS coupling renormalisa-

tion. We now write the soft function in eq. (2.29) as

S(m)
n = 1− (igs)

2
( µ
m

)2ε e−εγE

2dπd/2

 n∑
i,j=1
i<j

Ta
iT

a
jβi · βjI [1,1]

111 +
1

2

n∑
i=1

CiI
[1,1]
110

 . (2.33)

Using eqs. (1.14) and (1.15), the one-loop coefficient of the corresponding soft

anomalous dimension is given by

Γ(i)
n = −2

 n∑
i,j=1
i<j

Ta
iT

a
jβi · βjI [1,1],(−1)

111 +
1

2

n∑
i=1

CiI
[1,1],(−1)
110

 (2.34)

In the above we define the strong coupling constant

αs =
g2
s

4π
, (2.35)

and the superscript (−1) means the 1
ε

pole of the integral. In the following section

we compute I
[1,1]
111 using differential equations.
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2.2.1 Integration-by-parts relations

The IBP relations for the family in eq. (2.32) are,

−(2a1 + a2 + a3 − d)I [1,1]
a1,a2,a3

− (a3I
[1,1]
a1,a2,a3+1 + a2I

[1,1]
a1,a2+1,a3

) = 0 (2.36a)

a3βi · βjI [1,1]
a1,a2,a3+1 − a2I

[1,1]
a1,a2+1,a3

− 2a1(I
[1,1]
a1,a2−1,a3

+ I
[1,1]
a1+1,a2,a3

) = 0 (2.36b)

a3I
[1,1]
a1,a2,a3+1 − a2βi · βjI [1,1]

a1,a2+1,a3
+ 2a1(I

[1,1]
a1,a2,a3−1 + I

[1,1]
a1+1,a2,a3

) = 0. (2.36c)

Using these relations we can find the set of basis integrals to be

f [1,1] =
(
I

[1,1]
110 , I

[1,1]
101 , I

[1,1]
111

)
, (2.37)

where the integrals are ordered by sector ID as defined in eq. (2.12). In the

kinematics of β2
i = 1∀i, I [1,1]

110 = I
[1,1]
101 but we shall continue as if they are different

and have only solved the system in eqs. (2.36a) to (2.36c).

2.2.2 Differential system

The convenient variables to use for these integrals are not the natural (dimen-

sionless) scalar products βi · βj but rather the αij variables which are defined

through [64],

βi · βj = −1

2

(
αij +

1

αij

)
. (2.38)

These remove the presence of square roots in the differential equations. In

Chapter 3 we will explore why these are a good choice of variables. For now,

we take a derivative with respect to αij of the vector of integrals f ,

∂αij f
[1,1] =


0 0 0

0 0 0
2ε−1
1−α2

ij

2ε−1
1−α2

ij

1+α2
ij−(1−αij)2ε
αij(1−α2

ij)

 f [1,1]. (2.39)

The first two rows are 0 because I
[1,1]
110 and I

[1,1]
101 do not depend on αij. We can

actually solve this system for general ε but for more complicated systems at

higher loops it is often impossible. As a pedagogical example we shall now take

the opportunity to find the transformation to canonical form (2.19) by integrand

analysis. To achieve this, we consider the integrals in turn.

We can compute the (eikonal) bubble integrals I
[1,1]
110 and I

[1,1]
101 by simple Feynman
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integral techniques. We find,

I
[1,1]
a1,0,a2

= I
[1,1]
a1,a2,0

=
24−2ε−2a1(−1)a1+a2Γ(2a1 + a2 − 4 + 2ε)Γ(2− ε− a1)

Γ(a1)Γ(a2)
. (2.40)

By expanding in ε we find that ε(1− 2ε)I
[1,1]
110 is an integral of uniform weight,

ε(1− 2ε)I
[1,1]
110 =− 2 + 4ε log(2) + ε2

(
−5ζ2 − 4 log2(2)

)
+ ε3

(
10ζ2 log(2) +

14ζ3

3
+

8 log3(2)

3

)
+O(ε4) (2.41)

and the same is true for ε(1 − 2ε)I
[1,1]
101 . It means that ε(1 − 2ε)I

[1,1]
110 is a good

choice of basis integral. The log 2 terms appear because of the regulator m that

is used. If we were to rescale m by 2 then the log 2 terms would disappear.

To test the uniform weight potential of I
[1,1]
111 we shall compute its leading

singularity

LeadingSingularity[I
[1,1]
111 ] ∼

∫
d4k δ(k2) δ(k · βi −m) δ(−k · βj −m). (2.42)

We have removed overall numerical prefactors as they are irrelevant. We can

evaluate eq. (2.42) by using Sudakov decomposition by setting k = γ1βi + γ2βj +

k⊥. The Jacobian of this change of variables is given by,

J =

√∣∣∣∣det
∂kµ

∂(γ1, γ2, k⊥)

∂kµ
∂(γ1, γ2, k⊥)

∣∣∣∣ =

√
1− (βi · βj)2. (2.43)

After performing the delta function integrals we find that the leading singularity

is

LeadingSingularity[I
[1,1]
111 ] ∼ αij

1− α2
ij

≡ s(αij). (2.44)

The rational function s(α) often appears for these types of integrals and we

shall discuss it further in Chapter 3. If we normalise the integral by this factor,

defining 1
s(αij)

I
[1,1]
111 , then we know it is a good candidate for a uniform weight

integral because it has unit leading singularity. We then define our new basis and
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find for the system in eq. (2.19)

g[1,1] =

(
ε(1− 2ε)f

[1,1]
1 , ε(1− 2ε)f

[1,1]
2 ,

ε2

s(αij)
f

[1,1]
3

)
(2.45a)

dg[1,1](αij, ε) = εÃ[1,1](αij)g
[1,1](αij, ε) (2.45b)

Ã[1,1] =

 0 0 0

0 0 0

− 1
αij
− 1
αij

αij−1

αij(αij+1)

 dαij (2.45c)

= c
[1,1]
1 d logαij + c

[1,1]
2 d log (1 + αij) , (2.45d)

where c
[1,1]
i are constant matrices. Since we can write the system in d log form

and can factor ε out it proves that the elements of g[1,1] are uniform weight. We

can always choose the overall ε normalisation such that g[1,1] admits an expansion

in ε starting at ε0. The alphabet for the [1, 1]-web is A[1,1] = {αij, 1 + αij}.

2.2.3 Boundary conditions

In order to solve the differential equation system in eq. (2.45) we need boundary

conditions. For this we choose the special configuration where the Wilson lines

are such that βi = −βj. It is easy to see that this corresponds to αij = 1 in

eq. (2.38). We shall explore the physical meaning of this limit in Section 3.3

when we use it as a constraint for bootstrapping functions. At this boundary

point, g
[1,1]
3 (1, ε) = 0 due to the rational prefactor. Whereas for g

[1,1]
1 and g

[1,1]
2 we

already know their result from eq. (2.40).

2.2.4 Solution

We can solve the system in eq. (2.45) order by order in ε by first expanding the

integrals in ε

g[1,1](αij, ε) =
∞∑
n=0

g[1,1], (n)(αij) ε
n. (2.46)
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Plugging this into eq. (2.45b) and integrating along the contour from the

boundary αij = 1 to an arbitrary value of αij we find

g[1,1], (0)(αij) = g[1,1],(0)(1) (2.47a)

g[1,1], (1)(αij) =

∫ αij

1

Ã[1,1](α′ij).g
[1,1],(0)(1) + g[1,1],(1)(1) (2.47b)

g[1,1], (2)(αij) =

∫ αij

1

Ã[1,1](α′ij).g
[1,1],(1)(α′ij) + g[1,1],(2)(1) (2.47c)

and so on. Explicitly performing the integrals we have

g[1,1],(0)(αij) = (−2,−2, 0) (2.48a)

g[1,1],(1)(αij) = (4 log 2, 4 log 2, 4 log(αij)) (2.48b)

g[1,1],(2)(αij) =

(
− 5ζ2 − 4 log(2)2,−5ζ2 − 4 log(2)2,

4ζ2 − 8G0(2)G0(αij) + 8G−1,0(αij)− 4G00(αij)

)
(2.48c)

where we have written the result of g(2)(αij) in terms of the multiple polyloga-

rithms defined in eq. (1.32). To go back to the original f basis of integrals we

simply invert eq. (2.45a). Using eqs. (2.48b) and (2.48c) we have for I
[1,1]
111 ,

I
[1,1]
111 =4sij

[
G0(αij)

ε
+
(
ζ2 − 2G0(2)G0(αij) + 2G−1,0(αij)−G00(αij)

)
+O(ε)

]
(2.49)

with sij ≡ s(αij). We now have all the ingredients for the one-loop soft anomalous

dimension. Inserting eqs. (2.41) and (2.49) into eq. (2.34) we arrive at,

Γ(1)
n = 4

n∑
i,j=1,i<j

Ta
iT

a
j

1 + α2
ij

1− α2
ij

log(αij)︸ ︷︷ ︸+ 2
n∑
i=1

Ci︸ ︷︷ ︸ (2.50a)

=
∑
pairs

Γ
(1)
dipole +

n∑
I=1

γ
(1)
I (2.50b)

Equation (2.50a) captures all infrared divergences of massive scattering ampli-

tudes at one-loop. In eq. (2.50b) we have decomposed Γ
(1)
n into Γ

(1)
dipole, which

captures correlations between two particles, and γ
(1)
I which captures self energies

and solely depends on the colour representation of line I. Both of these functions

extend to all loop orders with Γdipole calculated at two loops in [79] and three loops

in [22] and γI can be found from Γdipole via Ward identities [79]. The technique of
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differential equations was used in the three-loop two-line case of Γ
(3)
dipole [22]. We

have written eq. (2.50b) in that way to be clear where contributions are coming

from.

The constituent one-loop web functions defined in eq. (1.16) are,

w(1,−1) = −2Ta
iT

a
jr(αij) log(αij) (2.51a)

w(1,0) = −2Ta
iT

a
jr(αij)

(
ζ2 − 2G0(2)G0(αij) + 2G−1,0(αij)−G00(αij)

)
(2.51b)

where we have defined the common rational function

r(α) =
1 + α2

1− α2
. (2.52)

At two loops there are also corrections to eq. (2.50b) that connect three legs

which we shall call Γ
(2)
tripole. In the following two sections we shall compute these

using differential equations.

2.3 [1, 2, 1]-web

There are two two-loop corrections to the soft function that connect three lines,

contributing to Γ
(2)
tripole. The first that we shall consider is the so-called [1, 2, 1]-

web, w
(2)
121. There are two diagrams that contribute to such a web which are shown

in Figure 2.2. Letting the colour and kinematic factor of each diagram be C and

F respectively,

w
(2)
121

(αs
4π

)2

=
1

2
(CA − CB)(FA −FB) (2.53a)

=− 1

2
ifabcTa

1T
b
2T

c
3(FA −FB) (2.53b)

The two kinematic factors FA and FB are related by exchanging lines 1 and 3.

We proceed as before by defining the family of integrals,

I [1,2,1]
a1a2a3a4a5a6a7a8a9(β1 · β2, β1 · β3, β2 · β3, ε) =

mMde2εγ

∫
ddk1

iπd/2

∫
ddk2

iπd/2
1

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6 D

a7
7 D

a8
8 D

a9
9

(2.54)
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D1 = k2
1 D2 = k2

2 D3 = −k1 · β1 −m
D4 = k2 · β2 −m D5 = (k1 + k2) · β2 −m D6 = −k2 · β3 −m
D7 = k1 · β3 D8 = k2 · β1 D9 = k1 · k2

with Md fixed such that I
[1,2,1]
a is dimensionless. The integral that appears in the

web in eq. (2.53) is I
[1,2,1]
111111000. Note we are using a different regularisation scheme

than that in eq. (1.12). Only the gluon emitted last has an exponential damping

term. If it was attached to all gluons then D5 would have 2m instead of just m.

This would complicate the differential equations and, in momentum space, it is

simpler to add a single m to each eikonal propagator. It does not change the final

result.

A priori I
[1,2,1]
111111000 depends on three variables, the scalar products between the

Wilson lines or the α variables {α12, α13, α23} but as no gluon spans the angle

between β1 and β3 it does not depend on α13. We shall use shorthand notation

that drops trailing zeroes from the definition of the family I [1,2,1] i.e. I
[1,2,1]
111111 ≡

I
[1,2,1]
111111000. We can then write the web in terms of this family

w
(2)
(121)(α12, α23,m, ε) =im−4ε1

2
fabcTa

1T
b
2T

c
3β1 · β2β2 · β3

(
I

[1,2,1]
111111 − 1↔ 3

)
(2.55)

where 1 ↔ 3 represents the exchange {α12, α23} → {α23, α12}. We now proceed

to compute I
[1,2,1]
111111 by differential equations.

β2

β3

β1

(a) Diagram A

β2

β3

β1

(b) Diagram B

Figure 2.2: Diagrams contributing to the [1, 2, 1]-web

2.3.1 Differential equation

We go through the now standard procedure of taking a derivative with respect

to the two variables and reduce the resultant integrals down to a set of 12 basis
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integrals. We write the differential equation as

d f [1,2,1] = A[1,2,1] f [1,2,1], (2.56)

where d is the exterior derivative with respect to the variables {α12, α23} such that

A has the form A[1,2,1] = A
[1,2,1]
12 dα12 + A

[1,2,1]
23 dα23. The matrix A also respects

the consistency condition in eq. (2.17). The basis integrals we have are

f [1,2,1] = (I
[1,2,1]
1111 , I

[1,2,1]
11001 , I

[1,2,1]
11101 , I

[1,2,1]
11102 , I

[1,2,1]
11111 , I

[1,2,1]
111101,

I
[1,2,1]
110011, I

[1,2,1]
110012, I

[1,2,1]
111011, I

[1,2,1]
111012, I

[1,2,1]
111021, I

[1,2,1]
111111 ) (2.57)

2.3.2 Solving the equation

Transformation to canonical form

In order to find the transformation we use Meyer’s algorithm [111] implemented

in the computer package CANONICA [112]. The algorithm gives the transformation

T [1,2,1] where f [1,2,1] = T [1,2,1]g[1,2,1] and

d g[1,2,1] = ε Ã[1,2,1] g[1,2,1]. (2.58)

Furthermore, Ã[1,2,1] is in the d log form

Ã[1,2,1] =

|A[1,2,1]|∑
i=1

c
[1,2,1]
i d logA[1,2,1]

i , (2.59)

where the alphabet for the [1, 2, 1]-web is A[1,2,1] = {α12 − 1, α12, α12 + 1, α23 −
1, α23, α23 +1, α12 +α23−1, 1+α12α23−α12, 1+α12α23−α23, α12α23−α12−α23}.
The matrices c

[1,2,1]
i and the specific integrals g[1,2,1] are given in Appendix A.1.

The transformation T [1,2,1] can also be found by analysing the integrands of f [1,2,1].

Boundary

We will choose as our boundary α12 = α23 = 1 which corresponds to the Wilson

line configuration β1 = −β2 = β3. We shall define the boundary vector b[1,2,1] =

g[1,2,1](α12 = 1, α23 = 1).

We use as a building block for the boundary calculations, the eikonal bubble
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result in eq. (2.40)∫
ddk

iπd/2
1

(k2
1)a1(k1 · β1 −M)a2

= L(a1, a2)Md−2a1−a2 ,

L(a1, a2) =
2d−2a1(−1)aΓ(2a1 + a2 − d)Γ(d

2
− a1)

Γ(a1)Γ(a2)
, (2.60)

here M could depend on scalar products of external momenta and loop momenta

yet to be performed. Evaluating the integrals at the boundary we find

b
[1,2,1]
1 =− 24−4ε(1− 2ε)2ε2e2εγΓ(1− ε)2Γ(2ε− 1)2

=− 4 + 16ε log(2)− 2

3
ε2
(
5π2 + 48 log(2)2

)
+O(ε3) (2.61a)

b
[1,2,1]
2 =

1

3
24−4εε(1− 2ε)(3− 4ε)(−1 + 4ε)e2εγΓ(1− ε)2Γ(−3 + 4ε)

=
2

3
− 8

3
ε log(2) +

1

3
ε2(3π2 + 16 log(2)2) +O(ε3) (2.61b)

and all the other gi vanish on the boundary. In eqs. (2.61a) and (2.61b) we clearly

see the uniform weight nature of the integrals.

Integrating dlog forms

We now have what we need to explicitly integrate eq. (2.58). We focus on the

twelfth component of g[1,2,1],

g
[1,2,1]
12 = ε4

1− α2
12

α12

1− α2
23

α23

I
[1,2,1]
111111, (2.62)

since we require the integral I
[1,2,1]
111111. The first non-zero terms of this are

g
[1,2,1],(2)
12 = 8

∫
γ

( d logα12 d logα23 + d logα23d logα12) (2.63a)

g
[1,2,1],(3)
12 = 16

∫
γ

(
d log(y23)d log(α23)d log(α12)− d log(η12)d log(α23)d log(α12)

+ d log(α23)d log(η12)d log(α12) + d log(η12)d log(α12)d log(α23)

− d log(y23)d log(α12)d log(α23)− d log(α12)d log(y23)d log(α23)
)

(2.63b)

where yij =
1+αij
1−αij and ηij =

αij
1−α2

ij
. It is now worthwhile to explain how to

integrate the d log integrals of multiple variables given in eqs. (2.63a) and (2.63b).
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Individual terms are not “integrable” in the sense that the contours are not

parameterisation invariant, only the sum does not depend on the choice of

contour.

To illustrate this we integrate the first term of eq. (2.63a) on a straight line

contour from (1, 1) → (α12, α23). The contour is then parameterised as γ1(t) =

((α12 − 1)t+ 1, (α23 − 1)t+ 1). Then applying the formula for iterated integrals

eq. (1.43) we have,∫
γ1

d logα12 d logα23 =

∫ 1

0

dt1

∫ t1

0

dt2
(α12 − 1)

(α12 − 1)t1 + 1

(α23 − 1)

(α23 − 1)t2 + 1
(2.64a)

= G0(α12)G0(α23)−G0(α23)Gα23(α12) +Gα23,0(α12)

−G1,0(α12)−G0,0(α23) +G1,0(α23)− π2

6
(2.64b)

If we were to instead choose a contour γ2 that first traverses α23 then α12 i.e.

γA = (1, (α23 − 1)t + 1), γB = ((α12 − 1)t + 1, α23) with γ2 = γB ◦ γA. Both

contours γ1 and γ2 are illustrated in Figure 2.3. Using the path decomposition

formula of Chen’s iterated integrals given in eq. (1.44) we have∫
γ2

d logα12 d logα23 =

∫
γB

d logα12

∫
γA

d logα23 = logα12 logα23 (2.65)

It is clear that eqs. (2.64b) and (2.65) are different. It is only when combined

with the other term in eq. (2.63a) will they be the same. Integrating the other

term over γ2 we find∫
γ2

d logα23 d logα12 =

∫
γB

d logα23

∫
γA

d logα12 = 0. (2.66)

We then find that

g
[1,2,1],(2)
12 = 8 log(α12) log(α23). (2.67)

If we were to integrate the other term over γ1 then we result in a similar unwieldy

expression to eq. (2.67). Only in the total do we achieve the straightforward result

in eq. (2.67) which suggests that γ2 is the simple contour to choose.
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γ1
γA

γB

(1,1)

α12 α23,( )

10
α12

′

1

α23
′

Figure 2.3: Plot showing the contours γ1 and γ2 = γB ◦ γA which originate at
point (1, 1) to some arbitrary point (α12, α23)

At the subsequent order in ε we integrate eq. (2.63b) and obtain

g
[1,2,1],(3)
12 = 16

(
G0(α12)

(
G−1,0(α23)−G1,0(α23) +

π2

4

)
+G0(α23)

(
G−1,0(α12)−G0,0(α12) +G1,0(α12)− 2 log(2)G0(α12)− π2

12

))
(2.68)

The next order in ε for g
[1,2,1]
12 is given in the Appendix A.1.3. Given that we

know the boundary integrals to all orders in ε and that the differential equation

matrices are in canonical form we can find g[1,2,1] in terms of MPLs to any order

in ε.

2.3.3 Calculating the web

To find the web in eq. (2.55) we first need to invert from the uniform weight basis

g[1,2,1] back to the original basis f [1,2,1]. In the antisymmetric sum over α12, α23

the leading double pole eq. (2.67) vanishes. The single pole of the web is then

proportional to

I
[1,2,1],(−1)
111111 (α12, α23)− I [1,2,1],(−1)

111111 (α23, α12) =

8α12α23

(α2
12 − 1)(α2

23 − 1)
( log(α23)S1(α12)− log(α12)S1(α23)), (2.69)
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where we have defined

S1(α12) = −2G0,0(α12) + 4G1,0(α12)− 2π2

3
. (2.70)

Plugging eq. (2.69) into eq. (2.55) we get the following result for the web,

w
(2,−1)
121 = ifabcTa

1T
b
2T

c
3 r(α12)r(α23) (log(α23)S1(α12)− log(α12)S1(α23)) ,

with r(aij) =
1+a2ij
1−a2ij

. The web agrees precisely with previous calculations [64,114,

115]. We can calculate the subtracted web which is defined in eq. (1.18)

w̄
(2,−1)
121 = w

(2,−1)
121 +

1

2

[
w(1,−1), w(1,0)

]
, (2.71)

where the web functions w(1,−1) and w(1,0) were found in eqs. (2.51a) and (2.51b).

Using these we find

w̄
(2,−1)
121 =ifabcTa

1T
b
2T

c
3 r(α12)r(α23)

1

2

× (M000(α23)M100(α12)−M000(α12)M100(α23)), (2.72)

where M000 and M100 are members of the basis of MGEW functions mentioned

in Section 1.3. Their explicit forms are

M000(α) =2G0(α) (2.73)

M100(α) =− 2ζ2 + 4G−1,0(α)− 4G00(α) + 4G10(α) (2.74)

These functions and their generalisations will be explored in greater detail in

Chapter 3.

2.4 [3gv]-web

The most difficult two-loop web is the three-gluon-vertex web which is shown

diagramatically in Figure 2.4. As opposed to the two-loop MGEW web calculated

previously in Section 2.3 this is the first instance of a maximally-connected web

with full dependence on all three cusp angles. It was explicitly calculated in [115]

and again in [78] using Mellin-Barnes techniques. In [116] the novel unitarity

cut method was employed to evaluate the integral. Here we shall employ the

technique of differential equations.
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Figure 2.4: Diagram corresponding to the three gluon vertex web w3gv

2.4.1 Integral family

The expression for the three-gluon-vertex web is,

w3gv

(αs
4π

)2

= −ig4
sf

abcTa
1T

b
2T

c
3

∫
ddk1

(2π)d

∫
ddk2

(2π)d

∫
ddk3

(2π)d
(2π)dδ(d)(k1 + k2 + k3)

εijkβi · βjki · βk
k2

1k
2
2k

2
3(k1 · β1 −m)(k2 · β2 −m)(k3 · β3 −m)

.

(2.75)

Writing the numerator out fully, we can write the web as

w3gv = ifabcTa
1T

b
2T

c
3

( µ
m

)4ε
(
β1 · β2I

[3gv](α12, α13, α23)

− β1 · β3I
[3gv](α13, α12, α23)− β2 · β3I

[3gv](α23, α13, α12)

)
, (2.76)

where we have defined the term proportional to β1 · β2 to be the integral

I [3gv](α12, α13, α23) = m4εe2εγE∫
ddk1

iπd/2

∫
ddk2

iπd/2
(k1 − k2) · β3

k2
1k

2
2(k1 + k2)2(k1 · β1 −m)(k2 · β2 −m)(−(k1 + k2) · β3 −m)

(2.77)

and the other terms can be found from cyclic permutations of the α variables.

From the definition in eq. (2.77), we define the integral family

I [3gv]
a1a2a3a4a5a6a7a8a9

= mMde2εγ

∫
ddk1

iπd/2

∫
ddk2

iπd/2
1

P a1
1 P a2

2 P a3
3 P a4

4 P a5
5 P a6

6 P a7
7 P a8

8 P a9
9

,

(2.78)
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d


f1
f2
...

f26

 =

 off-diagonal 6× 6

20× 20




f1
f2
...

f26



Figure 2.5: Schematic representation of the lower block-diagonal matrix A[3gv].
The 20× 20 block is itself lower block-diagonal, with the largest sub-block being
3× 3. The 6× 6 is the coupled system of the 6-dimensional top sector.

P1 = k2
1 P2 = k2

2 P3 = (k1 + k2)2

P4 = k1 · β1 −m P5 = k2 · β2 −m P6 = −(k1 + k2) · β3 −m
P7 = k1 · β2 P8 = k2 · β3 P9 = k2 · β1

with β2
i = 1 and Md chosen such that I

[3gv]
a is dimensionless. Expressing the

numerator of eq. (2.77) as (k1 − k2) · β3 = −2P8 − P6 − m, we can write the

integral I [3gv](α12, α13, α23) in terms of this family,

I [3gv](α12, α13, α23) = −2I
[3gv]
1111110−10 − I

[3gv]
111110000 − I

[3gv]
111111000. (2.79)

2.4.2 Differential equation

There are three variables that the family depends on: {α12, α13, α23}. We find for

the whole system 26 basis integrals where 6 form the top sector. We then build

our system of differential equations,

df [3gv](ε, α12, α13, α23) = A[3gv](ε, α12, α13, α23)f [3gv](ε, α12, α13, α23), (2.80)

where A[3gv] satisfies the integrability condition eq. (2.17). It provides a non-

trivial check on the derived differential system. The differential equation is shown

schematically in Figure 2.5. To extract the ε dependence from A we seek a

transformation f [3gv] → Tg[3gv] to canonical form such that,

dg[3gv](ε, α12, α13, α23) = ε Ã[3gv](α12, α13, α23)g[3gv](ε, α12, α13, α23). (2.81)
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Leading singularity

To find such a transformation we will compute the leading singularity of the

three-gluon vertex web in an attempt to identify uniform weight integrals. The

integrand in four dimensions without numerators is given as

I [3gv] =
d4k1d

4k2

k2
1k

2
2(k1 + k2)2(k1 · β1 −m)(k2 · β2 −m)(−(k1 + k2) · β3 −m)

(2.82)

We decompose β1 in terms of two lightlike vectors p1 and p2. Then we

parameterise1 the other Wilson lines in the following way,

β1 = p1 + p2 (2.83a)

β2 = − p1

α12

− α12p2 (2.83b)

β3 = a1p1 + a2p2 + a3
〈23〉
〈13〉λ1λ̃2 + a4

〈13〉
〈23〉λ2λ̃1. (2.83c)

We have decomposed β3 into p1 and p2 but also into vectors that are in the

orthogonal space, pi = λiλ̃i and have used the notation λi → |i〉. The detailed

explanation for the parameterisation is deferred to Appendix A.3. The kinematics

of the vectors are p2
i = 0 and 2p1 · p2 = 1. We can then solve for the coefficients

in eq. (2.83c)

a1 =
−α12α13α

2
23 − α12α13 + α2

13(−α23)− α23

(1− α2
12)α13α23

(2.84a)

a2 =
α2

12α
2
13α23 + α2

12α23 + α12α13α
2
23 + α12α13

(1− α2
12)α13α23

. (2.84b)

The integrand in eq. (2.82) will only depend on {α12, α13, α23} or, equivalently,

{α12, a1, a2}. The dependence on a3 and a4 is only on the product a3a4 which, in

turn, is equal to 1 − a1a2 coming from β2
3 = 1. We then parameterise the loop

momenta in terms of p1, p2 and the momenta in the orthogonal space

ki = b1ip1 + b2ip2 + b3i
〈23〉
〈13〉λ1λ̃2 + b4i

〈13〉
〈23〉λ2λ̃1. (2.85)

1We would like to thank Johannes Henn for suggesting this parameterisation
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The scalar products appearing in eq. (2.82) are then

k2
i = b1ib2i − b3ib4i 2ki · β3 = a1b2i + a2b1i − a3b4i − a4b3i

2ki · β1 = b2i + b1i 2ki · β2 = − b2i

α12

− α12 b1i

(k1 + k2)2 = (b11 + b12)(b21 + b22) − (b31 + b32)(b41 + b42)

The Jacobian of the transformation is simply a numerical factor

d4k1d
4k2 =

1

4

2∏
j=1

4∏
i=1

dbij. (2.86)

Now we have everything we need to take successive residues at the poles of the

denominators in eq. (2.82) in the variables bij. In doing so we arrive at

LeadingSingularity
[
I [3gv]

]
∼
∮

db√
(b− r1)(b− r2)(b− r3)(b− r4)

, (2.87)

where b is one of the original bij. The ri are functions of α12, α13 and α23.

The appearance of the square root of a quartic polynomial in the denominator of

eq. (2.87) heavily signifies an elliptic integral, one that does not evaluate to MPLs.

It then implies that there is no rational transformation to canonical form of the

six-dimensional differential equation. In order to solve the integral in eq. (2.77)

we need to change our approach.

2.4.3 New strategy

Our new approach will be, rather than solving the system as a whole, we will only

look at functions that have physical relevance. In the three-gluon-vertex web it

is the single pole in ε of the integral I [3gv] defined in eq. (2.77) which constitutes

the [1, 1, 1]-web. We shall define the following function

ϕ ≡ 1− α2
12

α12

I [3gv] =
1− α2

12

α12

(
−2I

[3gv]
1111110−1 − I

[3gv]
11111 − I

[3gv]
111111

)
. (2.88)

Now we observe that I
[3gv]
111111 is finite. If k1 and k2 scale in the same way then

its integrand (see eq. (2.82)) in the UV scales as k2d

k9
which vanishes as k → ∞.

Similarly in the IR the integrand scales as k2d

k6
→ 0 which vanishes as k → 0.

Hence, there are no overall divergences. If, instead, k2 is fixed then in the UV
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the k1 integrand scales as
kd1
k61
→ 0 and in the IR as

kd1
k21
→ 0. This shows that there

are no subdivergences present in I
[3gv]
111111. We can then write

ϕ =
1− α2

12

α12

(
−2I

[3gv]
1111110−1 − I

[3gv]
11111

)
+O(ε0). (2.89)

As we seek the pole of ϕ we do not require its evaluation and to this end we define

ϕ̃ ≡ 1− α2
12

α12

(
−2I

[3gv]
1111110−1 − I

[3gv]
11111

)
. (2.90)

In order to calculate ϕ̃ we will still use differential equations and IBP reduction

but only on ϕ̃. We find dϕ̃

dϕ̃ =
∂ϕ̃

∂α12

dα12 +
∂ϕ̃

∂α13

dα13 +
∂ϕ̃

∂α23

dα23 (2.91)

and reduce the right hand side down to a basis of integrals. We choose basis

integrals that are finite in the top sector because, as we will see, they do not

contribute to the leading pole of ϕ̃. A similar observation was made in [36]. As

we have shown that I
[3gv]
111111 is finite only integrals with additional numerators are

UV divergent. Hence we choose integrals without any numerators. Integrals with

a double propagator on the first three indices are not chosen because they have

unregulated infrared divergences. Only multiple powers on the last three indices

are finite because the infrared is being regulated by m. A basis that satisfies this

and one that we choose is

I
[3gv]
0111 , I

[3gv]
11011, I

[3gv]
10111, I

[3gv]
10112, I

[3gv]
11111, I

[3gv]
110101, I

[3gv]
110102, I

[3gv]
111101, I

[3gv]
110011, I

[3gv]
110012,

I
[3gv]
111011, I

[3gv]
110111, I

[3gv]
110112, I

[3gv]
110121, I

[3gv]
101111, I

[3gv]
101121, I

[3gv]
101211, I

[3gv]
011111, I

[3gv]
011112, I

[3gv]
011211,

I
[3gv]
111111, I

[3gv]
111112, I

[3gv]
111113, I

[3gv]
111121, I

[3gv]
111122, I

[3gv]
111131.

(2.92)

We can solve the first 20 integrals by differential equations, the first two lines of

eq. (2.92). Their evaluation is given in Appendix A.2. To extract the poles in ε

we write the integrals as a series expansion in ε,

I [3gv]
a =

∞∑
i=−2

I [1,1,1],(i)
a εi. (2.93)
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The sum starts at i = −2 since some of the integrals in eq. (2.92) have a term of

order 1
ε2

. Expanding the differential equation for ϕ̃ we find that it starts at ε−3

dϕ̃ =
∞∑

i=−3

φ(i)εi =
∞∑

i=−3

(
φ

(i)
12 dα12 + φ

(i)
13 dα13 + φ

(i)
23 dα23

)
εi. (2.94)

Written in terms of the basis we find that one of the terms evaluates to

φ
(−3)
12 (α12, α13, α23) ∝

[
α23

((
α2

13 + 1
)
I

[1,1,1],(−2)
110102 (α13) + 2α13I

[1,1,1],(−2)
110101 (α13)

)
−α13

((
α2

23 + 1
)
I

[1,1,1],(−2)
110012 (α23) + 2α23I

[1,1,1],(−2)
110011 (α23)

)]
.

(2.95)

Seemingly it is non-zero but the term vanishes upon the replacement of the values

of the integrals. The vanishing is due to the α23 ↔ α13 anti-symmetry of the term

in square brackets.

The same also happens for the full φ(−3) expression and for φ(−2) as expected. This

serves as a good check of the evaluation of the lower sector integrals. If non-finite

integrals were chosen for the top sector then there may have been dependence on

them for these terms which is why finite integrals were selected.

For dϕ̃(−1) we find the first non-zero result

dϕ̃(−1) = 8 (d logα12d logα23d logα23 + perm.

