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We explore the relevance of the central hill for a symmetric double-well potential and its
impact on the scattering of kinks in a scalar field theory in (141) dimensions. This region
controls the inner core structure of the kink. We study how the disappearance of analyticity
in this region of the potential affects the resonant features in KK scattering.

Subject Index A11

1. Introduction

Classical field theory with nonlinear field interactions often leads to the presence of solitons.
These are particle-like, extended objects that are remarkably stable under the effects of pertur-
bation or soliton—soliton interactions and lead to a richness of dynamical phenomena. When
the underlying model has in addition nontrivial topology, there exist topological solitons, which
are absolutely stable [1-4].

Among the conceptually and mathematically simplest topological solitons are the so-called
kinks. These particle-like objects in one spatial dimension (manifesting as strings and domain
walls in higher dimensions) are described by a single, real, self-interacting scalar field, say ¢. A
local, Lorentz-invariant description is afforded via the Lagrangian density

1
L= 20,00"0 = V(®), 6]

where the potential V' (¢) encodes the self-interaction. The kinks are present as static solu-
tions for any potential V' (¢) that has multiple vacua, i.e. field values ¢ = v, for which V' (v,) =
V'(vy) = 0.

The mathematical framework embodied in Eq. (1) is so simple that one would not expect the
dynamics of kinks to be particularly complicated. Since kinks have been the object of scientific
interest for many decades now, one could be tempted to guess that the overall dynamic picture
of how kinks interact with themselves or with the environment is fully mapped out. Therefore,
it is more surprising to learn that the actual state of affairs is still far from ideal.

Indeed, while the interactions of kinks with other kinks and/or antikinks have been numeri-
cally investigated since the 1970s [5-10], the quantitative and qualitative dynamical picture of
the associated phenomena, such as bouncing, bion formation, the role of radiation, the spec-
tral wall phenomenon, dynamical generation of delocalized modes, etc., has been achieved
in both classical and quantum settings (with various degrees of completeness) only recently
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[11-26] (one can also read about the somewhat intricate history of investigations of kink—
antikink collisions in Refs. [27,28]).

The source for all this complexity must be somehow intricately encoded into the potential
V().

Indeed, the choice of the potential dictates the underlying dynamics with precarious exact-
ness. For instance, the so-called sine-Gordon (sG) model V (¢) = 2sin’(¢/2) is completely in-
tegrable, and the kink—antikink (KK) and kink-kink (KK) solutions (and many others) are
known in a closed form. The collisions of kinks are completely elastic, exemplifying perhaps
the simplest behavior across the spectrum of all models.

On the other hand, KX collisions in the ¢* (or double-well) model with the potential V' (¢) =
(1 — ¢2)2 /2, which is regarded as a canonical representative, are very rich in dynamical aspects,
such as the fractal structure of bouncing windows, bion chimneys, etc. Moreover, these features
are universal, in that they are present for generic choices of potentials unless special circum-
stances prevent them from occurring, such as integrability or the absence of resonant modes
that facilitate the energy transfer mechanism.

This is exemplified in the so-called ¢® model with V' (¢) = ¢*(1 — (/52)2 /2 in which the KK
collisions are devoid of this fractal structure, while the collisions of antikinks with kinks
(KK) produce it [14,15]. Multiple other potentials have been explored, such as the ¢® poten-
tial V(¢) = ¢*(1 — ¢2)2 /2, in which kinks have long, polynomial tails [29-34], and the para-
metrically dependent Christ-Lee potential, i.e. V(¢) = (82 + ¢>2)(1 — ¢2)2/ (2 + 2¢?), which
smoothly interpolates between the ¢* and ¢° potentials [17], to name just two.

1.1.  The shape of a kink

The shape of a static kink is in one-to-one correspondence with the shape of the potential be-
tween the minima that the kink interpolates. This is most easily seen from the static equation of
motion

¢"(x)=V"(¢), 2)

which is equivalent to an equation of motion for a particle under the influence of the upside-
down potential —V'(¢). The “time” is the x-coordinate and the particle starts at one of the
maxima, corresponding to the “left” vacuum, vy, at x = —oo and rolls down towards the other
maximum, vg, which is reached at x = +o0 [2].

For a generic potential with two vacua, and no other local minima, such as the one depicted
in Fig. 1, we can talk about three distinct regions with qualitatively different impacts on the
shape of the kink.

