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1. Introduction 

Classical field theory with nonlinear field interactions often leads to the presence of solitons.
These are particle-like, extended objects that are remar kab ly stab le under the effects of pertur-
bation or soliton–soliton interactions and lead to a richness of dynamical phenomena. When
the underlying model has in addition nontrivial topology, there exist topological solitons, which
are absolutely stable [ 1–4 ]. 

Among the conceptually and ma thema tically simplest topological solitons are the so-called
kinks . These particle-like objects in one spatial dimension (manifesting as strings and domain
walls in higher dimensions) are described by a single, real, self-interacting scalar field, say φ. A
local, Lorentz-invariant description is afforded via the Lagrangian density 

L = 

1 

2 

∂ μφ∂ μφ − V (φ) , (1) 

where the potential V (φ) encodes the self-interaction. The kinks are present as static solu-
tions for any potential V (φ) that has multiple vacua, i.e. field values φ = v a for which V (v a ) =

 

′ (v a ) = 0 . 
The ma thema tical frame wor k embodied in Eq. ( 1 ) is so simple that one would not expect the

dynamics of kinks to be particularly complicated. Since kinks have been the object of scientific
interest f or man y decades now, one could be tempted to guess that the overall dynamic picture
of how kinks interact with themselves or with the environment is full y ma pped out. Ther efor e,
it is more surprising to learn that the actual state of affairs is still far from ideal. 

Indeed, while the interactions of kinks with other kinks and/or antikinks have been numeri-
cally investigated since the 1970s [ 5–10 ], the quantitati v e and qualitati v e dynamical picture of 
the associated phenomena, such as bouncing, bion formation, the role of radiation, the spec-
tral wall phenomenon, dynamical generation of delocalized modes, etc., has been achie v ed
in both classical and quantum settings (with various degrees of completeness) only recently
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[ 11–26 ] (one can also read about the somewhat intricate history of investigations of kink–
antikink collisions in Refs. [ 27 , 28 ]). 

The source for all this complexity must be somehow intricately encoded into the potential
 (φ) . 
Indeed, the choice of the potential dictates the underlying dynamics with precarious exact-

ness. For instance, the so-called sine-Gordon (sG) model V (φ) = 2 sin 

2 (φ/ 2) is completely in-
tegrable, and the kink–antikink ( K K̄ ) and kink–kink (K K ) solutions (and many others) are
known in a closed form. The collisions of kinks are completely elastic, exemplifying perhaps
the simplest behavior across the spectrum of all models. 

On the other hand, K K̄ collisions in the φ4 (or double-well) model with the potential V (φ) =(
1 − φ2 

)2 
/ 2 , which is regarded as a canonical representati v e, are v ery rich in dynamical aspects,

such as the fractal structure of bouncing windows, bion chimneys, etc. Moreover, these features
are uni v ersal, in that they ar e pr esent for generic choices of potentials unless special cir cum-
stances pre v ent them from occurring, such as integrability or the absence of resonant modes
tha t facilita te the energy transfer mechanism. 

This is exemplified in the so-called φ6 model with V (φ) = φ2 
(
1 − φ2 

)2 
/ 2 in which the K K̄ 

collisions are devoid of this fractal structure, while the collisions of antikinks with kinks
( K̄ K ) produce it [ 14 , 15 ]. Multiple other potentials have been explored, such as the φ8 poten-
tial V (φ) = φ4 

(
1 − φ2 

)2 
/ 2 , in which kinks have long, polynomial tails [ 29–34 ], and the para-

metrically dependent Christ–Lee potential, i.e. V (φ) = 

(
ε 2 + φ2 

)(
1 − φ2 

)2 
/ (2 + 2 ε 2 ) , which

smoothly interpolates between the φ4 and φ6 potentials [ 17 ], to name just two. 

1.1. The shape of a kink 

The shape of a static kink is in one-to-one correspondence with the shape of the potential be-
tween the minima that the kink interpolates. This is most easily seen from the static equation of 
motion 

φ′′ (x ) = V 

′ (φ) , (2) 

which is equivalent to an equation of motion for a particle under the influence of the upside-
down potential −V (φ) . The “time” is the x -coordinate and the particle starts at one of the
maxima, corresponding to the “left” vacuum, v L 

, at x = −∞ and rolls down towards the other
maximum, v R 

, which is reached at x = + ∞ [ 2 ]. 
For a generic potential with two vacua, and no other local minima, such as the one depicted

in Fig. 1 , we can talk about three distinct regions with qualitati v ely different impacts on the
shape of the kink. 

The regions near vacua encode the tails of the kink. Indeed, for nonzero curvature,
i.e. V 

′′ (v L , R 

) ≡ m 

2 
L , R 

> 0 , the kink approaches vacua exponentially fast as | φ − v L , R 

| ∼
exp 

(±m L , R 

x 

)
. On the other hand, if m = 0 , the tails are polynomial [ 29 , 33 ]. 