− d logα12d logα13d logα13 + perm.).
(2.96)

The additional terms ensure that eq. (2.96) is integrable. We also see no

dependence on the top sector because the rational prefactor in the definition

of ϕ in eq. (2.90) removes homogeneous terms. The integration is on a contour

from the boundary (1, 1, 1) → (α12, α13, α23). Conveniently, ϕ̃ vanishes at the

boundary due to the rational factor. This gives the immediate result,

ϕ̃(−1) = 4 log(α12)

(
log2(α23)− log2(α13)

)
(2.97)
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Using this result in eq. (2.76) we find for the single pole of the [3gv]-web

w
(−1)
3gv = 2ifabcTa

1T
b
2T

c
3

(
r(α12) log(α12)

(
log2(α13)− log2(α23)

)
+ perm.

)
(2.98a)

= 2ifabcTa
1T

b
2T

c
3

∑
εijkr(αij) log(αij) log2(αik), (2.98b)

which agrees with previous calculations [78,115,116]. At the next order in ε, dϕ̃(0)

depend on the top sector which would need to be evaluated to find w
(0)
3gv, which

contributes to the three-loop soft anomalous dimension.

2.5 Conclusion

The complete two-loop coefficient of the tripole contribution to the soft anomalous

dimension Γtripole is eq. (1.17b) which is the combination of eqs. (2.72) and (2.98b)

and evaluates to

Γ
(2)
tripole = ifabcTa

1T
b
2T

c
3

∑
i,j,k

εijkr(αij)M000(αjk)×

[M000(αij)M000(αjk)− 2r(αjk)M100(αij)] . (2.99)

The technique of differential equations is certainly a powerful one as it is now

almost trivial to find the [1, 2, 1]-web to any order in ε. However, there are

clear limitations. The computation of the [3gv]-web by the standard technique

of finding a transformation to canonical form fails due to the appearance of

the elliptic integral eq. (2.87). Currently there is a major research focus in

understanding elliptic integrals and their application to Feynman integrals. An

interesting avenue to take would be to study the elliptic curve of eq. (2.87).

By computing the periods associated to an elliptic curve, Adams and Weinzierl

in [117] were able to transform the differential equation of an elliptically-valued

Feynman integral into ε-form. The transformation was non-algebraic.

Another avenue to continue is the idea that subtracted webs, webs with relevant

lower loop order counterterms, have a simpler structure. One would construct

a differential equation for these and use a basis of finite integrals for the harder

sectors such that one can extract the required poles. The method does not involve
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solving individual integrals where complicated symbol letters can appear, such

as the y symbol found in eq. (2.63b). These cancelled in the full expression for

the [1, 2, 1]-web. Other letters appear in the subsectors that depend on multiple

angles such as α12 + α23 − 1. Although the appearance of such are expected, we

are complicating matters by calculating unnecessary integrals rather than focus

on physically relevant functions. The next chapter will explore this further by

constructing ansatze for functions arising from correlators of Wilson lines which

are based solely on their physical properties and then constraining them using

known limits.
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Chapter 3

Bootstrapping

Although the technique of differential equations is very powerful it tends to

overcomplicate matters. We are often not seeking the solution to all the integrals

in a certain sector but rather specific integrals that arise in the perturbative

expansion. One way to bypass integral evaluation entirely and to go straight to

the function is to bootstrap the integral. The methodology behind bootstrapping

quantities is to first write a general ansatz constructed from first principle

arguments and then constrain it using known limits.

The concept of bootstrapping first appeared in the context of planar N = 4

super-Yang-Mills amplitudes. By now immense progress has been made on the

amplitudes and currently four-loop seven point symbols [118] or seven-loop six-

point symbols [119, 120] are the state-of-the-art. The idea was then extended to

lightlike Wilson-line correlators [25], namely the three loop QCD soft anomalous

dimension, in eq. (1.27). In this chapter we review what is known about the

function space for non-lightlike lines. We then explore an extension to the basis

using the analytical properties of the functions. Finally, we consider two different

types of applications. The first type is one that is a physical gauge-invariant

quantity, the angle-dependent non-lightlike (two-line) cusp anomalous dimension,

see the discussion around eq. (1.28). The second is an individual web comprising

of four lines.
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3.1 Multiple-Gluon-Exchange-Web Basis Functions

In order to construct a basis let us first define the kinematic variables. Diagrams

contributing to semi-infinite non-lightlike Wilson-line correlators depend only on

the angles where a gluon exchange occurs. Defining a Wilson line in direction βi,

the most convenient variables are the α’s,

−
(

1

αij
+ αij

)
≡ 2βi · βj√

β2
i

√
β2
j

, |αij|< 1. (3.1)

c.f. eq. (2.38) where β2
i = 1. Due to the α ↔ 1

α
symmetry in the definition we

have chosen α to lie in the unit circle.

The first step towards constructing a basis for non-lightlike Wilson-line correlators

was achieved in ref. [64]. Analysis was performed on multiple gluon exchange webs

(MGEWs) which are diagrams arising from correlators of Wilson lines that have

no three-gluon or four-gluon vertex. In [64] it was observed that subtracted webs

of this type have a highly constrained structure.

One constraint is that they are only sums of products of polylogarithms that

depend only on one α. Another is that the subtracted web is invariant under

α→ −α up to terms arising from analytic continuation (iπ). It follows from the

fact that there should not be branch points from square roots of masses and means

that the symbol should be invariant since it is blind to these iπ terms. Note that

webs without subtraction terms, in general, will not obey this symmetry. These

we will call unsubtracted webs.

Subsequently, in [65] it was conjectured that all subtracted webs in this family

can be written in terms of the following functions

Mkln(α) =
1

r(α)

∫ 1

0

dx p0(x, α) logk
(
q(x, α)

x2

)
logl

(
x

1− x

)
logn q̃ (x, α) , (3.2)

where the constituent functions p0, q and q̃ are defined as

log
q(x, α)

x2
= log

(
1

x
+ α− 1

)
+ log

(
1

x
+

1

α
− 1

)
(3.3a)

p0(x, α) = −
(
α +

1

α

)
1

q(x, α)
(3.3b)
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log q̃ (x, α) =
1

r(α)

∫ 1

0

dy p0(y, α)θ(x− y) (3.3c)

= log

(
1

x
+ α− 1

)
− log

(
1

x
+

1

α
− 1

)
. (3.3d)

Some explicit examples, M000 and M100, written in terms of MPLs, are given in

eqs. (2.73) and (2.74). The Mkln(α) are pure transcendental functions that have

weight k+ l+n+1. They have the alphabet {α, η ≡ α
1−α2} and can be multiplied

by the rational function r(α) defined in eq. (2.52). They also have the inversion

property,

Mkln(1/α) = (−1)(n+1)Mkln(α) (3.4)

and vanish at α = 1, Mkln(1) = 0. Taking into account dependencies between the

functions such as M001 = 1
2
M2

000, the basis functions suitable to three loops (up

to weight five) are given in Table 3.1. As opposed to [65] we remove M00n ∝Mn
000

from the basis to allow for any powers or products of the Mkln to appear.

Weight Mkln S[Mkln]
one M000 2⊗ α
two M100 −4α⊗ η
three M011 −4α⊗ η ⊗ α

M020 4α⊗ α⊗ α
M200 16α⊗ η ⊗ η

four M102 −32α⊗ α⊗ α⊗ η
M111 8α⊗ η ⊗ α⊗ η + 8α⊗ η ⊗ η ⊗ α− 16α⊗ α⊗ α⊗ α
M120 −8α⊗ α⊗ α⊗ η − 8α⊗ η ⊗ α⊗ α
M300 −96α⊗ η ⊗ η ⊗ η

five M013 −96α⊗ α⊗ α⊗ η ⊗ α− 96α⊗ α⊗ η ⊗ α⊗ α
−96α⊗ η ⊗ α⊗ α⊗ α

M022 32α⊗ η ⊗ α⊗ η ⊗ α + 96α⊗ α⊗ α⊗ α⊗ α
M031 −24α⊗ α⊗ α⊗ η ⊗ α− 24α⊗ η ⊗ α⊗ α⊗ α
M040 48α⊗ α⊗ α⊗ α⊗ α
M202 128α⊗ α⊗ α⊗ η ⊗ η
M211 64α⊗ α⊗ α⊗ α⊗ η + 32α⊗ α⊗ η ⊗ α⊗ α

+32α⊗ η ⊗ α⊗ α⊗ α− 32α⊗ η ⊗ α⊗ η ⊗ η
−32α⊗ η ⊗ η ⊗ α⊗ η − 32α⊗ η ⊗ η ⊗ η ⊗ α

M220 32α⊗ α⊗ α⊗ η ⊗ η + 32α⊗ η ⊗ α⊗ α⊗ η
+32α⊗ η ⊗ η ⊗ α⊗ α + 32α⊗ α⊗ α⊗ α⊗ α

M400 768α⊗ η ⊗ η ⊗ η ⊗ η

Table 3.1: The Mkln basis and the respective symbols

As we can write the non-MGEW, [1, 1, 1]-web in the Mkln basis eq. (2.98b) it

seems natural to consider an immediate generalisation of the conjecture, that all
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webs that do not depend on CICRs, defined in eq. (1.26), evaluate to MGEW basis

functions. We know from the three-loop correction to the lightlike soft function

eq. (1.27), there is dependence that does not factorise into polylogarithms of

individual angles.

One source of information about functions that appear in Wilson-line correlators

is the explicit calculation of the three-loop cusp anomalous dimension [22, 23].

All the coefficient functions, that are given in eq. (5.2) of ref. [23] (the Ai and Bi)

can be written in terms of MGEW basis functions apart from A4 and B5. We

quote the functions that can in terms of the basis in Table 3.1

A1(α) =
1

2
r(α)M000(α) (3.5)

A2(α) =
M000(α)2

4
+

1

2
M100(α)r(α) (3.6)

A3(α) =
1

2
M011(α)r(α)2 +

1

2
M020(α)r(α) (3.7)

B3(α) =
1

8
M000(α)M100(α) + r(α)

(
M000(α)3

24
− M200(α)

4

)
− 5

4
M011(α) (3.8)

A5(α) = r(α)3

(
1

32
M000(α)M100(α)2 − 1

8
M000(α)M111(α)− 1

32
M000(α)2M200(α)

− M000(α)5

384
+

1

8
M011(α)M100(α)− 3M022(α)

16

)
+ r(α)2

(
7

16
M000(α)2M011(α)− 3

16
M000(α)M120(α)− M013(α)

2

− 1

16
M020(α)M100(α)

)
+ r(α)

(
− 1

28
M000(α)2M020(α)− 5M040(α)

28

)
(3.9)

The function A4 cannot be written solely in terms of the Mkln basis

A4(α) = r(α)

(
− ζ3M000(α)− 11M102(α)

8
− 1

2
M120(α) +

3

8
M000(α)2M100(α)

− 3

2
M000(α)M011(α)

)
+
M000(α)4

96
− M000(α)M020(α)

4

+ r(α)2

(
−1

2
M000(α)M020(α)− 1

48
M000(α)4 −M111(α)

)
. (3.10)

Notice that there is a term r(α)ζ3M000(α). Already here we see that we should

extend our basis by including ζ values. It was also observed in an explicit

calculation by Waelkens [116] that along with the MGEW functions, ζ3 is present

in a connected web. By including ζ values there are additional dependencies that
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need to be taken into account such as

M020(α) = 2ζ2M000(α) +
1

12
M000(α)3. (3.11)

After removing all such redundant products of M000 there are still dependencies

which, to weight five, are

4M000M011 −M2
000M100 + 16ζ3M000 + 8ζ2M100 + 4M102 − 4M120 = 0 (3.12a)

24ζ2M000M100 − 3M3
000M100 + 12M000M102 − 12M000M120

+ 48ζ3M
2
000 + 96ζ2M011 + 16M013 − 16M031 = 0 (3.12b)

120M000M111 − 15M2
000M200 + 200ζ2M

3
000 + 2640ζ4M000 + 7M5

000

− 60M022 + 480ζ3M100 + 120ζ2M200 + 60M202 − 60M220 = 0. (3.12c)

These can be derived by finding the relations between the symbols of the

functions. The individual Mkln symbols can be found in Table 3.1 and the shuffle

relation in eq. (1.34) can be used for products. The symbol matching is not all

that is required to find the functional relations. The symbol is not sensitive to

lower weight functions multiplied by ζ values.

Taking into account the relations, we choose to eliminate M120, M220 and M031.

The Mkln functions present in this basis are then given in Table 3.2. Products

between any functions and any ζ numbers are allowed. We call this basis the

(M + ζ) basis. Taking these into account we are able to write all the coefficient

functions in eqs. (3.5) to (3.10) in a unique way. The A1, A2 and B3 do not

change but the others do

A3(α) = r(α)

(
ζ2M000(α) +

M000(α)3

24

)
+

1

2
M011(α)r(α)2 (3.13)

A4(α) = r(α)

(
− 2M000(α)M011(α) +

1

2
M000(α)2M100(α)− 3ζ3M000(α)

− ζ2M100(α)− 15M102(α)

8

)
− 1

96
M000(α)4 − 1

2
ζ2M000(α)2

+ r(α)2

(
−ζ2M000(α)2 − 1

16
M000(α)4 −M111(α)

)
(3.14)

A5(α) = r(α)2

(
1

4
M000(α)2M011(α)− 1

2
ζ2M000(α)M100(α)

+
1

24
M000(α)3M100(α)− 3

16
M000(α)M102(α)− 3

4
ζ3M000(α)2 − M013(α)

2

)
+ r(α)3

(
1

32
M000(α)M100(α)2 − 1

8
M000(α)M111(α)− 1

32
M000(α)2M200(α)
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− 1

384
M000(α)5 +

1

8
M011(α)M100(α)− 3M022(α)

16

)
+ r(α)

(
−1

4
ζ2M000(α)3 − 15

2
ζ4M000(α)− 1

192
M000(α)5

)
(3.15)

weight one M000

weight two M100

weight three M011,M200

weight four M102,M111,M300

weight five M013,M022,M202,M211,M400

Table 3.2: The Mkln functions in the (M + ζ) basis

There is still one coefficient function that cannot be written in terms of these

basis functions which is B5(α). This function also has a new rational function

which is not r(α) but α
1−α2 . We quote the result here for reference

B5(α) =
α

1− α2

(
3

5
ζ2

2 (G1(α)−G−1(α)) + 2ζ3(G−1,0(α)−G1,0(α))

− 4G−1,0,−1,0,0(α) + 4G−1,0,0,0,0(α)− 4G−1,0,1,0,0(α)

+ 4G1,0,−1,0,0(α)− 4G1,0,0,0,0(α) + 4G1,0,1,0,0(α)

)
. (3.16)

The symbol of the transcendental part of eq. (3.16) is

S
[

1− α2

α
B5(α)

]
= 4α⊗ α⊗ η ⊗ α⊗ 1 + α

1− α. (3.17)

Along with the expected letters α and η, we see a new symbol letter y ≡ 1+α
1−α .

It is clear from this new symbol that B5(α) cannot be written in terms of the

Mkln(α).

If we have any hope of constructing a general basis of functions for subtracted

webs then we need to extend the (M + ζ) basis to include the new symbol y. In

the next section we will do so by using known physical properties of Wilson-line

correlators and will look to use the extension to perform prototypical bootstraps

of some quantities.
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3.2 Constructing the Basis

Let us now consider the general features of functions appearing in Wilson-line

correlators. We can discuss the branch cuts of such functions by studying the

branch cuts in normal Feynman diagrams. Branch cuts in Feynman integrals

occur when centre of mass energy is at threshold and extend towards infinity.

The energy for two incoming on-shell massive particles1 with momentum pi and

pj is given by sij = (pi + pj)
2 so that the threshold energy for particle creation is

4m2 and the cut extends over all real sij > 4m2. Using eq. (3.1) and pi = mβi

we have
sij
m2

=
(1− αij)2

−αij
=⇒ sij ± iε↔ αij ± iε (3.18)

which means that discontinuities in sij map to discontinuities in αij [116]. The

specific map is shown in Figure 3.1. For a given polylogarithm, the first entry of

4m2

sij

−1

αij

1

→

Figure 3.1: The map between the Mandelstam invariants sij to the α variables

its symbol captures its discontinuity. Our functions’ symbols will have first entry

αij, capturing the branch point at 0. This is known as a first entry condition. As

can be seen from Table 3.1, all the Mkln functions obey this condition.

As observed in [64], any function appearing in subtracted webs that we want

to construct F (α) has to obey F (α) = F (−α) modulo terms from analytic

continuation (iπ). The symbol should be invariant since it is blind to these

iπ terms. This is crossing symmetry from spacelike to timelike kinematics.

The letters previously mentioned logα, log η = log α
1−α2 and log y = log 1+α

1−α

have definite properties under this transformation, transforming to logα, log η

and − log y respectively. These are natural symbol letters and our alphabet for

our functions will be A = {α, η, y}. Functions that have this property are the

harmonic polylogarithms (HPLs) [92], these are defined in Section 1.3.

1We are only considering two particle correlations where there will not be any intricate
multi-particle discontinuities.
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Along with the transcendental functions, the HPLs, subtracted webs will also

have rational functions. As we have seen, the rational function

r(α) =
1 + α2

1− α2
, (3.19)

appears many times in calculations of non-lightlike correlators, see eqs. (2.50a)

and (2.99). The MGEW basis functions in eq. (3.2) only have this factor.

However, in the three-loop cusp we have seen a new rational function eq. (3.16)

which we will define as

s(α) =
α

1− α2
. (3.20)

This factor comes from the topology involving the four-gluon vertex diagram

that first appears at three loops [23]. Notice that both r(α) and s(α) diverge

at α → ±1 which coincides with the divergences of the symbol letters y and η.

A similar observation was made in the calculation of two-loop five-point QCD

amplitudes in [121], where denominator factors of rationals were the same as

symbol letters.

It is worthwhile to explain how the rational functions are generated. The factors

r(α) and s(α) are related by

r(αij) = −2× βi · βj︸ ︷︷ ︸
kinematics

× s(αij)︸ ︷︷ ︸
integration

. (3.21)

The factor s(α) appears from the integral of the gluon propagator, see the leading

singularity in eq. (2.44). Then multiplying this factor by βi ·βj from the Feynman

rules we arrive at r(α) as in eq. (3.21). There cannot be more scalar products

βi ·βj than factors of s(α). For MGEWs, this bound is saturated i.e. the number

of βi · βj equals the number of s(α) which equals the number of r(α). The

appearance of s(α) alone in B5(α) of eq. (3.16) can be explained by the above. It

is because the four-gluon-vertex diagram of the two-line cusp has for its kinematic

part (βi ·β2
j −1) ∝ 1

s(α)2
and three loop integrals, each with a factor of s(α). Thus,

overall, its rational factor is s(α).

A general function appearing in n-leg subtracted webs will schematically have

the form

subtracted webs =
∑∏

(i,j)

r(αij)
a × s(αij)

b × HPL(αij) (3.22)
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where the HPL has a symbol drawn from the alphabet A, whose first entry is α

and is of a prescribed weight. We conjecture that any function from non-lightlike

Wilson-line correlators, where angle-dependence is factorisable, can be written in

the form of eq. (3.22). We now explicitly construct a basis for subtracted webs

by applying the α → 1
α

and α → −α symmetries to the general expression of

eq. (3.22). We will see that the powers of a and b in eq. (3.22) are constrained

and related to the transcendental function.

To be systematic in the construction of a basis we observe that there is a

correspondence between the rational prefactor and the numbers of y and α entries

in the symbol. For the correct property under α → −α we require the rational

factor to be even/odd when the number of y entries is even/odd. Similarly for

α → 1
α

we require the rational factor to be even/odd when the number of α

entries is even/odd. Realising that,

r(α)2 − 4s(α)2 = 1, (3.23)

there are then only four different types of rational factors. We summarise this

analysis in Table 3.3 where we have eliminated any possibility of s(α)even using

eq. (3.23).

no. of y
no. of α

odd even

odd r(α)evens(α)odd r(α)odds(α)odd

even r(α)odd r(α)even

Table 3.3: Rational to symbol correspondence, r(α)odd means r(α) raised to an
odd power.

As an illustration of the correspondence we consider an example symbol that can

appear

S [F (α)] = α⊗ η ⊗ α⊗ y. (3.24)

Under α→ −α we see that since the symbol drops iπ terms it is odd,

S [F (−α)] = (−α)⊗ −α
1− α2

⊗ (−α)⊗ 1

y

= −(α⊗ η ⊗ α⊗ y) (3.25)

Thus we need a rational factor that is odd under α → −α to cancel this minus
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sign. From the choices it must be

s(α)odd. (3.26)

Since we only need invariant functions up to iπ then the classification of odd/even

number of y’s is sufficient to ensure the α → −α property. We now move onto

inversion, α→ 1
α

, which is an exact symmetry from the definition of α,

S
[
F

(
1

α

)]
=

1

α
⊗ (−η)⊗ 1

α
⊗ (−y)

= α⊗ η ⊗ α⊗ y. (3.27)

So our symbol is even in inversion so our rational factor must be as well.

Combining with eq. (3.26) we see that our rational factor should be

(r(α)s(α))odd, (3.28)

which is in agreement with the table.

Required for quantities up to three loops, all functions, with y present in the

symbol, up to weight five have been constructed. They are given in Appendix B

along with their respective symbols. We denote these as w
(j),k
i , which describes

the i-th function at weight j corresponding to a rational factor which is the k-th

element of the set

{r(α)even, r(α)odd, r(α)evens(α)odd, r(α)odds(α)odd}. (3.29)

One further constraint can be applied on these functions. We can observe that

Mkln(1) = 0 for any k, l and n. This ensures finite results when combined with

r(α) in α → 1, where the lines become one line. We can also redefine the new

functions such that they obey this as well. For those with rational factor r(α)even,

w
(n),1
i a simple subtraction of a constant is needed. This constant is given with the

functions in Appendix B. Those with factors r(α)odd and r(α)evens(α)odd, w
(n),2
i

and w
(n),3
i respectively, do not need subtraction, they already vanish at α = 1. For

those of r(α)odds(α)odd type, w
(n),4
i , a subtraction is needed. However, because of

the odd number of y present in the symbol, see Table 3.3, any subtraction needs

to also have an odd number of y otherwise it will spoil the α→ −α property. We
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demonstrate this by performing the subtraction

(r(α)s(α))oddw
(n),4
i (α)→ (r(α)s(α))odd

(
w

(n),4
i (α)− w(n),4

i (1)
)
. (3.30)

This means that the difference is no longer solely terms from analytic continuation

(r(α)s(α))odd
(
w

(n),4
i (α)− w(n),4

i (1)
)
− (r(−α)s(−α))odd

(
w

(n),4
i (−α)− w(n),4

i (1)
)

= (r(α)s(α))odd
(

analytic continuation− 2w
(n),4
i (1)

)
(3.31)

The functions in Appendix B are general and do not have the vanishing property.

However, we will discard the functions w
(n),4
i entirely in future sections when we

bootstrap the cusp anomalous dimensions and an individual integral.

As an example of the basis, we can write B5(α), in eq. (3.16), in terms of these

functions

B5(α) = s(α)

(
4w

(5),3
5 (α)− 24

5
log(2) w

(4),3
1 (α)− 6

5
ζ2w

(3),3
1 (α)

)
(3.32a)

S[w
(5),3
5 (α)] = α⊗ α⊗ η ⊗ α⊗ y (3.32b)

S[w
(4),3
1 (α)] = α⊗ α⊗ α⊗ y (3.32c)

S[w
(3),3
1 (α)] = α⊗ η ⊗ y (3.32d)

where the new functions are drawn from those with a rational factor of the form

r(α)evens(α)odd. We needed to add log(2) to reconstruct B5(α). The constants

Li4
(

1
2

)
and Li5

(
1
2

)
also show up in the functions. Powers of log(2), these constants

and higher-weight generalisations thereof will be added to the basis. A full basis

would involve these as well as the (M + ζ) basis in Table 3.2.

In the next two sections we use this full basis to create an ansatz for quantities

and constrain it using known limits.

3.3 Towards Bootstrapping the Cusp Anomalous

Dimension

In this section we explore the possibilities of bootstrapping the non-lightlike angle-

dependent QCD cusp anomalous dimension Γcusp. This is the special two-leg case
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of the general non-lightlike soft anomalous dimension, setting n = 2 in eq. (1.5).

We have seen in Section 1.1 that this object governs the infrared behaviour of

massive form factors. It also describes a heavy quark interacting with a potential

in heavy quark effective theory (HQET) [23, 122–124]. A quark in the infinite

mass limit will follow its classical trajectory and radiate gluons as a Wilson line.

The velocity will transition from, say, β1 to β2 after interaction with the potential,

thus a correlator of two Wilson lines.

Using the functions constructed in Section 3.2, we create an ansatz for the one-

loop, two-loop and three-loop cases of Γcusp and constrain them using known

limits. Although these functions are known, (see refs. [23, 79] for the detailed

calculations) these are important steps to setup a bootstrap program to find the

four loop result which is almost entirely unknown [23,33,125,126] (see Table 1 in

ref. [33] for an overview).

The object Γcusp is the anomalous dimension from renormalising the two-leg

Wilson-line correlator in eq. (1.5) [79]. It only depends on the angle between

the legs and we shall define α through eq. (3.1). As it only depends on this one

variable, there are no other symmetries other than α → 1
α

and α → −α which

were discussed in the previous section, Section 3.2.

The n-loop coefficient Γ
(n)
cusp has a maximal weight of 2n− 1. Its colour structure

is fairly straightforward and obeys Casimir scaling through to three loops,

Γcusp = CR

(
3∑
i=1

(αs
4π

)i
Γ(i)

cusp

)
+O(α4

s) (3.33)

with the quadratic Casimir defined by TaTa = CR1, with T being defined in

Section 1.1. It is a singlet in colour space. A generalised version of this scaling

occurs to all orders which accounts for quartic Casimirs which begin to contribute

at four loops (see Section 4.5.2 for a detailed discussion).

In Section 3.3.1 we discuss the various limits we can use to constrain an ansatz

for Γcusp. In Sections 3.3.2, 3.3.3 and 3.3.4 we look at the one-loop, two-loop and

three-loop cases respectively.
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3.3.1 Limits of Γcusp

As is clear from the structure of the definition of α in eq. (3.1), the limits that

correspond to physical properties are α→ 0, α→ −1 and α→ 1.

The first is the lightlike limit (see eq. (1.28)), where the Wilson lines become

lightlike (β2
i → 0). In this limit Γcusp(α) diverges as [79]

lim
α→0

Γcusp(α) = γcusp logα + const., (3.34)

where γcusp is the QCD lightlike cusp anomalous dimension which evaluates to

γcusp(αs) =
∞∑
n=1

(
αs
π

)n
γ(n)

cusp

=
αs
π
Ci +

(
αs
π

)2

Ci

[
CA

(
67

36
− ζ2

2

)
− 5

9
nfTf

]
+

(
αs
π

)3

Ci

[
C2
A

(
245

96
− 67

36
ζ2 +

11

24
ζ3 +

11

8
ζ4

)
+ CAnfTf

(
−209

216
+

5

9
ζ2 −

7

6
ζ3

)
+ CFnfTf

(
−55

48
+ ζ3

)
− (nfTf )

2

27

]
+O

(
α4
s

)
,

(3.35)

where Ci, defined above, is the quadratic Casimir in the fundamental or the

adjoint representation for quarks and gluons, respectively, nf is the number

of light quarks and the normalisation of the generators ta in the fundamental

representation, Tr(tatb) = Tfδab, is conventionally set to Tf = 1/2. The three-loop

value of γcusp was computed in [19]. After significant progress towards a four-loop

determination [30–34] a complete result was recently calculated in refs. [35, 36].

Note we expand the quantity γcusp in terms of αs
π

whereas Γcusp is in terms of αs
4π

.

The second limit α → −1 is when the three-velocities of the lines become anti-

parallel. This is the case for heavy quark-antiquark production near threshold

[23,33,123,127]. We shall use as a constraint that, up to three loops, Γcusp diverges

as

lim
α→−1

Γcusp(α) =
V

1 + α
+O

(
α4
s log(1 + α)

1 + α

)
(3.36)

but not any faster. As the coefficient V is found from Γcusp(α) we will not use

its explicit expression but will use the fact that there are no terms logk(1+α)
(α+1)n

for
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n ≥ 2 and any k in the limit.

The last limit is the α→ 1 limit. In this case the lines become one single infinite

line and all diagrams that span both legs become the self-energy type. These

will be multi-loop generalisations of that seen at one-loop in Figure 2.1b. These

cancel the self energies already present on the individual lines due to a Ward

identity. As such as α→ 1, Γcusp vanishes [79]. Due to the finiteness of the limit,

one can expand the integrand in the limit and compute order by order in (α−1)n

the resulting integrals [33]. This will be the main source of information at higher

loops. We will use this to reconstruct the full α dependence from this limit using

the ansatz.

3.3.2 One loop

As the first entry of the symbol is α and we are restricted to weight one functions

the only transcendental function available is logα. Looking at Table 3.3 the

only rational piece is r(α)odd. Our ansatz for the one-loop correction to the cusp

anomalous dimension is

Γ(1)
cusp(α) = c1r(α) logα + c2. (3.37)

We exclude r(α)3 because, as explained in eq. (3.21), to generate that factor one

would require three loop integrals. Let us expand the ansatz in eq. (3.37) for

α→ 1

Γ(1)
cusp(α) = (−c1 + c2) +O(1− α). (3.38)

For vanishing α→ 1 we require c1 = c2 which gives

Γ(1)
cusp(α) = c1

(
r(α) logα + 1

)
. (3.39)

The remaining constant can be fixed from the lightlike cusp,

Γ(1)
cusp(α) = c1 logα +O(α2) = 4γ(1)

cusp logα +O(α2). (3.40)

Using γ
(1)
cusp = Ci in eq. (3.35) we find

Γ(1)
cusp(α) = 4Ci

(
r(α) logα + 1

)
, (3.41)
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Weight Rational Transcendental
zero 1 1

r2 1
one 1 log(2)

r M000

r2 log(2)
two 1 ζ2, M2

000

r M100, M000 log(2)
r2 ζ2, M2

000

three 1 ζ3, M2
000 log(2), M011, M000M100

r M200,M000ζ2, M100 log(2), M3
000

r2 ζ3, M2
000 log(2), M011, M000M100

s w
(3),3
1

Table 3.4: The list of functions in the ansatz for Γ
(2)
cusp we have used shorthand

notation that drops the functional argument.

replicating eq. (2.50b). Although a rather trivial example, it illustrates the

powerfulness of the method since no explicit calculation was necessary, only the

analytical properties of Γcusp and knowledge of its limits is required to reconstruct

the full expression of eq. (3.41).

3.3.3 Two loop

Our ansatz at two loops includes the constants ζ2, ζ3 as well as log 2, which is

known to show up in computations involving massive particles. As there are two

loop integrations, the maximal power of the rational function r(α) will be two.

Including the possibility that the new functions with the letter y can appear,

we find there are 24 functions that can appear up to weight three and these are

displayed in Table 3.4.

We then apply constraints from α → −1, eq. (3.36), and α → 0, eq. (3.34),

fitting to the two-loop lightlike cusp anomalous dimension in eq. (3.35). We give

results for these series expansions of the transcendental functions in the ansatz

in Table 3.5.

After the constraints from the α → −1, α → 0 and also requiring vanishing in

α → 1 limits we find that there are still seven degrees of freedom. To fit the

rest of them we use the α → 1 expansion. We would require explicit calculation

of integrals in this limit. However as this is exploratory we will just expand the
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f(α) limα→0 f(α) limξ→0 f(ξ − 1)
M000 2 log(α) −2ξ + 2iπ
M100 −2 log(α)2 − 2ζ2 4iπ log(ξ) + 12ζ2 + 4iπ log(2)
M011 −2

3
log(α)3 − 2ζ2 log(α)− 2ζ3 4ξ(−iπ log(ξ)− 3ζ2 + iπ − 4π log(2))

M200
8
3

log(α)3 + 8ζ2 log(α)− 4ζ3 8iπ log2(ξ) + 16 log(ξ)(4ζ2 + iπ log(2))

+48ζ2 log(2)− 4iπ3

3
+ 8iπ log2(2)

w
(3),3
1 0 −1

2
iπ log2(ξ) + log(ξ)(iπ log(2)− 3ζ2)

+3ζ2 log(2) + iπ3

12
− 1

2
iπ log2(2)

Table 3.5: Transcendental functions in Table 3.4 expanded in the α→ 0 limit
and α → −1. For the latter, they are given up to the order required such that
when combined with corresponding rational factors in Table 3.4 they can be
expanded up to 1

α+1
= 1

ξ
.

actual result in α→ 1. The result, written in terms of the basis, is [79]

Γ(2)
cusp(α) = Ci

[
CA

(
−2M000(α)2 − 16ζ2 +

196

9

)
− 4CAM011(α)r(α)2 − 80nfTf

9

r(α)

(
CA

(
−8ζ2M000(α)− 1

3
M000(α)3 +

134M000(α)

9
− 4M100(α)

)
− 40

9
nfTfM000(α)

)]
. (3.42)

The explicit functions M000 and M100 are given in eqs. (2.73) and (2.74)

respectively. The expression for M011 can be found in eqs. (A.4) of ref. [65].

Comparing eq. (3.42) to the ansatz we find we need to go to (α − 1)8 term in

order to fit the remaining seven terms.

Some simplifications to the ansatz in Table 3.4 can be explored. One could be

removing explicit appearances of log(2) in functions. This would remove six

functions so that we would only have 18 functions in an ansatz. However doing

this, we find we still need to go to (α− 1)8 to fit all the coefficients.

3.3.4 Three loops and beyond

At three loops there are 137 functions in a general ansatz for the cusp. This is

comprised of the (M + ζ) basis in Table 3.2 and the new functions with letter y

in Appendix B. We only allow the possibility of log(2) to appear in products with

the new functions. It is clear that this ansatz is large. To explore the practicalities

of a potential bootstrap we instead only include functions that comprise the Ai

and Bi in eqs. (3.5), (3.6), (3.8), (3.13) to (3.15) and (3.32a). After applying the
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constraints from the α → −1 and α → 0 limits we find that we need to go to

O ((1− α)20) to fit the remaining terms.

