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Abstract

This thesis focuses on the study of various cosmological and astrophysical aspects in

the framework of self-interacting Brans-Dicke gravity. Firstly, we explore the physical

attributes of a static as well as a dynamical source that induce complexity within the

fluid. We orthogonally split the Riemann tensor to obtain structure scalars relating

to comoving congruence and Tolman mass. We define the complexity factor with the

help of these scalars to demonstrate the complex nature of the system. Moreover, the

vanishing complexity condition is used to obtain solutions. The factors that induce

complexity in an initially complexity-free dynamical system are also examined.

Secondly, we extend isotropic non-static spherical spacetime to anisotropic domain

by means of minimal geometric deformation. This deformation decouples the system

of field equations into two sets, one describing the isotropic matter field and the other

governed by anisotropic source. The former array is evaluated by assuming the metric

potentials of Friedmann-Lemâıtre-Robertson-Walker spacetime. We construct the

anisotropic extension corresponding to power-law forms of scalar field and scale factor.

Moreover, a linear equation of state links density and pressure of the configuration.

We investigate physical behavior of the anisotorpic version for different values of the

equation of state parameter.

Thirdly, we adopt extended gravitational decoupling method to extend known

static spherical solutions. Deformations in radial as well as temporal metric com-

ponents disintegrate the system of field equations into two arrays. We employ the

metric functions of Tolman IV, Krori-Barua and Schwarzschild metrics to specify the

set related to the seed source. In order to construct a suitable solution of the second

xiv



system, constraints are applied on the additional source and metric potentials. The

impact of the massive scalar field as well as the decoupling parameter on the salient

characteristics of the extended solutions is analyzed graphically.

Finally, we generate an anisotropic solution for a static sphere filled with quark

matter. The system of field equations is derived for specific form of potential func-

tion by employing the MIT bag model. The unknown metric tensors are evaluated

through a well-behaved function along with the condition for class-one embedding.

The unknown constants are specified in terms of mass and radius of the configuration

with the help of junction conditions. We estimate the radius of LMC X-4 for different

values of the bag constant by employing the star’s observed mass. We also discuss

the physical viability and stability of the model through various tests.
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Introduction

The study of large scale structures such as stars, galaxies and their clusters provide

insights into the dynamics of the universe. The intricate nature of these stellar struc-

tures massively depends upon the interdependent physical variables such as energy

density, pressure and heat flux. To determine the characteristics of celestial objects, it

is necessary to gain complete or maximum information to compute the complexity fac-

tor for the considered system. Such a factor specifies the degree of complexity found

within the system and provides a measure for comparing different self-gravitating

structures. The problem of measuring the complexity of cosmic structures is not new

and numerous attempts have been made to define such a factor [1]. In spite of these

works, a consensus on a definition of complexity factor has not been achieved.

Among the proposed definitions, the concepts of order or arrangement of atoms

and entropy of a system have been taken into account. However, dense stellar sys-

tems have tightly packed particles in their interior. This arrangement restricts the

movement of nuclear matter in the radial direction. Consequently, radial pressure

is less than the force in the transverse direction leading to anisotropy in pressure.

Thus, anisotropy plays a significant role in determining the viability and stability of

self-gravitating systems. Recently, Herrera [2] devised a new complexity factor for

static sphere in the context of GR by assuming that the complexity-free system is

1
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isotropic as well as homogeneous. The distinguishing feature of Herrera’s technique is

the integration of the system’s active gravitational mass, inhomogeneous energy den-

sity and anisotropic pressure in the definition of complexity. He obtained structure

scalars through the orthogonal splitting of Riemann tensor to generate the complexity

factor.

Herrera’s definition of complexity has also been extended for a non-static radiat-

ing sphere by minimizing complexity in the mode of evolution [3]. Sharif and Butt

computed the complexity factor based on Herrera’s approach for a static cylindrically

symmetric self-gravitating system [4]. They also investigated the effect of electro-

magnetic field on the complexity factor of static spherical [5] as well as cylindrical [6]

structures and concluded that complexity increases in the presence of charge. Herrera

and his collaborators [7] formulated three complexity factors for an axially symmetric

system and examined a possible relation between symmetry and complexity of the

setup. They also employed this notion to establish a hierarchy from the simplest

(Minkowski) to more complex (radiating) systems [8]. The complexity of a charged

non-static spherical system has also been explored [9]. Recently, Herrera et al. de-

termined the conditions under which a quasi-homologous system is complexity free

[10].

The study of cosmos has led to the discovery of astounding phenomena that have

governed the evolution of the universe since its beginning. The cosmological prin-

ciple suggests that the universe is isotropic and homogeneous at scales larger than

300h−1Mpc [11]. In accordance with this principle, FLRW metric is often employed

to examine the expanding cosmos. However, cosmological probes (other than CMBR)

in the last decade suggest deviations from the isotropic structure, e.g., the study of
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inhomogeneous Supernova Ia detected slight departure from isotropy [12]. Other tools

that have been used to determine the possible inconsistencies include the distribution

of infrared galaxies [13] and radio sources [14], gamma-ray bursts [15], etc. Although

some of the results indicated the presence of anisotropy, they were of little statistical

importance. Recently, Migkas and Reiprich [16] used the directional behavior of X-

rays from galactic clusters as a cosmic probe to test the isotropy of the cosmos. This

technique was applied to different galactic clusters and the results showed anisotropic

behavior in the cosmic region [17]. Therefore, in order to discuss the history and fate

of the universe, it is necessary to generate anisotropic cosmological solutions of the

field equations.

Gravitational collapse leads to stellar death which results in the formation of

compact structures (white dwarf, neutron star and BH). Black hole is one of the

self-gravitating systems with a singularity hidden behind the event horizon. These

cosmic objects have a strong gravitational field and serve as excellent laboratories to

test relativistic theories in the strong-field regime. The existence of BHs has been

strengthened due to the recent detection of gravitational waves [18]. Schwarzschild

obtained the first BH solution for a vacuum spacetime [19]. General relativity formu-

lates surprisingly simple solutions for BHs in accordance with the no-hair conjecture

(BH solutions cannot carry additional charges [20]) with three prominent features:

mass, charge and angular momentum [21]. The validity of no-hair theorem is now

being tested with improved studies and observations of BH systems. In fact, differ-

ent setups have been constructed to evade the no-hair theorem [22]. Recent studies

suggest that BHs, as sources of extreme gravity, can possess soft quantum hair [23].
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However, the derivation of new solutions representing BHs is hindered by the non-

linearity as well as high degree of freedom in the field equations.

Over the years, researchers have devised new techniques to obtain viable models of

stellar structures. Recently, Ovalle [24] proposed the method of MGD to extend a seed

source (vacuum or isotropic) to complex fluid distributions. This technique was first

implemented in the framework of Randall-Sundrum braneworld to derive consistent

spherically symmetric solutions. In this approach, an additional source is incorporated

in the seed distribution on the condition that the two sources interact gravitationally

only. A geometric deformation in the radial metric component decouples the system of

field equations into two sets with lesser degrees of freedom as compared to the original

system. The two systems are solved independently and their respective solutions are

combined to obtain a solution of the complete model.

Following the procedure of MGD, Ovalle et al. [25] employed this technique to

incorporate the effects of anisotropy in perfect fluid configuration and generated three

anisotropic models from the Tolman IV solution. Different anisotropic BH solutions

were obtained by applying this approach to a vacuum Schwarzschild solution [26].

Estrada and Tello-Ortiz [27] adopted the MGD approach to construct two physically

acceptable anisotropic solutions from Heintzmann solution. Sharif and Sadiq [28]

applied this method to KB solution and explored the impact of charge on the extended

anisotropic system. Geometric deformations on Tolman VII metric potentials have

also been applied to construct a physically viable anisotropic solution [29]. Sharif and

Ama-Tul-Mughani [30] decoupled the field equations representing a cloud of strings

and obtained corresponding anisotropic extensions.
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The approach of gravitational decoupling through MGD has proved highly ben-

eficial in obtaining physically relevant anisotropic solutions. However, this method

applies to the scenario in which the considered sources do not exchange energy. Re-

cently, Ovalle [31] introduced decoupling through deforming both (radial/temporal)

metric potentials. Decoupling through EGD disintegrates the system without re-

stricting the type of matter distribution. Contreras and Bargueño [32] applied this

method to vacuum BTZ solution in 2+1-dimensions. The EGD scheme has also been

applied to evaluate anisotropic versions of Tolman IV [33] and KB [34] solutions. Re-

cently, Ovalle et al. [35] formulated hairy BHs by extending Schwarzschild spacetime

through the EGD technique. There are also some attempts [36] to obtain anisotropic

solutions in modified theories through MGD as well as EGD schemes.

Apart from the three outcomes of collapse, another compact stellar structure is

also hypothesized as an end state of inward fall of a neutron star. It is believed that

such a cosmic object is composed of strange quark matter which is a favorable state of

baryon matter. A strange quark star is an intermediate stage between BH and neutron

star which has too much mass at its core for the neutrons to hold their individuality

but still evades collapse into a BH. Recent observational estimates of masses and radii

of some stars (Her X-1, 4U 1820-30, LMC X-4, etc.) are not consistent with neutron

star prototype. Instead they can be treated as suitable candidates for strange quark

stars. The MIT Bag model [37] has been determined as the best approximation for

the EoS to formulate solutions representing quark stars.

In 1937, Dirac [38] hypothesized that all large numbers obtained by the com-

binations of fundamental atomic constants are related to cosmological parameters.

Subsequently, the gravitational constant (G) must be a function of cosmic time. In
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1961, Brans and Dicke [39] modified GR by incorporating Dirac observations in a

scalar-tensor theory and formulated a spherical vacuum solution. Brans-Dicke grav-

ity incorporates a massless scalar field ϕ = 1
G(t)

to discuss the evolution of the cosmos.

A tunable parameter (ωBD) couples the scalar field to the matter distribution. As the

role of scalar field is enhanced during the inflationary era, the values of the coupling

parameter must be small to explain this scenario [40]. On the other hand, the solar

system tests are satisfied for ωBD > 40, 000 [41]. This issue is resolved by the SBD

theory which assigns a mass to the scalar field through a potential function V (Ψ)

(where Ψ is a massive scalar field) [42]. In SBD theory, if the mass of the scalar field

is greater than 2 × 10−25GeV , the solar system observations cannot constrain ωBD

and its values greater than −3
2

are allowed [43].

Solutions representing cosmological as well as astrophysical scenarios have been

formulated in BD theory. Santos and Gregory [44] examined the cosmos in SBD

theory and showed that the radiation dominated universe is 2-dimensional while vac-

uum or dust-filled cosmos is 3-dimensional. Sen et al. [45] studied the late-time

acceleration of the cosmos through a dissipative fluid. Mak and Harko [46] derived

three solutions for a flat FLRW geometry in SBD theory and checked them for con-

sistency with Supernova Ia observations. Chakraborty and Debnath [47] investigated

cosmic acceleration by taking power-law forms of the scale factor and scalar field in

the presence of a self-interacting potential. Sharif and Waheed [48] explored the val-

ues of the SBD coupling parameter in different eras and found accelerated expansion

corresponding to higher values of the parameter.

Thorne and Dykla [49] studied BHs in three dimensions and concluded that 3-

dimensional BD BHs are identical to their counterparts in GR. Hawking [50] showed
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that a stationary BH metric satisfies the BD field equations if and only if it is also

a solution of GR. Geroch method [51] was employed by Sneddon and McIntosh [52]

to discuss vacuum models. Bruckman and Kazes [53] considered a perfect matter

source with a linear EoS to formulate solutions for a spherically symmetric spacetime.

Riazi and Askari [54] used numerical techniques to approximate solution for an empty

sphere and studied the trend of rotation curves. Campanelli and Lousto [55] studied a

family of BD solutions and determined the range of parameters yielding BH solutions

different from GR. Sharif and Manzoor formulated structure scalars to study the

evolution of dynamical spheres [56] and cylinders [57] in SBD theory. Complexity

factors for axially symmetric structure were computed to investigate the effect of

massive scalar field on the complexity of compact systems [58]. Solutions constructed

via decoupling as well as MIT bag model were checked for viable behavior [59].

This thesis focuses on the formulation of the complexity factors and spherical

solutions in the background of SBD gravity. We investigate essential features and

behavior of extended cosmological as well as astrophysical spacetimes. We also de-

termine the viability and stability of stellar solutions corresponding to the MIT bag

model. The thesis is compiled according to the following framework.

• Chapter One includes some primary notions and definitions to comprehend the

work presented in this thesis.

• Chapter Two explores the complexity of static as well as dynamical anisotropic

spheres.

• Chapter Three examines the anisotropic extension of flat FLRW model ob-

tained via MGD scheme.
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• Chapter Four provides the anisotropic versions of Tolman IV, KB and Schwarz-

schild ansatz formulated through EGD decoupling

• Chapter Five investigates the structural features and stability of strange quark

star model governed by the MIT bag EoS.

