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Abstract. In this contribution we exhibit a new consistent group-manifold reduction of pure
Einstein gravity in the vielbein formulation when the compactification group manifold is S°.
The novel feature in the reduction is to consider the two 3-dimensional Lie algebras that S®
admits. We discuss the characteristics of the lower-dimensional theory and we emphasize the
results generated by the new group-manifold reduction. As an application we show that the
lower-dimensional theory admits a domain wall solution which upon uplifting to the higher-
dimension results to be the self-dual (in both curvature and spin connection) Kaluza-Klein
monopole.

1. Introduction

Dimensional reductions of theories such as gravity, supergravities and extended objects are
topics subject to an intensive research activity. A well known type of consistent dimensional
reductions are the group-manifold reductions [1, 2]. These reductions are based on the fact that
the parametrization for the metric and the other higher-dimensional fields are invariant under
a transitively-acting group of isometries in the internal space.

In this contribution we are interested in dimensional reductions on Bianchi IX group
manifolds, which are defined to be manifolds with an SO(3) or SU(2) isometry group acting
on 3-surfaces. It turns out that both isometry groups are characterized locally by the same
3-dimensional Lie algebra [3]. However these groups are topologically different, SU(2) is the
double covering of SO(3) and they correspond to S and RP3 respectively (RP? is S with
antipodal points identified).

If one performs the group-manifold reduction of pure Einstein gravity considering to the
metric as the basic field, the space-time symmetry is the only symmetry that can be used in the
reduction. The lower-dimensional theory obtained in this way is an Einstein-Maxwell-scalars
gauged theory where the isometry group of the internal space becomes the gauge group of both
the Maxwell fields and the scalars of the coset space. In the case of Bianchi IX group manifolds
the gauged group of the lower-dimensional theory is either SO(3) or SU(2). For this reason in
the literature this dimensional reduction is called S% = SU(2) group-manifold reduction.

Although the metric formulation is appropriate for pure gravity, the presence of spinors
requires the introduction of a longer set of variables. These are the vielbein fields which
describe local orthonormal Lorentz frames at each space-time point and with respect to which
the spinors are defined. In order to treat the group-manifold reduction in the general case it is
therefore important to perform the reduction of the gravitational sector using the vielbein fields
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as basic variables. In this formulation gravity has two different local symmetries, the space-
time symmetry and the tangent Lorentz symmetry. The standard group-manifold reduction of
gravity in the vielbein formulation considers in the same way as in the metric formulation only
the space-time symmetry [2]. The main point of this contribution is to show that in the case of
the group manifold S3, there does exists a special transformation in the internal tangent space
that introduces non trivial differences into the group-manifold reduction of gravity [4]. We shall
show that these differences are: a) a new term in the components of the spin connection with
two internal indices and b) an additional gauge coupling for the scalars of the coset space. As
an application of these results, we shall discuss the domain wall type solutions of the lower-
dimensional theory at the level of the first order differential equations that emerge from the
self-duality condition of the spin connection.

2. Parametrization of the vielbein

In this section we exhibit a parametrization of the vielbein in terms of lower-dimensional fields
that considers besides the usual 3-dimensional Lie algebra associated to the general coordinate
symmetry of the internal space another 3-dimensional Lie algebra associated to the tangent
Lorentz symmetry [5]. In the following discussion we assume a (D + 3) split of the (D4 3) space-
time coordinates z” = (z*,2%) where i = {0, 1,..., D —4} are the indices of the D-dimensional
space-time and « = {1, 2,3} are the indices of the internal coordinates. The corresponding flat
indices of the tangent space are denoted by @ = (a, m). The group indices are also denoted with
the letters m,n, .. ...