Trying to fit the general ansatz, would require even higher orders. At four loops

the ansatz would be greater and the required orders higher still. Of course, at four

loops, this expansion is unknown and would need input from the actual integrals

expanded in (1 − α). This does not seem currently achievable as the authors of

ref. [33] were able to calculate certain colour terms in the expansion of four loop

integrals only to ∼ O ((1− α)6). Although for some colour terms the weight will

be less than seven and the size of an ansatz would be comparable to three loops.

A greater understanding of the potential rational terms by maximal cuts would

be one avenue to explore to limit the growth of the size of the ansatz when the

loop order is increased. It will then control the required maximum term in the

series expansion of the integrals around α = 1.

3.4 Fitting the [1, 1, 2, 1]-web

β4 β1

β2β3

(a) A

β4 β1

β2β3

(b) B

Figure 3.2: Diagrams contributing to the [1, 1, 2, 1]-web

In this section we use what we have learned about the new functions to construct

an ansatz for the three-loop [1, 1, 2, 1]-web. We then constrain the ansatz using

known lightlike and collinear limits and fit remaining parameters numerically. A

first attempt at this exercise was performed in [128], fitting solely to the MGEW

basis functions Mklm. A subsequent fit was performed in [116] adding ζn values

to the basis and using known constraints on the lightlike [78] and collinear limits

[116] of the web.
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We will produce an ansatz for the subtracted [1, 1, 2, 1]-web, which is given by

w̄
(3,−1)
1112 = w

(3,−1)
1112 −

1

2

[
w

(0)
3gv, w

(1,−1)
]

+
1

2

[
w

(−1)
3gv , w

(1,0)
]

(3.43)

where w
(−1)
3gv is given in eq. (2.98b) and w(1,−1) and w(1,0) are given in eqs. (2.51a)

and (2.51b). The functions w
(3,−1)
1121 and w

(0)
3gv are unknowns. Extracting the

common colour term −fadef bceTa
1T

b
2T

c
3T

d
4 from each term in eq. (3.43) we can

write the kinematic part of the subtracted web as

F̄ (−1)
1121 =

1

2

(
−F (−1)

1121,A + F (−1)
1121,B

)
− 1

2
F (0)

3gvF (1,−1) +
1

2
F (1,0)F (−1)

3gv (3.44)

where F1121,A and F1121,B are the constituent diagrams to the [1, 1, 2, 1]-web shown

in Figure 3.2. It was shown in [128] that by integrating out the one-loop gluon

exchange connecting β1 and β4 the subtracted web can be written as follows,

F̄ (−1)
1121 =

1

3
r(α14)

[
t1(α23, α24, α34)M000(α14)−2t0(α23, α24, α34)M100(α14)

]
(3.45)

where t0 is the kinematic function of w
(−1)
3gv in eq. (2.98b),

t0(α23, α24, α34) = −2
∑

(i,j,k)∈{2,3,4}

εijkr(αij) log(αij) log2(αik). (3.46)

We will construct an ansatz for the unknown function t1. We will assume that

the dependence of t1 on the different variables factorises. These functions were

the ones considered in Section 3.2. Along with the generic inversion (α→ 1
α

) and

analytic (α→ −α) properties, t1 also satisfies antisymmetry in β2 ↔ β3 from the

three-gluon vertex. From which we have

t1(α23, α24, α34) = −t1(α23, α34, α24). (3.47)

A collinear limit of the [1, 1, 2, 1]-web is known. When 3||4 it becomes the [1, 3, 1]-

web which was computed in [116] by unitarity cut methods. To compute this

limit, we first go to the physical region with β4 incoming and the rest outgoing.

Here, instead of all the αij > 0, we have α23 > 0 with the rest negative. Then we

take the limit β4 → −β3 because β4 is incoming and β3 is outgoing. As α34 → 1,

t1 goes to

t1(α23, α24, α34)→3||4 t1(α23,−α23, 1). (3.48)

In order to connect with the previous result, we go back to the unphysical space,
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where all entries are positive. Hence we know that t1(α23, α23, 1) is the [1, 3, 1]-web

function which we quote here

tcoll
1 (α23) ≡ t1(α23, α23, 1)

= r(α23)

(
M000(α23)

(
− M011(α23)

12
− ζ3

2

)
+

1

24
M000(α23)2M100(α23)

+
1

36

(
24ζ2M000(α23) +M000(α23)3

)
− M102(α23)

8

)
+

1

12
M000(α23)M100(α23)− M011(α23)

6
+

4ζ2

3
− ζ3. (3.49)

We have written the function tcoll
1 (α23) in the (M + ζ) basis of Table 3.2. The

lightlike limit where all β2
i → 0 (αij → 0) is also known [78]. This is a

logarithmically divergent limit

lim
αij→0

t1(α23, α24, α34) ≡ tll1(α23, α24, α34) (3.50)

=
1

576

(
M000(α24)−M000(α34)

)(
4M000(α23)M000(α24)M000(α34)

− 3M000(α23)2M000(α24) +M000(α23)M000(α24)2 − 3M000(α23)2M000(α34)

+M000(α23)M000(α34)2 − 24ζ2M000(α23)−M000(α23)3

− 3M000(α24)M000(α34)2 − 3M000(α24)2M000(α34) + 24ζ2M000(α24)

+M000(α24)3 + 24ζ2M000(α34) +M000(α34)3 − 96ζ3

)
. (3.51)

It is a striking property of webs that connect the maximum number of lines at a

given order are of uniform weight, see the previous results at two loops eqs. (2.72)

and (2.98b) and other calculations [64, 65]. As the [1, 1, 2, 1]-web connects the

maximum number of lines at three loops, we shall assume that it is of uniform

weight. We first construct an ansatz built from the (M + ζ) basis and write it as

t
(M+ζ) ansatz
1 (α23, α24, α34) =

5∑
i=1

cifi(α23, α24, α34) + fCL(α23, α24, α34) (3.52)

such that each fi vanishes in both limits, with only fCL replicating the limits.

There are five remaining degrees of freedom. Explicitly the functions are

f1 = M000(α23)2(M100(α34)r(α34)−M100(α24)r(α24))

+M000(α34)2(M100(α24)r(α24)−M100(α23)r(α23))

+M000(α24)2(M100(α23)r(α23)−M100(α34)r(α34))
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f2 = M000(α23)(−6r(α23)M011(α24)− r(α23)M000(α34)M100(α34)
+M100(α23)M000(α34)r(α34) + 6r(α23)M011(α34))

+M000(α24)(M000(α23)r(α23)M100(α24)−M000(α23)M100(α23)r(α24)
+6M011(α23)r(α24)+r(α24)M000(α34)M100(α34)−M100(α24)M000(α34)r(α34)

− 6r(α24)M011(α34)) + 6M000(α34)r(α34)(M011(α24)−M011(α23))

f3 = M000(α24)2
(
r(α23)

(
M000(α23)2r(α23) + 2M100(α23)

)
− 2M100(α24)r(α24)

)
+M000(α34)2

(
−M000(α23)2r(α23)2 − 2M100(α23)r(α23) +M000(α34)2r(α34)2

+ 2M100(α34)r(α34)
)
−M000(α24)4r(α24)2

f4 = M000(α24)2
(
−M000(α23)2r(α24)2 − 2M100(α23)r(α23) + r(α24)2M000(α34)2

+ 2M100(α24)r(α24)−M000(α34)2r(α34)2
)

+M000(α34)2
(
r(α34)

(
r(α34)

(
M000(α23)2 −M000(α34)2

)
− 2M100(α34)

)
+ 2M100(α23)r(α23)

)
+M000(α24)4r(α24)2

f5 = M000(α23)r(α23)
(
12M011(α24)− r(α34)M000(α34)3 − 12M011(α34)

)
+ 12M000(α34)r(α34)(M011(α23)−M011(α24))

+M000(α24)r(α24)
(
−r(α23)M000(α23)3 − 12M011(α23) +M000(α34)3r(α34)

+ 12M011(α34)
)

+M000(α24)3r(α24)(M000(α23)r(α23)−M000(α34)r(α34))

+M000(α23)3r(α23)M000(α34)r(α34)

fCL =r(α24)

(
1

24
M000(α23)M100(α23)M000(α24)− 1

12
M000(α24)M011(α34)

− 1

12
M000(α24)M011(α24)− 1

32
5M000(α24)2M100(α24)− 1

2
ζ3M000(α24)

− M102(α24)

8

)
+ r(α34)

(
− 1

24
M000(α23)M100(α23)M000(α34) +

M102(α34)

8

+
1

12
M011(α24)M000(α34) +

1

12
M000(α34)M011(α34) +

1

2
ζ3M000(α34)

+
5

32
M000(α34)2M100(α34)

)
+ r(α23)

(
r(α24)

[
1

3
ζ2M000(α23)M000(α24)

− 1

192
M000(α23)M000(α24)M000(α34)2 +

11

576
M000(α23)3M000(α24)

+
43

576
M000(α23)M000(α24)3

]
+ r(α34)

[
1

192
M000(α23)M000(α24)2M000(α34)

− 1

3
ζ2M000(α23)M000(α34)− 11

576
M000(α23)3M000(α34)

− 43

576
M000(α23)M000(α34)3

]
+

1

96
M100(α23)M000(α24)2

+
7

48
M000(α23)M000(α24)M100(α24)− 1

96
M100(α23)M000(α34)2

− 7

48
M000(α23)M000(α34)M100(α34)

)
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+ r(α24)2

(
− 3

32
M000(α24)4 − 1

3
ζ2M000(α24)2

)
+ r(α34)2

(
1

3
ζ2M000(α34)2 +

3M000(α34)4

32

)
There have been previous, unsuccessful attempts at fitting this ansatz using solely

functions from the Mkln basis [128] or the (M + ζ) basis [116]. Here, we now

consider the extension given in Appendix B

tfull ansatz
1 = t

(M+ζ) ansatz
1 + ∆ tnew ansatz

1 . (3.53)

First we explore the combinations of any new functions not present in the (M+ζ)

basis but can appear in an ansatz for t1. We start with noting that any new

function for t1 has to be antisymmetric in β2 ↔ β3. Also, from the collinear limit

3||4 where α34 → 1 and α24 = α23 there is no letter y in the symbol in eq. (3.49).

Therefore, if we were to include a new weight four function, including any rational

factor, K4(α) in t1 then the combination we would need to have is

K4(α24)−K4(α34) ∈ ∆ tnew ansatz
1 . (3.54)

Taking α34 → 1, α24 = α23 we see K4(α23)−K4(1) would appear in the [1, 3, 1]-

web. However, as noted above no new function does appear. Thus we can exclude

any new function of weight four appearing in ∆ tnew ansatz
1 .

A weight-three new function can appear when it is multiplied by M000. For the

weight-three new function, including a potential rational factor, we introduce two

unknown functions that are either symmetric in inversion (α → 1
α

), K3S(α) or

antisymmetric K3AS(α). The antisymmetric new function K3AS(α) can appear

when multiplied by M000(α) such that the overall product is symmetric. After

applying the inversion symmetry in all variables and enforcing the antisymmetry

in β2 ↔ β3 we find that there is the potential for five independent combinations

∆ tnew ansatz
1 = c1M000(α23)r(α23)(K3S(α24)−K3S(α34))

+ c2(M000(α34)K3AS(α34)−M000(α24)K3AS(α24))

+ c3(M000(α24)r(α24)K3S(α24)−M000(α34)r(α34)K3S(α34))

+ c4(K3S(α34)M000(α24)r(α24)−M000(α34)r(α34)K3S(α24))

+ c5K3S(α23)(M000(α24)r(α24)−M000(α34)r(α34)) (3.55)

where ci are rational numbers. Now we take the collinear limit α34 → 1 and
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α24 = α23 of the above using r(α)M000(α)→ −2 as α→ 1,

∆ tnew ansatz, collinear
1 = 2(c4 + c5)K3S(α23) + c2M000(1)K3AS(1) + 2c3K3S(1)

+M000(α23)

(
r(α23)

(
(c1 + c3 + c5)K3S(α23) + (c4 − c1)K3S(1)

)
− c2K3AS(α23)

)
(3.56)

As there are no new functions beyond the (M + ζ) basis in the actual collinear

limit in eq. (3.49) all terms that depend on α23 in eq. (3.56) have to vanish. This

leads to constraints on the coefficients of the functions K3S(α23) and K3AS(α23)

c1 + c3 + c5 = 0 c2 = 0 c4 + c5 = 0. (3.57)

This leaves just ∆ tnew ansatz, collinear
1 = c3K3S(1) (2 + r(α23)M000(α23)). There are

then only two possible combinations from eq. (3.55) that are consistent with the

collinear limit

∆ tnew ansatz
1 = (3.58)

d1(M000(α24)r(α24)−M000(α34)r(α34))(K3S(α23)−K3S(α24)−K3S(α34))

+ d2

[
(M000(α34)r(α34)(K3S(α23)−K3S(α24))

+M000(α23)r(α23)(K3S(α24)−K3S(α34))

+M000(α24)r(α24)(K3S(α34)−K3S(α23))

]
. (3.59)

If the constant K3S(1) is also not present in eq. (3.49) then we should remove

the first of these combinations from an ansatz of t1. There are two weight-

three functions that involve the letter y, i.e. not present in the MGEW-basis.

They are w
(3),3
1 (α) and w

(3),4
1 (α) which are given explicitly in Appendix B.1. The

rational functions accompanying them are r(α)evens(α)odd and r(α)odds(α)odd.

As discussed below eq. (3.28) we shall not consider the function w
(3),4
1 (α). As

the [1, 1, 2, 1]-web is a three-loop integral we expect at most three powers of

the rational function r(α). One is from the one-loop already integrated out in

eq. (3.45) and another from the factors in eq. (3.58). We then deduce we only

have one new function

K3S(α) = s(α)w
(3),3
1 (α). (3.60)
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Taking the collinear limit (α→ 1) we find

lim
α→1

K3S(α) = K3S(1) = log(2)− 1

2
. (3.61)

As there is no log(2) present in tcoll
1 in eq. (3.49) we can set d1 = 0 in eq. (3.58)

∆ tnew ansatz
1 = d2

[
(M000(α34)r(α34)(K3S(α23)−K3S(α24))

+M000(α23)r(α23)(K3S(α24)−K3S(α34))

+M000(α24)r(α24)(K3S(α34)−K3S(α23))

]
.

(3.62)

This function vanishes in the lightlike limit. As such we will call this f6 and

combine it with eq. (3.52) to arrive at an ansatz for F̄ (−1)
1121 in eq. (3.45)

F̄ (−1)
1121 = r(α14)M000(α14)

6∑
i=1

cifi +
1

3
r(α14) (M000(α14)fCL − 2M100(α14)t0) .

(3.63)

We can now fit the ci based on numerical results. It is reminded that r, M000,

M100, fCL, fi and t0 are known functions and can be evaluated to arbitrary

precision. The object that is unknown is F̄ (−1)
1121 for which numerical values

are computed using pySecDec [129]. This implements the sector decomposition

algorithm [130] to expand Feynman integrals in ε. The resultant integrals are then

numerically integrated using the CUBA library where the algorithm Vegas [131]

was chosen. It is a robust integrator giving trusted error estimates.

Several checks were performed on the numerical data. First we check the

robustness of the results by changing the seed for random number generation.

From an initial grid of 276 points in the (α14, α24, α23, α34)-plane, 247 were within

in the error range of the two data sets generated by two different seeds. Of

these points, 158 had quoted errors of <5% in F̄ (−1)
1121 . Further checks on this

data were carried out. The values of F (1,−1), F (1,0) and F (−1)
3gv , were checked

against the analytical results eqs. (2.51a), (2.51b) and (2.98b) respectively. The

renormalisation condition of the cancelling of double poles eq. (1.19) was also

checked
1

2

(
−F (−2)

1121,A + F (−2)
1121,B

)
=

1

6
F (1,−1)F (−1)

3gv (3.64)

The most important check is the dependence on the regulator m. In eq. (3.44)

there is no dependence on the regulator as this is the function that will contribute
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Estimate Standard Error P-Value
c1 -966944. 196136. 2.4243002938213373× 10−6

c2 -9083.49 94130.4 0.923271
c3 1.61558× 107 4.83045 3.716807937163101× 10−6

c4 −1.53576× 107 -4.83039 3.7177658610870355× 10−6

c5 475785. 121389. 0.000141816
c6 -298514. 27636.3 7.046531400600217× 10−20

Table 3.6: The estimated value, standard error and p-value of the outcome of a
linear model fit on eq. (3.63)

to the anomalous dimension. This ensures that the correct combination of

integrals is used. At the point (α14, α24, α23, α34) = (0.1, 0.2, 0.15, 0.25), 20

random m values between 1 and 5 were used. These are plotted in Figure 3.3a,

which clearly shows that F̄ (−1)
1121 does not depend on m.

1 2 3 4 5
m

4.204

4.206

4.208

4.210

4.212

Single pole of subtracted web

(a) (b)

Figure 3.3: a) Numerical values of F̄ (−1)
1121 as m varies. These are well within

the red bands that indicate 0.1% deviation from the mean 4.2084. b) The phase

points in the (α24, α23, α34)-plane that give less than 5% error for F̄ (−1)
1121 . Reliable

data is scarce for the region 1 > α24 > 0.5, 1 > α34 > 0.5 and for extreme values.

We normalise the functions in eq. (3.63) by simply dividing by the sum of

the numerical evaluations fi(x) → fi(x)∑
j fi(xj)

. After performing the checks and

normalising we fit the ci in eq. (3.63) using the LinearModelFit function in

Mathematica. The results of this are displayed in Table 3.6. As can be seen from

Table 3.6 the standard error in ci is of the same order as the estimated value.

Realistically, the results are inconclusive.

One of the issues of the fit is that we do not have accurate numerical values in

all of the potential phase space. Figure 3.3b shows the space that is covered if

5% accuracy is sought. Improving this would improve the accuracy of the fit.
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It may well be that the [1, 1, 2, 1]-web does not evaluate to the basis functions

and we would need to relax certain conditions. These would be uniform weight

and the hypothesis that functions of different angles factorise. The first of which

would be the first to test. We assumed that the (subtracted) web evaluates to

a uniform weight function of weight five. It may not be the case and we would

need to allow, in our ansatz, for lower weight terms. The second condition is a lot

harder to implement. The study of the differential equations would be required to

see what type of extra letters appear and the maximal cuts for the corresponding

rational functions.

In this section we have constructed and constrained an ansatz for the [1, 1, 2, 1]-

web using the MGEW basis as well as the new functions constructed in

Section 3.2. We found the potential for one these new functions to appear in the

web in a particular combination. The remaining degrees of freedom were fitted

to numerical results which gave disappointing results. Either better numerical

results or an expansion of the ansatz or both will be required in future studies.

3.5 Conclusion

In this chapter we explored the function space arising in non-lightlike angle-

dependent Wilson-line correlators. The functions we focused on were ones that

factorised the dependence on multiple angles. The transcendental part of these

functions are guided by the analytical behaviour of the correlators and are HPLs,

i.e. their alphabet is {α, α ± 1}. We restricted the rational functions to be

of two known functions, r(α) and s(α). After mapping the alphabet to the

convenient {α, η, y} we found an interesting interplay between the type of rational

and symbol that can appear after analysing the α → 1
α

and α → −α behaviour

of the functions. Along with the known functions of MGEW-type in eq. (3.2)

there are new functions with the symbol letter y and are displayed up to weight

five in Appendix B.

We then looked at the potential to bootstrap the non-lightlike cusp anomalous

dimension (the two-line correlator). Using the limits of α→ −1 and the lightlike

limit to initially constrain an ansatz and then fit the rest using the finite α→ 1

series expansion of the explicit integrals themselves. At higher loop orders the

ansatz exponentially grows along with the required terms in the expansion.
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We also examined the functions that could appear in the four-line three-loop

[1, 1, 2, 1]-web. We discovered one function that has the symbol letter y that has

the potential to be present in the web. We then constrained an ansatz based

on the known lightlike and collinear limits and fitted the rest of the parameters

numerically.

To improve both of the examples we may need to extend the basis. A greater

understanding of the types of rationals that can appear would involve the

computation of maximal cuts of multi-loop multi-leg diagrams. As was seen

in the case of the two-loop three-line [3gv]-web, its maximal cut in eq. (2.87) may

involve elliptic functions.

We can also look at ways to limit the growth of the ansatz. The only condition of

the positions of letters in the symbol are that α appears in the first entry. There

are other conditions that are a possibility for the future studies. One is that since

the letter y does not appear to two loops (i.e. weight three) it can only appear

starting in the fourth entry of the symbol [120].
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Chapter 4

Lightlike Wilson lines

In this chapter we discuss and compare the factorisation properties of massless

form factors (essentially two-leg scattering amplitudes) and the large-x limit of

parton distribution functions. In the comparison we see that while the double

poles are equivalent there is a difference in the single pole behaviour. We show

that they exhibit the same hard-collinear behaviour so that this difference lies

solely in the geometry of the underlying soft function. The main question we will

answer is what is the Wilson-line correlator corresponding to feik in eq. (1.29),

defined as the difference γiG − 2Bi
δ.

4.1 Initial Observations

Let us first note that the combination in (1.29) has a direct physical interpretation

as the soft anomalous dimension associated with Drell-Yan production near

partonic threshold [2–7], namely γqG − 2Bq
δ = 1

2
ΓDY. Similarly γgG − 2Bg

δ is

associated with Higgs production through gluon-gluon fusion near threshold.

The corresponding soft function is defined at cross-section level, by replacing the

energetic partons, which move in opposite lightlike directions (before annihilating

at the hard interaction vertex), by Wilson lines that follow the same trajectory,

in both the amplitude and its complex conjugate, see eq. (1.3). The cusp where

the complex-conjugate amplitude Wilson lines meet is displaced by a timelike

distance with respect to the amplitude: this distance is the Fourier conjugate
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variable to the energy fraction carried by soft partons.1 Initial-state radiation,

namely the set of soft particles connecting the amplitude side to the complex-

conjugate amplitude side, are described by cut propagators. This soft function

admits an evolution equation governed by γcusp and ΓDY (see e.g. eq. (9) in

ref. [4], or eqs. (43-44) in ref. [7]). The latter was computed through three loops

directly based on the aforementioned Wilson-line definition [21, 136], and the

results agree with the combination of anomalous dimensions in (1.29), which were

extracted from independent QCD computations of the form factor [84,85,137] and

DGLAP splitting functions [138–145]. Thus, from this perspective, this physical

quantity is well understood, and its Casimir-scaling property simply follows from

the above-mentioned Wilson-line definition.

Our own investigation starts with the simple observation that the two-loop result

for γG− 2Bδ in (1.30) also agrees, up to an overall factor of 4, with the result for

the parallelogram Wilson loop made of four lightlike segments (see Figure 4.1c),

which was computed in 1992 by Korchemsky and Korchemskaya [146]. It is a

highly appealing proposition that2

feik ≡ γG − 2Bδ =
Γ2

4
, (4.1)

holds to all orders3. The parallelogram Wilson loop, is a very simple object: being

compact it has no infrared divergences, so the singularities arise here from short

distances, and the calculation can be done directly in dimensional regularisation.

Importantly, in contrast to the Drell-Yan soft function described above, real

corrections and cut propagators do not arise here. The natural questions to ask

then are first, does the relation in (4.1) indeed hold to all orders, and second, can

we see how a parallelogram Wilson loop arises from the definitions of the objects

on the left-hand side of eq. (4.1), the form factor and the PDF. Establishing this

relation is one of the main goals of this chapter.

The amplitude factorisation in eq. (1.20) gives rise to a different Wilson-line

configuration, S2, which is a couple of semi-infinite lightlike Wilson lines (with

different 4-velocities) meeting at the hard-interaction vertex, see Figure 4.1a. We

1An additional displacement of the two cusps in transverse space can be used to resum
transverse-momentum logarithms [132]. The corresponding anomalous dimensions can be
related to the DY soft function via a conformal transformation [77,133–135].

2Note that we systematically omit the superscript q/g in (4.1) and below, and specify the
representation only when needed.

3While the two-loop result for Γ2 has been known for a while, we are not aware that the
proposition (4.1) was made before. Unfortunately, there is no direct three-loop computation of
Γ2 available at this point.
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(a) ∧ geometry (b) u geometry (c) 2 geometry

Figure 4.1: Contours of lightlike Wilson loops that contain semi-infinite Wilson
lines, which arise in the factorisation of the form factor (a) and the parton
distribution function (b). Contour (c), the parallelogram, which consists of
four finite lightlike segments, gives rise to the anomalous dimension on the right-
hand-side of eq. (4.1).

shall refer to this contour as the ∧ geometry. We emphasise that in contrast

with the Drell-Yan soft function described above, where the cross section was

considered [21, 136], here the Wilson-line configuration is defined at amplitude

level. At a difference with the parallelogram of [146], the ∧ geometry is non-

compact, and thus gives rise to infrared divergences, in addition to ultraviolet

ones, much like the non-lightlike soft function in Section 1.1. We shall return

to the ∧ geometry and its properties below. At this point it suffices to say

that considering the infrared factorisation of the form factor, the origin of the

relation between γG− 2Bδ and the parallelogram geometry remains obscure: the

∧ geometry has no finite segments while the parallelogram consists exclusively of

such.

An important step in explaining the eikonal nature of feik in (1.29), based on the

infrared factorisation properties of the form factor and the PDF, was taken in 2008

in a paper by Dixon, Magnea and Sterman [147]. The fundamental explanation

is that spin-dependent hard-collinear contributions are common to both γG and

2Bδ and drop in the difference, leaving behind a purely eikonal component. This

is the premise we shall follow. However, ref. [147] relied on the assumption that

Bδ, as the coefficient of δ(1 − x), is a purely virtual quantity and hence the

factorisation of the PDF could be done at “amplitude level”. According to the

factorisation outlined in [147] the eikonal component of Bδ should correspond to

Wilson lines with a ∧−geometry, much like the form factor. Taking this at face

value, if the eikonal components of γG and Bδ on the right-hand side of (4.1)

indeed both correspond to the ∧−geometry, one concludes that the ∧ and the

2 anomalous dimensions must be proportional to each other, at least through

two loops, or, put differently, one may deduce the anomalous dimension of the
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∧−geometry from (1.30).

The first direct two-loop computation of ∧−geometry Wilson loop was performed

only in 2015, by Erdogan and Sterman [148]. This calculation is an important

step forward also in the sense that it presents a new method for dealing directly

with (semi)-infinite lightlike Wilson lines in configuration space (which a priori

lead to scaleless integrals) without resorting to an extra regulator. This is

done by cleverly using the exponentiation properties and isolating a well-defined

integrand, before renormalising ultraviolet divergences by means of a suitable

cutoff. We shall adopt and generalise this method in Section 4.4 below. The result

of ref. [148] is that the anomalous dimension corresponding to the ∧−geometry

Wilson loop is given by

Γ∧ =
(αs
π

)2

Ci

[
CA

(
101

54
− 11

24
ζ2 −

1

4
ζ3

)
+

(
−14

27
+

1

6
ζ2

)
Tfnf

]
+O(α3

s),

(4.2)

where Ci = CF for Wilson lines in the fundamental representation and CA for the

adjoint. As with feik and Γ∧ above, we omit the superscript q/g for Γ∧ wherever

it is not necessary. While the result in (4.2) bears a striking resemblance to feik

in (1.30), it is evidently not identical; the coefficient of the ζ3 term is entirely

different. The authors of ref. [148] further provided a detailed diagrammatic

analysis, comparing their calculation to that of the parallelogram in ref. [146],

and explaining the origin of the difference in the coefficient of ζ3 as emanating

from endpoint contributions that are present in finite lightlike segments, but are

absent in infinite ones. This conclusion can be confirmed by a momentum-space

computation.

It is useful to bear in mind that infinite and semi-infinite Wilson-line config-

urations (but not finite ones!) are of direct relevance to partonic scattering

amplitudes in the high-energy limit (the Regge limit) [12–15]. Also, the

explicit two-loop combination in (4.2) appeared in the literature in that context

long before the computation of the ∧ configuration in ref. [148]. Specifically,

considering gg → gg, qq → qq or qg → qg scattering in the limit where the

centre-of-mass energy is much larger than the momentum transfer, s � −t,
the leading and next-to-leading logarithms in s/(−t) in the (real part of the)

amplitude exponentiate according to a simple replacement of the t-channel gluon

propagator (dubbed gluon Reggeisation):

1

t
→ 1

t

(
s

−t

)α(t,ε)

, (4.3)
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where α(t, ε) is the gluon Regge trajectory4 [150–154] given by:

α(t, ε) =
αs
π

γ
g (1)
cusp

2ε
+
(αs
π

)2 1

4

(
−CAb̂0

ε2
+
γ
g (2)
cusp

ε
+ 2Γ

g (2)
∧ + CAb̂0ζ2

)
+O(α3

s) (4.4)

where αs = αs(−t, ε), with ε = (4−d)/2 the dimensional regularisation parameter,

b̂0 is the one-loop QCD beta function of (4.7a), γ
g (n)
cusp are the coefficient of the

cusp anomalous dimension of eq. (3.35) for the gluon, and Γ
g (2)
∧ is the two-

loop coefficient in eq. (4.2), again with Ci = CA. We further recall that the

overall similarity between the parallelogram Wilson loop in [146] and the gluon

Regge trajectory in (4.4), as well as the peculiar difference between them in the

coefficient of ζ3, were already observed early on, in ref. [155], where an evolution

equation for the Regge trajectory was derived, considering the forward limit of

crossed Wilson lines. However, this raises no difficulty: as stressed above, it is the

infinite Wilson-line geometry which is expected to be relevant for the factorisation

of partonic scattering amplitudes, not the parallelogram.

A real puzzle arises, however, upon considering the explicit result for the

∧−geometry anomalous dimension in eq. (4.2) in view of eq. (1.30), if the

conclusion of ref. [147] is taken at face value. Given that the factorisation of the

form factor is well understood, and the eikonal component of γG is determined

by the ∧−geometry, we are compelled to revisit the assumption of ref. [147] that

Bδ is a purely virtual quantity, systematically establish the infrared factorisation

of the PDFs at large x, and identify the eikonal component of Bδ, which clearly

must not be proportional to Γ∧.

We now review the factorisation properties of the form factor and parton

distribution function separately.

4.2 Infrared Factorisation of the On-shell Form

Factor

Let us first specialise the generic factorisation of massless scattering amplitudes

in eq. (1.20) to the case of the QCD colour-singlet on-shell form factor of coloured

massless particles (quarks or gluons). Historically this was known before that of

4See also a more recent observation in ref. [149] that the two-loop coefficient Γ
g (2)
∧ occurs

also in the QCD impact factor.
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the generic case [16, 17, 80, 85, 147, 156]. We label the external momenta by p1

(incoming) and p2 (outgoing) with the momentum transfer Q2 ≡ −(p1−p2)2, and,

as usual, we renormalise all ultraviolet singularities in the MS scheme, denoting

the renormalisation scale by µ2.

The quark form factor is defined in terms of the electromagnetic vector current,

proportional to ψ̄γµψ, which does not renormalise. The gluon form factor in

turn is defined using an effective local interaction vertex with the Higgs field,

HGa
µνG

µνa, and it does renormalise, proportionally to the QCD beta function [84].

The distinct ultraviolet properties of the quark and gluon form factors will be of

little relevance for us: we focus instead on the infrared singularities of the form

factor, which have a rather similar structure for massless quarks and gluons.