The regions near vacua encode the tails of the kink. Indeed, for nonzero curvature,
re. V'(vr) = miR > 0, the kink approaches vacua exponentially fast as |¢p — vy r| ~
exp(£my rx). On the other hand, if m = 0, the tails are polynomial [29,33].

The region near the maximum controls the shape of the very center of the kink, which we
shall call its core. Denoting > = — V" (¢max ), the kink’s profile at its core (where also the most
energy is concentrated and is identified with the kink’s position) will be approximately given
by a combination of sin(ax) and cos(ax). On the other hand, if « = 0, as is the case for the
¢® potential mentioned above, the core’s profile can be approximated by Jacobi functions, i.e.
solutions to 8¢” = 28¢°.
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Fig. 1. A pictograph of how the shape of a kink, interpolating between the v and vr vacua, is affected
by different parts of the potential.

Lastly, the regions near inflection points dictate what we subsume into the notion of the kink’s
skin. Around the skin, the kink behaves as a quadratic function of x.!

We can be more precise and place the above notions onto firm ground by defining the tails,
core, and skin of a kink in a perturbative sense.

Expanding the field around the vacuum, i.e. ¢ = v + 8¢, and putting it into the equation of
motion, we get

§¢" = m*s¢ + %V’”(v)quz +... (3)

At the leading order, the above equation is solved as §¢p ~ A4 exp(:l:mx), where the sign depends
on the boundary conditions. We can estimate at which value of §¢ the leading-order approxi-
mation breaks down by comparing the size of the next term on the right-hand side. Indeed, the
value of 8¢ for which both terms are equal gives us the rough extent of the tail region, i.c.
2
2 @
| VW(V)|
L, corresponds to the horizontal extent of either of the red regions on Fig. 1. Note that the
above formula is only valid if V"(v) # 0. If the third derivative vanishes, comparing the leading

term with the third-order term instead gives us Ly = /6m?/|V ) (v)|. Similar consideration
must be taken when dealing with potentials with vanishing m.

The size of the core and skin regions of the potential can be estimated using the same rea-
soning through expansion around the maximum or an inflection point, respectively. Denot-
ing a? = —V"(¢pmax) and n = V' (¢inr), the corresponding sizes of these regions read (assuming
nonvanishing third derivatives)

20 [ 2in
Leore=77—"—7+ Liin= |7 —7—"7- 5
}V/N(‘ﬁmax)' . ‘V/N((ﬁinf)‘ ( )

The numbers Ly, Leore, and Lgi, should be used as rough gauges of how much the tails, core,
and skin dominate the kink’s shape. Of course, these regions can have overlaps and typically
do not add up to the total value of a field span for a static (anti)kink, i.e. [vg — v|.

L =

IThis is also true around a generic point where the first derivative is nonvanishing.
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For illustration, the corresponding values for a ¢* potential are Lf’:ﬂ =2/3, L?;re =1, and
L = 2/9, while the same for the sG model read L3S, = v/6, L3S = /6, and LS = /2. The

skin tail — core skin
¢° potential, having three minima with the middle one of different curvature, thus has two
different tails and skin regions, depending on which vacuum and which inflection point is con-
sidered.

Let us also note that there can be additional local minima in between the true vacua that
the kink is interpolating. In that case, it is reasonable to dub the corresponding region of the
kink near a local minimum its pseudocore. The reason for this nomenclature—as opposed to
calling it a pseudotail—is simply that a pseudocore region affects the kink’s center and it would
be confusing to associate it with the semi-infinitely extended tails. In the double sine-Gordon
model (dsG), for instance, the kink solution is approximately equal to two sG kinks separated
by a fixed distance [35]. In our picture, each of these sG kinks will have its core and skin regions,
while the region between them corresponds to a pseudocore.

1.2.  The Frankensteinian potentials

So far, we have discussed the structural aspects of a static kink. The issue now is whether these
notions have any relevance for the dynamics and, if so, whether their contributions are approx-
imately independent.

Intuitively, the answer should be a cautious “yes”. It is well known, for instance, that kink
tails are responsible for attractive interaction between well-separated kink—antikink (K K) pairs
and are therefore key ingredients in the initial (and final) stages of the KK collisions [1]. On the
other hand, it is also intuitively clear that they are of little consequence when the kinks are on
top of each other, where their cores play a key role.”