The parametrization of the vielbein is

e1?@e,0(x) €29 A% (z,2) LoP(z, )

éﬂa(x7z) = ) (1)
0 e2? @) L P(z, 2)

where ¢; and cy are constants whose values are ¢; = —+/3/y/2(D+1)(D —2) and ¢ =
—c1(D —2)/3 1. The A,’s are gauge fields and L,P(z,2) is a 3 x 3 scalar matrix whose internal
coordinate dependence are given by

Al (w,2) = A (@) (UTHE)m®, (2)
LP(x,2) = U™(2) Ly (z) AP (2) . (3)

The internal coordinate dependence related to the general coordinate symmetry appears via
the matrix U, (z), which is defined in terms of the left-invariant Maurer-Cartan 1-forms
o™ = dz*U,"™, of a 3-dimensional Lie group. By definition these 1-forms satisfy the Maurer-
Cartan equations 2do™ = —f,,,""0™ A o, where the f,,,,,’ are independent of 2™ and form the
structure constants of the group-manifold

Fn? = =20 () (U (2)n” U () - (4)

The corresponding Lie algebra is given in terms of the Killing vectors which represent the dual
base to the Maurer-Cartan 1-forms (6K, = 0",)

[Kma Kn] = fmnpr : (5)
! The values of ¢; and ¢y ensure that the reduction of the Einstein-Hilbert action yields a pure Einstein-Hilbert

term in D-dimensions, with no pre-factor involving the scalar ¢, and that ¢ has a canonically normalized kinetic
term in D-dimensions.
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The vielbein parametrization in the standard group-manifold reduction considers internal
coordinate dependence only via the matrix U [2]. The novel ingredient in the parametrization
(3) is the introduction of the orthogonal matrix A(z) which is taken in the adjoint representation
of the 3-dimensional Lie algebra (5) [6]. The property of orthogonality indicates that A(z) can
be introduced as a transformation in the internal tangent space. Explicitly A is defined as

A(z) = e e e g’ s (6)

where the constant matrices R, are the generators of gl(3,R) and are given by the adjoint
representation of the parameters of the internal transformations, R, = fmnPe," = adk (K,).
They satisfy the SO(3) Lie algebra

(R, Bn] = frn” Rp. (7)
Additionally the quantities depending on the internal coordinates are related by the equation
(Rm)n® = (U1 (2))m® (A7 (2))n"0a P (2) - (8)

The group-manifold reduction works out because the internal coordinate dependence can be
factored out in any geometrical quantity due to the fact that it always appears in one of the two
possible combinations (4) or (8).

Using the vielbein parametrization (1)-(3) the (D + 3)-dimensional interval is

ds? 3 = €*g,, datdz” — €229 My, (dat A,™ + ™) (dz” A" + ™), 9)
where
Moy (z) = =L P (7) Ly () Mpq - (10)

In general L,,"(x) describes the five dimensional SL(3,R)/SO(3) scalar coset space. It
transforms under a global SL(3,R) acting from the left and a local SO(3) symmetry acting
from the right. By a gauge fixing of the SO(3) symmetry, it is possible to find an explicit
representative of it [7, 8]. The matrix M, (z) represents the local SO(3) invariant metric
of the internal manifold. In particular for a Bianchi IX group manifold the Lie algebra (5)
corresponds to the algebra of the maximal compact subgroup of SL(3,R).

3. The D-dimensional action

The important quantity in the group-manifold reduction of the (D + 3)-dimensional Einstein-
Hilbert action is the spin connection w. By using the parametrization (1)-(3) of the vielbein,
the components of the (D + 3)-dimensional spin connection are

1
Wab = Wab — 2016*6190@[&8[;%0 + 56(027261)¢Famemn6n7 (11)
1
Oam = (Afl)mn [eCMDeP (C2aa¢77pn + (Lil)(quanM)) + 56(62201)@Fabp[/pnéb] 7

7lq]

T _—C 1
+e e 2 (fr[pq] — §qu7' + (Rr)pq>:| .