• Chapter Six presents a summary of the major results obtained in this thesis

alongside some fascinating problems for future research.



Chapter 1

Self-interacting Brans-Dick
Gravity and Stellar Structures

The mechanism and evolution of the vast universe massively depend on the large

scale structures such as stars and their collapsed remnants. Thus, the study of these

components is vital to gain a better understanding of the cosmos and its origin. In this

chapter, we discuss a scalar-tensor modification of GR alongside some fundamental

notions related to cosmic as well as stellar evolution.

1.1 Scalar-Tensor Theory

The revolutionary proposition that the geometry of the universe is interlinked with

the matter distribution led to the theory of GR described by the Einstein-Hilbert

action as

S =

∫ √−g

( R
2κ2

+ Lm

)
d4x, (1.1.1)

where g, R and Lm represent the determinant of the metric tensor (gγδ), Ricci scalar

and matter Lagrangian, respectively. Moreover, κ2 = 8πG
c4

is the coupling constant

9
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with c symbolizing the speed of light. The action of a theory encompasses the nec-

essary elements describing a physical system and its motion. The addition of an

extra degree of freedom in the form of a scalar, vector or tensor field modifies the

action (1.1.1) and yields alternative theories of gravity. Different approaches (such

as the inclusion of non-Christoffel connection, higher-order terms of curvature, etc.)

have generated extensions of GR. Another method to construct a modified version of

GR is the incorporation of a scalar field (represented by spin-0 particle) leading to a

scalar-tensor theory [60]. However, the first scalar-tensor theory was proposed even

before Einstein introduced the theory of GR. Nordström, the pioneer of scalar-tensor

theories, described gravity through a scalar field in a flat spacetime by considering

the gravitational constant as a Lorentz scalar. Although this theory yields the equiv-

alence of inertial and gravitational masses, its application was limited to conformally

flat spacetimes only.

In 1937, Dirac [38] found that the comparison of gravitational and electrical forces

existing between the sub-atomic particles (electron and proton) leads to a large di-

mensionless number of order 1040. Similarly, the age (tc) of the cosmos estimated in

terms of units of atomic constant has approximately the same order of magnitude,

i.e.,

tc ∼ q2
e

Gmemp

,

where qe denotes the charge of electron. Moreover, me and mp are the masses

of electron and proton, respectively. This coincidence led to the formulation of the

Large Number Hypothesis which stated that the physical constants occurring in nature

must be connected via a mathematical relation. Based on his findings, Dirac proposed

that the constant measuring the strength of gravity varies inversely with cosmic time.
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In 1955, Jordan employed Dirac’s hypothesis to build a scalar-tensor theory via non-

minimal coupling between tensor and scalar fields in the modified Einstein-Hilbert

action. The main criticism against this theory was the non-conservation of energy

and momentum due to the creation of new matter.

Another principle that significantly contributed to the formulation of scalar-tensor

gravitational framework was presented by Mach. He claimed that the matter distrib-

ution in the universe determined the inertia of an object. In other words, the inertia

of a cosmic structure vanishes in the background of an empty cosmos. Although the

principle is not supported by any empirical data, it has certainly provided a founda-

tion for different theories of relativity. Einstein referred to the Machian principle in

his book “The Meaning of Relativity” as an important source of motivation during

the development of GR.

1.1.1 Brans-Dicke Theory of Gravitation

In 1961, Brans and Dicke [39] discussed Mach principle in relation to the equivalence

principle (the effects of gravity and acceleration are indistinguishable) and formu-

lated a scalar-tensor theory of gravity known as BD gravity. In order to encompass

Dirac hypothesis, they included a massless scalar field that described the effects of a

dynamical gravitational constant. The action of BD theory with 8πG0 = c = 1 (G0

is the present day value of gravitational constant), is written as

S =

∫ √−g

(
ϕR− ωBD

ϕ
∇γϕ∇γϕ + Lm

)
d4x, (1.1.2)

which contains a minimal coupling between scalar field and matter content. Varying

the action (1.1.2) with respect to gγδ and ϕ respectively, yields BD field and wave
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equations as

Gγδ = ϕ

(
Rγδ − 1

2
gγδR

)
= T

(m)
γδ + Tϕ

γδ, (1.1.3)

2ϕ = ϕ,γ
;γ =

T (m)

3 + 2ωBD

, (1.1.4)

where Rγδ and T
(m)
γδ symbolize the Ricci tensor and energy-momentum tensor corre-

sponding to the matter source with T (m) = gγδT
γδ(m). Moreover, the contribution of

the scalar field in the energy of the system is described as

Tϕ
γδ = ϕ,γ;δ − gγδ2ϕ +

ωBD

ϕ
(ϕ,γϕ,δ − gγδϕ,αϕ,α

2
), (1.1.5)

where “;” represents covariant derivative and 2 is the D’Almbertian operator. Brans-

Dicke gravity is the prototype of a scalar-tensor alternative to GR that has been

extended to a wider family of scalar-tensor theories [61].

1.1.2 Self-interacting Brans-Dick Theory of Gravitation

In cosmology, the inflationary model was proposed to overcome the flatness and hori-

zon problems in the early cosmos. However, according to this model, the rapidly

expanding universe fails to transition from the period of inflation into the next cosmo-

logical era. Although BD gravity has significant implications in the field of cosmology,

it fails to successfully solve this problem (termed as the graceful exit problem). The

BD coupling parameter must be less than 25 [40] to adequately describe the infla-

tionary era which disagrees with the statistical data [62]. Moreover, in BD theory,

the effect of scalar field reduces corresponding to large values of the coupling para-

meter. Thus, cosmological issues are discussed for small values of ωBD while large

and positive values of the coupling parameter are required to satisfy the weak field
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tests. In order to establish a standard domain of the parameter, a potential function

is introduced. This function adjusts the values by assigning a mass to the scalar field

which leads to an extension of BD gravity known as SBD (or MBD) theory. The

action (1.1.2) is modified as

S =

∫ √−g
(
ΨR− ωBD

Ψ
∇γΨ∇γΨ− V (Ψ) + Lm

)
d4x, (1.1.6)

which leads to the following SBD equations

Gγδ = T
(eff)
γδ =

1

Ψ
(T

(m)
γδ + TΨ

γδ), (1.1.7)

2Ψ =
T (m)

3 + 2ωBD

+
1

3 + 2ωBD

(Ψ
dV (Ψ)

dΨ
− 2V (Ψ)), (1.1.8)

with

TΨ
γδ = Ψ,γ;δ − gγδ2Ψ +

ωBD

Ψ
(Ψ,γΨ,δ − gγδΨ,αΨ,α

2
)− V (Ψ)gγδ

2
. (1.1.9)

Various cosmological and astrophysical models have been developed correspond-

ing to different forms of self-interacting potentials [63]. The specific form of potential

is unknown but it has been assumed that at high temperatures the potential is pro-

portional to Ψ2 [44]. Furthermore, Quiros [64] showed that the de Sitter solution in

GR arises in the SBD theory for the quadratic potential (V (Ψ) = m2Ψ2, where m

is coupled to the mass of the scalar field) only. The most common form of potential

function considered for different cosmic scenarios [44, 65] is

V (Ψ) =
1

2
m2

ΨΨ2,

where mΨ is the mass of the scalar field. Note that the combination (ΨdV (Ψ)
dΨ

−
2V (Ψ)) in Eq.(1.1.8) vanishes for the chosen potential function which simplifies the

mathematical calculations.
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1.2 Physical Parameters

Different physical parameters are required to effectively describe self-gravitating sys-

tems which are briefly discussed in this section.

• Mass

The measure of matter contained within a cosmic system corresponds to its

mass which determines the motion of the object. Mass is classified into inertial

and gravitational masses which gauge the resistance to change in the system’s

motion and the influence of gravitational forces, respectively. The total mass

within a sphere of radius r is computed through the Misner-Sharp formula as

[66]

m =
R

2
(1− gγδR,γ R,δ ), (1.2.1)

where R denotes the radius of the sphere. Tolman [67] presented an alternate

definition for computing the total mass of the spherical system with volume V

as

mT =

∫

V

√−g(T 0
0 − T 1

1 − T 2
2 − T 3

3 )dV. (1.2.2)

The mass obtained using Tolman’s formula coincides with the Misner-Sharp

mass at the boundary but varies within the sphere (except in the special case of

homogeneous distribution and isotropic pressures). The Misner-Sharp formula

has been used extensively in numerical computations of stellar collapse [68] but

Tolman mass gives a better estimate in case of anisotropic fluids.

• Four Acceleration

The change in four velocity (vγ) of a body induces acceleration defined as

aγ = vγ;δv
δ. (1.2.3)
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The path followed by the particles of fluid is geodesic when four acceleration is

zero.

• Expansion Parameter

It is a scalar quantity which measures the rate of change in the volume of an

object with respect to time, i.e., it indicates whether the particles of the fluid

move closer or away from each other. The expansion scalar is defined as

ϑ = vγ
;γ. (1.2.4)

• Shear Tensor

This second rank tensor calculates the distortion in the shape of an object as

σγδ = v(γ;δ) + a(γvδ) − 1

3
ϑhγδ, (1.2.5)

where v(γ;δ) = 1
2
(vγ;δ + vδ;γ) and hγδ = gγδ + vγvδ denotes the projection tensor.

1.3 Cosmology

The field of cosmology combines astronomy and physics to create cosmic models that

effectively discuss the evolution of the universe from its genesis to the current epoch.

On the basis of suitable models, cosmologists predict the future and ultimately the

end of the cosmos. The big bang theory is one of the leading propositions regard-

ing the origin of the universe. According to this theory, the universe exponentially

inflated from an ultra-dense hot state around 13.8 billion years ago. After the in-

flation stopped, the cooling universe (with a temperature of 10 billion degrees) was

dominated by photons and neutrinos moving relativistically to each other. This era,
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dubbed as radiation-dominated epoch, was taken over by the matter or dust era

in which atoms began to form which ultimately resulted in the birth of stellar and

galactic structures. In 1929, Hubble measured the velocity and distance of galac-

tic structures and discovered that the universe is undergoing expansion. Moreover,

cosmological data compiled from different astrophysical observations (like redshift-

luminosity relation of Supernova Ia [69], X-rays emission of galaxies [70], WMAP

[71], etc.) confirm that the cosmos is currently expanding at an increasing rate. The

positive acceleration is attributed to a mysterious repulsive force termed dark energy

which exhibits itself as an intrinsic property of the vacuum, i.e., the effects of dark

energy enhance in a larger volume of space.

It is believed that the universe is composed of elementary building blocks. How-

ever, the definition of the fundamental unit of the cosmos has changed over time to

preserve the definition of isotropy and homogeneity of the universe. Initially, stars

were considered as the basic units, i.e., the number of stars present in a fixed volume

determined the density of matter within that region. Later, Hubble treated galax-

ies as the elementary units to measure the rate of cosmic expansion. However, the

discovery that galaxies and their clusters occupy the edges of huge regions of almost

empty space (known as voids) led to the belief that voids serve as the best elementary

unit [72]. Although the isotropy and homogeneity of the universe has not been veri-

fied observationally, this assumption helped in the construction of the FLRW cosmic

model given as

ds2 = dt2 − a2(t)(
dr2

1− kr2
+ r2dθ2 + r2 sin2 dφ2), (1.3.1)

where a(t) denotes the scale factor which measures the change in distance between

different points as the universe expands. Moreover, the values of curvature parameter
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k = −1, 0, 1 refer to open, flat and closed universe models, respectively. The elegant

feature of this model is the equivalence of all positions in the universe.

1.4 Self-gravitating Systems

The individual components of a self-gravitating structure are bound together under

the influence of combined gravity of the whole system. In astrophysics, self-gravitation

plays a significant role in the formation of stars as well as stellar and galactic clus-

ters. Numerous astrophysical experiments (Sloan Digital Sky Survey, Large Synoptic

Survey Telescope, Two-degree Field Galaxy Redshift Survey) have proved that the

study of these components is vital to gain a better understanding of the cosmos and

its origin. The study of these systems has revealed that the presence of interacting

nuclear matter in extremely dense celestial structures generates anisotropy, i.e., their

physical properties change in different directions [73]. Anisotropy arises from pion

condensation [74], phase transition [75] and super-fluid [76]. Thus, anisotropy is one

of the salient features governing the geometry and evolution of cosmic structures.

Self-gravitating bodies are intricate cosmic objects whose physical properties may

undergo a fundamental change due to a slight fluctuation in the interior.