The role of skin, however, if any, is hard to appreciate intuitively. However, the skin region of
the potential (i.e. its inflection point) is deeply connected with the longevity or even existence of
oscillons [36], which are important, if not crucial, for the understanding of the KK scattering
[35,37].

These observations may help us to appreciate the underlying reason for the complexity of
KK scattering—the fact that it may be composed of multiple structural pieces that contribute
differently and simultaneously to its dynamics. In other words, it could be the case that KK
scattering is a tapestry of interwoven but otherwise only loosely dependent contributing phe-
nomena.

To facilitate this intuition, it should be worthwhile to investigate the dynamics of kinks in
potentials lacking some or most of these structural pieces. To that end, let us briefly discuss
a particular class of potentials that—for lack of a better term—we call the Frankensteinian
potentials. As the name suggests, they are composed of pieces of functions of the field that are
continuously and/or differentiably sewn together at chosen field values. For our purposes, we
see their primary utility in the fact that, inside each patch, a given Frankensteinian potential
could be deficient in one or two structural regions. This makes them an ideal tool for exploring
the relevance of these regions on the dynamics.

2Assuming, of course, that kinks retain their individuality during the collisions and it is hence still
reasonable to talk about their cores. In this regard, the successes of collective coordinate models based
on separated kink ansatzes in reproducing qualitative features of KK scattering indicate that this is not
an unreasonable assumption.
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Fig. 2. The “simplest” kinks and their potentials. The vacua are placed at £1 and kinks are centered at x =
0 for simplicity. The last row shows the effective potential that enters the Schrodinger-like equation for
the determination of normal modes of a given kink.

In particular, we will focus on a subset of Frankensteinian potentials that are constructed
out of linear or quadratic functions. Within these pieces, the leading-order approximations pre-
sented above for either a tail, core, or skin hold exactly. Thusly constructed potentials, therefore,
possess the simplest kink solutions as far as their static characteristics are concerned.

1.3.  Single-component kinks

To provide some examples of Frankensteinian potentials, let us consider those that support
static solutions of the greatest structural simplicity, namely kinks made of a single type of
component. In Fig. 2, we present basic characteristics for these potentials and their kinks. We
use the labels 77", C, and S'S that simply tally the structural pieces of the kinks as seen from
left to right.

The potential labeled by 7'T (“tail-tail”’) consists of two quadratic wells sewn together at the
center ¢ = 0. For simplicity, both wells have the same curvature m?, and the respective vacua
are placed at 1, which is always possible to enforce via rescaling of the field. In fact, it is also
possible to set m = 1 by rescaling the coordinates.

Consequently, the 7T kink is made of two exponential tails sewn differentiably together at
the center of the kink where ¢ = 0. With the energy density given as

STT — m26—2m|x| , (6)

the mass of the 7'T kink works out to be equal to the perturbative mass, i.e. My =
o0 o

[ Errdx = m. In turn, the second moment of energy density reads [ x’Errdx = 1/(2m),
—00 —00

which provides a simple measure of how the energy is concentrated around the kink’s center.
This can be equivalently expressed using the so-called Derrick’s frequency, which is defined

as the ratio of the mass and the second moment and for a 7 7 kink reads w3, = 2m?.
Derrick’s frequency is associated with Derrick’s mode of the kink, which is derived by ob-

serving how the energy of a static kink changes under an infinitesimal scaling of the spatial
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coordinate. Derrick’s mode, however, is not a normal mode, but it has been recognized to be
important for restoring the Lorentz invariance of collective coordinate models [13]. That being
said, the 7'T kink has a Derrick’s frequency well above the mass threshold and hence should
have no impact on the dynamics.

The normal modes of a T'T kink can also be easily established by solving the Schrodinger-
like equation with the effective potential given by U(x) = V" (¢rr). As we see in the last row
of Fig. 2, the effective potential for a T T kink consists of a single § well with strength —m?
plus a constant m?. As is well known, a Dirac 8-well potential supports only a single bound
mode, which is the zero mode associated with uniform translations. Hence, no massive bound
modes exist for a 7T kink. Note that the effective potential U (x) is the only quantity in Fig. 2
that is sensitive to the regions of the potential outside the vacua, i.e. |¢| > 1. The kink solution
itself and its static characteristics given in the fourth row of Fig. 2 would remain unaltered if
the potential is modified in these outer regions.