For large Q2 the form factor F (Q2/µ2, αs(µ
2), ε) features large logarithms in

the ratio Q2/µ2, and fixed-order perturbation theory breaks down. These

large logarithms can be resummed using a renormalisation-group equation (see

e.g. [156]), giving the following all-order formula for the form factor,

F
(
1, αs(Q

2), ε
)

= exp

[
1

2

∫ Q2

0

dλ2

λ2

(
G(1, αs(λ

2, ε), ε)− γcusp(αs(λ
2, ε)) log

Q2

λ2

)]
,

(4.5)

where we set the renormalisation scale µ2 = Q2 for simplicity. Note that we have

absorbed into the function G any operator renormalisation terms — see [84, 85]

for more details. Infrared singularities are generated in eq. (4.5) through an

integration, from λ2 = 0, over the d = 4 − 2ε dimensional running coupling

αs(µ
2, ε), which obeys

d

d lnµ2

(
αs(µ

2, ε)

π

)
= −ε

(
αs(µ

2, ε)

π

)
−
∞∑
n=0

b̂n

(
αs(µ

2, ε)

π

)n+2

. (4.6)

We report the coefficients b̂0, b̂1 and b̂2 of the QCD beta function respectively at

one [157–160], two [161–164] and three loops [165,166], because we will use them

in the rest of this chapter

b̂0 =
11

12
CA −

1

3
Tfnf , (4.7a)

b̂1 =
17

24
C2
A −

5

12
CATfnf −

1

4
CFTfnf , (4.7b)

b̂2 =
2857

3456
C3
A −

1415

1728
C2
ATfnf −

205

576
CACFTfnf +

1

32
C2
FTfnf (4.7c)

+
11

144
CFT

2
f n

2
f +

79

864
CAT

2
f n

2
f .
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Equation (4.5) applies for both quarks and gluons, but with distinct functions

γcusp(αs) and G(Q2/µ2, αs, ε), which do depend on the type of particles (although

this is suppressed in our notation). The former, which captures all double poles,

depends solely on the colour representation of the particles (fundamental and

adjoint for quarks and gluons, respectively) while the latter, which controls single

poles, depends also on their spin. This distinction will be crucial in what follows

and it is a direct consequence of the fact that γcusp is an eikonal quantity, namely

one that can be defined exclusively in terms of Wilson lines, while G(Q2/µ2, αs, ε)

instead, contains hard-collinear effects, which cannot fully be described by Wilson

lines. Through three loops, the cusp anomalous dimension, much like other

quantities that are defined exclusively in terms of Wilson lines, depends on the

colour representation proportionally to the quadratic Casimir Ci, as in (3.35),

adhering to the so-called Casimir scaling property. Starting at four loops quartic

Casimirs, d
(4)
ij ≡ dabcdi dabcdj , appear as well, making the dependence of the colour

representation more involved. Differently from γcusp, the functionG(1, αs(λ
2, ε), ε)

has an expansion both in αs and ε, as follows

G
(
1, αs

(
λ2, ε

)
, ε
)

=
∞∑
l=1

∞∑
n=0

G(l, n)

(
αs (λ2, ε)

π

)l
εn, (4.8)

therefore it generates both infrared poles and non-negative powers of ε upon

integrating over the scale λ2 of the running coupling as in eq. (4.5). We isolate the

divergent contribution order-by-order in αs, by defining the anomalous dimension

γG such that∫ µ2

0

dλ2

λ2
G(1, αs(λ

2, ε), ε) =

∫ µ2

0

dλ2

λ2

[
γG
(
αs
(
λ2, ε

))]
+O

(
ε0
)
, (4.9)

where γG depends on ε only through the coupling. Once γG is defined, using

eq. (4.5) the expression for the infrared poles Γll
2 in eq. (1.25) can be derived. The

coefficients γG for the quark and for the gluon are well known in the literature;

they are referred to sometimes as “collinear anomalous dimensions” and were

denoted by G̃ in [167], by G0 in [42] and by γq and γg in appendix I of [18]. The

latter has a conventional factor of −2. In practice, we derive here γG to four loops

by substituting the d−dimensional running coupling of eq. (4.6) into eq. (4.9) and
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then identifying the singularities arising on the two sides of equation (4.9), getting

γG =
αs
π
G(1, 0) +

(αs
π

)2 [
G(2, 0)− b̂0G(1, 1)

]
+
(αs
π

)3 [
G(3, 0)− b̂0G(2, 1)− b̂1G(1, 1) + b̂2

0G(1, 2)
]

+
(αs
π

)4 [
G(4, 0)− b̂0G(3, 1)− b̂1G(2, 1)− b̂2G(1, 1) + b̂2

0G(2, 2)

+ 2b̂0b̂1G(1, 2)− b̂3
0G(1, 3)

]
+O

(
α5
s

)
,

(4.10)

where G(l, n) are defined in eq. (4.8) and their values can be extracted from

refs. [84, 85, 137] where the form factors have been computed to three loops. For

the purpose of this thesis we only need explicit results for the collinear anomalous

dimensions through two loops, which read

γqG =
(αs
π

) 3CF
2

+
(αs
π

)2
{
CACF

(
11

8
ζ2 −

13

4
ζ3 +

961

432

)
+ C2

F

(
−3

2
ζ2 + 3ζ3 +

3

16

)
− CFTfnf

(
ζ2

2
+

65

108

)}
+O(α3

s)

γgG =
(αs
π

)
2b̂0 +

(αs
π

)2
{
C2
A

(
−11ζ2

24
− ζ3

4
+

173

54

)
+ CATfnf

(
ζ2

6
− 32

27

)
− CFTfnf

2

}
+O(α3

s) ,

(4.11)

where we added superscripts i = q, g to distinguish between quarks and gluons.

4.2.1 Infrared factorisation

We specialise the general factorisation of massless scattering amplitudes in

eq. (1.20) to that of the form factor

F
(
1, αs(Q

2), ε
)

=H

(
Q2

µ2
,
(2pi · ni)2

n2
iµ

2
, αs(µ

2)

) 2∏
i=1

Ji

(
(2pi · ni)2

n2
iµ

2
, αs(µ

2), ε

)

×

 S (β1 · β2, αs(µ
2), ε)∏2

k=1 Ji
(

2(βi·ni)2
n2
i

, αs(µ2), ε
)
 .

(4.12)

The operator definitions for Ji and Ji are given in eqs. (1.22) and (1.23)

respectively and ni is an auxiliary non-lightlike vector and the dependence on
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its choice must cancel in eq. (4.12). The soft function is the two-leg specialisation

of eq. (1.5) which for this chapter we simply name S,

S
(
β1 · β2, αs(µ

2), ε
)

= 〈0|T
[
Wβ1(∞, 0)Wβ2(0,∞)

]
|0〉 , (4.13)

and βi in this context are lightlike lines β2
i = 0. The contour defining S is shown

in Figure 4.1a. As mentioned in the context of the cusp anomalous dimension,

one of the properties of eikonal quantities is that they admit Casimir scaling

up to three loops; this is a consequence of non-Abelian exponentiation. Beyond

three loops there are quartic (and eventually higher order) Casimir contributions,

but given that the same Wilson-line diagrams contribute for quarks and gluons,

differing just by the representations of the Wilson lines, one expects a relation

between these quantities. Indeed, a conjectural relation was proposed in [30]

based on partial four-loop computations; we shall return to this in Section 4.5.2

below.

The individual eikonal functions in eqs. (1.23) and (4.13) are heavily constrained

by kinematic considerations, such as the dependence on the auxiliary vectors ni,

and by renormalisation group evolution. These constraints can be solved to give

explicit formulae [72,73],

Ji = exp

{
− 1

4

∫ µ2

0

dλ2

λ2

(
ΓJ
(
αs(λ

2, ε)
)

+ γcusp(αs(λ
2, ε)) log

2(βi · ni)2µ2

n2
iλ

2

)}
,

(4.14)

S = exp

{
− 1

2

∫ µ2

0

dλ2

λ2

(
Γ∧(α(λ2, ε)) + γcusp(αs(λ

2, ε)) log

(
β1 · β2µ

2

λ2

))}
,

(4.15)

where ΓJ and Γ∧ are constants to be determined by direct calculation. Note that

Γ∧ was denoted in the literature [147,148] as −Geik. As in eq. (4.5), the infrared

singularities of Ji and S are generated by integrating over the d dimensional

running coupling αs(λ
2, ε) from λ2 = 0. We notice that the soft function and the

product of the eikonal jets share the same dependence on γcusp lnµ2/λ2, which is

associated with the overlapping soft-collinear singularities of these two quantities.

This fact ensures that the ratio S
J1J2 is free of overlapping divergences and depends

only on the logarithm of the kinematic variable

κ =
(β1 · β2)2 n2

1n
2
2

4(β1 · n1)2(β2 · n2)2
, (4.16)
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which is insensitive to the normalisation of the vectors βi in the definition

eq. (1.21). Using the factorisation equation eq. (4.12), we determine the partonic

jet function by dividing the form factor in eq. (4.5) by the ratio S
J1J2 , yielding

Ji = exp

{
hJ +

1

2

∫ p2n

µ2

dλ2

λ2
γi(αs(λ

2)) +
1

4

∫ p2n

0

dλ2

λ2

(
− γcusp(αs(λ

2, ε)) log

(
p2
n

λ2

)
+ Γ∧(αs(λ

2, ε))− ΓJ (αs(λ
2, ε)) +G(1, αs(λ

2, ε), ε)

)}
, (4.17)

where we introduced the variable p2
n = (2p·n)2

n2 . The function hJ ≡ hJ(αs(p
2
n)) is

a matching coefficient that captures the finite parts of the jet function and γi,

with i = q for the quark and i = g for the gluon, is the anomalous dimension

of the field i in axial gauge. The latter is only concerned with the ultraviolet

behaviour of the jet function and indeed it is not associated with any IR pole,

because the contribution from the IR region λ2 ' 0 is absent in the second term

of eq. (4.17). All the IR poles of the form factor are generated by the second

integral in the equation above, involving the anomalous dimensions γcusp, Γ∧, ΓJ

and the resummation function G(1, αs, ε). The dependence on γcusp is such that

the combination with S
J1J2 reconstructs the kinematic dependence of the form

factor eq. (4.5) through

2 log

(
Q2

λ2

)
= log(κ) + log

(
p2
n1

λ2

)
+ log

(
p2
n2

λ2

)
. (4.18)

4.2.2 Isolating hard-collinear singularities

The contribution of ΓJ in eq. (4.17) is associated to the soft singularities of Ji,

which cancel in the ratio of Ji and Ji eq. (4.12). It is therefore convenient to

focus on the poles of pure hard-collinear origin, defined as

Ji/J ≡
Ji|pole

Ji
, (4.19)

where Ji|pole means only the poles of the jet function. We extract the function

Ji/J for i = q and i = g from the form factor of the quark and of the gluon,

respectively, thus providing the process-independent components containing the

purely collinear singularities associated with massless external partons. In order

to determine Ji/J , we isolate the pole part of the jet function Ji, by replacing in

eq. (4.17) the function G(1, αs, ε) with γG, according to the definition in eq. (4.9),
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and we get the ratio

log

(
Ji|pole

Ji

)
=

1

4

∫ µ2

0

dλ2

λ2

(
γG(αs(λ

2, ε)) + Γ∧(αs
(
λ2, ε

)
)− γcusp log

(
2(pi · ni)2

(βi · ni)2µ2

))
≡1

2

∫ µ2

0

dλ2

λ2

[
γJ/J (αs(λ

2, ε))− γcusp(αs(λ
2, ε))

2
log

(
2(pi · ni)2

(βi · ni)2µ2

)]
, (4.20)

where on the last line we have defined the anomalous dimension γJ/J

2γJ/J = γG + Γ∧. (4.21)

As mentioned above, the collinear anomalous dimension γG is known to three

loops [84, 85, 137] for both quarks and gluons, and we quoted the corresponding

expressions through two loops in eq. (4.11). The anomalous dimension Γ∧, in

turn, is derived from the renormalisation of the soft function S, that can be read

off eq. (4.15)

µ
d

dµ
logS = −

∫ µ2

0

dλ2

λ2
γcusp

(
αs(λ

2)
)
−
[
Γ∧
(
αs(µ

2)
)

+ γcusp(αs(µ
2)) log(β1 · β2)

]
.

(4.22)

The equation above clarifies the meaning of the subscript ∧, which symbolises

the contour of the lightlike Wilson loop in the definition of the soft function in

eq. (4.13) that defines Γ∧. This notation will be used throughout this chapter

and it will be generalised for different contours. Γ∧ is known to two loops [148]

by direct computation of the equation above

Γ∧ =
(αs
π

)2 Ci
4

(
−2b̂0ζ2 −

56

27
Tfnf + CA

[
202

27
− ζ3

])
+O(α3

s), (4.23)

where Ci is the quadratic Casimir dependent on the representation of the Wilson

lines in eq. (4.13). Using the results in eqs. (4.11) and (4.23) we determine γJ/J

to two loops. First for quarks we have

γqJ/J =
(αs
π

) 3CF
4

+
(αs
π

)2
{
CACF

(
11ζ2

24
− 7ζ3

4
+

1769

864

)
+ C2

F

(
−3ζ2

4
+

3ζ3

2
+

3

32

)
− CFTfnf

(
ζ2

6
+

121

216

)}
+O(α3

s). (4.24)
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Then for gluons,

γgJ/J =
(αs
π

)
b̂0 +

(αs
π

)2
{
C2
A

(
−11ζ2

24
− ζ3

4
+

137

54

)
+ CATfnf

(
ζ2

6
− 23

27

)
− CFTfnf

4

}
+O(α3

s). (4.25)

We have thus isolated the hard-collinear singularities of the form factor and

found the quantity γJ/J that governs this behaviour for quark and for gluons

according to eq. (4.20). We emphasises that in contrast to the conventional

collinear anomalous dimension γG given in eq. (4.11), which is specific to the

form factor (recall eqs. (4.9) and (4.5)), the hard-collinear anomalous dimension

γJ/J defined here is process independent. This universality will now be put to

use. In the next section we will consider the factorisation of parton distribution

functions (PDFs) at large x where we will use the above two-loop results for γqJ/J
and γgJ/J given in eqs. (4.24) and (4.25) respectively, and ultimately identify the

eikonal anomalous dimension relevant to the PDF evolution.

4.3 Parton Distribution Functions at Large x

Parton distribution functions, fAB(x), describe the probability of finding parton

A with momentum fraction x inside hadron (or parton) B. We will be interested

here in PDF evolution, which is the same for the partonic and for the hadronic

quantities, and will therefore consider partonic PDFs. PDFs are inherently

defined at cross-section level with the need to combine real and virtual radiation

to cancel soft singularities such that only pure collinear singularities associated

with the massless initial-state parton are kept. We will see that in the elastic

limit, x → 1, the contributions from different regions factorise and claim that

the hard-collinear behaviour of the initial-state partons is described by γJ/J , the

same anomalous dimension we identified in the factorisation of the form factor.
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4.3.1 Definition

The light-cone PDF for a quark (gluon) in a parton P of momentum p with

longitudinal momentum fraction x is given by [168]

fbare
qP (x, ε) =

1

2

∫
dy

2π
e−iyxp·u 〈P |ψ̄q(yu)γ · uWu(y, 0)ψq(0)|P 〉 (4.26)

fbare
gP (x, ε) =

1

xp · u

∫
dy

2π
e−iyxp·u 〈P |Gµ+(yu)Wu(y, 0)G+µ(0)|P 〉 . (4.27)

The Wilson-line operator Wu is defined in eq. (1.6) and |P 〉 is either an on-

shell quark or gluon, P = q, g. We take the lightlike momentum p to be in the

(+) direction and then the velocity four-vector u is in the (−) direction. It is

worthwhile noting here that the bare PDFs fbare
j′j (x, ε) are scaleless. This will

be used later in the context of factorisation. They are renormalised through a

convolution,

fjk(x, µ) =
∑
j′

∫ 1

x

dz

z
Zjj′(z, αs, ε)f

bare
j′k (x/z, ε), (4.28)

where Zjj′ is a renormalisation factor, removing the UV divergences from the

bare PDF in the MS scheme and fjk is the renormalised PDF. From Zjj′(x, αs, ε)

we can get the splitting functions,

d

d log µ
Zjk(x, αs, ε) = 2

∑
j′

∫ 1

x

dz

z
Pjj′(z, αs)Zj′k(x/z, αs, ε). (4.29)

The RG evolution of the PDFs is governed by the DGLAP equations [81–83]:

d

d log µ
fjk (x, µ) = 2

∑
j′

∫ 1

x

dz

z
Pjj′(z, αs)fj′k(x/z, µ). (4.30)

The DGLAP splitting kernels Pjk are known to three loops [19,83,138–145,169–

172] with some recent results at four loops [26,28,30].

84



+ Disc=

p+w

p+(1− x− w) p+(1− x)

Figure 4.2: The vertex correction for the one-loop quark PDF. The left-hand
side is the standard sum over cuts equating to the discontinuity of the amplitude.
The double line is the Wilson line while the solid black line is a quark.

4.3.2 Perturbative calculation at large x

In the limit x → 1 the diagonal terms in the splitting functions, Pqq and Pgg,

feature divergent contributions [86,173–175], namely

Pii =
γcusp

(1− x)+

+B
(i)
δ δ(1− x) + O (log(1− x)) , (4.31)

where the label i = q, g indicates quarks and gluons, respectively, and the plus

distribution is defined as usual, see e.g. [83].

The splitting functions are determined from the UV singularities of the PDFs

defined in eqs. (4.26) and (4.27), which can be computed perturbatively. We can

relate these definitions to time-ordered products by the discontinuity in x,

fbare
qq (x, ε) = Discx

1

2

∫
dy

2π
e−iyxp·u 〈p|T

[
ψ̄q(yu)γ · uWu(y, 0)ψq(0)

]
|p〉 . (4.32)

This relation, which is illustrated diagrammatically in Figure 4.2, can be derived

as follows. One first splits the Wilson line in eq. (4.26) into two Wilson lines that

extend to infinity, Wu(y,∞)Wu(∞, 0), one then inserts a complete set of states

between them and finally identifies the result as the discontinuity of the time-

ordered product. This relies on the fact that the condition x ≤ 1 selects the cuts

with positive energy [17,176]. One can think that the coefficient Bδ in eq. (4.31)

is entirely determined by the contribution of the virtual diagrams, such as the

second term in the left-handside in Figure 4.2, however the explicit calculation

will lead to a different conclusion.

At one loop, the relevant diagram is shown in the right-hand side of Figure 4.2,

which in Feynman gauge reads

ffig.1
qq = Disc

g2
s

π
CF

∫
ddq

(2π)d
p+(p+ − q+)

(q2) ((p− q)2) ((p−k) · u) ((p−k−q) · u) (4.33)
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where we used p and k respectively to denote the incoming and outgoing quark

momenta, and q the gluon momentum. For brevity, we also drop the superscript

bare and the +i0 prescription on each propagator. It is straightforward to

compute the integral over q− by complex analysis. This places a bound on q+ i.e.

p+ > q+ > 0. The qT integral is scaleless but as we are interested only in the UV

divergence it is simply a matter of replacing,∫
dd−2qT
(2π)d−2

1

q2
T

→ eεγE

(4π)1−ε
1

ε
. (4.34)

We then scale out p+ by defining q+ = p+w to produce an elegant integral

representation,

ffig.1
qq = Disc

iαs
π
CF

1

4π

1

ε

∫ 1

0

dw
1− w

(1− x+ i0)(1− x− w + i0)
, (4.35)

where we have absorbed the (eγE4π)ε factors in the MS coupling and reinstated

the +i0 prescription. The representation in eq. (4.35) has the advantage of

compactly displaying the sum over cuts: individual cuts can be isolated by

computing the residues corresponding to each of the propagator poles. Using

partial fractioning,

1

1− x+ i0

1

1− x− w + i0
=

1

w

(
1

1− x− w + i0
− 1

1− x+ i0

)
(4.36)

so the full discontinuity of the integrand equals,

Disc
1

1− x+ i0

1

1− x− w + i0
=

1

w
(−2πi) (δ(1− x− w)− δ(1− x)) (4.37)

and we find

ffig.1
qq =

αs
2π

CF
ε

(
x

1− x − δ(1− x)

∫ 1

0

dw
1− w
w

)
. (4.38)

Here the first term is a real emission cut, while the second, a virtual correction. As

usual, the endpoint divergence in the first term is combined with the divergence

as w → 0 in the second to give,

f fig. 1
qq =

αs
4π
CF

1

ε

(
2

(1− x)+

+ 2δ(1− x)− 2

)
. (4.39)

We emphasise that it is ambiguous to determine which cuts have contributed to

the δ(1− x) term, as its coefficient is only finite after the cancellation of the soft
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divergences between the real and the virtual cuts.

We combine eq. (4.39) with the mirror diagram representing the correction of the

right vertex, which yields an identical result, and with the box-type diagram,

which does not contribute to divergent terms at large x. We complete the

calculation of the (bare) PDF by including the two diagrams featuring radiative

corrections on the external legs

f SE
qq = (Z2 − 1) δ(1− x) = − αs

4πε
CF δ(1− x), (4.40)

where we used the wavefunction renormalisation Z2 at one loop. The expression

of the UV singularities of the bare PDF at one loop reads

fbare
qq = δ(1− x) +

αs(µ
2)

4πε
CF

(
4

(1− x)+

+ 3δ(1− x) +O((1− x)0)

)
+O(α2

s).

(4.41)

Following eq. (4.28), we derive the renormalisation factor Zqq that cancels the

ultraviolet divergence in the equation above

Zqq = δ(1− x)− αs(µ
2)

4πε
CF

(
4

(1− x)+

+ 3δ(1− x) +O((1− x)0)

)
+O(α2

s).

(4.42)

Finally, we obtain the splitting function by computing the derivative with respect

to the renormalisation scale eq. (4.30), which yields the well-known result for the

qq splitting function

Pqq(x) =
αs
4π
CF

(
4

(1− x)+

+ 3δ(1− x) +O((1− x)0)

)
+O(α2

s). (4.43)

The one-loop calculation with on-shell states is straightforward but at two loops

and beyond it becomes complicated to disentangle the UV from the IR in the

transverse integrals. To regularise the IR we can take the initial states to be off-

shell p2 6= 0. The intermediate expressions become more verbose but introduce no

major conceptual issues. As the states are now unphysical the correlators become

gauge dependent. It means that the running of the gauge parameter, ξ → ZAξ has

to be taken into account in O(ε0) finite terms. A similar observation was made

in [33]. Using this method we are able to arrive at the integral representation

similar to eq. (4.35) for each two-loop diagram. For two loops it is a two parameter

integral with integrals over the plus component of the two loop momenta. As an
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Figure 4.3: The diagram f
(2),(e)
qq .

example, the diagram in Figure 4.3 can be represented as

f (2),(e)
qq = Disc

i

2π
CACF

Γ(ε)Γ(2ε)

Γ(1 + ε)

∫ 1

0

dydz y1−2ε(1− y)1−ε(1− z)−εz−ε

× 1− 2z

(1− x+ i0)(1− x− y + i0)(1− x− yz + i0)
. (4.44)

The three denominators correspond to the three Wilson-line propagators after

integration over the (−) and transverse components of the two loop momenta.

We distinguish the contribution of the real emission and the ones of the virtual

corrections by applying partial fractioning as in eq. (4.36). The discontinuity of

the first propagator in eq. (4.44) is proportional to δ(1−x) and it determines the

virtual contribution. The other two propagators in eq. (4.44) correspond to real

emissions. Each term features infrared divergences, which cancel in the sum of

all cuts. Furthermore, we notice that the real emission cuts yield UV poles that

are proportional to δ(1−x) and therefore contribute to the Pqq splitting function.

This particular calculation is detailed in Appendix C.1, where we also present the

full two-loop results for quarks and gluons, diagram by diagram.

Our final result for the splitting functions eqs. (C.19) and (C.22) reproduces

the known results [83, 138–145, 169–171]. These previous splitting function

calculations have been performed using different methods, including extracting

them from corresponding deep inelastic structure-function calculations [145], by

means of the operator product expansion [138–141, 144, 169–171], by means of

light-cone axial gauge [177,178], or by relating them to splitting amplitudes [179].

To our knowledge, our direct calculation is the first of its kind. This method

has the advantage to show that not all the diagrams contribute to the singular

behaviour of the splitting functions in eq. (4.31) and that the coefficient Bδ

includes both the virtual and the real corrections.
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4.3.3 Factorisation

As x → 1 the momentum of the final-state parton tends to the initial-state

one, meaning that the contribution from soft gluon radiation dominates. It then

implies a factorisation of the renormalised PDFs at large x, allowing us to separate

the hard-collinear divergences from the soft divergences [86,180]. In the following

we shall only consider diagonal splitting functions and since the formulae apply

to both quarks and gluons we shall drop the subscript jj on the partonic PDF

and related quantities and only specialise when needed. To factorise the PDFs

we shall transform into Mellin space,

f̃(N) =

∫ 1

0

dxxN−1f(x), (4.45)

where convolutions become products. In this space the divergent terms become,

δ(1− x)→ 1
1

(1− x)+

→ − logN − γE . (4.46)

The large-x limit corresponds to the large-N limit. The factorisation works in

much the same way as the form factor by defining two jet functions and two

corresponding eikonal jet functions along with a soft function [86,180],

f̃(N,µ) = H

(
(2p · n)2

n2µ2
, αs(µ

2)

) ∏
i=L,R

Ji

(
(2p·n)2

n2µ2
, αs(µ

2), ε
)

Ji
(

(2β·n)2

n2 , αs(µ2), ε
)

× S̃u
(
N,

β · uµ
p · u , αs(µ

2), ε

)
+O

(
logN

N

)
(4.47)

where the four-velocity β is in the p direction and L and R indicate which

side of the cut the jet functions are (see Figure 4.2). The renormalised parton

distribution functions are defined as pure counterterms in minimal subtraction

schemes, because they can only depend on the factorisation scale. Since the hard

function H and the jet functions Ji are the only functions with finite terms it

must mean that their non-divergent terms cancel such that eq. (4.47) contains
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only poles,

f̃(N,µ) =

 ∏
i=L,R

Ji

(
(2p·n)2

n2µ2
, αs(µ

2), ε
) ∣∣∣∣

pole

Ji
(

(2β·n)2

n2 , αs(µ2), ε
)
 S̃u

(
N,

β · uµ
p · u , αs(µ

2), ε

)

+O
(

logN

N

)
(4.48)

where J |pole has the same meaning as in eq. (4.19), that it is only the poles of the

jet function. As in the case of the form factor, the soft function S̃u resums the

emission of gluons with vanishing momenta in the eikonal approximation. We

shall shortly see however that while its ultraviolet behaviour is qualitatively the

same as that of the form-factor soft function in eq. (4.13), its infrared behaviour

is qualitatively different, as it presents only single poles.

The function S̃u is defined by the Mellin transform of the x−space soft function

Su

(
x,
β · uµ
p · u , αs(µ

2), ε

)
= (p · u)

∫
dy

2π
eiy(1−x) p·uWu

(
β · uyµ, αs(µ2), ε

)
,

(4.49)

where Wu is the Wilson loop with u−shaped contour, see Figure 4.1b (in ref. [86]

it is defined in the axial gauge),

Wu
(
β · u yµ, αs(µ2), ε

)
≡ 〈0|T [Wβ(+∞, y)Wu(y, 0)Wβ(0,−∞)] |0〉 . (4.50)

Note that the time-ordering operation here acts on the product of the three Wilson

lines together. The soft function can be written in this way, despite coming from

a cross-section definition because of the particular relation between path-ordering

and time-ordering [173].

The definition (4.49) determines two important properties concerning the analytic

structure of Wu, as argued in [173]. First of all, the soft function has support in

the physical region with x ≤ 1 only if the singularities of Wu are located on the

positive imaginary axis in the complex y−plane. Indeed, if this is the case, for

x > 1 we can close the integration contour in y in eq. (4.49) through the lower

half-plane getting a vanishing result. Furthermore, the reality of the soft function

implies that Wu is unchanged by the transformation y → −y followed by complex

conjugation. Both these conditions are satisfied if Wu is a holomorphic function
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in the variable

ρ(y) ≡ i(u · β y − i0) = (ρ(−y))∗ . (4.51)

In Section 4.4 we show that we can write the renormalised Wu as,

logWu = −1

2

∫ µ2

0

dλ2

λ2

{
2γcusp(αs

(
λ2, ε

)
) log

(
ρ(y)µ√

2

)
+ Γu(αs

(
λ2, ε

)
)

}
,

(4.52)

where the factor
√

2 was introduced in order to identify µ as the MS renormal-

isation scale. The quantity Γu will admit Casimir scaling to three loops and

the scaling is determined by the representation of the Wilson lines in eq. (4.50).

Following ref. [173], the soft function S̃ in the limit of large N , which is conjugate

to the behaviour of Wu at large y through the Fourier transform in eq. (4.49), is

obtained to leading power in N by replacing y → −iN in eq. (4.52), which leads

to

log S̃u = − 1

2

∫ µ2

0

dλ2

λ2

{
2γcusp(αs

(
λ2, ε

)
) log

(
Nµβ · u√

2p · u

)
+ Γu(αs

(
λ2, ε

)
)

}
+O

(
logN

N

)
(4.53)

so that S̃u admits the following evolution equation

µ
d

dµ
log S̃u = − 2γcusp

(
αs
(
µ2
))

log

(
Nµ

β · u√
2p · u

)
− Γu

(
αs
(
µ2
))

−
∫ µ2

0

dλ2

λ2
γcusp

(
αs
(
λ2, ε

))
+O

(
logN

N

)
. (4.54)

Note that the UV behaviour of S̃u is double logarithmic: the right-hand side of

eq. (4.54) is dominated by γcusp(αs(µ
2)) log µ2 and therefore it has the same UV

behaviour as the one of the form-factor soft function S in eq. (4.15). However, in

contrast with eq. (4.15), the argument of the logarithm in eq. (4.53) is independent

of λ and thus the IR behaviour in eq. (4.54) is single logarithmic. Of course, it

must be so also in view of eq. (4.48): there both the renormalised PDF on the

left-hand side and the hard-collinear factor J |pole/J feature single poles. The

distinct UV and IR behaviour in S̃u is associated to the presence of a length scale

y in the definition of the soft function eq. (4.49). The soft function of the form

factor does not involve any scale and therefore eq. (4.15) has double logarithmic

behaviour both in the UV and in the IR.
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As before with the form factor, we seek to isolate the hard-collinear and the purely

soft contributions from the Mellin transform (4.45) of the splitting functions

in eq. (4.29), P̃ (N,αs). The following argument is in the spirit of [147]. As

mentioned earlier, the bare PDFs f̃bare(N, ε) formally vanish because they are

scaleless in dimensional regularisation [181]. They feature UV divergences which

are renormalised by the splitting functions P̃ (N,αs) through Z̃(N,αs, ε), see

eq. (4.28). They are also infrared divergent because there are massless on-shell

incoming partons. The IR divergences are the same as in the renormalised PDFs

described by eq. (4.48). In perturbation theory it must mean that in f̃bare(N, ε)

the IR poles match the UV poles. In a minimal subtraction scheme the factor Z

in eq. (4.28) consists of only poles. We are then able to construct f̃bare(N, ε) in a

way that separates the UV from the IR,

f̃bare(N) = Z̃(N)−1︸ ︷︷ ︸
UV

{( ∏
i=L,R

Ji|pole

Ji

)
S̃u(N) +O

(
logN

N

)}
︸ ︷︷ ︸

IR

, (4.55)

where we have suppressed the dependence on αs, the renormalisation scale µ, the

kinematic dependence of the functions and ε. Let us now consider the logarithm

of both sides of eq. (4.55) and compute the derivative with respect to log (µ),

using the evolution equation for the ratio of jet functions in eq. (4.20). The terms

of the form ∫ µ2

0

dλ2

λ2
γcusp

(
αs
(
λ2, ε

))
, (4.56)

cancel between µ d
dµ

log S̃u and µ d
dµ

log J
J . The bare PDFs do not depend on the

renormalisation scale so by using eqs. (4.54), (4.30), and (4.20) we get,

0 = µ
d

dµ
log f̃bare(N)

= −2P̃ (N) + 2γJ/J − 2γcusp log

(√
2p · n
β · n

β · u√
2p · u

N

)
− Γu +O

(
logN

N

)
(4.57)

The kinematic dependence in the argument of the logarithm cancels upon

identifying p·n
β·n = p·u

β·u = p+

β+ . We now require the Mellin transform of eq. (4.31) at

large N [86, 173–175],

P̃ (N) = −γcusp logN +Bδ +O
(

logN

N

)
. (4.58)
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Substituting this into eq. (4.57) the dependence on γcusp drops. This shows that

the factor
√

2 present in eq. (4.52) is indeed necessary for µ to be identified as MS

scale. Comparing the non-logarithmic terms in eqs. (4.57) and (4.58) we finally

arrive at the relation,

2Bδ = 2γJ/J − Γu. (4.59)

The above equation mirrors the form factor equation for γG in eq. (4.21). In

both equations the same hard-collinear anomalous dimension γJ/J is present. We

now proceed to use its universality to extract Γu at two loops from the above

equation. As in the form factor case to specialise to quarks or gluons we simply

add a superscript i = q, g. Up to two loops the expressions for Bδ may be read

off the results in eq. (C.19) and eq. (C.22) of the calculation in the appendix, in

agreement with refs. [138–145]. They read

Bq
δ =

(
αs
π

)
3

4
CF +

(
αs
π

)2{
CACF

(
11ζ2

12
− 3ζ3

4
+

17

96

)
+ C2

F

(
−3ζ2

4
+

3ζ3

2
+

3

32

)
− CFTfnf

(
ζ2

3
+

1

24

)}
+O(α3

s),

Bg
δ =

(
αs
π

)
b̂0 +

(
αs
π

)2{
C2
A

(
3ζ3

4
+

2

3

)
− CATfnf

3
− CFTfnf

4

}
+O(α3

s).

(4.60)

Substituting these results into eq. (4.59) along with the values of γiJ/J calculated

in eq. (4.24) and eq. (4.25) we arrive at the same quantity for Γu for quarks and

gluons up to an overall Casimir scaling:

Γu =

(
αs
π

)2{
Ci
2

(
−2b̂0ζ2 −

56

27
Tfnf + CA

[
202

27
− 4ζ3

])}
+O(α3

s). (4.61)

The fact that Casimir scaling is recovered is expected of course, as this quantity

is defined by Wilson lines. Nevertheless, recovering it by subtracting non-eikonal

quantities is a non-trivial consistency check. It is worthwhile noting that only the

ζ3 term is different between Γu
2

and Γ∧ in eq. (4.23). The factor of two is present

because there are two cusp contributions for the u contour as opposed to one for

the ∧ contour. The different coefficient in front of ζ3 will be discussed further in

Section 4.5.

We have found the anomalous dimension that controls the non-collinear soft

divergences of the diagonal DGLAP kernels by separating it from the hard-

collinear behaviour that is identical to that in the form factor. We shall now
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verify the above result, eq. (4.61), by computing it directly.

4.4 Explicit Calculation of Γu

In this section we derive the integral representation (4.52) of the renormalised

Wilson loop Wu defined in eq. (4.50) and we verify the two-loop result of eq. (4.61)

for the anomalous dimension Γu with a direct calculation. This provides a

consistency check of eq. (4.59), which follows from the all-order factorisation

in eq. (4.47).

The derivation of eq. (4.52) consists of two parts: firstly we will compute the bare

diagrams and the UV counterterms related to the renormalisation of the QCD

coupling constant, then we will subtract the short-distance singularities associated

with the Wilson-line operators, thus completing the renormalisation of logWu.

The non-Abelian exponentiation theorem [59–61, 182] allows us to determine

directly logWu by computing only the webs that capture the maximally non-

Abelian colour factors of each Feynman diagram, as defined in [182]. Moreover,

logWu has a simpler singularity structure compared to Wu, which allows us to

setup the renormalisation procedure directly at the level of the webs.