The region near the maximum controls the shape of the very center of the kink, which we
shall call its core . Denoting α2 ≡ −V 

′′ (φmax ) , the kink’s profile at its core (where also the most
energy is concentrated and is identified with the kink’s position) will be a pproximatel y gi v en
by a combination of sin (αx ) and cos (αx ) . On the other hand, if α = 0 , as is the case for the
φ8 potential mentioned above, the core’s profile can be approximated by Jacobi functions, i.e.
solutions to δφ′′ = 2 δφ3 . 
2/21 
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Fig. 1. A picto gra ph of how the sha pe of a kink, interpolating between the v L 

and v R 

vacua, is affected 

by different parts of the potential. 
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Lastly, the regions near inflection points dictate what we subsume into the notion of the kink’s
skin . Around the skin, the kink behaves as a quadratic function of x . 1 

We can be mor e pr ecise and place the above notions onto firm ground by defining the tails,
core, and skin of a kink in a perturbati v e sense. 

Expanding the field around the vacuum, i.e. φ = v + δφ, and putting it into the equation of 
motion, we get 

δφ′′ = m 

2 δφ + 

1 

2 

V 

′′′ (v ) δφ2 + . . . (3) 

At the leading or der, the abov e equation is solved as δφ ∼ A exp 

(±mx 

)
, where the sign depends

on the boundary conditions. We can estima te a t which value of δφ the leading-order approxi-
mation breaks down by comparing the size of the next term on the right-hand side. Indeed, the
value of δφ for which both terms are equal gi v es us the rough extent of the tail region, i.e. 

L tail ≡ 2 m 

2 ∣∣V 

′′′ (v ) 
∣∣ . (4) 

L tail corresponds to the horizontal extent of either of the red regions on Fig. 1 . Note that the
above formula is only valid if V 

′′′ (v ) � = 0 . If the thir d deri vati v e vanishes, comparing the leading

term with the thir d-or der term instead gi v es us L tail = 

√ 

6 m 

2 / 

∣∣V 

(4) (v ) 
∣∣. Similar consideration

must be taken when dealing with potentials with vanishing m . 
The size of the core and skin regions of the potential can be estimated using the same rea-

soning through expansion around the maximum or an inflection point, respecti v ely. Denot-
ing α2 ≡ −V 

′′ (φmax ) and η ≡ V 

′ (φinf ) , the corresponding sizes of these regions read (assuming
nonvanishing third derivatives) 

L core ≡ 2 α2 ∣∣V 

′′′ (φmax ) 
∣∣ , L skin ≡

√ 

2 | η| ∣∣V 

′′′ (φinf ) 
∣∣ . (5) 

The numbers L tail , L core , and L skin should be used as rough gauges of how much the tails , core ,
and skin dominate the kink’s shape. Of course, these regions can have overlaps and typically
do not add up to the total value of a field span for a static (anti)kink, i.e. | v R 

− v L 

| . 

1 This is also true around a generic point where the first deri vati v e is nonvanishing. 

3/21 
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For illustration, the corresponding values for a φ4 potential are L 

φ4 

tail = 2 / 3 , L 

φ4 

core = 1 , and

L 

φ4 

skin = 2 / 9 , while the same for the sG model read L 

sG 

tail = 

√ 

6 , L 

sG 

core = 

√ 

6 , and L 

sG 

skin = 

√ 

2 . The
φ6 potential, having three minima with the middle one of dif ferent curva ture, thus has two
different tails and skin regions, depending on which vacuum and which inflection point is con-
sidered. 

Let us also note that there can be additional local minima in between the true vacua that
the kink is interpola ting. In tha t case, it is reasonable to dub the corresponding region of the
kink near a local minimum its pseudocore . The reason for this nomenclature—as opposed to
calling it a pseudotail—is simply that a pseudocor e r egion affects the kink’s center and it would
be confusing to associate it with the semi-infinitely extended tails. In the double sine-Gordon
model (dsG), for instance, the kink solution is a pproximatel y equal to two sG kinks separated
by a fixed distance [ 35 ]. In our picture, each of these sG kinks will have its core and skin regions,
while the region between them corresponds to a pseudocore. 

1.2. The Frankensteinian potentials 
So far, we have discussed the structural aspects of a static kink. The issue now is whether these
notions have any relevance for the dynamics and, if so, whether their contributions are approx-
imately independent. 

