
1

Data production models for the CDF experiment
S. Hou

Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan

Abstract— The data production farm for the CDF experiment
is conducted by a large Linux PC farm designed to meet the needs
of data collection at a maximum rate of 20 MByte/sec during
the run. We present two data production models that exploits
advances in computing and communication technology. The first
production farm is a centralized system that has achieved a stable
data processing rate of approximately 2 TByte per day. The
recently upgrade is migrating to the SAM (Sequential Access
to data via Metadata) data handling system. The software and
hardware of the CDF production farms has been successful in
providing large computing and data throughput capacity to the
experiment.

Index Terms— PACS: 07.05-t. Keywords: Computer system;
data processing

I. I NTRODUCTION

The Collider Detector at Fermilab (CDF) detector is a large
general purpose detector for experiment of proton-anti-proton
collision at the Fermilab Tevatron Collider. The CDF detector
has been upgraded to take advantage of the improvements in
the accelerator [1]. Computing systems were also upgraded
for processing larger volumes of data collected in Run II since
2000.

Data processing required for CDF is a loosely-coupled
parallel processing of “events”, where each event is the result
of a collision of a proton and an anti-proton. A hardware
and software trigger system is used to store and save data of
interesting collisions. Each event is processed independently
through the offline code without use of information from any
other event.

Events of a similar type are collected into files of a data
stream. Data is logged in parallel to eight data streams for
final storage into a mass storage system. Each file is processed
through an event reconstruction program that transforms digi-
tized electronic signals from the CDF sub-detectors into infor-
mation that can be used for physics analysis. The quantities
calculated include particle trajectories and momentum, vertex
position, energy deposition, and particle identities.

The production farms are collections of dual CPU PCs
running Linux, interconnected with 100 Mbit and gigabit
ethernet. The hardware architectures are cost-effective.The
challenge in building and operating PC farms is in managing
the large flow of data through the computing units.

In this report we describe the hardware integration and
software for operation of the CDF production farms. We first
describe the requirements and design goals of the system.
An early centralized model is described for its design of
hardware and software control systems. The performance and
experiences with this system is presented. The upgrade using
the Fermilab developed ”Sequential Access via Metadata”
(SAM) system [2] for data handling is discussed. It is portable

for distributed computing through network to PC farms. Per-
formance of data production with the SAM production farm
are also presented.

II. REQUIREMENTS

To achieve the physics goals of the CDF experiment at
the Fermilab Tevatron, the production computing system is
required to process the data collected by the experiment in
a timely fashion. In 2001 through 2004 the CDF experiment
collects a maximum of 75 events/second at a peak throughput
of 20 MByte/sec. The output of event reconstruction is split
into many physics data-sets. The splitting operation is required
to place similar physics data together on disk or tape files,
allowing faster and more efficient physics analysis. The output
event size is currently approximately the same as the input.
Each event is written 1.2 times on average because some
events are written to more than one output data set. Therefore
the system output capacity is also required to be approximately
20 MByte/sec.

To accomplish rapid data processing through the farms,
adequate capacity in network and CPU is required. The event
processing requires 2-5 CPU seconds on a Pentium III 1
GHz PC. The exact number depends on the type of event,
the version of the reconstruction code, and the environment
of the collision. These numbers lead to requirements of the
equivalent of 190-375 Pentium III 1 GHz CPUs, assuming
100% utilization of the CPUs.

In addition to providing sufficient data flow and CPU
capacity for processing of data, the production farm operation
is required to be easily manageable, fault-tolerant, scalable,
with good monitoring and diagnostics. Hardware and software
options were explored to meet the requirements for the sys-
tem. These include large symmetric multiprocessing (SMP)
systems, commercial UNIX workstations, alternative network
configurations. Prototype systems were built and tested before
the final design was chosen and production systems built.

