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Введение

В последнее время отмечается непрекращающийся интерес к теориям с
нетривиальной топологией вакуума. Само понятие вакуумного состояния теории
получило развитие с возникновением квантовой теории поля и формулировкой
первой по-настоящему успешной такой теории – квантовой электродинамики
(КЭД) [1], показавшей ранее недостижимое согласие с экспериментом, напри-
мер в предсказании таких величин, как аномальный магнитный момент электрона
и лембовский сдвиг. Примерно в то же время Казимиром [2] была исследована
простейшая модификация вакуума КЭД, путем добавления двух плоских иде-
ально проводящих параллельных пластин, и предсказано возникновение силы
притяжения между ними на небольших расстояниях. Ввиду сложности экс-
периментальной проверки эффекта, он долгое время оставался в тени, пока
эксперимент Ламоро [3], а следом за ним Мохидина и Роя [4], не привели к ново-
му всплеску внимания теоретиков к данной теме.

Эффект Казимира является, пожалуй, наиболее известным вакуумным эф-
фектом, вызванным нетривиальной топологией теории, и данная идея добавления
граничных условий взята за основу во многих моделях и может сильно влиять на
структуру вакуума теории. В качестве примера можно привести хорошо зареко-
мендовавшую себя модель мешков, рассматривающую адрон как сферическую
область в фазе деконфайнмента, отделенную от внешней среды, находящей-
ся в фазе конфайнмента, отражающей стенкой [5]. Другим примером является
сигма-модель с граничными условиями Дирихле, приводящими к восстановле-
нию киральной симметрии [6]. Также было показано, что наличие границ может
привести к возникновению новых степеней свободы в связанных системах, на-
пример в конформных теориях поля [7].

Бурное развитие квантовой теории поля совпало с широким примене-
нием нового подхода к исследованию термодинамических свойств ансамблей
частиц, начало которому положил Изинг, исследовав явление ферромагнетиз-
ма путем построения решетки, в узлах которой находятся магнитные моменты
атомов, направленные либо вверх, либо вниз. Модель и ее различные моди-
фикации и обобщения оказалась невероятно успешной, в том числе приведя к
возникновению формулировки квантовой теории поля на решетке, что дало воз-
можность численных исследований в тех областях, где аналитический подход
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плохо применим. Решеточные методы можно использовать как для исследования
материальных или калибровочных полей, так и их комбинаций.

Большой интерес представляет связь спиновых моделей и решеточных
калибровочных теорий [8]. В новаторской работе [9] было получено значение кри-
тической температуры для двумерной модели Изинга методом введения дуальной
решетки, и показано соответствие между высоко и низко температурными фазами
модели. С тех пор концепция дуальности занимает важное положение в статисти-
ческих моделях и теории поля. Дальнейшее развитие она получила после выхода
революционной работы Ф. Вегнера [10], в которой он предложил калибровочную
Z(2) модель как теорию, обладающую нетривиальной фазовой структурой при от-
сутствии спонтанной намагниченности (спонтанного нарушения симметрии). Это
было достигнуто путем введения локальной симметрии, которая не может быть
нарушена спонтанно. Было получено несколько важных результатов, показыва-
ющих глубокую связь спиновой и калибровочной моделей Изинга. В качестве
примера можно привести эквивалентность двумерной калибровочной модели и
одномерной спиновой модели Изинга. Другим примером является дуальность
трехмерных калибровочной и спиновой моделей Изинга.

Идеи Вегнера вскоре были обобщены на случай непрерывных спиновых
переменных и соответствующих им непрерывных групп симметрии. Например,
было установлено соответствие двумерной абелевой калибровочной теории и
одномерной XY модели, как обладающих только неупорядоченной фазой [11].
Но более интересным является случай двумерной XY модели, которая, как бы-
ло продемонстрировано [12], содержит топологические возмущения (вихри),
распределение которых и характеризует две различные фазы модели. Данное
поведение аналогично влиянию соответствующих топологических возмущений
(магнитных монополей) на фазовую структуру четырехмерной абелевой калиб-
ровочной теории [13]. Более общая схема соответствия спиновых моделей и
калибровочных теорий была предложена А.А. Мигдалом [14]. Она включает в
себя в том числе и неабелевые теории. В частности, была показана эквивалент-
ность SU(2) калибровочной теории (теории Янга-Миллса) в двух измерениях и
одномерной спиновой SU(2)×SU(2) модели (модели Гейзенберга) – в обоих слу-
чаях присутствует только одна фаза. Для спиновой модели это неупорядоченная
фаза с экспоненциально падающей корреляционной функцией, что соответствует
фазе конфайнмента калибровочной теории. Не менее интересной является связь
данной спиновой модели в двух измерениях и калибровочной SU(2) теории в
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четырех. Обе модели обладают свойством асимптотической свободы, в них запре-
щено спонтанное нарушение глобальной симметрии , и помимо этого они имеет
динамический механизм образования массовой щели.

В то время как вакуумная структура вышеописанных теорий хорошо изу-
чена, четкое представление о влиянии на нее нетривиальной топологии теории
только начинает формироваться. Данная работа выполнена с намерением раз-
вития данной области, и с учетом глубокой связи решеточных калибровочных
теорий в четырех измерениях и двумерных спиновых моделей, в ходе иссле-
дования были рассмотрены абелевая и неабелевая теории в 3+1 измерениях и
спиновая модель Поттса на плоскости. Но источники нетривиальной топологии
были выбраны разными - в калибровочной теории она была внесена за счёт ло-
кальных низкоразмерных дефектов, в то время как в спиновой модели Поттса
нетривиальность топологии была достигнута комбинацией случайной решетки и
нелокальности взаимодействия.

Важной характеристикой любой теории является масштаб, на котором су-
ществует взаимодействие. По этому признаку теории можно условно поделить на
три группы: к первой группе относятся теории с взаимодействием между ближай-
шими соседями (модель Изинга, ZN модель, XY модель и др. ), ко второй группе
теории с дальнодействием (гравитационное, электромагнитное взаимодействия),
а к третьей теории с нелокальным взаимодействием, к которым можно отнести
некоторые модели взаимодействия нейронов, проблемы компьютерного зрения,
задачи комбинаторной топологии.

Открытым вопросом является возможность существования нетривиальных
вакуумных конфигураций в нелокальных моделях. В этом плане нелокальная
модель Поттса на случайной решетке представляется отличным объектом для
исследования. В классической модели Поттса каждому узлу решетки ставит-
ся в соответствие спин из конечного дискретного набора элементов мощностью
q. Данная модель при q = 2,3, . . . эквивалентна спиновой ZN модели (также
известной как часовая модель, или векторная модель Поттса, в которой углы на-
правления спинов отличаются друг от друга на дискретное значение 2π

q , а сам спин
принимает значения в форме комплексных корней из единицы. В свою очередь,
часовая модель переходит в XY модель в пределе при q → ∞.

В предложенной модели Поттса на случайной решетке нелокальность вза-
имодействия реализуется через введение масштаба – параметра, определяющего
расстояние R (с некоторой погрешностью δ) на котором происходит взаимодей-
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ствие между частицами. Модель имеет прямое отношение к дискретной версии
нерешенной на настоящий момент задачи комбинаторной топологии, известной
под именем проблемы Нелсона-Эрдёша-Хадвигера (НЭХ) – в какое наименьшее
число цветов можно раскрасить плоскость, чтобы никакие две точки на единич-
ном расстоянии не были покрашены в один цвет [15]. Анализ основных состояний
нелокальной модели Поттса может улучшить оценку решения данной проблемы
и предоставить направление для дальнейшего исследования.

В диссертации проведен анализ вакуумов теорий с нетривиальной топо-
логией. Помимо упомянутой спиновой модели Поттса с нелокальным взаимо-
действием, были рассмотрены две калибровочные теории поля с добавлением
граничных условий Казимира. Это компактная электродинамика с калибровочной
группой U(1), которая является абелевой теорией и неабелевая теория Янга-
Миллса с калибровочной группой SU(3). Обе теории обладают богатой фазовой
структурой и исследование влияния на неё казимировских пластин может помочь
улучшить понимание свойств их вакуумов.

Целью данной работы является исследование вакуумных состояний в ка-
либровочных теориях и спиновых системах с нетривиальной топологией.

Для достижения поставленной цели необходимо решить следующие зада-
чи:

1. Исследовать структуру вакуума калибровочной абелевой U(1) теории
при наличии бесконечных двумерных границ;

2. Исследовать структуру вакуума калибровочной неабелевой SU(3) теории
при наличии бесконечных двумерных границ;

3. Исследовать структуру основных состояний нелокальной спиновой мо-
дели Поттса на случайной решетке.

Научная новизна:
1. Впервые изучено влияние пластин Казимира на структуру вакуума

(3+1)-компактной электродинамики;
2. Впервые рассмотрен решеточный подход для исследования эффекта Ка-

зимира в (3+1)-глюодинамике и изучено влияние пластин Казимира на
деконфайнмент цвета,а также предсказано возникновение новых гранич-
ных состояний глюонов и кварков;

3. Впервые было проведено исследование нелокальной модели Поттса на
дискретной решетке с взаимодействием на конечном расстоянии, опи-
саны основные состояния данной модели и полученные результаты
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интерпретированы в контексте поиска решения дискретной проблемы
Нелсона-Эрдёша-Хадвигера, которая остается открытой.

Теоретическая и практическая значимость В представленной диссерта-
ционной работе впервые проводится комплексное исследование калибровочных и
спиновых моделей с нетривиальной топологией. Работа носит преимущественно
теоретический характер, но полученные результаты имеют большую практиче-
скую ценность. В частности, проведенное исследование эффекта Казимира для
компактной электродинамики может найти применение в наноэлектронике, где
в настоящее время данный эффект начинает активно использоваться. Взятый за
основу метод исследования структуры вакуума при наличии Казимировских пла-
стин в компактной электродинамике был с успехом применён для анализа вакуума
более сложной неабелевой теории Янга-Миллса, были предложены новые гра-
ничные состояния и обоснована необходимость их дальнейшего исследования.
Кроме того, результаты работы дают основание считать изложенную методоло-
гию эффективным способом изучения модели мешков для адронов. Исследование
спиновой нелокальной модели Поттса на случайной решетке, также проведенное
впервые, отождествляется с известной нерешенной проблемой комбинаторной
топологии, проблемой Нелсона-Эрдёша-Хадвигера. На основании полученных
результатов диссертации сделано предположение о сужении диапазона возмож-
ных решений данной проблемы.

Методология и методы исследования. Исследования калибровочных тео-
рий проводились методами квантовой теории поля на решетке, которые позволя-
ют изучать непертурбативные процессы. В качестве решеточного действия было
выбрано действие Вильсона. Расчет наблюдаемых проводился с использованием
методов Монте-Карло. Для генерации конфигураций был реализован алгоритм
тепловой бани (heat bath). Для достижения максимальной эффективности вы-
числения были распараллелены с помощью технологии NVIDIA® CUDA® .
Основные состояния нелокальной спиновой модели Поттса на случайной ре-
шетке были получены путем применения алгоритма имитации отжига (simulated
annealing). Все вычисления были проведены на суперкомпьютере Восток1 Даль-
невосточного федерального университета.

Основные положения, выносимые на защиту:
1. Казимировские граничные условия приводят к изменению структуры ва-

куума компактной электродинамики в 3+1 измерениях, что выражается
в подавлении монопольного конденсата между пластинами, и, как след-
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ствие, точка фазового перехода конфайнмент-деконфайнмент смещается
в сторону области сильной связи;

2. В SU(3) глюодинамике в 3+1 измерениях при наличии пластин Казими-
ра на границе возникает новая квазичастица с массойmgt = 1.0(1)

√
σ =

0.49(5) ГэВ, что в несколько раз меньше массы основного состояния 0++

глюбола,M0++ = 3.405(21)
√
σ = 1.653(26) ГэВ. Квазичастица, с предло-

женным названием «глютон», интерпретирована как непертурбативное
связанное состояние глюона и его образа противоположного цвета в хро-
мометаллическом зеркале.

3. Качественно обосновано наличие аналогичных связанных состояний для
тяжелых кварков, названных кваркитонами, образованных кварком и его
отражением в хромометаллическом зеркале.

4. На небольших расстояниях между хромометаллическими пластинами
проявляются признаки деконфайнмента цвета.

5. Основные состояния нелокальной модели Поттса на случайной решетке
характеризуются образованием цветовых кластеров гексагональной фор-
мы с нетривиальным смешиванием на границах

6. Численно продемонстрировано отсутствие состояния с нулевой энергией
для пяти цветов.

7. Основное состояние модели для пяти цветов характеризуется нарушени-
ем цветовой симметрии при сохранении геометрической.

Достоверность полученных результатов обеспечивается надежностью при-
менявшихся методов и подтвержается результатами апробации работы.

Апробация работы. Основные результаты работы докладывались на:
– Onlineworkshop «Advanced computing in particle physics», 31May – 24 June
2021, «Nonlocal Potts model on random latice and chromatic number of the
plane»;

– Virtual tribute to the conference «Quark confinement and the hadron
spectrum», 2 – 6 Aug 2021, «Nonlocal Potts model on random lattice and
chromatic number of the plane»;

– 10th International conference on new frontiers in physics (ICNFP 2021),
Kolymbari, Crete, Greece, 23 Aug – 2 Sep 2021, «Non-local Potts model on
random lattice and chromatic number of a plane»;
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– XVth International conference «Quark confinement and the hadron spectrum»,
Stavanger, Norway, 1 – 6 Aug 2022, «The influence of the Casimir effect on
the vacuum structure of (3+1)-dimentional compact electrodynamics»;

– III International workshop «Lattice and functional techniques for QCD», Saint
Petersburg, Russia, 10 – 14 Oct 2022, «Casimir effect in (3+1)d lattice Abelian
and non-Abelian gauge theories»;

– International workshop «Infinite and finite nuclear matter (INFINUM-2023)»,
Dubna, Russia, 27 Feb – 3 Mar 2023, «The Casimir effect in Abelian and Non-
Abelian lattice gauge theories: induced phase transitions and new boundary
states».

Личный вклад. Содержание диссертации и основные положения, выноси-
мые на защиту, отражают персональный вклад автора в опубликованные работы.
Подготовка к публикации полученных результатов проводилась совместно с соав-
торами. Все представленные в диссертации результаты получены лично автором
либо в соавторстве при его непосредственном участии.

Публикации. Основные результаты по теме диссертации опубликованы
в 3 статьях в ведущих научных журналах первого квартиля с высоким импакт-
фактором, согласно Web of Science и Scopus. Зарегистрированы 4 программы для
ЭВМ.

Объем и структура работы. Диссертация состоит из введения, 6 глав и
заключения. Полный объём диссертации составляет 121 страницу, включая 51 ри-
сунок и 1 таблицу. Список литературы содержит 117 наименований.
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Глава 1. Нетривиальная топология в теории поля и спиновых системах

В данной главе рассматриваются основные способы индуцирования нетри-
виальной топологии в теории поля и спиновых системах и приведен обзор
вакуума Казимира как наиболее известного примера задания нетривиальной
топологии путем добавления нейтральных плоских параллельных идеально про-
водящих пластин.

1.1 Индуцирование нетривиальной топологии вакуума

Существует несколько механизмов индуцирования нетривиальной тополо-
гии вакуума, различных по своей природе.

Во-первых, ее можно задать вручную путем ограничения одной из размер-
ностей, вводя так называемые низкоразмерные дефекты, к которым относятся
двумерные поверхности в трех измерениях и кривые в двух измерениях. Наиболее
известным следствием подобных дефектов является возникновение силы при-
тяжения между плоскими параллельными идеальнопроводящими пластинами,
известное как эффект Казимира. История его обнаружения и исследования крат-
ко описана в следующей секции 1.2, но прежде чем приступить к ее изложению,
рассмотрим механизм динамического индуцирования нетривиальной топологии.
Ярким его проявлением является существование нуль-размерных абелевых мо-
нополей в компактной электродинамике [16] и монополей т’Хофта-Полякова в
неабелевых калибровочных теориях, которые обязаны своим возникновением
нетривиальным топологическим свойствам калибровочной группы [17]. Часто
абелевы монополи связывают с монополями Дирака [18]. Магнитные монопо-
ли Дирака представляют собой точечные магнитные заряды, которые могут быть
введены в уравнения Максвелла с целью сделать их симметричными по отноше-
нию к электрическому и магнитному полям. Магнитное поле монополя с зарядом
g является радиальным и описывается соотношением

B =
g

r3
r = −g∇

(
1

r

)
(1.1)
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в системе СГС. Так как ∇2
(
1
r

)
= −4πδ3(r), то

∇ ·B = 4πgδ3(r), (1.2)

правая часть которого соответствует точечному магнитному заряду. Так как поле
B радиально, полный поток через сферу с центром вначале координат равен

Φ = 4πr2B = 4πg. (1.3)

Рассмотрим частицу с электрическим зарядом e в поле этого монополя. Ее вол-
новая функция равна

ψ = |ψ| exp
[
i

ℏ
(p · r − Et)

]
. (1.4)

При наличии электромагнитного поля, мы имеем p → p − (ec)A, поэтому

ψ→ ψ exp

(
− ie

ℏc
A · r

)
, (1.5)

то есть произойдет изменение фазы α волновой функции

α→ α− e

ℏc
A · r. (1.6)

Рассмотрим замкнутый контур при фиксированных r,θ и угле φ, изменяющемся
от 0 до 2π. Тогда полное изменение фазы будет равно

∆α =
e

ℏc

∮
A · dl = e

ℏc

∫
rotA · dS =

e

ℏc

∫
B · dS =

e

ℏc
Φ(r,θ), (1.7)

где Φ(r,θ) – поток через часть сферы, определенную некоторыми значениями r
и θ. При изменении θ меняется поток через эту часть сферы. При θ → 0 контур
стягивается в точку и поток, проходящий через эту часть сферы, стремится к нулю.
При увеличении контура поток через часть сферы также увеличивается и при θ→
π мы в соответствии с выражением (1.3) должны получить

Φ(r,π) = 4πg. (1.8)

Но так как при θ→ π контур снова стягивается в точку, из требования конечности
Φ(r,π) с учетом (1.7) следует, что потенциал A сингулярен при θ = π. Дан-
ные рассуждения справедливы в случае сферы любого радиуса,так что потенциал
A сингулярен вдоль всей отрицательной полуоси z. Эта линия сингулярности
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называется дираковской струной. За счет выбора подходящей системы коорди-
нат, струну Дирака можно расположить вдоль любого направления, при этом она
должна быть непрерывной, но не обязательно прямой. За счет сингулярности
фотонного поля в его геометрическом центре, магнитные монополи называют то-
пологическими дефектами, и их наличие задает нетривиальную топологию.

Монополи оказывают существенное влияние на вакуум теории. В компакт-
ной электродинамике, являющейся полигоном для исследования более сложных
неабелевых теорий, конденсат монополей приводит к генерации массовой щели
и свойству конфайнмента. Ведущая роль монопольных токов в конфайнмен-
те пробных электрических зарядов описана в недавно опубликованном обзоре
М.Чернодуба [16], посвященному проблеме кофайнмента в КХД. На рисунке 1.1
приведено взятое оттуда схематическое изображение механизма.

Рисунок 1.1 –– Схематическое изображение удерживающей струны между
пробными электрическими зарядами за счет циркуляции монополей jmon. Изоб-

ражение взято из [16].

Значительная часть главы 2 диссертации посвящена рассмотрению влияния
низкоразмерных дефектов на динамику нуль-размерных монополей в двух про-
странственных измерениях, изменение которой в свою очередь может привести
к реструктуризации вакуума компактной электродинамики. Описаны как анали-
тический, так и численный подходы, которые дают согласующиеся результаты и
дополняют друг друга. Анализ структуры вакуума при наличии плоских пластин
в трех пространственных измерениях и их влияния на динамику монополей при-
веден в главе 4.

Как следует из изложенного выше, вакуум калибровочных теорий (в том
числе и решеточных) может обладать нетривиальной структурой, но до насто-
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ящего времени вопрос, можно ли тоже самое сказать об основных состояниях
спиновых систем, остается открытым, хотя спиновые системы и решеточные ка-
либровочные теории тесно связаны между собой. Спиновые системы характери-
зуются тонким взаимодействием структуры спинового пространства с геометрией
и топологией среды (определяемой структурой решетки и ядром взаимодей-
ствия), в которой они находятся. В частности, если в модели есть фазовый
переход при некотором значении обратной температурыβ, корреляционная длина
в окрестности данной точки может быть много больше, чем масштаб микроско-
пической структуры решетки. В результате корреляторы на больших расстояниях
становятся нечувствительными к этой структуре и могут соответствовать неко-
торой непрерывной теории, которая разделяет с оригинальной моделью только
глобальные параметры, такие как размерность и топология. В то время как дале-
ко от точки фазового перехода микроструктура решетки отчетливо проявляется.

Но кроме рассмотрения теории в непрерывном пространстве, существует
другой способ исключить зависимость от микроструктуры решетки, заключа-
ющийся во введении случайной решетки, узлы которой случайным образом
распределены по пространству [19]. И в этом случае нелокальное взаимодействие
кардинально меняет топологию системы, делая ее нетривиальной. Действи-
тельно, для регулярной решетки локальное взаимодействие принципиально не
отличается от нелокального (взаимодействия на конечном расстоянии) – в обоих
случаях узлы решетки имеют одинаковое число взаимодействующих с ними сосе-
дей. Например для d-размерной модели Изинга на гиперкубической регулярной
решетке с радиусом взаимодействия R оно в точности равно 2d. Для случайной
решетки рассмотрим N узлов, случайно распределенных по d-мерной области
размера L. В таком случае средняя плотность узлов равна ρ = N

Ld , а среднее число
соседей у узла

n ∼ ρRd−1δ, (1.9)

где δ этоширина кольца взаимодействия. При условии что каждый спин в среднем
имеет хотя бы одного соседа, то существует ∼ Rdρ ≫ 1 невзаимодействующих
с ним спинов, которые ближе к нему, чем те, с которыми он взаимодействует. То
есть число спинов, взаимодействующих с узлом много меньше числа спинов, на-
ходящихся к нему ближе, но не взаимодействующих с ним. В этом и заключается
наиболее поразительное различие между моделями на регулярных и случайных
решетках – взаимодействие на конечном расстоянии аналогично взаимодействию
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между ближайшими соседями для регулярной, но не для случайной решетки. Для
случайной решетки, как видно из выражения (1.9), число соседей зависит от ра-
диуса взаимодействия R, в то время как для регулярной решетки оно постоянно.

Тем самым, с целью исследования вакуумов теорий с нетривиальной топо-
логией, в настоящей диссертации сделана попытка объединения уже имеющихся
результатов в двух пространственных измерениях для калибровочных теорий с
новыми данными для трех пространственных измерений, полученных автором в
процессе научной работы. Для полноты изложения материала автор рассматрива-
ет и спиновые системы ввиду их тесной связи с решеточными калибровочными
теориями, исследуемыми в настоящей работе.

1.2 Влияние границ на вакуум в теории поля

Интерес к изучению влияния границ на вакуум теории поля естествен-
ным образом возник из концепции нулевых колебаний, являющейся одним из
парадоксальных результатов квантовой теории поля, сформулированной в первой
половине XX века. Изменение энергии нулевых колебаний вакуума при наличии
низкоразмерных дефектов (плоских бесконечных двумерных пластин) составля-
ет суть эффекта Казимира, давшего мощный импульс к исследованию теорий
с подобными дефектами вакуума. В настоящей секции приведен краткий об-
зор развития данной темы и рассмотрены некоторые примечательные случаи
индуцирования пластинами перестройки вакуума между ними (за исключением
калибровочных теорий, которым посвящена отдельная глава 2).