We introduce the following parameterisation for the contour of the Wilson loop

Wu

0 y

β

u

β xµ(t) =


βµt t ∈ (−∞, 0)

uµt t ∈ (0, y)

yuµ + βµ(t− y) t ∈ (y,+∞)

(4.62)

We use the following Feynman rules in configuration space (c.f. the momentum

space rule in eq. (2.31)) for the gluon propagator in Feynman gauge and for the

gluon emission from the eikonal lines, respectively

=
N

[−x2 + i0]1−ε
gµν , (4.63)

x0

v

= igs Ta vµ
∫
ddz

∫ ∞
0

dλ δd(z − x0 − λv), (4.64)

where Ta is the SU(N) generator in the appropriate representation and N =

−Γ(1−ε)
4π2−ε .
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In Section 4.4.1 we consider the one-loop calculation of log (Wu) and then

establish its general form before and after renormalisation. In Section 4.4.3 we

perform the calculation at two loops, verifying the general structure and obtaining

an explicit result for Γu consistent with eq. (4.61).

4.4.1 One-loop calculation

As a direct consequence of the Feynman rules given above, all the diagrams that

feature a gluon exchange between two lines with the same lightlike velocity v are

proportional to v2 and therefore they are automatically zero. At one loop there

will be only two non-vanishing webs contributing to log (Wu)

d
(1)
A =

0 y

, d
(1)
B =

0 y

which differ only by a translation and therefore yield the same result

d(1)(αs, β · uy, ε) =
αs
π

(µ2π)ε (u · β) Ci Γ(1− ε)
∫ ∞

0

dt

∫ y

0

ds (−2β · u ts+ i0)−1+ε,

(4.65)

where Ci, with i = A,F is the quadratic Casimir in the adjoint or in the

fundamental representation. We notice that the integral over the parameter

t diverges both in the UV limit t → 0 and in the IR regime t → ∞. This

fact is a consequence of the absence of any scale associated with the integration

over an infinite Wilson line and it implies that the bare diagram in eq. (4.65)

yields a vanishing contribution. Nevertheless, the diagram is non-trivial after the

renormalisation procedure, which subtracts the divergence for t → 0 and allows

us to define uniquely the integrand in eq. (4.65). In order to expose the analytic

structure of eq. (4.65) in terms of the variable ρ defined in eq. (4.51), we rotate

the path along the negative imaginary axis in the complex t−plane. Then we

change variables t = −i
√

2λ, s = −i
√

2 σ
u·β , obtaining

d(1)(αs, ρ, ε) = −αs
π

(4πµ2)εCi
Γ(1− ε)

2

∫ ∞
0

dλ

λ1−ε

∫ ρ√
2

0

dσ

σ1−ε . (4.66)

The complete result for log (Wu) at one loop is given by twice the contribution

of eq. (4.66). It is convenient to write it with the factor (4πeγE)ε absorbed into
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the MS running coupling as follows

logW bare
u = −αs(µ

2)

π
e−εγE CiΓ(1− ε)

∫ ∞
0

dλ

λ

∫ ρ√
2

0

dσ

σ

(
λσµ2

)ε
+O(α2

s). (4.67)

The label “bare” reminds us that eq. (4.67) still has the UV divergences associated

to the cusps of the Wilson loop in eq. (4.62), which must be subtracted before

IR singularities can be identified. Indeed, it is convenient to show explicitly that

eq. (4.67) is independent on the renormalisation scale, by writing the running

coupling as

αs
(
µ2
)

= (µ2λσ)−ε αs

(
1

λσ

)
+
b̂0

ε
(µ2λσ)−2ε

(
1− (µ2λσ)ε

)
αs

(
1

λσ

)2

+O(α3
s),

(4.68)

which leads to the expression

logW bare
u = −Ci

∫ ∞
0

dλ

λ

∫ ρ√
2

0

dσ

σ

αs
(

1
λσ

)
π

e−εγEΓ(1− ε) +O(α2
s). (4.69)

4.4.2 Exponentiation and renormalisation

The integrand in eq. (4.69) is finite in the limit ε → 0 and the singularities of

logWu arise only after the integration over λ, σ. In particular, following the

coordinate-space analysis of refs. [148, 183, 184], we distinguish three possible

types of singular behaviour: cusp singularities , which are associated to the limit

λ ' σ → 0 in which all the vertices approach a cusp of the Wilson loop;

collinear singularities, which arise if either λ or σ approaches the cusp, while

the other parameter stays finite; finally, the large-distance region with λ → ∞,

which determines the IR pole. At higher perturbative orders, individual diagrams

feature soft and collinear subdivergences when a subset of the vertices approaches

one of these limits, which give rise to poles of higher order compared to those

in eq. (4.69). However, owing to its exponentiation property, upon considering

the logarithm of the Wilson-line correlator, all the subdivergences cancel in the

sum of webs at each perturbative order [148, 180, 184–186]. It is always possible

to organise the calculation of log (Wu) such that the integral over the position of

the vertex that is located at the largest distance along the infinite Wilson line is

performed last. Thus, the single infrared pole will be generated only in the final

integration, while all the subdivergences of individual diagrams cancel in the sum

of webs. This procedure, which follows the prescriptions of ref. [148], allows us
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to generalise the representation of eq. (4.69) to all orders

logW bare
u =

∫ ∞
0

dλ

λ

∫ ρ√
2

0

dσ

σ
w

(
αs

(
1

λσ

)
, ε

)
, (4.70)

where the integrand w has an expansion in ε that involves only non-negative

powers

w

(
αs

(
1

λσ

)
, ε

)
=
∞∑
n=0

wn

(
αs

(
1

λσ

))
εn. (4.71)

The representation eq. (4.70) is analogous to the one derived in [148] for the

soft function of the form factor, defined in eq. (4.13), with the difference that in

the latter case the integrals over both the parameters are unbounded. This is

consistent with the presence of a double pole of long-distance origin in the form

factor, as compared to the single pole of this type arising in eq. (4.52).

We now proceed with the renormalisation of the singularities of short-distance

origin that are present in the bare expression of eq. (4.70). Following [148], we

notice that the integral of w0 in eq. (4.70) generates double UV poles, which are

subtracted by cutting the integration domain with λ < 1
µ
, σ < 1

µ
in eq. (4.70),

where µ defines the subtraction point. The contributions of wi with i ≥ 1

generate at most one UV singularity, which we subtract in the last integration.

In conclusion we derive the representation for the sum of renormalised webs in

configuration space

log (W ren
u ) = −

∫ ∞
1
µ

dλ

λ

∫ ρ√
2

1
µ

dσ

σ
γcusp

(
αs

(
1

λσ

))
−
∫ ∞

1
µ

dλ

λ
Γu

(
αs

(
1

λ2

))
,

(4.72)

where we performed the integral over σ by expanding the coupling constant

αs
(

1
λσ

)
at the scale 1

λ2
, as in eq. (4.68)

αs

(
1

λσ

)
= αs

(
1

λ2

)(
λ

σ

)−ε
+

(
αs

(
1

λ2

))2
b̂0

ε

(
λ

σ

)−2ε [
1−

(
λ

σ

)ε]
+O(α3

s).

(4.73)

Eq. (4.72) directly leads to the result eq. (4.52) from the web integrals in

coordinate space and it allows us to extract the coefficients γcusp and Γu. At

one-loop order, we expand the web in eq. (4.69) and we get

w

(
αs

(
1

λσ

)
, ε

)
= −αs

(
1
λσ

)
π

Ci
[
1 +O

(
ε2
)]

+O
(
α2
s

)
. (4.74)
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Applying the renormalisation procedure described above we find

logW ren
u = −Ci

π

∫ ∞
1/µ

dλ

λ

∫ ρ√
2

1/µ

dσ

σ
αs

(
1

λσ

)
+O(α2

s)

=
αs(µ

2)

π

Ci
ε

log

(
ρµ√

2

)
+O(α2

s), (4.75)

where we have used the fact that Wu consists of pure poles. The pole is infrared

and is exactly the one that replicates the soft divergence of the PDF. We compare

eq. (4.75) with the poles of eq. (4.52) getting

γcusp =
αs
π
Ci +O

(
α2
s

)
,

Γu = 0 · αs +O
(
α2
s

)
.

(4.76)

4.4.3 Two-loop calculation

We now apply the renormalisation procedure to the two-loop webs. Only a few

diagrams contribute to this order and they are represented below

d
(2)
SE = , d

(2)
X2

= , d
(2)
X3

= ,

d
(2)
Ys

= , d
(2)
YL

= , d
(2)
3s = ,

(4.77)

where we omit the configurations that are simply obtained by mirror symmetry.

The diagrams in the first row of eq. (4.77) are computed following the same steps

as the one-loop case. As in the one-loop case, we write the bare webs using the

representation in eq. (4.70) and we define the integrand w
(2)
i of diagram d

(2)
i as,

d
(2)
i (αs, ρ, ε) =

∫ ∞
0

dλ

λ

∫ ρ√
2

0

dσ

σ

(
αs (1/λσ)

π
e−εγE

)2

w
(2)
i (ε). (4.78)

From now on we drop the arguments on di and wi which are understood to have

the above arguments unless otherwise stated. The first diagram, d
(2)
SE is obtained

from eq. (4.65) by replacing the gluon propagator eq. (4.63) with the one-loop
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expression

D(1)
µν (x) =− αs

16π3

(
π2µ2

)ε Γ2(1− ε)
ε(1− 2ε)(3− 2ε)

[
CA(5− 3ε)− 4nfTf (1− ε)

]
×
[
−x2 + i 0

]−1+2ε
gµν ,

(4.79)

where we discarded the longitudinal components of the propagator, that are

proportional to ∂µ∂ν , because they decouple from the amplitude via Ward

identities [148]. The result is

w
(2)
SE = −Ci

Γ2(1− ε)
8ε(1− 2ε)(3− 2ε)

[
CA(5− 3ε)− 4nfTf (1− ε)

]
, (4.80)

in agreement with the results of [146, 148]. We notice immediately that,

at two-loop level, the representation eq. (4.78) of the individual webs has

subdivergences, which are manifest as explicit poles in the integrand wi. In this

case the subdivergence is cancelled by the coupling renormalisation in the QCD

Lagrangian of eq. (1.1) that will be taken into account later in this section. The

double gluon exchange diagrams give

w
(2)
X2

= −CiCA
Γ2(1− ε)

8ε2
, (4.81)

w
(2)
X3

= −CiCA
Γ2(1− ε)

2ε

[
1

ε
−B(ε, 1 + ε)

]
. (4.82)

Both results are in agreement with the maximally non-Abelian contributions of

the diagrams Wc and Wd reported in [146]. The integrand of the diagram d
(2)
X2

in

eq. (4.81) has poles of short-distance origin, associated to the configuration shown

below, where the two innermost vertices on the Wilson lines are in proximity of

the cusp

w
(2),subdiv
X2

= .

These subdivergences are not related to QCD renormalisation and they will cancel

in the sum of all webs. Eq. (4.82) is finite when ε → 0 as we discuss more in

detail in Appendix C.2.2. The diagrams in the second row of eq. (4.77) involve
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the three-gluon vertex, whose Feynman rule in configuration space reads

V a1a2a3
µ1µ2µ3

(x1, x2, x3) = gsf
a1a2a3

[(
−i ∂

∂xµ31

+ i
∂

∂xµ32

)
gµ1µ2

+

(
−i ∂

∂xµ12

+ i
∂

∂xµ13

)
gµ2µ3 +

(
−i ∂

∂xµ23

+ i
∂

∂xµ21

)
gµ3µ1

]
.

(4.83)

We notice that the diagrams d
(2)
Ys

and d
(2)
YL

are not related by symmetry

transformations, because the former has two gluon attachments on the segment

of finite length y, while the latter has two emissions from the semi-infinite line.

We begin with the calculation of d
(2)
Ys

d
(2)
Ys

=KY

∫
ddz

∫ 0

−∞
dt3u ·

{∫ y

0

ds1

∫ y

s1

ds2

(
∂

∂s2u

)
−
∫ y

0

ds2

∫ s2

0

ds1

(
∂

∂s1u

)}
×
[
−(us2 − z)2 + i0

]−1+ε [−(us1 − z)2 + i0
]−1+ε [−(βt3 − z)2 + i0

]−1+ε
,

(4.84)

where we introduced the normalisation factor KY = ig4
s
CiCA

2
N 3u · β. We write

the differential operators in eq. (4.84) in terms of total derivatives as follows

u · ∂

∂s2 u

[
−z2 + 2z · us2 + i0

]−1+ε
=

d

ds2

[
−z2 + 2z · us2 + i0

]−1+ε
, (4.85)

which allows us to perform immediately the integrals over s2 and over s1,

respectively in the first and in the second term in curly brackets, by evaluating the

appropriate propagator at the endpoints of the integration interval. Eq. (4.84)

becomes

d
(2)
Ys

= d
(2)
E (y u, u · β) + d

(2)
E (0, u · β)− 2d

(2)
B (u · β), (4.86)

in terms of the functions

d
(2)
E (v, u · β) =KY

∫
ddz

∫ 0

−∞
dt

∫ y

0

ds
[
−(βt− z)2

]ε−1

×
[
−(us− z)2

]ε−1 [−(v − z)2
]ε−1

, (4.87)

d
(2)
B (u · β) =KY

∫
ddz

∫ 0

−∞
dt

∫ y

0

ds
[
−(βt− z)2

]ε−1 [−(us− z)2
]2ε−2

, (4.88)

where the prescription +i0 is understood in every factor appearing in the

integrals. Each function has a clear diagrammatic interpretation, because the
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integrands are products of scalar propagators in coordinate space. Thus, d
(2)
Ys

is decomposed in a sum of diagrams, as discussed in [148], giving in one-to-one

correspondence with the three terms in eq. (4.86)

d
(2)
Ys

=
βt

z

us uy

+
βt

z

us0

− 2
βt

z

us

, (4.89)

where the dashed lines represent scalar propagators and dotted vertices on the

Wilson line indicate that the position of the endpoint of the propagator is not

be integrated over. We integrate eqs. (4.87) and (4.88) over the position z

of the three-gluon vertex and write the results in the two-dimensional integral

representation in eq. (4.78). We obtain

w
(2)
E (y u, u · β) = CiCA

Γ(1− 2ε)

16ε

[
B(−ε, 1− ε)−B(−ε, 1 + ε)

]
, (4.90a)

w
(2)
E (0, u · β) = CiCA

Γ(1− ε)Γ(1− 2ε)

16ε
Γ(ε), (4.90b)

w
(2)
B (u · β) = CiCA

Γ2(1− ε)
16ε(1− 2ε)

. (4.90c)

Let us discuss the singularity structure of the separate integrals above. The only

one which is separately finite is eq. (4.90a), which corresponds to the integrand of

the first diagram in eq. (4.89). Eq. (4.90b) has single and double poles that will

cancel the corresponding singularities in eq. (4.81). Indeed, the second diagram in

eq. (4.89), which is associated to the integrand in eq. (4.90b), has subdivergences

of short distance origin when the three-gluon vertex approaches the cusp, similarly

to the behaviour shown by diagram d
(2)
X2

. The single pole in eq. (4.90c) is entirely

due to the presence of a one-particle-irreducible UV divergent subgraph in the last

diagram in eq. (4.89). Therefore, this singularity is removed by the counterterms

of the QCD Lagrangian. Using these results, the total contribution of the diagram

d
(2)
Ys

in eq. (4.86) agrees with the corresponding expression for diagram We in [146]

and in the notation of eq. (4.78) it reads

w
(2)
Ys

= −CiCA
Γ(1− ε)

16ε2(1− 2ε)

[
Γ(1− ε)− 2Γ(2− 2ε)Γ(1 + ε)

]
. (4.91)

The next diagram, d
(2)
YL

, differs from eq. (4.84) only by the presence of the two

gluon attachments on the semi-infinite Wilson line rather than on the finite one.
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Once again, we write the three gluon vertex in terms of total derivative and we

decompose the diagram as

d
(2)
YL

= d
(2)
E (0, u · β)− 2d

(2)
B (u · β) ≡ − 2 , (4.92)

where we have used the functions defined in eqs. (4.87) and (4.88). The

comparison of eqs. (4.86) and (4.92) shows that two diagrams differ only by

the term featuring a scalar propagator connected to the endpoint of the Wilson

line. In the case of d
(2)
YL

, the Wilson line is infinite and this term is absent. This

result was shown in [148], by introducing a cutoff on the infinite line and carefully

taking the limit to infinity, which does not commute with the integration over z.

The same conclusion is found by computing d
(2)
YL

in momentum space, as shown

in Appendix C.2.1. Using eqs. (4.90a), (4.90b) and (4.90c) we get

w
(2)
YL

= CiCA
Γ(1− ε)

8ε

[
Γ(1− 2ε)Γ(ε)

2
− Γ(1− ε)

1− 2ε

]
. (4.93)

By construction, the expression above has the same singularities as w
(2)
Ys

, because

the integrand of the diagram d
(2)
YL

differs from d
(2)
Ys

only by the function in

eq. (4.90a), which is finite.

We compute the diagram d
(2)
3s using the same procedure

d
(2)
3s = 2 d

(2)
E (yu, u · β) ≡ + , (4.94)

getting

w
(2)
3s = CiCA

Γ(1− 2ε)

8ε

[
B(−ε, 1− ε)−B(−ε, 1 + ε)

]
, (4.95)

which is finite because it involves only the function in eq. (4.90a). We renormalise

the UV divergences associated with the QCD vertices and propagators by means

of the one-loop counterterm

d
(2)
ct = − αs

4πε

[
11

3
CA −

4

3
Tfnf

]
d(1), (4.96)

where d(1) is the result of the one-loop diagram eq. (4.66).
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Finally, we sum all the diagrams depicted in eq. (4.77), including the symmetric

configurations which are not shown there, getting

logW bare
u = 2d(1) +

(
2d

(2)
SE + 2d

(2)
Ys

+ 2d
(2)
YL

+ 2d
(2)
X2

+ d
(2)
3s + d

(2)
X3

+ 2d
(2)
ct

)
,

= 2
{
d(1) + d

(2)
SE + 2d

(2)
YL

+ d
(2)
X2

+ d
(2)
ct

}
+ 2d

(2)
3s + d

(2)
X3
, (4.97)

where to get to the second line we used the identity 2d
(2)
Ys

= 2d
(2)
YL

+ d
(2)
3s that

is obtained by comparing eqs. (4.89), (4.92) and eq. (4.94). The terms in curly

brackets in the final expression are the same that appear in the calculation of

the cusped Wilson loop with two semi-infinite lightlike lines, discussed in [148].

The last two contributions in eq. (4.97) are special to the configuration of Wu,

where the semi-infinite lines are connected by a finite lightlike segment. The

final expression in eq. (4.97) follows the decomposition of polygon-shaped Wilson

loops presented in [148]. The distinction between the terms inside and outside the

curly brackets in eq. (4.97) stems from the structure of their singularities. The

former ones give rise to cusp configurations characterised by double UV poles

and therefore they can be written in terms of the representation in eq. (4.70)

with a finite integrand. The last contributions in eq (4.97) generate at most a

single pole, associated to the configurations where all the vertices simultaneously

approach a lightlike segment, and therefore their combination will give rise to an

integrand of order ε in eq. (4.70), as we verify by expanding eqs. (4.82) and (4.95)

2w
(2)
3s + w

(2)
X3

=
3

2
ε CiCA ζ3. (4.98)

Substituting the results in eqs. (4.80), (4.81), (4.82), (4.93) and (4.95) into

eq. (4.97), the integral representation of the bare diagrams reads

logW bare
u =Ci

∫ ∞
0

dλ

λ

∫ ρ√
2

0

dσ

σ

{
αs
(

1
λσ

)
π

κΓ(1− ε)
[
− 1 +

αs
(

1
λσ

)
π

b̂0

ε

]
+

(
αs
(

1
λσ

)
π

κ

)2[
CA

(
3(−4+3ε)Γ(1−ε)Γ(2−ε)

4ε2(3− 8ε+ 4ε2)
− πΓ(−2ε) cot

(πε
2

))
− Tfnf

Γ(2− ε)Γ(−ε)
3− 8ε+ 4ε2

]}
(4.99)

where κ = e−εγE . By expanding the equation above in ε we get

logW bare
u = −

∫ ∞
0

dλ

λ

∫ ρ√
2

0

dσ

σ

{(
αs
(

1
λσ

)
π

)[
1 +

ε2

2
ζ2 +O(ε3)

]
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+

(
αs
(

1
λσ

)
π

)2[
γ(2)

cusp + ε

(
Γ

(2)
u +

3b̂0ζ2

2

)
+O(ε2)

]}
,

(4.100)

where Γ
(2)
u is the two-loop contribution to Γu eq. (4.61),

Γ
(2)
u =

Ci
2

(
−2b̂0ζ2 −

56

27
Tfnf + CA

[
202

27
− 4ζ3

])
. (4.101)

Now we renormalise using the procedure outlined in the one-loop case, see

eq. (4.72). For the terms of O(ε0), the cusp terms, we integrate from 1/µ on

both integrals. For all the subsequent terms, the σ integral is performed first,

integrating from 0 to ρ√
2
. Then the parameter λ integrated from 1

µ
. By doing

this we get,

logWu =αs(µ
2)

1

ε
log

(
ρµ√

2

)
+ αs(µ

2)2

{
− b̂0

2ε2
log

(
ρµ√

2

)
+

1

ε

(
1

4
Γ

(2)
u +

1

2
γ(2)

cusp log

(
ρµ√

2

))}
.

(4.102)

Again it is reminded that we have used the fact that Wu consists of pure poles.

The above is reproduced by eq. (4.52)

logWu = −1

2

∫ µ2

0

dξ2

ξ2

{
2γcusp(αs(ξ

2, ε)) log

(
ρµ√

2

)
+ Γu(αs(ξ

2, ε))

}
. (4.103)

By this point we have determined the anomalous dimension Γu in two different

ways, first by extracting it from the evolution of PDFs using the universality of the

hard-collinear poles J/J and now by a direct computation of the renormalisation

of the corresponding Wilson-line correlator.

4.5 Relating Wilson-line Geometries to Physical

Quantities

In this section we establish a set of relations between different physical quantities,

based on the properties of the Wilson loops discussed in Section 4.4. In

Section 4.5.1 we will show that the single infrared poles in the quark and in
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the gluon form factors are related to the corresponding diagonal term in the

DGLAP kernels by a precise eikonal quantity that is associated to the geometry

of the Wilson loops with lightlike lines. The latter emerges as the difference

between the anomalous dimensions associated with a wedged Wilson loop with

two semi-infinite lines and a u−shaped Wilson loop. This difference, in turn, can

be expressed as the anomalous dimension associated with a parallelogram (or

more generally) a polygon with lightlike segments. In Section 4.5.2 we use this

relation to extract the anomalous dimensions associated with a polygon Wilson

loop to three loops, which is related to the soft anomalous dimension appearing

in the resummation of threshold logarithms in the Drell-Yan process. Finally we

extract the fermionic components of the four-loop result in the planar limit.

4.5.1 Relating the form factor with the DGLAP kernels

The direct calculation of the anomalous dimension Γu in Section 4.4 confirms the

identity in eq. (4.59)

2Bδ = 2γJ/J − Γu, (4.104)

which follows from the factorisation of the parton distribution functions for large

x. This identity is interpreted as a decomposition of Bδ, which was defined in

eq. (4.58) as the coefficient of the delta distribution in the splitting functions

in the limit x → 1, into the contribution of the hard-collinear radiation, γJ/J ,

and the purely soft one, which is encoded by Γu. In eq. (4.104) we suppressed

the dependence on the external parton: the relation holds for both quarks and

gluons. The hard-collinear contribution γJ/J is process independent, as discussed

in Section 4.2.2 in the context of the infrared factorisation of the form factor.

Indeed, eq. (4.21) provides the analogue of eq. (4.104)

γG = 2γJ/J − Γ∧, (4.105)

where γG is the anomalous dimension that determines the single poles of the form

factor. By comparing eq. (4.104) and eq. (4.105) we derive the relation

γG − 2Bδ = Γu − Γ∧, (4.106)

which connects the single poles in the form factor with the diagonal DGLAP

kernels. The two quantities appearing on the left-hand side of eq. (4.106) depend

on both the spin and the colour representation of the external particles in a non-
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trivial way. In contrast, the right-hand side involves the anomalous dimensions

of two eikonal quantities, which depend only on the colour representation of the

particles and obey Casimir scaling up to three loops. Therefore, eq. (4.106) allows

us to interpret the function feik eq. (1.29), which was introduced in [84,85] as the

difference feik ≡ γG − 2Bδ, in terms of the anomalous dimensions of Wilson-line

correlators. By substituting the two-loop expressions of Γu and Γ∧ from direct

calculations, respectively in eqs. (4.61) and (4.23), into the right-hand side of

eq. (4.106) we reproduced the two-loop result obtained from the difference of γG

and Bδ in ref. [85], namely

feik =
(αs
π

)2

Ci

[
CA

(
−11ζ2

24
− 7

4
ζ3 +

101

54

)
+ Tfnf

(
ζ2

6
− 14

27

)]
+O

(
α3
s

)
,

(4.107)

thus verifying eq. (4.106) through two loops.

The difference of anomalous dimensions appearing on the right-hand side of

eq. (4.106) has also a geometric interpretation, which suggests to define it as

universal quantity. Following the analysis of the singularities of the Wilson loops

with lightlike lines detailed in ref. [148] and the calculation in Section 4.4 above,

the anomalous dimensions Γu and Γ∧ receive contributions only from the singular

configurations, in which all the vertices approach one lightlike line. In this

sense, these anomalous dimensions depend only on the features of each lightlike

line separately and they are insensitive to the global shape of the Wilson loop.

Both Γu and Γ∧ encode the collinear singularities associated with the two semi-

infinite lightlike lines, but the former receives an additional contribution from

the configurations that are collinear to the finite segment. Such singularities

differ from the ones originating from infinite lines by the presence of endpoint

contributions, as we showed by computing the diagrams d
(2)
Ys

and d
(2)
YL

in eqs. (4.89)

and (4.92). It is therefore useful to define the difference of Γu and Γ∧ as the

anomalous dimension that captures the collinear singularities of a finite lightlike

segment. Similarly, we define also the collinear anomalous dimension associated

to infinite lines in terms of Γ∧ only

Γfin
co ≡ Γu − Γ∧ , (4.108)

Γinf
co ≡

Γ∧
2
. (4.109)

The two-loop expression of Γfin
co coincides with the right-hand side of eq. (4.107),

while Γinf
co to the same order is obtained from eq. (4.23). Comparing the two
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expressions we get

Γfin
co = 2 Γinf

co −
3

2

(
αs
π

)2

CiCA ζ3 +O
(
α3
s

)
. (4.110)

The factor of two multiplying Γinf
co is consistent with the fact that the finite

Wilson line is obtained as a contour involving two semi-infinite lines. The

remaining discrepancy proportional to ζ3 is related to the endpoint contributions

in eq. (4.98).

The geometric interpretation of Γfin
co and Γinf

co allows one to derive the anomalous

dimensions of Wilson loops with the contour consisting of arbitrary, possibly

open, polygons with lightlike lines. The first example is the parallelogram-

shaped Wilson loop W2 that features four lightlike segments of finite length (see

Figure 4.1c), whose renormalisation was given in [146]

µ
d log (W2)

dµ
= −2γcusp

[
log
(
µ2(x · y + iε)

)
+ log

(
µ2(−x · y + iε)

)]
− Γ2,

(4.111)

where x and y are the four-vectors that define the sides of the parallelogram.

Γ2 receives contributions from the collinear divergences of four finite segments in

lightlike directions, therefore it is

Γ2 = 4 Γfin
co = 4 (Γu − Γ∧) . (4.112)

By replacing in the equation above the two-loop value of Γfin
co in eq. (4.107), we

reproduce the results of Γ2 in ref. [146]. In the case of a generic polygonal Wilson

loop Wi with lightlike lines the evolution equation in eq. (4.111) generalises [146,

148]

µ
d log Wi

dµ
= −

∑
a

γcusp log
(
µ2xa · xa−1

)
− Γi, (4.113)

where the sum is extended over all the cusps in the contour and xa, xa−1 define the

sides adjacent to the cusp a. The anomalous dimension Γi collects all the collinear

contributions and it can be derived by summing the appropriate multiples of Γfin
co

and Γinf
co , given by the number of finite and infinite sides, respectively.

Finally, having identified the difference Γu − Γ∧ = Γ2

4
in eq. (4.112), we may

notice that eq. (4.106) provides yet another identity relating the form factor, the
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DGLAP kernel and the Wilson loop W2 computed in ref. [146], namely

γG − 2Bδ =
Γ2

4
, (4.114)

thus explaining the numerical agreement of these two quantities computed

respectively in ref. [85] and in ref. [146].

4.5.2 The Drell-Yan soft function and Γ2 beyond two loops

We move to relate the abstract W2 to a physical quantity relevant for soft-

gluon resummation. It is known that the Drell-Yan cross-section factorises near

threshold [2–6] (see also the more recent literature in the Soft Collinear Effective

Theory [7, 18]). The hard-collinear region is described by the PDFs, the hard

function by a squared timelike form factor and the soft region by Wilson lines

in the DY configuration [136]. See eq. (1.3) for the schematic formulation. This

leads to the all-order relation γG − 2Bδ = ΓDY/2, where ΓDY is the anomalous

dimension associated to the DY configuration of Wilson lines (see e.g. [6, 7]).

Using eq. (4.114) we have,

2ΓDY = Γ2. (4.115)

The ideas in Section 4.5.1 will allow us to test the identification in eq. (4.115).

The three-loop value for γG− 2Bδ was first extracted in [85] using the three-loop

results for γG and Bδ. If we expand Γ2 as,

Γ2 =
∞∑
n=0

(
αs
π

)n
Γ(n)
2 , (4.116)

using the values in [85] we can then state

Γ(1)
2 = 0 (4.117)

Γ(2)
2 =Ci

[
CA

(
−11ζ2

6
− 7ζ3 +

202

27

)
+ Tfnf

(
2ζ2

3
− 56

27

)]
(4.118)

Γ(3)
2 =Ci

[
C2
A

(
22ζ2

2

5
+

11ζ2ζ3

3
− 6325ζ2

648
− 329ζ3

12
+ 12ζ5 +

136781

11664

)
+ CAnfTf

(
−12ζ2

2

5
+

707ζ2

162
+

91ζ3

27
− 5921

2916

)
+ CFnfTf

(
4ζ2

2

5
+
ζ2

2
+

38ζ3

9
− 1711

216

)
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+ n2
fT

2
f

(
−10ζ2

27
+

28ζ3

27
− 520

729

)]
. (4.119)

As mentioned in Section 4.5.1, the two-loop Γ
(2)
2 was calculated explicitly using

Wilson lines in [146] and agrees with the extracted value in eq. (4.118). The

three-loop Γ
(3)
2 displayed in eq. (4.119) should be regarded as a prediction to be

verified by direct calculation. For the Drell-Yan configuration of Wilson lines,

ΓDY was computed at two loops in [136] and three loops in [21]. The three-

loop ΓDY coincides with eq. (4.119). This is a non-trivial three-loop test of the

identification in eq. (4.115), we arrive at the same value for Γ
(3)
2 by two different

paths: the difference γG − 2Bδ = Γu − Γ∧ = Γ2/4 and the explicit calculation of

ΓDY.

At four loops the complete picture in QCD for Γ2 is unknown but in planar

N = 4 super Yang-Mills the four-loop result for the difference γG − 2Bδ was

found in [42]. We identify this as Γplanar N=4
2 and quote the result here,

Γplanar N=4
2 =−

(
αs
π
CA

)2

7ζ3 +

(
αs
π
CA

)3(
12ζ5 +

11

3
ζ2ζ3

)
−
(
αs
π
CA

)4(
425

16
ζ7 +

13

2
ζ2ζ5 +

45

4
ζ3ζ4

)
+O(α5

s) (4.120)

It is well-known that to reach the above result one can simply take the QCD result

and take the limit Nc →∞ and the maximal transcendental weight term at each

order in αs. We can do this at two and three loops by looking at eqs. (4.107) and

(4.119) respectively.

Above three loops, strict Casimir scaling has been proven to fail [28, 29, 38]. As

such, we need to distinguish between quarks and gluons or rather particles in

the fundamental and adjoint representation. We focus on the quark case. To

compute Γ
(4),q
2 we need Bq

δ and γqG at four loops. The state of the art is that some

colour structures are known for both Bq
δ [26, 28] and γqG [27] in the planar limit,

Nc →∞. Using the values in [27, 28] we can extract the following terms in that

limit for Γ
(4),q
2 ,

Γ(4),q
2 |N3

c nf
=− 247315

55296
+

51529ζ2

11664
+

102205ζ3

31104
− 7589ζ4

768

− 185ζ5

288
− 103ζ2ζ3

144
+

15611ζ6

3456
+

22ζ2
3

9
(4.121)

Γ(4),q
2 |N2

c n
2
f
=

329069

2239488
− 22447ζ2

93312
+

6325ζ3

7776
+

35ζ4

96
− 107ζ5

144
− 11ζ2ζ3

72
(4.122)
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Γ(4),q
2 |Ncn3

f
=− 505

26244
− ζ2

648
− 25ζ3

1944
+
ζ4

27
(4.123)

where we have used Tf = 1
2
. We are unable to deduce the N4

c n
0
f term as it is

unknown for γG but it is known for Bδ [28]. In the planar limit Nc → ∞ the

quartic Casimirs d
(4)
FF ≡

(
dabcdF

)2
contribute to the colour factor in eq. (4.121)

since,

nf
d

(4)
FF

NF

= nfT
4
f

(
N3
c

6
− 7Nc

6
+

4

Nc

− 3

N3
c

)
. (4.124)

It means that we are unable to fully construct the Casimir scaling of N3
c nf . The

full (planar and non-planar) contribution of the quartic Casimir colour factor d
(4)
FF

to γG is known [31] but not to Bδ. Only the low-N values of the splitting functions

or γcusp is known [30,33]. In [30] it was also found that, within numerical errors,

quartic Casimir contribution to the cusp anomalous dimension did not depend on

the representation, i.e. it is the same for gluons and quarks. It was conjectured

that although Casimir scaling is violated there is a generalised version where

quartic factors are simply exchanged depending on gluon or quarks,

quarks↔ gluons

d
(4)
FA

NF

↔ d
(4)
AA

NA

(4.125)

nf
d

(4)
FF

NF

↔ nf
d

(4)
FA

NA

where NF/A denote the dimensions of the corresponding representations, namely

NF = Nc = CA and NA = N2
c − 1 = 2NcCF . The relation in eq. (4.106) may

be used as an interesting test for a generalised Casimir scaling extension to the

anomalous dimension Γ2.