III. A RCHITECTURE

The first developed CDF data production farm consists of
a large number of PCs that run the CPU-intensive codes
(workers), PCs that buffer data into and out of the farm
(readers and writers) and PCs providing various services
(servers). The hardware architecture is shown in Fig. 1. It
has two server nodescdffarm1 andcdffarm2. cdffarm1 is a
SGI O2000 machine that host a batch submission system and
a database server.cdffarm2 is a dual Pentium server running
control daemons for resource management and job submission.
Monitoring and control interfaces for farm operation includes
a java server to the control daemons and and a web server

suen
文字方塊
CDF/PUB/PRODUCTION/PUBLIC/7777



2

Fig. 1. CDF production farm architecture.

for monitoring. The disk space is a “dfarm” file system [3].
It is a distributed logical file system using a collection of
IDE hard-disks of all dual Pentium nodes. The job scheduling
on the production farm is controlled by a batch management
system called FBSNG developed by the Computing Division at
Fermilab [4]. The CDF Data Handling group has well-defined
interfaces and operation [5] to provide input data for the farm
and to write output to a mass storage system (Enstore) [6].

The dual Pentium nodes were purchased over the years. Old
nodes were replaced after three years service. At its peak in
mid-2004, there were 192 nodes in service. The dfarm capacity
of the collected worker hard-disks was as large as 23 TByte
including three file-servers each having 2 TByte. The IDE
hard-disk size varies from 40 to 250 GByte.

The input and output (I/O) nodes are configured to match
the data through-put rate. A total of 16 nodes equipped with
optical giga-links are configured with thepnfs file system
[7] for access to the Enstore storage. A 48 port Cisco switch
module was added recently to provide gigabit Ethernet over
copper switching. Additional I/O nodes may be added if
needed. The number of workers can be scaled to as large
a number as is required. However, the total data through-put
capacity to Enstore storage is limited by the number of Enstore
movers (tape-drives) available.

Raw data from the experiment is first written to tape in
the Enstore mass storage system. Raw data are streamed into
eight data-sets listed in Table I. These tapes are catalogedin
the CDF Data File Catalog (DFC) [8] as a set of tables in an
Oracle database (accessed viacdfora1 in Fig. 1). After the

Stream data-sets events/GByte total event (%) total size (%)
A aphysr 2720 3.8 7.7
B bphysr 5470 9.9 5.5
C cphysr 6770 9.2 7.5
D dphysr 2570 3.7 7.9
E ephysr 5930 17.0 15.7
G gphysr 6140 26.4 23.5
H hphysr 6050 19.6 17.7
J jphysr 5520 10.3 10.3

TABLE I

STATISTICS OF DATA STREAMS OF A TYPICAL RUN TAKEN INJUNE 2004

CONTAINING ALL SUB-DETECTORS. THE RAW DATA FILES ARE 1 GBYTE

IN SIZE. L ISTED ARE THE NUMBER OF EVENTS PERGBYTE, RATIO OF

TOTAL EVENTS AND TOTAL FILE SIZE.

data is written to tape and properly cataloged, and once the
necessary calibration constants exist, the data is available for
reconstruction on the farms.

IV. FARM PROCESSINGSYSTEM

The production farm is logically a long pipeline with the
constraint that files must be handled in order. The input is
fetched directly from Enstore tapes and the outputs are written
to output tapes. The data flow is illustrated in Fig. 2 for the
files moving through dfarm storage controlled by four produc-
tion daemons. The daemons communicate with the resource
manager daemon and the internal database to schedule job
submission. The internal database is a MySQL [9] system used
for task control, file-tracking, and process and file history. The
DFC records are fetched at the beginning of staging input data.
Output files written to tapes are recorded in the DFC. Job log
files and other logs and files are collected to the user accessible
fcdflnx3 node. Operation status is monitored by a web server
fnpcc.

The operation daemons are configured specifically for pro-
duction of a input “data-set”. For raw data, each data stream
is a data-set. The input files are sent to worker nodes for
reconstruction. Each worker node (dual-CPU) is configured
to run two reconstruction jobs independently. An input file is
approximately 1 GByte in size and is expected to run for about
5 hours on a Pentium III 1 GHz machine. The output is split
into multiple files, with each file corresponding to a data-set
defined by the event type in the trigger system. An event may
satisfy several trigger patterns and is consequently written to
multiple data-sets that are consistent with that event’s triggers.
Each data-set is a self-contained sample for physics analysis.
The total number of output data-sets is 43 for the eight data
streams used in the most recent trigger table.