1.2.1 Энергия нулевых колебаний

Предположение о энергии нулевых колебаний вакуума впервые было сде-
лано М. Планком в 1912 году при исследовании проблемы излучения абсолютно
твердого тела [20]. Планк получил выражение для энергии U осциллятора с ча-
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стотой ν при температуре T

U =
hν

e
hν
kT − 1

+
1

2
hν, (1.10)

которая не обращается в ноль при T → 0. В то же время спектральная плотность
энергии излучения

ρ(ν) =
8πhν3

c3
· 1

e
hν
kT − 1

(1.11)

стремилась к нулю при T → 0, то есть результат Планка можно интерпретировать
как ненулевую энергию вакуума материального поля, но не электромагнитного.
Энергия нулевых колебаний электромагнитного поля была введена В. Нерн-
стом четыре года спустя [21], а через некоторое время Р. Малликен показал,
что концепция ненулевой энергии вакуума отлично согласуется с эксперимен-
тальными данными о спектрах излучения моноксида бора [22]. Через пару лет
квантовая теория свободного электромагнитного поля при отсутствии источни-
ков была сформулирована М. Борном, В. Гейзенбергом и П. Йорданом [23], и
применена П. Дираком для описания испускания и поглощения излучения [24].
Новая нерелятивисткая теория предсказывала существование флуктуаций вакуу-
ма электромагнитного поля, а современная релятивисткая квантовая теория была
заложена в работах Р. Фейнмана [1] и Д. Швингера [25; 26], где понятию вакуум-
ных флуктуаций полей и их взаимодействию с электромагнитным полем и полями
материи отводится одно из основных мест. Согласно современным представлени-
ям, вакуумные флуктации представляют собой непрерывный процесс рождения
и уничтожения виртуальных частиц. Пары виртуальных частиц и античастиц мо-
гут возникать из вакуума и уничтожаться «обратно в вакуум», а их время жизни
определяется соотношением неопределенности Гейзенберга:

∆E ·∆t ⩾ ℏ
2
. (1.12)

Из предсказания энергии нулевых колебаний следует вывод, что энергия
вакуума бесконечна. Действительно, если энергия каждой моды поля с волновым
вектором k равна 1

2ℏωk а частота ωk может принимать любые значения, то пол-
ная энергия вакуума

Etot =
∑
k

1

2
ℏωk (1.13)
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принимает бесконечное значение. В то время как не представляется возможным
измерить энергию вакуума и напрямую обнаружить ее присутствие, так как она
является неотъемлимым элементом всего пространства, можно наблюдать ее из-
менение в разных областях пространства, путем применения соответствующих
граничных условий.

1.2.2 Эффект Казимира как наблюдаемое проявление вакуумных
флуктуаций

В 1948 году Х. Казимир был первым, кто показал, что разность бесконечных
энергий может принимать конечное значение и быть физической величиной [2],
которую можно экспериментально измерить. В своей работе Казимир рассмотрел
электромагнитный вакуум c добавленными идеально проводящими пластинами,
расположенными параллельно друг другу на расстоянии d. Вычислив разность
энергии вакуума между пластинами E(d) (тоже являющейся бесконечной) и
энергии вакуума в остальном пространстве E(∞), Казимир получил следующее
выражение:

δE = E(d)− E(∞) = − π
2ℏc

720d3
L2, (1.14)

где L ≫ d это линейный размер пластины. Выражение (1.14) называется энерги-
ей Казимира. Ее можно интерпретировать как потенциальную энергию системы,
то есть энергию, которую необходимо затратить, чтобы свести пластины с беско-
нечного удаления на расстояние d. Отсюда плотность энергии Казимира:

δE

L2
= − π

2ℏc
720d3

. (1.15)

Дифференцируя (1.15) по d находим силу притяжения между пластинами на еди-
ницу площади:

F (d)

L2
= − π

2ℏc
240d4

. (1.16)

Полученный результат следует из предположения, что пластины наклады-
вают ограничения на непрерывный спектр волн, тем самым позволяя существо-
вать внутри стоячим волнам только определенной длины. Добавление идеально
проводящих пластин приводит к дискретизации волного спектра между пластина-
ми и дополнительно производит его инфракрасное обрезание, не позволяя волнам
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с длиной λ > d существовать между пластинами. Данный классический вывод
эффекта Казимира подробно рассмотрен в оригинальной работе Казимира [2], а
также в учебниках по квантовой теории поля [27; 28].

Рисунок 1.2 –– Схематическая иллюстрация классической интерпретации эффекта
Казимира. Изображение взято из [29].

Наиболее наглядное (среди известных автору) схематическое изображение
физики эффекта было представлено в работе [29] и приведено на рисунке 1.2.

Помимо традиционного подхода к вычислению эффекта Казимира, энергия
и сила Казимира между идеально проводящими нейтральными пластинами мо-
гут быть получены из предположения о том, что виртуальные фотоны обладают
импульсом 1

2ℏk. Те из них, что отражаются от стенок снаружи, оказывают давле-
ние на пластины, побуждая их сближение, в то время как виртуальные фотоны,
заключенные между стенок, оказывают давление в противоположном направле-
нии. Так как спектр внутри пластин дискретный и в нём отсутствует инфракрасная
часть, то результирующим эффектом будет возникновение силы притяжения меж-
ду пластинами. В работе [30] было показано, что данная сила равна полученному
Казимиром выражению (1.16). Ещё один способ вывода силы (1.16) был проде-
монстрирован Д. Швингером и сооавторами в рамках теории источников [31].

С момента публикации Казимиром результата (1.15), были исследованы
и более сложные геометрии, например, сферическая поверхность [32]. Пара-
доксально, но в данном случае эффект от сферической границы приводит к
отталкивающей силе, а выражение для энергии Казимира ∆E имеет вид:

∆E ∼= +0.09
ℏc
2r

, (1.17)

где r это радиус сферы. Позднее результат Т. Буайе был подтвержден и улучшен
работами [33––35].
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Обнаружение возможности существования отталкивающей силы Казимира
привело к поиску других геометрий, где энергия Казимира так же была бы по-
ложительной. Наиболее очевидным кандидатом является случай двух полусфер,
находящихся на расстоянии R друг от друга. Но существует так называемая «за-
прещающая теорема» [36], отвергающая это предположение а вместе с ним и
все, касающиеся зеркально симметричных поверхностей. Теорема утверждает,
что если поместить два тела, являющиеся зеркальными отражениями друг дру-
га, в электромагнитный или скалярный вакуум, то между ними возникнет сила
притяжения. Это очень сильное утверждение, существенно ограничивающее ре-
ализацию отталкивающей силы Казимира между поверхностями. Тем не менее,
недавние исследования указывают, что такая возможность есть. Так, в работе К.
Цзяна и Ф. Вильчека [37], природа отталкивающего взаимодействия лежит в са-
мой среде, на которую накладываются граничные условия. В киральной среде
нарушается киральная симметрия фотонов, происходит их разделение на облада-
ющих левой и правой круговой поляризацией, что приводит к смене знака силы
Казимира. Схематическое изображение данной системы приведено на рисунке
1.3.

Рисунок 1.3 –– Схематическая иллюстрация эффекта Казимира в киральной сре-
де. Две параллельные незаряженные плоские пластиныA иB, расположенные на
расстоянии l друг от друга, помещены в киральную среду C. Красные и зеленые
точки обозначают фотоны с правой и левой круговой поляризацией соответствен-
но. Стрелки указывают направление распространения киральных фотонов. k±R(L)

описывает их скорость, где ± отображает направление распространения, а R/L

киральность. Изображение взято из [37].

Похожие идеи представлены в работе [38], в которой авторы, используя ки-
ральную версию КЭД с лагранжианом

L =
1

4
FµνFµν +

i

4
gθFµνF̃µν, (1.18)
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где θ это поле, описывающее киральный материал, получили выражение для силы
Казимира, выраженной относительно классического казимировского взаимодей-
ствия (1.16). График относительной силы F̃ (θ′+,θ

′
−), зависящей только от разности

θ′+ − θ′− дуальных углов θ′± = arctan(gθ±), приведен на рисунке 1.4.

Рисунок 1.4 –– График зависимости киральной силы Казимира F̃ (θ′+ − θ′−) от
разности дуальных углов θ′± = arctan(gθ±). Пунктирная линия соответствует
максимальному значению отталкивающей силы−7

8F
qed
Cas . В точке θ′+−θ′− ≈ 0.755

сила Казимира исчезает и меняет характер от притягивающего к отталкивающе-
му. Изображение взято из [38].

Примечательно, что сила Казимира в данном случае, будучи изначально
притягивающей, постепенно ослабевает с ростом разности дуальных углов, до-
стигает нуля, и затем меняет знак, становясь отталкивающей, снова возрастает,
достигая по модулю практически классической величины, 7

8F
qed
Cas . Примерами

материалов, описываемых киральным лагранжианом (1.18), являются топологи-
ческие диэлектрики [39] и полуметаллы Вейля [40].

1.2.3 Реструктуризация вакуума между границами

Запрещающая теорема, утверждающая о невозможности возникновения от-
талкивающей силы Казимира между зеркально симметричными поверхностями,
поднимает фундаментальный вопрос о переходе от сферической поверхности с
отталкивающим взаимодействием к двум полусферам с притягивающим взаимо-
действием, как изображено на рисунке 1.5. При уменьшении расстояния между
полусферами сила притяжения между ними возрастает, но в сингулярной точке
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Рисунок 1.5 –– Переход от притягивающего характера взаимодействия к отталки-
вающему. Слева две полусферы на некоторoм расстоянии R друг от друга, справа
сфера, которую можно рассматривать как предельный случай двух полусфер при

R = 0. Изображение взято из [36].

R = 0 она меняет знак согласно (1.17) и становится отталкивающей! Данный
парадокс можно попробовать объяснить из общих соображений, руководствуясь
тем, что сфера представляет собой замкнутую поверхность, в то время как полу-
сферы нет. Дополнительно, сфера обладает непрерывной симметрией вращения,
а полусферы только зеркальной симметрией. Несмотря на то, что разрешение дан-
ного парадокса не входит в цели и задачи настоящей диссертации, эта проблема
позволяет предположить, что изначальная интерпретация эффекта Казимира как
эффекта конечного объема, где введенные границы накладывают ограничения на
спектр вакуумных флуктуаций, не является исчерпывающим описанием влияния
границ на вакуум теории. Свойства вакуума Казимира зависят от геометрии гра-
ничных условий. Также было обнаружено, что наложение граничных условий
может влиять на взаимодействия полей и приводить к изменению структуры ва-
куума.

Одним из примеров является вывод К. Шарнхорста, который указывает
на изменение свойств вакуума между пластинами. Приняв во внимание ра-
диационные поправки к энергии Казимира (1.15), возникающие в результате
взаимодействия электромагнитного вакуума и моря Дирака [41], Шарнхорст по-
лучил, что скорость распространения низкочастотного света в казимировском
вакууме в направлении перендикулярном пластинам превышаетпревышает ско-
рость распространения света в вакууме c на значение

δc = +
11π2

902
αe.m.

(
ℏ

mec

1

R

)4

, (1.19)

где me это масса электрона,а αe.m. – постоянная тонкой структуры. В последую-
щей работе с Г. Бартоном [42] из предположения о казимировском вакууме как о



22

пассивной среде, в которой мнимая часть показателя преломления n⊥(ω) неотри-
цательна, было сделано заключение о том, что в казимировском вакууме скорость
фронта электромагнитной волны c/n⊥(∞) выше соответствующей скорости c при
отсутствии границ. Несмотря на кажущуюся неоднозначность, данный результат
не противоречит специальной теории относительности [43]. ЭффектШарнхорста
указывает на изменение фундаментальных физических масштабов за счет непер-
турбативной динамики и конечного размера системы, являющихся следствием
наложения граничных условий Казимира.

В качестве другого примера изменения структуры вакуума и сдвига физиче-
ского масштаба в присутствии границ можно привести восстановление киральной
симметрии для взаимодействующих фермионов. Известно, что в неограниченном
пространстве теория с лагранжианом

L = iΨ̄/∂Ψ+
g

2
(Ψ̄Ψ)2 (1.20)

обладает фазой спонтанного нарушения симметрии, которое возникает за счет
образования динамического кирального конденсата ⟨ Ψ̄Ψ ⟩. При высоких темпера-
турах происходит фазовый переход второго рода и симметрия восстанавливается.
Но добавление в теорию граничных условий Казимира сильно меняет крити-
ческое поведение теории. В этом случае критическая температура понижается
и фазовый переход становится переходом первого рода, и для небольших рас-
стояний между пластинами киральная симметрия восстанавливается вплоть до
нулевой температуры [44]. Данный пример показывает, что границы могут при-
водить к реструктуризации вакуума, влиять на критическое поведение теории и
присущие ей симметрии. Для более подробного ознакомления с исследования-
ми влияния граничных условий на поля материи можно обратиться к обзорам А.
Молочкова [45] и М. Чернодуба [46], на основе которых и был представлен дан-
ный краткий обзор.

Системы с фермионами представляются перспективным объектом для изу-
чения влияния на теорию добавления нетривиальной топологии, но в рамках
диссертационной работы фокус в области ограниченных систем был сделан на
чисто калибровочные теории - компактную электродинамику и теорию Янга-
Миллса в 3+1 измерениях. Но прежде чем приступать к изложению полученных
результатов, полезно будет рассмотреть данные теории в 2+1 измерениях. Этому
посвящена следуюшая глава диссертации.
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Глава 2. Влияние пластин Казимира на вакуум калибровочных теорий в 2+1
измерениях

В данной главе приведен обзор литературы об исследовании влияния бес-
конечных плоских пластин на вакуумы абелевой и неабелевой калибровочных
теорий в двух пространственных измерениях. Так как в этом случае двумерные
пластины сводятся к одномерным объектам, проводам, то в текущей главе тер-
мины «провода» и «пластины» используются взаимозаменяемо. Показано, что
численный подход из первых принципов, необходимый для исследования ваку-
умов теорий в трех пространственных измерениях, замечательно согласуется с
выводами полученными с помощью аналитического подхода, что дополнительно
подтверждает обоснованность его применения для изучения систем с бо́льшим
числом измерений. Также, в целях формировния более полного представления об
изучаемой теме, в главе описаны некоторые результаты, полученные автором, но
на момент подготовки диссертации не опубликованные. К ним относится исследо-
вание энергии Казимира в теории Янга-Миллса с калибровочной группой SU(3).

2.1 Компактная электродинамика в 2+1 измерениях

Обзор влияния границ на вакуум калибровочных теорий удобно начать с
компактной электродинамики в 2+1 измерениях. Данная теория представляет со-
бой чистую калибровочную теорию с группой U(1). Несмотря на то, что в ней
отсутствуют поля материи, за ней прочно закрепилось название «компактная элек-
тродинамика» (или компактная КЭД). Прилагательная «компактная» указывает на
компактность калибровочной группы U(1), элементы которой образуют окруж-
ность в комплексной плоскости. Компактная формулировка теории имеет много
общего с некомпактной— обе описывают динамику фотонов, но компактная тео-
рия содержит ещё топологические дефекты, о которых будет сказано ниже.
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2.1.1 Общая характеристика и особенности компактной электродинамики

Эта теория является отличным инструментом для исследования таких
непертурбативных явлений, как линейный конфайнмент электрических зарядов
и генерация массовой щели. Свойство конфайнмента характеризуется линей-
ным потенциалом V (R) взаимодействия двух противоположных электрических
зарядов, находящихся на расстоянии R:

V (L) = σL, (2.1)

где σ это натяжение удерживающей струны между ними. Из данного выражения
следует, что для разделения зарядов на бесконечное расстояние нужно затра-
тить бесконечную энергию. В фазе конфайнмента возникает феномен массовой
щели, что означает обретение фотоном ненулевой массы. Помимо этого, при ко-
нечной температуре модель обладает нетривиальной фазовой структурой, что
проявляется в существовании фазы деконфайнмента, в которой линейный потен-
циал исчезает и заряды становятся свободными.

Перечисленные особенности делают компактную электродинамику отлич-
ной пробной моделью для исследования более сложной теории Янга-Миллса,
описывающей динамику глюонов в квантовой хромодинамике. Непертурбатив-
ные свойства компактной электродинамики являются результатом динамики абе-
левых монополей, которые возникают в модели как следствие компактности
абелевой калибровочной группы. Монополи это частице-подобные объекты, об-
ладающие магнитным зарядом. Их мировые линии в двух пространственных
измерениях свободятся к точкам, таким образом можно описывать монополь, как
инстантон. При нулевой температуре монополи образуют газ, который и приводит
к конфайнменту электрических зарядов и образованиюмассовойщели.Монополи
часто называют топологическими дефектами, поскольку монополь характеризу-
ется сингулярностью («дефектом») фотонного поля в его геометрическом центре.
Вместе с фотонами, монополи являются базовыми объектами, динамику кото-
рых описывает компактная электродинамика. Фотоны представляют стандартный
пертурбативный сектор модели, они описывают кулоновский член потенциала
взаимодействия между зарядами, в то время как монополи отвечают за непер-
турбативный сектор, приводя к таким явлениям как конфайнмент и генерация
массовой щели.
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Относительно тематики настоящей диссертации важно исследовать, каким
образом добавление нетривиальной топологии в виде казимимировских пластин
(проводов в случае двух пространственных измерений) влияет на непертурбатив-
ные свойства теории и на ее вакуумную структуру. Такой тщательный анализ для
компактной электродинамики в 2+1 измерениях уже был проведен в работах [47;
48]. Ниже представлены основные полученные результаты.

По сравнению с теориями в большем числе измерений, компактная элек-
тродинамика в 2+1 измерениях обладает важным преимуществом, множество
выводов в ней можно получить аналитически. Данные результаты затем можно
сравнить с результатами, полученными с помощью численного подхода, подроб-
но описанного в главе 3 настоящей работы. Поскольку в данной работе иссле-
дуются стационарные процессы в системах, находящихся в термодинамическом
равновесии, то представляется удобным перейти от пространства Минковского к
евклидовому путем введения комплексного времени. В нем лагранжиан компакт-
ной электродинамики записывается следующим образом:

L =
1

4
F 2
µν, (2.2)

где Fµν это тензор поля. Однако в отличии от свободной U(1) калибровочной тео-
рии, в данном случае тензор поля состоит из двух частей:

Fµν = F ph
µν + Fmon

µν . (2.3)

Первая часть выражения (пертурбативная) совпадает с тензором поля свободной
U(1) теории и соответствует векторному фотонному полю Aµ:

F ph
µν [A] = ∂µAν − ∂νAµ. (2.4)

Вторая часть является непертурбативной и соответствует вкладу монополей:

Fmon
µν (x) = −gmonεµνα∂α

∫
d3yD(x− y)ρ(y), (2.5)

Величина ρ это плотность монополей, которая задается как сумма зарядов моно-
полей по всем их пространственным позициям:

ρ(x) =
∑
a

qaδ
(3)(x− xa), (2.6)

где величина qa это заряд a-го монополя, выраженный в единицах элементарного
заряда монополя Дирака

gmon =
2π

g
, (2.7)
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который, в свою очередь, определен через элементарный электрический заряд g.
Величина D в выражении (2.5) является скалярным пропагатором

D(x) =

∫
d3k

(2π)3
eikx

k2
=

1

4π|x|
, (2.8)

удовлетворяющим дифференциальному уравнению второго порядка

−∆(x) = δ(x). (2.9)

Таким образом, действие теории

S[A,ρ] =
1

4

∫
d3xF 2

µν (2.10)

зависит от векторного фотонного поляAµ и плотности монополей ρ и может быть
разложено на сумму фотонной и монопольной частей:

S[A,ρ] =
1

4

∫
d3x(F ph

µν [A] + Fmon
µν [ρ])2 ≡ Sph[A] + Smon[ρ], (2.11)

где пертурбативная фотонная часть записывается как

Sph[A] =
1

4

∫
d3x(F ph

µν [A])
2, (2.12)

а непертурбативная монопольная часть имеет вид

Smon[ρ] =
g2mon

2

∫
d3x

∫
d3yρ(x)D(x− y)ρ(y). (2.13)

Используя выражение для монопольной плотности (2.6), можно записать
монопольную часть (2.13) в терминах кулоновского газа монополей:

Smon[ρ] =
g2mon

2

∑
a,b=1
a̸=b

qaqbD(xa − yb) +NS0, (2.14)

где

S0 =
g2mon

2
D(0) (2.15)

это самодействие монополей. Данный член является расходящимся, но его мож-
но перенормировать.

Статистическая сумма теории

Z =

∫
DA

∑∫
mon

e−S[A,ρ] (2.16)
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подразумевает интегрирование по фотонным конфигурациям A и сумму по всем
монопольным конфигурациям, характеризующимися монопольными плотностя-
ми ρ. Меру интегрирования по монопольным конфигурациям можно записать
следующим образом:

∑∫
mon

=
∞∑

N=0

1

N !

N∏
a=1

(∑
qa=±1

ζ

∫
d3xa

)
. (2.17)

В данном выражении проводится интегрирование по позициям xa всех N мо-
нополей, суммирование по магнитным зарядам qa и затем сумма общего числа
монополей N , учитывая фактор вырождения 1/N !. Параметр ζ это так называе-
мая «летучесть», которая контролирует монопольную плотность.

Из разделяемости действия на фотонную и монопольные части (2.11) сле-
дует возможность разделения статистической суммы:

Z = Zph · Zmon, (2.18)

где

Zph =

∫
DAe−Sph[A], (2.19)

Zmon =
∑∫
mon

e−Smon[ρ] (2.20)

это фотонные и монопольные части, соответственно.
Монопольную часть статистической суммы (2.20), описывающую непер-

турбативные эффекты, можно переформулировать в терминах нелинейной моде-
ли синус-Гордона. Полный вывод можно найти в работе [47], здесь же приведён
результат, который будет использован далее:

Zmon =
∑∫
mon

e−Smon[ρ] ≡ C

∫
Dχ exp

{
−
∫

d3xLs(χ)

}
, (2.21)

где χ это действительное скалярное поле,

Ls =
1

2g2mon

(∂µχ)
2 − 2ζ cosχ (2.22)

лагранжиан модели синус-Гордона, C – некоторая константа. Данная модель
представляет собой дуальную формулировку кулоновского газа монополей (2.14)
и описывает динамику монопольной плотности (2.6) в терминах скалярного
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действительного поля χ. Модель (2.22) предоставляет удобный инструмент для
исследования непертурбативных свойств компактной электродинамики. Из нее
можно вывести [47] среднюю монопольную плотность кулоновского газа моно-
полей

ϱ ≡ ⟨ |ρ| ⟩ ≡ ⟨N ⟩ = ∂ lnZmon

∂ ln ζ
= 2ζ. (2.23)

Скалярное поле χ обладает массой

mph = gmon

√
2ζ ≡ 2π

√
2ζ

g
. (2.24)

Нижний индекс уmph указывает на то, что данная масса скалярного поля является
и массой калибровочного (фотонного) поля. Выражение (2.24) получено с помо-
щью разложения лагранжиана синус-Гордона (2.22) по флуктуациям дуального
поля χ с использованием определения монопольного заряда (2.7):

L =
1

2g2mon

[
(∂µχ)

2 +m2
phχ

2
]
+O(χ4). (2.25)

Калибровочное поле Aµ состоит из регулярного фотонного поля и сингулярно-
го монопольного поля, что и приводит к разделению тензора поля (2.3). Можно
показать, что во взаимодействиях посредством обмена фотоном безмассовый по-
люс исчезает и остается массивный полюс скалярного поля χ, который определяет
радиус взаимодействия. Выражение дляmmp (2.24) можно переписать через сред-
нюю плотность монополей, используя (2.23). Тогда оно принимает вид

mph =
2π

√
ϱmon

g
, (2.26)

откуда явно видно, что газ монополей приводит к генерации массовойщели систе-
ме, или, другими словами, обретению фотоном массы, которая пропорциональна
квадратному корню из плотности монополей.

Так как выражения (2.25) и (2.26) получены при условии незначительности
флуктуаций скалярного поля χ (⟨χ2 ⟩ ⩽ 1), то это предполагает, что флуктуаци-
ями индивидуальных монополей можно пренебречь. Поскольку монополи могут
влиять друг на друга на расстоянии дебайевского радиуса λD = m−1

ph , данное тре-
бование выполняется, если число монополей в дебайевском объеме существенно
велико, ϱmonλ

3
D ⩾ 1. Используя (2.26), последнее условие ⟨χ2 ⟩ ⩽ 1 можно пе-

реписать в виде

ϱ1/2mon ⩽
g3

(2π)3
, (2.27)
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что эквивалентно

ϱ1/2mong
3
mon ⩽ 1. (2.28)

Это означает, что оценка массы фотона является верной, если плотность мо-
нополей невелика. По этой причине, выражения (2.27) и (2.28) часто называют
приближением разреженного газа.