O = (AP (A1) [—e%e (L7, Dull

In these expressions é% = e“¥e® and €™ = e?¥(A" 4+ o")L,P(z)A,™ = ePA,™ are the D + 3
components of the vielbein, F = 20A™ — f,,,"" A" AP is the SU(2) gauge vector field strength.
The scalar functions F,p, and (Rp)ms are defined as

Fonp = (L0 (L0 Lapfor®  and  (Rp)mn = (L7, (R )mn (12)
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whilst the covariant derivative of the scalar coset is given by
D,Ly" = 0uLp" — ALy frp? + AP L fop" (13)

Notice that the covariant derivative of the scalar coset reflects the gauging of the two Lie algebras
under consideration. The second term corresponds to the standard SU (2) gauging of the internal
coordinate symmetry whereas the third one corresponds to the SO(3) gauging of the adjoint
representation of the SU(2) Lie algebra.

Using (11) the group-manifold reduction of the (D + 3)-dimensional Einstein-Hilbert action
leads to

2 c
S = C/dD:m/|g| R4 1T (DMM™) 4 5(@p)? — 2o 5 X Fm M, 7 V], (14)
where V is the scalar potential

V= 1o s DH2 A™ £8P M MP My fug] (15)

and C the SU(2) group volume. From the covariant derivative of the scalar coset (13), it is
direct to compute the covariant derivative of the internal metric M.

In conclusion, the two differences produced by apply the new group-manifold reduction
with respect to the standard one [2] are reflected in the terms (Rp)mn of @,y and in the
additional SO(3) gauging of L,,"™. These differences are not manifest in the reduced action and
therefore in the equations of motion neither. The reduced Lagrangian has the same functional
form independently of the dimensional reduction used (either the standard group-manifold or
the new group-manifold reduction). This conclusion is expected because the difference in the
parametrization of the vielbein is a transformation in the tangent space. However the new group-
manifold reduction has leaved its imprint in the internal components of the spin connection.

4. Domain wall solutions

After dimensional reduction the D-dimensional field content is {e,®, Ly,", ¢, A™}. The 5-
dimensional scalar coset L,,"™ contains two dilatons and three axions. An explicit representation
of L,," in terms of the five scalars can be found in [7, 8]. In order to simplify the discussion is
convenient to consider the following consistent truncated parametrization of the scalar coset

L,," (z) = diag(ae™ % be™ %%, ce” %), (16)

where we have set the axions to zero and the relation of the three scalar functions a, b, ¢ with
the two dilatons of the scalar coset and the dilaton ¢ is

c__¢
2

o o__ o _4 ¢
a=e?TVE, b= c=etaEts (17)

)

We are interested in solutions of cohomogeneity one also known as domain wall solutions. These
are solutions of the theory in the truncation A, = 0 that depend only on one spatial coordinate
y orthogonal to the compactification manifold, hence we take the following ansatz

dsh = f*(y)daip_1y — ¢*(y)dy?, a=a(y), b=>by), c=-c(y). (18)
It turns out that by taking

fly) = (abe)=@/32 and  g(y) = (abe)B2—e1)/3ez (19)
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the D + 3 non-trivial equations of motions of the higher-dimensional action are reduced to three
equations of motion and one constraint [4].
In the variables (17), the D-dimensional interval (18) can be rewritten as

ds?) = (abc)_ch/?’CQdm%D_l) — (abc)(GCQ_QCl)/SCQdyz, (20)
and upon uplifting, the (D + 3)-dimensional space-time is of the form RP~2%! x My, explicitly
A} o5 = dah_, — ((abe)dy? + a%0? + b} + o). (21)

The D-dimensional domain wall solutions (20) and the Bianchi IX metrics My are completely
given by the three positive scalar functions a(y), b(y) and c(y). The solutions describe
cohomogeneity one self-dual solutions (in the curvature R;;) to the 4-dimensional Euclidean
Einstein gravity in empty space. It was found that the self-duality condition of the curvature
gives origin to second order differential equations of motion that accept two different sets of first
integrals [9]. Each set consists of the three equations