The Farm Processing System (FPS) is the software that
manages, controls and monitors the production farm. It is
flexible and allows configuration for production of data-sets
operated independently in parallel farmlets. A farmlet contains
a subset of the farm resources specified for the input data-set,
the executable and the output configuration for concatenation.
Its execution is handled by its own daemons taking care

Fig. 2. Flow control in the CDF production farm. Congestion is observed
in concatenation waiting for lost files and in part caused by slow MySQL
service.



3

Fig. 3. Task control for a farmlet. Status is recorded for each input file in
MySQL database.

of consecutive processing in production and its records are
written in the internal database. The task control by FPS for
a farmlet is illustrated in Fig. 2 and Fig. 3. The daemons of
the farmlets are :

• Stager is a daemon that is responsible for finding and
delivering data from tapes based on user selection for a
set of data files or run range in the data-set. Jobs are
typically submitted one “file-set” at a time. A file-set
is a collection of files with a typical size of 10 GByte.
The stager fetches DFC records for input and checks that
proper calibration constants are available. The staging
jobs are submitted to the input I/O nodes and the file-sets
are copied to their scratch area, and afterward to dfarm.

• Dispatcher submits jobs through the batch manager to
the worker nodes and controls their execution. It looks
for the staged input file, which is then copied into the
worker scratch area. The binary tarball (an archive of
files created with the Unix tar utility) containing the
executable, complete libraries, and control parameter files
are also copied. This allows the reconstruction program
to run locally on the worker nodes and the output files,
of various sizes from 5 MByte to 1 GByte, are written
locally. At the end of the job the output files are then
copied back to dfarm. In case of abnormal system failure,
job recovery is performed and the job is resubmitted.

• Collector gathers any histogram files, log files and any
additional relevant files to a place where members of
the collaboration can easily access them for the need of
validation or monitoring purposes.

• Concatenator writes the output data that is produced to
the selected device (typically the Enstore tape) in a timely
organized fashion. It checks the internal database records
for a list of files to be concatenated into larger files with a
target file size of 1 GByte. It performs a similar task as the
dispatcher, with concatenation jobs submitted to output
nodes. The output nodes collect files corresponding to a
file-set size (≈ 10 GByte) from dfarm to the local scratch
area, execute a merging program to read events in the
input files in increasing order of run and section numbers.
It has a single output truncated into 1 GByte files. These

files are directly copied to tapes and DFC records are
written.

Since all of the farmlets share the same sets of computers
and data storage of the farm, the resource management is a
vital function of FPS for distribution and prioritization of CPU
and dfarm space among the farmlets. The additional daemons
are:

• Resource managercontrols and grants allocations for
network transfers, disk allocations, CPU and tape access
based on a sharing algorithm that grants resources to
each individual farmlet and shares resources based on
priorities. This management of resources is needed in
order to prevent congestion either on the network or on
the computers themselves and to use certain resources
more effectively.

• Dfarm inventory manager controls usage of the dis-
tributed disk cache on the worker nodes that serves as a
front-end cache between the tape pool and the Farm.

• Fstatus is a daemon that checks periodically whether all
of the services that are needed for the proper functioning
of the CDF production farm are available and to check the
status of each computer in the farm. Errors are recognized
by this daemon and are reported either to the internal
database which can be viewed on the web or through
the user interfaces in real time. Errors can also be sent
directly to a pager with a copy to an e-mail address that
is registered as the primary recipient of these messages.

The system control framework of FPS is primarily coded
in python [10]. It runs on one of the server computers
(cdffarm2) and depends on the kernel services provided by
cdffarm1, namely the FBSNG batch system, the FIPC (Farm
Interprocess communication) between the daemons and dfarm
server governing available disk space on the worker nodes.
Daemons have many interfacing components that allow them
to communicate with the other needed parts of the offline
architecture of the CDF experiment. Those include mainly the
DFC and the Calibration Database.

The FPS status in data production is shown in real time
on a web page that gives the status of data processing, flow
of data, and other useful information about the farm and data
processing. The web page is hosted on a dual Pentium node
(fnpcc on Fig. 1) connected to the farm switch. The web
interface was coded in the PHP language [11] and RRDtool
[12] for efficient storage and display of time series plots. The
structural elements in the schema include output from each
FPS modules, a parser layer that transforms data into a format
suitable for RRDtool, a RRDtool cache that stores this data
in a compact way, and finally the web access to RRD files
and queries from MySQL for real time display of file-tracking
information.