Другим важным свойством компактной электродинамики, как было отмече-
но выше, является линейный конфайнмент электрических зарядов. Между парой
статичных зарядов, расположенных на расстоянии R ⩾ λD, существует удержи-
вающий потенциал (2.1), линейно возрастающий с увеличением R. Натяжение
удерживающей струны σ выражается формулой

σ =
8
√
2ζ

gmon
≡

4g
√
ϱmon

π
, (2.29)

вывод которой можно найти в [49]. Примечательно, что компактная электроди-
намика является одной из немногих теорий, где свойство конфайнмента может
быть получено аналитически.

2.1.2 Влияние граничных условий Казимира на вакуум компактной
электродинамики

Формулировка граничных условий Казимира

После того, как кратко сформулированы основные свойства вакуума ком-
пактной электродинамики, можно перейти к описанию того, как изменяется
вакуум теории в присутствии граничных условий Казимира. Их можно задать
двумя эквивалентными способами — либо с помощью идеального электрическо-
го проводника, на границе которого тангенциальная компонента электрического
поля и нормальная компонента магнитного поля зануляются, либо с исполь-
зованием идеального магнитного проводника, когда электрическая и магнитная
компоненты меняются ролями. Условия первого (электрического) типа являются
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общепринятыми в работах по эффекту Казимира, и их можно записать следую-
щим образом:

εµαβnµ(x)Fαβ, (2.30)

где nµ(x) это вектор нормали к границе в точке x. Данные условия в двух про-
странственных измерениях реализуются путем добавления двух параллельных
проводов, находящихся на расстоянии R друг от друга. Тангенциальная компо-
нента электрического поля в каждой точке провода x зануляется:

E∥(x) = 0. (2.31)

Чтобы вычислить, как изменится лагранжиан и статсумма теории после добав-
ления пластин (проводов) Казимира, удобно рассмотреть общую формулировку
условий Казимира для произвольной двумерной мировой поверхности S [47]. Для
описания поверхности S введем вектор x̄ = x̄(τ,ξ), где τ и ξ это временной и
пространственный параметры соответственно. Тогда элемент поверхности мож-
но представить как

sµν(x) =

∫
dτ

∫
dξ

∂x̄[µ,
∂τ

∂x̄ν]
∂ξ

δ(3)(x− x̄(τ,ξ)), (2.32)

где a[µ,bν] = aµbν − aνbµ. Тогда условие (2.31) может быть записано в ковари-
антной форме

F µν(x)sµν(x) = 0. (2.33)

Пару двух статичных параллельных проводов, расположенных на расстоянии R

можно параметризовать с помощью пары векторов

x̄±(τ,ξ) ≡ (x1,x2,x3) =

(
±R

2
,ξ,τ

)
. (2.34)

Провода являются статичными по отношению к временному направлению x3. То-
гда элемент поверхности (2.32) принимает вид

s±µν(x) = (δµ,2δν,3 − δν,3δµ,2)δ(x1 ∓R/2). (2.35)

Подставляя данное выражение в общее условие (2.33), получаем формулировку
граничных условий Казимира для параллельных идеально проводящих статич-
ных проводов:

F23(±R/2,x2,x3) = 0. (2.36)
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Полученное условие соответствует (2.31), так как F23 ≡ E2 это параллельная про-
водам компонента электрического поля.

В формализме интеграла по траекториям, граничное условие (2.33) можно
применить, введя следующий δ функционал:

δS[F ] =
∏
x

δ (F µν(x)sµν(x)) . (2.37)

Его можно переписать через интегрирование по множителю Лагранжа λ(x):

δS[F ] =

∫
D exp

[
i

2

∫
d3xλ(x)F µν(x)sµν(x)

]
≡
∫

D exp

[
i

2

∫
d3xF µν(x)Jµν(x; λ)

]
,

(2.38)
где

Jµν(x; λ) = λ(x)sµν(x). (2.39)

В случае двух параллельных пластин (проводов) получаем:

δS[F ] =

∫
Dλ+

∫
Dλ− exp

[
i

∫
dx2

∫
dx3

∑
a=±1

λa(x2,x3)F23

(
a
R

2
,x2,x3

)]
.

(2.40)
В этом выражении интегрирование под экспонентой производится по двумерной
мировой поверхности, а интегрирование по множителям Лагранжа λ1 и λ2 обес-
печивает выполнение условий Казимира (2.36) на плоских мировых поверностях
левого (x1 = +R/2) и правого (x1 = −R/2) проводов соответственно. Используя
данное выражение, статистическую сумму теории (2.18) в присутствии пластин
Казимира можно записать следующим образом:

ZS =

∫
DA

∑∫
mon

e−Sph[A]−Smon[ρ]δS[F ]. (2.41)

В данном случае, в отличии от (2.18), полностью разделить фотонные и моно-
польные вклады не представляется возможным:

ZS =

∫
DλZph[λ]Zmon[λ], (2.42)

Zph[λ] =

∫
DAe−Sph[A]+ i

2

∫
d3xFµν

ph (x)Jµν(x;λ), (2.43)

Zmon[λ] =
∑∫
mon

e−Smon[ρ]+
i
2

∫
d3xFµν

mon(x)Jµν(x;λ). (2.44)
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Интегрируя фотонную часть по Aµ получаем:

Zph[λ] =

∫
DA exp

[∫
d3x

(
−1

4
F 2
µν + iAµJ

µ

)]
= C exp

[
−1

2

∫
d3xd3yJµ(x; λ)D(x− y)Jµ(y; λ)

]
,

(2.45)

гдеC это некоторая константа, которая будет опущена далее. Сохраняющийся ток
Jµ(x; λ) связан с поверхностным тензором Jµν(x; λ) следующим соотношением:

Jµ(x; λ) = ∂νJµν(x; λ), ∂µJµ(x; λ) = 0. (2.46)

Из (2.32) и (2.39) получаем выражение тока (2.46) для параллельных пластин

Jµ =
∑
a=±

δ

(
x1 −

aR

2

)(
δµ2

∂λa
∂x3

− δµ3
∂λa
∂x2

)
, (2.47)

где λ± = λ±(x2,x3) это множители Лагранжа, соответствующие первому и вто-
рому проводу, соответственно.

Вклад монополей (2.44) в статистическую сумму (2.41) можно оценить ана-
логично тому, как это было сделано в случае отсутствия граничных условий. В
формулировке синус-Гордона получим:

Zmon[λ] =

∫
Dχ exp

{
−
∫

d3xLS(χ; λ)

}
. (2.48)

здесь лагранжиан Lχ синус-Гордона (2.22) заменен на

LS(χ; λ) =
1

2g2mon

[
∂µ(χ(x)− q(x,λ))

]2
− 2ζ cosχ(x) (2.49)

путем введения «ротора» от поверхностного тензора (2.39):

q(x,λ) =
gmon

2

∫
d3xD(x− y)εαµν∂

αJµν(y; λ). (2.50)

Для двух параллельных проводов данная функция принимает вид:

q(x) = gmon

∫
dy2dy3

∑
a=±

λa(y2,y3)
∂

∂x1
D

(
x1 −

aR

2
,x2 − y2,x3 − y3

)
. (2.51)

Подставляя выражения (2.43) для фотонной части и (2.44) для монопольной части,
получаем выражение для статистической суммы при наличии граничных условий
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Казимира:

ZS =

∫
DλDχ exp

[
−1

2

∫
d3xd3yJµ(x; λ)D(x− y)Jµ(y; λ)−

−
∫

d3x

(
1

2g2mon

[
∂µ
(
χ(x)− q(x,λ)

)]2 − 2ζ cosχ(x)

)]
.

(2.52)

Отсюда можно сделать вывод о нетривиальном влиянии граничных условий
Казимира на дуальное поле синус-Гордона. Действительно, интуитивно условие
зануления электрического поля на мировой поверхности (2.31) проводов позво-
ляет предположить выполнение граничных условий Дирихле или Неймана для
дуального поля χ, что означало бы зануление поля χ или его производной на гра-
ницах. Но, как следует из (2.52), данное предположение неверно.

Полученное выражение для статистической суммы (2.52) можно разложить
по степеням скалярного поля χ(x), причем членами χn(x) степени n = 4 и выше
можно пренебречь, если мы оставляем только ведущий порядок в приближении
разреженного газа (2.28). В таком случае, функционал под экспонентой будет
квадратичным относительно как дуального поля χ, так и множителя Лагранжа
λ, что позволяет его проинтегрировать и получить потенциал Казимира.

Потенциал Казимира для параллельных статичных проводов

Выражение потенциала Казимира зависит от присутствия или отсутствия
монополей. Как следует из уравнения (2.23), cлучай отсутствия монополей реали-
зуется путем зануления летучести (ζ = 0) Тогда нелинейный член в лагранжиане
синус-Гордона (2.22) уходит, и стат. сумма (2.52) становится независимой от
функционала q, так как его теперь можно внести в поле синус-Гордона χ путем
сдвига χ → χ + q. В этом случае можно проинтегрировать по полю χ и стат.
сумма (2.52) примет вид:

ZS =

∫
Dλe−

1
2

∫
d3xd3yJµ(x;λ)D(x−y)Jµ(y;λ). (2.53)

Отсюда можно вывести [47] выражение для потенциала Казимира для параллель-
ных проводов при отсутствии монополей:

VCas(R) = −ζ(3)
16π

1

R2
, (2.54)
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где ζ(x) это дзета-функция Римана, ζ(3) ≈ 1.20206.
В случае ненулевой плотности монополей, которая контролируется пара-

метром летучести ζ ̸= 0, действие поля синус-Гордона можно разложить по
небольшим флуктуациям дуального поля (2.25). Тогда статистическая сумма 2.52
принимает вид:

ZS =

∫
DλDχ exp

{
−1

2

∫
d3xd3yJµ(x; λ)D(x− y)Jµ(y; λ)−

− 1

2g2mon

∫
d3x
[(
∂µ(χ− q(λ))

)2
+m2

phχ
2
]}

.

(2.55)

В нее не включены члены O(χ4), так как в приближении разреженного газа
учитывается только ведущий порядок разложения. Интегрируя по χ и проведя
некоторые преобразования [47], можно вывести плотность энергии Казимира при
наличии монополей:

V mon
Cas (R,mph) = −ζ(3)

16π

1

R2
fmon(mphR), (2.56)

где функция

fmon(x) = − 2x2

ζ(3)

∫ ∞

0

dy log
(
1− e−2x

√
y+1
)

(2.57)

изображена на рисунке 2.1.

Рисунок 2.1 –– Функция f(x) из выражения для плотности энергии Казими-
ра (2.56). Изображение взято из [47].

Если сравнить выражения (2.54) плотности энергии Казимира при отсут-
ствии монополей и (2.56) при их наличии, то можно заменить, что второе от
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первого отличается только наличием дополнительного множителя (2.57), но дан-
ный множитель приводит к очень интересному заключению. Для небольших
расстояний между пластинами, или низкой монопольной плотности, Rmph ≪ 1,
функция f принимает близкие к единице значения, что свидетельствует о близких
значениях плотностей энергии Казимира при отсутствии и наличии монополей.
Но с увеличением расстояния между пластинами и/или увеличением плотности
монополей, как видно из рисунка 2.1, плотность энергии Казимира будет умень-
шаться по сравнению со значениями при отсутствии монополей. При mphR ≫ 1

функция (2.57) падает экспоненциально:

fmon(x) =
2x

ζ(3)
e−2x + . . . , x ≫ 1, (2.58)

что свидетельствует об экспоненциальном подавлении плотности энергии Кази-
мира.

Таким образом можно сделать вывод, что в приближении разреженного га-
за наличие динамических монополей приводит к подавлению эффекта Казимира
для проводов, расположенных на большом расстоянии. Данный непертурбатив-
ный эффект показывает, что структура вакуума теории может влиять на эффекты,
возникающие в результате наложения граничных условий. Но верно и обратное -
в компактной электродинамике в 2+1 измерениях, граничные условия оказывают
влияние на структуру вакуума. Чтобы пронаблюдать данные эффекты, необходи-
мо перейти к решеточной формулировке теории.

Влияние условий Казимира на конденсат монополей

Аналитический подход, позволивший получить выражение (2.56) для плот-
ности энергии Казимира, применим только в приближении разреженного газа
(2.28), когда плотность монополей очень мала. Для исследования теории при
бо́льших значениях концентрации монополей, необходимо использовать другие
методы. Одним из таких методов, позволяющим исследовать непертурбативные
свойства теории, является метод решеточной регуляризации, в котором непре-
рывное пространство-время заменяется дискретной решеткой, шаг которой и
естественным образом вводит ультрафиолетовое обрезание, избавляя теорию от
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расходимостей и позволяя вычислять наблюдаемые, физические значения кото-
рых затем получают беря непрерывный предел при устремлении шага решетки
к нулю. Описанию решеточной регуляризации посвящена вторая глава настоя-
щей работы, в данном же разделе кратко вводятся необходимые для дальнейшего
описания понятия.

Действие (2.10) в решеточной формулировке принимает вид

S[θ] = β
∑
P

(1− cos θP ), (2.59)

где β это решеточная константа связи, связанная с непрерывной константой связи
(электрическим зарядом g) соотношением

β =
1

g2a
, (2.60)

это размер шага решетки. Плакет P ≡ Px,µν определяется координатой x узла
решетки и двумя перпендикулярными единичными векторами µ и ν, задающи-
ми плоскость, в которой берется наименьший из возможных замкнутых контуров
обхода по линкам. Каждому линку на решетке присваивается значение калибро-
вочного поля

θx,µ ∈ [−π,π). (2.61)

Элементы калибровочного поля, принадлежащие плакету, образуют плакетную
переменную (угол)

θPx,µν
= θx,µ + θx+µ̂,ν − θx+ν̂,µ − θx,ν, (2.62)

которая связана с непрерывным тензором поля Fµν соотношением

θPx,µν
= a2Fµν(x) +O(a4). (2.63)

Решеточное действие (2.59) инвариантно относительно изменения плакет-
ной переменной на величину 2π

θP → θP + 2πn, n ∈ Z. (2.64)

В непрерывном пределе (2.63) при a → 0 сдвиги на 2π становятся сингу-
лярными функциями, пропорциональными 2π/a2. Данные сдвиги соответствуют
листам Дирака, которые представляют собой мировые линии струн Дирака, окан-
чивающиеся абелевыми монополями. Абелевы монополи являются физическими,
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калибровочно инвариантными топологическими дефектами. Как было сказано в
подсекции 2.1.1, в 2+1 измерениях монополи это точечные инстантоно-подобные
объекты. Их плотность в непрерывном пределе задается выражением (2.6). В ре-
шеточной регуляризации локальная плотность монополей

ρx =
1

2π

∑
P∂Cx

(−1)P θ̄P , (2.65)

определенная для произвольного куба Cx, является дивергенцией физической ча-
сти решеточного тензора поля (2.62)

θ̄P = θP + 2πkP ∈ [−π,π), kP ∈ Z, (2.66)

где kP это целое число, подобранное таким образом, чтобы плакетный угол θ̄P был
в интервале [−π,π). Удобно вести плотность монополей внутри какого-то объема
V , например, между пластинами:

ρmon =
1

|V |
∑
x∈V

|ρx|. (2.67)

Для компактной электродинамики в 2+1 измерениях плотность монополей
представляет собой монотонную быстро убывающую функцию решеточной кон-
станты связи β. В отсутствии пластин она изображена на рисунке 2.2.

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

m
on

Рисунок 2.2 –– Плотность монополей ρmon как функция решеточной константы
связи β.

Из данного графика видно, что в отсутствии пластин концентрация мо-
нополей высока для низких значений решеточной константы связи β, но с
возрастанием β быстро падает, исчезая при β ≳ 2.
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Пластины Казимира зануляют поток электромагнитного поля из/в область
между пластинами, поэтому согласно теореме Гаусса общая плотность монопо-
лей должна быть равна нулю. Помимо этого, близко-расположенные пластины
сжимают сферический трехмерный магнитый поток от монополей в двумер-
ный, и результирующая конфигурация является более энергетически затратной.
Следовательно, можно предположить, что пластины будут подавлять плотность
монополей между ними, и чем меньше расстояние между ними, тем сильнее будет
проявляться данный эффект. Уменьшение расстояния между пластинами влечет
«сжатие» магнитного поля между ними, приводя к увеличению его энергии. В
свою очередь, это приводит к увеличению массы монополей, а чем больше мас-
са, тем меньше плотность монополей. То есть с уменьшением расстояния между
пластинами газ монополей будет становится более разреженным, и наоборот.
Действительно, расчеты в работе [47] полностью подтверждают данные пред-
положения. На рисунке 2.3 приведена зависимость плотности монополей между
пластинами от расстояния между ними.

Рисунок 2.3 –– Плотность монополей ρmon как функция расстояния между пласти-
нами R в решеточных единицах для различных значений решеточной константы
связиβ. Стрелки указывают на значения плотности монополей в пределеR → ∞.
Данный график приведен для идеально проводящих пластин, когда диэлектриче-

ская проницаемость пластин ε→ ∞. Изображение взято из [47].

Видно, что чем меньше расстояние между пластинами, тем меньше плот-
ность монополей между ними, она возрастает с ростом R, и предел R → ∞
соответствует ситуации, когда пластины отсутствуют. Для минимального рассто-
яния между пластинами R = 1a плотность монополей принимает околонулевые
значения. В этом случае, из-за того что две грани решеточного монополя касаются
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пластин (мировых линий проводов), магнитный поток не может проходить через
них (в направлении нормали к пластинам). Для его распространения остаются
только два других направления, таким образом динамика монополей становится
по-существу двумерной. Данное наблюдение проиллюстрировано на рисунке 2.4.

Рисунок 2.4 ––Монополь, заключенный между пластинами, находящимися на ми-
нимимально возможном расстоянии R = a. B обозначает грани, касающиеся
пластин, A - остальные, через которые магнитный поток может проходить. Изоб-

ражение взято из [47].

Размерная редукция оказывает влияние на взаимодействие монополей и
антимонополей. В частности, трехмерный кулоновский 1

r потенциал (2.8) взаи-
модействия переходит в двумерный логарифмический потенциал:

D3D(x) =
1

4π|x|
→ D2D(x) =

2

R
log

|x|
R

. (2.68)

Примечательно, что в результате быстро убывающий кулоновский потенциал пре-
образуется в медленно растущий логарифмический. Логарифмическая функция
представляет собой удерживающий потенциал, а это значит, что индивидуаль-
ные монополи между близко расположенными пластинами должны образовывать
магнитные диполи, состоящие из пары монополь-антимонополь. Данный процесс
действительно прослеживается на симуляциях. На рисунке 2.5 показаны конфигу-
рации монополей между пластинами (рисунок 2.5а) и в остальном пространстве
(рисунок 2.5б). Между пластинами концентрация монополей существенно ниже,
более того, внутри пластин монополи образуют диполи, в то время как вне пла-
стин наблюдается обычный монопольный газ.



40

а) б)
Рисунок 2.5 –– (а): Конфигурация монополей между пластинами. (б): конфигура-

ция монополей снаружи пластин. Изображение взято из [47].

Переход от газа монополей к газу диполей должен приводить к исчезно-
вению массовой щели и фазовому переходу конфайнмент-деконфайнмент между
пластинами. Параметр порядка, который обычно используется для отслеживания
такого перехода, это петля Полякова, представляющая собой замкнутый контур
по всем временным линкам решетки и определенная для пространственного узла
решетки x:

Lx ≡ L(x1,x2) = exp

{
i

Lt−1∑
x3=0

θ3(x1,x2,x3)

}
. (2.69)

Для бесконечной решетки, в фазе конфайнмента абсолютное значение петли По-
лякова, усредненное по всем пространственным сайтам, равно нулю, а в фазе
деконфайнмента оно отлично от нуля. В случае нулевой температуры, при ко-
торой были получены выше описанные результаты, петля Полякова не всегда
является репрезентативным маркером фазового перехода, в (2+1)-мерной тео-
рии каких-то признаков перехода конфайнмент-деконфайнмент обнаружить не
удалось. Помимо этого известно, что (2+1)-компактная электродинамика в от-
сутствии граничных условий обладает только фазой конфайнмента, фазового
перехода в фазу деконфайнмента при нулевой температуре нет. Чтобы в этом
убедится, достаточно взглянуть на графики зависимости плакетной переменной
и восприимчивости действия от решеточной константы связи β, приведенные
на рисунке 2.6. График плакетной переменной (Рис. 2.6а) показывает отсутствие
резких изменений в поведении функции, что свидетельствует об отсутствии пе-
рехода в фазу деконфайнмента. Тем не менее, его можно разбить на две части
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Рисунок 2.6 –– (а): Зависимость плакетной переменной ⟨Re[eiθP ] ⟩ от решеточной
константы связи β. (б): Зависимость восприимчивости χS = ⟨S2 ⟩ − ⟨S ⟩2 дей-
ствия (2.59) от решеточной константы связи β. Обе наблюдаемые посчитаны в

отсутствии границ Казимира.

по характеру функциональной зависимости. Первая часть демонстрирует явное
линейной поведение, указывая на сильную связь, которое затем приобретает экс-
поненциальный характер, свидетельствуя о переходе к режиму слабой связи.
Границу между данными режимамиможно отследить, взглянув на график воспри-
имчивости действия (Рис. 2.6б). Он содержит локальный максимум в точке β ≈
1.50, что указывает на примерную позицию точки перехода сильная-слабая связь.
Для такого перехода характерен плавный характер пика (производная в точке
максимума существует и равна нулю). В случае фазового перехода конфайнмент-
деконфайнмент, возникающего в компактной электродинамике в 3+1 измерениях,
пик восприимчивости действия выражен намного сильнее, и производная в точ-
ке перехода не существует. Соответствующий рисунок 4.1г приведен в главе 4.
Переход сильная-слабая связь принадлежит к типу «кроссовер» и его положение
может отличаться в зависимости от конкретной наблюдаемой.

В случае конечной температуры компактная электродинамика в 2+1 из-
мерениях характеризуется фазовым переходом в фазу деконфайнмента. Влияние
пластин Казимира на точку перехода будет описано ниже, но прежде чем при-
ступить к его изложению, уместно будет привести результаты решеточных вы-
числений энергии Казимира, опубликованные в [47], и сравнить их с выводами,
полученными с помощью аналитического подхода в подсекции 2.1.2.
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Влияние монополей на энергию Казимира (на основе решеточных симуляций)

Плотность энергии вакуумных флуктуаций задается компонентой T 00 тен-
зора энергии-импульса калибровочного поля (2.10):

T µν = − 1

g2
F µαF να +

1

4g2
ηµνFαβF

αβ. (2.70)

В пространстве Минковкого эта компонента имеет вид:

T 00 =
1

2g2
(E2

x + E2
y +B2

z), (2.71)

где Ex = F01, Ey = F02, Bz = −F12 соответствующие компоненты тензора поля
(2.3) с метрикой (+, − ,−). После перехода к евклидовому пространству компо-
ненты электрического поля меняют знак, а компонента магнитного поля остается
без изменения:

T 00
E =

1

2g2
(−E2

x − E2
y +B2

z). (2.72)

При нулевой температуре (пространственные и временные размеры решетки рав-
ны), система инвариантна относительно поворота на угол ±π/2 вокруг оси x ≡
x1. В результате такого поворота компоненты Ex и Bz переходят в друг друга:

⟨E2
x ⟩ = ⟨B2

z ⟩, (2.73)

и выражение для средней плотности энергии (2.72) сильно упрощается:

⟨T 00
E ⟩ = − 1

2g2
⟨E2

y ⟩. (2.74)

Как было показано в секции 1.2, в непрерывной теории плотность энергии беско-
нечна, как в отсутсвии пластин, так и между ними, и плотность энергии Казимира
можно вычислить как разность плотностей энергии между пластинами и в отсут-
свии пластин. В евклидовом пространстве это выражение принимает вид

εR(x) = ⟨T 00
E (x) ⟩R − ⟨T 00

E (x) ⟩0, (2.75)

где индексы ”R”и ”0”означают наличие пластин на расстоянииR и их отсутствие
соответственно.