Let us now briefly turn our attention to the remaining two kinks, which are made of a
core (C) and two skins (S.S). These represent the simplest examples of compact kinks whose
spatial extents are finite. This is due to the nonanalytic minima, which effectively means an
infinite perturbative mass, rendering the tails nonexistent. We will not comment on the dy-
namics of these kinks in this paper outside what is given in Fig. 2. The reason for this is
that these compact kinks have been proposed and investigated before. In fact, the origin of
compact solitons can be traced back to the 1990s, when they were introduced in the con-
text of the modified Korteweg—de Vries equation [38], investigation of which continues to this
day [39].

The compact solitons in the relativistic scalar field theory were first explored in the early 2000s
in Ref. [40] and later in the context of the so-called }V'-shaped potentials [41], the most famous
of which is the so-called signum-Gordon potential [42]. The signum-Gordon model is probably
the simplest Frankensteinian model consisting only of two linear functions sewn at the middle
forming a V'-shaped potential well, which supports exactly soluble compact oscillons [43,44].
Furthermore, the compact kinks were introduced as a limit of certain mechanical linear systems
with chained pendula in Refs. [45,46].

The Frankensteinian potential that was proposed for studying the interaction between com-
pact kinks and oscillons [47] and the scattering of compact kinks themselves [48] was a periodic
version of the potential Cin Fig. 2. As shown in Ref. [48], collisions of compact KK pairs lead to
long-living oscillating bound states or the re-emergence of the KK pair with an accompanying
“shockwave” that disintegrates into a cascade of compact oscillons. Curiously, the characteris-
tic kink—antikink bouncing has not been observed. This is, perhaps, because the potential used
in Ref. [48] was a periodic piecewise quadratic function that lacked any other nonlinearities
besides the nonanalytic sewing at minima.

As far as we are aware, no dedicated study has been published on compact kinks made of
skins.

A different kind of Frankensteinian potential was also presented in Ref. [49], a piecewise
quadratic potential resembling the ¢* potential with the sewing points around the region con-
trolling the skin of the kink. As a result, the kink solution possesses both exponentially damp-
ened tails and a core region, but no skin. In our notation, such a solution is a symmetric TCT
kink. These kinks feature all characteristics of generic KK scattering: bouncing, bion forma-
tion, and radiation production.
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Let us also mention that there have been few works that investigate potentials near Franken-
steinian (or otherwise singular) limits that support compact kinks [50,51].

The central task of this paper is to both continue the investigation of the Frankensteinian
potentials and to address a specific question; namely, how does the core region affect the
outcomes of KK scattering? In particular, we will focus on the presence or absence of char-
acteristic dynamical features due to the resonant-energy transfer mechanism, namely the
bouncing.

In Section 2, we begin addressing this question by briefly discussing KK scattering in models
of increasing structural complexity. We will first show that scattering of 7' 7 kinks is particularly
simple: the only outcome is a total annihilation into massive waves. Then we show that this
result is unaltered by adding nonlinearities inside the tail region, without introducing inflection
points. It is only in the third example, with a potential possessing inflection points and therefore
skin region, that we see oscillons together with critical velocity below one.

In Section 3 we change tactics and present two parametric families of potentials interpolating
between ¢* and particular coreless potentials. Here we study the disappearance of resonant
structures in KK collisions as the potential becomes more and more singular at its center.

In Section 4 we discuss our results.

2. Coreless kinks: three examples

In this section, we shall consider three examples of coreless potentials. As we will see, for the
first two, the absence of both core and skin regions seems to render the KK scattering entirely
trivial: the only result of the collision is annihilation into massive waves. Only in the third ex-
ample, where we consider a potential with inflection point = nonzero skin region, do we obtain
oscillons; however, the bouncing is still absent.

2.1.  Scattering of TT kinks

Let us comment on KK scattering of the kinks made from only exponential tails. As already
described, the potential is constructed by gluing together two quadratic wells of the same cur-
vature at the origin. We can express such a potential as

Vrr(g) = sm*(1 - ll)". 0
Compared with the ¢* potential, the 77T potential lacks an analytic maximum and inflection
points and has no nonlinearities besides the sewing point at ¢ = 0. This makes the dynamics
of TT kinks predictably featureless, as we shall see.