The java control interface was designed for platform inde-
pendent access to production farm control using an internet
browser. Information transfer between the client and server
over the network is done using IIOP (Internet Inter-ORB
protocol) which is part of CORBA[13]. It has proved to be
stable, and there have been no problems with short term
disconnections and re-connections. An XML processor[14] is



4

used to generate and interpret the internal representationof
data. Abstract internal representation of data is important to
cope with changes in the FPS system. A Java programming
language, Java Web Start technology [15] was used for imple-
mentation of a platform independent client.

V. BOOKKEEPING

With hundreds of files being processed at the same time it
is important to track the status of each file in the farm. File-
tracking is an important task of FPS and the bookkeeping is
based on a MySQL database. The database stores information
about each individual file, process and the history of earlier
processing. Three tables are implemented for each farmlet:
for stage-in of input files; reconstruction and output files;and
the concatenation. The processing steps tracked by the book-
keeping and records in each table are illustrated in Fig. 3.
Once a file is successfully processed, its records are copied
over to the corresponding history tables. The file status is used
in order to control the flow of data and to make sure that files
are not skipped or processed more than once. The MySQL
database also includes detailed information about the status
of each file at every point as it passes through the system.
This information is available through a web interface to the
collaboration in real time. This database server was designed
to serve thousands of simultaneous connections.

With the help of information that is stored in the internal
database, the system is able in most cases to recover and
return to the previously known state from which it can safely
continue to operate. The daemons checking the file history
in the database are not instrumented to detect an abnormal
failure for a job in process or a file lost to network or hardware
problems. The concatenator often has to wait for output file
in order to combine files in order. This bottleneck can be a
serious problem and is a major consideration for relaxing strict
ordering of files to improve overall system performance.

VI. DATA PROCESSING CAPACITY

A major reprocessing of all CDF data (with code version
5.3.1) was launched in March 2004 and the production farm
operated at full capacity for a six week period. The main
characteristics and performance of the farm is described for the
production capacity. The CPU speed and data through-put rate
are the factors that determine the data reconstruction capacity
of the production farm. The computing time required for an
event depends on the event characteristics determined by the
event trigger in different data streams. In addition, the intensity
of the proton and antiproton beams matters. More intense
beams lead to multiple events per beam crossing which in turn
lead to more CPU time per event. Inefficiency in utilizing CPU
comes from the file transfer of the executable and data files
to and from the worker scratch area.

The event size increases with beam intensity from 140
to 180 kByte. The CPU time per event, in reconstruction
of cdf software version 5.3.1 time on a dual Pentium III 1
GHz machine, is around 2 seconds per event and increase
for beam intensity and event size. The input data files are
staged from Enstore tapes. The rate of staging data depends

on how fast the link to Enstore movers is established. Once a
mover is allocated, staging a file-set of 10 GByte takes about
20 minutes. The data transmission rate varies file by file, the
commonly observed rate is around 10 MByte/sec.

Output of concatenated files are copied to tapes. The effec-
tiveness in staging data to a tape is a concern because of the
limited dfarm space and output bandwidth. A concatenation
job on the output node collects files of a data-set with close to
10 GByte at a speed that may reach the maximum IDE disk
transfer speed of 40 MByte/sec. It takes an average 10 minutes
to copy all the files requested. The concatenation program
reads the numerous small files and writes output that is split
into into 1 GByte files. On a Pentium 2.6 GHz node the CPU
time is about 24 minutes for processing 10 GByte. The job
continues by copying the output to Enstore at an average rate
of close to 20 MByte/sec. It takes about 10 minutes for writing
10 GByte. Further delay may be caused by having more than
one job accessing the same hard disk in dfarm, or waiting to
write to the same physical tape.

The tape writing is limited to one mover per data-set
at a time, to ensure that files are written sequentially on
tape. A tape is restricted to files of the same data-set. The
instantaneous tape writing rate is 30 MByte/sec. However, the
average rate drops to below 20 MByte/sec because of latency
in establishing connection to the mass storage system (this
includes mounting and positioning the tape establishing the
end-to-end communication). Running only one data-set on the
farm limits the capability of the farm. Running a mix of jobs
from different data-sets in parallel increases the through-put
of the farm by increasing the output data rate.