Stellar structures are the most commonly found self-gravitating systems in the

cosmos. They are born when the residue material from a cosmic event infiltrates a

dormant nebula composed of dust and hydrogen gas. The colliding particles, within

the huge cloud, clump together and eventually turn into a protostar. When the

protostar achieves a temperature of approximately 10 million Kelvin, the hydrogen

atoms fuse to form helium. At this stage (main-sequence phase), the compression of

gas at the core initiates nuclear reactions releasing a great deal of energy and pressure.
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Although the outward pressure from the fusion reactions balances the inward pull

of gravity, the collapse of a star is imminent. With the passage of time, fuel for

nuclear reactions diminishes leading to stellar collapse. The life span of a less massive

star is longer as compared to that of a massive star as fusion reactions inside the

massive object speed up to provide essential pressure against increased gravity. The

collapse of the star is followed by smaller but dense remnants known as compact

objects. The family of compact objects is different from burning stars as the necessary

outward pressure is supplied by degenerate matter instead of nuclear reactions. As

the particles of the extremely dense degenerate matter follow the Pauli exclusion

principle (two identical fermions must occupy different energy levels), they produce

sufficient degeneracy pressure to halt the contraction of the compact stellar object.

The stellar remnants are smaller in size as compared to their parents but they possess

stronger gravitational and magnetic fields [77].

1.4.1 White Dwarfs

The color of the star is an indicator of its surface temperature and energy distribution.

Most of the visible light radiated by the hottest stars (having a surface temperature

of around 25,000 Kelvin) is dominated by blue color whereas the electromagnetic

spectrum of the coolest stars (with a temperature of 3000 Kelvin) comprises mostly of

light energy at red wavelengths. Stellar objects with a temperature of approximately

10,000 Kelvin release white light. The end products of less massive stars (M < 8MJ,

MJ represents solar mass) cool down as they radiate the residual energy and shine

with a white light thus, giving them the name white dwarfs. They are dense objects

which pack one solar mass in a radius comparable to that of the earth [77]. In 1930,
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Chandrasekhar [78] constructed white dwarf models corresponding to the EoS of

degenerate electrons and discovered that white dwarfs can attain a maximum mass of

1.4MJ. Beyond this limit, the white dwarf will continue to collapse under the effect

of self-gravity. These stellar remnants counterbalance the force of inward gravity via

the degeneracy pressure of electrons.

1.4.2 Neutron Stars

The gravitational collapse of massive stars ends in a luminous explosion known as a

supernova. If the mass of the star (before collapse) lies in the interval of 8 to 20MJ,

the extreme conditions in the interior of the core combine electrons and protons

to form neutrons leading to the birth of neutron stars. These stars are extremely

dense compact objects with more mass than white dwarfs accumulated in a smaller

radius. They have a core of 1.4 to 3MJ which resists further collapse by resisting the

inward pull of gravity through degeneracy pressure of newly generated neutrons [79].

These celestial bodies either exist individually or have a companion to form binary

systems. The discovery of neutrons led to the prediction of neutron stars in 1934

[80] but observational evidence came later. This is because neutron stars do not emit

enough radiation and are mostly undetectable. Generally, they are spotted as rapidly

rotating pulsars which emit radiation at regular intervals ranging from milliseconds

to seconds. The first pulsar was discovered in 1967 pulsating for 0.3 seconds after

every 1.37 seconds [81]. Some stellar candidates of pulsars include 4U 1820-30, Her

X-1, PSR J1903+327, etc.
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1.4.3 Quark Stars

Quarks, the fundamental sub-atomic particles of matter, are classified into six flavors

based on their mass and charge. The six types of quarks (up, down, bottom, top,

strange and charm) occur in nature as a combination with other quarks or antiquarks.

In order to discuss the strong forces between these elementary particles, they have

been allotted red, green and blue colors while the corresponding antiquarks are as-

signed the respective anticolors. The sub-atomic particles, protons and neutrons, are

composed of up and down quarks whereas the remaining four types are produced in

high energy cosmic events. Researchers believe that there is a possibility that neutrons

fail to endure the extreme temperature and pressure in the interior region of neutron

stars. As a consequence they break down into their constituent particles known as

quarks. Witten [82] conjectured that matter consisting of comparable numbers of up,

down and strange quarks, is more stable than hadronic matter. Furthermore, the ex-

istence of strange stars can also explain the outflow of a huge amount of radiation and

energy in extremely luminous supernovae [83]. Quark stars are ultra-dense structures

with smaller radii than neutron stars. Some pulsars are classified as quark stars since

their observational data do not meet the physical description of neutron stars.

1.4.4 Black Holes

Highly massive stars (with a mass of more than 20MJ) explode in a supernova

leaving behind completely collapsed objects known as BHs. The composite matter

of the entire star is forced into a tiny space giving rise to a spacetime singularity

with an extremely strong gravitational field. An object can only escape the BH’s

gravitational pull if it is traveling at a speed greater than that of light. Black holes
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are categorized on the basis of their mass as supermassive, stellar, intermediate and

miniature. These compact objects may continue to grow in size by absorbing dust and

gas from its surrounding. The most prominent feature of these fascinating structures

is the event horizon which marks the boundary of the area around the singularity

which traps all objects, even light.

1.4.5 Matching of Interior and Exterior Spacetimes

The boundary (Σ) of an astrophysical object divides the spacetime into two different

regions, interior and exterior. The vacuum exterior of a static uncharged celestial

object is defined via Schwarzschild metric given as

ds2 =
r − 2M

r
dt2 − r

r − 2M
dr2 − r2dθ2 − r2 sin2 θdφ2, (1.4.1)

where M is the total mass of the compact structure. To ensure smoothness and

continuity of geometry at the boundary surface, the following conditions must be

satisfied at the hypersurface (ĥ = r −R = 0, R is the constant radius) [84]

(ds2
−)Σ = (ds2

+)Σ, (Kij−)Σ = (Kij+)Σ, (1.4.2)

Here, Kij denotes curvature whereas subscripts − and + represent interior and exte-

rior spacetimes, respectively. The continuity of the first fundamental form ([ds2]Σ = 0)

leads to

[H]Σ ≡ H(r → R+)−H(r → R−) ≡ H+
R −H−

R ,

for any function H(r). The above condition yields g−00(R) = g+
00(R). On the other

hand, the continuity of the second fundamental form (Kij) is equivalent to the O’Brien

and Synge [85] junction conditions, given as

[Gγδn
γnδ]Σ = 0,
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where nγ is a unit normal. Using the above equation alongside the field equations

implies [Tγδn
γnδ]Σ = 0. In the presence of the massive scalar field, two additional

conditions that must be satisfied at the boundary are

(Ψ(r)−)Σ = (Ψ(r)+)Σ, (Ψ′(r)−)Σ = (Ψ′(r)+)Σ, (1.4.3)

where prime denotes differentiation with respect to the radial co-ordinate.

1.5 Equation of State

The structure and evolution of the cosmos as well as the interior of self-gravitating

systems depend on a large number of state variables such as pressure, energy density,

temperature, etc. However, not all factors have the same impact on the mechanism

of the celestial system. Consequently, the dominant factors in a given scenario are

often related through an EoS which helps in the discussion of cosmological as well as

astrophysical setups. Barotropic EoS has been frequently used in literature to devise

different solutions. It defines a simple relationship between density (ρ) and pressure

(p) as

p = ςρ, (1.5.1)

where ς is the EoS parameter. The values of ς = 1, 1/3, 0, − 1 correspond to a

stiff fluid, radiation-dominated phase, dust and vacuum energy dominated cosmos,

respectively.

Lane and Emden provided a polytropic EoS that relates density and pressure of

matter configuration as

p = Kργ = Kρ
n+1

n ,
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where K, n and γ denote polytropic constant, polytropic index and polytropic ex-

ponent, respectively. This EoS has aided in developing the mechanical structure of

stellar systems in equilibrium via the introduction of dimensionless variables in hy-

drostatic and Poisson’s equations. It is used to model degenerate gasses in relativistic

(for γ = 4
3
) as well as non-relativistic limits (for γ = 5

3
) when K is determined via

natural constants [86]. For instance, highly massive white dwarfs are represented by

polytropes corresponding to n = 3. On the other hand, when K is a free parameter

the polytropic EoS describes the matter distribution of convective stars (n = 1.5)

or isothermal spheres (n → ∞). In the case of anisotropic fluid, the polytropic EoS

takes the form

pr = Kργ = Kρ
n+1

n , (1.5.2)

where pr denotes radial pressure.

The investigation of essential features of neutron and quark stars also requires a

suitable EoS. However, despite the existence of several models, researchers have not

agreed upon one EoS. The quark star is composed of SQM (general Wittens conjecture

[82]) made of an equal number of up, down and strange quarks and is assumed to be

the true ground state for the confined hadrons [87]. Interestingly, the neutron star

EoS failed to explain the compactness of the compact stellar objects like 4U 1820-30,

SAX J 1808.4-3658, 4U 1728-34, Her X-1, RXJ 185635-3754 and PSR 0943+10, etc.,

whereas SQM EoS (MIT Bag model) has satisfactorily explained the compactness of

the stellar candidates [88]. Recent observations of gravitational waves from binary

neutron stars collision (GW170817 [89] and GW190425 [90]), have made it possible to

estimate the range of masses and thus constrain the mass of neutron and quark stars.

These estimates are consistent with the approximations made by employing the MIT
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bag model. Thus, in the absence of a best fit, the MIT bag model is considered as

the best approximation for SQM EoS.

The MIT bag model EoS is developed by considering three types of quark matter:

strange (s), up (u) and down (d) [91]. The quarks exist in a region of spacetime

with vacuum energy density B. For massless and non-interacting quarks, the quark

pressure, corresponding to anisotropic fluid, is pFr = ρF
3

(F = u, d, s). The total

quark pressure and density are, respectively, stated as

pr =
∑
F

pF − B, ρ =
∑
F

ρF + B.

The EoS for SQM is

pr =
1

3
(ρ− 4B), (1.5.3)

which has been utilized to construct viable models of strange stars corresponding

to different values of the bag constant. The interval for massless strange quarks is

58.9MeV/fm3 ≤ B ≤ 91.5MeV/fm3 [92] whereas the massive quarks correspond to

the range 56MeV/fm3 ≤ B ≤ 78MeV/fm3 [93]. The bag constant (B) appearing in

the EoS evaluates the difference between energy density of true (global minimum of

energy with stable configuration) and false (local minimum of energy with unstable

configuration) vacuum. Moreover, increasing the bag constant lowers the quark pres-

sure ultimately affecting the stellar structure. Many people have considered the MIT

bag model as an EoS for predicting the interior distribution of quarks in strange stars

[94].
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1.6 Complexity of Self-gravitating Systems

A system is considered complex if it is composed of interconnected components and

a single formalism cannot adequately describe its essential physical properties. The

nature and degree of the relationship between different parts of the complex system are

not completely known. Consequently, a disturbance in the parameters may lead to an

unpredictable change in physical behavior. Therefore, formulating a complexity factor

that assesses the role of each parameter and relates them through a mathematical

expression proves helpful. This factor not only provides a yardstick to compare the

complexity of different systems but also establishes a criterion for the stability of

the system. The concept of complexity in physics stems from the comparison of

two systems, ideal gas and a perfect crystal. The atoms of ideal gas are randomly

arranged obeying no rules of symmetry. Hence, all its accessible states have the

same probability requiring maximum information for the description of distances

and symmetries of its cell. On the other hand, low information content is needed to

describe a perfect crystal as its probability distribution of accessible states is centered

around its symmetric structure. However, the interesting fact is that complexity

of these two contrasting structures vanishes. Earlier efforts of defining complexity

were based on the idea of arrangement of atoms, information contained in a small

piece and disequilibrium (how various probabilistic states differ from the equiprobable

distribution) of the system. Obviously, under this definition, the two physical models

were treated differently in terms of complexity.

Lopez-Ruiz et al. [95] built upon the previous definitions by including the prod-

uct of system disequilibrium and information. The new definition allocated the same

complexity to, both, the ideal gas and the perfect crystal. A complexity factor for
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self-gravitating systems has already been developed on the basis of the definition pro-

posed by Lopez-Ruiz et al. by interpreting probability distribution as energy density.

Moreover, the complexity of compact stars (neutron stars and white dwarfs) has been

evaluated using this definition [6]. However, this definition only includes the energy

density of the fluid and neglects other important features (pressure, dissipation, tem-

perature, etc.) which play a significant role in structure formation. Recently, a new

technique was adopted to compute complexity for a static sphere in terms of pressure

anisotropy and density inhomogeneity in the framework of GR [2]. Moreover, the

devised factor vanished for a homogeneous and isotropic fluid. Structure scalars play

a significant role in determining the complexity factor according to the new criterion.