The kink solution can be obtained by sewing together two exponentials. Up to an arbitrary
shift along the x-axis, the solution reads:

drr = sign(x)(1 — ), ®)
where sign(x) is the sign function. Both the potential (7) and the kink solution are illustrated
in Fig. 3.

It is easy to verify that ¢ solves the second-order equations of motion in a weak sense.
There are no §-function contributions since not only the field itself but also its first derivative
is continuous. However, there is a jump singularity for the second derivative.

As discussed in the previous section, there are no massive normal modes and Derrick’s fre-
quency is above the mass threshold, i.e. w% = 2m? > m?. It is thus not surprising that collisions
of a TT kink with an antikink are quite boring. However, this featurelessness is of a differ-
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Vi ===-- ¢* potential

Fig. 3. An example of a piecewise quadratic potential with the ¢77 kink solution compared with the ¢*
model.

ent kind than, say, in the sG model, where KK pairs collide elastically and do not annihilate
each other due to the underlying integrability. In contrast, T'T kinks always annihilate each
other.

It is easy to understand why. When the KK pair is sufficiently close to each other, the whole
field becomes localized entirely within the left quadratic well. From that point on, the dynamics
is equivalent to a time evolution of some initial data via the Klein—-Gordon equation with the
mass m. As is well known, this results in the disintegration of the initial shape into a train of
massive waves.

As a check of the above intuition, we plot a “map” of KK scattering in Fig. 4, where we show
the dependence of the central value of the field on time, i.e. ¢(0, ¢), for the whole range of initial
velocities of the KK pair.

2.2.  Scattering of kinks in piecewise quartic wells

The triviality of scattering of 7'T kinks can be blamed on the linearity of the respective equa-
tion of motion in each half-plane of the target space. Therefore, it is unclear whether this dull
result has anything to do with the absence of core and skin region in the V77 (¢) potential or,
rather, whether it is an artifact of its piecewise integrability. For this reason, in this subsection,
we will investigate a potential that is nonlinear in each potential well. This is achieved by adding
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Fig. 4. A plot of values of ¢(0, ) as dependent on the initial velocity v of the KK pair. We see that, for
any v, the initially separated pair (blue color indicating ¢ ~ +1 vacuum at the center before the collision)
always disintegrates into massive waves around the ¢ ~ —1 vacuum (the yellow colors). Here, m = 2.

a quartic term, i.e.

Vrra(@) = 321 = 191)" + 151~ I91)", ©)
where A > 0 is an arbitrary positive constant. This potential leads to an equation of motion
that is neither integrable nor linear in the respective halves of the target space. However, it still
lacks inflection points, and thus the kink solution, i.e.
m|x| + sinh™' (m\/6/%)) )’
has neither a core nor a skin, but possesses nonlinear tails.

Notice that, in the limit A — 0, the solution becomes sign(x)(1 — e~*!), which is nothing
but a T'T kink. We display both the potential and its kink solution in Fig. 5.

The Bogomol’'nyi-Prasad—Sommerfield (BPS) mass [52,53] of the kink reads

3 32
Mrr =S5 (14 5) = 1), (i

which is an increasing function of 1. Derrick’s frequency can also be shown to be an increasing
function of A. Hence, it always stays above the perturbative threshold for all A > 0. We also did
not find any massive modes. Indeed, a quick glance at the effective potential V" (¢77;) reveals
that the extra term acts as a potential barrier rather than a well; hence there is no hope for any
bound mode besides the zero mode that is there due to the delta-peak potential well at x = 0.

Given that there are no modes that could facilitate resonant-energy transfer, we expect that
the dynamics of KK scattering is equally trivial as for 7T kinks. Indeed, this is what we found.
We show our result in Fig. 6.

b = sign(x>(1 o (10)

2.3.  Scattering of kinks in the log-corrected Klein—Gordon model
Lastly, let us consider a coreless potential, which does have inflection points, namely the Klein—
Gordon model with a logarithmic “correction”, i.e.

1
Vgo(@®) = 7m*(1 = 67 + ¢ log(@?)) (12)

We display it in Fig. 7.