However, the quartic Casimirs do not appear in the n2
f or n3

f terms of eqs. (4.122)

and (4.123). We are then able to use these terms for a leading-Nc, Casimir-scaling

part of Γ
(4)
2 . We put these terms together with the conjectured generalised scaling

to create an ansatz for Γ
(4)
2 ,

Γ(4)
2 = Ci

[
n3
f

(
− 505

13122
− ζ2

324
− 25ζ3

972
+

2ζ4

27

)
+Ncn

2
f

(
329069

1119744
− 22447ζ2

46656
+

6325ζ3

3888
+

35ζ4

48
− 107ζ5

72
− 11ζ2ζ3

36

)
+ · · ·

]
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+ nf
d

(4)
Fi

Ni

Γ(4),dF i
2 +

d
(4)
Ai

Ni

Γ(4),dAi
2 , (4.126)

where the ellipsis represents all terms subleading in Nc, including the n1
f and n0

f

terms, which are not found from the quartic Casimirs when they are expanded

in Nc.

4.6 Conclusion

In this chapter we have presented a detailed study of the infrared factorisation of

form factors and PDFs at large x using a common formalism. By identifying the

universal contributions from the hard-collinear region in both quantities, those

controlled by the anomalous dimension γJ/J , we were able to derive the relation

in eq. (4.106),

γG − 2Bδ = Γu − Γ∧ =
Γ2

4
. (4.127)

That is, the difference between anomalous dimension describing single poles

in the on-shell form factor of quarks (gluons) and that associated with the

δ(1−x) term in the large-x limit of the quark (gluon) diagonal DGLAP splitting

function, reduces to a difference between corresponding eikonal quantities, Γ∧

and Γu defined directly in terms of Wilson loops. Furthermore, based on the

configuration-space origin of the contributions to these two eikonal quantities we

concluded that their difference simply corresponds to the anomalous dimension

associated with a closed polygonal Wilson loop, such as the parallelogram

analysed first in ref. [146]. The contributions of the semi-infinite Wilson lines

in Wu and W∧ cancel in the difference. We emphasise that while each of the

quantities on the left-hand side of eq. (4.127) depends in a non-trivial way on

the spin of the partons, in addition to their colour representations, yielding very

different results for quarks and for gluons, the eikonal quantities, by definition,

depend only on the colour representation of these partons, and in particular admit

Casimir scaling through three loops. We stress that the relation in eq. (4.127) is

expected to hold to all orders in perturbation theory. An obvious next step is to

compute Γ2 to three loops in order to check it explicitly to this order.

In establishing the relation between Γ2 and Γu − Γ∧ we used the fact that

singularities arise only from configurations where all the vertices approach a cusp

or one where they all approach a particular lightlike segment [148]. This underlies
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the cancellation of the two infinite segments, isolating a remaining finite segment.

The very same logic may be applied to other, more complicated Wilson-line

geometries involving both finite and semi-infinite lightlike segments. Specifically,

the double pole is always governed by γcusp while the single-pole anomalous

dimension is written as a sum of terms, building blocks, each corresponding to

either a finite or semi-infinite segment, which contribute Γfin
co and Γinf

co , respectively.

An example of such a construction with only finite segments can be found in

refs. [187–189], where polygons of up to six sides were computed to two loops.

Following our discussion in Section 4.5.1 it may interesting to explicitly compute

other Wilson-line configurations involving both finite and infinite segments. A

simple example of direct relevance to physics is the non-forward amplitude,

generalising the u configuration.

One interesting aspect that we have encountered is that Wu behaves very

differently in the ultraviolet as compared to the infrared, as can be seen explicitly

in eq. (4.103). In the ultraviolet, one encounters a double logarithmic dependence

on the scale µ2, originating from the cusp singularity, while in the infrared there

is just a single pole. This stands in sharp contrast to the W∧, corresponding to

the soft function of the form factor (4.15) (or more generally, in soft functions

corresponding to multi-leg amplitudes) where the infrared behaviour entails a

double pole, mirroring the ultraviolet. The absence of any distance scale in

the relevant Wilson-line contour implies such mirroring. Indeed the symmetry

between the ultraviolet and the infrared is broken in Wu due to the presence

of the scale β · y. The single-pole character of Wu can be seen as intermediate

in comparing W2, which lacking infinite rays, is infrared finite, to W∧, which is

double logarithmic.

The relation in eq. (4.115) between the soft anomalous dimension in Drell-Yan

production and the parallelogram W2 is interesting in its own right. The Drell-

Yan soft function involves real gluon emission diagrams where the propagators

connecting the amplitude side to the complex-conjugate one are cut, while in

W2 there are no cut propagators. A possible way to explain5 this is to recall

that a parallelogram made of four lightlike segments features two cusps where

the exchanged gluons span timelike distances and two others where gluons span

spacelike distances. The latter correspond to diagrams that feature in virtual

corrections to the Drell-Yan process (these propagators are not cut). In turn, the

former are naturally time-ordered, because there path-ordering coincides with

5We would like to thank Gregory Korchemsky for proposing this explanation.
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time-ordering (just as in the case of the Wu, discussed below eq. (4.50)) and

could be computed using either cut propagators or ordinary ones, giving the

same answer. This way the calculation of the parallelogram can be mapped into

that of the Drell-Yan soft function. It would be interesting to turn this argument

into a proof relating the two Wilson line configurations directly. It would also

be interesting to explore in this context the conformal mapping techniques of

ref. [77, 135].

Another interesting direction to explore is the connection between partonic

amplitudes in the Regge limit and anomalous dimensions of Wilson lines. In

particular, one would like to derive the relation between the Regge trajectory

and W∧ in eq. (4.4) and understand its generalisation to higher orders.
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Chapter 5

Concluding Remarks

In this thesis we studied the infrared divergent properties of scattering amplitudes

by examining Wilson line correlators. The correlators appear in factorisation

formula, see eqs. (1.10) and (1.20), which can be computed in perturbation theory.

One main use for the study of infrared singularities is the ability to resum large

logarithms that appear in special kinematic limits of processes.

Aside from the phenomenological motivation, the correlators themselves exhibit

interesting mathematical structure. For non-lightlike lines we have calculated the

first orders in the perturbative expansion of the n-leg soft function Sn, defined

in eq. (1.5). Although the two-loop result has been known for some time [115],

in Chapter 2 we calculated it using the novel differential equations method. We

found that the regulator employed complicates the resulting system. Focusing

solely on the contribution to the physical quantity, the single pole, allowed for its

calculation. However, if one was to employ this method at three loops we need

higher order terms in the ε expansion and similar simplifications would not be

seen.

With three loop calculations of multiple non-lightlike Wilson line correlators in

mind we looked at another approach, which was called bootstrapping. In Chapter 3

we presented new observations on the types of functions that can appear, which

extended the known work applying to multiple gluon exchange webs [64,65]. We

saw an interesting interplay between the rational and transcendental part of the

functions. Bypassing the Feynman integral expansion entirely and concentrating

solely on the analytical structure of the correlators is clearly the efficient method.

Greater understanding of the function space, including rational factors, is needed
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to limit the growth of a potential ansatz at high loop orders.

In Chapter 4 we switched attention to the factorisation of massless scattering

amplitudes. Here, lightlike Wilson line correlators capture the relevant diver-

gences. In studying an often misunderstood relation between single poles of form

factors and of δ(1 − x) in diagonal splitting functions, we found an intriguing

result about the singular regions of these correlators, see eq. (4.113). They are

completely localised, either at a cusp or collinear to a line. They do not depend

on the global geometrical configuration of the lines.

Continuing to improve our understanding of Wilson line correlators, whether that

be the types of functions that appear or the origin of divergences, will aid the

deeper question of infrared singularities and give insights into some aspects of the

rich mathematical structure of scattering amplitudes.
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Appendix A

Differential Equation Details

A.1 [1, 2, 1]-web Differential Equation

In this section we give the explicit constituents of the differential equation for the

[1, 2, 1]-web in eq. (2.58).

A.1.1 Uniform weight basis

The integrals in the uniform weight basis g[1,2,1] written in terms of the I [1,2,1]

family are

g
[1,2,1]
1 = −ε2(2ε− 1)2I

[1,2,1]
1111

g
[1,2,1]
2 = −

1

3
ε(2ε− 1)(4ε− 3)(4ε− 1)I

[1,2,1]
11001

g
[1,2,1]
3 =

(2ε− 1)2ε2I
[1,2,1]
11101

3(α12 − 1)
+
ε2I

[1,2,1]
11102 (α12ε+ 3ε− 1)

6α12
−

(2ε− 1)(4ε− 3)εI
[1,2,1]
11001 (4α12ε− α12 − 6ε+ 1)

6(α12 − 1)

g
[1,2,1]
4 =

(3ε− 1)ε2I
[1,2,1]
11102

3s(α12)
+

2(α12 + 1)(2ε− 1)(4ε− 3)ε2I
[1,2,1]
11001

3(α12 − 1)
+

2(α12 + 1)(2ε− 1)2ε2I
[1,2,1]
11101

3(α12 − 1)

g
[1,2,1]
5 =

ε3I
[1,2,1]
11102

s(α12)
+

(2ε− 1)ε3I
[1,2,1]
11111

s(α12)

g
[1,2,1]
6 =

ε3(2ε− 1)I
[1,2,1]
111101

s(α23)
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g
[1,2,1]
7 = −

(2ε− 1)ε2I
[1,2,1]
110011

(
α2
23ε− 3ε+ 1

)
3(α23 − 1)α23

−
ε2I

[1,2,1]
110012(α23ε+ 3ε− 1)

6α23

−
(2ε− 1)(4ε− 3)εI

[1,2,1]
11001 (4α23ε− α23 − 6ε+ 1)

6(α23 − 1)

g
[1,2,1]
8 =

2(α23 + 1)(2ε− 1)ε2I
[1,2,1]
110011

(
3α2

23ε− α2
23 − 4α23ε+ α23 + 3ε− 1

)
3(α23 − 1)α23

−
(3ε− 1)ε2I

[1,2,1]
110012

3s(α23)
+

2(α23 + 1)(2ε− 1)(4ε− 3)ε2I
[1,2,1]
11001

3(α23 − 1)

g
[1,2,1]
9 =

(α12 − 1)ε3I
[1,2,1]
111021

2α12s(α23)
+

(4ε− 1)ε3I
[1,2,1]
111011

2s(α23)
+
ε3I

[1,2,1]
111012

2s(α23)

g
[1,2,1]
10 = −

ε3I
[1,2,1]
111021

2α23s(α12)
−
ε3I

[1,2,1]
111012

2s(α12)

g
[1,2,1]
11 =

3ε3I
[1,2,1]
111021

4s(α12)s(α23)

g
[1,2,1]
12 =

ε4I
[1,2,1]
111111

s(α12)s(α23)

A.1.2 Matrices

The dlog matrices c
[1,2,1]
i corresponding to the uniform weight basis in eq. (2.59)

are

c
[1,2,1]
1 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 0 0 0 0 0

0 0 0 −2 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −2
3

0

0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 2


c
[1,2,1]
2 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 −1
2

0 0 0 0 0 0 0 0

0 4 −4 1 0 0 0 0 0 0 0 0

−2 −6 12 −3 −2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −3
2

0 0 2
3

0

−1
2

0 3 −3
2

0 0 −3 0 −1 −1 −2
3

0

0 0 0 0 0 0 0 9
4

3 0 1 0

0 0 0 0 0 2 0 0 −4 0 −4
3
−2


(A.1a)

c
[1,2,1]
3 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
2

0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −2
3

0

0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 2


c
[1,2,1]
4 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 −2 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 −2
3

0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 −4
3

0


(A.1b)
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c
[1,2,1]
5 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

−2 0 0 0 0 −1 0 0 0 0 0 0

0 1 0 0 0 0 0 −1
2

0 0 0 0

0 4 0 0 0 0 −4 1 0 0 0 0

−1
2

0 −3 0 0 0 3 −3
2
−1 −1 −2

3
0

0 0 0 −3
2

0 0 0 0 0 0 2
3

0

0 0 0 9
4

0 0 0 0 0 3 1 0

0 0 0 0 1 0 0 0 0 2 4
3
−1


c
[1,2,1]
6 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2

0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 −2
3

0

0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 2


(A.1c)

c
[1,2,1]
7 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

−1
2
−3 3 0 0 0 3 0 −1 −1 0 0

−1
2
−3 3 0 0 0 3 0 −1 −1 0 0

3
4

9
2
−9

2
0 0 0 −9

2
0 3

2
3
2

0 0

0 0 0 0 0 0 0 0 0 0 0 0


c
[1,2,1]
8 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
1
2

3 −3 3
2

0 0 −3 0 1 −1 2
3

0

−3
4
−9

2
9
2
−9

4
0 0 9

2
0 −3

2
3
2
−1 0

0 0 0 0 0 0 0 0 0 0 0 0


(A.1d)

c
[1,2,1]
9 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
1
2

3 −3 0 0 0 −3 3
2
−1 1 2

3
0

0 0 0 0 0 0 0 0 0 0 0 0

−3
4
−9

2
9
2

0 0 0 9
2
−9

4
3
2
−3

2
−1 0

0 0 0 0 0 0 0 0 0 0 0 0


c
[1,2,1]
10 =



0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
3
4

9
2
−9

2
9
4

0 0 −9
2

9
4
−3

2
−3

2
−2 0

0 0 0 0 0 0 0 0 0 0 0 0


(A.1e)
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A.1.3 ε4 term of g
[1,2,1]
12

The integral g
[1,2,1]
12 evaluates to eqs. (2.67) and (2.68) at order ε2 and ε3

respectively. The order ε4 result is

g
[1,2,1],(4)
12 = −8ζ3(5G(0, α12) +G(0, α23)− 2G(1, α23)) + 32G(−1,−1, 0, α12)G(0, α23)

− 32G(−1, 0, 0, α12)G(0, α23) + 32G(−1, 1, 0, α12)G(0, α23)− 32G(0,−1, 0, α12)G(0, α23)

− 32G(0, 1, 0, α12)G(0, α23) + 16G(0, α23)G
(

0, 1
1−α23

, 0, α12

)
− 16G(0, α23)G(0, 1− α23, 0, α12)

− 16G(0, α23)G
(

0, α23−1
α23

, 0, α12

)
+ 16G(0, α23)G

(
0, α23
α23−1

, 0, α12

)
+ 32G(1,−1, 0, α12)G(0, α23)− 32G(1, 0, 0, α12)G(0, α23) + 32G(1, 1, 0, α12)G(0, α23)

− 8
3
iπ3(G(0, α12)−G(1, α23)) + 16G(0, 0, α12)(G(0, 0, α23)− 2G(−1, 0, α23))

+ 4
3
π2
(
G(0, α12)(3G(0, α23)+2iπ)+2G

(
0, 1

1−α23
, α12

)
+2G(0, 1−α23, α12)−2G

(
0, α23−1

α23
, α12

)
− 2G

(
0, α23
α23−1

, α12

)
− 2iπG(1, α23) + 2G(0, 0, α23)− 2G(0, 1, α23)− 2G(1, 0, α23) + π2

)
+ 32G(−1, 0, α12)(G(−1, 0, α23)−G(1, 0, α23)) + 32G(1, 0, α12)(G(−1, 0, α23)−G(1, 0, α23))

−16(G(0, 0, α23)−G(1, 0, α23))G
(

0, α23−1
α23

, α12

)
−16(G(0, 0, α23)−G(1, 0, α23))G

(
0, α23
α23−1

, α12

)
+ 16G(1, 0, α23)G

(
0, 1

1−α23
, α12

)
+ 16G(1, 0, α23)G(0, 1− α23, α12)

− 8
3
π2
(
−3G(0, α12)G(−1, α23) +G(0, α12)G(0, α23) +G(0, α12)G(1, α23) +G(−1, α12)G(0, α23)

+G(1, α12)G(0, α23) + 2G(0, 1− α23, α12) + 2G
(

0, α23
α23−1

, α12

)
− 3G(−1, 0, α12) +G(0, 0, α12)

− 3G(1, 0, α12) +G(−1, 0, α23)− 2G(0, 0, α23) + 3G(1, 0, α23)− 2G(1, 1, α23)
)

+ 16G(0, α12)(2G(−1,−1, 0, α23)− 2G(−1, 1, 0, α23) +G(0, 1, 0, α23)− 2G(1,−1, 0, α23)

+G(1, 0, 0, α23)) + 16G
(

0, 1
1−α23

, 0, 0, α12

)
− 16G

(
0, 1

1−α23
, 1, 0, α12

)
+ 16G(0, 1− α23, 1, 0, α12)− 16G

(
0, α23−1

α23
, 1, 0, α12

)
− 16G

(
0, α23
α23−1

, 0, 0, α12

)
+ 16G

(
0, α23
α23−1

, 1, 0, α12

)
+ 64 log2(2)G(0, α12)G(0, α23)

+ 16
3

log(2)
((
−12G(−1, 0, α12) + 12G(0, 0, α12)− 12G(1, 0, α12) + π2

)
G(0, α23)

− 3G(0, α12)
(
4G(−1, 0, α23)− 4G(1, 0, α23) + π2

))
+ 16G(0, 0, 0, 0, α23)− 16G(0, 0, 1, 0, α23)− 16G(0, 1, 0, 0, α23) + 16G(0, 1, 1, 0, α23)

− 16G(1, 0, 0, 0, α23) + 16G(1, 0, 1, 0, α23) + 16G(1, 1, 0, 0, α23)− 32G(1, 1, 1, 0, α23) + 4π4

15

which has been checked numerically using pySecDec [129].

A.2 [3gv]-web Differential Equation

In this section we solve the lower sectors of the [3gv]-web system. One set of basis

integrals for this 20-dimensional system are the first 20 integrals in eq. (2.92). We

shall label these 20 as f [3gv]. Proceeding as before we find a transformation to

a uniform weight basis f [3gv] = Tg[3gv]. The new basis satisfies the differential

equation

dg[3gv] =

|A[3gv]|∑
i=1

cid log
(
A[3gv]
i

)
g[3gv]. (A.2)
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The alphabet is

A[3gv] ={α12 − 1, α12, α12 + 1, α13 − 1, α13, α13 + 1, α12 + α13 − 1, α12α13 − α12 + 1,

α12α13 − α13 + 1, α12α13 − α12 − α13, α23 − 1, α23, α23 + 1, α12 + α23 − 1,

α13 + α23 − 1, α12α23 − α12 + 1, α12α23 − α23 + 1, α12α23 − α12 − α23,

α13α23 − α13 + 1, α13α23 − α23 + 1, α13α23 − α13 − α23} (A.3)

with |A[3gv]|= 21. Note that this is just the alphabet for the lower integrals. The

20 uniform weight integals are

g
[3gv]
1 =

1

3
ε
(
32ε3 − 48ε2 + 22ε− 3

)
I
[3gv]
0111

g
[3gv]
2 = (1− 2ε)2ε2I

[3gv]
11011 −

1

3
ε(2ε− 1)

(
16ε2 − 16ε+ 3

)
I
[3gv]
0111

g
[3gv]
3 = −

(1− 2ε)2ε2I
[3gv]
10111

3(α12 − 1)
−
ε2I

[3gv]
10112((α12 + 3)ε− 1)

6α12
+

(
8ε2 − 10ε+ 3

)
εI

[3gv]
0111 (α12(4ε− 1)− 6ε+ 1)

6(α12 − 1)

g
[3gv]
4 = −

2(α12 + 1)
(
8ε2 − 10ε+ 3

)
ε2I

[3gv]
0111

3(α12 − 1)
−

2(α12 + 1)(1− 2ε)2ε2I
[3gv]
10111

3(α12 − 1)
−

(3ε− 1)ε2I
[3gv]
10112

3s(α12)

g
[3gv]
5 = −

ε4I
[3gv]
11111

s(α12)

g
[3gv]
6 = −

(1− 2ε)2ε2I
[3gv]
110101

3(α13 − 1)
−
ε2I

[3gv]
110102((α13 + 3)ε− 1)

6α13
+

(
8ε2 − 10ε+ 3

)
εI

[3gv]
0111 (α13(4ε− 1)− 6ε+ 1)

6(α13 − 1)

g
[3gv]
7 = −

2(α13 + 1)
(
8ε2 − 10ε+ 3

)
ε2I

[3gv]
0111

3(α13 − 1)
−

2(α13 + 1)(1− 2ε)2ε2I
[3gv]
110101

3(α13 − 1)
−

(3ε− 1)ε2I
[3gv]
110102

3s(α13)

g
[3gv]
8 = −

ε4I
[3gv]
111101

s(α13)

g
[3gv]
9 = −

(1− 2ε)2ε2I
[3gv]
110011

3(α23 − 1)
−
ε2I

[3gv]
110012((α23 + 3)ε− 1)

6α23
+

(
8ε2 − 10ε+ 3

)
εI

[3gv]
0111 (α23(4ε− 1)− 6ε+ 1)

6(α23 − 1)

g
[3gv]
10 = −

2(α23 + 1)
(
8ε2 − 10ε+ 3

)
ε2I

[3gv]
0111

3(α23 − 1)
−

2(α23 + 1)(1− 2ε)2ε2I
[3gv]
110011

3(α23 − 1)
−

(3ε− 1)ε2I
[3gv]
110012

3s(α23)

g
[3gv]
11 = −

ε4I
[3gv]
111011

s(α23)

g
[3gv]
12 =

(α13 − 1)ε3I
[3gv]
110112

2α13s(α23)
+

(4ε− 1)ε3I
[3gv]
110111

2s(α23)
+
ε3I

[3gv]
110121

2s(α23)

g
[3gv]
13 =

3ε3I
[3gv]
110112

4s(α13)s(α23)

g
[3gv]
14 = −

ε3I
[3gv]
110112

2α23s(α13)
−
ε3I

[3gv]
110121

2s(α13)
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g
[3gv]
15 =

(α23 − 1)ε3I
[3gv]
101121

2α23s(α12)
+

(4ε− 1)ε3I
[3gv]
101111

2s(α12)
+
ε3I

[3gv]
101211

2s(α12)

g
[3gv]
16 =

3ε3I
[3gv]
101121

4s(α12)s(α23)

g
[3gv]
17 = −

ε3I
[3gv]
101121

2α12s(α23)
−
ε3I

[3gv]
101211

2s(α23)

g
[3gv]
18 =

(α12 − 1)ε3I
[3gv]
011211

2α12s(α13)
+

(4ε− 1)ε3I
[3gv]
011111

2s(α13)
+
ε3I

[3gv]
011112

2s(α13)

g
[3gv]
19 = −

ε3I
[3gv]
011211

2α13s(α12)
−
ε3I

[3gv]
011112

2s(α12)

g
[3gv]
20 =

3ε3I
[3gv]
011211

4s(α12)s(α13)

The boundary for solving the system is chosen to be α12 = 1, α13 = 1 and α23 = 1.

Defining the boundary vector b[3gv] to be g[3gv] evaluated at the boundary we find

b
[3gv]
1 =− 2

3
+

8

3
ε log(2) + ε2

(
−π2 − 16

3
log2(2)

)
+ ε3

(
124ζ3

9
+

64 log3(2)

9
+ 4π2 log(2)

)
+O(ε4) (A.4a)

b
[3gv]
2 =

14

3
− 56

3
ε log(2) + ε2

(
13π2

3
+

112 log2(2)

3

)
+ ε3

(
−292ζ3

9
− 448

9
log3(2)− 52

3
π2 log(2)

)
+O(ε4) (A.4b)

b
[3gv]
i = O(ε4) ∀i ≥ 3 (A.4c)

and, as a simple check, we notice that they are of uniform weight. The specific

matrices that appear in eq. (A.2) are

c
[3gv]
1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2
3

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


c
[3gv]
2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 −4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7
2

1
2
−6 3

2
−2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

1
2
−3 3

2
0 0 0 0 3 0 0 0 0 0 −1 −2

3
−1 0 0 0

0 0 0 0 0 0 0 0 0 −9
4

0 0 0 0 0 1 3 0 0 0

0 0 0 0 0 0 0 0 0 3
2

0 0 0 0 0 2
3

0 0 0 0

0 0 0 0 0 0 3
2

0 0 0 0 0 0 0 0 0 0 0 0 2
3

1
2

1
2
−3 3

2
0 3 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −2

3

0 0 0 0 0 0 −9
4

0 0 0 0 0 0 0 0 0 0 3 0 1


(A.5a)
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c
[3gv]
3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2
3

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


c
[3gv]
4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −2
3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


(A.5b)

c
[3gv]
5 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 −1
2

0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 −4 1 0 0 0 0 0 0 0 0 0 0 0 0 0
7
2

1
2

0 0 0 −6 3
2
−2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 3
2

0 0 2
3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −9
4

0 3 1 0 0 0 0 0 0 0
1
2

1
2

0 0 0 −3 3
2

0 3 0 0 −1 −2
3
−1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

1
2

3 0 0 −3 3
2

0 0 0 0 0 0 0 0 0 0 −1 −1 −2
3

0 0 0 3
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
3

0 0 0 −9
4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1


c
[3gv]
6 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −2
3

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2
3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2


(A.5c)

c
[3gv]
7 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7
2

1
2
−3 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

7
2

1
2
−3 0 0 −3 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0

−21
4
−3

4
9
2

0 0 9
2

0 0 0 0 0 0 0 0 0 0 0 3
2

3
2

0


c
[3gv]
8 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−7
2
−1

2
3 −3

2
0 3 0 0 0 0 0 0 0 0 0 0 0 1 −1 2

3
21
4

3
4
−9

2
9
4

0 −9
2

0 0 0 0 0 0 0 0 0 0 0 −3
2

3
2
−1


(A.5d)

c
[3gv]
9 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−7
2
−1

2
3 0 0 3 −3

2
0 0 0 0 0 0 0 0 0 0 −1 1 2

3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21
4

3
4
−9

2
0 0 −9

2
9
4

0 0 0 0 0 0 0 0 0 0 3
2
−3

2
−1


c
[3gv]
10 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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A.3 Parameterisation of the [3gv]-web Integrand

In this appendix we explain in more detail the parameterisation used in

eq. (2.83c). We first decompose β1 in terms of two lightlike vectors p1 and p2

β1 = p1 + p2. (A.6)

Since β2
1 = 1 we have 2p1·p2 = 1. Next, we parameterise β2 as a linear combination

of these vectors. As we define the α variables through 2β1 · β2 = −
(

1
α12
− α12

)
then

β2 = − p1

α12

− α12p2. (A.7)

We have one Wilson line left to parameterise, β3. The vectors p1 and p2 do not

span fully the space occupied by β1 and β2. We need vectors other than p1 and

p2 in order to do so. To achieve this we will use the constituent spinors of p1 and

p2 to define the new vectors. The following formalism is referred to the spinor-

helicity formalism (see eg. [190] for a more detailed introduction). Since both are

lightlike we can write them as

pµi σ
αα̇
µ = λαi λ̃

α̇
i (A.8)
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where σµ = (1,σσσ) is the usual four-dimensional Pauli matrices and λi and λ̃i are

two-dimensional vectors. In eq. (A.8) we use the fact that rank 1 matrices can

be written as a product of two vectors. We then define new vectors from these

spinors, λ1λ̃2 and λ2λ̃1. These are both orthogonal to p1 and p2 which allows us

to parameterise β3 in terms of all of them

β3 = a1p1 + a2p2 + a3
〈23〉
〈13〉λ1λ̃2 + a4

〈13〉
〈23〉λ2λ̃1. (A.9)

The ai are given in eqs. (2.84a) and (2.84b). We have also used the angle-bracket

notation where λα̇i → |i〉α̇ and 〈ij〉 = 〈i|α̇ |j〉
α̇. The explicit appearance of the

spinor products in eq. (A.9) keeps it little group invariant without the need to

transform the pararmeters ai. In the spinor language, this transformation is

λi → λi
t

and λ̃i → tλ̃i.
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Appendix B

Functions with letter y

In this section we present the functions that have at least one occurence of

the letter y in their symbol. These are constructed in Section 3.2. Each pure

polylogarithm functions in this class is labelled as w
(j),k
i , which describes the i-th

function at weight j corresponding to a rational factor which is the k-th element

of the set

{r(α)even, r(α)odd, r(α)evens(α)odd, r(α)odds(α)odd}. (B.1)

The w
(j),k
i functions are written in terms of MPLs and for brevity of the

expressions we drop the functional argument i.e. Ga1···an ≡ Ga1···an(α).

For those of the first type w
(n),1
i we give its value at α = 1. The types w

(n),2
i and

w
(n),3
i already vanish at α = 1. As explained in Section 3.2 subtraction constants

for the fourth type w
(n),4
i are not consistent with symmetries.

B.1 Weight Three Functions

There are two functions at weight three. The only function at weight 3 with

rational factor r(α)evens(α)odd is

w
(3),3
1 = −G−1,−1,0 +G−1,0,0 −G−1,1,0 +G1,−1,0 −G1,0,0 +G1,1,0

+ 2 log(2)G−1,0 − 2 log(2)G1,0 +
1

2
ζ2G−1 −

1

2
ζ2G1

S[w
(3),3
1 ] = α⊗ η ⊗ y
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The only function at weight three with rational factor r(α)odd(α)sodd is

w
(3),4
1 = G−1,0,0 −G1,0,0

S[w
(3),4
1 ] = α⊗ α⊗ y

B.2 Weight Four Functions

There are nine functions at weight four.

The only function at weight four with rational factor r(α)even is

w
(4),1
1 = G−1,−1,0,0 −G−1,1,0,0 −G1,−1,0,0 +G1,1,0,0 +

7

4
ζ3G−1 −

7

4
ζ3G0 +

7

4
ζ3G1

w
(4),1
1 (1) = −4Li4

(
1

2

)
+ ζ2 log2(2) +

53

16
ζ4 −

1

6
log4(2)

S[w
(4),1
1 ] = α⊗ α⊗ y ⊗ y

The only function at weight four with rational factor r(α)odd is

w
(4),2
1 =−G−1,−1,−1,0+G−1,−1,0,0−G−1,−1,1,0+G−1,1,−1,0−G−1,1,0,0+G−1,1,1,0+G1,−1,−1,0−G1,−1,0,0

+G1,−1,1,0−G1,1,−1,0+G1,1,0,0−G1,1,1,0+2 log2(2)G−1,0−2 log2(2)G0,0+2 log2(2)G1,0

−12 log(2)G−1,−1,0+14 log(2)G−1,0,0−16 log(2)G−1,1,0+14 log(2)G0,−1,0+14 log(2)G0,1,0

−16 log(2)G1,−1,0+14 log(2)G1,0,0−12 log(2)G1,1,0+ 53
20
ζ2G−1,0+ 1

2
ζ2G−1,−1− 1

2
ζ2G−1,1

− 53
20
ζ2G0,0− 1

2
ζ2G1,−1+ 53

20
ζ2G1,0+ 1

2
ζ2G1,1+7ζ2 log(2)G−1+7ζ2 log(2)G1−4Li4( 1

2)− log4(2)
6

S[w
(4),2
1 ] = α⊗ η ⊗ y ⊗ y

There are three functions at weight four with rational factor r(α)evens(α)odd are

w
(4),3
1 =G−1,0,0,0−G1,0,0,0− 1

2
ζ2G−1,0+ 1

2
ζ2G1,0

S[w
(4),3
1 ] = α⊗ α⊗ α⊗ y

w
(4),3
2 =G0,−1,0,0−G0,1,0,0+ 3

2
ζ2G−1,0− 3

2
ζ2G1,0

S[w
(4),3
2 ] = α⊗ α⊗ y ⊗ α
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w
(4),3
3 =3G−1,−1,−1,0−3G−1,−1,0,0+3G−1,−1,1,0−2G−1,0,−1,0+2G−1,0,0,0−2G−1,0,1,0+G−1,1,−1,0

−G−1,1,0,0+G−1,1,1,0−G0,−1,−1,0+G0,−1,0,0−G0,−1,1,0+G0,1,−1,0−G0,1,0,0+G0,1,1,0

−G1,−1,−1,0+G1,−1,0,0−G1,−1,1,0+2G1,0,−1,0−2G1,0,0,0+2G1,0,1,0−3G1,1,−1,0

+3G1,1,0,0−3G1,1,1,0−4 log2(2)G−1,0+4 log2(2)G1,0−2 log(2)G−1,−1,0+2 log(2)G−1,1,0

+2 log(2)G0,−1,0−2 log(2)G0,1,0−2 log(2)G1,−1,0+2 log(2)G1,1,0− 3
2
ζ2G−1,−1+ 1

2
ζ2G−1,0

− 1
2
ζ2G−1,1+ 1

2
ζ2G0,−1− 1

2
ζ2G0,1+ 1

2
ζ2G1,−1− 1

2
ζ2G1,0+ 3

2
ζ2G1,1− 1

2
ζ3G−1+ 1

2
ζ3G1

S[w
(4),3
3 ] = α⊗ η ⊗ y ⊗ η + 2α⊗ η ⊗ η ⊗ y

There are four functions at weight four with rational factor r(α)odds(α)odd are

w
(4),4
1 =−G−1,−1,0,0+G−1,0,0,0−G−1,1,0,0+G1,−1,0,0−G1,0,0,0+G1,1,0,0− 1

4
ζ3G−1+ 1

4
ζ3G1

S[w
(4),4
1 ] = α⊗ α⊗ η ⊗ y

w
(4),4
2 =−G−1,−1,0,0+G−1,1,0,0+G0,−1,0,0−G0,1,0,0−G1,−1,0,0+G1,1,0,0− 7

4
ζ3G−1+ 7

4
ζ3G1

S[w
(4),4
2 ] = α⊗ α⊗ y ⊗ η

w
(4),4
3 =−G0,−1,−1,0+G0,−1,0,0−G0,−1,1,0+G0,1,−1,0−G0,1,0,0

+G0,1,1,0+2 log(2)G0,−1,0−2 log(2)G0,1,0+ 1
2
ζ2G0,−1− 1

2
ζ2G0,1

S[w
(4),4
3 ] = α⊗ η ⊗ y ⊗ α

w
(4),4
4 =−G−1,0,−1,0+G−1,0,0,0−G−1,0,1,0+G1,0,−1,0−G1,0,0,0

+G1,0,1,0+ 1
2
ζ2G−1,0− 1

2
ζ2G1,0+ 1

2
ζ3G−1− 1

2
ζ3G1

S[w
(4),4
4 ] = α⊗ η ⊗ α⊗ y

B.3 Weight Five Functions

There are 32 functions at weight five.