In order to incorporate the characteristics of the comoving congruence, invariants

via orthogonal splitting of the Riemann tensor (Rγβδα) are obtained. These invari-

ants are known as structure scalars. For this purpose, the elements of splitting are

introduced as [96]

Yγδ = Rγβδαvβvα, (1.6.1)

Zγδ =∗ Rγβδαvβvα =
1

2
ηγβµεRµε

δαvβvα, (1.6.2)

Xγδ =∗ R∗
γβδαvβvα =

1

2
ηµε

γβR∗
µεδαvβvα, (1.6.3)

where R∗
γβδα = 1

2
ηγβµεRµε

δα is the dual tensor and ηγβµε = vγεβµε is the Levi-Civita

tensor (with εναβ representing the permutation symbol). The structure scalars are

derived by decomposing the tensors Xγδ, Yγδ and Zγδ into their trace (XT = Xγ
γ , YT =
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Y γ
γ ) and trace-free parts (XTF , YTF ) as

Xγδ =
XT

3
hγδ + X<γδ>, (1.6.4)

Yγδ =
YT

3
hγδ + Y<γδ>, (1.6.5)

Z =
√

ZγδZγδ, (1.6.6)

where

X<γδ> = hβ
γhα

δ

(
Xαβ − XT

3
hαβ

)
, (1.6.7)

Y<γδ> = hβ
γhα

δ

(
Yαβ − YT

3
hαβ

)
. (1.6.8)

These structure scalars contain important information regarding different aspects of

the fluid distribution. Thus, they play a key role in determining the complexity of

any physical setup.

1.7 Gravitational Decoupling Approach

In order to explore the complex nature of the cosmos as well as self-gravitating sys-

tems, analytical solutions of the field equations are required. Hence, the task of

constructing well-behaved solutions which adequately describe cosmic scenarios has

attracted the attention of many researchers. Ovalle [24] developed a technique that

not only simplifies the extraction of solutions from non-linear field equations but

also generates anisotropic solutions. This approach is applied in accordance with the

following steps.

• The domain of a simple seed source (vacuum, dust or isotropic fluid) is extended

by adding a scalar, vector or tensor source (Θγδ) as

T
(m)
γδ + %Θγδ, (1.7.1)
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where the dimensionless parameter % tracks the strength of the coupling between

the two matter sources.

• The addition of a new source increases the degrees of freedom. In order to reduce

the number of unknowns, the decoupling technique is applied to disintegrate the

system of field equations into two sets. For this purpose, either of the following

two schemes can be adopted.

1. MGD Method

The two matter sources are separated by linearly transforming the radial

metric component only. The fluid distributions affect each other gravita-

tionally only which leads to the conservation of individual sources.

2. EGD Method

The decomposition of field equations is achieved by applying transforma-

tions on g00 and g11. In this scenario, the fluids exchange energy and are

not conserved individually. However, the overall system obeys the principle

of conservation of matter and energy.

In both cases, each set of equations incorporates the effect of only one source.

• The array corresponding to the seed source is determined with the help of a well-

behaved solution which reduces the number of unknown parameters. On the

other hand, constraints on the additional source are applied to obtain a solution

of the Θ-sector. A combination of both solutions generates a new solution of

the field equations.

Thus, the method of decoupling transforms a simple seed source into intricate matter

distributions by successively incorporating complex sources. Moreover, applying the
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above method in reverse order yields simplified analogs of complex solutions [97].

1.8 Embedding Classes

In four-dimensional spacetime, the Riemann tensor describes the geometry of the

gravitational source. An n-dimensional manifold V2 embeds an m-dimensional man-

ifold V1 (m < n), if the injective continuous mapping f : V1 → V2 provides a home-

omorphism between V1 and f(V1). Moreover, the manifold V1 belongs to embedding

class-w, if it can be embedded in a flat space of m+w dimensions (where m+w is the

lowest dimension in which V1 can be embedded). In 1948, Karmarkar [98] showed that

a four-dimensional sphere S can generally be immersed in six-dimensional Euclidean

space, i.e., it belongs to embedding class-two. Further, he built on Eisenhart’s [99]

work and derived a condition for the embedding of S in five-dimensional flat space-

time.

Eisenhart showed that if there exists a tensor Wγδ (with Wγδ = Wδγ) that satisfies

the Gauss-Codazi equations

Rαδβυ = 2eWα[βWυ]δ and Wα[δ;β] − Γλ
δβWαλ + Γλ

α[δWβ]λ = 0,

then it is possible to embed an m-dimensional space in a pseudo-Euclidean space with

(m + 1) dimensions. Here the coefficients of the second differential form are denoted

by Wαδ whereas e = ±1. Karmarkar derived a constraint that allows the embedding

of four-dimensional spherical spacetime in a five-dimensional flat space as

R1212R0303 +R1202R1303 −R2323R0101 = 0. (1.8.1)

However, a spacetime with R2323 = 0 fails to adhere to Karmarkar’s condition. An
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example of such a line element is the conformally flat fluid configuration with zero

density.

1.9 Physical Acceptability of Models

The solution of the field equations must fulfil certain conditions to be physically rele-

vant. As the matter inside a stellar model is concentrated in the core, the density and

pressure of a well-behaved solution must be maximum at the center with a monoton-

ically decreasing trend towards the surface of the star. Moreover, the solution must

be consistent with the viability and stability conditions discussed below.

1.9.1 Viability Conditions

The universe is a well-structured yet incomprehensible system composed of heavenly

bodies and other mysterious components. The key to understanding the evolution of

the vast cosmos lies in the study of the arrangement as well as the physical behavior

of celestial objects. In this regard, the concept of relativity played a remarkable

role in providing elementary insights into the mechanism governing the interior of

astronomical bodies. The solutions of the non-linear field equations describe the

intricate nature of cosmic objects. However, the non-linear differential equations may

yield physically irrelevant solutions as well. It is necessary for the study of cosmic

structures that their interior consists of normal matter, i.e., energy and momentum

must be well-defined at every point inside. For this purpose, constraints on the

energy-momentum tensor, termed as energy conditions, are imposed.

The energy bounds emerge from the Raychaudhuri equation when the attractive
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nature of gravity and non-negativity of energy density are taken into account. The

Raychaudhuri equation is used to explain the evolution of the expansion scalar with

time corresponding to the congruence of timelike and null geodesics respectively, as

dϑ

dτ
= −ϑ2

3
+ wγδw

γδ − σγδσ
γδ −Rγδv

γvδ, (1.9.1)

dϑ

dτ
= −ϑ2

2
+ wγδw

γδ − σγδσ
γδ −Rγδl

γlδ, (1.9.2)

where the rotation of the curves is described by the vorticity tensor wγδ and lγ repre-

sents the vector field describing null geodesics. The congruence of geodesics diverges if

dϑ
dτ

> 0 and converges if dϑ
dτ

is negative. As gravity compels the geodesics to converge,

therefore dϑ
dτ

< 0. Assuming that wγδ = 0 and neglecting the quadratic terms involv-

ing the shear tensor (as σγδσ
γδ ≥ 0), Eqs.(1.9.1) and (1.9.2) lead to ϑ = −τRγδv

γvδ

and ϑ = −τRγδl
γlδ, respectively. Thus, the following constraints are imposed on

Ricci tensor

Rγδv
γvδ ≥ 0, Rγδl

γlδ ≥ 0. (1.9.3)

Since the curvature of spacetime is linked to the matter distribution via field

equations, therefore the above inequalities yield

(Tγδ − gγδT

2
)vγvδ ≥ 0, (Tγδ − gγδT

2
)lγlδ ≥ 0.

For anisotropic configuration, these conditions are classified into four categories given

below

NEC: ρ + pr ≥ 0, ρ + p⊥ ≥ 0, (1.9.4)

WEC: ρ ≥ 0, ρ + pr ≥ 0, ρ + p⊥ ≥ 0, (1.9.5)

SEC: ρ + pr ≥ 0, ρ + p⊥ ≥ 0, ρ + pr + 2p⊥ ≥ 0, (1.9.6)

DEC: ρ± pr ≥ 0, ρ± p⊥ ≥ 0. (1.9.7)
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The incompatibility of a physical model with the NEC means that the model disobeys

all energy conditions which indicates the presence of exotic matter.

1.9.2 Stability Analysis

A stable object can restore its equilibrium after perturbations caused by external forces.

In astrophysics, stability analysis of stellar structure is of great importance as it de-

termines the evolution of the physical models. For instance, the formation of compact

stars is possible only when the collapsing object achieves a new equilibrium position

that can sustain the influence of external fluctuations and irregularities. Thus, it

is essential to inspect the solutions representing self-gravitating systems for stabil-

ity. Different criteria have been developed to inspect the stability of an astrophysical

setup.

Speed of sound helps to determine the stability of anisotropic stellar models.

The sound wave propagates through different media at different rates. However, its

speed never exceeds that of light. This phenomenon is incorporated in the causality

condition as 0 < v2
r < 1 and 0 < v2

⊥ < 1, where v2
r = dpr

dρ
and v2

⊥ = dp⊥
dρ

represent

radial and tangential velocities, respectively and p⊥ is the tangential pressure [100].

Abreu et al. [101] used Herrera’s cracking approach and proposed another criterion

which states that a system free from cracking is potentially stable. A system cracks

when the inward directed radial forces are unable to maintain their direction under

external perturbations. A mathematical expression for this approach reads

0 < |v2
⊥ − v2

r | < 1.

Another commonly used tool to examine the stability of relativistic spherical sys-

tems is the adiabatic index. This indicates stiffness of the EoS for a specific energy
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density by connecting the EoS with the internal structure of the sphere. Chan-

drasekhar [102] studied the dynamical stability of relativistic stars against infinitesi-

mal radial adiabatic perturbation. Heintzmann and Hillebrandt [103] found that an

anisotropic compact object will achieve stability if the adiabatic index is greater than

4
3

everywhere inside the configuration. The expression for the adiabatic index for an

anisotropic system is given by [103]

Γ =
pr + ρ

pr

dpr

dρ
=

pr + ρ

pr

v2
r .



Chapter 2

Complexity of Sphere in
Self-interacting Brans-Dick Gravity

This chapter aims to derive a definition of complexity for a static as well as a dy-

namic spherical system in the background of SBD gravity. We measure complexity

of the structure in terms of inhomogeneous energy density, anisotropic pressure and

massive scalar field. For this purpose, we formulate structure scalars by orthogonally

splitting the Riemann tensor. We also evaluate the vanishing complexity condition to

obtain solutions for two static stellar models. Moreover, we show that self-gravitating

models collapsing homologously follow the simplest mode of evolution. Furthermore,

we demonstrate the effect of scalar field on the complexity and evolution of non-

dissipative as well as dissipative systems. The criteria under which the system devi-

ates from the initial state of zero complexity is also discussed.

The chapter is arranged as follows. We formulate the complexity condition for

a static sphere through structure scalars in the next section. In section 2.2, the

dynamics of a spherical self-gravitating system is incorporated in the definition of

complexity corresponding to the sign convention (−, +, +, +). The results of this

chapter have been published [104, 105].

34
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2.1 SBD Field Equations for Static Sphere

We consider a static sphere bounded by a hypersurface defined by

ds2 = eλ(r)dt2 − eχ(r)dr2 − r2(dθ2 + sin2 θdφ2). (2.1.1)

The interior of the sphere is filled with anisotropic fluid described by

T
γ(m)
δ = ρvγvδ − Phγ

δ + Πγ
δ , (2.1.2)

where the anisotropy in pressure is represented by P and Πγ
δ which satisfy the follow-

ing relations

Πγ
δ = Π(sγsδ +

hγ
δ

3
), P =

1

3
(pr + 2p⊥), Π = pr − p⊥ = −∆,

where sγis a radial four vector. Moreover, vγ = (e
−λ
2 , 0, 0, 0) and sγ = (0, e

−χ
2 , 0, 0)

satisfy the following conditions

sγvγ = 0, sγsγ = −1.

Using Eqs.(1.1.6)-(1.1.9) and (2.1.1), the field equations are obtained as

1

r2
− e−χ

(
1

r2
− χ′

r

)
=

1

Ψ

(
ρ + T 0Ψ

0

)
, (2.1.3)

− 1

r2
+ e−χ

(
1

r2
+

λ′

r

)
=

1

Ψ

(
pr − T 1Ψ

1

)
, (2.1.4)

e−χ

4

(
2λ′′ + λ′2 − χ′λ′ + 2

λ′ − χ′

r

)
=

1

Ψ

(
p⊥ − T 2Ψ

2

)
, (2.1.5)

where

T 0Ψ
0 = e−χ

[
Ψ′′ +

(
2

r
− χ′

2

)
Ψ′ +

ωBD

2Ψ
Ψ′2 − eχ V (Ψ)

2

]
, (2.1.6)

T 1Ψ
1 = e−χ

[(
2

r
+

λ′

2

)
Ψ′ − ωBD

2Ψ
Ψ′2 − eχ V (Ψ)

2
)

]
, (2.1.7)
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T 2Ψ
2 = e−χ

[
Ψ′′ +

(
1

r
− χ′

2
+

λ′

2

)
Ψ′ +

ωBD

2Ψ
Ψ′2 − eχ V (Ψ)

2

]
. (2.1.8)

The wave equation (1.1.8) takes the form

2Ψ = −e−χ

[(
2

r
− χ′

2
+

λ′

2

)
Ψ′ + Ψ′′

]

=
1

3 + 2ωBD

[
ρ− 3P +

(
Ψ

dV (Ψ)

dΨ
− 2V (Ψ)

)]
. (2.1.9)

The spacetime is divided by the hypersurface into two different regions, interior

and exterior. The exterior region is taken to be the Schwarzschild spacetime. To

ensure smoothness and continuity of geometry at the boundary surface (r = rΣ =

constant), the following conditions must be satisfied

(eλ)Σ = (1− 2M

r
)Σ,

(e−χ)Σ = (1− 2M

r
)Σ,

(pr)Σ = 0.