Поскольку пластины (провода) параллельны друг-другу, плотность энергии
(2.75) зависит только от координаты x1, которая перпендикулярна пластинам. Это
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предоставляет возможность ввести полную плотность энергии Казимира на еди-
ницу длины проводов:

VCas(R) =

∫ +∞

−∞
dx1εR(x1) ≡ − 1

2g2
⟨ ⟨E2

y ⟩ ⟩, (2.76)

где обозначение ⟨ ⟨E2
y ⟩ ⟩ представляет собой интеграл плотности энергии (2.75)

по координате x1:

⟨ ⟨E2
y(x1) ⟩ ⟩ =

∫
dx1[⟨E2

y(x1) ⟩R − ⟨E2
y ⟩0]. (2.77)

В решеточной регуляризации данное выражение принимает вид

⟨ ⟨E2
y(x1) ⟩ ⟩ =

Ls−1∑
x1=0

[⟨E2
y(x1) ⟩R − ⟨E2

y ⟩0]. (2.78)

Итого получаем, что плотность энергии Казимира равна:

VCas(R) = β⟨ ⟨ cos θ23 ⟩ ⟩. (2.79)

Данное выражение было исследовано численно в работе [47] и получена зависи-
мость плотности энергии Казимира от расстояния между пластинами, показанная
на рисунке 2.7.

Рисунок 2.7 –– Плотность энергии Казимира (2.79) как функция расстояния меж-
ду пластинами R в решеточных единицах для различных значений решеточной
константы связи β. Данный график приведен для идеально проводящих пла-
стин, когда диэлектрическая проницаемость пластин ε→ ∞. Изображение взято

из [47].
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Данная зависимость показывает, что потенциал Казимира является моно-
тонной функцией расстояния между пластинами. В области слабой связи (β ≃
2) потенциал Казимира принимает умеренные значения и характеризуется от-
носительным дальнодействием. Но в области сильной связи (при более низких
значениях решеточной константы связи β), потенциал становится близкодейству-
ющим, в тоже время его величина увеличивается на небольших расстояниях. Если
взять область ещё более сильной связи (β ≃ 1), то его радиус действия ещё боль-
ше снижается, при этом величина снижается тоже.

Данные результаты во многом согласуются с выводами, полученными
аналитическим путем в приближении разреженного газа. Наличие монополей
приводит к генерации массовойщели, что проявляется как возникновение массы у
фотона (2.26), это уменьшает эффект Казимира, его радиус действия тоже умень-
шается вследствие дополнительного экспоненциального фактора, что следует из
(2.56), (2.57) и (2.58). Но поведение потенциала Казимира для промежуточных
значений решеточной константы нельзя в полной мере объяснить аналитиче-
скими вычислениями в рамках приближения разреженного газа. По-видимому,
формирование пар монополь-антимонополь, показанное на рисунке 2.5а, приво-
дит к дальнодействию потенциала Казимира за счет отсутствия массовой щели.
Помимо этого, повышение плотности монополей вне пластин создает допол-
нительное давление на пластины, результатом которого является возрастание
потенциала Казимира.

Влияние пластин Казимира на переход конфайнмент-деконфайнмент при
конечной температуре

Как было сказано в одном из предыдущих пунктов «Влияние условий Ка-
зимира на конденсат монополей», Казимировские граничные условия приводят
к подавлению монопольной плотности между пластинамии переходу от моно-
польного газа к газу диполей, что уменьшает удерживающие свойства вакуума
и может способствовать фазовому переходу в фазу деконфайнмента, где линей-
ный потенциал (2.1) между зарядами исчезает и они становятся свободными. При
нулевой температуре явных признаков перехода конфайнмент-деконфайнмент
обнаружить не удалось, поэтому в последующей работе [48] было рассмотрено



45

влияние пластин Казимира на структуру вакуума компактной электродинамики в
2+1 измерениях при конечной температуре. Данная теория обладает фазовым пе-
реходом в фазу деконфайнмента, что позволяет исследовать влияние граничных
условий Казимира на точку фазового перехода. При изучении влияния пластин на
конденсат монополей при нулевой температуре было обнаружено, что пластины
подавляют концентрацию монополей между ними и способствуют ослаблению
удерживающих свойств вакуума. При конечной температуре T , которая обратно
пропорциональна размеру решетки во временном направлении Lt и шагу решет-
ки a

T =
1

Lta
, (2.80)

между пластинами происходят аналогичные изменения в структуре монополь-
ного газа. Но в отличии от теории при нулевой температуре, в данном случае
предположение об ослаблении конфайнмента можно проверить, и петля Полякова
(2.69) является отличным для этого инструментом. Мат.ожидание петли Полякова
⟨Lx ⟩ связано со свободной энергией Fx изолированного статического электриче-
ского заряда следующим соотношением:

e−Fx/T = ⟨Lx ⟩, (2.81)

где температураT , выраженная в единицах константы связи g2, является линейной
функцией от решеточной константы связи:

T

g2
=
β

Lt
. (2.82)

Это выражение легко получить из (2.60) и (2.80). В фазе конфайнмента, где низкие
значения температуры и решеточной константы связи, параметр порядка ⟨Lx ⟩
равен нулю. Отсюда вытекает, что свободная энергия бесконечна. Это подразу-
мевает невозможность существования изолированного электрического заряда. В
фазе деконфаймента (высокая температура и большие значения β) среднее петли
Полякова отлично от нуля, что свидетельствует от конечной свободной энергии,
предполагающей существование свободных электрических зарядов.

ПетляПолякова между пластинами как функция решеточной константы свя-
зи β для различных расстояний между пластинами приведена на рисунке 2.8.

Из него видно, что петля Полякова является монотонно возрастающей
функцией от β, а в силу соотношения (2.82) она растёт с увеличением темпе-
ратуры, причем поведение данной наблюдаемой в отсутствии пластин (кривая
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а) б)
Рисунок 2.8 –– Модуль петли Полякова между пластинами как функция ре-
шеточной константы связи β для проводов с различной диэлектрической
проницаемостью ε, связанной с относительной диэлектрической проницаемостью
проводов δβ = (ε− 1)β. (а): R = 2a, (б): R = 5a. Изображение взято из [48].

светло-зеленого цвета с δβ = 0) аналогично поведению в их присутствии, что
указывает на схожие характеристики соответствующих фаз теории - для конфай-
нмента характерна низкая температура, для деконфайнмента высокая. Помимо
этого, рисунок показывает, что петля Полякова растет с увеличением диэлектри-
ческой проницаемости проводов, а это предполагает ослабление удерживающих
свойств вакуума между пластинами. В пользу последнего аргумента также свиде-
тельствует сравнение графиков петли Полякова для различных расстояний между
пластинами (рисунки 2.8а и 2.8б). Чем меньше расстояние между пластинами, тем
выше значения петли Полякова, и тем меньше проявляется конфайнмент электри-
ческих зарядов. Значения петли Полякова между пластинами для максимальной
из представленных на графике диэлектрических проницаемостей (δβ = 88) су-
щественно выше значений при отсутствии пластин (δβ = 0), что указывает на
деконфайнмент между пластинами.

Кривые на рисунке 2.8 отлично фиттируются функцией

Lfit(β) = L0 + L1β
ν
(
arctan[κ(β− βc)] +

π

2

)
, (2.83)

где L0, L1, ν, κ и βc это параметры фита, причем последний параметр βc является
псевдокритической точкой, в которой происходит фазовый переход в фазу декон-
файнмента. Приставка «псевдо» означает, что данное значение справедливо для
системы конечного объема, которое в пределе бесконечного объема стремится к
истинной критической точке.
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Рисунок 2.9 –– Зависимость (псев-
до)критической константы связи
от расстояния между пластинами
для идеально проводящих пластин
(δβ → ∞, ε → ∞). Изображение

взято из [48].

Рисунок 2.10 –– Фазовая диаграмма
вакуума компактной электродинами-
ки в 2+1 измерениях между идеаль-
ными проводами, расположенными
на расстоянии R. Данные приведены
в физических единицах. Пунктирная
линия предсталяет собой фит данных
функцией (2.84). Изображение взято

из [48].

Переход в фазу деконфайнмента между пластинами отлично согласуется с
изменением структуры монополей между ними. Пластины подавляют конденсат
монополей внутри, а так как газ монополей тесно связан со свойством конфайн-
мента, то его подавление способствует наступлению фазы деконфайнмента.

Уменьшение конденсата монополей между пластинами вместе с ростом
петли Полякова позволяют предположить о снижении температуры фазово-
го перехода конфайнмент-деконфайнмент между пластинами. Согласно (2.82),
(псевдо)критическая температура фазового перехода прямо пропорциональна со-
ответствующему значению решеточной константы связи. Поэтому при наличии
пластин Казимира переход в фазу деконфайнмента должен осуществляться при
более низком значении β, чем при их отсутствии. Данное предположение пол-
ностью подтверждается графиком зависимости (псевдо)критического значения
решеточной константы связи βc от расстояния между пластинами, приведен-
ным на рисунке 2.9.

Из него видно, что с уменьшением расстояния между пластинами, значе-
ние βc перехода в фазу деконфайнмента снижается. В пределе R → ∞ данное
значение должно совпасть в пределах ошибок с точкой фазового перехода в от-
сутствии пластин, но в работе [48], на основе которой написан текущий обзор,
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это предположение не проверялось. Тем не менее в пользу данного предполо-
жения говорит проведенный автором в рамках диссертации анализ компактной
электродинамики в 3+1 измерениях, где оно полностью подтверждается. Данный
анализ приведен в главе 4.

Из данных рисунка 2.9, используя соотношение (2.82) между температурой
и решеточной константой связи, можно получить значения критических темпера-
тур перехода в фазу деконфайнмента в физических единицах электромагнитного
заряда g. Данный график приведен на рисунке 2.10. Примечательно, что данные
на графике отлично описываются простой функцией

Tc(R) = T∞
c − C0

R
, (2.84)

гдеC0 = 0.35(1), а T∞
c это значение температуры перехода в фазу деконфайнмента

между бесконечно удаленными пластинами, равное

T∞
c ≡ lim

R→∞
Tc(R) = 0.483(2) · g2. (2.85)

Таким образом, близко расположенные провода изменяют структуру вакуума
между ними, способствуя деконфайнменту электрических зарядов. Теоретически,
исходя из поведения функции (2.84), при расстоянии между пластинами R ⩽ Rc,
где Rc соответствует нулевой критической температуре, фаза конфайнмента от-
сутствует, и при любой температуре вакуум между пластинами находится в фазе
деконфайнмента. Соответствующее критическое значение было оценено равным

Rc = 0.72(1)
1

g2
, (2.86)

но нужно понимать, что данное значение было получено в результате экстрапо-
ляции функции (2.84) на низкие расстояния между пластинами, для которых нет
численных данных, поэтому этот результат нужно воспринимать с осторожно-
стью.

2.1.3 Выводы о влиянии граничных условий Казимира на вакуум
компактной электродинамики в 2+1 измерениях

Из обзора литературы по реструктуризации вакуума компактной электро-
динамики в 2+1 измерениях, приведенного выше, можно сделать следующие
выводы.
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Во-первых, существует очень интересная связь между магнитными моно-
полями и энергией Казимира. Из аналитического выражения (2.56) следует, что
наличие монополей уменьшает плотность энергии Казимира и приводит к быст-
рому ее уменьшению при удалении пластин друг от друга, то есть потенциал
Казимира становится близкодействующим. Данное заключение отлично согла-
суется с численными расчетами. Но в тоже время граничные условия Казимира
оказывают подавляющее действие на монополи между пластинами. Пластины
Казимира сжимают поток монополей, по существу делая взаимодействие меж-
ду монополями двумерным. В двух измерениях это взаимодействие подчиняется
удерживающему логарифмическому потенциалу (2.68), что подразумевает объ-
единение монополей и антимонополей в дипольные пары. В данных условиях
массовая щель отсутствует, и как следствие не происходит подавления нулевых
колебаний между пластинами. Таким образом, образование магнитных диполей
приводит к дальнодействию потенциала Казимира. При этом плотность моно-
полей между пластинами существенно ниже чем снаружи. Эта разница между
плотностями монополей повышает внешнее давление на пластины и увеличивает
потенциал Казимира. То есть с одной стороны конденсат монополей уменьшает
потенциал Казимира, но с другой стороны плотность монополей между пласти-
нами снижается, что вызывает дополнительное давление снаружи на пластины,
приводя к увеличению потенциала Казимира. Но стоит отметить, что данные рас-
суждения применимы только в области слабой связи, так как в области сильной
связи из-за большой плотности монополей расстояние между ними становится
меньше размера пары монополь-антимонополь, и выше описанный механизм уже
не реализуется.

Во-вторых, подавление плотности монополей между пластинами сигна-
лизирует от ослаблении удерживающих свойств вакуума между пластинами и
фазовом переходе в фазу деконфайнмента. В то время как при нулевой темпе-
ратуре достоверных признаков данного явления обнаружить не удалось, то при
конечной температуре эффект отлично отслеживается. Критическая температу-
ра фазового перехода конфайнмент-деконфайнмент между пластинами ниже, чем
снаружи или в их отсутствии. Схематически данный эффект наглядно показан на
отличном рисунке 2.11.

Предположительно, начиная с определенного расстояния между пласти-
нами, вакуум теории всегда находится в фазе деконфайнмента, независимо от
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Рисунок 2.11 –– Фазовый переход, вызванный граничными условиями Казимира:
близко расположенные провода (пластины) приводят к деконфайнменту электри-
ческих зарядов в фазе конфайнмента компактной электродинамики. Изображение

взято из [48].

температуры, в то время как вне пластин при низких температурах вакуум на-
ходится в фазе конфайнмента.

Уместно будет процитировать вывод авторов исследования эффекта Кази-
мира в (2+1)-компактной электродинамике, сделанный в заключительной работе
[48] цикла: «Можно заключить, что динамические монополи, линейный конфайн-
мент и генерация массовой щели с одной стороны и геометрия Казимира с другой
как бы противодействуют друг-другу: наличие динамических монополей в вакуу-
ме подавляет силу Казимира-Полдера на больших расстояниях за счет генерации
массовой щели, но в тоже время, диэлектрические и/или металлические провода
снижают среднюю плотность монополей приводя к отсутствию линейного кон-
файнмента электрических зарядов на больших расстояниях и снижениюмассовой
щели в вакууме между проводами».

Приведенный обзор серии научных работ об эффекте Казимира в (2+1)-
компактной электродинамике с одной стороны предоставляет базу для описания
влияния граничных условий Казимира на вакуум компактной электродинамики
в 3+1 измерениях, а с другой стороны служит вступлением к описанию влияния
данных условий на вакуум теории Янга-Миллса, которая имеет много общего с
компактной электродинамикой, в частности обе теории обладают свойством кон-
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файнмента и генерации массовой щели. В рамках диссертационной работы был
исследован вакуум теории Янга-Миллса с калибровочной группой SU(3) в 3+1
измерениях, полученные результаты описаны в главе 5 настоящей работы. Но
прежде чем перейти к изложению данного материала, полезно будет описать ре-
зультаты исследования эффекта Казимира в более простой SU(2) глюодинамике
в 2+1 измерениях, опубликованные в работе [50].

2.2 SU(2) глюодинамика в 2+1 измерениях

Двухцветовая глюодинамика хоть и является более доступной для ана-
лиза, чем ее трёхцветовая версия, являющаяся неотъемлимой частью КХД, но
тем не менее имеет преимущественно непертурбативную структуру вакуума и
слабо поддается аналитическому исследованию. Поэтому для изучения ее ваку-
умной структуры при наличии нетривиальной топологии (граничных условий
Казимира) были применены методы теории поля на решетке, база для приме-
нения которых в случае казимировских пластин была заложена исследованием
структуры вакуума компактной динамики в двух пространственных измерениях,
описанным выше. Данныйформализм естественным образом переносится на слу-
чай SU(2) калибровочной теории. Её лагранжиан имеет следующий вид:

LYM = −1

4
F a
µνF

µν,a, (2.87)

где тензор поля

F a
µν = ∂µA

a
ν − ∂µA

a
µ + gfabcAb

µA
c
ν, (2.88)

в отличии от электродинамики (2.4), содержит добавочный член, отвечающий за
самодействие глюонов. В этом выражении a это цветовой индекс, пробегающий
значения (1, . . . ,N 2

c − 1), Nc — число цветов (два в данном случае), fabc — струк-
турные константы калибровочной группы SU(Nc). Граничные условия Казимира
представляют собой неабелевый аналог условий (2.30):

εµαβnµ(x)F
a
αβ(x) = 0, a = 1, . . . ,N 2

c − 1. (2.89)

Идеально проводящие хромоэлектрические провода расположены в точках x1 =

0,R, то есть вектор нормали к проводу nµ = δµ1.
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В вычислениях без учета самодействия можно задать g = 0, сводя таким
образом теорию Янга-Миллса (2.87) c граничными условиями (2.89) к N 2

c − 1

невзаимодействующим копиям электродинамики (2.2) с граничными условиями
(2.30). В данном случае глюоны вносят одинаковый аддитивный вклад в энер-
гию Казимира:

V tree
Cas = −(N 2

c − 1)
ζ(3)

16πR2
. (2.90)

В отличии от решеточной формулировки компактной электродинамики с
использованием Ли алгебры u(1), SU(2) глюодинамику для решеточных вычис-
лений удобно формулировать в терминах группы SU(2). В этом случае элемент
группы Uµ(n) соответствует линку решетки в сайте n в направлении µ. Решеточ-
ное поле Uµ(n) и непрерывное полe Aa

µ связаны следующим соотношением:

Uµ(n) ≡ Uµ(x) = Peig
∫ x+aµ̂

x
dxνÂν(x) ≃ eiagÂµ(x), (2.91)

гдe Âµ = T aAa
µ, а T a это генераторы неабелевой калибровочной группы, [T a,T b] =

2ifabcT c. Групповым аналогом плакетной переменной (2.62) является выражение

UP ≡ UPn,µν
= Un,µ Un+µ̂,ν U

†
n+ν̂,µ U

†
n,ν (2.92)

в пределе шага решетки a → ∞ сводящееся к непрерывному тензору поля (2.88).
Действие имеет вид:

S[U ] ≡
∑
P

SP =
∑
P

=
∑
P

βP

{
1− 1

2
TrUP

}
. (2.93)

Это стандартное решеточное действие Вилсона, более подробно описанное в
главе 2, но в данном случае TrUP в силу свойств SU(2) матриц является действи-
тельной величиной. В отсутствии пластин константа связи βP ≡ β, где

β =
4

g2
(2.94)

стандартная решеточная константа связи. Величина g2 имеет размерность массы
и переходит в константу связи непрерывной теории Янга-Миллса при a → 0. При
наличии пластин величина βP = β вне пластин и βP = λwβ для плакетовPx,23,
принадлежих мировой поверхности проводов (пластин), расположенных в точ-
ках x1 = 0 и x1 = R. В пределе λw → ∞ тангенциальная компонента
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хромоэлектрического поля зануляется (U23 → 1 в решеточной формулиров-
ке), обеспечивая выполнение граничных условий (2.89). Величина λw является
аналогом диэлектрической проницаемости ε, но для хромоэлектрического поля
(«цветной» диэлектрической проницаемостью). Более подробно граничные усло-
вия Казимира в рамках решеточной регуляризации компактной электродинамики
и глюодинамики обсуждаются в секции 3.5 главы 3.

Вывод выражения для плотности энергии Казимира аналогичен описан-
ному выводу для компактной электродинамики и проводится на основе компо-
ненты T 00 тензора энергии-импульса, представляющей собой плотность энергии
вакумных флуктуаций глюонного поля. Тензор энергии-импульса для теории
Янга-Миллса, за исключением дополнительного цветового индекса, практически
полностью идентичен тензору в компактной электродинамике (2.70):

T µν = −F µα,aF ν,αa +
1

4
ηµνF a

αβF
αβ,a. (2.95)

Его компонента T 00 в пространстве Минковского имеет вид:

T 00 =
1

2
(B2

z +E2
x +E2

y), (2.96)

и при метрике (+,− ,−) выполняется Ea
x = F a

01, Ea
y = F a

02 и Ba
z = −F a

12, индекс a
пробегает значения a = 1,2,3, и E2

x ≡ (Ea
x)

2 и т.д. После перехода к евклидово-
му пространству путем введения мнимого времени (t → −iτ) плотность энергии
вакуумных флуктуаций становится равной

T 00 =
1

2
(B2

z −E2
x −E2

y). (2.97)

Как и в компактной электродинамике, в виду симметричности решетки относи-
тельно поворота вокруг оси x1 на угол ±π/2, ⟨B2

z ⟩ = ⟨E2
x ⟩. Вычитая плотности

энергии в присутствии и отсутствии пластин получаем плотность энергии Кази-
мира:

εR(x) = ⟨T 00
E (x) ⟩R − ⟨T 00

E (x) ⟩0 ≡
1

2

(
⟨E2

y ⟩0 − ⟨E2
y(x) ⟩R

)
. (2.98)

Здесь индексы 0 и R обозначают отсутствие и наличие пластин на расстоянии
R соответственно. В данном уравнении ультрафиолетовые расходимости сокра-
щаются, и в результате получается конечная величина, отражающее изменение
плотности энергии вакумных флуктуаций при наличии пластин. Данная величина
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(2.98) зависит только от координаты x1, поэтому, как и при расмотрении ком-
пактной электродинамики, удобно определить плотность энергии Казимира на
единицу длины провода:

V lat
Cas(R) =

∫ ∞

−∞
dx1εR(x1) = −⟨ ⟨SP23

⟩ ⟩, (2.99)

где по аналогии с (2.78)

⟨ ⟨SP23
(x1) ⟩ ⟩ =

Ls−1∑
x1=0

[⟨SP23
(x1) ⟩R − ⟨SP23

⟩0]. (2.100)

Полученное выражение (2.99) представляет собой решеточную плотность энер-
гии Казимира для неабелевой калибровочной теории. В физических единицах она
выражается как

VCas(R) ≡ V phys
Cas (R) = a−2V lat

Cas(R/a). (2.101)

Непрерывный предел a → 0 реализуется при β→ ∞ согласно выражению (2.94),
но на практике можно работать только с конечными значениями β, поэтому при
экстраполяции нужно учитывать O(an) поправки. Для улучшения непрерывного
скейлинга выражения (2.99) при конечных β авторами работы [50] было продела-
но следующее. Во-первых для уменьшения поправок на конечный размер, вместо
решеточной константы связи β, была использована улучшенная версия c учетом
среднего поля [51]:

βI(β) = β
1

2
⟨TrUP ⟩(β). (2.102)

Во-вторых, в физических единицах шаг решетки a был разложен в ряд по 1
βI
[51]:

a
√
σ =

1.341(7)

βI
− 0.421(51)

β2
I

+O(1/β3
I), (2.103)

где σ это натяжение удерживающей струны при нулевой температуре. В третьих,
в решеточной теории возмущений значение среднего плакета ⟨TrUP ⟩ содер-
жит аддитивные и мультипликативный поправки. Первые из них соответствуют
пертурбативному УВ-расходящемуся вкладу в вакуум, но он автоматически уби-
рается выражением (2.100). Мультипликативные поправки возникают из-за того,
что средний плакет ⟨TrUP ⟩ не является физической величиной сам по себе, его
ещё нужно домножить на β4:

β4⟨TrUµν ⟩ ∼ a−4⟨TrUµν ⟩ ∼ ⟨F 2
µν ⟩phys, (2.104)
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Рисунок 2.12 –– Зависимость потен-
циала Казимира (2.106) от расстоя-
ния между практически идеальными
проводами (λw = 50) в единицах
натяжения струны σ. Изображение

взято из [50].

Рисунок 2.13 –– Масса Казимира
MCas как функция цветной диэлек-
трической проницаемости провода
λw. Пунктирная линия представляет
собой фит данных функцией (2.84).
Горизонтальная пунктирная линия
соответствует значению в пределе
λw → ∞ (2.109). Изображение взято

из [50].

тогда величина (2.104) будет представлять физическое значение непертурбатив-
ного глюонного конденсата [52]. Чтобы улучшить конечно-размерный скейлинг,
среднее значение плакета было нормализовано с учетом улучшенной константы
связи (2.102):

⟨TrUµν ⟩ → ⟨TrUµν ⟩I =
(
βI

β

)4

⟨TrUµν ⟩. (2.105)

Таким образом, выражение для плотности энергии Казимира (2.99) после всех
поправок принимает следующий вид:

VCas(R) = − 1

a2(σ,β)

(
βI

β

)4

⟨ ⟨SP23
⟩ ⟩latR . (2.106)

В пределе слабой связи β→ ∞ данное выражение стремится к (2.99), поскольку
мат. ожидание плакета стремится к единице (12⟨TrUP ⟩(β) → 1), а улучшенное
значение константы связи βI сходится к β.