There are six functions at weight five with rational factor r(α)even are

w
(5),1
1 =−G−1,−1,−1,0,0+G−1,−1,1,0,0+G−1,1,−1,0,0−G−1,1,1,0,0+G0,−1,−1,0,0−G0,−1,1,0,0

−G0,1,−1,0,0+G0,1,1,0,0−G1,−1,−1,0,0+G1,−1,1,0,0+G1,1,−1,0,0−G1,1,1,0,0− 1
6

log4(2)G−1

+ 1
6

log4(2)G0− 1
6

log4(2)G1+2 log2(2)G−1,0,0−2 log2(2)G0,−1,0−2 log2(2)G0,1,0

+2 log2(2)G1,0,0−4Li4( 1
2)G−1+4Li4( 1

2)G0−4Li4( 1
2)G1+ 53

40
ζ22G−1+ 53

40
ζ22G1

+ 53
20
ζ2G−1,0,0− 53

20
ζ2G0,−1,0− 53

20
ζ2G0,1,0+ 53

20
ζ2G1,0,0+ζ2 log2(2)G−1+ζ2 log2(2)G1

− 7
4
ζ3G−1,−1+ 7

4
ζ3G−1,0− 7

4
ζ3G−1,1+ 7

4
ζ3G0,−1+ 7

4
ζ3G0,1− 7

4
ζ3G1,−1+ 7

4
ζ3G1,0− 7

4
ζ3G1,1

w
(5),1
1 (1)=8Li5( 1

2)− 159ζ2ζ3
80

+ 2
3
ζ2 log3(2)+ 53

8
ζ4 log(2)− 217ζ5

32
− 3

2
ζ3 log2(2)− 1

15
log5(2)

S[w
(5),1
1 ] = α⊗ α⊗ y ⊗ y ⊗ η

128



w
(5),1
2 =−G−1,−1,−1,0,0+G−1,−1,1,0,0+G−1,0,−1,0,0−G−1,0,1,0,0−G−1,1,−1,0,0+G−1,1,1,0,0+G1,−1,−1,0,0

−G1,−1,1,0,0−G1,0,−1,0,0+G1,0,1,0,0+G1,1,−1,0,0−G1,1,1,0,0+ 9
8
ζ22G−1+ 9

8
ζ22G1+ 9

4
ζ2G−1,0,0

− 9
4
ζ2G0,−1,0− 9

4
ζ2G0,1,0+ 9

4
ζ2G1,0,0− 7

4
ζ3G−1,−1+ 7

4
ζ3G−1,1+ 7

4
ζ3G1,−1− 7

4
ζ3G1,1

w
(5),1
2 (1)=− 27ζ2ζ3

16
+ 45

8
ζ4 log(2)− 31ζ5

32

S[w
(5),1
2 ] = α⊗ α⊗ y ⊗ η ⊗ y

w
(5),1
3 =−G−1,−1,−1,0,0+G−1,−1,0,0,0−G−1,−1,1,0,0+G−1,1,−1,0,0−G−1,1,0,0,0+G−1,1,1,0,0

+G1,−1,−1,0,0−G1,−1,0,0,0+G1,−1,1,0,0−G1,1,−1,0,0+G1,1,0,0,0−G1,1,1,0,0

+ 1
6

log4(2)G−1− 1
6

log4(2)G0+ 1
6

log4(2)G1−2 log2(2)G−1,0,0+2 log2(2)G0,−1,0

+2 log2(2)G0,1,0−2 log2(2)G1,0,0+4Li4( 1
2)G−1−4Li4( 1

2)G0+4Li4( 1
2)G1

− 53
40
ζ22G−1− 53

40
ζ22G1− 53

20
ζ2G−1,0,0+ 53

20
ζ2G0,−1,0+ 53

20
ζ2G0,1,0− 53

20
ζ2G1,0,0

−ζ2 log2(2)G−1−ζ2 log2(2)G1− 1
4
ζ3G−1,−1+ 1

4
ζ3G−1,1+ 1

4
ζ3G1,−1− 1

4
ζ3G1,1

w
(5),1
3 (1)=−16Li5( 1

2)+
159ζ2ζ3

80
− 4

3
ζ2 log3(2)− 53

4
ζ4 log(2)+

31ζ5
2

+ 3
2
ζ3 log2(2)+

2 log5(2)
15

S[w
(5),1
3 ] = α⊗ α⊗ η ⊗ y ⊗ y

w
(5),1
4 =−G−1,−1,0,−1,0+G−1,−1,0,0,0−G−1,−1,0,1,0+G−1,1,0,−1,0−G−1,1,0,0,0+G−1,1,0,1,0

+G1,−1,0,−1,0−G1,−1,0,0,0+G1,−1,0,1,0−G1,1,0,−1,0+G1,1,0,0,0−G1,1,0,1,0− 9
8
ζ22G−1

− 9
8
ζ22G1+ 1

2
ζ2G−1,−1,0− 9

4
ζ2G−1,0,0− 1

2
ζ2G−1,1,0+ 9

4
ζ2G0,−1,0+ 9

4
ζ2G0,1,0

− 1
2
ζ2G1,−1,0− 9

4
ζ2G1,0,0+ 1

2
ζ2G1,1,0+ 1

2
ζ3G−1,−1− 1

2
ζ3G−1,1− 1

2
ζ3G1,−1+ 1

2
ζ3G1,1

w
(5),1
4 (1)=

41ζ2ζ3
16

+ 1
8

(−45)ζ4 log(2)− 31ζ5
32

S[w
(5),1
4 ] = α⊗ η ⊗ α⊗ y ⊗ y

w
(5),1
5 =−G−1,0,−1,−1,0+G−1,0,−1,0,0−G−1,0,−1,1,0+G−1,0,1,−1,0−G−1,0,1,0,0+G−1,0,1,1,0

+G1,0,−1,−1,0−G1,0,−1,0,0+G1,0,−1,1,0−G1,0,1,−1,0+G1,0,1,0,0−G1,0,1,1,0− 1
3

log4(2)G−1

+ 1
3

log4(2)G0− 1
3

log4(2)G1+4 log2(2)G−1,0,0−4 log2(2)G0,−1,0−4 log2(2)G0,1,0+4 log2(2)G1,0,0

+log(16)G−1,−1,0,0+log(16)G1,1,0,0+log(4)G−1,0,−1,0−log(4)G−1,0,1,0−log(4)G1,0,−1,0

+log(4)G1,0,1,0−4 log(2)G−1,1,0,0−4 log(2)G1,−1,0,0−8Li4( 1
2)G−1+8Li4( 1

2)G0−8Li4( 1
2)G1

+ 151
40
ζ22G−1+ 151

40
ζ22G1+ 1

2
ζ2G−1,0,−1+ 151

20
ζ2G−1,0,0− 1

2
ζ2G−1,0,1− 151

20
ζ2G0,−1,0

− 151
20
ζ2G0,1,0− 1

2
ζ2G1,0,−1+ 151

20
ζ2G1,0,0+ 1

2
ζ2G1,0,1+2ζ2 log2(2)G−1+2ζ2 log2(2)G1

w
(5),1
5 (1)=

8 log(2)3ζ2
3

−3 log(2)2ζ3− 4 log(2)5

15
+

257 log(2)ζ4
8

+32Li5( 1
2)− 593ζ2ζ3

80
− 465ζ5

16

S[w
(5),1
5 ] = α⊗ η ⊗ y ⊗ α⊗ y

w
(5),1
6 =−G0,−1,−1,−1,0+G0,−1,−1,0,0−G0,−1,−1,1,0+G0,−1,1,−1,0−G0,−1,1,0,0+G0,−1,1,1,0+G0,1,−1,−1,0

−G0,1,−1,0,0+G0,1,−1,1,0−G0,1,1,−1,0+G0,1,1,0,0−G0,1,1,1,0− 1
6

log4(2)G0−2 log2(2)G−1,0,0

+2 log2(2)G0,−1,0+2 log2(2)G0,1,0−2 log2(2)G1,0,0+12 log(2)G−1,−1,0,0−14 log(2)G−1,0,0,0

+16 log(2)G−1,1,0,0−12 log(2)G0,−1,−1,0−16 log(2)G0,−1,1,0+14 log(2)G0,0,−1,0

+14 log(2)G0,0,1,0−16 log(2)G0,1,−1,0−12 log(2)G0,1,1,0+16 log(2)G1,−1,0,0−14 log(2)G1,0,0,0

+12 log(2)G1,1,0,0−4Li4( 1
2)G0− 53

20
ζ2G−1,0,0+ 1

2
ζ2G0,−1,−1+ 53

20
ζ2G0,−1,0− 1

2
ζ2G0,−1,1

− 1
2
ζ2G0,1,−1+ 53

20
ζ2G0,1,0+ 1

2
ζ2G0,1,1− 53

20
ζ2G1,0,0+7ζ2 log(2)G0,−1+7ζ2 log(2)G0,1

w
(5),1
6 (1)=−2 log(2)3ζ2+

3 log(2)2ζ3
2

+
log(2)5

3
+8 log(2)Li4( 1

2)− 67 log(2)ζ4
8

+
229ζ2ζ3

80
− 31ζ5

32
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S[w
(5),1
6 ] = α⊗ η ⊗ y ⊗ y ⊗ α

There are 4 functions at weight 5 with rational factor r(α)odd are

w
(5),2
1 =G−1,−1,0,0,0−G−1,1,0,0,0−G1,−1,0,0,0+G1,1,0,0,0− 1

2
ζ2G−1,−1,0+ 1

2
ζ2G−1,1,0

+ 1
2
ζ2G1,−1,0− 1

2
ζ2G1,1,0+ 7

2
ζ3G−1,0− 7

2
ζ3G0,0+ 7

2
ζ3G1,0− 31ζ5

16

S[w
(5),2
1 ] = α⊗ α⊗ α⊗ y ⊗ y

w
(5),2
2 =G−1,0,−1,0,0−G−1,0,1,0,0−G1,0,−1,0,0+G1,0,1,0,0+ 3

2
ζ2G−1,−1,0− 3

2
ζ2G−1,1,0

− 3
2
ζ2G1,−1,0+ 3

2
ζ2G1,1,0− 35

4
ζ3G−1,0+ 35

4
ζ3G0,0− 35

4
ζ3G1,0+

31ζ5
4

S[w
(5),2
2 ] = α⊗ α⊗ y ⊗ α⊗ y

w
(5),2
3 =G0,−1,−1,0,0−G0,−1,1,0,0−G0,1,−1,0,0+G0,1,1,0,0+ 7

4
ζ3G0,−1− 7

4
ζ3G0,0+ 7

4
ζ3G0,1− 31ζ5

16

S[w
(5),2
3 ] = α⊗ α⊗ y ⊗ y ⊗ α

w
(5),2
4 =− log2(2)ζ2G−1+4Li4( 1

2)G−1+ 1
6

log4(2)G−1+4G−1,−1,−1,−1,0−4G−1,−1,−1,0,0+4G−1,−1,−1,1,0

−2G−1,−1,0,−1,0+2G−1,−1,0,0,0−2G−1,−1,0,1,0−G−1,0,−1,−1,0+G−1,0,−1,0,0−G−1,0,−1,1,0

+G−1,0,1,−1,0−G−1,0,1,0,0+G−1,0,1,1,0−2G−1,1,−1,−1,0+2G−1,1,−1,0,0−2G−1,1,−1,1,0

+2G−1,1,0,−1,0−2G−1,1,0,0,0+2G−1,1,0,1,0−2G−1,1,1,−1,0+2G−1,1,1,0,0−2G−1,1,1,1,0

−G0,−1,−1,−1,0+G0,−1,−1,0,0−G0,−1,−1,1,0+G0,−1,1,−1,0−G0,−1,1,0,0+G0,−1,1,1,0

+G0,1,−1,−1,0−G0,1,−1,0,0+G0,1,−1,1,0−G0,1,1,−1,0+G0,1,1,0,0−G0,1,1,1,0−2G1,−1,−1,−1,0

+2G1,−1,−1,0,0−2G1,−1,−1,1,0+2G1,−1,0,−1,0−2G1,−1,0,0,0+2G1,−1,0,1,0−2G1,−1,1,−1,0

+2G1,−1,1,0,0−2G1,−1,1,1,0+G1,0,−1,−1,0−G1,0,−1,0,0+G1,0,−1,1,0−G1,0,1,−1,0+G1,0,1,0,0

−G1,0,1,1,0−2G1,1,0,−1,0+2G1,1,0,0,0−2G1,1,0,1,0+4G1,1,1,−1,0−4G1,1,1,0,0+4G1,1,1,1,0

−2G−1,−1,−1ζ2− 43
20
G−1,−1,0ζ2+ 1

2
G−1,0,−1ζ2+ 53

20
G−1,0,0ζ2− 1

2
G−1,0,1ζ2+G−1,1,−1ζ2

− 63
20
G−1,1,0ζ2+G−1,1,1ζ2+ 1

2
G0,−1,−1ζ2+ 53

20
G0,−1,0ζ2− 1

2
G0,−1,1ζ2− 1

2
G0,1,−1ζ2+ 53

20
G0,1,0ζ2

+ 1
2
G0,1,1ζ2+G1,−1,−1ζ2− 63

20
G1,−1,0ζ2+G1,−1,1ζ2− 1

2
G1,0,−1ζ2+ 53

20
G1,0,0ζ2+ 1

2
G1,0,1ζ2

− 43
20
G1,1,0ζ2−2G1,1,1ζ2−G1 log2(2)ζ2−6G−1,−1 log(2)ζ2−8G−1,1 log(2)ζ2+7G0,−1 log(2)ζ2

+7G0,1 log(2)ζ2−8G1,−1 log(2)ζ2−6G1,1 log(2)ζ2− 31ζ5
32
− 1

2
G−1,−1ζ3+ 123

40
G−1,0ζ3

+ 1
2
G−1,1ζ3− 123

40
G0,0ζ3+ 1

2
G1,−1ζ3+ 123

40
G1,0ζ3− 1

2
G1,1ζ3+4G1Li4( 1

2)+ 1
6
G1 log4(2)

+8G−1,−1,−1,0 log(2)−12G−1,−1,0,0 log(2)+16G−1,−1,1,0 log(2)−12G−1,0,−1,0 log(2)

+ 21
4
G−1,0,0,0 log(2)−16G−1,0,1,0 log(2)+16G−1,1,−1,0 log(2)−16G−1,1,0,0 log(2)

+16G−1,1,1,0 log(2)−12G0,−1,−1,0 log(2)+ 35
4
G0,−1,0,0 log(2)−16G0,−1,1,0 log(2)

+14G0,0,−1,0 log(2)+14G0,0,1,0 log(2)−16G0,1,−1,0 log(2)+ 35
4
G0,1,0,0 log(2)−12G0,1,1,0 log(2)

+16G1,−1,−1,0 log(2)−16G1,−1,0,0 log(2)+16G1,−1,1,0 log(2)−16G1,0,−1,0 log(2)

+ 21
4
G1,0,0,0 log(2)−12G1,0,1,0 log(2)+16G1,1,−1,0 log(2)−12G1,1,0,0 log(2)+8G1,1,1,0 log(2)

S[w
(5),2
4 ] = α⊗ η ⊗ y ⊗ y ⊗ η + α⊗ η ⊗ y ⊗ η ⊗ y + 2α⊗ η ⊗ η ⊗ y ⊗ y
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There are 11 functions at weight 5 with rational factor r(α)evens(α)odd are

w
(5),3
1 =−G−1,−1,0,0,0+G−1,1,0,0,0+G0,−1,0,0,0−G0,1,0,0,0−G1,−1,0,0,0+G1,1,0,0,0+ 1

2
ζ2G−1,−1,0

− 1
2
ζ2G−1,1,0− 1

2
ζ2G0,−1,0+ 1

2
ζ2G0,1,0+ 1

2
ζ2G1,−1,0− 1

2
ζ2G1,1,0− 7

4
ζ3G−1,0+ 7

4
ζ3G1,0

S[w
(5),3
1 ] = α⊗ α⊗ α⊗ y ⊗ η

w
(5),3
2 =−G−1,−1,0,0,0+G−1,0,0,0,0−G−1,1,0,0,0+G1,−1,0,0,0−G1,0,0,0,0+G1,1,0,0,0

+ 8
5

log(2)G−1,0,0,0− 8
5

log(2)G1,0,0,0+ 1
10
ζ2G−1,−1,0− 1

10
ζ2G−1,0,0

+ 1
10
ζ2G−1,1,0− 1

10
ζ2G1,−1,0+ 1

10
ζ2G1,0,0− 1

10
ζ2G1,1,0− 1

4
ζ3G−1,0+ 1

4
ζ3G1,0

S[w
(5),3
2 ] = α⊗ α⊗ α⊗ η ⊗ y

w
(5),3
3 =−G−1,0,−1,0,0+G−1,0,1,0,0+G0,0,−1,0,0−G0,0,1,0,0−G1,0,−1,0,0+G1,0,1,0,0

+log(64)G1,0,0,0−6 log(2)G−1,0,0,0− 3
2
ζ2G−1,−1,0+ 3

2
ζ2G−1,1,0

+ 3
2
ζ2G0,−1,0− 3

2
ζ2G0,1,0− 3

2
ζ2G1,−1,0+ 3

2
ζ2G1,1,0+ 7

2
ζ3G−1,0− 7

2
ζ3G1,0

S[w
(5),3
3 ] = α⊗ α⊗ y ⊗ α⊗ η

w
(5),3
4 =−G0,−1,−1,0,0+G0,−1,1,0,0+G0,0,−1,0,0−G0,0,1,0,0−G0,1,−1,0,0

+G0,1,1,0,0+log(64)G−1,0,0,0−6 log(2)G1,0,0,0− 7
4
ζ3G0,−1+ 7

4
ζ3G0,1

S[w
(5),3
4 ] = α⊗ α⊗ y ⊗ η ⊗ α

w
(5),3
5 =−G−1,0,−1,0,0+G−1,0,0,0,0−G−1,0,1,0,0+G1,0,−1,0,0−G1,0,0,0,0+G1,0,1,0,0

+ 6
5

log(2)G−1,0,0,0− 6
5

log(2)G1,0,0,0− 3
10
ζ2G−1,−1,0+ 3

10
ζ2G−1,0,0

− 3
10
ζ2G−1,1,0+ 3

10
ζ2G1,−1,0− 3

10
ζ2G1,0,0+ 3

10
ζ2G1,1,0+ 1

2
ζ3G−1,0− 1

2
ζ3G1,0

S[w
(5),3
5 ] = α⊗ α⊗ η ⊗ α⊗ y

w
(5),3
6 =−G0,−1,−1,0,0+G0,−1,0,0,0−G0,−1,1,0,0+G0,1,−1,0,0−G0,1,0,0,0

+G0,1,1,0,0+log(64)G1,0,0,0−6 log(2)G−1,0,0,0− 1
4
ζ3G0,−1+ 1

4
ζ3G0,1

S[w
(5),3
6 ] = α⊗ α⊗ η ⊗ y ⊗ α

w
(5),3
7 =−G−1,0,0,−1,0+G−1,0,0,0,0−G−1,0,0,1,0+G1,0,0,−1,0−G1,0,0,0,0+G1,0,0,1,0

− 6
5

log(2)G−1,0,0,0+ 6
5

log(2)G1,0,0,0+ 3
10
ζ2G−1,−1,0+ 1

5
ζ2G−1,0,0

+ 3
10
ζ2G−1,1,0− 3

10
ζ2G1,−1,0− 1

5
ζ2G1,0,0− 3

10
ζ2G1,1,0+ 3

2
ζ3G−1,0− 3

2
ζ3G1,0

S[w
(5),3
7 ] = α⊗ η ⊗ α⊗ α⊗ y

w
(5),3
8 =−G0,−1,0,−1,0+G0,−1,0,0,0−G0,−1,0,1,0+G0,1,0,−1,0−G0,1,0,0,0+G0,1,0,1,0

+ 1
2
ζ2G0,−1,0− 1

2
ζ2G0,1,0− 7

2
ζ3G−1,0+ 1

2
ζ3G0,−1− 1

2
ζ3G0,1+ 7

2
ζ3G1,0

S[w
(5),3
8 ] = α⊗ η ⊗ α⊗ y ⊗ α

w
(5),3
9 =−G0,0,−1,−1,0+G0,0,−1,0,0−G0,0,−1,1,0+G0,0,1,−1,0−G0,0,1,0,0+G0,0,1,1,0

+log(4)G0,0,−1,0−log(4)G0,0,1,0+ 1
2
ζ2G0,0,−1− 1

2
ζ2G0,0,1+ 7

4
ζ3G−1,0− 7

4
ζ3G1,0
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S[w
(5),3
9 ] = α⊗ η ⊗ y ⊗ α⊗ α

w
(5),3
10 =−4Li4( 1

2)G−1− 1
6

log4(2)G−1−G−1,−1,−1,−1,0+G−1,−1,−1,0,0−G−1,−1,−1,1,0+G−1,−1,1,−1,0

−G−1,−1,1,0,0+G−1,−1,1,1,0+G−1,1,−1,−1,0−G−1,1,−1,0,0+G−1,1,−1,1,0−G−1,1,1,−1,0

+G−1,1,1,0,0−G−1,1,1,1,0+G1,−1,−1,−1,0−G1,−1,−1,0,0+G1,−1,−1,1,0−G1,−1,1,−1,0

+G1,−1,1,0,0−G1,−1,1,1,0−G1,1,−1,−1,0+G1,1,−1,0,0−G1,1,−1,1,0+G1,1,1,−1,0−G1,1,1,0,0

+G1,1,1,1,0+ 1
2
G−1,−1,−1ζ2+ 53

20
G−1,−1,0ζ2− 1

2
G−1,−1,1ζ2− 53

20
G−1,0,0ζ2− 1

2
G−1,1,−1ζ2

+ 53
20
G−1,1,0ζ2+ 1

2
G−1,1,1ζ2− 1

2
G1,−1,−1ζ2− 53

20
G1,−1,0ζ2+ 1

2
G1,−1,1ζ2+ 53

20
G1,0,0ζ2

+ 1
2
G1,1,−1ζ2− 53

20
G1,1,0ζ2− 1

2
G1,1,1ζ2+ 21

2
G−1,−1 log(2)ζ2+ 7

2
G−1,1 log(2)ζ2− 7

2
G0,−1 log(2)ζ2

+ 7
2
G0,1 log(2)ζ2− 7

2
G1,−1 log(2)ζ2− 21

2
G1,1 log(2)ζ2− 1

4
G−1,0ζ3+ 1

4
G1,0ζ3+4G1Li4( 1

2)
+G1,−1,−1,0 log(32)+ 1

6
G1 log4(2)+24G−1,0 log3(2)−24G1,0 log3(2)+16G−1,−1,0 log2(2)

−2G−1,0,0 log2(2)−12G−1,1,0 log2(2)−14G0,−1,0 log2(2)+14G0,1,0 log2(2)+12G1,−1,0 log2(2)

+2G1,0,0 log2(2)−16G1,1,0 log2(2)−19G−1,−1,−1,0 log(2)+21G−1,−1,0,0 log(2)

−23G−1,−1,1,0 log(2)+14G−1,0,−1,0 log(2)− 53
5
G−1,0,0,0 log(2)+14G−1,0,1,0 log(2)

−9G−1,1,−1,0 log(2)+7G−1,1,0,0 log(2)−5G−1,1,1,0 log(2)+7G0,−1,−1,0 log(2)+7G0,−1,1,0 log(2)

−7G0,1,−1,0 log(2)−7G0,1,1,0 log(2)−7G1,−1,0,0 log(2)+9G1,−1,1,0 log(2)−14G1,0,−1,0 log(2)

+ 53
5
G1,0,0,0 log(2)−14G1,0,1,0 log(2)+23G1,1,−1,0 log(2)−21G1,1,0,0 log(2)+19G1,1,1,0 log(2)

S[w
(5),3
10 ] = α⊗ η ⊗ y ⊗ y ⊗ y

w
(5),3
11 =− 1

2
log(2)ζ2G−1,−1+ 5

4
ζ3G−1,−1−6G−1,−1,−1,−1,0+6G−1,−1,−1,0,0−6G−1,−1,−1,1,0

+5G−1,−1,0,−1,0−5G−1,−1,0,0,0+5G−1,−1,0,1,0−4G−1,−1,1,−1,0+4G−1,−1,1,0,0−4G−1,−1,1,1,0

+4G−1,0,−1,−1,0−4G−1,0,−1,0,0+4G−1,0,−1,1,0−3G−1,0,0,−1,0+3G−1,0,0,0,0−3G−1,0,0,1,0

+2G−1,0,1,−1,0−2G−1,0,1,0,0+2G−1,0,1,1,0−2G−1,1,−1,−1,0+2G−1,1,−1,0,0−2G−1,1,−1,1,0

+G−1,1,0,−1,0−G−1,1,0,0,0+G−1,1,0,1,0+3G0,−1,−1,−1,0−3G0,−1,−1,0,0+3G0,−1,−1,1,0

−2G0,−1,0,−1,0+2G0,−1,0,0,0−2G0,−1,0,1,0+G0,−1,1,−1,0−G0,−1,1,0,0+G0,−1,1,1,0

−G0,0,−1,−1,0+G0,0,−1,0,0−G0,0,−1,1,0+G0,0,1,−1,0−G0,0,1,0,0+G0,0,1,1,0−G0,1,−1,−1,0

+G0,1,−1,0,0−G0,1,−1,1,0+2G0,1,0,−1,0−2G0,1,0,0,0+2G0,1,0,1,0−3G0,1,1,−1,0+3G0,1,1,0,0

−3G0,1,1,1,0−G1,−1,0,−1,0+G1,−1,0,0,0−G1,−1,0,1,0+2G1,−1,1,−1,0−2G1,−1,1,0,0+2G1,−1,1,1,0

−2G1,0,−1,−1,0+2G1,0,−1,0,0−2G1,0,−1,1,0+3G1,0,0,−1,0−3G1,0,0,0,0+3G1,0,0,1,0−4G1,0,1,−1,0

+4G1,0,1,0,0−4G1,0,1,1,0+4G1,1,−1,−1,0−4G1,1,−1,0,0+4G1,1,−1,1,0−5G1,1,0,−1,0+5G1,1,0,0,0

−5G1,1,0,1,0+6G1,1,1,−1,0−6G1,1,1,0,0+6G1,1,1,1,0+3G−1,−1,−1ζ2− 13
20
G−1,−1,0ζ2+2G−1,−1,1ζ2

−2G−1,0,−1ζ2+ 3
20
G−1,0,0ζ2−G−1,0,1ζ2+G−1,1,−1ζ2+ 7

20
G−1,1,0ζ2− 3

2
G0,−1,−1ζ2+ 1

2
G0,−1,0ζ2

− 1
2
G0,−1,1ζ2+ 1

2
G0,0,−1ζ2− 1

2
G0,0,1ζ2+ 1

2
G0,1,−1ζ2− 1

2
G0,1,0ζ2+ 3

2
G0,1,1ζ2− 7

20
G1,−1,0ζ2

−G1,−1,1ζ2+G1,0,−1ζ2− 3
20
G1,0,0ζ2+2G1,0,1ζ2−2G1,1,−1ζ2+ 13

20
G1,1,0ζ2−3G1,1,1ζ2

+ 1
2
G−1,1 log(2)ζ2+ 1

2
G0,−1 log(2)ζ2− 1

2
G0,1 log(2)ζ2− 1

2
G1,−1 log(2)ζ2+ 1

2
G1,1 log(2)ζ2

+ 1
4
G−1,1ζ3− 1

2
G0,−1ζ3+ 1

2
G0,1ζ3− 1

4
G1,−1ζ3− 5

4
G1,1ζ3+G−1,−1,−1,0 log(8)−G−1,1,1,0 log(8)

−G0,−1,−1,0 log(8)+G0,1,1,0 log(8)+G1,−1,−1,0 log(8)−G1,1,1,0 log(8)−G−1,0,−1,0 log(4)

+G−1,0,1,0 log(4)+G0,0,−1,0 log(4)−G0,0,1,0 log(4)−G1,0,−1,0 log(4)+G1,0,1,0 log(4)

+4G−1,0 log3(2)−4G1,0 log3(2)+2G−1,−1,0 log2(2)−2G−1,1,0 log2(2)−2G0,−1,0 log2(2)

+2G0,1,0 log2(2)+2G1,−1,0 log2(2)−2G1,1,0 log2(2)−G−1,−1,0,0 log(2)−G−1,−1,1,0 log(2)

− 27
5
G−1,0,0,0 log(2)+G−1,1,−1,0 log(2)+G−1,1,0,0 log(2)+G0,−1,1,0 log(2)−G0,1,−1,0 log(2)

−G1,−1,0,0 log(2)−G1,−1,1,0 log(2)+ 27
5
G1,0,0,0 log(2)+G1,1,−1,0 log(2)+G1,1,0,0 log(2)