The total energy within a sphere of radius r is computed through the Misner-Sharp

formula which yields

m =
r

2
R3

232 =
r

2
(1− e−χ) =

1

2

∫
r2T

0(eff)
0 dr. (2.1.10)

The Tolman-Oppenheimer-Volkoff equation is obtained through the field equations

and mass function as

T
1′(eff)
1 =

2m− r3T
1(eff)
1

2r(r − 2m)
(T

0(eff)
0 − T

1(eff)
1 ) +

2

r
(T

2(eff)
2 − T

1(eff)
1 ). (2.1.11)

The mass function can be expressed in terms of the Weyl tensor which evaluates the

effect of tidal forces and appears as the traceless part in the splitting of Riemann

tensor as

Rγ
αβσ = Cγ

αβσ +
Rγ

β

2
gασ − Rαβ

2
δγ
σ +

Rασ

2
δγ
β −

Rγ
σ

2
gαβ − 1

6
(δγ

βgασ − gαβδγ
σ), (2.1.12)
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where Cγ
αβσ is the Weyl tensor.

The Weyl tensor is decomposed into trace-free electric (Eαβ) and magnetic (Hαβ)

parts by using the four velocity of the observer. In the case of spherical symmetry,

these tensors reduce to

Eγδ = Cγαδσv
αvσ, (2.1.13)

Hγδ = 0, (2.1.14)

where

Cγνκσ = (gγναβgκσδγ − ηγναβηκσδγ)v
αvδEβγ,

gγναβ = gγαgνβ − gγβgνα. (2.1.15)

Substituting the Weyl tensor in Eq.(2.1.13), it follows that

Eγδ = ε(sγsδ +
hγδ

3
), (2.1.16)

with

ε =
e−χ

4

(
−λ′′ − λ′2 − χ′λ′

2
+

λ′ − χ′

r
+ 2

1− eχ

r2

)
, (2.1.17)

Eγ
γ = 0 = Eγδv

δ.

Through Eqs.(1.1.7) and (2.1.10), we obtain the relation

m =
r3

6
(T

0(eff)
0 − T

2(eff)
2 + T

1(eff)
1 ) +

εr3

3
, (2.1.18)

leading to a definition for ε given by

ε = − 1

2r3

∫ r

0

r3T
0′(eff)
0 dr +

1

2
(T

2(eff)
2 − T

1(eff)
1 ). (2.1.19)
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This demonstrates the relationship between the Weyl tensor, inhomogeneous en-

ergy density and anisotropic pressure in the presence of scalar field. Substituting the

above equation in (2.1.18), the mass function can be rewritten as

m(r) =
r3

6
T

0(eff)
0 − 1

6

∫ r

0

r3T
0′(eff)
0 dr. (2.1.20)

It is observed that the first term on the right side gives the value of mass func-

tion when the energy density is homogeneous whereas the second term exhibits the

change induced by the inhomogeneous energy density. We now find the total mass

of the spherical system enclosed within the boundary rΣ using an alternate definition

proposed by Tolman as

mT =
1

2

∫ r

0

r2e
λ+χ

2 (T
0(eff)
0 − T

1(eff)
1 − 2T

2(eff)
2 )dr. (2.1.21)

Inserting field Eqs.(2.1.3)-(2.1.5) in (2.1.21), the Tolman mass reduces to

mT = e
λ−χ

2 λ′
r2

2
. (2.1.22)

Using the above equation with (2.1.4), the final expression for Tolman mass turns out

to be

mT = e
λ+χ

2 (m− r3

2
T

1(eff)
1 ). (2.1.23)

The gravitational acceleration is calculated by using four acceleration as

a = −sγaγ =
e−

χ
2 λ′

2
,

which, in accordance with Eq.(2.1.23), leads to

a =
e−

λ
2 mT

r2
.
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This shows that the Tolman mass can also be treated as the active gravitational mass.

After simplifications [106], the Tolman mass can be re-expressed as

mT = (mT )Σ(
r

rΣ

)3 − r3

∫ rΣ

r

e
λ+χ

2

[
1

r
(T

1(eff)
1 − T

2(eff)
2 ) +

1

2r4

∫ r

0

r3T
0′(eff)
0 dr

]
dr,

(2.1.24)

or equivalently

mT = (mT )Σ(
r

rΣ

)3 − r3

∫ rΣ

r

e
λ+χ

2

r

(
T

1(eff)
1 − T

2(eff)
2

2
− ε

)
dr. (2.1.25)

2.1.1 Structure Scalars

Using the field equations in Eq.(2.1.12), the Riemann tensor takes the form

Rαδ
βγ = Cαδ

βγ + 2T
(eff)[α
[β δ

δ]
γ] + T (eff)

(
1

3
δα
[βδδ

γ] − δ
[α
[β δ

δ]
γ]

)
, (2.1.26)

which is split using Eqs.(1.1.9), (2.1.2) and (2.1.15) as

Rαδ
βγ = Rαδ

(I)βγ +Rαδ
(II)βγ +Rαδ

(III)βγ +Rαδ
(IV )βγ +Rαδ

(V )βγ, (2.1.27)

where

Rαδ
(I)βγ =

2

Ψ

[
ρv[αv[βδ

δ]
γ] − Ph

[α
[βδ

δ]
γ] + (ρ− 3P )(

1

3
δα
[βδδ

γ] − δ
[α
[β δ

δ]
γ])

]
, (2.1.28)

Rαδ
(II)βγ =

2

Ψ
Π

[α
[βδ

δ]
γ], (2.1.29)

Rαδ
(III)βγ = 4v[αv[βE

δ]
γ] − εαδ

γ εβγλE
γλ, (2.1.30)

Rαδ
(IV )βγ =

2

Ψ

[
Ψ

[,α
[;βδ

δ]
γ] +

ωBD

Ψ
Ψ,[αΨ,[βδ

δ]
γ] −

(
2Ψ +

ωBD

2Ψ
Ψ,γΨ

,γ +
V (Ψ)

2

)

× δ
[α
[β δ

δ]
γ]

]
, (2.1.31)

Rαδ
(V )βγ =

1

Ψ

[(
−ωBD

Ψ
Ψ,γΨ

,γ − 2V (Ψ)− 32Ψ
) (

1

3
δα
[βδδ

γ] − δ
[α
[β δ

δ]
γ]

)]
. (2.1.32)
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The three tensors Xαβ, Yαβ and Zαβ (expressed in Eqs.(1.6.1)-(1.6.3)) are evaluated

using the above definition of the Riemann tensor as

Xγδ =
1

Ψ

(
ρhγδ

3
+

Πγδ

2

)
− Eγδ − 1

4Ψ
(Ψ,σ

;σhγδ − 2Ψ,γ;σvδv
σ

− ωBD

4Ψ2
Ψ,γΨ,δ +

5hγδ

12Ψ
V (Ψ), (2.1.33)

Yγδ =
1

Ψ

(
(ρ + 3P )hγδ

6
+

Πγδ

2

)
+ Eγδ +

1

2Ψ
(Ψ,γ;δ −Ψ,γ;σvδv

σ

− Ψ,σ;δvγv
σ + Ψ,σ;σvσv

σgγδ) +
ωBD

2Ψ2
Ψ,γΨ,δ − hγδ

6Ψ

(ωBD

Ψ
Ψ,σΨ,σ

− V (Ψ)) , (2.1.34)

Zγδ =
1

4Ψ
(ηγαδβΨ,β

;σv
αvσ). (2.1.35)

Now, the structure scalars [96] are derived by employing Eqs.(1.6.4)-(1.6.8) as

XT = Xm
T + XΨ

T =
1

4Ψ
(ρ)− 1

4Ψ

(
52Ψ− 2Ψ,γ;δv

γvδ − ωBD

Ψ
Ψ,αΨ,α

+ 5V (Ψ)) , (2.1.36)

XTF = Xm
TF + XΨ

TF =
1

Ψ
(
Π

2
− εΨ) +

1

2Ψ

(
2Ψ− ωBD

Ψ
Ψ,αΨ,α

− Ψ,γ;δv
γvδ

)
, (2.1.37)

YT = Y m
T + Y Ψ

T =
1

2Ψ
(ρ + 3pr − 2Π) +

1

2Ψ

(
2Ψ + 2Ψ,γ;δv

γvδ

+ V (Ψ)) , (2.1.38)

YTF = Y m
TF + Y Ψ

TF =
1

Ψ
(
Π

2
+ εΨ) +

1

2Ψ

(
2Ψ +

ωBD

Ψ
Ψ,αΨ,α

− Ψ,γ;δv
γvδ

)
. (2.1.39)

It follows from the above equations that under the influence of scalar field, the total

energy density within the system is determined by XT whereas the scalar YT describes

the effects of principal stresses produced by inhomogeneous energy density. Using
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Eqs.(2.1.37) and (2.1.39), we have

Xm
TF + Y m

TF =
2Π

Ψ
and Y Ψ

TF −XΨ
TF =

ωBD

Ψ2
Ψ,αΨ,α,

which shows that local anisotropy in pressure is found by Xm
TF and Y m

TF whereas the

coupling parameter is determined by XΨ
TF and Y Ψ

TF . From Eqs.(2.1.25) and (2.1.39),

it is observed that YTF appears in the expression for Tolman mass as

mT = (mT )Σ

(
r

rΣ

)
+ r3

∫ rΣ

r

e
λ+χ

2

r
(−Y m

TF + Y Ψ
TF ) +

e
λ−χ

2 Ψ′

2rΨ
dr. (2.1.40)

This indicates that YTF gauges the impact of anisotropic pressure and inhomogeneous

density on the active gravitational mass.

2.1.2 Complexity Factor for Static Sphere

In this section, we formulate the complexity factor which is governed by the physical

features such as energy density, pressure, heat flux. In general, a system is said to be

least complex if its physical structure is completely described by a small number of

factors. For example, a spherical object filled with dust fluid has only one necessary

ingredient which is the energy density of the fluid whereas, the inclusion of isotropic

pressure to dust fluid leads to a slightly more complex system known as a perfect

fluid. In GR, the complexity factor depends on the inhomogeneous and anisotropic

distribution [2]. However, in our work, the complexity is determined by the scalar field

and self-interacting scalar potential in addition to inhomogeneous energy density and

anisotropic pressure. The complexity of this system can, therefore, be completely

described by the structure scalar YTF , since it is not only a relation between the

sources of complexity but also a measure of how they affect the Tolman mass. Setting
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YTF = 0 leads to vanishing complexity factor condition which establishes the following

relation among the physical variables

Π

Ψ
=

1

2r3

∫ r

0

r3T
0′(eff)
0 dr +

e−χΨ′

2rΨ
. (2.1.41)

It must be noted that the complexity factor vanishes for isotropic and homogeneous

matter distribution in GR. However, in the context of SBD gravity, an additional

condition e−χΨ′
2rΨ

= 0 is required to obtain a complexity-free structure. Equation

(2.1.41) can be used as a restraint for formulating solution of the field equations.

Gokhroo and Mehra [107] obtained a physically reasonable interior solution for

an anisotropic sphere with variable energy density to explain the larger red-shifts

of quasi-stellar objects. Using their assumptions, we illustrate the behavior of self-

gravitating system for the condition of vanishing complexity. The assumed energy

density (maximum at the center and decreasing along the radius) is given by

ρ = ρ0(1− r2

r2
Σ

), (2.1.42)

which leads to the mass function

m(r) =
1

2

[
ρ0r

3

3Ψ

(
1− 3k1r

2

5r2
Σ

)
+

∫ r

0

r2

Ψ
T 0Ψ

0 dr

]
. (2.1.43)

Substituting the above equation in (2.1.10), the expression for the metric function

turns out to be

e−χ =
1

Ψ

(
1− βr2 +

3k1βr4

5r2
Σ

)
−

∫ r

0

r2

Ψ
T 0Ψ

0 dr, (2.1.44)

where k1 ∈ (0, 1) and β = ρ0

3
. Using Eqs.(2.1.4) and (2.1.5), it follows that

1

Ψ
{Π + e−χ[Ψ′′ + Ψ′(−χ′

2
+

1

r
) +

ωBD

Ψ
Ψ′2]} = e−χ[

−λ′′

2
− λ′2

4
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+
λ′

2r
+

1

r2
+

χ′

2
(
λ′

2
+

1

r
)]− 1

r2
. (2.1.45)

Introducing new variables as

eλ = e
R
(2z− 2

r
)dr, (2.1.46)

e−χ = y(r) =
1

Ψ

(
1− βr2 +

3k1βr4

5r2
Σ

)
−

∫ r

0

r2

Ψ
T 0Ψ

0 dr, (2.1.47)

such that Eq.(2.1.45) reduces to

(
− 2Ψ

Ψz + Ψ′

)(
Π

2Ψ
+

1

r2

)
= y′ + y

(
2Ψ

Ψz + Ψ′

)[
z2 − 3z

r
+ z′ +

2

r2

+
1

Ψ

(
Ψ′′ +

Ψ′

r
+

ωBD

Ψ
Ψ′2

)]
, (2.1.48)

with the value of Π provided by Eqs.(2.1.41) and (2.1.42). Hence, the metric can be

expressed in terms of the new variables as

ds2 = −e
R
(2z− 2

r
)dr +

ξ∫ (− 2Ψ
Ψz+Ψ′

) (
Π
2Ψ

+ 1
r2

)
ξdr + C

dr2 + r2dθ2 + r2 sin2 θdφ2,

where C is a constant of integration and

ξ = exp

{∫ (
2Ψ

Ψz + Ψ′

) [
z2 − 3z

r
+ z′ +

2

r2

+
1

Ψ

(
Ψ′′ +

Ψ′

r
+

ωBD

Ψ
Ψ′2

)]
dr

}
.