Intuiti v ely, the answer should be a cautious “yes”. It is well known, for instance, that kink
tails are responsible for attractive interaction between well-separated kink–antikink ( K K̄ ) pairs
and are therefore key ingredients in the initial (and final) stages of the K K̄ collisions [ 1 ]. On the
other hand, it is also intuiti v ely clear that they are of little consequence when the kinks are on
top of each other, where their cores play a key role. 2 

The role of skin, howe v er, if any, is har d to appreciate intuiti v ely. Howe v er, the skin region of 
the potential (i.e. its inflection point) is deeply connected with the longevity or even existence of 
oscillons [ 36 ], which are important, if not crucial, for the understanding of the K K̄ scattering
[ 35 , 37 ]. 

These observations may help us to appreciate the underlying reason for the complexity of 
K K̄ scattering—the fact that it may be composed of multiple structural pieces that contribute
differently and simultaneously to its dynamics. In other words, it could be the case that K K̄ 

scattering is a tapestry of interw o ven but otherwise only loosely dependent contributing phe-
nomena. 

To facilitate this intuition, it should be worthwhile to investigate the dynamics of kinks in
potentials lacking some or most of these structural pieces. To that end, let us briefly discuss
a particular class of potentials that—for lack of a better term—we call the Frankensteinian
potentials. As the name suggests, they are composed of pieces of functions of the field that are
continuousl y and/or differentiabl y sewn to gether at chosen field values. For our purposes, we
see their primary utility in the fact that, inside each patch, a gi v en Frankensteinian potential
could be deficient in one or two structural regions. This makes them an ideal tool for exploring
the relevance of these regions on the dynamics. 
2 Assuming, of course, that kinks retain their individuality during the collisions and it is hence still 
reasonable to talk about their cores. In this regard, the successes of collective coordinate models based 

on separated kink ansatzes in reproducing qualitati v e features of K K̄ scattering indicate that this is not 
an unreasonable assumption. 

4/21 
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Fig. 2. The “simplest”kinks and their potentials. The vacua are placed at ±1 and kinks ar e center ed at x = 

0 for simplicity. The last row shows the effecti v e potential that enters the Schrödinger-like equation for 
the determination of normal modes of a gi v en kink. 
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In particular, we will focus on a subset of Frankensteinian potentials that are constructed
out of linear or quadratic functions. Within these pieces, the leading-order approximations pre-
sented above for either a tail, core, or skin hold exactl y. Thusl y constructed potentials, ther efor e,
possess the simplest kink solutions as far as their static characteristics are concerned. 

1.3. Single-component kinks 
To provide some examples of Frankensteinian potentials, let us consider those that support
static solutions of the greatest structural simplicity, namely kinks made of a single type of 
component. In Fig. 2 , we present basic characteristics for these potentials and their kinks. We
use the labels T T , C, and S S that simpl y tall y the structural pieces of the kinks as seen from
left to right. 

The potential labeled by T T (“tail–tail”) consists of two quadratic wells sewn together at the
center φ = 0 . For simplicity, both wells have the same curvature m 

2 , and the respecti v e vacua
are placed at ±1 , which is always possible to enforce via rescaling of the field. In fact, it is also
possible to set m = 1 by rescaling the coordinates. 

Consequently, the T T kink is made of two exponential tails se wn differentiab l y to gether at
the center of the kink where φ = 0 . With the energy density gi v en as 

E T T = m 

2 e −2 m | x | , (6) 

the mass of the T T kink works out to be equal to the perturbati v e mass, i.e. M T T ≡∞ ∫ 
∞ 

E T T dx = m . In turn, the second moment of energy density reads 
∞ ∫ 

−∞ 

x 

2 E T T dx = 1 / (2 m ) ,

which provides a simple measure of how the energy is concentrated around the kink’s center. 
This can be equi valently e xpressed using the so-called Derrick’s frequency, which is defined

as the ratio of the mass and the second moment and for a T T kink reads ω 

2 
T T = 2 m 

2 . 
Derrick’s frequency is associated with Derrick’s mode of the kink, which is deri v ed by ob-

serving how the energy of a static kink changes under an infinitesimal scaling of the spatial
5/21 
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coor dinate. Derrick’s mode, howe v er, is not a normal mode, but it has been recognized to be
important for restoring the Lorentz invariance of collecti v e coor dinate models [ 13 ]. That being
said, the T T kink has a Derrick’s frequency well above the mass threshold and hence should
have no impact on the dynamics. 

The normal modes of a T T kink can also be easily established by solving the Schrödinger-
like equation with the effecti v e potential gi v en by U (x ) ≡ V 

′′ (φT T ) . As we see in the last row
of Fig. 2 , the effecti v e potential for a T T kink consists of a single δ well with strength −m 

2 

plus a constant m 

2 . As is well known, a Dirac δ-well potential supports only a single bound
mode, which is the zero mode associated with uniform translations. Hence, no massi v e bound
modes exist for a T T kink. Note that the effecti v e potential U (x ) is the only quantity in Fig. 2
that is sensiti v e to the regions of the potential outside the vacua, i.e. | φ| > 1 . The kink solution
itself and its static characteristics gi v en in the fourth row of Fig. 2 would remain unaltered if 
the potential is modified in these outer regions. 