To maximize the farm efficiency the data reprocessing
was performed on five farmlets with each farmlet processing
one data-set. The tapes were loaded one data-set at a time,
therefore farm CPU usage came in waves shared by a couple
data-sets at a time. The CPU usage for the week of March
18 is shown in Fig. 4. A lag in CPU utilization was observed
when the farm switched to a new data-set, seen as the dips

Fig. 4. (a) CPU load and (b) dfarm traffic of the week of March 18-25,
2004.



5

F
ile

s
(a) Processed

Logged

integrated x10-1

E
vt

es
 (

k)

(b) Processed
Logged

integrated x10-1

S
iz

es
 (

G
B

) (c) Processed
Logged

integrated x10-1

Days

2500

5000

7500

10000

12500

20000

40000

60000

2000

4000

6000

8000

10000

10 20 30 40 50 60 70 80

Fig. 5. Daily processing rates are shown in histograms for (a) number of
files, (b) number of events, and (c) data size. The integratedrates are shown in
lines. Compressed outputs were created for selected data-sets (about a quarter
of the total). Event size is reduced by about 30% and thus a netreduction in
output storage.

in CPU in Fig. 4.a, because of lack of input files. File-sets
are distributed almost in sequence on a tape The lag at the
beginning of staging in a data-set is because the files requested
are stored on the same tape, causing all the stage-in jobs to
wait for one tape. Overall the stage-in is effective in feeding
data files to dfarm. The CPU usage varies for data-sets. The
“minimum bias” data-set has smaller file sizes and the CPU
per event is about 40% less than the average. When this data-
set was processed, the stage-in rate was not able to keep up
with the CPU consumption.

The output data logging rate is shown in Fig. 5 for the
number of files, number of events, and total file size written
to Enstore tapes. Compressed outputs were also created for
selected data-sets. Therefore the total events in output was
increased by about 25%. The event size was reduced and
resulted to a net reduction in storage by about 20%. On average
we had a through-put of over 2 TByte (10 million events) per
day to the Enstore storage. The data logging lasted two extra
weeks for a large B physics data-set that accounted for about
20% of the total CDF data. It was the latest data-set processed
and the tape logging rate was saturated at about 800 GByte
per day.

VII. SAM PRODUCTION FARM

Upgrade of the production farm is required for the increas-
ing demand in computing capacity. Also the FPS system,
for having many unique configurations, has become more
difficult to be compatible with newly developed computing
facilities. Among the recent development, the CDF Analysis
Farms (CAF) [16] is deployed in many CDF collaboration

institutes all over the world. The CAF is a Linux PC farm
with access to the CDF data handling system and databases
running batch analysis jobs. The software interface provides
job submission to batch systems like FBS and Condor [17] in
a uniform manner.

The CDF data management is migrated to the SAM data
handling system. SAM is organized around a set of servers
communicating via CORBA to store and retrieve files and
associated metadata. File information is stored in the SAM
database as file metadata. A task for processing many files is
launched as a SAM project. A project is organized for a user
dataset, with a consumer process established to receive data
files. File delivery is coordinated such that the events are read
only once to all the analyses programs of the project.

Illustrated in Fig. 6 is the hardware architecture and applica-
tions for data production with SAM. With data handling taken
care by SAM, the disk storage required is a durable cache
for program output to be concatenated before being stored to
SAM. The communication with SAM database is conducted
by the farm servers configured as SAM stations. CPU and
durable storage are modular entities easily specified in the
job submission. The CAF is specified in the job submission,
therefore it is flexible to be any facility available on the
network. To optimize bandwidth and file usage, the SAM
production farm is mounted to the dCache [18] file system
where input files are delivered to. Concatenated output files
are transferred directly to Enstore.

Job submission is controlled by applications scheduled on
a SAM station. The usage of file metadata is generalized for
bookkeeping purpose. The tasks in preparing input datasets
and data processing in a CAF worker node are illustrated in
Fig. 7. The tasks are:

• Prepare input datasets :
The input data to be processed are selected with queries
made to online DFC records for data quality (good-run)
and detector calibration. A run is a data taking period

Fig. 6. Data flow and control of production on a SAM farm. Data are
transported by SAM to a file cache accessible to the Condor CAFfacility.
Output is sent to a durable storage where concatenation is operated. Merged
outputs are declared to SAM and stored to Enstore.