На рисунке 2.12 приведены результаты численных расчетов плотности энер-
гии Казимира для различных значений решеточной константы связи β и размеров
решеток L. Данные прекрасно укладываются в одну кривую, которая была про-
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Рисунок 2.14 –– Зависимость
аномальной размерности ν от про-
водимости λw. Кривая представляет
собой фит функцией (2.108), го-
ризонтальный толстый пунктир
соответствует аномальной размер-
ности для идеальных проводов
(λw → ∞), чередующийся пунк-
тир — аномальной размерности
в в отсутствии взаимодействий.

Изображение взято из [50].

Рисунок 2.15 –– Сравнение функций
(2.107) (пунктирная линия), описы-
вающей результаты численных симу-
ляций, и выведенной аналитическим
(2.117) (сплошная линия) для потен-
циала Казимира. Изображение взято

из [53].

фиттирована следующей функцией:

V fit
Cas(R) = −3ζ(3)

16π

1

R2

1

(R
√
σ)ν

e−MCasR. (2.107)

Степень σ была выбрана на основе размерного анализа, чтобы величина потен-
циала Казимира имела правильную размерность масса2, так как он соответствует
энергии Казимира неабелевых флуктуаций между проводами на единицу длины
провода. Параметр ν это аномальная размерность потенциала Казимира на ко-
ротких расстояниях. Величина MCas, названная массой Казимира, соответствует
эффективному экранированию потенциала Казимира на больших расстояниях за
счет механизма генерации массовой щели, имеющего непертурбативную приро-
ду. При отсутствии взаимодействия массовая щель исчезает, MCas = 0, как и
аномальная размерность ν, и потенциал (2.107) сводится к выражению (2.90).

Зависимость массы КазимираMCas и аномальной размерности ν от степени
проводимости λw показаны на рисунках 2.13 и 2.14, соответственно.
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Обе величины отлично описываются функцией:

O(λw) = O∞ + αOe
−λw/λOw , (2.108)

где O = MCas,ν, αO и λOw — параметры фита, O∞ ≡ lim
λw→∞

O(λw).

Значение массы КазимираMCas в пределе идеального проводника λw → ∞
равно

MCas = 1.38(3)
√
σ, (2.109)

что в несколько раз ниже массы самого легкого глюбола в SU(2) (2+1)-мерной
калибровочной теории:

M0++ ≈ 4.7
√
σ. (2.110)

Как можно видеть из рисунка 2.13, масса КазимираMCas убывает с ростом λw. В
тоже самое время, это свидетельствует о том, что при λw → 1 (провода отсутству-
ют) данное значение может приближаться к массе глюбола (2.110). Но простая
форма фиттирующей функции (2.108) не позволяет проверить это предположе-
ние.

Экстраполяция (2.108) в пределе λw → ∞ (рис. 2.14) дает следующее близ-
кое к нулю значение аномальной размерности ν:

ν∞ = 0.05(2). (2.111)

Интерпретация массы Казимира как массы нового граничного связанного
состояния глюонов дана в главе 5 на основе анализа энергииКазимира в 3+1 изме-
рениях. Другую интерпретацию предлагают авторы работы [53], в которой масса
Казимира связывается с магнитной экранирующеймассой в (3+1)-калибровочной
теории при высоких температурах. В своей работе они продемонстрировали,
что аналогично случаю компактной электродинамики, где был произведен ана-
литический вывод вклада монополей в энергию Казимира с помощью перехода
к скалярному полю, представляющему газ монополей (2.22) (модель синус-
Гордона), в неабелевой калибровочной теории энергия Казимира может быть
отождествлена с энергией Казимира для скалярного поля. В таком случае она вы-
ражается через степени e−2mR:

ε = −dimG
L

16πR2

[
2mRLi2

(
e−2mR

)
+ Li3

(
e−2mR

)]
, (2.112)
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гдеm это масса скалярного поля между пластинами, dimG—размерность калиб-
ровочной группы, а Lis(w) это полилогарифмическая функция

Lis(w) =
∞∑
n=1

wn

ns
. (2.113)

Данную энергиюможно записать через натяжение струны, соответствующее фун-
даментальному представлению

σF = e4
cAcF
4π

, (2.114)

где cA и cF это значения квадратичного оператора Казимира в присоединенном
и фундаментальном представлениях соответственно, которые в случае группы
SU(Nc) равны

cA = Nc, cF =
N 2

c − 1

2Nc
. (2.115)

Используя соотношение mR =
√

cA/πcFx, x = R
√
σF , получаем:

V th
Cas ≡

ε

LσF
= −dimG

16π

[
2
√

cA/πcF
x

Li2

(
e−2

√
cA/πcFx

)
+

1

x2
Li3

(
e−2

√
cA/πcFx

)]
.

(2.116)
Для рассматриваемого в настоящем пункте случая Nc = 2, выражение

(2.116) принимает вид:

ε

LσF
= −A

dimG

16π

[
1.84

x
Li2
(
e−1.84x

)
+

1

x2
Li3
(
e−1.84x

)]
, (2.117)

где A это параметр фита. Сравнение функций (2.107) и (2.117) приведено на ри-
сунке 2.15. Из рисунка видно, что аналитическое выражение (2.117) прекрасно
описывает результаты решеточных симуляций. Тем не менее, выражения пред-
сказывают различные значения массы Казимира, в случае (2.117) она равна ≈
0.92

√
σ, хотя это значение так же существенно меньше массы глюболла (2.110).

Обе формулы (2.116) (в пределе m → 0) и (2.107) (в пределе MCas → 0 и ν → 0)
корректно воспроизводят случай отсутствия самодействия глюонов (2.90) (без-
массового скалярного поля в дуальной формулировке теории).

В связи с тем, что аналитическое выражение (2.116) описывает потенциал
Казимира для произвольной SU(Nc) калибровочной группы, интересным пред-
ставляется сопоставление с ним результатов численных симуляций для других
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групп, в первую очередь SU(3). Такая работа была проделана автором, но на
момент подготовки диссертации не была опубликована, но тем не менее автор
считает важным привести здесь результаты для более полного раскрытия темы.
Обработка численных результатов была проведена описанным выше образом. Бы-
ла использована улучшенная решеточная константа связи (2.102), а шаг решетки
был разложен в ряд по подобию (2.103):

a
√
σ =

3.318(12)

βI
− 2.43(22)

β2
I

+O(1/β3
I). (2.118)

На рисунке 2.16 представлено сравнение исходных данных с улучшенными дан-
ными с помощью указанных преобразований. Видно, что данные преобразования
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Рисунок 2.16 –– Сравнение исходных данных для потенциала Казимира (синие
квадраты) и улучшенных (красные окружности).

существенно улучшают потенциал. Улучшенные данные были профиттированы
феноменологической функцией (2.107), которая в случае Nc = 3 имеет вид:

VCas(R) = −ζ(3)
2π

1

R2

1

(R
√
σ)ν

e−MCas. (2.119)

Помимо этого, фит был сделан аналитической функцией (2.116), которая для груп-
пы SU(3) принимает вид

ε

LσF
= −A

1

2π

[
1.69

x
Li2
(
e−1.69x

)
+

1

x2
Li3
(
e−1.69x

)]
. (2.120)

Результаты фиттирования данными функциями представлены на рисунке 2.17. Из
данного рисунка можно сделать вывод, что обе функции достаточно точно описы-
вают данные, но аналитическое выражение (2.120) дает некоторые расхождения
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Рисунок 2.17 –– Сравнение феноменологической (красный пунктир) и аналити-
ческой (синяя сплошная) функций, описывающих решеточные данные в SU(3)

теории.

с наблюдаемыми данными для малых физических расстояний. Масса Казимира
MCas в выражении (2.119) равна

MCas = 1.27(3)
√
σ, (2.121)

что также существенно меньше массы глюболла

M0++ ≈ 4.36
√
σ. (2.122)

Как и в случае SU(2), масса Казимира из аналитического выражения (2.120) отли-
чается от массы, полученной из фита (2.119):

M an
Cas ≈ 0.846

√
σ. (2.123)

Но это может быть следствием различной формы функций (2.119) и (2.120). Ано-
мальная размерность ν в случае SU(3) проявляется сильнее, чем для SU(2):

ν = 0.226(11). (2.124)

Отдельно стоит отметить значение коэффициента A в аналитической функции
(2.120), который получился равным A = 0.989(19), что, как и в случае SU(2),
также очень близко к единице. Анализ потенциала Казимира в калибровочной
SU(3) теории дает уверенность в корректном выборе феноменологической функ-
ции (2.107) для его описания — SU(2) как и SU(3) теория характеризуется новым
массовым масштабом, который существенно меньше массы самого легкого глю-
болла, а также наличием аномальной размерности, которая оказывает влияние на
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поведение потенциала Казимира на малых расстояниях между проводами. По-
мимо этого можно сделать вывод, что аналитическое выражение (2.116) хорошо
описывает данные и для трех цветов, что дает основания полагать его коррект-
ность и в общем SU(Nc) случае. Но желательна его экспериментальная проверка
для Nc > 3.

Как видно из обзора КЭД, в вакууме теории между близко расположенны-
ми пластинами имеются признаки перестройки вакуума в фазу деконфайнмента.
И если при нулевой температуре можно говорить только о косвенных признаках,
то при конечной температуре эффект подтверждается численными симуляциями.
Аналогичная тенденция наблюдается в теориях Янга-Миллса. На момент подго-
товки диссертации, автору известно только о двух работах в данной области, одна
из них это [50], на основе которой написан обзор результатов для SU(2) теории в
2+1 измерениях, а другая по SU(3) теории в 3+1 измерениях подготовлена авто-
ром совместно с авторами предыдущей работы, она будет подробно рассмотрена
в главе 5. В обеих работах проводилось исследование теории при нулевой темпе-
ратуре, где в отсутствии границ фазовый переход конфайнмент-деконфайнмент
не наблюдается, вакуум теории всегда находится в фазе конфайнмента. В этом
случае интересным для изучения представляется влияние близко расположенных
пластин на фазовую структуру теории. Как уже было сказано, параметром поряд-
ка, позволяющим отличить удерживающую и свободную фазу теории, является
петля Полякова. Для SU(2) теории в двух пространственных измерениях она при-
нимает вид:

Lx ≡ L(x1,x2) =
1

2
Tr

Lt−1∏
x3=0

U3(x1,x2,x3). (2.125)

При нулевой температуре Lt = Ls, и петля Полякова вычисляется вдоль длин-
ного временного направления, в то время как при конечной температуре Lt ≪
Ls, и петля Полякова направлена вдоль короткого компактного времени. В этом
заключается разница между казимировской геометрией и теорией при конеч-
ной температуре. На рисунке 2.18 показано ожидание модуля петли Полякова
вне и между пластинами для произвольного значения решеточной константы
связи β и высокой проводимости пластин λw. Такое поведение наблюдается
для всех комбинаций данных параметров. При уменьшении расстояния меж-
ду пластинами петля Полякова возрастает, что свидетельствует о наступлении
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Рисунок 2.18 ––Мат. ожиданиемодуля петлиПолякова внутри и снаружи проводов
как функция расстояния между ними в решеточных единицах. Изображение взято

из [50].

деконфайнмента между пластинами. Однако, каких либо признаков критическо-
го поведения петли Полякова между пластинами обнаружено не было. Таким
образом, глюоны между пластинами становятся свободными, а переход меж-
ду фазами конфайнмента и деконфаймента имеет, по всей видимости, характер
гладкого некритического кроссовера или перехода бесконечного порядка по типу
Березинского-Костерлица-Таулесса [12; 54; 55].

Подытоживая обзор влияния казимировских граничных условий на струк-
туру вакуума теории Янга-Миллса с калибровочной группой SU(2) в двух
пространственных измерениях, можно отметить несколько важных моментов.
Во-первых, на больших расстояниях между проводами (пластинами), взаимодей-
ствие Казимира является экспоненциально убывающей функцией от расстояния
между пластинами. Инфракрасное затухание потенциала Казимира характери-
зуется массой Казимира, которая существенно меньше самого легкого глюбола
теории. По мере того, как хромометаллические провода становятся менее прово-
дящими (λw → 1), масса Казимира повышается, предположительно приближаясь
к массе глюбола. Во-вторых, на небольших расстояниях между пластинами вза-
имодействие Казимира немного отличается от канонического взаимодействия
(2.90) за счет появления небольшой аномальной размерности. В-третьих, иссле-
дование удерживающих свойств вакуума указывает на плавный фазовый переход
глюонных полей в фазу деконфайнмента между пластинами. Относительно низ-
кое значение массы Казимира может быть результатом постепенного перехода
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в фазу деконфайнмента в уменьшающейся конечной геометрии, что ослабляет
образование массовой щели при нулевой температуре.

2.3 Выводы

Важно отметить, что в двух пространственных измерениях ещё есть воз-
можность исследовать непертурбативные свойства вакуума аналитически. Как и
в случае компактной электродинамики, так и теории Янга-Миллса это достигает-
ся с помощью перехода к дуальной формулировке теории в терминах скалярного
поля. Наблюдается отличное согласие теоретических выводов и результатов чис-
ленных симуляций, полученных в рамках рассчетов в решеточной регуляризации
теории поля. Это дает возможность применять решеточные методы для исследо-
вания свойств вакуума в трех пространственных измерениях при наличии границ,
где из-за его непертурбативной природы аналитические методы уже не приме-
нимы. Результаты такого исследования приведены в главах 4 и 5. В следующей
главе будет дано описание метода решеточной регуляризации теории поля, сфор-
мулированы граничные условия в рамках решеточного подхода и описаны методы
численных симуляций.
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Глава 3. Решеточная регуляризация квантовой теории поля

Вакуумы в теориях с нетривиальной топологией имеют непертурбативную
природу, в следствие чего традиционные методы теории возмущений оказыва-
ются слабо эффективны для их изучения. Одним из подходов, позволяющим
успешно работать с непертурбативными явлениями, является метод решеточ-
ной регуляризации пространства-времени, который, с одной стороны позволяет
провести обрезание ультрафиолетовых расходимостей путем введения дискрет-
ной пространственно-временной решетки, а с другой, благодаря переходу из
пространства Минковского к евклидовому, дает возможность применять методы
статистической физики с помощью введения статистической суммы, представля-
ющей собой интеграл по траекториям от различных физических полей [56].

Для аналитического вычисления подобного интеграла необходимо про-
суммировать по всему конфигурационному пространству, что является неосу-
ществимой задачей. Поэтому для оценки таких интегралов по решетке широко
применяются численные методы Монте Карло, суть которых заключается в ап-
проксимации точного значения путем усреднения по определенной выборке
из пространства конфигураций. Важным достоинством методов Монте Карло
является независимость ошибки аппроксимации от размерности пространства ин-
тегрирования – ошибка обратно пропорциональна квадратному корню из размера
выборки, что позволяет оценить ее с произвольной точностью [57]. С помощью
методов Монте Карло можно осуществить численное моделирование квантовой
теории поля в решеточной формулировке путем программирования расчетов и их
выполнения на суперкомпьютерах, и затем, взяв предел при устремлениишага ре-
шетки к нулю и размера решетки к бесконечности, получить искомые величины
в физических единицах [58].

3.1 Переход от пространства Минковского к евклидовому пространству

Первым шагом в формулировке решеточной калибровочной теории явля-
ется переход от искривленного пространства-времени Минковского к плоскому
пространству Евклида. Это делается для получения возможности численно вы-
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числять интегралы по траекториям. Рассмотрим производящий функционал ка-
либровочного поля

Z =

∫
DAµe

iSG. (3.1)

После перехода к мнимому времени с помощью преобразования t → it мнимость
в экспоненте уходит и мы получаем выражение для функционала, аналогичное
статистической сумме:

Z =

∫
DAµe

−SG, (3.2)

что позволяет оценить его численно с помощью решеточных вычислений.

3.2 Переход от непрерывного пространства к дискретной решетке

Вторым шагом в построении решеточной калибровочной теории являет-
ся дискретизация пространства путем построения пространственно-временной
дискретной решетки Λ (рисунок 3.1а). Она определяется как множество точек
пространства с координатами

xµ = anµ, nµ = (nx,ny,nz,nt), ni ∈ Z. (3.3)

Точки xµ называются узлами или сайтами решетки. Размерная константа a на-
зывается шагом решетки и обычно все величины измеряются единицах a. Два
соседних узла на решетки связаны ребром l, которое задается координатой x его
начала и направлением µ в пространстве:

l = {x,µ}. (3.4)

Ребро l связывает узлы с координатами x и x+aµ̂, где µ̂ это единичный вектор в на-
правлении µ. Длины всех ребер берутся одинаковыми и равными значению шага
решетки a. Квадрат, образованный четырьмя ребрами, называется плакетом Px,µµ.

Если пространственный размер решетки не ограничен, то число динами-
ческих степеней свободы бесконечно (но счетно). Вычисления методом Монте-
Карло можно проводить только с конечным числом степеней свободы. Для их
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а) б)
Рисунок 3.1 –– (а) – схематическое изображение решетки, (б) – плакетная пере-

менная.

ограничения рассматривается решетка конечного по всем направлениям разме-
ра Lx × Ly × Lz × Lt, где Lµ = aNµ. Обычно выбирается симметричная решетка
по пространственным направлениям, а выбор размера временного направления
зависит от того, при какой температуре рассматривается теория – для нулевой
температуры пространственный размер NS равен временному размеру NT , а
для конечной температуры NT ≪ NS. При этом накладываются периодические
граничные условия, то есть узлы, лежащие на параллельных ограничивающих
гиперплоскостях, попарно отождествляются.

Калибровочные поля Ux,µ располагаются на линках решетки и являются
элементами калибровочной группы. Калибровочной группой электродинамики
является U(1) группа, состоящая из комплексных чисел с единичным модулем.
Калибровочной группой глюодинамики является группа SU(Nc), где Nc это чис-
ло цветов.

Плакетная переменная Uµν показана на рисунке 3.1б и представляет собой
произведение соответствующих групповых элементов:

Ux,µν = Ux,µ Ux+µ̂,ν U
†
x+ν̂,µ U

†
x,ν. (3.5)

где при движении в отрицательном направлении−µ в общем случае берется эрми-
тово сопряжение линк-элемента, что для одного комплексного числа равносильно
его комплексному сопряжению. Плакетная переменнаяUµν имеет смысл решеточ-
ного электромагнитного тензора и связана непрерывным тензором соотношением

Ux,µν = exp[ia2Fµν(x) +O(a3)], (3.6)
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которое можно получить, используя формулу Бейкера-Кэмпбелла-Хаусдорфа для
произведения экспонент матриц [57].

При составлении решеточного действия необходимо, чтобы выполнялось
условие его перехода к непрерывному действию

SG =
1

4

∫
F 2
µνd

4x. (3.7)

Так же действие должно быть калибровочно инвариантным. Данным требовани-
ям удовлетворяет бесконечно много решеточных действий, но наиболее удобное
было предложено Вильсоном:

S =
β

Nc

∑
x∈Λ

∑
µ<ν

Re tr[1 − Ux,µν], (3.8)

где β = 2Nc/g
2 это решеточная константа связи. Для численных симуляций часто

удобно его переписать в следующем виде:

S = β
∑
P

(1− P), PP =
1

Nc
Re trUP , P ≡ Px,µν = {x,µν}, (3.9)

где UP соответствует выражению (3.5).
В случае компактной электродинамики действие (3.8) принимает вид:

S = β
∑
x∈Λ

∑
µ<ν

Re(1− Ux,µν), (3.10)

Компактную электродинамику зачастую удобнее формулировать в терминах ал-
гебры, а не группы, поэтому в следующей секции будет рассмотрена такая
формулировка.

3.3 Формулировка U(1) калибровочной теории на решетке

Компактная U(1) калибровочная теория описывает динамику решеточного
калибровочного (фотонного) поля θx,µ ∈ [−π,+π), которое определено на линках
решетки l = x,µ, исходящих из точки x в направлении µ. В непрерывном пределе,
a → 0, решеточное поле θxµ = aAµ(x) связано с непрерывным калибровочным
полемAµ(x)шагом решетки a. Роль решеточного аналога тензора электромагнит-
ного поля Fµν ≡ ∂µAν − ∂νAµ играет плакетный угол

θPx,µν
= θx,µ + θx+µ̂,ν − θx+ν̂,µ − θx,ν, (3.11)
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построенный из полевых переменных θx,µ. Каждый плакет P ≡ Px,µν определя-
ется позицией x и двумя векторами в плакетной плоскости, µ < ν, где индексы
нумеруют оси µ,ν = 1, . . . ,4. Индексы µ = 1,2,3 соответствуют пространствен-
ным направлениям, а µ = 4 - мнимому евклидову времению

В непрерывном пределе плакетный угол (3.11) сводится к своему непре-
рывному аналогу θPx,µν

= a2Fµν(x) + O(a4) для пертурбативных флуктуаций
фотонного поля. Помимо пертурбативных флуктуаций, в модели так же присут-
ствуют топологические конфигурации калибровочного поля (абелевы монополи),
которые соответствуют большим вариациям решеточного калибровочного поля
θx,µ ∼ 1. В непрерывном пределе данные конфигурации являются сингулярными.

Решеточное действие модели

S[θ] = β
∑
P

(1− cos θP ) (3.12)

задается путем суммирования по всем элементарным решеточным плакетам P .
Для конфигураций без монополей решеточное действие (3.12) переходит в стан-
дартное фотонное действие при β = 4/e2, где e это электрический заряд. При
наличии абелевых монополей, непрерывное действие принимает более сложную
форму из-за включения в него сингулярных листов Дирака, прикрепленных к ми-
ровым линиям абелевых монополей [47].

Модель (3.11) называется компактной моделью, потому что абелева калиб-
ровочная группа теории соответствует компактному многообразию S1. Действие
инвариантно относительно дискретных сдвигов плакетной переменной θP →
θP + 2πnP , где nP ∈ Z.

3.4 Магнитные монополи на решетке

Компактность модели естественным образом приводит к возникновению
сингулярных конфигураций калибровочного поля, абелевых монополей.В непре-
рывном пределе сдвиги на 2π, относительно которых решеточное действие (3.12)
инвариантно, соответствуют физически ненаблюдаемым листам Дирака (то есть
мировым линиям струн Дирака, исходящих из монополей). Открытые концы
струн Дирака соответствуют траекториям абелевых монополей, которые являют-
ся физическими, калибровочно-инвариантными топологическими дефектами.
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Рисунок 3.2 –– Cхематическое изображение магнитного заряда на решетке.

В компактной (3+1)-электродинамике монополи представляют собой
частице-подобные объекты. На решетке монопольный ток Jx,µ может быть опре-
делен через дивергенцию физической части

θ̄P = θP + 2πkP ∈ [−π,π) , kP ∈ Z (3.13)

решеточного налога тензора электромагнитного поля θP . Траектория монополей
соответствует набору трехмерных кубов Cx,µ, содержащих ненулевой магнитный
заряд, jx,µ ̸= 0:

jx,µ =
1

2π

∑
P∈∂Cx,µ

(−1)P θ̄P ∈ Z. (3.14)

В данном выражении сумма берется берется по всем элементарным плакетам,
составляющим грани куба Cx,µ, а индекс µ, обозначающий локальное направ-
ление монопольного тока, является перпендикулярным трем осям, на которых
расположен куб Cx,µ. Множитель (−1)P введен для учета ориентации плакета.
Вычисление магнитного заряда на решетке схематически изображено на рисунке
3.2. Например, если jx,4 ̸= 0, то соответствующий трехмерный куб является про-
странственным кубом, содержащим статичный сегмент монопольной траектории.