Let us now briefly turn our attention to the remaining two kinks, which are made of a
core ( C) and two skins (S S ) . These represent the simplest examples of compact kinks whose
spatial extents are finite. This is due to the nonanalytic minima, which effecti v ely means an
infinite perturbati v e mass, rendering the tails nonexistent. We will not comment on the dy-
namics of these kinks in this paper outside what is gi v en in Fig. 2 . The reason for this is
that these compact kinks have been proposed and investigated before. In fact, the origin of 
compact solitons can be traced back to the 1990s, when they were introduced in the con-
text of the modified Korteweg–de Vries equa tion [ 38 ], investiga tion of which continues to this
day [ 39 ]. 

The compact solitons in the relativistic scalar field theory were first explored in the early 2000s
in Ref. [ 40 ] and later in the context of the so-called V -shaped potentials [ 41 ], the most famous
of which is the so-called signum-Gordon potential [ 42 ]. The signum-Gordon model is probably
the simplest Frankensteinian model consisting only of two linear functions sewn at the middle
forming a V -shaped potential well, which supports exactly soluble compact oscillons [ 43 , 44 ].
Furthermore, the compact kinks were introduced as a limit of certain mechanical linear systems
with chained pendula in Refs. [ 45 , 46 ]. 

The Frankensteinian potential that was proposed for studying the interaction between com- 
pact kinks and oscillons [ 47 ] and the scattering of compact kinks themselves [ 48 ] was a periodic
version of the potential C in Fig. 2 . As shown in Ref. [ 48 ], collisions of compact K K̄ pairs lead to
long-living oscillating bound states or the re-emergence of the K K̄ pair with an accompanying
“shockwave” tha t disintegra tes into a cascade of compact oscillons. Curiously, the characteris-
tic kink–antikink bouncing has not been observed. This is , perhaps , because the potential used
in Ref. [ 48 ] was a periodic piecewise quadratic function that lacked any other nonlinearities
besides the nonanalytic sewing at minima. 

As far as we ar e awar e, no dedicated study has been published on compact kinks made of 
skins. 

A different kind of Frankensteinian potential was also presented in Ref. [ 49 ], a piecewise
quadratic potential resembling the φ4 potential with the sewing points around the region con-
trolling the skin of the kink. As a result, the kink solution possesses both exponentially damp-
ened tails and a cor e r egion, but no skin. In our notation, such a solution is a symmetric T CT 

kink. These kinks feature all characteristics of generic K K̄ scattering: bouncing, bion forma-
tion, and radiation production. 
6/21 
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Let us also mention that there have been few works that investigate potentials near Franken-
steinian (or otherwise singular) limits that support compact kinks [ 50 , 51 ]. 

The central task of this paper is to both continue the investigation of the Frankensteinian
potentials and to address a specific question; namely, how does the core region affect the
outcomes of K K̄ scattering? In particular, we will focus on the presence or absence of char-
acteristic dynamical features due to the resonant-energy transfer mechanism, namely the
bouncing. 

In Section 2 , we begin addressing this question by briefly discussing K K̄ scattering in models
of increasing structural complexity. We will first show that scattering of T T kinks is particularly
simple: the only outcome is a total annihilation into massi v e wav es. Then we show that this
r esult is unalter ed by adding nonlinearities inside the tail region, without introducing inflection
points. It is only in the thir d e xample, with a potential possessing inflection points and ther efor e
skin region, that we see oscillons together with critical velocity below one. 

In Section 3 we change tactics and present two parametric families of potentials interpolating
between φ4 and particular coreless potentials. Here we study the disappearance of resonant
structures in K K̄ collisions as the potential becomes more and more singular at its center. 

In Section 4 we discuss our results. 

2. Coreless kinks: three examples 
In this section, we shall consider thr ee examples of cor eless potentials. As we will see, for the
first two, the absence of both core and skin regions seems to render the K K̄ scattering entirely
trivial: the only result of the collision is annihilation into massive waves. Only in the third ex-
ample, where we consider a potential with inflection point = nonzero skin region, do we obtain
oscillons; howe v er, the bouncing is still absent. 

2.1. Scattering of T T kinks 
Let us comment on K K̄ scattering of the kinks made from only exponential tails. As already
described, the potential is constructed by gluing together two quadratic wells of the same cur-
va ture a t the origin. We can express such a potential as 

V T T (φ) = 

1 
2 m 

2 
(
1 − | φ| )2 

. (7) 

Compared with the φ4 potential, the TT potential lacks an anal ytic maxim um and inflection
points and has no nonlinearities besides the sewing point at φ = 0 . This makes the dynamics
of TT kinks predictably featureless, as we shall see. 