0,
p R g Ry - N 2)\be, and cyclic. (22)

If A = 0 the set of equations is known as the BGPP system [10], whereas if A = 1, the set
of equations is known as the Atiyah-Hitchin system [11]. The BGPP system can be obtained
directly without integration by demanding that the spin connection 1-forms of the metric My
in the basis (abedy, ac!,bo?, co?) be self-dual [10]. This parametrization is the one used in
the standard group-manifold reduction. When the three invariant directions are different, i.e.
a # b # ¢ the BGPP system admits the BGPP metrics as solutions [10] whilst when two of
them are equal i.e. (a = b # ¢) admit the Eguchi-Hanson metrics as solutions [12, 13].

If we apply the new S3 group-manifold reduction we have six independent non-vanishing
components of the spin connection (Wym, Wmn). By require self-duality in these components of
the spin connection (11) we get the Atiyah-Hitchin first order system. When two of the tree
invariant directions are equal i.e. (a = b # ¢) this system admits the Taub-NUT family of
metrics as solutions [9].

We have a clear picture of the relation between the two different Bianchi type IX group-
manifold reductions and the domain wall type solutions of the reduced theory. Because the
equations of motion are the same in both cases, the domain wall solutions coincide as well.
However from the first order differential equations point of view, the solutions are divided into
two disjoint sets. One of these sets is given by the metrics that solve the BGPP system (A =0
in (22)) and the another one by the metrics that solve the Atiyah-Hitchin system (A = 1 in
(22)). If we reduce applying the standard group-manifold reduction the domain walls that solve
the BGPP system are self-dual in both the curvature and the spin connection whereas that the
metrics in the another set of solutions are self-dual only in the curvature. If instead we reduce
applying the new S3 group-manifold reduction the conclusion is the opposite. The possibility of
relate the different first-order systems with the inclusion (or not) of the matrix A was already
noticed in [5, 14].

It is well known that one of the Eguchi-Hanson metrics and one of the Taub-NUT metrics
are the only complete non-singular SO(3) hyper-Kéhler metrics in four dimensions [9], both
of them are obtained in the case in which two of the invariant directions are equal. From the
(D + 3)-dimensional point of view these two solutions correspond to RP~2%! x M, with either
M, the Eguchi-Hanson metric [12] whose generic orbits are RP3 [10] or the self-dual Taub-NUT
solution whose generic orbits are S [15]. In the latter case, the complete (D + 3)-metric is
known as the Kaluza-Klein monopole [16, 17].
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5. Discussion

A possible application of the results of this paper is in the context of 8-dimensional supergravities.
The SO(3) 8-dimensional gauged supergravity obtained by apply the standard group-manifold
reduction to the 11-dimensional supergravity has 1/2 BPS domain wall solutions that satisfy the
BGPP system [8, 7]. This happens because the equations that are obtained by require a self-dual
spin connection of My are exactly the same that the ones obtained by require a 1/2 BPS solution
to the supersymmetry transformation rules. The uplifted solutions are 1/2 BPS except for an
especial case which uplift to 11-dimensional flat space and hence becomes fully supersymmetric
(it corresponds to have equal invariant directions a = b = ¢). A disturbing fact is that the
Kaluza-Klein monopole is also 1/2 BPS in 11-dimensions, however if one reduce it applying the
standard group-manifold reduction the supersymmetry in 8-dimensions becomes fully broken.
This happens because in the vielbein parametrization of the standard group-manifold reduction
this solution does not has self-dual spin connection in 8-dimensions. We believe the results of
this paper open the possibility to construct a 8-dimensional gauged supergravity by apply the
new S3 group-manifold reduction to the 11-dimensional supergravity and the hope is that this
gauged supergravity owns a 1/2 BPS domain-wall solution which upon uplifting becomes the
11-dimensional Kaluza-Klein monopole. This possibility is currently under research.
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