В непрерывном пределе сумма (3.14) переходит в дивергенцию магнитно-
го поля, и для сингулярных конфигураций поля происходит нарушение тождеств
Бьянки, εµναβ∂νFαβ ̸= 0. Выше описанный способ вычисления монополей на ре-
шетке впервые был опубликован в работе [59]. Монопольная траектория (3.14)
образует замкнутую петлю, определенную на дуальной гиперкубической решет-
ке [60].
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Определим глобальную монопольную плотность

ρ =
1

Vol4

∑
x,µ

|jx,µ|, (3.15)

где сумма производится по определенному четырехмерному объему решетки.
Данная наблюдаемая была посчитана как для всей решетки, так и для объема внут-
ри казимировских пластин, результаты описаны в главе 4.

В решеточных калибровочных теориях с абелевымимонополями связывают
явление конфайнмента заряда, которое связано с невылетанием цвета в неабе-
левых калибровочных теориях, таких как КХД [60––62]. Конденсат монополей в
абелевой калибровочной теории приводит к линейному конфайнменту электриче-
ских зарядов путем заключения электрического потока от электричеких зарядов
в тонкие электрические трубки, которые играют роль удерживающих струн. По-
скольку струна представляет собой линейный объект с постоянной плотностью
энергии σ на единицу длины, то увеличение расстояния R между частицей и ан-
тичастицей приводит к линейному росту потенциала V (R) ≃ σR. Параметр σ
имеет смысл натяжения струны.

Данный механизм конфайнмента аналогичен (и дуален) формированию
вихрей Абрикосова в сверхпроводниках, где электрически заряженный конденсат
куперовских пар электронов заключает магнитный поток в тонкие вихри. Если по-
местить пару монополь-антимонополь в сверхпроводник, она будет подвержена
конфайнменту за счет возникновения вихря Абрикосова между ее составляю-
щими. Механизм конфайнмента, основанный на конденсате монополей часто
называется механизмом дуального сверхпроводника [61; 62].

3.5 Казимировские условия на решетке

В общем случае, для (3+1) измерения, граничные условия Казимира опре-
деляются для трехмерных физических материалов, обладающих двумерными
поверхностями. Если поверхность состоит из идеального металла, тогда две
тангенциальные компоненты электрического поля и нормальная компонента маг-
нитного поля зануляются. Данные граничные условия в ковариантной форме
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Рисунок 3.3 –– Размещение двух параллельных поверхностей Казимира на решет-
ке.

могут быть записаны следующим образом:

εµνλσFνλ(x)vσ(x) = 0 , µ = 1, . . . 4 , (3.16)

где

vµ(x) = εµνλσ

∫
d3ξ

∂x̄ν

∂ξ1

∂x̄λ

∂ξ2

∂x̄σ

∂ξ3
δ(4)
(
x− x̄(ξ⃗ )

)
, (3.17)

это дуальный элемент объема мирового листа поверхности. Последняя задается
векторной функцией x̄µ = x̄µ(ξ⃗) от трехмерного вектора ξ⃗ = (ξ1,ξ2,ξ3).

Рассмотрим две плоских статичных поверхности перпендекулярные оси x1,
расположенные в точках x1 = l1 и x1 = l2, как показано на рисунке 3.3.

для каждой поверхности, локальный элемент объема, соответствующий
3.17, задается следующей формулой:

νµ(x) = δµ,1δ(x1 − la) , a = 1,2, (3.18)

где параметр a обозначает поверхности.
Для вывода вышеприведенной формулы можно воспользоваться следую-

щей параметризацией a-ой поверхности: x̄µa = (la,ξ1,ξ2,ξ3). В таком случае,
ковариантные условия (3.16) сводятся к трем условиям, которые включают нор-
мальную компоненту магнитного поля и две тангенциальных компоненты элек-
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трического поля соответственно:

B1 ≡ F 23(x)

∣∣∣∣
x1=la

= 0, (3.19)

E2 ≡ F 24(x)

∣∣∣∣
x1=la

= 0, (3.20)

E3 ≡ F 34(x)

∣∣∣∣
x1=la

= 0. (3.21)

Из определения решеточного тензора (3.11) и его физической части (3.13) полу-
чаем следующие граничные условия [47; 63]:

cos θx,µν

∣∣∣∣
x1=la

= 1 , (µ,ν) = (23,24,34), (3.22)

для всех (x2,x3,x4) и фиксированного x1 = la (a = 1,2).
Наиболее простым способом применения данных граничных условий в

формализме интеграла по траекториям является добавление множителей Лагран-
жа к стандартному действию (3.12):

Sε[θ] =
∑
P

βP (ε) cos θP . (3.23)

Далее рассмотрим решеточную константу связи как функцию от диэлектрической
проницаемости ε пластин Казимира:

βP (ε) = β[1 + (ε− 1)δP,V ], (3.24)

Здесь V обозначает множество плакетов Px,µν, принадлежащих мировому объему
пластин. При ε = 1 пластины отсутствуют, в то время как в пределе ε→ ∞ ком-
поненты физической части тензора (3.13) исчезают на мировом объеме пластин,
то есть выполняются граничные условия (3.22).

Данный метод реализации граничных условий Казимира для компактной
электродинамики очень просто обобщить для теории Янга-Миллса с калибро-
вочной группой SU(Nc). В таком случае появляется дополнительный индекс
глюонного поля a = 1, . . . ,N 2−1, учитывающий цветовые комбинации, в осталь-
ном граничные условия не отличаются от условий (3.21):

E
(a)
∥ (x)

∣∣∣∣
x∈S

= B
(a)
⊥ (x)

∣∣∣∣
x∈S

= 0. (3.25)
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На решетке, как и в случае компактной электродинамики, они выполняются путем
введения локальной константы связи β→ βP , где βP = λβ если плакет P касает-
ся или принадлежит гиперповерхности, образованной поверхностью S, и βP = β

в остальных случаях. Величина λ играет роль множителя Лагранжа, данный мно-
житель в пределе λ→ ∞ гарантирует выполнение граничных условий (3.25).

Приведенный способ задания на решетке граничных условий Казимира да-
леко не единственный. Впервые эта проблема была рассмотрена О. Павловским и
М. Улыбышевым в серии статей, посвященных исследованию эффекта Казимира
в компактной и некомпактной электродинамике [64––66]. В них авторы для введе-
ния граничных условий добавляют в стандартное действие дополнительный член
Черна-Саймонса, локализованный на трехмерной поверхности S:

S = −1

4

∫
d4xFµνF

µν − λ

2

∮
d3sεσµνρnσAµ(x)Fµρ(x), (3.26)

где εσµνρ это символ Леви-Чивиты, nσ это вектор нормали к граничной поверхно-
сти S, а λ является действительным параметром.

В случае, когда поверхность S представляет собой две параллельные пла-
стины, расположенные друг от друга на расстоянии R, то действие (3.26) пере-
ходит в

S =
λ

2

∫
((δ(x3)− δ(x3 −R))ε3µνρAµ(x)Fνρ(x)d

4x, (3.27)

где векторы нормали к плоскостям противоположно направлены. При небольших
значениях параметра λ пластины не оказывают влияния на электромагнитные по-
ля, но с ростом λ ситуация меняется. Динамика полей на пластинах определяется
действием Черна-Саймонса (3.27). Проварьировав действие, получим следующее
уравнение движения:

□Aµ + λ(δ(x3)− δ(x3 −R))ε3σνρAσ∂νAρ = 0. (3.28)

При устремлении λ → ∞ получаем граничные условия на пластинах:

E⊥

∣∣∣∣
S

= 0, B∥

∣∣∣∣
S

= 0. (3.29)

Данные условия реализуют идеальный магнитный проводник и приводят к зану-
лению потока электромагнитного поля через пластины, поэтому они полностью
эквивалентны (3.21), которые использовались в исследованиях в рамках насто-
ящей диссертации. На решетке граничные условия (3.29) реализуются путем
введения нетривиальной конструкции, «мешка Вильсона», подробно описанной
в работах [64; 66].
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Глава 4. Влияние граничных условий Казимира на структуру вакуума
компактной КЭД в 3+1 измерениях

В данной главе будет рассмотрено влияние эффекта Казимира на структуру
вакуума компактной электродинамики. Все численные симуляции были прове-
дены на решетке 244, соответствующей нулевой температуре компактной U(1)
калибровочной теории. Для генерации конфигураций использовался алгоритм
тепловой бани [57; 67]. Для каждой точки, характеризующейся калибровочной
константой связи β и расстоянием R между пластинами, было сгенерировано
7.5 × 105 траекторий, первые 105 из которых были отброшены для достижения
термализации.

4.1 Плотность монополей при отсутствии поверхностей Казимира

Известно, что в U(1) калибровочной теории в области сильной связи, что
соответствует β ≲ 1, траектория монополей образует плотный перколирую-
щий кластер [68]. Данный кластер соответствует конденсату монополей, который,
согласно сценарию дуального сверхпроводника, ответственнен за конфайнмент
пробных электрических зарядов. Свойство перколяции предполагает, что что лю-
бые две точки пространства обладают ненулевой вероятностью быть связанными
монопольной траекторией.

В области слабой связи , при β ≳ 1, перколяционный кластер распадает-
ся, из чего можно сделать вывод об исчезновании монопольного конденсата, и,
как в следствии, конфайнмента. Область сильной связи с наличием фазы кон-
файнмента и область слабой связи с фазой деконфайнмента разделены фазовым
переходом первого рода [69; 70]. Несмотря на то, что перколяционные свойства
монопольного кластера не были объектом исследования, точку фазового перехода
можно установить путем изучения гораздо более простой величины – монополь-
ной плотности (3.15).

Прежде чем приступить к случаю наличия казимировских поверхностей,
рассмотрим однородную решетку без пластин.
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Рисунок 4.1 –– Зависимость (a) плотности монополей ρ, (б) ее восприимчивости
(4.1) и (в) кумулянта Биндера (4.2) для O = ρ и (г) восприимчивости действия
от решеточной константы связи β в отсутствии пластин. Вертикальной линией

показана точка фазового перехода, полученная из данных наблюдаемых.

На рисунке 4.1 представлены плотность монополей ρ, ее восприимчивость

χρ = ⟨ρ2⟩ − ⟨ρ⟩2 (4.1)

и кумулянт Биндера

Bρ =
⟨ρ4⟩
⟨ρ2⟩2

− 3 (4.2)

как функции решеточной константы связи β. Величины (4.1) и (4.2) харак-
теризуют флуктуации монопольной плотности ρ. С увеличением β плотность
монополей падает. Положение точки фазового перехода

βc = 1.010(1) (4.3)

можно определить на основе разрыва функции на рисунке 4.1а. Подобный разрыв
присущ фазовым переходам первого рода. Он с высокой точностью совпадает с
пиками соответствующих кривых восприимчивости (рисунок 4.1б) и кумулянта
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Биндера (рисунок 4.1в). В окрестности точки фазового перехода были подсчи-
таны значения данных величин с шагом δβ = 0.001 для достижения точности в
оценке положения критического значенияβc. Позицияβc совпадает с результатом
для бесконечного объема [69]. Интересно отметить, что монопольная плотность
ρ не единственная наблюдаемая, по которой можно отследить фазовый переход.
На рисунке 4.1г показана восприимчивость действия Вильсона (3.10). Положения
ее пика соответствует положению пика восприимчивости плотности монополей
(рисунок 4.1б).

4.2 Свойства монополей при наличии поверхностей Казимира

Идеально проводящие пластины Казимира вводятся с помощью неодно-
родной константы связи соотношением (3.23), которая играет роль множителя
Лагранжа, понижая физические флуктуации калибровочного поля на пластинах.
Было выбрано достаточно большое значение диэлектрической постоянной ε =

103, что соответствует асимптотически большому значению константы связи на
пластинах, βP → ∞. Рассмотрены расстояния R ≡ |l1 − l2| = 1, . . . ,8 между
пластинами.

Как видно из рисунка 4.2, близко расположенные пластины оказывают вли-
яние на расположенные между ними монополи. Пластины уменьшают плотность
монополей внутри, она становится меньше плотности снаружи. Более того, с уве-
личением решеточной константы β (область слабой связи), данный эффект про-
является ещё сильнее, что видно из сравнения 4.2а и 4.2б. Подавление монополей
между пластинами позволяет предположить, что конфайнмент ослабляется меж-
ду пластинами, и, следовательно, фазовый переход конфайнмент-деконфайнмент
должен наступить при более высоких значениях константы связи (меньших зна-
чениях β). Данное наблюдение будет подтверждено ниже.

Отношение монопольной плотности между поверхностями ρins и монополь-
ной плотности ρnpall при их отсутствии для различных R приведено на рисунке
4.3. Из графиков видно, что уменьшение расстояния между пластинами ведет к
уменьшению плотности монополей между ними, причем в области слабой связи
(бо́льшие β) данный эффект заметен сильнее, чем в области сильной связи (мень-
шиеβ). Помимо этого, присутствует точка перегиба, которая смещается в сторону
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а) б)
Рисунок 4.2 –– Типичные примеры монопольных конфигураций в (а) фазе конфай-
нмента (β = 0.8) и (б) фазе деконфайнмента (β = 0.9) для пластин, находящихся
на расстоянии R = 3. Монополи и антимонополи изображены красными и сини-
ми точками, соответственно. Пластины, расположенные вертикально по центру

решетки, не показаны.

Рисунок 4.3 –– Отношение ρins/ρnpall плотности монополей ρins между пластинами
Казимира к монопольной плотности при отсутствии пластин, ρnpall, как функция от
расстояния между пластинами R для фиксированного набора значений решеточ-

ной константы связи β.
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Рисунок 4.4 –– Плотность монополей (левая колонка), ее восприимчивость (сред-
няя колонка) и кумулянт Биндера (правая колонка), построенные как функция от
β для трех расстояний между пластинами (сверху вниз): R = 2,4,8. Соответству-
ющие критические значения решеточной константы связи, βc = βc(R), указаны

в легенде.

низких значений R по мере уменьшения решеточной константы связи β. Это об-
стоятельство свидетельствует о том, что в модели может быть переход, зависящий
от β, точка которого смещается в направлении меньших R при возрастании β.

На рисунке 4.4 показаны монопольная плотность между пластинами, ее
восприимчивость и кумулянт Биндера для трех значений расстояния между пла-
стинами R. Из данных графиков можно сделать несколько важных выводов. Во
первых, графики для всех величин аналогичны графикам 4.1. Во вторых, мож-
но отменить что для любого фиксированного значения R, плотность монополей,
ее восприимчивость и кумулянт Биндера имеют сингулярности при одинаковых
значениях β, что указывает на наличие исходной термодинамической нестабиль-
ности. И в третьих, позиции данных сингулярностей, βc = βc(R), смещаются по
направлению к области сильной связи по мере уменьшения расстояния R между
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Рисунок 4.5 –– Фазовая диаграмма вакуума компактной U(1) калибровочной тео-
рии между идеально металлическими пластинами на расстоянии R. Сплошная
линия соответствует подобранной функции (4.4) критической константы свя-
зи βc, при которой происходит фазовый переход конфайнмент-деконфайнмент в
зависимости от значений R. Предел при R → ∞ изображен пунктирной горизон-

тальной линией.

поверхностями. Другими словами, чем ближе пластины к друг другу, тем слабее
становится вклад монополей в вакуум.

Зависимость критического значения константы связи βc от расстояния меж-
ду пластинами приведена на рисунке 4.5. Для описания данной зависимости была
подобрана функция

βfit
c (R) = β∞

c − α exp[−(R2/R2
0)
ν], (4.4)

где параметр β∞
c = 1.0071(16) соответствует критическому значению константы

связи для пластин, удаленных друг от друга на бесконечное расстояние. Дан-
ное значение близко к значению точки фазового перехода для конфигурации без
пластин ((4.3)), что свидетельствует о согласованности выбранного подхода к ис-
следованию структуры казимировского вакуума. Остальные параметры функции
следующие: α = 3.7(6), R0 = 0.28(7) и ν = 0.257(16). График функции изобра-
жен на рисунке 4.5 сплошной линией, и она делит график на две области – область
конфайнмента (β < βc) и область деконфайнмента (β > βc). Кривая фазово-
го перехода представляет собой возрастающую функцию расстояния R между
пластинами. Константа связи βc становится равной нулю при Rc = 0.47(7). Фор-
мально, на расстониях меньше критического, R < Rc, у теории не может быть
фазы конфайнмента. Но поскольку в дискретной теории мы имеем дело только с
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натуральными значениями R = 1,2, . . ., данное критическое значение не может
быть достигнуто на решетке.

Потерю конфайнмента в вакууме между пластинами в 3+1 измерениях
можно объяснить по аналогии с теорией в 2+1 измерениях [47]. Монополи
и антимонополи взаимодействуют друг с другом посредством обмена фотона-
ми. В 3+1 измерениях при отсутствии пластин данное взаимодействие падает
как |x|−2. При добавлении пластин, система подвергается размерной редукции
от 4-мерного к 3-мерному пространству-времени. В нем взаимодействие меж-
ду (анти)-монополями усиливается и уменьшается медленнее, пропорционально
|x|−1. Эти два фактора приводят к распаду инфракрасных монопольных кластеров
на более мелкие, и, как следствие, к исчезновению монопольного конденсата.

Для модели в 2+1 измерениях, этот же эффект приводит к образованию
магнитно нейтральных пар монополь-антимонополь (низкоразмерных аналогов
мелких кластеров) и распаду кулоновского газа монополей (низкоразмерного
аналога монопольного конденсата). Нейтральные пары (мелкие кластера) не в
состоянии обеспечить конфайнмент, и он пропадает между достаточно близко
расположенными пластинами.

4.3 Петля Полякова как параметр порядка

Обычно петля Полякова определяется для конечной температуры, когда
NT ≪ NS, но ее также можно использовать и при нулевой температуре (NT =

NS). Петля Полякова в точке пространства x для абелевой калибровочной теории
задается циклическим произведением временных линк-переменных:

Px =

NT−1∏
x4=0

eiθx,x4;µ=4 . (4.5)

Петля Полякова не зависит от временного среза, на котором она определена и
является калибровочно-инвариантным объектом. Мат. ожидание этой величины,
P = ⟨Px⟩ является параметром порядка: для решетки бесконечного объема P ̸= 0

в фазе деконфайнмента и P = 0 в фазе конфайнмента. Для конечной решетки, ко-
торая исследуется в данной работе, мат. ожидание петли Полякова не равно нулю
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Рисунок 4.6 –– Модуль петли Полякова как функция решеточной константы свя-
зи β в отсутствии пластин.

Рисунок 4.7 –– Мат. ожидание петли Полякова в пространстве между пластина-
ми Казимира на расстоянии R для набора фиксированных значений решеточной

константы связи β.

в обеих фазах, но оно близко к нулю в фазе конфайнмента и возрастает в фазе
деконфайнмента.

Мат. ожидание модуля петли Полякова, взятое по пространственному объ-
ему V3 для фиксированного временного среза равно:

|P | =

∣∣∣∣∣ 1V3

∑
x∈V3

Px

∣∣∣∣∣ . (4.6)

Данная величина в отсутствии пластин построена на рисунке 4.6, где показана
область в окрестности фазового перехода. В точке βc, определенной в (4.3) петля
резко меняет свое поведение.

На рисунке 4.7 представлено мат. ожидание модуля петли Полякова между
пластинами. Данная величина построена как функция расстояния между пласти-
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Рисунок 4.8 –– Петля Полякова внутри пластин как функция от β при фиксиро-
ванных значениях R.

нами R для того же набора значений β, который использовался в рисунке 4.3
при отображении плотности монополей между пластинами. Сокращение рассто-
яния между ними способствует переходу в фазу деконфайнмента, что приводит к
возрастанию петли Полякова (4.7) при снижении монопольной плотности (4.3).
Данный эффект проявляется при всех значениях решеточной константы связи
β. Аналогичная тенденция видна на рисунке 4.8, на котором изображена за-
висимость этой же величины от β для фиксированного набора значений R,
используемых в рисунке 4.4. Таким образом, данные результаты находятся в со-
гласии с фазовой диаграммой, изображенной на рисунке 4.5.
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Глава 5. Влияние граничных условий Казимира на структуру вакуума теории
Янга-Миллса с калибровочной группой SU(3) в 3+1 измерениях

В главе 2 были описаны результаты исследования вакуумной структуры
SU(2) глюодинамики в 2+1 измерениях при наличии граничных условий Кази-
мира. Особенностью двух пространственных измерений является возможность
использования аналитического подхода для изучения непертурбативных свойств
вакуума и его сравнения с численными методами, позволяющими исследовать
более сложные системы. Аналитический подход и решеточные вычисления для
исследования структуры вакуума между пластинами показали прекрасную со-
гласованность полученных результатов — аналитическое выражение (2.117) для
энергии Казимира отлично описывает данные на рисунке 2.15, полученные с
помощью численных симуляций в рамках решеточного подхода. Оба подхода
приводят к возникновению нового возмущения, массы Казимира, которая су-
щественно ниже массы самого легкого глюбола, и предсказывают ослабление
удерживающих свойств вакуума между пластинами.

В трех пространственных измерениях уже не существует аналитического
подхода для исследования непертурбативных свойств вакуума, поэтому необ-
ходимо использовать численные методы. В данной главе описаны результаты
исследования вакуума SU(3) глюодинамики в 3+1 измерениях при наличии гра-
ничных условий Казимира при нулевой температуре.

5.1 Энергия Казимира и новое граничное связанное состояние глюонов

В пространстве Минковского тензор энергии-импульса имеет следующий
вид:

T µν = F µαF να −
1

4
ηµνFαβFαβ , (5.1)

где метрический тензор определяется как ηµν = diag(1,− 1,− 1,− 1). Плотность
энергии E в пространстве Минковского и Евклида связаны следующим соотно-
шением:

E ≡ T 00 =
1

2

(
B2 +E2

)
→ T 44

E =
1

2

(
B2

E −E2
E

)
. (5.2)
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Решеточная плотность энергии Казимира на единицу площади Казимировских
пластин при нулевой температуре на решетке L4

s задается правильно нормиро-
ванной решеточной версией уравнения 5.2:

ECas = βLs

( 3∑
i=1

⟨ Pi4 ⟩S −
3∑

i<j=1

⟨ Pij ⟩S
)
, (5.3)

и представляет собой разность между средними временными и пространствен-
ными плакетами при наличии зеркальных пластин S. В результате вычитания
уничтожаются ультрафиолетовые расходимости нулевых колебаний вакуума.
Плотность энергии Казимира является конечной физической величиной, завися-
щей только от расстояния между пластинами и зануляющейся при их отсутствии
(при R → ∞). Данная зависимость показана на рисунке 5.1. Видно, что данные
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Рисунок 5.1 ––Плотность энергииКазимира ECas как функция расстоянияRмежду
идеальными хромометаллическими пластинами в единицах натяжения струны σ.

для различных значений решеточной константы связи β и размеров решеток L

прекрасно укладываются в гладкую кривую, свидетельствуя об отсутствии суще-
ственных эффектов конечного размера и конечного объема.

Плотность энергии Казимира принимает большие по модулю отрицатель-
ные значения по мере уменьшения расстояния между пластинами. Такое пове-
дение указывает на притягивающую природу неабелевой силы Казимира, что
согласуется с ожидаемым поведением на коротких расстояниях, где глюоны
проявляют асимптотическую свободу и Казимировские взаимодействия должны
свестись к взаимодействию свободного безмассового векторного поля. На боль-
ших расстояниях между пластинами энергия Казимира уменьшается. В теориях
со свободным безмассовым полем плотность энергии Казимира на единицу пло-
щади пластин c увеличением расстояния R падает как R−3, в то время как в
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массивных теориях поля плотность энергии Казимира уменьшается экспоненци-
ально, E(R) ∼ e−2mR. Множитель 2 присутствует в экспоненте по причине того,
что частица проходит от одной пластины к другой, затем отражается, и проходит
обратный путь, замыкая траекторию длиной 2R. Следовательно, важно опреде-
лить как быстро снижается энергия в пределе больших R, так как это поведение
позволяет исследовать массовый спектр возмущений глюонного вакуума между
хромометаллическими пластинами.