The kink solution can be obtained by sewing together two exponentials. Up to an arbitrary
shift along the x -axis, the solution reads: 

φT T = sign (x ) 
(

1 − e −m | x | 
)

, (8) 

where sign (x ) is the sign function. Both the potential ( 7 ) and the kink solution are illustrated
in Fig. 3 . 

It is easy to verify that φT T solves the second-order equations of motion in a weak sense.
Ther e ar e no δ-function contrib utions since not only the field itself b ut also its first deri vati v e
is continuous. Howe v er, there is a jump singularity for the second deri vati v e. 

As discussed in the previous section, there are no massi v e normal modes and Derrick’s fre-
quency is above the mass threshold, i.e. ω 

2 
D 

= 2 m 

2 > m 

2 . It is thus not surprising that collisions
of a TT kink with an antikink are quite boring. Howe v er, this featurelessness is of a differ-
7/21 
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Fig. 3. An example of a piecewise quadratic potential with the φT T kink solution compared with the φ4 

model. 
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ent kind than, say, in the sG model, where K K̄ pairs collide elastically and do not annihilate
each other due to the under lying integr ability. In contr ast, T T kinks always annihilate each
other. 

It is easy to understand why. When the K K̄ pair is sufficiently close to each other, the whole
field becomes localized entirely within the left quadratic well. From that point on, the dynamics
is equivalent to a time evolution of some initial data via the Klein–Gordon equation with the
mass m . As is well known, this results in the disintegration of the initial shape into a train of 
massi v e wav es. 

As a check of the above intuition, we plot a “map” of K K̄ scattering in Fig. 4 , where we show
the dependence of the central value of the field on time, i.e. φ(0 , t ) , for the whole range of initial
velocities of the K K̄ pair. 

2.2. Scattering of kinks in piecewise quartic wells 
The triviality of scattering of T T kinks can be blamed on the linearity of the respecti v e equa-
tion of motion in each half-plane of the target space. Ther efor e, it is unclear whether this dull
result has anything to do with the absence of core and skin region in the V T T (φ) potential or,
rather, whether it is an artifact of its piecewise integrability. For this reason, in this subsection,
we will investigate a potential that is nonlinear in each potential well. This is achie v ed by adding
8/21 
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Fig. 4. A plot of values of φ(0 , t ) as dependent on the initial velocity v of the K K̄ pair. We see that, for 
any v , the initially separated pair (blue color indicating φ ∼ +1 vacuum at the center before the collision) 
always disintegrates into massive waves around the φ ∼ −1 vacuum (the yellow colors). Here, m = 2 . 
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a quartic term, i.e. 

V T T λ(φ) ≡ 1 

2 

m 

2 (1 − | φ| )2 + 

λ

12 

(
1 − | φ| )4 

, (9) 

where λ > 0 is an arbitrary positi v e constant. This potential leads to an equation of motion
that is neither integrable nor linear in the respecti v e halv es of the tar get space. Ho we v er, it still
lacks inflection points, and thus the kink solution, i.e. 

φT T λ = sign (x ) 
(

1 − m 

√ 

6 /λ

sinh 

(
m | x | + sinh 

−1 (m 

√ 

6 /λ) 
)) , (10) 

has neither a core nor a skin, but possesses nonlinear tails. 
Notice that, in the limit λ → 0 , the solution becomes sign (x ) 

(
1 − e −m | x | ), which is nothing

but a T T kink. We display both the potential and its kink solution in Fig. 5 . 
The Bogomol’nyi–Prasad–Sommerfield (BPS) mass [ 52 , 53 ] of the kink reads 

M T T λ = 

4 m 

3 

λ

((
1 + 

λ

6 m 

2 

)3 / 2 
− 1 

)
, (11) 

which is an increasing function of λ. Derrick’s frequency can also be shown to be an increasing
function of λ. Hence, it alwa ys sta ys above the perturbative threshold for all λ > 0 . We also did
not find any massi v e modes. Indeed, a quick glance at the effecti v e potential V 

′′ (φT T λ) re v eals
that the extra term acts as a potential barrier rather than a well; hence there is no hope for any
bound mode besides the zero mode that is there due to the delta-peak potential well at x = 0 . 

Gi v en that there are no modes that could facilitate resonant-energy transfer, we expect that
the dynamics of K K̄ scattering is equally trivial as for T T kinks. Indeed, this is what we found.
We show our result in Fig. 6 . 

2.3. Scattering of kinks in the log-corrected Klein–Gordon model 
Lastly, let us consider a coreless potential, which does have inflection points, namely the Klein–
Gordon model with a logarithmic “correction”, i.e. 