This potential has a degenerate minimum at ¢ = +1 with V" (£1) = m?. Note that we can fix
m? to any value by rescaling the coordinates. As was the case for the previous two potentials,
the maximum at ¢ = 0 is nonanalytic since the second derivative at ¢ = 0 is undefined (it goes
to —o00). This makes the Taylor expansion around the origin impossible, rendering Vi.iog(¢)
coreless. However, unlike for both Vrr(¢) and V7, (¢), there are inflection points located at
¢imr = £1/e; hence it makes sense to talk about the skin.
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Fig. 5. The potential (9) and its kink solution compared with the & = 0 case. Here m = 2 and A = 6.

1
$(0.) V(¢)=2<1—|¢|2>2+5<1—|¢|>4

15

1.0
0.5
0

—0.5

—1.0
—1.5

Fig. 6. The plot of values of ¢(0, ¢) as dependent on the initial velocity v of the KK pair in the model
with an additional quartic term.

The kink solution cannot be obtained analytically and we showcase a numerical solution in
Fig. 7. The BPS mass reads

1
m
MGis1og = E/anlognz 1= P ~ 084 xm. (13)
el

Derrick’s frequency is numerically determined to be w2, ~ 1.34m?, so it is above the perturba-
tive threshold. Similarly, we have not found any massive mode. Given that there are no bound
modes, we could expect the scattering of KK pairs to be still completely sterile as in the previous
two models, but this expectation would be incorrect.

10/21

G20z Yyole 20 uo 1senb Aq 80€€£Z8/2/LOVE L L/ L LIYZ0Z/e10ne/deid/woo dnoojwepeoe//:sdiy wolj pepeojumoq



PTEP 2024, 113A01 O. N. Karpisek et al.

—— ViGilog ----- ¢* potential

numeric - ---- ¢* kink

Fig. 7. The potential (12) and its kink solution compared with the ¢* model. Here m = 2.

In fact, compared with V77(¢) and Vyr;(¢), the KK scattering in the VkG+1iog POtential ex-
hibits two new features. The first one is the appearance of a critical velocity, v =~ 0.79, above
which the scattering is quasielastic, and second, there are certain velocities below v, for which
oscillons are produced. This can be seen in Fig. 8.3

The results of this section show that, if a potential lacks both core and skin regions, it implies
alack of any interesting dynamics in KX collisions. This was true for both V7 (¢p) and Vyra(e).
When we considered a coreless potential with inflection points, i.e. VkG10g(¢), we immediately
got more interesting dynamics. Of course, we cannot prove that this must be the case in general,
but we take these observations as confirmation that the core and skin regions greatly affect the
outcomes of KK collisions.

3. Disappearance of bouncing windows and nonanalyticity of the maximum

In this section, we investigate KK scattering in two parametric families of models that start
from the ¢* potential and develop a cusp singularity around the origin (V' (¢) ~ |$|) as & goes
from 1 to 0. In this way, we explore how the rate of divergence of V"(¢) at ¢ — 0 affects the

3This potential has been studied in greater depth in Ref. [54]. The findings presented in this subsection
have been obtained independently and agree with those presented in Ref. [54].
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Fig. 8. The evolution of the central value of the field ¢(0, ¢) as a function of the initial velocity of the
KK pair. In the insets, we see two particular choices of v that showcase the formation of an oscillon and
a quasielastic collision. Here m = 2.

bouncing windows. As we shall see, the bouncing windows disappear in an almost linear fashion
well before the point ¢ = 0 is reached.

3.1.  Two families of coreless potentials
We define the first family in such a way that it begins as a ¢* potential at ¢ = 1 and deforms
into the Vyr potential (7) as e — 0, i.e.

2
V@) = o (1= 1) (14)

We display V; in Fig. 9 (top).
The second family aims to deform the ¢* model only around the maximum and keep the
quartic term for all ¢ < 1:

1 4 1+e¢ 4
Ll n ¢

(2) — _
Vg(d))_l—i-e B-—e)l+e) 3—¢

(15)
We display V; in Fig. 9 (bottom).

Note that both families are coreless in the entire range ¢ € [0, 1) as 17”(0) is undefined.

As ¢ — 0, the potential vV loses its skin regions. Indeed, the positions of the inflection
points, given as |¢i(;f)| = (¢/(1 + 2¢))/0+9)_ gradually decrease from ¢* values £1/+/3 to zero
as ¢ — 0, so that they merge with the maximum. However, in the Vg(z) family, the inflection
points stay separate from the central maximum for all ¢. Indeed, |¢i(jf)| =(1/ 3)1/ G~ and the
¢ = 0 positions are +1/+/3.