Как было показано в секции 2.2 главы 2, в двухцветовой глюодинамике в
двух пространственных измерениях самое низкое возмущение между пластинами
соответствует «частицеКазимира» с массой существенно нижеминимальноймас-
сы глюбола теории. Помимо этого, масса Казимира связана с магнитной массой в
трех пространственных измерениях. Также, в двух пространственных измерениях
энергия Казимира калибровочного поля была отождествлена с энергией Казими-
ра скалярного поля. Данный подход можно применить и в трех пространственных
измерениях [71; 72]. Данные на рисунке 5.1 были описаны функцией энергии Ка-
зимира скалярного поля с массой mgt:

ECas = −C0

2(N 2
c − 1)m2

gt

8π2R

∞∑
n=1

K2(2nmgtR)

n2
, (5.4)

где суммирование произведено по быстросходящимся функциям Бесселя второ-
го рода K2(x), а префактор включает в себя (N 2

c − 1) цветовых комбинаций и
двух спиновую поляризацию глюонов. МножительC0 был включен, чтобы учесть
влияние массовой щели. На рисунке 5.1 фит функцией 5.4 изображен сплошной
красной линией и имеет параметры C0 = 5.60(7) и

mgt = 1.0(1)
√
σ = 0.49(5)ГэВ . (5.5)

О качестве данного фита свидетельствует статистика χ2/d.o.f. ≃ 0.6, что яв-
ляется хорошим показателем. Масса полученной частицы существенно меньше
массы основного состояния глюбола M0++ = 3.405(21)

√
σ = 1.653(26) ГэВ, что

выглядит как противоречие, так как по определению масса основного состояния
глюбола M0++ является наименьшей возможной массой в системе. Но вместе с
тем этот факт не является сюрпризом, как уже было сказано, аналогичное явле-
ние было обнаружено и для частицы, которая характеризует поведение системы
на больших расстояниях между пластинами в 2+1 измерениях.

Данное кажущееся противоречие объясняется тем, что масса основного со-
стояния глюбола M0++ определяет массовую щель во всей системе, далеко от
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границ, в то время как масса 5.5 является массой нового возмущения в теории
Янга-Миллса, которое возникает исключительно из-за наличия границы. Данное
граничное состояние, являющееся непертурбативным бесцветным состоянием
глюонов связанных с их изображениями противоположного цвета в хромометал-
лическом зеркале, естественно назвать «глютон» по аналогии с поверхностным
экситоном, возникающим в электронных системах.

Состояния, локализованные на границах системы, могут иметь меньшие
массы, чем массовая щель в основной системе. В теории конденсированного со-
стояния данный эффект возникает на контактах в полупроводниковых структурах
(состояния Волкова-Панкратова [73]), и на границах топологических диэлек-
триков [74]. Однако глютон, в отличии от перечисленных состояний, имеет
нетопологическое происхождение.

Глютон представляет собой неабелевый аналог поверхностного экситона,
который является электрически нейтральной квазичастицей, возникающей в по-
лупроводниках и изоляторах вблизи границ — электрон (дырка) в материале
образует пару с образом дырки (электрона) в отражающей границе, что приво-
дит к образованию нейтральной квазичастицы [75]. Такие пары электрон-дырка
могут двигаться только вдоль границы материала. Исследованию поверхностных
экситонов посвящено множество работ в области физики конденсированного со-
стояния [76––79].

Глютон, помимо глюбола и глюлампа, является ещё одним связанным
состоянием глюонов. Глюбол это бесцветная частица состоящая из глюонов,
характеризующаяся спином и массой. Она находится в основной среде, не на
границах. Глюламп состоит из глюона, связанного струной с присоединенным
источником, который можно рассматривать как глюон с бесконечно большой мас-
сой [80––83]. Хотя глюламп и не является физическим объектом и не может быть
напрямую обнаружен на эксперименте, его теоретическое изучение обеспечивает
ценный вклад в понимание непертурбативных удерживающих свойств КХД [84].
В отличии от глюлампа, глютон может распространяться вдоль доменной стенки
в КХД (например в модели мешков [5; 85]), таким образом потенциально влияя
на стабильность таких состояний и оказывая физически измеряемый эффект.

Масса глютона (5.5) имеет такой же порядок, как и эффективная масса
глюона, которая контролирует инфракрасное поведение глюонного пропагато-
ра при фиксации калибровки [86]. Однако существует несколько аргументов в
пользу того, что наблюдаемое связанное состояние является новой частицей, а



87

Рисунок 5.2 –– Трубка потока от кварка к антикварку. Изображение взято из [58].

не проявлением глюона. Во-первых, в отличии от глюона, глютон является бес-
цветным объектом, в этом плане он ближе к глюболу. Во-вторых, масса глюона
выводится из зависящего от калибровки пропагатора, что подразумевает ее фик-
сацию, в то время как взаимодействия Казимира сформулированы калибровочно-
инвариантным способом. И, наконец, во взаимодействующих теориях, к которым
относится рассматриваемая теория Янга-Миллса, энергию Казимира невозмож-
но выразить через двухточечную функцию, какой является глюонный пропагатор
(это можно сделать только в свободных теориях [87]).

5.2 Кваркитон - связанное состояние кварка и его образа в
хромометаллическом зеркале

После аргументов, свидетельствующих в пользу существования бесцвет-
ных связанных состояний глюонов, возникает вопрос о существовании аналогич-
ных состояний для кварков — связанной удерживающей струной пары кварка
и его образа в хромометаллическом зеркале. Потенциальному возникновению
данного состояния способствует явление конфайнмента цвета, так как в фазе
конфайнмента силовые линии хромоэлектрического поля между кварком и ан-
тикварком стягиваются в удерживающую струну, показанную на рисунке 5.2.
Как было упомянуто в главе 2, данные трубки (струны) представляют собой
физические объекты с конечной энергией на единицу длины, что приводит к
линейному росту взаимодействия между кварками. Предложено несколько меха-
низмов объяснения наблюдаемого явления. Один из них это модель дуального
сверхпроводника второго рода, содержащего примеси магнитных монополей,
предложенная Мандельштамом [61] и т‘Хофтом [62]. В то время как магнитное
поле не может проникнуть внутрь сверхпроводника в силу эффекта Мейсне-
ра [88], то после добавления внутрь сверхпроводника магнитных монополей,
силовые линии магнитного поля должны где-то пройти в сверхпроводник, что
приводит к возникновению струны Абрикосова между парой монополь и анти-
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монополь, которая представляет собой трубку силовых линий магнитного поля.
Ещё один механизм конфайнмента основан на так называемой модели меш-
ков [89]. В данной модели адрон представлен как мешок, на глюонные поля
внутри которого не накладывается никаких ограничений. Но распространение по-
лей вне мешка запрещено соответствующими граничными условиями. Попытка
извлечь кварк из такой системы приводит к вытягиванию мешка, и вытянутая
часть мешка будет содержать глюо-электрический поток от вытягиваемого квар-
ка к остальным составляющим протона. Наконец, наиболее изящный механизм
заключается в добавлении в теорию неабелевых безмассовых калибровочных
полей, описывающих глюоны и обладающих свойством самодействия (в отли-
чии от электродинамики). Данные поля несут заряды, отличающие их друг от
друга. В этом случае предположение конфайнмента заключается в том, что исход-
ная теория с безмассовыми зяряженными частицами нестабильна по отношению
конденсации вакуума в состояние, в котором присутствуют только массивные
заряженные возбуждения. В таких состояниях глюонный поток, связывающий
кварки, образует трубки, что приводит к линейному конфайнменту [58].

В случае кварка, расположенного вблизи хромометаллического зеркала,
свойство конфайнмента подразумевает возникновение удерживающей струны от
кварка к зеркалу, связывая кварк с его отрицательным образом. Схематично дан-
ное состояние показано на рисунке 5.3. Таким образом можно ожидать удержание
кварка нейтральным хромометаллическим зеркалом с помощью удерживающей
струны. Поскольку глобально зеркало является безцветным объектом, возника-
ющий цветовой заряд, который имитирует образ антикварка в зеркале, должен
приводить к перераспределению цветового заряда на поверхности (бесконечного)
зеркала. В связанной системе перераспределенный заряд может давать положи-
тельный вклад в свободную энергию системы кварк-зеркало, который в теории
способен перевесить отрицательный вклад от кваркитона.

Так как в рамках исследования влияния граничных условий Казимира на
вакуум теории Янга-Миллса рассматривались исключительно глюонные систе-
мы, то проверить формирование кваркитона напрямую путем вычисления спектра
масс с кварковыми степенями свободы вблизи зеркала не представляется воз-
можным. Но можно вычислить потенциал VQ|, который соответствует свободной
энергии FQ|(d) тяжелого кварка Q, расположенного на расстоянии d от зеркала |.
Данная величина позволяет оценить, насколько сильно кварк притягивается или
отталкивается зеркалом. Чтобы связать потенциал тяжелого кварка с его свобод-
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Рисунок 5.3 –– Схематическое изображение кваркитона: кварк Q связан со своим
образом в хромометаллическом зеркале (антикварком Q̄′) удерживающей стру-

ной. Автор изображения М. Чернодуб.

ной энергией, можно использовать оператор петли Полякова, который помещает
пробный цветной заряд в пространственную точку x. Петля Полякова уже была
расмотрена в главе 2 и 4 настоящей работы в качестве параметра порядка, позво-
ляющего отследить фазовый переход в фазу деконфайнмента. Для теории с тремя
цветами в 3 + 1 измерении петля Полякова задается следующим образом:

Px =
1

3
ReTr

(
Lt−1∏
x4=0

Ux,x4

)
. (5.6)

Эффект граничного зеркала можно вычислить через математическое ожидание
петли Полякова:

⟨Px ⟩|(d) = exp
{
−LTFQ|(d)

}
, (5.7)

расположенной в точке x = (x1,x2,d) (для зеркала x3 = 0) и усредненной по коор-
динатам x1 и x2. LT это длина решетки во временном направлении. При конечной
температуре длина LT фиксирована, LT = 1/T , и выражение под экспонентой
сводится к привычному отношению F/T . В термодинамическом пределе при ну-
левой температуре LT → ∞ петля Полякова зануляется, делая невозможной
оценку потенциала (5.7) тяжелого кварка для больших LT . По этой причине, что-
бы качественно показать существование притяжения между кварком и зеркалом,
была рассмотрена небольшая решетка с LT = 12a. Математическое ожидание
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Рисунок 5.4 ––Свободная энергия тяжелого кварка какфункция расстояния от хро-
мометаллического зеркала. (а): Исходная энергия FQ|(d,β) без перенормировки,
расстояние отложено в решеточных единицах. (б): Перенормированная энергия

F ren
Q| (d) в единицах натяжения струны σ.

петли Полякова (5.6) содержит нефизические независимые от расстояния вклады,
обычно убираемые путем перенормировки. Перенормировка свободной энергии
кварка исходя из ее поведения на коротких расстояниях представляется затруд-
нительной из-за небольшого размера решетки. Но можно использовать тот факт,
что на расстоянии d = 6a (середина решетки) свободная энергия должна выпола-
живаться за счет периодичности решетки. Как видно из рисунка 5.4а, положение
точки выполаживания не зависит от константы связи β.

Данный факт был использован для перенормировки свободной энергии:

F ren
Q| (d) = FQ|(d,β)− F0(β), (5.8)

где F0(β) отлично описывается тривиальной линейной зависимостью

F0(β) = −15.5 + 2.9β. (5.9)

График перенормированной свободной энергии приведен на рисунке 5.4б. Дан-
ные для различных решеточных обрезаний a = a(β) укладываются в гладкую
кривую, указывая на неплохой физический скейлинг. Из данного графика мож-
но сделать вывод о притяжении тяжелого кварка плоским зеркалом, что приводит
к формированию кваркитона. Выполаживание энергии для больших расстояний
d происходит из-за эффекта конечного объема и должно уйти при увеличении
объема решетки, а на небольших расстояниях наблюдается ожидаемое линейное
поведение.
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Рисунок 5.5 –– Коррелятор петель Полякова Cd(l) , расположенных на расстоянии
d от хромометаллического зеркала, и на расстоянии l друг от друга для L = 12 и
β = 5.6924 (a

√
σ ≃ 0.4 [90]). Коррелятор при d = 1a масштабирован на фактор

1/4. Также показан коррелятор в отсутствии пластин.

Анализ поведения пары кварк-антикварк, расположенной на расстоянии d

от зеркала (рисунок 5.5), дает дополнительный аргумент в пользу возникновения
состояния кваркитона у границы.

Рассмотрим кварк Q и антикварк Q̄ расположенные на расстоянии l друг
от друга и на расстоянии d от хромометаллического зеркала, как показано в цен-
тральной вставке рисунка 5.5. В самой простой модели линейного конфайнмента,
где не учитывается кулоновское взаимодействие на малых расстояниях, энергия
пары кварк-антикваркQQ̄ (мезона) будет равнаE1 = σl. В тоже время, если кварк
Q и антикварк Q̄ образуют соответствующие состояния кваркитонов QQ̄′ и Q̄Q′,
то каждый такой кваркитон даст вклад в энергию σd, а полная энергия данной
системы будет равнаE2 = 2σd. Следовательно, исходя из энергетических сообра-
жений, при небольшом расстоянии между кварком и антикварком l < 2d должно
формироваться обычной мезонное состояние QQ̄. Но при удалении кварка и ан-
тикварка на расстояние l > 2d системе энергетически выгоднее образовать два
состояния кваркитона: QQ̄ → QQ̄′ + Q̄Q′.

Данное предположение можно проверить численно, рассчитав коррелятор
петель Полякова

C(l) = ⟨P (x)P ∗(x+ l) ⟩. (5.10)

Коррелятор и удерживающая струна связана следующим соотношением [57]:

C(l) ∝ e−LTaV (l), (5.11)
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где общая форма потенциала V (l) имеет вид

V (l) = A+
B

l
+ σl. (5.12)

На большом расстоянии от зеркала d = 5a, согласно полученным данным
струна ведет себя обычным образом, так как коррелятор для пары QQ̄ совпадает
с коррелятором при отсутствии зеркала. При уменьшении расстояния до зеркала
коррелятор выходит на плато, тем самым показывая отсутствие зависимости от l,
чем ставит вопрос о существовании струны. Более того, значения коррелятора при
d = 1a больше значений при d = 2a, что позволяет сделать вывод о распаде мезон-
ного состояния на два кваркитона, и формировании новых струн между кварком
(антикварком) и его образом (струна при d = 1a короче струны при d = 2a).

Потенциальная возможность одиночного кварка образовывать пару со сво-
им образом в хромометаллическом зеркале позволяет провести аналогию с си-
стемой двух взаимодействующих конденсатов Бозе-Эйнштейна, между которыми
существует доменная стенка (в двух измерениях это струна), и натяжение струны
определяет потенциал между парами вихрей на больших расстояниях [91]. В этом
смысле такая пара вихрей аналогична мезону в КХД. Как одиночный кварк в КХД
не может существовать из-за обладания бесконечной свободной энергией, так и
одиночный вихрь не может существовать в конденсате Бозе-Эйнштейна. Но оди-
ночные вихри тем не менее могут существовать на границе системы образовывая
с ней связанное состояние. Такие состояния в сверхпроводниках обсуждаются в
работах [92––94].

5.3 Признаки деконфайнмента между пластинами

Помимо определения граничных состояний вакуума глюодинамики, важ-
ным является вопрос о влиянии граничных пластин Казимира на фазовый переход
конфайнмент - деконфайнмент. Анализ энергии Казимира не позволяет сделать
какие-то определенные заключения о наличии данного явления. Поэтому бы-
ла рассмотрена свободная энергия тяжелого кварка, посчитанная в пространстве
между пластинами V (R):

LTF
Cas
Q (R) = − ln |P |V (R) ≡ − ln

〈∣∣∣ ∑
x∈V (R)

Px

∣∣∣〉. (5.13)
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Рисунок 5.6 –– Средняя свободная энергия тяжелого кварка в пространстве между
пластинами, как ф-ия расстояния между ними.

На вставке в рисунке 5.6 показана петля Полякова в пространстве между пласти-
нами |P |V (R). Она принимает конечные значения для небольшого расстояния R

между пластинами и быстро уменьшается с его увеличением. Данное поведение
указывает на деконфайнмент цвета между близко расположенными пластинами,
что можно интерпретировать как формирование кваркитонов между тяжелым
кварком и его образом в зеркале, обладающих конечной энергией. По мере
увеличения расстояния между пластинами свободная энергия кваркитонов уве-
личивается, петля Полякова исчезает и система переходит в фазу конфайнмента.

Взаимодействие между кварками и антикварками часто описывается с по-
мощью потенциала Корнелла, который включает себя линейное поведение на
больших расстояниях и кулоновское взаимодействие на малых. Следовательно,
средняя свободная энергия кваркитона тоже должна удовлетворять данному по-
тенциалу. Рисунок 5.6 полностью подтверждает данное предположение, данные
идеально описывается следующей кривой:

LTF
Cas
Q (R/a) = − c1

R/a
+ c2

R

a
+ c0. (5.14)

Из данной зависимости видно, что тяжелый кварк в пространстве между пласти-
нами обладает конечной энергией для небольших расстояний между пластинами,
что указывает на деконфайнмент цвета. С увеличением расстояния между пла-
стинами свободная энергия возрастает, приводя к исчезновению петли Полякова
и установлению фазы конфайнмента.
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Глава 6. Исследование основных состояний нелокальной модели Поттса

В предыдущих главах было рассмотрено влияние нетривиальной топологии
на вакуум калибровочных теорий, таких как компактная электродинамика и SU(2)
и SU(3) глюодинамика, в двух и трех пространственных измерениях. В ходе ис-
следования было обнаружено несколько типичных закономерностей, общих для
данных теорий, наиболее примечательными из которых являются возникновение
нового массового масштаба и ослабление удерживающих свойств вакуума меж-
ду границами. В данных теориях нетривиальность вакуума является следствием
изменения геометрии и топологии системы, в то время как открытым вопро-
сом остается существование нетривиальных конфигураций вакуума в системах с
нелокальным взаимодействием. Одним из классов систем, где нелокальное взаи-
модействие можно ввести естественным образом, являются различные спиновые
модели, определенные на дискретных решетках, находящие широкое применение
в фундаментальной и прикладной науке. Модель Изинга и ее обобщение, модель
Поттса, являются наиболее известными из них [95; 96]. Данные модели задаются
путем присваивания некоторого «спина» из дискретного множества каждому узлу
решетки и введением обменного взаимодействия между узлами, преимуществен-
но локального. Множество дискретных значений спинов и сила взаимодействия
обычно выбираются таким образом, что гамильтониан системы принимает неот-
рицательные действительные значения для любой спиновой конфигурации.

Будучи изнально введенными для изучения намагниченности, спиновые мо-
дели нашли применение в исследовании самых различных феноменов. Важным
классом задач, формулируемых в терминах модели Поттса, является моделирова-
ние поведения сложных систем, начиная с исследований коллективного принятия
решений [97] и проблем компьютерного зрения [98], заканчивая биологической
эволюцией [99] и оптимизацией расписания авиационного персонала [100]. В
подобных задачах, исследование зависимости фазовой структуры моделей и
динамики фазовых переходов от эффективной температуры или внутренних па-
раметров, позволяет определять свойства моделируемых систем [101]. Особый
интерес представляют состояния с минимальной энергией и их структура.

Во многих случаях представляется удобным рассматривать семейство мо-
делей Поттса в терминах теории среднего поля [102], ввиду возможности есте-
ственным образом применять стандартный аппарат статистической теории поля,
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включая интеграл по путям [103]. Однако, в общем случае нахождение миниму-
мов энергии модели Поттса является NP-трудной задачей, которая не может быть
решена в разумное время. Как следствие, используются различные приближения
и численные методы, позволяющие оценить точное решение как можно более эф-
фективно.

Наиболее яркой особенностью данных моделей является тонкая связь меж-
ду структурой спинового пространства, геометрией и топологией решетки, и
обменным взаимодействием, описанная в секции 1.1 главы 1.

Подавляющая часть решеточных моделей относится к локальным, где идея
учета взаимодействия только между ближайшими соседями связана с физической
интерпретацией степеней свободы как спинов, взаимодействие которых умень-
шается с увеличением расстояния между ними и достигает максимума между
ближайшими. Модели с нелокальным взаимодействием гораздо меньше пред-
ставлены в литературе. Тем не менее, они имеют важное значение для описания
свойств биологических, социальных и технических сетей, которые нельзя отне-
сти как к регулярным, так и к полностью случайным. Примерами систем такого
рода могут служить сети с топологией «маленького мира», которые описывают
некоторые свойства нейронных сетей живых организмов [104]. Как показано в
работе [105], модель Поттса с нелокальным взаимодействием отлично подходит
для описания таких систем. Кроме систем с данной топологией, нелокальные мо-
дели применимы для исследования систем с конечным числом степеней свободы.
В качестве примеров можно привести исследование двумерных кристаллов на ос-
нове молекул, обладающих симметрией пятого порядка [106], изучение свойств
жестких пятиугольников с помощью методов Монте-Карло [107] и исследова-
ние упаковки жестких ассиметричных ромбообразных частиц [108]. В данных
работах были найдены различные паттерны, которые невозможно получить с
использованием локальных моделей. В то время как нелокальность была исполь-
зована для отражения физических свойств систем, в отдельных случаях ее можно
ввести искусственно, как было сделано в работе [98], в которой было показано, что
нелокальное взаимодействие сглаживает границы между областями различных
цветов, тем самым делая модель Поттса с нелокальным взаимодействием привле-
кательной для решения различных задач компьютерного зрения.

Ещё одной областью, в которой модели с нестандартной топологией могут
найти применение, являются задачи комбинаторной геометрии. Результаты насто-
ящей работы были рассмотрены в контексте дискретной формулировки известной
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Рисунок 6.1 –– Решение проблемы НЭХ для одномерного случая – чередующиеся
сегменты единичной длины с выколотой точкой с одного края.

а) б)
Рисунок 6.2 –– Иллюстрация оценок хроматического числа плоскости: (а) Ве-
ретено Мозера – 11-вершинный граф единичных расстояний с хроматическим
числом 4, показывающий, что четырех цветов недостаточно для раскраски плос-
кости требуемым образом; (б) Раскраска плоскости в семь цветов таким образом,
что никакие две точки на единичном расстоянии не покрашены в один цвет.

нерешенной задачи о раскраске графа единичных расстояний. Данная задача из-
вестна как проблема Нелсона-Эрдёша-Хадвигера (НЭХ), которая ставит вопрос о
минимальном числе цветов, необходимом для раскраски Rd пространства таким
образом, чтобы никакие две точки на единичном расстоянии не были покраше-
ны в один цвет [109]. Существует множество литературы, посвященной данной
проблеме [15; 110––113]. Для одномерного пространства решение тривиально и
представлено на Рис. 6.1. Но уже для плоскости ответ неизвестен. Существо-
вавшая нижняя оценка недостаточности трех цветов (Рис. 6.2а) недавно была
улучшена путем построения нетривиального графа единичных расстояний, 1581
вершину которого невозможно раскрасить в 4 цвета [114]. Хотя в данном направ-
лении идет постоянный поиск улучшения данной оценки [115; 116], в том числе и
путем уменьшения числа вершин в соответствующем графе, на текущий момент
принципиально новых результатов получено не было.

Верхняя оценка равна 7 цветам, соответствующее решение показано на Рис.
6.2б.

Решеточный подход к квантовой теории поля и моделирование различных
видов спиновых взаимодействий на дискретных решетках имеют много обще-
го. Оба метода опираются на фундамент статистической физики, имеют схожую
методологию и общем случае предоставляют отличный теоретический аппарат
для описания сильноскоррелированных систем, и их последующего численного
решения с использованием вероятностных методов Монте-Карло на суперком-
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пьютерах, когда традиционные аналитические методы решения неприменимы.
Связь решеточных калибровочных теорий и спиновых моделей обсуждается во
введении к диссертации.

В данной главе впервые сформулирована и рассмотрена модель Поттса с
нелокальным взаимодействием на случайной решетке и исследована структура
ее основных состояний. Полученные результаты интепретированы в рамках изу-
чения дискретной версии проблемы НЭХ.

6.1 Нелокальная модель Поттса на случайной решетке и алгоритм
нахождения ее основного состояния

6.1.1 Определение нелокальной модели Поттса на случайной решетке

Гамильтониан нелокальной модели Поттса, заданной на случайной решетке
на плоскости, записывается следующим образом:

H =
∑
x,y

Jxyδi(x)i(y), (6.1)

где ядро взаимодействия Jxy между узлами x и y определяется как

Jxy =

{
J, R− δ

2 ⩽ |x− y| ⩽ R + δ
2

0, в остальных случаях.
(6.2)

Радиус взаимодействия R принят равным 1, δ – это ширина кольца взаимодей-
ствия, i(x) – значение спина (спина) в точке x, δi(x)i(y) — символ Кронекера.
Схематическое изображение модели показано на рисунке 6.3а.