V KG+log (φ) = 

1 

4 

m 

2 
(

1 − φ2 + φ2 log (φ2 ) 
)

. (12) 

We display it in Fig. 7 . 
This potential has a degenerate minimum at φ = ±1 with V 

′′ (±1) = m 

2 . Note that we can fix
m 

2 to any value by rescaling the coordinates. As was the case for the previous two potentials,
the maximum at φ = 0 is nonanalytic since the second deri vati v e at φ = 0 is undefined (it goes
to −∞ ). This makes the Taylor expansion around the origin impossible, rendering V KG+log (φ)
coreless. Howe v er, unlike for both V T T (φ) and V T T λ(φ) , ther e ar e inflection points loca ted a t
φinf = ±1 /e ; hence it makes sense to talk about the skin. 
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Fig. 5. The potential ( 9 ) and its kink solution compared with the λ = 0 case. Here m = 2 and λ = 6 . 

Fig. 6. The plot of values of φ(0 , t ) as dependent on the initial velocity v of the K K̄ pair in the model 
with an additional quartic term. 
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The kink solution cannot be obtained anal yticall y and we showcase a numerical solution in
Fig. 7 . The BPS mass reads 

M KG+log = 

m √ 

2 

1 ∫ 

−1 

√ 

η2 log η2 + 1 − η2 dη ≈ 0 . 84 × m . (13) 

Derrick’s frequency is numerically determined to be ω 

2 
D 

≈ 1 . 34 m 

2 , so it is above the perturba-
ti v e threshold. Similarly, we have not f ound an y massi v e mode. Gi v en that there are no bound
modes, we could expect the scattering of K K̄ pairs to be still completely sterile as in the previous
two models, but this expectation would be incorrect. 
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Fig. 7. The potential ( 12 ) and its kink solution compared with the φ4 model. Here m = 2 . 
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In fact, compared with V T T (φ) and V T T λ(φ) , the K K̄ scattering in the V KG+log potential ex-
hibits two new features. The first one is the appearance of a critical velocity, v crit ≈ 0 . 79 , above
which the scattering is quasielastic, and second, ther e ar e certain velocities below v crit for which
oscillons are produced. This can be seen in Fig. 8 . 3 

The results of this section show that, if a potential lacks both core and skin regions, it implies
a lack of any interesting dynamics in K K̄ collisions. This was true for both V T T (φ) and V T T λ(φ) .
When we considered a coreless potential with inflection points, i.e. V KG+log (φ) , we immediately
got mor e inter esting d ynamics. Of course, we cannot prove tha t this must be the case in general,
but we take these observations as confirmation that the core and skin regions grea tly af fect the
outcomes of K K̄ collisions. 

3. Disappearance of bouncing windows and nonanalyticity of the maximum 

In this section, we investigate K K̄ scattering in two parametric families of models that start
from the φ4 potential and de v elop a cusp singularity around the origin ( V (φ) ∼ | φ| ) as ε goes
from 1 to 0. In this way, we explore how the rate of divergence of V 

′′ (φ) at φ → 0 affects the
3 This potential has been studied in greater depth in Ref. [ 54 ]. The findings presented in this subsection 

have been obtained independently and agree with those presented in Ref. [ 54 ]. 
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Fig. 8. The evolution of the central value of the field φ(0 , t ) as a function of the initial velocity of the 
K K̄ pair. In the insets, we see two particular choices of v that showcase the formation of an oscillon and 

a quasielastic collision. Here m = 2 . 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/11/113A01/7823308 by guest on 07 M

arch 2025
bouncing windows. As we shall see, the bouncing windows disappear in an almost linear fashion
well before the point ε = 0 is reached. 

3.1. Tw o f amilies of cor eless potentials 
We define the first family in such a way that it begins as a φ4 potential at ε = 1 and deforms
into the V T T potential ( 7 ) as ε → 0 , i.e. 

V 

(1) 
ε ( φ) = 

2 

( 1 + ε) 2 

(
1 − | φ| 1+ ε 

)2 
. (14) 

We display V ε in Fig. 9 (top). 
The second family aims to deform the φ4 model only around the maximum and keep the

quartic term for all ε ≤ 1 : 

V 

(2) 
ε (φ) = 

1 

1 + ε 
− 4 | φ| 1+ ε 

(3 − ε)(1 + ε) 
+ 

φ4 

3 − ε 
. (15) 

We display V ε in Fig. 9 (bottom). 
Note that both families are coreless in the entire range ε ∈ [0 , 1) as V 

′′ (0) is undefined. 
As ε → 0 , the potential V 

(1) 
ε loses its skin regions. Indeed, the positions of the inflection

points, gi v en as | φ(1) 
inf | = ( ε/ ( 1 + 2 ε)) 1 / (1+ ε) , gradually decrease from φ4 values ±1 / 