For both Vg(l) and Vg(z) the curvatures of the vacua remain constant, i.e. m?> = 4.
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Fig. 9. Two families of potentials that start as the ¢* model (thick black line) and gradually develop a
cusp singularity at the central hill as ¢ — 0.

For the first family, the kink solution can be given implicitly as

1 1/(1+e)
¢2Fl<(2+s)/(1+8)

1+e ) _ 2x
o) = 2 (16)

where » £ is the hypergeometric function. For the second family, the BPS equation can be solved
only numerically. However, for both families, the shapes of kinks remain quite close to the ¢*
kink, i.e. tanh(x), as seen from Fig. 10. As expected, the absolute deviation is smaller for A2

The BPS mass of the first family can be obtained analytically as Mg) =4/(2 + &), while for

the second family it is known only implicitly through the integral 2 fol d¢ 2V The frequen-
cies of Derrick’s modes must be obtained numerically for both families. We display both these
quantities in Fig. 11.

An interesting question is: what happens to the structure of normal modes as ¢ — 0? In
particular, we are interested in the change of the sole bound mode of the ¢* kink with the
frequency w = +/3. In Fig. 12 we see that, with decreasing ¢, the frequency of this mode gradu-
ally increases and merges with the continuum around the value &esnolg ~ 0.365. On the other
hand, for the second family, the massive mode never merges with the continuum.
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Fig. 10. Absolute differences between the shapes of deformed kinks and the ¢* kink for various values
of ¢ for both families given in Egs. (14)—(15).
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Fig. 11. The BPS masses and Derrick’s frequencies for families as functions of ¢.

14/21

G20z Yyole 20 uo 1senb Aq 80€€£Z8/2/LOVE L L/ L LIYZ0Z/e10ne/deid/woo dnoojwepeoe//:sdiy wolj pepeojumoq



PTEP 2024, 113A01 O. N. Karpisek et al.

Family #1
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— Mass threshold

0.2 0.4 0.6 08 1.0

Fig. 12. Dependence of normal modes on ¢ for families Vg(l’z). For Vg(l) , the massive mode crosses the
continuum threshold around &resholg = 0.365.

3.2.  Bouncing windows

Given how we set up our models, it is expected that all dynamical features connected with
resonant-energy transfer disappear for the first family VY ase — 0. The only question is how
fast.

We explore this issue by performing numerical analysis of KK collisions (see the Appendix
for details of our numerical method) for various values of ¢. The main result is displayed in
Fig. 16 (left column). Surprisingly, the bouncing windows disappear well before &yesnolq Where
the massive mode crosses into the continuum. In fact, the actual value ¢ ~ 0.7 coincides almost
perfectly with the merging of Derrick’s frequency into the continuum (see Fig. 11). This is
surprising, as it is usually the massive mode and not Derrick’s mode that is linked with the
presence of the bouncing windows.

This observation is reinforced by very similar results seen for the second family (Fig. 16 right
column). There we see a more gradual closing of the bouncing windows, but they too disappear
in spite of the fact that the massive mode is present for all & < 1. Again, the threshold below
which no bouncing windows are observed, i.e. ¢ &~ 0.4, is quite close to the point of merging of
Derrick’s mode into the continuum ¢ ~ 0.37 (see Fig. 11).
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Fig. 13. Closing of two-bounce windows for both families. The numbers represent approximate values
of ¢ at which that particular window closes, given our numerical accuracy.
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Fig. 15. Dependence of critical velocities on ¢ for families 13 For VY, the critical velocity crosses
the speed of light around ¢ ~ 0.215.

In Fig. 13, we display the range of velocities at which two-bounce windows are found for
both families of potentials. There we see that—perhaps contrary to intuition—the windows
close starting with the largest ones from left to right. This means, for instance, that there exist
ranges of ¢ for which the two-bounce windows only contain no less than # internal oscillations
of the field, withn =2, 3, .. ..

In Fig. 14, we display a similar picture with added three-bounce and four-bounce windows.
The e dependence of these windows closely follows the trend set by the two-bounce windows.

Let us also comment on the critical velocity, whose dependence on ¢ we display in Fig. 15.
There we see a nearly linear dependence on ¢ that is very similar to the dependence of Derrick’s
frequency in Fig. 11 (bottom).