The energy density, radial and tangential pressure in the presence of scalar field take

the form

ρ =
2Ψm′

r2
− (1− 2m

r
)

[(
2

r
+

m′

(r − 2m)

)
Ψ′ + Ψ′′ − ωBD

2Ψ
Ψ′2

]

+
V (Ψ)

2
,

pr =
Ψ

2r2

[
−1 +

m

r
+ z(r − 2m)

]
− (1− 2m

r
)

[(
−1

r
− z

)
Ψ′ + Ψ′′
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+
ωBD

2Ψ
Ψ′2

]
− V (Ψ)

2
,

and

p⊥ =
Ψ

2

[
(

1

r2
+ z2 + z′ − z

r
) +

z

2
(
m

r2
− m′

r
)

]
− (1− 2m

r
)

×
[(

z − m′

(r − 2m)

)
Ψ′ −Ψ′′ − ωBD

2Ψ
Ψ′2

]
− V (Ψ)

2
.

We now formulate a possible solution with zero complexity by adopting the poly-

tropic EoS (1.5.2). Introducing new variables

α =
pr0

ρ0

, r =
ξ

A
, A2 =

ρ0

2α(n + 1)
, ψn =

ρ

ρ0

, µ(ξ) =
2m(r)A3

ρ0

,

lead to the following form of Eqs.(2.1.9)-(2.1.11)

Ψ =
−

[
1− 2(n+1)αµ

ξ

]−1

(3 + 2ωBD)

{∫
ρ0

(2Aξ)2

[
µ +

αξ3ψn+1

2Ψ
− ξ3TΨ1

1

2ρ0Ψ

]

− ρ0µ

2(Aξ)2

[
1− 2(n + 1)αµ

ξ

]−1

dξ

[
ρ0ψ

n(1− 3Kψρ
1
n
0 ) + Ψ

dV (Ψ)

dΨ

− 2V (Ψ)]} , (2.1.49)

dµ

dξ
=

ξ2ψn

Ψ
+

ξ2

Ψρ0

TΨ0
0 , (2.1.50)

dψ

dξ
=

ψ−n

α(n + 1)

dTΨ1
1

dξ
−

{
ξ2

2

[
1− 2(n+1)αµ

ξ

1 + αψ

]}−1 [(
µ +

αξ3ψn+1

2Ψ

− ξ3

2ρ0Ψ
TΨ1

1

)(
1 +

TΨ0
0 − TΨ1

1

Ψ

)
+

ξ

n + 1

(
1− 2(n+1)αµ

ξ

1− αψ

)

×
(

ψ−n

pr0

Π +
Υ

α

)]
, (2.1.51)

where

TΨ0
0 =

[
1− 2µα(n + 1)

ξ

] [
Ψ′′ +

ωBDΨ′2

2Ψ
+

2AΨ′

ξ

]
+

ρ0µΨ′

2Aξ2
+

V (Ψ)

2
,

TΨ1
1 =

(
4

1 + rΨ′

){
Ψ′

4Aξ2

(
ρ0µ + ξ3Kψn+1ργ

0

)
+

[
1− 2

µα(n + 1)

ξ

]
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×
(

2AΨ′

ξ
− ωBDΨ′2

2Ψ

)
− V (Ψ)

2

}
,

Υ =

[
1− 2µα(n + 1)

ξ

] [
Ψ′′ +

ωBDΨ′2

2Ψ
− AΨ′

ξ

]
+

ρ0µΨ′

2Aξ2
.

The subscript 0 indicates the behavior of respective quantities at the center. The

vanishing complexity condition in terms of the new variables is

6Π

nρ0

+
2ξ

nρ0

dΠ

dξ
= ξψn−1dψ

dξ
+

ξ

nρ0

dTΨ0
0

dξ
+

ρ0µA2

2Ψξ

dΨ

dξ
+

ξA2

Ψ
(2.1.52)

×
[
1− 2µα(n + 1)

ξ

](
dΨ

dξ
+

A

2

d2Ψ

dξ2

)
, (2.1.53)

where

dTΨ0
0

dξ
=

[
2µα(n + 1)

ξ2

](
A2d2Ψ

dξ2
+

AωBD

Ψ

dΨ

dξ
+

2A2

ξ

dΨ

dξ

)

+

[
1− 2µα(n + 1)

ξ

] [
A3d3Ψ

dξ3
+

2ωBDA2

Ψ

dΨ

dξ
d2Ψdξ2 − ωBDA2

Ψ2

×
(

dΨ

dξ

)2

− 2A2

ξ2

dΨ

dξ
+ 2A3d2Ψ

dξ2

]
+

ρ0µ

2ξ3

(
ξ
d2Ψ

dξ2
− dΨ

dξ

)

+
ξ

2nρ0

dV (Ψ)

dΨ

dΨ

dξ
.

The system of four equations (2.1.49)-(2.1.53) in five unknowns (Π, µ, ψ, Ψ, V (Ψ))

gives us the freedom to fix one of the unknowns. Hence, the solutions of the system will

vary according to the choice of V (Ψ). Further, the obtained solutions can be checked

for viability and stability through energy conditions and Chandrasekhar technique

[108], respectively.
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2.2 SBD Field Equations for Non-static Sphere

We consider a collapsing sphere bounded by a hypersurface represented in comoving

co-ordinates as

ds2 = −A2(t, r)dt2 + B2(t, r)dr2 + R2(t, r)(dθ2 + sin2 θdφ2). (2.2.1)

The energy density, radial/transverse pressures and heat flux (qγ) of the anisotropic

collapsing sphere are specified by the following energy-momentum tensor

T
(m)
γδ = (ρ + p⊥)vγvδ + p⊥gγδ + (pr − p⊥)sγsδ + qγvδ + vγqδ,

where sγ = (0, B, 0, 0). The four velocity (vγ = (−A, 0, 0, 0)) and heat flux (qγ =

(0, qB, 0, 0)) obey the following relations

vγvγ = −1, vγqγ = 0.

In order to simplify the calculations, we rewrite the energy-momentum tensor as

T
(m)
γδ = ρvγvδ + Phγδ + Πγδ + q(sγvδ + vγsδ). (2.2.2)

The field equations are obtained as

1

Ψ
(A2ρ− TΨ

00) =
Ṙ

(
2Ḃ
B

+ Ṙ
R

)

R
−

A2
(

R′2
R2 − 2B′R′

BR
− B2

R2 + 2R′′
R

)

B2
, (2.2.3)

1

Ψ
(−qAB + TΨ

01) = −2A′Ṙ
AR

+
2ḂR′

BR
− 2Ṙ′

R
, (2.2.4)

1

Ψ
(B2pr + TΨ

11) = −
B2

(
2R̈
R
− Ṙ

�
2Ȧ
A
− Ṙ

R

�

R

)

A2
+

R′ (2A′
A

+ R′
R

)

R
− B2

R2
, (2.2.5)

1

Ψ
(R2pr + TΨ

22) = −
R2

(
− Ȧ

�
Ḃ
B

+ Ṙ
R

�

A
+ ḂṘ

BR
+ B̈

B(t,r)
+ R̈

R

)

A2
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+

R2

(
R′
�

A′
A
−B′

B

�

R
− A′B′

AB
+ A′′

A
+ R′′

R

)

B2
, (2.2.6)

where

TΨ
00 = −Ψ̇

(
2Ȧ

A
+

Ḃ

B
+

2Ṙ

R

)
+

A2Ψ′ (B′
B

+ 2R′
R

)

B2
+

ωBD

(
A2Ψ′2

B2 + Ψ̇2
)

2Ψ

+
A2Ψ′′

B2
+

1

2
V (Ψ)A2,

TΨ
01 = −A′Ψ̇

A
− ḂΨ′

B
+

ωBD

Ψ
Ψ̇Ψ′ + Ψ̇′,

TΨ
11 = −Ψ′

(
A′

A
+

2B′

B
+

2R′

R

)
+

B2Ψ̇
(

Ȧ
A

+ 2Ṙ
R

)

A2
+

ωBD

(
B2Ψ̇2

A2 + Ψ′2
)

2Ψ

+
B2Ψ̈

A2
− 1

2
V (Ψ)B2,

TΨ
22 = −R2Ψ′ (A′

A
+ B′

B
+ R′

R

)

B2
+

R2Ψ̇
(

Ȧ
A

+ Ḃ
B

+ Ṙ
R

)

A2
−

ωBDR2
(

Ψ′2
B2 − Ψ̇2

A2

)

2Ψ

+
R2Ψ̈

A2
− R2Ψ′′

B2
− 1

2
V (Ψ)R2.

Here . denotes derivative with respect to the temporal co-ordinate. The conservation

equations corresponding to the anisotropic matter source are expressed as

Ṫ
0(eff)
0 + (T

0(eff)
0 − T

1(eff)
1 )

Ḃ

B
+ 2(T

0(eff)
0 − T

2(eff)
2 )

Ṙ

R
+ (T

1(eff)
0 )′

+(T
1(eff)
0 )(

A′

A
+

B′

B
+ 2

R′

R
) = 0, (2.2.7)

Ṫ
1(eff)
0 + (T

1(eff)
1 )′ + T

1(eff)
0 (

Ȧ

A
+

Ḃ

B
+ 2

Ṙ

R
)− (T

0(eff)
0 − T

1(eff)
1 )

A′

A

+2(T
1(eff)
1 − T

2(eff)
2 )

R′

R
= 0, (2.2.8)

whereas the wave equation takes the following form

2Ψ =
Ψ′

(
A′
A
− B′

B
+ 2R′

R)

)

B2
−

Ψ̇
(
−Ȧ
A

+ Ḃ
B

+ 2Ṙ
R

)

A2
− Ψ̈

A2
+

Ψ′′

B2
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=
1

3 + 2ωBD

[
−ρ + 3P +

(
Ψ

dV (Ψ)

dΨ
− 2V (Ψ)

)]
. (2.2.9)

Kinematical quantities (such as four acceleration, expansion scalar and shear tensor)

are used to study the motion of cosmic objects. These quantities for the considered

setup turn out to be

a1 =
A′

A
, a2 = aγa

γ = (
A′

AB
)2, (2.2.10)

ϑ =
1

A
(
Ḃ

B
+ 2

Ṙ

R
), (2.2.11)

σ11 =
2

3
B2σ, σ22 = −1

3
R2σ, (2.2.12)

with aγ = asγ and σ =
√

3
2
σγδσγδ = 1

A
( Ḃ

B
− Ṙ

R
).