√ 

3 to zero
as ε → 0 , so that they merge with the maximum. Howe v er, in the V 

(2) 
ε family, the inflection

points stay separate from the central maximum for all ε. Indeed, | φ(2) 
inf | = 

(
1 / 3 

)1 / (3 −ε) 
and the

ε = 0 positions are ±1 / 

3 
√ 

3 . 
For both V 

(1) and V 

(2) the curvatures of the vacua remain constant, i.e. m 

2 = 4 . 
ε ε 
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Fig. 9. Two families of potentials that start as the φ4 model (thick black line) and gradually de v elop a 

cusp singularity at the central hill as ε → 0 . 
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For the first family, the kink solution can be gi v en implicitly as 

φ 2 F 1 

(
1 1 / (1 + ε) 

(2 + ε) / (1 + ε) 

∣∣∣∣ | φ| 1+ ε 

)
= 

2 x 

1 + ε 
, (16) 

where 2 F 1 is the hypergeometric function. For the second family, the BPS equation can be solved
onl y numericall y. Howe v er, for both families, the shapes of kinks remain quite close to the φ4 

kink, i.e. tanh (x ) , as seen from Fig. 10 . As expected, the absolute deviation is smaller for V 

(2) 
ε . 

The BPS mass of the first family can be obtained anal yticall y as M 

(1) 
K 

= 4 / (2 + ε) , while for

the second family it is known only implicitly through the integral 2 

∫ 1 
0 dφ

√ 

2 V 

(2) 
ε . The frequen-

cies of Derrick’s modes must be obtained numerically for both families. We display both these
quantities in Fig. 11 . 

An interesting question is: what happens to the structure of normal modes as ε → 0 ? In
particular, we are interested in the change of the sole bound mode of the φ4 kink with the
frequency ω = 

√ 

3 . In Fig. 12 we see that, with decreasing ε, the frequency of this mode gradu-
ally increases and merges with the continuum around the value ε threshold ≈ 0 . 365 . On the other
hand, for the second family, the massi v e mode ne v er merges with the continuum. 
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Fig. 10. Absolute differences between the shapes of deformed kinks and the φ4 kink for various values 
of ε for both families gi v en in Eqs. ( 14 )–( 15 ). 

Fig. 11. The BPS masses and Derrick’s frequencies for families as functions of ε. 
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Fig. 12. Dependence of normal modes on ε for families V 

(1 , 2) 
ε . For V 

(1) 
ε , the massi v e mode crosses the 

continuum threshold around ε threshold = 0 . 365 . 
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3.2. Bouncing windows 
Gi v en how we set up our models, it is expected that all dynamical features connected with
resonant-energy transfer disappear for the first family V 

(1) 
ε as ε → 0 . The only question is how

fast. 
We explore this issue by performing numerical analysis of K K̄ collisions (see the Appendix

for details of our numerical method) for various values of ε. The main result is displayed in
Fig. 16 (left column). Surprisingly, the bouncing windows disappear well before ε threshold where
the massi v e mode crosses into the continuum. In fact, the actual value ε ≈ 0 . 7 coincides almost
perfectly with the merging of Derrick’s frequency into the continuum (see Fig. 11 ). This is
surprising, as it is usually the massi v e mode and not Derrick’s mode that is linked with the
presence of the bouncing windows. 

This observation is r einfor ced by very similar results seen for the second family (Fig. 16 right
column). There we see a more gradual closing of the bouncing windows, but they too disappear
in spite of the fact that the massi v e mode is present for all ε < 1 . Again, the threshold below
which no bouncing windows are observed, i.e. ε ≈ 0 . 4 , is quite close to the point of merging of 
Derrick’s mode into the continuum ε ≈ 0 . 37 (see Fig. 11 ). 
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Fig. 13. Closing of two-bounce windows for both families. The numbers r epr esent approximate values 
of ε at which that particular window closes, gi v en our numerical accuracy. 

Fig. 14. Detail of the closing of two-bounce , three-bounce , and four-bounce windows for both families. 
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Fig. 15. Dependence of critical velocities on ε for families V 

(1 , 2) 
ε . For V 

(1) 
ε , the critical velocity crosses 

the speed of light around ε ≈ 0 . 215 . 
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In Fig. 13 , we display the range of velocities at which two-bounce windows are found for
both families of potentials. There we see that—perhaps contrary to intuition—the windows
close starting with the largest ones from left to right. This means, for instance, that there exist
ranges of ε for which the two-bounce windows only contain no less than n internal oscillations
of the field, with n = 2 , 3 , . . . . 

In Fig. 14 , we display a similar picture with added three-bounce and four-bounce windows.
The ε dependence of these windows closely follows the trend set by the two-bounce windows. 

Let us also comment on the critical velocity, whose dependence on ε we display in Fig. 15 .
There we see a nearly linear dependence on ε that is very similar to the dependence of Derrick’s
frequency in Fig. 11 (bottom). 