Важным параметром данной модели является среднее число соседей. Оно
задается соотношением

⟨n⟩ = 2πδ
N

L2
. (6.3)

В данной работе это число было зафиксировано ⟨n⟩ = 50. Выбранное число до-
статочно большое, чтобы наблюдать базовые свойства модели, но одновременно
с тем позволяет проводить численные симуляции за приемлимое время. Размер
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а) б)
Рисунок 6.3 –– (а): Схематическое изображение модели. Частица, расположенная
в центре кольца, взаимодействует только с частицами, находящимися в ее кольце,
которые по определению находятся на расстоянии R ± δ/2 от нее. За пределами
области, помеченной пунктирным квадратом, цвета частиц зафиксированны, что
представляет собой реализацию фиксированных граничных условий; (б): Схема-
тическое изображение энергетических зон. Все частицы обладают одинаковыми
свойствами, но изображены по-разному в зависимости от принаджлежности к
соответствующей зоне. «Внутренняя» энергия вычисляется только между части-
цами, помеченными пустой окружностью, вклад от каждой пары таких частиц
удваивается. Вклад пар, состоящих из частицы внутри пунктирной области и
частицы, в области к ней примыкающей, помеченной окружностью с точкой внут-
ри, учитывается один раз. Данные пары дают вклад в «наружнюю» энергию.
Взаимодействие частиц, принадлежащих примыкающей к пунктирному квадрату
области, не дает вклада в энергию, как и взаимодействия с частицами, помеченны-
ми символом кольца, которые находятся в самой внешней области изображения.
Стоить отметить, что плотность частиц на схеме не должна вводить в заблуждение
– в реальности она намного выше и данный пример приведен только в иллюстра-

тивных целях.
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области был выбран L = 20, ширина кольца взаимодействия δ = 0.02. Выбор
данных параметров определяет число точек N = 159 155 и более подробно об-
суждается в разделе 6.2.3 секции 6.2.

Истинный минимумE = 0 достигается только тогда, когда в кольце взаимо-
действия каждой частицы нет частиц одного с ней цвета. Хотя данный минимум
невозможно получить для небольшого числа цветов q, вакуумные конфигурации
для этого случая (как и для больших значений q), представляют большой интерес.
Помимо этого, в рамках исследования был поставлен вопрос, начиная с какого
значения q энергия основного состояния системы достигает нуля (в пределах ста-
тических ошибок).

Важным вопросом является определение граничных условий модели. Наи-
более типичными являются периодические граничные условия, которые были
использованы на ранних этапах исследования. Но затем было выявлено, что в
случае их применения возникают различные граничные эффекты, вызванные
нелокальностью модели, и, как следствие, зависимостью итоговых конфигураций
от отношения размера области L к радиусу взаимодействия R. Поэтому, бы-
ли приняты фиксированные граничные условия, схематически изображенные на
рисунке 6.3а. Частицы, находящиеся за пределами области, ограниченной пунк-
тирным квадратом, не изменяются в процессе минимизации. За счет того, что
кольцо частиц с зафиксированным цветом оказывает влияние на частицы внутри,
энергия системы должна быть вычислена на некотором отдалении от границы.
Было принято решение считать энергию взаимодействия частиц внутри квадрат-
ной области размером 11 × 11 (пунктирная линия на рисунке 6.3б). Энергия E

представляет собой сумму двух компонент: энергию Eins взаимодействия частиц,
находящихся внутри области подсчета энергии, и энергию Eout взаимодействия
частиц внутри области и частиц, к ней примыкающей. Общая энергия системы
задается соотношением:

Etot = 2Eins + Eout. (6.4)

Дополнительно стоить отметить, что энергии Eins и Eout являются неотрицатель-
ными величинами, поэтому зануление энергии в какой-то области означает и
зануление энергии в любой из ее подобластей.
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6.1.2 Алгоритм минимизации

Наиболее простым из возможных алгоритмов минимизации является жад-
ный алгоритм, который принимает только ту конфигурацию, энергия которой не
повысилась по сравнению с предыдущей. Аналогично периодическим граничным
условиям, данный алгоритм был реализован на ранних стадиях исследования, но
затем от него пришлось отказаться в связи с широко известным его недостат-
ком, имевшем место и в данном случае — в итоге система принимает состояние,
соответствующее определенному локальному минимуму, который может быть
достаточно далеко от глобального.

Алгоритм имитации отжига [117] подходит гораздо лучше к данной про-
блеме минимизации и отличается от жадного алгоритма возможностью принятия
конфигурации с увеличенной энергией. Вероятность данного события уменьша-
ется со временем и в конце концов система приходит к состоянию которое мы
будем отождествлять с вакуумом. Алгоритм начинает случайных обход точек с
исходной конфигурации случайно распределенных по области точек с случайно
заданными цветами. Цвета частиц меняются случайным образом, в то время как
позиции остаются фиксированными. Если после замены цвета у частицы энергия
системы уменьшается или остается неизменной, тогда предложенный цвет прини-
мается. Но, и здесь состоит основное отличие от жадного алгоритма, если энергия
повышается, то новый цвет принимается с вероятностью P = exp[(E − E ′)/T ],
где E это энергия текущего состояния системы, E ′ — энергия нового состоя-
ния, а T имеет смысл искусственной температуры, которая убывает как некоторая
функция числа шагов. После рассмотрения различных кандидатов на роль функ-
ции температуры была выбрана линейная зависимость Tn+1 = Tn − ∆T . После
прохода по всем частицам, температура понижается и выше описанный процесс
повторяется до тех пор, пока температура не достигает нуля. В процессе работы
алгоритма вероятность принятия конфигурации с увеличенной энергией снижает-
ся, и, как следствие, системе становится сложнее переходить между локальными
минимумами.

Фундаментальное различие между жадным алгоритмом и алгоритмом ими-
тации отжига показано на рисунке 6.4. На рисунке слева энергия стремительно
падает на протяжении нескольких десятков проходов (под проходом понимает-
ся обход всех точек для фиксированной температуры), и системы оказывается в
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а) б)
Рисунок 6.4 –– Типичные кривые минимизации для q = 6. (а): Жадный алгоритм;

(б): Алгоритм имитации отжига.

окрестности локального минимума, и в дальнейшем, уменьшить энергию удается
лишь незначительно. На рисунке справа, соответствующем алгоритму имитации
отжига, ситуация сильно лучше, несмотря на порядки большее число итераций.
Сначала, процесс минимизации аналогичен жадному, но затем наступает резкий
переход к стадии медленного постепенного снижения энергии, которая занимает
около трети всего процесса. Далее, в районе 7500шагов, происходит фазовый пе-
реход – начинается кластеризация и энергия снова начинает очень быстро падать.
Можно провести аналогию с процессом кристаллизации, а саму искусственно
введенную температуру рассматривать как «температуру кристаллизации». По-
ложение точки фазового перехода зависит от значения q. На завершающем этапе
происходят некоторые флуктуации на границах сформировавшихся кластеров, и
энергия падает ещё больше. В результате, алгоритм имитации отжига приводит к
состояниям с намного меньшей энергией, чем те, к которым приходила система
после минимизации жадным алгоритмом.

6.2 Анализ минимизированных конфигураций нелокальной модели Поттса
на случайной решетке

Параметры модели, при которых происходила минимизация энергии, пред-
ставлены в таблице 1.

Для каждого выбранного q было сделано 200 запусков процедуры миними-
зации, перед каждым запуском случайном образом генерировались цвета точек,
позиции не менялись. В качестве проверки были проведены минимизации, где по-
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Таблица 1 –– Параметры модели, использованные при симуляциях.

Величина Описание Значение

R радиус взаимодействия 1.0
δ ширина кольца взаимодействия 0.02
L линейный размер области 20.0
N число частиц 159 155

q число цветов 2..7
lf ширина граничной области 1.01
δ/R локализация взаимодействия 0.02
L/(R

√
N) отношение среднего расстояния между точками к R 0.05

2πRNδ/L2 среднее число соседей у точки 50

зиции точек менялись при новом запуске, но никаких отличий от первого случая
обнаружено не было. В данном случае для задания случайной конфигурации на
случайной решетке достаточно обновить цвета точек, в обновлении позиций нет
необходимости. Более того, обновление позиций при каждом запуске приводит к
необходимости пересчитывать соседей для каждой точки, что является достаточ-
но затратной процедурой, которой лучше избежать, если нет свидетельств, что
она оказывает какое-то влияние на результаты минимизации.

Ниже проведено описание результов минимизации для различных q.

6.2.1 q ⩽ 4

Сначала рассмотрим случай q = 2. Типичные вакуумные конфигурации
представлены чередующимися полосками и показаны на рисунке 6.5а. Энергия
данных конфигураций составляет примерно 65% от исходной, соответствующей
случайной раскраске.

Для q = 3 минимизированные конфигурации представляют собой гексаго-
нальный паттерн (рисунок 6.5б) с энергией около 31% от исходной конфигурации.
Данное число соответствует правильной, практически «чистой» раскраске, ко-
торая возникает в 70% минимизаций. Интересное наблюдение заключается в
том, что на границах кластеров возникает некоторое нетривиальное смешивание
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а) б)
Рисунок 6.5 –– Типичные вакуумные конфигурации. (а): q = 2; (б): q = 3

а) б)
Рисунок 6.6 –– Типичные вакуумные конфигурации. (а): q = 4; (б): q = 5
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цветов, которое позволяет уменьшить энергию конфигурации по сравнению с иде-
альным гексагональным паттерном. Было установлено, что если взять идеально
правильную конфигурацию с ребром шестигранника l = 0.64, то энергия такой
конфигурации будет больше энергии минимизированной конфигурации, их соот-
ношение будет около 0.86, то есть данный эффект оказывает достаточно сильное
влияние.

Для q = 4 энергия минимизированных конфигураций уже всего около
3% от исходной, но все ещё далека от нуля. По структуре данные конфигура-
ции аналогичны конфигурациям для q = 3 – состоят из кластеров правильной
гексагональной формы (рисунок 6.6а). Они составляют 40% от общего числа кон-
фигураций, остальная часть имеет различные нерегулярности в своей структуре
и бо́льшую энергию. Эффект смешивания цветов на границах кластера игра-
ет ещё более высокую роль, чем в предыдущем случае — отношение энергий
вакуумной конфигурации к энергии идеально правильной конфигурации с опти-
мальным размером ребра шестиугольника l = 0.56 равно 0.7. Если посмотреть
на такие конфигурации невооруженным взглядом, то разницу между ними опре-
делить невозможно, а энергия различается на 30%, что является поразительным
результатом, свидетельствующим о нетривиальной структуре вакуума исследуе-
мой модели. Подводя итог анализу модели для малого количества цветов, можно
отметить, что случай двух цветов не представляет особого интереса, но уже для
трех цветов получены нестандартные структуры вакуумных конфигураций, об-
ладающих все ещё далекой от нуля энергией, что в контексте проблемы НЭХ
позволяет сделать вывод о том, что ее решением будет являться как минимум 5
цветов. Данное число цветов будет рассмотрено ниже.

6.2.2 q ⩾ 5

В данной секции удобнее будет провести анализ результатов в обратном
порядке, поэтому сначала рассмотрим случай q = 7, который является верхней
границей для решения проблемы НЭХ, и как следствие, для дискретной версии
проблемы, которую описывает данная модель, энергия вакуумных конфигураций
должна быть равна нулю. Это отличная проверка модели и алгоритма миними-
зации ее энергии. Решение на рисунке 6.2б удовлетворяет достаточно широкому
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а) б)
Рисунок 6.7 –– Примеры вакуумных конфигураций с E = 0. (а): q = 7; (б): q = 6.

а) б)
Рисунок 6.8 –– Сравнение распределений энергий для (а): шести и семи цветов,
127 конфигураций с наименьшей энергией; (б): пяти и шести цветов, 200 конфи-

гураций.

диапазону длины ребра гексагона : l ∈ ( 1√
7
,12). После минимизации исходных кон-

фигураций со случайной раскраской в 97.5% случаях получились конфигурации
с нулевой энергией. Один из примеров показан на рисунке 6.7а.

При повышении среднего числа соседей в два раза (путем увеличения N ),
нулевая энергия была достигнута в 41% конфигураций. В отличии от q = 3 и
q = 4 случаев, где преобладают «чистые» гексагональные конфигурации, для се-
ми цветов подобной обнаружить не удалось. Тем не менее мы все равно имеем
дело с кластерами правильной шестиугольной формы, но здесь гексагональные
решетки для разных цветов накладываются друг на друга, происходит их сме-
щение относительно друг друга. Это обстоятельство нисколько не противоречит
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конфигурации на рисунке 6.2б, так как нулевой энергии могут соответствовать
конфигурации различной структуры, в том числе и нерегулярной.

Аналогичная структура наблюдается и для q = 6. Конфигурации с нулевой
энергией возникают примерно в 4% случаях. Подавляющее число минимизаций
приводит к околонулевым энергиям. Сравнительная гистограмма распределе-
ний для 6 и 7 цветов представлена на рисунке 6.8а. Пример конфигурации с
нулевой энергией приведен на рисунке 6.7б. Очевидно, что если по аналогии
с семью цветами построить гексагональное замощение плоскости, то энергия
данной конфигурации не будет равна нулю, но поражает то, насколько она отлича-
ется от энергии минимизированных конфигураций. Энергия такой оптимальной
конфигурации с ребром l = 0.55 равна 15 740, что разительно отличается от око-
лонулевых значений вакуумных конфигураций.

Перейдем к описанию результатов для q = 5. Типичная конфигурация
приведена на рисунке 6.6б. Как и в случае q = 4 формируется гексагональный
кластерный паттерн, но представленный только четырьмя цветами, пятый цвет
оказывается частично замещенным и представляет собой вкрапления частиц в
общую регулярную гексагональную структуру. Соответствующие ему кластера
имеют нерегулярную форму, а конкретный цвет может меняться в зависимости
от подобласти. Мы можем наблюдать необычный конфликт цветовой и геомет-
рической симметрией, и вторая преобладает — формируется регулярный паттерн
ценой нарушения цветовой симметрии, так как число частиц с выпадающим цве-
том меньше, чем число частиц других цветов. Энергия таких минимизированных
конфигураций составляет всего 1% от исходной. Тем не менее, как видно из гисто-
граммы на рисунке 6.8б, существует огромный разрыв между распределениями
энергий вакуума для пяти ишести цветов. На основании данных результатов мож-
но сделать вывод о том, что энергия основного состояния для q = 5 не равна нулю.

6.2.3 Стабильность модели при разных параметрах

Как было упомянуто в секции 6.1, для анализа модели было выбрано фикси-
рованное значение среднего числа соседей ⟨n⟩ = 50. В то время как исследование
зависимости поведения модели от вариации ⟨n⟩ не было задачей работы, рассмот-
рим несколько соображений, аргументирующих выбор данного параметра. Если



107

а) б)
Рисунок 6.9 –– Распределения энергий минимизированных конфигураций для раз-

личных пар (N,δ). (а): q = 6; (б): q = 7

задать слишком малое значение ⟨n⟩, то кластеризации не произойдет. С этой сто-
роны выбор ведущего к кластеризации ⟨n⟩ выглядит разумным. И нет никакой
причины ожидать, что с увеличением ⟨n⟩ кластеризация может нарушиться. Ми-
нимумы энергии, достигнутые алгоритмом имитации отжига могут измениться,
но данный вопрос требует отдельного достаточно масштабного исследования, что
выходит за рамки данной работы. Среднее число соседей ⟨n⟩ задается двумя па-
раметрами — числом частиц N и шириной кольца взаимодействия δ. Фиксируя
⟨n⟩, мы определяем обратную пропорциональность между N и δ. Важным явля-
ется вопрос о стабильности модели относительно вариации данных параметров.
На рисунке 6.9 показаны три комбинации N и δ для фиксированного числа со-
седей. Распределения энергий аналогичны для всех случаев — есть некоторые
незначительные различия, но общая тенденция одинакова, что свидетельствует об
устойчивости модели относительно вариации параметров при выбранном сред-
нем числе соседей.

6.2.4 Нарушение цветовой симметрии

Наблюдаемое нарушение цветовой симметрии является следствием от-
сутствия кристаллографической симметрии пятого порядка. Для того, чтобы
получить количественное описание данного явления, было исследовано отноше-
ние числа частиц с наименее представленным цветом Nminc(A) к общему числу
частиц N(A) внутри области A. Зависимость данного отношения, нормализо-
ванного на число цветов q, показана на рисунке 6.10а. Кривые для исходной
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а) б)
Рисунок 6.10 –– Отношение числа частиц наименее представленного цвета к об-

щему числу частиц. (а): 5 цветов; (б): три цвета.

Рисунок 6.11 –– Отношение числа частиц наименее представленного цвета к об-
щему числу частиц для всех цветов. Можно наблюдать три уровня. Две верхние
кривые соответствуют трем и четырем цветам, промежуточные – шести и семи

цветам, а нижняя кривая представляет пять цветов.

случайной и минимизированной конфигураций серьезно отличаются. Что инте-
ресно, даже для относительно больших областей, вторая кривая не приближается
к первой, они идут параллельно. Таким образом эффект представляется фунда-
ментальным и проявляется не локально, а глобально. Для сравнения, на рисунке
6.10б приведена зависимость для трех цветов. В данном случае кривые идут вме-
сте без каких-либо значимых расхождений. Суммарная картина представлена на
рисунке 6.11. Из нее можно сделать вывод о том, что нарушение цветовой сим-
метрии присуще не только пяти цветам, оно возникает и для шести и семи цветов
(и даже для q = 4), но в намного меньшей степени.
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Заключение

В представленной диссертации с помощью методов моделирования на ре-
шетке были исследованы вакуумы калибровочных теорий и основные состояния
спиновых систем при наличии нетривиальной топологии. В качестве калибровоч-
ных теорий были выбраны компактная электродинамика и теория Янга-Миллса
с калибровочной группой SU(3). В обеих теориях нетривиальная топология
вакуума задавалась граничными условиями Казимира, которые заключаются в по-
мещении в вакуум нейтральных идеально проводящих пластин, ограничивающих
одну из размерностей. В случае компактной электродинамики проанализировано,
как такое изменение топологии влияет на поведение топологических дефектов
теории, нуль-размерных монополей. В качестве спиновой модели была рассмот-
рена модель Поттса на случайной решетке, где нетривиальная топология была
введена путем задания нелокального взаимодействия между спинами.

Основные результаты работы заключаются в следующем.
1. Показано, что присутствие параллельных идеально проводящих пластин

приводит к реструктуризации вакуума компактной электродинамики в
3+1 измерениях. Это проявляется в подавлении монопольного кон-
денсата между пластинами, и, как следствие, точка фазового перехода
конфайнмент-деконфайнмент смещается в сторону сильной связи.

2. Обнаружено, что в SU(3) глюодинамике в 3+1 измерениях при наличии
хромометаллических пластин на границе возникает новая квазичастица
с массой mgt = 1.0(1)

√
σ = 0.49(5) ГэВ, что в несколько раз мень-

ше массы основного состояния 0++ глюбола, M0++ = 3.405(21)
√
σ =

1.653(26) ГэВ. Данная квазичастица интерпретирована как непертур-
бативное связанное состояние глюона и его образа противоположного
цвета в хромометаллическом зеркале. В качестве названия нового со-
стояния предложен термин «глютон», по аналогии с поверхностным
экситоном – граничной электрически-нейтральной квазичастицей, воз-
никающей в полупроводниках и диэлектриках вблизи границ.

3. Выдвинуто предположение о наличии аналогичных связанных состо-
яний для тяжелых кварков. В пользу их существования предложено
несколько аргументов. Во-первых, проведен анализ зависимости сво-
бодной энергии тяжелого кварка от расстояния до хромометаллического
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зеркала, результаты которого свидетельствует о притяжении кварка зер-
калом. Во-вторых, выполнено исследование корреляторов петель Поля-
кова для пробных цветных зарядов на различном расстоянии от зеркала,
которое позволило установить механизм возникновения притяжения. Он
заключается в формировании удерживающей струны между кварком и
его образом в зеркале. Для обозначения данного состояния предложен
термин «кваркитон».

4. Показано, что в SU(3) теории петля Полякова в пространстве между
пластинами, расположенными на небольшом расстоянии, принимает ко-
нечные значения. С увеличением расстояния между пластинами она
быстро уменьшается, что указывает на формирование кваркитонов и де-
конфайнмент цвета между близкорасположенными пластинами. Также
показано, что с увеличением расстояния между пластинами свободная
энергия кваркитонов увеличивается, петля Полякова между пластинами
исчезает, что приводит к восстановлению фазы конфайнмента.

5. Проведен анализ основных состояний нелокальной модели Поттса на
случайной решетке, который продемонстрировал, что в основном со-
стоянии системы цвета частиц формируют близкий к правильному гек-
сагональный паттерн с некоторыми флуктуациями и нетривиальным
смешиванием на границах цветовых кластеров.

6. Показано, что с увеличением числа цветов, энергия основного состояния
системы быстро падает. Проведенный анализ распределений энергии
для различного числа цветов показал, что для нулевой энергии вакуума
необходимо как минимум шесть цветов.

7. Обнаружено, что основное состояние модели для пяти цветов характе-
ризуется нарушением цветовой симметрии при сохранении геометри-
ческой. Показано, что четыре цвета образуют структуру из близких к
правильным шестиугольников (как и в случае другого числа цветов), но
пятый цвет оказывается вытесненным – число частиц данного цвета при-
близительно на 20% меньше, чем число частиц других цветов.

С одной стороны, результаты выполненной работы подтверждают выводы,
опубликованные ранее для 2+1 измерений. В (3+1)-компактной электродинамике
между пластинами, как и в (2+1)-теории, наблюдается ослабление удерживаю-
щих свойств вакуума между пластинами. В (3+1)-глюодинамике с калибровочной
группой SU(3), как и в (2+1)-теории с калибровочной группой SU(2), обнару-
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жен новый массовый масштаб, который в несколько раз меньше минимального
массового масштаба теории – массы основного состояния 0++ глюбола. С дру-
гой стороны, в настоящей работе предложена интерпретация массового масштаба
как нового граничного состояния, образованного глюоном со своим образом в
хромометаллическом зеркале. Качественно обоснована возможность существо-
вания аналогичных состояний для кварков вблизи границ. Несомненно, данное
заключение требует дальнейшей проверки. Например, интересным представляет-
ся исследование зависимости профиля струны между кварком и антикварком от
расстояния между ними и расстояния до пластины. Решающим аргументом за или
против новых граничных состояний кварков может быть исследование теории с
фермионными степенями свободы. Использование в данной работе решеточных
методов исследования вакуума с пластинами Казимира открывает возможности
для применения данных методов для изучения более сложных граничных поверх-
ностей, в первую очередь сферических, что очень актуально в контексте модели
мешков для адронов.

Выполненный в работе анализ основных состояний спиновой нелокальной
модели Поттса на случайной решетке продемонстрировал существование нетри-
виальных вакуумных конфигураций у данной модели. В начальном «горячем»
состоянии модель обладает цветовой симметрией, но в процессе достижения ос-
новного состояния к ней добавляется симметрия геометрическая – вакуумные
конфигурации представляют собой кластеризацию спинов в регулярные шести-
угольники, образующие правильный паттерн с флуктуациями на границах. Но
случай пяти цветов стоит особняком – как и для других цветов основное состояние
характеризуется геометрической симметрией, но цветовая нарушается! Примеча-
тельно, что даже в этом случае энергия системы статистичеcки существенно выше
нуля, что позволяет сделать заключение о недостаточности пяти цветов для до-
стижения нулевой энергии основного состояния. Данный вывод предоставляет
сильный аргумент в пользу недостаточности пяти цветов для решения проблемы
Нелсона-Эрдёша-Хадвигера, но для более определенных утверждений необходи-
мо более систематическое исследование, которое несомненно позволит глубже
изучить структуру основных состояний данной спиновой системы.

Таким образом, существование нетривиальной топологии теории приводит
к существенной динамической модификации ее основного состояния. Это проис-
ходит как и в калибровочных теориях поля, так и в родственных им спиновых
системах.
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