In order to avoid a discontinuity at the junction, the Darmois conditions must

be fulfilled. For this purpose, we assume that outgoing radiations are massless as

depicted in Vaidya spacetime given by

ds2 = −(1− 2M(υ)

r
)dυ2 − 2rdrdυ + r2(dθ2 + sin2 θdφ2),

where M(υ) and υ are the total mass and retarded time, respectively. The matching

of the two spacetimes is smooth and continuous when (m(t, r))Σ = (M(υ))Σ, (q)Σ =

(pr)Σ, (Ψ−)Σ = (Ψ+)Σ, (Ψ′
−)Σ = (Ψ′

+)Σ and (Ψ̇−)Σ = (Ψ̇+)Σ. We use Misner and

Sharp formula for calculating mass of the collapsing model as

m =
R

2




(
Ṙ

A

)2

−
(

R′

B

)2

+ 1


 . (2.2.13)

In order to discuss the dynamics of the self-gravitating system, we introduce the

proper time and radial derivatives expressed as

DT =
1

A

∂

∂t
, DR =

1

R′
∂

∂r
.
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The velocity of the collapsing fluid in terms of areal radius of the spherical surface

within the fluid is defined as U = DT R < 0. The mass and velocity of the sphere are

related as

E ≡ R′

B
=

(
1 + U2 − 2m

R

) 1
2

. (2.2.14)

Taking proper time and radial derivative of mass leads to

DT m = −R2

2

(
T

(eff)
11

B2
U − T

(eff)
01

AB
E

)
, (2.2.15)

DRm = −R2

2

(
T

(eff)
00

A2
+

T
(eff)
01

AB

U

E

)
, (2.2.16)

which imply

3m

R3
= −T

0(eff)
0

2
+

1

2R3

∫ r

0

R′R3(DRT
0(eff)
0 − 3T

(eff)
01

ABR

U

E
)dr. (2.2.17)

Tidal forces play a significant role in the evolution of a celestial system. The Weyl

tensor incorporates the effects of these forces and is expressed as

Cγ
αβσ = Rγ

αβσ −
Rγ

β

2
gασ +

Rαβ

2
δγ
σ −

Rασ

2
δγ
β +

Rγ
σ

2
gαβ +

1

6
(δγ

βgασ + gαβδγ
σ). (2.2.18)

The electric part of the Weyl tensor in the non-static scenario reads

Eγδ = Cγαδβvαvβ = ε(sγsδ +
hγδ

3
), (2.2.19)

where

ε =
1

2




(
R′
R
− A′

A

) (
B′
B

+ R′
R

)
+ A′′

A
− R′′

R

B2
+

R̈
R
− B̈

B
−

(
Ȧ
A

+ Ṙ
R

)(
Ṙ
R
− Ḃ

B

)

A2
− 1

R2

)
.

(2.2.20)

Moreover, the relation

[ε− 1

2
(−T

0(eff)
0 −T

1(eff)
1 +T

2(eff)
2 )]. =

3Ṙ

R
[
1

2
(−T

0(eff)
0 +T

2(eff)
2 )−ε]− 3R′

2R
T

1(eff)
0 ), (2.2.21)

demonstrates the influence of scalar field on energy density, pressure and Weyl tensor.
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2.2.1 Structure Scalars

The Riemann tensor in the current setup is decomposed as

Rαδ
βγ = Rαδ

(I)βγ +Rαδ
(II)βγ +Rαδ

(III)βγ +Rαδ
(IV )βγ +Rαδ

(V )βγ, (2.2.22)

where Rαδ
(I)βγ , Rαδ

(III)βγ, Rαδ
(IV )βγ and Rαδ

(V )βγ are the same as mentioned in Eqs.(2.1.28)

and (2.1.30)-(2.1.32) whereas Rαδ
(II)βγ turns out to be

Rαδ
(II)βγ =

2

Ψ

[
Π

[α
[βδ

δ]
γ] + q

(
v[αs[βδ

δ]
γ] + s[αv[βδ

δ]
γ]

)]
.

Here, we evaluate only Xγδ and Yγδ as

Xγδ =
1

Ψ

(
ρhγδ

3
+

Πγδ

2

)
− Eγδ +

1

2Ψ
(Ψ,γ;µh

µ
δ +

ωBD

2Ψ
Ψ,γΨ,µh

µ
δ )

+
hγδ

4Ψ
(2Ψ + 7V (Ψ)), (2.2.23)

Yγδ =
1

Ψ

(
(ρ + 3P )hγδ

6
+

Πγδ

2

)
+ Eγδ +

1

2Ψ
(−Ψ,γ;δ −Ψ,γ;µvδv

µ

− Ψ,µ;δvγv
µ + Ψ,α;βvαvβgγδ) +

ωBD

2Ψ2
(−Ψ,γΨ,δ −Ψ,γΨ,µv

µvδ

− Ψ,µΨ,δv
µvγ −Ψ,αΨ,βvαvβgγδ) +

hγδ

6Ψ

(ωBD

Ψ
Ψ,µΨ,µ − V (Ψ)

)
.

(2.2.24)

The four structure scalars in the presence of scalar field turn out to be

XT = X
(m)
T + XΨ

T =
1

Ψ
(ρ) +

1

2Ψ

(
5

2
2Ψ + Ψ,α;γv

αvγ +
ωBD

2Ψ
(Ψ,αΨ,α

+ Ψ,γΨ,αvαvγ +
21

2
V (Ψ)

)
, (2.2.25)

XTF = X
(m)
TF + XΨ

TF = − 1

Ψ
(
Π

2
+ εΨ) +

1

2Ψ

(
2Ψ + Ψ,α;γv

αvγ +
ωBD

2Ψ
(Ψ,αΨ,α

+ Ψ,γΨ,αvαvγ)) , (2.2.26)

YT = Y
(m)
T + Y Ψ

T =
1

2Ψ
(ρ + 3pr − 2Π)− 1

2Ψ
(2Ψ + Ψ,γ;αvγvα
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+
ωBD

Ψ
(Ψ,γΨ,αvγvα) + V (Ψ)

)
, (2.2.27)

YTF = Y
(m)
TF + Y Ψ

TF =
1

Ψ
(εΨ− Π

2
)− 1

2Ψ

(
2Ψ +

ωBD

Ψ
(Ψ,αΨ,α

+ Ψ,γΨ,βvγvβ) + Ψ,γ;µv
γvµ

)
. (2.2.28)

The above equations indicate that XT and YT govern the total energy density and

principal stresses of the system, respectively in the presence of the massive scalar

field. Moreover, XTF and YTF together determine the local anisotropy of the fluid.

The impact of anisotropy and inhomogeneity on the evolution of the sphere can be

measured through YTF as

YTF = T
2(eff)
2 − T

1(eff)
1 +

1

2R3

∫ r

0

R′R3(−DRT
0(eff)
0 +

3T
(eff)
01

ABR

U

E
)dr

+

[
Ψ̇

A2
(
2Ȧ

A
+

3Ṙ

R
)− 3Ψ′R′

B2R

]
. (2.2.29)

2.2.2 Complexity and Evolution of the System

In general, the complexity of a cosmic system depends on various physical properties

such as anisotropic pressure and inhomogeneous density. The scalar YTF was chosen

as the complexity factor of the static sphere because it incorporated the essential

features of the system and determined their effects on Tolman mass (or active grav-

itational mass). Equation (2.2.29) indicates that YTF contains the contribution of

the significant factors which induce complexity in the current setup. Therefore, we

proceed by assuming that the scalar YTF is the best fit for the complexity factor.

Moreover, heat dissipation is an additional factor contributing to the complexity of

the dynamical setup. Therefore, it is essential to take into account the pattern of

evolution of the system to construct a satisfactory complexity factor. Furthermore,

in order to minimize the complexity, we will consider the anisotropic fluid evolving
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through the simplest mode of evolution. For this purpose, we identify two patterns

of evolution: homologous and homogeneous.

The Homologous Evolution:

The collapse of a celestial body is homologous if the rate at which matter is pulled

to the core is the same throughout, i.e., the velocity of the matter falling inward is

directly proportional to the radial distance. On the other hand, if density at the center

increases rapidly as compared to other regions, then the cosmic object evolves in a

non-homologous pattern. In this section, we derive the condition for a homologous

collapse. Heat flow can be expressed in terms of shear and expansion scalars through

Eqs.(2.2.4) and (2.2.14) as

1

2EΨ

(
q − TΨ

01

AB

)
=

1

3
DR(ϑ− σ)− σ

R
, (2.2.30)

which yields

DR

(
U

R

)
=

1

2EΨ

(
q − TΨ

01

AB

)
+

σ

R
. (2.2.31)

Integration of the above equation leads to

U = R

∫ r

0

R′
[

1

2EΨ

(
q − TΨ

01

AB

)
+

σ

R

]
dr + c(t)R, (2.2.32)

where c(t) = UΣ

RΣ
is an integration function. If the fluid is non-dissipative and shear-free

then the integral in the above equation vanishes providing the necessary condition

of homologous evolution U ∼ R [109]. Thus, the ratio of areal radii of any two

concentric circles must be constant. Assume that R is a separable function of t and

r. The homologous condition corresponding to the current setup is

1

2EΨ

(
q − TΨ

01

AB

)
+

σ

R
= 0. (2.2.33)
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The Homogeneous Expansion:

The evolution of a cosmic structure is homogeneous if the rate of expansion or collapse

is independent of r. In other words, homogeneous expansion corresponds to ϑ′ = 0.

Applying this constraint along with Eq.(2.2.30) to (2.2.33) implies

DRσ = 0,

which leads to σ = 0 (due to the regularity conditions at the core). Thus, Eq.(2.2.30)

yields

q =
TΨ

01

AB
, (2.2.34)

i.e., the fluid is dissipative. It must be noted that in GR, a shear-free matter distri-

bution evolving under the condition ϑ′ = 0 must also be non-dissipative and conse-

quently, homologous.

2.2.3 Kinematical Variables

In this section, we analyze the behavior of different physical quantities to choose

the simplest pattern of evolution. Imposing the homologous condition on Eq.(2.2.30)

produces

(ϑ− σ)′ =

(
3Ṙ

AR

)′

= 0 ⇒ A′ = 0.

Thus, the homologous fluid is geodesic (a = 0) in the current scenario. This implies

that homologous pattern can be considered as the simplest mode of evolution. With-

out loss of generality, we take A = 1. Conversely, the geodesic condition produces

(ϑ− σ) =
3Ṙ

R
.
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Successive derivatives with respect to r close to the center imply that the fluid is

homologous [3].

It must be noted that the counterpart of this structure in GR is shear-free when

q = 0. However, in the presence of scalar field, the non-dissipative as well as homol-

ogous fluid is geodesic but not shear-free as

σ =
RTΨ

01

2R′ .

If the non-dissipative fluid undergoes homogeneous expansion, then Eq.(2.2.34) im-

plies TΨ
01 = 0. Moreover, shear scalar is evaluated from Eq.(2.2.30) as

σ =
3

2R3

∫ r

0

R3

A
TΨ

01dr +
g(t)

R3
=

g(t)

R3
,

where g(t) is an arbitrary function of integration. Since at the center R = 0 therefore,

g(t) must be zero. It follows that in the non-dissipative case, homogeneous expansion

implies homologous evolution (since TΨ
01 = 0 ⇒ σ = 0 ⇒ U ∼ R). Conversely,

if σ =
RTΨ

01

2R′ then ϑ′ = (
RTΨ

01

2R′ )′. Thus, homologous evolution implies homogeneous

expansion only if TΨ
01 = 0. In the subsequent sections, we obtain solutions satisfying

the conditions for vanishing complexity as well as homologous fluid. For this purpose,

we assume an exponential form of the scalar field as Ψ(t, r) = Ψ(t) = Ψ0t
β, where β

is a constant and Ψ0 is the present day value of the scalar field.

Case 1: q = 0

We first consider the non-dissipative case. It is worthwhile to mention here that

the homologous fluid for the chosen scalar field satisfies TΨ
01 = 0. Hence, in the

non-dissipative case, there is a unique criterion for the simplest evolution (since ho-

mologous evolution fulfils the conditions of homogeneous expansion and vice versa).
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The homologous condition yields

B(t, r) = g1(r)R(t, r), (2.2.35)

where g1(r) is an arbitrary function of integration. Employing the above relation

in the condition of vanishing complexity and wave equation generates the following

expressions

V (Φ) =
Φ0t

β−2

g1(r)3R4

[
2t2R′ (g1(r)R

′ + g′1(r))− 2t2g1(r)RR′′ + g1(r)
3R3

×
(
t
(
5βṘ + 4tR̈

)
+ β(β(ωBD + 2)− 2)R

)
+ 2tg1(r)

3R2Ṙ
(
tṘ + βR

)]
,

Φ0t
β−1

β(2ωBD + 3)g1(r)R

[
2t2g′1(r)

(
−2βR′R2 + R

(
R′

(
tṘ + β

)
+ tṘ′

)

− 4tR′Ṙ
)

+ 2t2g1(r)
(
R2

(
βR′′ − tṘ′′

)
+ t

(
3R′′Ṙ + 2R′Ṙ′

)
R

− 4tR′2Ṙ
)

+ g1(r)
3R2

(
−4t3Ṙ3 − βt2

(
11Ṙ2 + 2

)
R + tR2 (β(6βωBD

+7β − 7)Ṙ +t
(
5βR̈ + 4t

...
R

))
+ 2(β − 2)β(βωBD + β − 1)R3

)]
= 0.

A complete solution can be determined for a suitable choice of g1(r).