4. Summary and outlook

In this paper, we have introduced the notions of a core, tails, and skin of a kink: approximate
regions of a generic two-vacuum potential, where the solutions to the leading-order Taylor-
expanded equation of motion around the central maximum, minima, and inflection points,
respectively, hold. Further, we have introduced a class of potentials, which we call Franken-
steinian, as ideal laboratories for exploring the significance of these structural pieces of a kink
on the dynamics. In particular, in this paper, we were concerned with the presence or absence
of bouncing in KK scattering.

In Section 2, we have shown three concrete examples of coreless potentials of increasing com-
plexity and demonstrated a lack of bouncing in all of them. We pointed out that the absence
of both core and skin regions results in trivial KK scattering outcomes, namely complete an-
nihilation of the pair. Only when the potential had skin regions did we see oscillons and the
appearance of critical velocity.

In Section 3, we explored the impact of nonanalyticity at the maximum for the bouncing
phenomenon by considering two parametric families of potentials that are increasingly more
singular at ¢ = 0 ase — 0.

The first family, V", approaches the harmonic double-well T7T potential (7) as ¢ — 0 and,
therefore, departs the most from the canonical ¢* model. Indeed, as ¢ — 0, the scattering win-
dows rapidly close, the critical velocity increases almost linearly, and all resonant features dis-
appear well before ¢ = 0.
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Fig. 16. Gradual disappearance of resonant features in KK collisions for V" and V! as ¢ is lowered
from the ¢* model (¢ = 1.0).
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Perhaps surprisingly, the second family, which was designed to stay quite close to the ¢* model
for the entire range of ¢, showed very similar results. The most visible difference compared with
the first family is that the critical velocity remains below one and, as Fig. 16 indicates, some
oscillons are formed as the outcome of the collision even for very small ¢. In that regard, the
& — 0 limit is qualitatively similar to the Vkg4ioe potential discussed in Section 2.

Perhaps most surprisingly, in both families, we have seen that the instance of ¢ when Der-
rick’s frequency merges with the continuum (see Fig. 11) is a far superior predictor of when the
bouncing windows disappear compared with the massive mode. This is certainly unexpected,
but let us speculate on why this could be the case.

As ¢ — 0, the range of initial velocities containing bouncing windows gets quickly shifted
towards higher, relativistic values. It is known that Derrick’s mode plays a key role in relativistic
dynamics; hence it is also important here. To test this hypothesis, it would be of interest to find
a family of models for which the critical velocity remains small for the entire range of the
deformation parameter.

Our results suggest that the core region of the potential plays a central (pun intended) role in
the bouncing phenomenon in KK scattering. Of course, it is hard to quantify this statement,
and, at this point, we do not have sufficient knowledge to turn the observations of this paper
into a predictive heuristic. Nevertheless, we feel that the presented results give credence to the
notion that core, tails, and skins, as defined above, are of some importance to the dynamical
phenomena and that they merit further investigation.

In particular, we plan to present a detailed investigation of lifetimes and other characteristics
of oscillons in a separate publication. We also plan to investigate further examples of Franken-
steinian potentials and, in particular, determine the role of the skin in the dynamics of kinks.
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Appendix. Comments on the numerical method
All numerical calculations were performed in the programming language Julia 1.10.3 using
the library DifferentialEquations.jl. We evolved the second-order equations of motion via the
Bogacki—-Shampine 5/4 Runge—Kutta method (BS5()) in the time domain, while the spatial do-
main was discretized (typically into ~6000 segments), approximating the second derivative us-
ing the central finite difference of the third order.

We also exploited the reflection symmetry through the center of collision at x = 0, so that
the calculations were performed only in the half-interval x € [0, xenq]. For the last 10% of the
length of the interval, we introduced an absorbing layer in which an additional damping term

19/21

G20z Yyole 20 uo 1senb Aq 80€€£Z8/2/LOVE L L/ L LIYZ0Z/e10ne/deid/woo dnoojwepeoe//:sdiy wolj pepeojumoq



PTEP 2024, 113A01 O. N. Karpisek et al.

is included in the equation of motion, i.e.

3o =020 —V'(¢) — apd¢,

where the damping value «p was chosen in the range of values ap € [0.2, 0.4] depending on
the complexity of the numerical calculation. This approach allows us to use a smaller spatial
interval x € [0, 25] without fear of reflections from the end of the interval.
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