4. Summary and outlook 

In this paper, we have introduced the notions of a core , tails , and skin of a kink: approximate
regions of a generic two-vacuum potential, where the solutions to the leading-order Taylor-
expanded equation of motion around the central maximum, minima, and inflection points,
respecti v ely, hold. Further, we have introduced a class of potentials, which we call Franken-
steinian, as ideal laboratories for exploring the significance of these structural pieces of a kink
on the dynamics. In particular, in this paper, we were concerned with the presence or absence
of bouncing in K K̄ scattering. 

In Section 2 , we have shown three concrete examples of coreless potentials of increasing com-
plexity and demonstrated a lack of bouncing in all of them. We pointed out that the absence
of both core and skin regions results in trivial K K̄ scattering outcomes, namely complete an-
nihilation of the pair. Only when the potential had skin regions did we see oscillons and the
appearance of critical velocity. 

In Section 3 , we explored the impact of nonanalyticity at the maximum for the bouncing
phenomenon by considering two parametric families of potentials that ar e incr easingly mor e
singular at φ = 0 as ε → 0 . 

The first famil y, V 

(1) 
ε , a pproaches the harmonic double-well TT potential ( 7 ) as ε → 0 and,

ther efor e, departs the most from the canonical φ4 model. Indeed, as ε → 0 , the scattering win-
dows ra pidl y close, the critical velocity increases almost linearl y, and all r esonant featur es dis-
appear well before ε = 0 . 
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Family #1 Family #2

V(ϕ) = 1
2

(1 − ϕ2)2

Fig. 16. Gr adual disappear ance of r esonant featur es in K K̄ collisions for V 

(1) 
ε and V 

(2) 
ε as ε is lowered 

from the φ4 model ( ε = 1 . 0 ). 

18/21 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/11/113A01/7823308 by guest on 07 M

arch 2025



PTEP 2024 , 113A01 O. N. Karpíšek et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/11/113A01/7823308 by guest on 07 M

arch 2025
Perha ps surprisingl y, the second famil y, w hich was designed to stay quite close to the φ4 model
for the entire range of ε, showed very similar results. The most visible difference compared with
the first family is that the critical velocity remains below one and, as Fig. 16 indicates, some
oscillons are formed as the outcome of the collision e v en for v ery small ε. In that regard, the
ε → 0 limit is qualitati v ely similar to the V KG+log potential discussed in Section 2 . 

Perha ps most surprisingl y, in both families, we have seen that the instance of ε when Der-
rick’s frequency merges with the continuum (see Fig. 11 ) is a far superior predictor of when the
bouncing windows disappear compared with the massi v e mode. This is certainly unexpected,
but let us speculate on why this could be the case. 

As ε → 0 , the range of initial velocities containing bouncing windows gets quickly shifted
towar ds higher, relati vistic values. It is known that Derrick’s mode plays a key role in relativistic
dynamics; hence it is also important here. To test this hypothesis, it would be of interest to find
a family of models for which the critical velocity remains small for the entire range of the
deformation parameter. 

Our results suggest that the core region of the potential plays a central (pun intended) role in
the bouncing phenomenon in K K̄ scattering. Of course, it is hard to quantify this statement,
and, at this point, we do not have sufficient knowledge to turn the observations of this paper
into a predicti v e heuristic. Ne v ertheless, we feel that the presented results gi v e credence to the
notion that core , tails , and skins , as defined above , are of some importance to the dynamical
phenomena and that they merit further investigation. 

In particular, we plan to present a detailed investigation of lifetimes and other characteristics
of oscillons in a separa te publica tion. We also plan to investigate further examples of Franken-
steinian potentials and, in particular, determine the role of the skin in the dynamics of kinks. 
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Appendix. Comments on the numerical method 

All numerical calculations were performed in the programming language Julia 1.10.3 using
the library Dif ferentialEqua tions.jl. We e volv ed the second-or der equations of motion via the
Bogacki–Shampine 5/4 Runge–Kutta method (BS5()) in the time domain, while the spatial do-
main was discretized (typically into ∼6000 segments), approximating the second deri vati v e us-
ing the central finite difference of the third order. 

We also exploited the reflection symmetry through the center of collision at x = 0 , so that
the calculations were performed only in the half-interval x ∈ [0 , x end ] . For the last 10% of the
length of the interval, we introduced an absorbing layer in which an additional damping term
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is included in the equation of motion, i.e. 

∂ 2 t φ = ∂ 2 x φ − V 

′ (φ) − αD 

∂ t φ , 

where the damping value αD 

was chosen in the range of values αD 

∈ [0 . 2 , 0 . 4] depending on
the complexity of the numerical calculation. This approach allows us to use a smaller spatial
interval x ∈ [0 , 25] without fear of reflections from the end of the interval. 
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