S[w
(5),3
11 ] = α⊗ η ⊗ y ⊗ η ⊗ η + 2α⊗ η ⊗ η ⊗ y ⊗ η + 3α⊗ η ⊗ η ⊗ η ⊗ y
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There are 11 functions at weight 5 with rational factor r(α)odds(α)odd are

w
(5),4
1 =G−1,0,0,0,0−G1,0,0,0,0

S[w
(5),4
1 ] = α⊗ α⊗ α⊗ α⊗ y

w
(5),4
2 =G0,−1,0,0,0−G0,1,0,0,0− 1

2
ζ2G0,−1,0+ 1

2
ζ2G0,1,0

S[w
(5),4
2 ] = α⊗ α⊗ α⊗ y ⊗ α

w
(5),4
3 =G0,0,−1,0,0−G0,0,1,0,0+ 3

2
ζ2G0,−1,0− 3

2
ζ2G0,1,0

S[w
(5),4
3 ] = α⊗ α⊗ y ⊗ α⊗ α

w
(5),4
4 =G−1,−1,−1,0,0−G−1,−1,1,0,0−G−1,1,−1,0,0+G−1,1,1,0,0−G1,−1,−1,0,0

+G1,−1,1,0,0+G1,1,−1,0,0−G1,1,1,0,0+ 1
6

log4(2)G−1− 1
6

log4(2)G1

+4Li4( 1
2)G−1−4Li4( 1

2)G1− 53
40
ζ22G−1+ 53

40
ζ22G1−ζ2 log2(2)G−1+ζ2 log2(2)G1

+ 7
4
ζ3G−1,−1− 7

4
ζ3G−1,0+ 7

4
ζ3G−1,1− 7

4
ζ3G1,−1+ 7

4
ζ3G1,0− 7

4
ζ3G1,1

S[w
(5),4
4 ] = α⊗ α⊗ y ⊗ y ⊗ y

w
(5),4
5 =G−1,−1,−1,0,0−G−1,−1,1,0,0−G−1,0,−1,0,0+G−1,0,1,0,0+G−1,1,−1,0,0−G−1,1,1,0,0

−G0,−1,−1,0,0+G0,−1,1,0,0+G0,0,−1,0,0−G0,0,1,0,0−G0,1,−1,0,0+G0,1,1,0,0

+G1,−1,−1,0,0−G1,−1,1,0,0−G1,0,−1,0,0+G1,0,1,0,0+G1,1,−1,0,0−G1,1,1,0,0− 9
8
ζ22G−1

+ 9
8
ζ22G1+ 7

4
ζ3G−1,−1− 7

4
ζ3G−1,1− 7

4
ζ3G0,−1+ 7

4
ζ3G0,1+ 7

4
ζ3G1,−1− 7

4
ζ3G1,1

S[w
(5),4
5 ] = α⊗ α⊗ y ⊗ η ⊗ η

w
(5),4
6 =G−1,−1,−1,0,0−G−1,−1,0,0,0+G−1,−1,1,0,0−G−1,1,−1,0,0+G−1,1,0,0,0−G−1,1,1,0,0

−G0,−1,−1,0,0+G0,−1,0,0,0−G0,−1,1,0,0+G0,1,−1,0,0−G0,1,0,0,0+G0,1,1,0,0+G1,−1,−1,0,0

−G1,−1,0,0,0+G1,−1,1,0,0−G1,1,−1,0,0+G1,1,0,0,0−G1,1,1,0,0− 1
6

log4(2)G−1

+ 1
6

log4(2)G1−4Li4( 1
2)G−1+4Li4( 1

2)G1+ 53
40
ζ22G−1− 53

40
ζ22G1+ζ2 log2(2)G−1

−ζ2 log2(2)G1+ 1
4
ζ3G−1,−1− 1

4
ζ3G−1,1− 1

4
ζ3G0,−1+ 1

4
ζ3G0,1+ 1

4
ζ3G1,−1− 1

4
ζ3G1,1

S[w
(5),4
6 ] = α⊗ α⊗ η ⊗ y ⊗ η

w
(5),4
7 =G−1,−1,−1,0,0−G−1,−1,0,0,0+G−1,−1,1,0,0−G−1,0,−1,0,0+G−1,0,0,0,0−G−1,0,1,0,0

+G−1,1,−1,0,0−G−1,1,0,0,0+G−1,1,1,0,0−G1,−1,−1,0,0+G1,−1,0,0,0−G1,−1,1,0,0

+G1,0,−1,0,0−G1,0,0,0,0+G1,0,1,0,0−G1,1,−1,0,0+G1,1,0,0,0−G1,1,1,0,0− 3
40
ζ22G−1

+ 3
40
ζ22G1+ 1

4
ζ3G−1,−1− 1

4
ζ3G−1,0+ 1

4
ζ3G−1,1− 1

4
ζ3G1,−1+ 1

4
ζ3G1,0− 1

4
ζ3G1,1

S[w
(5),4
7 ] = α⊗ α⊗ η ⊗ η ⊗ y

w
(5),4
8 =G−1,−1,0,−1,0−G−1,−1,0,0,0+G−1,−1,0,1,0−G−1,1,0,−1,0+G−1,1,0,0,0−G−1,1,0,1,0

−G0,−1,0,−1,0+G0,−1,0,0,0−G0,−1,0,1,0+G0,1,0,−1,0−G0,1,0,0,0+G0,1,0,1,0

+G1,−1,0,−1,0−G1,−1,0,0,0+G1,−1,0,1,0−G1,1,0,−1,0+G1,1,0,0,0−G1,1,0,1,0+ 9
8
ζ22G−1

− 9
8
ζ22G1− 1

2
ζ2G−1,−1,0+ 1

2
ζ2G−1,1,0+ 1

2
ζ2G0,−1,0− 1

2
ζ2G0,1,0− 1

2
ζ2G1,−1,0

+ 1
2
ζ2G1,1,0− 1

2
ζ3G−1,−1+ 1

2
ζ3G−1,1+ 1

2
ζ3G0,−1− 1

2
ζ3G0,1− 1

2
ζ3G1,−1+ 1

2
ζ3G1,1
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S[w
(5),4
8 ] = α⊗ η ⊗ α⊗ y ⊗ η

w
(5),4
9 =G−1,−1,0,−1,0−G−1,−1,0,0,0+G−1,−1,0,1,0−G−1,0,0,−1,0+G−1,0,0,0,0−G−1,0,0,1,0+G−1,1,0,−1,0

−G−1,1,0,0,0+G−1,1,0,1,0−G1,−1,0,−1,0+G1,−1,0,0,0−G1,−1,0,1,0+G1,0,0,−1,0−G1,0,0,0,0

+G1,0,0,1,0−G1,1,0,−1,0+G1,1,0,0,0−G1,1,0,1,0+ 11
40
ζ22G−1− 11

40
ζ22G1− 1

2
ζ2G−1,−1,0− 1

2
ζ2G−1,1,0

+ 1
2
ζ2G1,−1,0+ 1

2
ζ2G1,1,0− 1

2
ζ3G−1,−1+ 1

2
ζ3G−1,0− 1

2
ζ3G−1,1+ 1

2
ζ3G1,−1− 1

2
ζ3G1,0+ 1

2
ζ3G1,1

S[w
(5),4
9 ] = α⊗ η ⊗ α⊗ η ⊗ y

w
(5),4
10 =G−1,0,−1,−1,0−G−1,0,−1,0,0+G−1,0,−1,1,0−G−1,0,1,−1,0+G−1,0,1,0,0−G−1,0,1,1,0

−G0,0,−1,−1,0+G0,0,−1,0,0−G0,0,−1,1,0+G0,0,1,−1,0−G0,0,1,0,0+G0,0,1,1,0+G1,0,−1,−1,0

−G1,0,−1,0,0+G1,0,−1,1,0−G1,0,1,−1,0+G1,0,1,0,0−G1,0,1,1,0+ 1
3

log4(2)G−1

− 1
3

log4(2)G1−8 log2(2)G0,−1,0+8 log2(2)G0,1,0+log(16)G−1,1,0,0+log(16)G0,−1,−1,0

+log(16)G0,−1,1,0+log(16)G1,1,0,0−log(4)G−1,0,−1,0+log(4)G−1,0,1,0+log(4)G0,0,−1,0

−log(4)G0,0,1,0−log(4)G1,0,−1,0+log(4)G1,0,1,0−4 log(2)G−1,−1,0,0−4 log(2)G0,1,−1,0

−4 log(2)G0,1,1,0−4 log(2)G1,−1,0,0+8Li4( 1
2)G−1−8Li4( 1

2)G1− 151
40
ζ22G−1

+ 151
40
ζ22G1− 1

2
ζ2G−1,0,−1+ 1

2
ζ2G−1,0,1+ 1

2
ζ2G0,0,−1− 1

2
ζ2G0,0,1− 1

2
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−2G−1,0,1,−1,0+2G−1,0,1,0,0−2G−1,0,1,1,0+3G0,−1,−1,−1,0−3G0,−1,−1,0,0+3G0,−1,−1,1,0
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4
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2
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2
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2
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2
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2
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2
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(5),4
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Appendix C

Lightlike Wilson-line Calculations

C.1 Direct Calculation of the Splitting Functions

at Large x

In this appendix we present a calculation for parton distribution splitting

functions directly using the definitions (4.26) and (4.27). As explained in the

main text we take incoming partons to be off shell p2 6= 0 but with zero transverse

momentum p = (p+,
p2

2p+
,0d−2). This regulates the infrared such that we are only

exposed to UV poles.

To calculate a single diagram there is a general strategy talked through in the

main text with a slight change for the off shell case:

� Write down the integral using Feynman rules

� Integrate over the minus component of all loop momenta using Cauchy’s

residue theorem. This provides constraints on the plus component of loop

momenta due to the location of the poles.

� Integrate over the transverse component of all loop momenta. As we are

only interested in the UV divergent terms, this can be simplified to just

calculating iterated bubbles at two loops. Although we do need to calculate

the finite terms of one loop graphs to perform the renormalisation.
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� Rescale the plus component to arrive at a general form such as,

Disc

∫ 1

0

dydz
N(x, y, z, ε)

(1− x+ iε)(1− x− y + iε)(1− x− yz + iε)
. (C.1)

The denominators correspond to the Wilson line propagators.

� Now we take the discontinuity in x and perform the final integrations. Often

these integrals evaluate to 2F1 functions at two loops.

� Finally we expand in ε using,

(1− x)−1−mε = − 1

mε
δ(1− x) +

1

(1− x)+

+
∞∑
n=1

(−mε)n
n!

(
log(1− x)n

1− x

)
+

.

(C.2)

For brevity of results we shall define,

δ = δ(1− x) P =
1

(1− x)+

Ln =
logn(1− x)

(1− x)+

. (C.3)

Also, all the following expressions are valid up to but not including terms that

diverge as slowly as log(1− x).

For PDFs we expand in powers of
(
αs
4π

)
,

fii =
∞∑
n=0

(
αs
4π

)n
f

(n)
ii . (C.4)

Example. Let us illustrate the above steps. For this we choose the two loop

diagram in Figure C.1e. The Feynman rules for the diagram, in Feynman gauge,

give,

Disc
ig4
s

2π
CACF

∫
ddq1

(2π)d

∫
ddq2

(2π)d
p+(p+ − q1+)(2q2+ − q1+)

q2
2q

2
1(q1 − q2)2(p− q1)2

× 1

(p− k) · u (p− k − q1) · u (p− k − q2) · u,

(C.5)

where k · u = xp+ and the +iε prescription is implied. It is reminded that the

Wilson line direction u is in the (-) direction, u = (0, 1,0d−2).

We shall define f
(2),(e)
qq to be the contribution to f

(2)
qq of diagram C.1e. When
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integrating the q1− and q2− components using the residue theorem, constraints

are placed on the plus momenta,

p+ > q1+ > q2+ > 0. (C.6)

The integrations over the transverse components are just iterated bubbles.

Rescaling the plus component we arrive at,

f (2),(e)
qq = Disc

i

2π
CACF

Γ(ε)Γ(2ε)

Γ(1 + ε)

∫ 1

0

dydzy1−2ε(1− y)1−ε(1− z)−εz−ε

× 1− 2z

(1− x+ iε)(1− x− y + iε)(1− x− yz + iε)
. (C.7)

Taking the discontinuity we use,

Disc
i

2π

1

(1− x+ iε)(1− x− y + iε)(1− x− yz + iε)

=

(
δ(1− x)

(1− x− y)(1− x− yz)
+

δ(1− x− y)

(1− x)(1− x− yz)
+

δ(1− x− yz)

(1− x)(1− x− y)

)
.

(C.8)

There are three separate terms now to calculate. The first is the virtual cut and

evaluates to,

f (2),(e),(V )
qq = CACF

(
1

4ε4
+

1

ε3
+

1

ε2

(
7

2
− ζ2

4

)
+

1

ε

(
−ζ2 −

8ζ3

3
+

23

2

))
δ (C.9)

The second and third are real cuts,

f (2),(e),(R1)
qq = CACF

(
− δ

4ε4
+
P − δ

2ε3
+

1

ε2

((
−ζ2

4
− 1

)
δ + P − L

)
+

1

ε

(
δ

(
−ζ2

2
+

7ζ3

6
− 2

)
+

(
ζ2

2
+ 2

)
P − 2L+ L2

))
(C.10)

f (2),(e),(R2)
qq = CACF

(−δ − P
2ε3

+
1

ε2

(
(ζ2 − 1)δ +

1

2
P +

3

2
L

)
+

1

ε

(
δ

(
−ζ2

2
+ ζ3 − 2

)
+

(
1− 5ζ2

2

)
P − 1

2
L− 7

4
L2

))
(C.11)

In the sum we find,

f (2),(e)
qq = CACF

(
1

ε2

((
ζ2

2
+

3

2

)
δ +

3

2
P +

1

2
L

)
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+
1

ε

(
δ

(
−2ζ2 −

ζ3

2
+

15

2

)
+ (3− 2ζ2)P − 5

2
L− 3

4
L2

))
(C.12)

Above we see a salient feature of two loop diagrams: individual cuts are ε−4 and

ε−3 divergent. These are poles from when the emitted gluon goes soft and cancel

in the sum of real and virtual cuts. The remaining divergences are UV, whose

renormalisation gives the splitting functions. The L and L2 terms are present

in individual diagrams but cancel in the combination such that the splitting

functions diverge as in eq. (4.58).

Another feature is that we found that the real cuts, eqs. (C.10) and (C.11),

contribute to Bδ. Rather than inferring the coefficient of δ from sum or

momentum conservation rules, we are able to state that for the off-shell extraction

of the splitting functions, real cuts contribute to δ(1− x).

We now calculate the two loop diagonal splitting functions at large x for quarks

and gluons.

C.1.1 Calculating Pqq

The one loop contributions are Figures C.1a and C.1b and the self energy on each

external leg. They sum to,

f (1)
qq = f (1),(a)

qq + 2f (1),(b)
qq + f (1),SE ext

qq

= CF

(
1

ε
(4P − (ξ − 3)δ)− δ(ξ + 4ζ2 − 7) + (ξ − 1)P − 4L

)
, (C.13)

where ξ is the gauge parameter in a general covariant gauge. The two loop

contributions are shown in Figures C.1c–C.1m. They exclude self energies on

external legs. Their calculation was performed in Feynman gauge ξ = 1 and the

results are,

f (2),(c)
qq = CF (CA − 2CF )

[
1

ε2
(2ζ2δ) +

1

ε
(−4ζ3δ − 4ζ2P )

]
f (2),(d)
qq = C2

F

[
1

ε2
((4− 8ζ2)δ + 8P + 8L)

+
1

ε

(
(16− 8ζ2)δ + (8ζ2 + 16)P − 8L− 12L2

) ]
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(a) 1 (b) 2 (c) 1

(d) 1 (e) 2 (f) 2

(g) 2 (h) 2 (i) 2

(j) 1 (k) 1 (l) 2

(m) 2

Figure C.1: Large-x divergent contributions to the quark-quark parton
distribution up to two loops. The grey blob represents a self energy insertion.
Each diagram has a multiple factor displayed. Insertions on external legs are
excluded.
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f (2),(e)
qq = CACF

[
1

ε2

((
ζ2

2
+

3

2

)
δ +

3

2
P +

1

2
L

)
+

1

ε

(
δ

(
−2ζ2 −

ζ3

2
+

15

2

)
+ (3− 2ζ2)P − 5

2
L− 3

4
L2

)]
f (2),(f)
qq = CACF

[
1

ε2

(
δ + 2P +

1

2
L

)
+

1

ε

(
δ

(
−5ζ2

2
− ζ3 + 3

)
+

(
7

2
− ζ2

)
P − 3L− 3

4
L2

)]
f (2),(g)
qq = CF (CA − 2CF )

[
1

ε2
((1− ζ2)δ + P + L)

+
1

ε

(
δ(−2ζ2 − 3ζ3 + 5) + 2P − L− 3

2
L2

)]
f (2),(h)
qq = C2

F

[
1

ε2
((2− 2ζ2)δ + 2P + 2L)

+
1

ε

(
δ(−4ζ2 − 6ζ3 + 10) + 4P − 2L− 3L2

) ]
f (2),(i)
qq = CF (CA − 2CF )

[
1

ε2

((
ζ2 −

1

2

)
δ +

1

2
P

)
+

1

ε

(
δ

(
−ζ2

2
+ 7ζ3 − 4

)
+

1

2
P − 1

2
L

)]
f (2),(j)
qq = CF

[
1

ε2

(
δ

(
2nfTf

3
− 5CA

6

))
+

1

ε

(
δ

(
7CA

9
− 8nfTf

9

)
+ P

(
5CA

3
− 4nfTf

3

))]
f (2),(k)
qq = CACF

(
1

ε2
(ζ2δ) +

1

ε
(ζ3δ − 2ζ2P )

)
f (2),(l)
qq = CF

[
1

ε2

(
δ

(
5CA

3
− 4nfTf

3

)
+ P

(
5CA

3
− 4nfTf

3

))
+

1

ε

(
δ

(
−5CAζ2

3
+

61CA
9

+
4

3
nfTfζ2 −

44nfTf
9

)
+ P

(
16CA

9
− 8nfTf

9

)
+ L

(
8nfTf

3
− 10CA

3

))]
f (2),(m)
qq = C2

F

(
− 1

ε2
(δ + P ) +

1

ε
((2ζ2 − 4) δ − P + L)

)
f (2),SE ext
qq =

1

ε2
(
−2
(
CACF + 3C2

F

)
δ − 8C2

FP
)

+
1

ε

(
1

2
δ
(
−25CACF + 16C2

F ζ2 − 37C2
F + 4CFnfTf

)
− 8C2

FP + 8C2
FL

)
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Summing the two loop contributions with the factors shown in Figure C.1 we

find,

f (2)
qq =

CF
ε2

[
δ

(
9CA

2
+ CF (2− 8ζ2)− 2nfTf

)
+ P

(
22CA

3
+ 8C2

F −
8nfTf

3

)
+ 16CFL

]
+
CF
ε

[
δ

(
CA

(
−22ζ2

3
− 6ζ3 +

125

6

)
+ CF

(
−14ζ2 − 4ζ3 +

27

2

)
+ nfTf

(
8ζ2

3
− 26

3

))
+ P

(
CA

(
119

9
− 4ζ2

)
+ 24CF −

28nfTf
9

)
+ L

(
−44CA

3
− 8CF +

16nfTf
3

)
− 24CFL

2

]
(C.14)

At two loops we need to take into account the running from the one loop contribu-

tion, αs
4π
f

(1)
qq → αs

4π
f

(1),R
qq . This is found by replacing ξ →

(
1 + αs

4πε

(
10
6
CA − 4

3
Tfnf

))
ξ

and αs → (1 + αsb̂0
πε

)αs. We then specialise to Feynman gauge ξ = 1.

We then find the Zqq that minimally subtracts the divergences in δ + αs
4π
f

(1),R
qq +(

αs
4π

)2
f

(2)
qq . As the renormalisation is multiplicative, convolutions need to be taken

into account for one loop squared terms. For example,

P ⊗ L = −ζ2P +
3

2
L2 + ζ3δ. (C.15)

Equivalently the renormalisation can be transformed to Mellin space, eq. 4.45,

where the convolutions become products ensuring that,

Z̃qq

(
1 +

αs
4π
f̃ (1),R
qq +

(
αs
4π

)2

f̃ (2)
qq

)
(C.16)

is finite in ε. We can then extract the splitting functions to two loops from,

P̃qq =

(
− εαs − α2

s

b̂0

π

)
d

dαs
log(Z̃qqZq), (C.17)

where Zq is the wavefunction renormalisation in MS for the quark. Up to two

loops,

Zq = 1−
(αs

4π

) CF
ε

+
(αs

4π

)2

CF

(
1

ε2

(
CA +

CF
2

)
+

1

ε

(
−17CA

4
+

3CF
4

+ Tfnf

))
. (C.18)

141



Converting back to x space we find,

Pqq =
αs
4π
CF (3δ + 4P )

+

(
αs
4π

)2[
δ

(
CACF

(
44ζ2

3
− 12ζ3 +

17

6

)
+ C2

F

(
−12ζ2 + 24ζ3 +

3

2

)
− CFTfnf

(
16ζ2

3
+

2

3

))
+ P

(
CACF

(
268

9
− 8ζ2

)
− 80CFnfTf

9

)]
(C.19)

Notice that we find that all Ln terms cancel. This reproduces Bq
δ , the coefficient

of δ in eq. (4.60), and shows that the coefficient of P is γcusp as in eq. (3.35).

C.1.2 Calculating Pgg

The one loop contributions for the gluon gluon distribution function are shown

in Figures C.2a and C.2b. The total one loop contributions are,

f (1)
gg =

1

ε

[
δ

(
−CAξ

2
+

35CA
6
− 8nfTf

3

)
+ 4CAP

]
+ δ

(
−4CAζ2 +

98CA
9
− 40nfTf

9

)
+ (CAξ − CA)P − 4CAL. (C.20)

The two loop contributions are shown in Figures C.2c–C.2p. The two loop

contributions are,

f (2),(c)
gg =C2

A

(
1

ε2

(
−9

4
P

)
+

1

ε

(
9

4
ζ2δ −

9

2
P +

9

4
L

))
f (2),(d)
gg =C2

A

(
1

ε2
(2ζ2δ) +

1

ε
(−4ζ3δ − 4ζ2P )

)
f (2),(e)
gg =C2

A

[
1

ε2
((1− 8ζ2)δ + 4P + 8L)

+
1

ε

(
(4− 4ζ2)δ + (8ζ2 + 8)P − 4L− 12L2

) ]
f (2),(f)
gg =C2

A

[
1

ε2

((
ζ2

2
+

3

4

)
δ +

5

4
P +

1

2
L

)
+

1

ε

(
δ

(
−3ζ2

2
− ζ3

2
+

15

4

)
+

(
5

2
− 2ζ2

)
P − 9

4
L− 3

4
L2

)]
f (2),(g)
gg =C2

A

(
1

ε2

(
−9

8
δ − 9

8
P

)
+

1

ε

((
9ζ2

4
− 45

8

)
δ − 9

4
P +

9

8
L

))
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(a) 1 (b) 2 (c) 2

(d) 1 (e) 1 (f) 2

(g) 2 (h) 2 (i) 2

(j) 4 (k) 2 (l) 2

(m) 1 (n) 1 (o) 2

(p) 2

Figure C.2: Large-x divergent contributions to the gluon-gluon parton
distribution up to two loops. The grey blob represents a self energy insertion.
Insertions on external legs are excluded. The clockwise ghost is included in h).
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f (2),(h)
gg =C2

A

(
1

ε2

(
− 1

48
δ − 1

24
P

)
+

1

ε

((
ζ2

24
− 31

288

)
δ − 1

9
P +

1

24
L

))
f (2),(i)
gg =C2

A

[
1

ε2

((
3ζ2

4
+

5

16

)
δ + 3P +

1

2
L

)
+

1

ε

(
δ

(
−35ζ2

8
+

17ζ3

4
+

65

96

)
+

(
71

12
− ζ2

)
P − 4L− 3

4
L2

)]
f (2),(j)
gg =CAnfTf

(
1

ε2

(
1

3
δ +

2

3
P

)
+

1

ε

((
59

36
− 2ζ2

3

)
δ +

10

9
P − 2

3
L

))
f (2),(k)
gg =C2

A

[
1

ε2

((
3

4
− 5ζ2

4

)
δ +

1

2
P + L

)
+

1

ε

(
δ

(
−ζ2 −

19ζ3

4
+

15

4

)
+ P − 1

2
L− 3

2
L2

)]
f (2),(l)
gg =C2

A

[
1

ε2

(
−3

2
ζ2δ + P + 2L

)
+

1

ε

(
δ

(
−2ζ2 −

5ζ3

2

)
+ 2P − L− 3L2

)]
f (2),(m)
gg =

1

ε2

(
δ

(
2CAnfTf

3
− 5C2

A

6

))
+

1

ε

(
δ

(
7C2

A

9
− 8CAnfTf

9

)
+ P

(
5C2

A

3
− 4CAnfTf

3

))
f (2),(n)
gg =C2

A

(
1

ε2
(ζ2δ) +

1

ε
(−2ζ2P + ζ3δ)

)
f (2),(o)
gg =

1

ε2

(
δ

(
−7CAnfTf

9
+

35C2
A

36

)
+ P

(
−4CAnfTf

3
+

5C2
A

3

))
+

1

ε

[
δ

(
−10C2

Aζ2

3
+

133C2
A

27
+

8

3
CAnfTfζ2 −

98CAnfTf
27

)
+ P

(
−20CAnfTf

9
+

31C2
A

9

)
+ L

(
−5C2

A

3
+

4CAnfTf
3

)]
f (2),(p)
gg =

1

ε2

(
δ

(
−13CAnfTf

18
+

65C2
A

72

)
+ P

(
−4CAnfTf

3
+

5C2
A

3

))
+

1

ε

[
δ

(
−5C2

Aζ2

3
+

1931C2
A

432
+

4

3
CAnfTfζ2 −

355CAnfTf
108

)
+ P

(
−8CAnfTf

9
+

16C2
A

9

)
+ L

(
−10C2

A

3
+

8CAnfTf
3

)]
f (2)SE ext
gg =

1

ε2

(
δ

(
95C2

A

6
− 58CAnfTf

3
+

16n2
fT

2
f

3

)
+ P

(
20C2

A

3
− 16CAnfTf

3

))
+

1

ε

[
δ

(
− 1

3
20C2

Aζ2 +
2311C2

A

36
+

16

3
CAnfTfζ2 −

637CAnfTf
9

− 4CFnfTf +
160n2

fT
2
f

9

)
+ P

(
124C2

A

9
− 80CAnfTf

9

)
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+ L

(
16CAnfTf

3
− 20C2

A

3

)]
The total two loop contribution is,

f (2) =
1

ε

[
δ

(
C2
A

(
−36ζ2−10ζ3+

7591

72

)
+CAnfTf

(
16ζ2 −

527

6

)
−4CFnfTf

+
160n2

fT
2
f

9

)
+ P

(
C2
A

(
−4ζ2+

496

9

)
− 176CAnfTf

9

)
+L

(
16CAnfTf − 36C2

A

)
−24C2

AL
2

]
+

1

ε2

[
δ

(
C2
A

(
−8ζ2 +

101

4

)
− 71CAnfTf

3
+

16n2
fT

2
f

3

)
+ P

(
86C2

A

3
− 40CAnfTf

3

)
+ 16C2

AL

]
The extraction of the splitting function from above is the same as in the quark

case. Instead of Zq we use the gluon field renormalisation in MS,

ZA =1 +
αs
4π

1

ε

(
5CA

3
− 4nfTf

3

)
(C.21)

+

(
αs
4π

)2[
1

ε

(
23C2

A

8
− 5CAnfTf

2
− 2CFnfTf

)
+

1

ε2

(
5CAnfTf

3
− 25C2

A

12

)]
Performing those steps we find,

Pgg =
αs
4π

(
δ

(
11CA

3
− 4nfTf

3

)
+ 4CAP

)
+

(
αs
4π

)2[
δ

(
12C2

Aζ3 +
32C2

A

3
− 16CAnfTf

3
− 4CFnfTf

)
+ P

(
−8C2

Aζ2 +
268C2

A

9
− 80CAnfTf

9

)]
. (C.22)

Again this aligns with Bg
δ in eq. (4.60) and γcusp in eq. (3.35).

We have replicated previous splitting function calculations at large x directly

from the definitions (4.26) and (4.27) in a covariant gauge. By taking the

incoming partons off shell, p2 6= 0, we regulate the infrared divergences allowing

the extraction of the UV poles of the PDFs. Although the divergent terms remain

gauge independent the finite terms become gauge dependent. It means that we

need to take into account the running of the gauge parameter ξ → ZAξ in finite

terms, even when working in Feynman gauge.
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C.2 Particular Two-loop Diagrams Contributing to

Wu

In this appendix we elaborate on aspects of the calculation of Wu presented in

Section 4.4. We consider two specific diagrams where some subtle points arise. In

Section C.2.1 we discuss the endpoint contributions in diagram d
(2)
YL

in Figure 4.77

using momentum space, and in Section C.2.2 we show the single IR divergent

behaviour of d
(2)
X3

.

C.2.1 Endpoint contribution in the diagram d
(2)
YL

In Section 4.4 we revisited the analysis of non-Abelian contributions to the

correlators of finite and semi-infinite Wilson lines [148]. Specifically, we derived

the representations of the two-loop diagrams that contain a three-gluon vertex

and made a clear distinction between ones where two gluons are emitted from a

finite Wilson-line segment as compared to the case where two emissions emerge

from a semi-infinite line, corresponding respectively to diagrams d
(2)
Ys

and d
(2)
YL

in (4.77). The difference is that in the former case both endpoint contributions

appear, as in (4.89), while in the latter case there is no endpoint contribution

from infinity, so the representation of d
(2)
YL

simplifies to (4.92). Let us now present

this calculation in detail using momentum space and show explicitly that this

endpoint contribution is indeed absent.

Using the Feynman rules given in Section 4.4, diagram d
(2)
YL

in (4.77) reads

d
(2)
YL

=KY

∫
ddz

∫ 0

−∞
ds1

∫ 0

s1

ds2

∫ y

0

dt3

[
β · ∂

∂s2β
− β · ∂

∂s1β

]
×
[
−(s1β − z)2 + i0

]−1+ε [−(s2β − z)2 + i0
]−1+ε [−(ut3 − z)2 + i0

]−1+ε
,

(C.23)

which is analogous to eq. (4.84). In the equation above, we integrate over z using

the momentum-space representation of the propagators

N
[
−x2 + i0

]−1+ε
= −i

∫
ddk

(2π)d
e−ik·x

k2 + i0
, (C.24)
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obtaining

d
(2)
YL

= ig4
s

CiCA
2

u · β
∫
ddk1d

dk2

(2π)2d

∫ 0

−∞
ds1

∫ 0

s1

ds2

∫ y

0

dt3

[
β · ∂

∂s2β
− β · ∂

∂s1β

]
× (−i)3 e

−ik1·βs1e−ik2·βs2ei(k1+k2)·ut3

k2
1k

2
2(k1 + k2)2

. (C.25)

After taking the derivatives with respect to s1β, s2β and integrating over the

infinite line we get

d
(2)
YL

= ig4
s

CiCA
2

u · β
∫
ddk1d

dk2

(2π)2d

∫ y

0

dt3
(−i)3ei(k1+k2)·ut3

k2
1k

2
2(k1 + k2)2

k2 · β − k1 · β
k2 · β + i0

×
{

1

−i(k1 · β + i0)
− 1

−i [(k1 + k2) · β + i0]

}
, (C.26)

where the prescription +i0 in the denominators ensures the convergence of the

integrals for s1 → −∞. The expression above may be conveniently rewritten as

d
(2)
YL

= ig4
s

CiCA
2

u · β
∫
ddk1d

dk2

(2π)2d

∫ y

0

dt3 e
i(k1+k2)·ut3 (−i)3

k2
1k

2
2(k1 + k2)2

×
{

1

−i(k1 · β + i0)
− 2

−i [(k1 + k2) · β + i0]

}
. (C.27)

This directly leads to the representation of eq. (4.92), as we now show. Upon

introducing an auxiliary integration constrained by momentum conservation we

obtain:

d
(2)
YL

= ig4
s

CiCA
2

u · β
∫
ddk1d

dk2d
dk3

(2π)3d
(2π)dδd(k1 + k2 + k3)

(−i)3

k2
1k

2
2k

2
3

×
{∫ y

0

dt3

∫ 0

−∞
ds1 e

−ik3·ut3
[
e−ik1·βs1 − 2 e−i(k1+k2)·βs1

]}
. (C.28)

The representation of the delta function (2π)dδd(k1 +k2 +k3) =
∫
ddz ei(k1+k2+k3)·z

is interpreted as an integral over the position of the scalar “three gluon” vertex

in eq. (4.92). Using eq. (C.24) we recover the expression of the three gluon

propagators in coordinate space, carrying momenta k1, k2 and k3, obtaining

d
(2)
YL

=KY

∫
ddz

∫ y

0

dt3

∫ 0

−∞
ds1 [−(z − ut3)2 + i0]ε−1

×
{[
−(z − βs1)2 + i0

]ε−1 [−z2 + i0
]ε−1 − 2

[
−(z − βs1)2 + i0

]2ε−2
}
.

(C.29)
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Substituting the definitions in eqs. (4.90a), (4.90b) and (4.90c) we verify the result

in eq. (4.92).

C.2.2 The diagram d
(2)
X3

connecting three Wilson lines

In this section we derive the representation of eq. (4.82) of the diagram d
(2)
X3

that connects two cusps with a lightlike segment of finite length. Following the

discussion of ref. [148], the singularities of the webs of this kind are associated with

the configuration where all the vertices approach the lightlike segment of finite

length. These webs do not contribute to the cusp singularities because there is

not any region of configuration space where all the vertices are in proximity of

the cusp. By using the Feynman rules in eq. (4.63), the diagram d
(2)
X3

reads

d
(2)
X3

= − g4
sµ

4εCACF
2
N 2(β · u)2

∫ +∞

0

dt1

∫ +∞

0

dt3

∫ y

0

ds1

∫ y

s1

ds2

× [−2β · ut1s2 + i0]ε−1 [−2β · ut3(s1 − y) + i0]ε−1 , (C.30)

where the factor −CACF
2

corresponds to the maximally non-Abelian part of the

colour factor of the diagram, which is exponentiated [59–61,182]. We expose the

overall infrared singularity in the last integration by rewriting the integration

domain using θ(t1 − t3) + θ(t3 − t1) = 1 and changing the order of integrations.

Thus we obtain

d
(2)
X3

= − g4
sµ

4εCACFN 2(β · u)2

∫ +∞

0

dt

∫ t

0

dt′(t t′)−1+ε

∫ y

0

ds1

∫ y

s1

ds2

× [−2β · us2 + i0]ε−1 [−2β · u(s1 − y) + i0]ε−1 . (C.31)

We stress that the expression above still has infrared singularities from the limit

t→∞ in the upper bound of the t′ integral. Therefore we decouple the infrared

contributions by applying the changes of variables

t′ = t

(
s

y

)2

, s1 = y a1, s2 = y a2, (C.32)

which yields

d
(2)
X3

= g4
sµ

4εCACFN 2(β · u)

∫ +∞

0

dt

∫ y

0

ds [−2β · uts+ i0]2ε−1
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×
∫ 1

0

da1

(1− a1)1−ε

∫ 1

a1

da2

a1−ε
2

. (C.33)

The parameters a1 and a2 are integrated immediately, leading to

d
(2)
X3

= g4
sµ

4εCACFN 2(β · u)
1

ε

[
1

ε
−B(ε, 1 + ε)

]
×
∫ +∞

0

dt

∫ y

0

ds [−2β · uts+ i0]2ε−1 . (C.34)

Thus we apply the change of variables introduced before eq. (4.66) and we get

d
(2)
X3

= − g4
sµ

4εCACF
2
N 2 1

ε

[
1

ε
−B(ε, 1 + ε)

]
×
∫ +∞

0

dτ

τ

∫ ρ√
2

0

dσ

σ

(
4τσµ2

)2ε
. (C.35)

By replacing the normalisation N = −Γ(1−ε)
4π2−ε , we absorb the factor (4πeγE)ε into

the coupling constant, which we expand at the scale 1
τσ

by means of eq. (4.68),

thus getting

d
(2)
X3

= − CACF
Γ2(1− ε)

2ε

[
1

ε
−B(ε, 1 + ε)

]
×
∫ +∞

0

dτ

τ

∫ ρ√
2

0

dσ

σ

(
αs
(

1
τσ

)
π

e−εγE

)2

, (C.36)

which is written in terms of the representation in eq. (4.78) and reproduces the

result of eq. (4.82). By expanding the integrand for ε→ 0 we get

w
(2)
X3

= −CACF
[
ζ2

2
− εζ3

]
. (C.37)

We notice that the first term in the equation above, once integrated with λ

and σ → 0, would yield a double UV pole, which is expected to arise only from

single cusp singularities. By summing the contribution of w
(2)
X3

above with the one

originated from the other webs connecting three lines, namely w
(2)
3s , we verify that

the cusp term cancels, leaving only the subleading pole in eq. (4.98) associated

with collinear configurations around the finite segment.
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