6

Fig. 7. Task flow for a SAM project submitted to CAF workers. A worker
node receives the executable tarball, copies input data file, after processing
outputs are copied to durable storage with metadata registered to SAM.

of continuous proton-anti-proton collisions specified by
a run number. The input datasets are organized in run
sequence of more than 20 files of one or multiple runs
of a raw data stream.

• Start SAM project, and CAF submission :
A SAM project is started for a dataset not yet fully
consumed. It is submitted to a CAF as a batch job. SAM
establishes a consumer process to deliver files to CAF
workers. The CAF workers receive an archived (tar) file
containing program binary, library and control TCL cards.
Data file location is given by SAM. It is copied to the
local scratch area. Files are delivered according to the file
consumption status, till all files are delivered. Output of
the program are then copied to dedicated durable storage
area, and the associated metadata are declared to SAM.

The dataset preparation and job submission are all issued
periodically by cron jobs. To prevent exhausting the comput-
ing recourses, permission is required by a resource template
recording the latest status of them. A monitoring graph on the
consumption of data files are plotted in Fig. 8

In comparison with the FPS system, the SAM farm manage-

Fig. 8. Consumption of files by a SAM project is plotted. Tho total of 71
files in a dataset is requested. Files are quickly ”buffered”to CAF workers.
The CAF job is configured to use 30 CPU segments. After approximately 4
hours, consumed files are being ”swapped”. The project is terminated after
all files are swapped.

ment is attending operation in dataset movement. Tracking on
individual file is taken care by the SAM consumer process. The
operation is therefore reduced to detect incomplete projects
and debug. The bookkeeping tasks is reduced from tracking
thousands of files in an instance to a few dozens of projects.
The monitoring is concentrated on the usage of durable
storage, where outputs from CAF are checked and merged
in the concatenation process.

VIII. D URABLE STORAGE

Output of CAF jobs are buffered in durable storage provided
by 2 TByte file servers. With the total number of files above
a threshold (for example, 20 GByte), concatenation tasks are
launch merging small files into output of size close to 1 GByte.
Previously, the output of concatenation in the FPS system is
truncated to 1 GByte exact, therefore an input file can be
split into two concatenated files. This is changed in the new
algorithm. We have relaxed the contraint on output file size
such that the output is a merged file of a complete set of files.
This algorithm simplifies bookkeeping for unique parentage
recorded in metadata. The details of concatenation on the
durable storage node are illustrated in Fig. 9, and are described
in the following:

• Durable cache : the durable cache is a directory on a
large file server where CAF output of the same dataset
are stored. In total 41 directories are used for all recon-
structed datasets. The files are buffer till a threshold (for
example 100 files). A cron job sort them into lists of files
in run sequence. The size of each list is within the desired
concatenation file size. And the control TCL is prepared
to include these files for inputs to the concatenation
binary (AC++Dump).

• Concatenation : Concatenation is running on the file
server with the output is stored in the ”merged” directory
ready to be stored to SAM.

• SAM store : The merged files are scanned periodically
for a total over a threshold (for example 10 GByte) and
the SAM store is conducted to copy files to Enstore and
declare metadata. The threshold size is used to reduce
Enstore operation cycle to improve bandwidth.

The concatenation job is mostly just moving blocks on
disks, therefore we choose to do it locally on the file server to
prevent network hurdle and job management. The CPU time

Fig. 9. Files in a durable cache are sorted into lists in TCL cards read by
the concatenation binary (AC++Dump). The merged files (of size close to 1
GB) are stored to SAM.



7

is roughly 3 minutes per GByte on a P3 2.6 GHz file server
for 7200 rpm IDE hard drives. This is the slowest process
operated on the durable cache. The network giga-link ethernet
speed is commonly running at 20 MByte/sec and the Enstore
logging rate by a single mover can accomplish 1 TByte tape
writing a day.

The new system is more tolerable to errors. We impose
parentage in metadata listing input raw data parents and output
children. With a SAM query we find files not yet produced.
If a merged output file should be reprocessed, we look for its
parents and submit a new project for them.

IX. SCALABILITY

The FPS system uses dfarm file system which is the collec-
tion of IDE hard disks on workers. With a total 200 workers,
the chance of losing file increases whenever an worker is not
accessible. Meanwhile the MySQL database requires fast CPU
speed for thousands of query in an instance. The architecture
of the FPS system is constraint to the data handling with direct
access to Enstore. This, however, also prevents usage other
than the dedicated production operation.

The SAM production farm exploits the advantage of data
handling system provided, meanwhile uses file metadata for
bookkeeping. The overhead is the durable cache management
for concatenation which is specific for CDF data production.
The software contains applications of SAM clients, therefore
the constrains on hardware facilities are minimized. The CPU
facility can be any of CAF facility of the CDF collaboration.
The durable storage file servers can also be located anywhere
accessed by the CDF data handling system. Production tasks
are operated on a SAM station communicating with the SAM
with file metadata tailored for bookkeeping and monitoring
purpose.

The prototype SAM production farm was tested with SAM
station and file servers located at Fermilab and jobs sent
to CAF facilities in Japan and Taiwan. We were able to
accomplish a few MByte/sec bandwidth in operation. The
dedicated SAM production farm is constructed in the spring
2005 at Fermilab. It has gigabit network links for a CAF
facility of 70 workers and four file servers each having 2 TB
durable storage space. The data input is configured for direct
copy from dCache read pool and SAM store to Enstore. Each
file server can manage about half TByte throughput running
two concatenation jobs. This system has accomplished a stable
operation for production of CDF data collected in 2005.

X. CONCLUSION

The CDF production farms have been successfully proto-
typed and commissioned. They have provided the computing
capacity required for the CDF experiment in Run II. The
system has been modified and enhanced during the years of
its operation to adjust to new requirements and to enable
new capabilities. The production facility is recently upgraded
to adapt to the SAM data handling system. It is migrated
from a customized central computing model to to portable for
operation on distributed computing facilities. The systemwill
continue to be modified in the future to continue on serving

the CDF collaboration as required. These developments will
allow CDF to continue to process and analyze data through
the end of the life of the experiment.

REFERENCES

[1] R. Blair, et al., The CDF-II Detector: Technical Design Report, Fermilab-
Pub-96/390-E, Nov, 1996.

[2] The SAMGrid Project, Fermi National Accelerator Laboratory;
http://projects.fnal.gov/samgrid/.

[3] I. Mandrichenko et al., “Disk Farm Installation and Administration Guide
”, v1.6, Nov 11, 2001;http://www-isd.fnal.gov/dfarm/.

[4] Farms and Clustered Systems Group, Fermi National Accelerator Lab-
oratory, “Farm Batch System (FBS) Users Guide” v 1.5, Aug 25,2003;
http://www-isd.fnal.gov/fbsng/.

[5] R. Colombo, et al., “The CDF Computing and Analysis System: First
Experience”, FERMILAB-Conf-01/300-E, November, 2001

[6] Computing Devision, Fermi National Accelerator Laboratory, “Enstore
mass storage system”; http://www-isd.fnal.gov/enstore/.

[7] Information Technology Group, Deutsches Elektronen-Synchrotron
DESY, “The Perfectly Normal File System”; http://www-pnfs.desy.de/.

[8] P. Calafiura et al., “The CDF Run II Data Catalog and AccessModules”,
“CHEP 2000, Computing in high energy and nuclear physics”, p494.

[9] MySQL AB, Uppsala, Sweden;http://www.mysql.com/
[10] Python Software Foundation; http://www.python.org.
[11] The PHP Group; http://www.php.net.
[12] T. Oetiker, “RRDtool”; http://people.ee.ethz.ch/˜oetiker/webtool/rrdtool/.
[13] Object Management Group, Inc., Needham, MA 02494, USA;

http://www.corba.org/.
[14] World Wide Web consortium, Massachusetts Institute ofTechnology,

Cambridge, MA 02139, USA; http://www.w3.org/XML.
[15] Sun Microsystems, Inc., Santa Clara, CA 95054, USA;

http://java.sun.com/products/javawebstart/.
[16] M. Casarsa et al., CDF CAF User’s Manual,

CDF/DOC/COMPUPG/PUBLIC/6092, June24, 2005;
http://cdfcaf.fnal.gov/.

[17] Condor Manual, Condor Team, 2003;
http://www.cs.wisc.edu/condor/manual/.

[18] dCache, a distributed storage management data cachingsystem;
http://dcache.desi.de/.