Case 2: q 6= 0

In the non-dissipative case, the homologous, zero complexity and wave equations,

respectively, read

B = g2(r) exp

(∫ t

1

Ψ0t
βRṘ′ −R′Ṙ

(Ψ0tβ − 1) RR′ dt

)
,

V (Ψ) =
Ψ0t

β−2

B3R

[
2t2B′R′ + 2tḂB2

(
tṘ + βR

)
− 2t2BR′′ + B3

(
t
(
5βṘ

+ 4tR̈
)

+ β(β(ωBD + 2)− 2)R
)]

,

Ψ0t
β−1

β(2ωBD + 3)BR

[
−6t3B′ḂRR′ + 2tB3

(
−t2ḂṘ2 + tR

(
Ḃ

(
tR̈− βṘ

)
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+ tB̈Ṙ
)

+ β(βωBD + β − 1)ḂR2
)
− 2t2B2

(
R

(
tḂ2Ṙ− βR′′ + tṘ′′

)

+ βḂ2R2 − βR′2 − tR′′Ṙ
)

+ 2t2B
(
R

(
B′

(
tṘ′ − βR′

)
+ t

(
2ḂR′′

+ Ḃ′R′
))

− tB′R′Ṙ
)

+ B4
(
t2

(
−

(
7βṘ2 + 4tR̈Ṙ + 2β

))
+ tR (β

× (4βωBD + 5β − 5)Ṙ + t
(
5βR̈ + 4t

...
R

))
+ 2(β − 2)β(βωBD + β

−1)R2
)]

= 0,

where g2(r) is an integration function. The above system of equations provide a

solution corresponding to an appropriate form of g2(r) for Ψ(t, r) = Ψ(t) = Ψ0t
β.

2.2.4 Stability of YTF = 0 Condition

In this section, we examine whether the state of zero complexity can prevail through-

out the evolution of homologous matter distribution for Ψ(t, r) = Ψ(t) = Ψ0t
β. The

evolution of the complexity factor is obtained through Eqs.(2.2.7) and (2.2.21) as

ẎTF +
Π̇

Ψ
+

3Ṙ

R
YTF + (ρ + Pr)

σ

2Ψ
+

1

2BΨ
(q′ − qR′

R
) +

2ΠṘ

RΨ
+ S1 = 0, (2.2.36)

where the term S1, containing the effects of scalar field, is given as

S1 =
(T 1Ψ

1 − T 2Ψ
2 ).

2Ψ
− (T 1Ψ

0 )′

Ψ
− (T 1Ψ

0 )′

2Ψ
(
B′

B
− R′

R
)− (T 0Ψ

0 − T 1Ψ
1 )Ḃ

2BΨ

− 5(T 0Ψ
0 − T 2Ψ

2 )Ṙ

2RΨ
− Ẏ Ψ

TF − YTF .

In the non-dissipative scenario, we assume that q = Π = σ = YTF = 0 at t = 0 which

leads to the following forms of Eq.(2.2.36) and its derivative with respect to t

S1 = −(ẎTF + Π̇), (2.2.37)

¨YTF +
Π̈

Ψ
− Π̇Ψ̇

Ψ2
= 3S1 − Ṡ1 +

Π̇Ṙ

RΨ
. (2.2.38)
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Employing the above relations, the first and second t-derivatives of Eq.(2.2.29) can

be written as

S1 + 3

(
Ψ̇Ṙ

R

).

=
∂

∂t

(∫ r

0

R3(T
0(eff)
0 )′dr

)
,

3S1 − Ṡ1 +
Π̇Ṙ

RΨ
− 3

(
Ψ̇Ṙ

R

)..

=
∂2

∂t2

(∫ r

0

−R3(T
0(eff)
0 )′dr

)
.

We can proceed in the same manner and calculate the higher derivatives of Eq.(2.2.29).

It is noted that the stability of vanishing complexity depends on state determinants

(pressure and energy density) as well as the massive scalar field. Thus, anisotropy

and inhomogeneity in pressure and energy density, respectively induce complexity

in the system. For the general case, i.e., when q 6= 0, it can be clearly deduced

from Eq.(2.2.36) that heat dissipation is an additional factor influencing the YTF = 0

condition.



Chapter 3

Cosmological Solution through
Gravitational Decoupling in SBD
Gravity

The focus of this chapter is to derive an anisotropic extension of FLRW metric through

decoupling in the framework of SBD theory. The radial deformation decouples the

system of field equations into two arrays. We use FLRW universe model to obtain

a solution of the system governed by the isotropic matter source. For this purpose,

power-law models of the scale factor as well as massive scalar field are assumed while

isotropic pressure and density are related via barotropic equation of state. Finally,

we investigate the physical behavior, viability and stability of the extended FLRW

solution for different values of the EoS parameter.

This chapter is organized as follows. In section 3.1, we formulate the field equa-

tions after inducing anisotropy in the matter. Section 3.2 gives an overview of MGD

formalism in a non-static setup. The resulting anisotropic spacetime is inspected for

viability as well as stability in section 3.3. The results of this chapter have been

published in the form of a research paper [110].

58
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3.1 SBD Field Equations for Non-static Sphere

with Additional Matter Source

The action of SBD theory (with 8πG0 = 1) in the presence of an additional source is

S =

∫ √−g(RΨ− ωBD

Ψ
∇γ∇γΨ− V (Ψ) + Lm + %LΘ)d4x, (3.1.1)

where LΘ represents the Lagrangian density of the new anisotropic source. The field

equations and wave equation corresponding to the above action are, respectively,

given as

Gγδ = T
(eff)
γδ =

1

Ψ
(T

(m)
γδ + %Θγδ + TΨ

γδ), (3.1.2)

2Ψ =
gγδT

(m)
γδ + %gγδΘγδ

3 + 2ωBD

+
1

3 + 2ωBD

(Ψ
dV (Ψ)

dΨ
− 2V (Ψ)). (3.1.3)

The energy-momentum tensor T
(m)
γδ describes the perfect fluid distribution in terms

of density and isotropic pressure as

T
(m)
γδ = (ρ + p)vγvδ − pgδγ. (3.1.4)

We assume a non-static spherical system that corresponds to the following line-

element

ds2 = eλ(t,r)dt2 − eχ(t,r)dr2 − C2(t, r)(dθ2 + sin2 θdφ2). (3.1.5)

The corresponding SBD field equations incorporating the new source are

ρ + %Θ0
0 + T 0Ψ

0

Ψ
=

e−λ

C

(
Ċχ̇ +

Ċ2

C

)
− e−χ

C

(
2C ′′ − C ′χ′ +

C ′2

C

)

+
1

C2
, (3.1.6)

p− %Θ1
1 − T 1Ψ

1

Ψ
=

e−χ

C

(
C ′λ′ +

C ′2

C

)
− e−λ

C

(
2C̈ − Ċλ̇ +

Ċ2

C

)
− 1

C2
,
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(3.1.7)

p− %Θ2
2 − T 2Ψ

2

Ψ
= e−χ

(
C ′ (λ′ − χ′)

2C
+

C ′′

C
− χ′λ′

4
+

λ′2

4
+

λ′′

2

)

− e−λ


−

Ċ
(
λ̇− χ̇

)

2C
+

C̈

C
− χ̇λ̇

4
+

χ̇2

4
+

χ̈

2


 , (3.1.8)

1

Ψ
(%Θ0

1 + T 0Ψ
1 ) = e−λ

(
−C ′χ̇

C
− Ċλ′

C
+

2Ċ ′

C

)
, (3.1.9)

where

T 0Ψ
0 = −e−λΨ̇

(
2Ċ

C
+

χ̇

2
+

λ̇

2

)
+ e−χΨ′

(
2C ′

C
+

χ′

2

)
+

ωBD

2Ψ

(
e−χΨ′2

+ e−λΨ̇2
)

+ e−χΨ′′ − V (Ψ)

2
,

T 1Ψ
1 = e−χΨ′

(
2C ′

C
+ χ′ +

λ′

2

)
− e−λΨ̇

(
2Ċ

C
+

λ̇

2

)
− ωBD

2Ψ

(
e−χΨ′2

+ e−λΨ̇2
)
− e−λΨ̈− V (Ψ)

2
,

T 2Ψ
2 = e−χΨ′

(
C ′

C
+

χ′

2
+

λ′

2

)
− e−λΨ̇

(
Ċ

C
+

χ̇

2
+

λ̇

2

)
− ωBD

2Ψ

(
e−λΨ̇2

− e−χΨ′2) + e−χΨ′′ − e−λΨ̈− V (Ψ)

2
,

T 0Ψ
1 = e−λ

(
− χ̇Ψ′

2
− λ′Ψ̇

2
+

ωBDΨ′Ψ̇
Ψ

+ Ψ̇′
)

.

The wave equation (3.1.3) for the considered non-static scenario is

2Ψ = e−λ

[(
2Ċ

C
+

χ̇

2
+

λ̇

2

)
Ψ̇ + Ψ̈

]
− e−χ

[(
2C ′

C
+

χ′

2
+

λ′

2

)
Ψ′ + Ψ′′

]

=
1

3 + 2ωBD

[
gγδT

(m)
γδ + gγδΘγδ +

(
Ψ

dV (Ψ)

dΨ
− 2V (Ψ)

)]
. (3.1.10)

For Θ2
2 −Θ1

1 6= 0, Eqs.(3.1.6)-(3.1.10) correspond to an anisotropic fluid.
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3.2 Gravitational Decoupling via MGD Approach

In this section, we apply the MGD approach to reduce the degrees of freedom in

the system (3.1.6)-(3.1.10). Currently, these independent equations contain ten un-

knowns: λ(t, r), χ(t, r), ρ, p, Θ0
0, Θ0

1, Θ1
1, Θ2

2, Ψ, V (Ψ). The MGD technique

splits the system of field equations into two sets through the following geometric

deformation in the radial metric component

e−χ(t,r) 7→ e−ξ(t,r)(1 + %g(t, r)), (3.2.1)

whereas the temporal metric potential remains unaffected. It is worthwhile to mention

here that the transformation proposed by Ovalle [25] is suitable for static sources

only and does not successfully decouple the non-static field equations. For % = 0, the

effects of anisotropy are excluded and a system representing isotropic configuration

is obtained as

ρ =
1

2


e−λΨ̇

(
4Ċ + C

(
λ̇ + ξ̇

))

C
+

2Ψ

C2

(
Ċe−λ

(
Ċ + Cξ̇

)
− e−ξ (−CC ′ξ′

+ C ′2 + 2CC ′′) + 1
)− e−ξΨ′ (4C ′ + Cξ′)

C
−

ωBD

(
e−λΨ̇2 + e−ξΨ′2

)

Ψ

− 2e−ξΨ′′ + V (Ψ)
)
, (3.2.2)

p =
1

2

(
e−ξΨ′ (4C ′ + C (λ′ + 2ξ′))

C
+

2Ψ

C2

(
C ′e−ξ (C ′ + Cλ′)− e−λ

(
2CC̈

+ Ċ2 − CĊλ̇
)
− 1

)
−

e−λΨ̇
(
4Ċ + Cλ̇

)

C
−

ωBD

(
e−λΨ̇2 + e−ξΨ′2

)

Ψ

− 2e−λΨ̈− V (Ψ)
)

, (3.2.3)

p =
1

4


2e−ξΨ′ (2C ′ + C (λ′ + ξ′))

C
−

2e−λΨ̇
(
2Ċ + C

(
λ̇ + ξ̇

))

C

+
Ψe−λ−ξ

C

(
2C ′eλ (λ′ − ξ′) + 2

(
eξ

(
Ċ

(
λ̇− ξ̇

)
− 2C̈

)
+ 2C ′′eλ

)
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+ C
(
−eλλ′ξ′ + eξ

(
λ̇ξ̇ − ξ̇2 − 2ξ̈

)
+ eλλ′2 + 2eλλ′′

))
+

2ωBD

Ψ

(
e−ξΨ′2

− e−λΨ̇2
)
− 4e−λΨ̈ + 4e−ξΨ′′ − 2V (Ψ)

)
, (3.2.4)

0 =
−2Ψ

(
Ċλ′ + C ′ξ̇ − 2Ċ ′

)

C
+ Ψ

(
λ′Ψ̇ + ξ̇Ψ′ − 2Ψ̇′

)
− 2ωBD

Ψ
Ψ′Ψ̇. (3.2.5)

The six unknowns (λ(t, r), ξ(t, r), ρ, p, Ψ, V (Ψ)) involved in the above system can

be determined through a known isotropic solution in SBD gravity. On the other hand,

the anisotropic effects of the extra source Θγδ appear in the second set as

Θ0
0 =

1

2C2

(
e−ξ (Cg′ (CΨ′ − 2C ′Ψ)− g (C (Ψ′ (4C ′ + Cξ′) + 2CΨ′′) + 2Ψ

× (
C ′2 − CC ′ξ′ + 2CC ′′) +

ωBDC2Ψ′2

Ψ

))
− ġe−λ d(ΨC2)

dt

%g + 1


 , (3.2.6)

Θ1
1 = − e−ξ

2C2
(CΨ′ (g (4C ′ + C (λ′ + 2ξ′))− 2Cg′) + 2C ′gΨ (C ′ + Cλ′)

− ωBD

Ψ
C2gΨ′2

)
, (3.2.7)

Θ2
2 = − 1

4C


e−λ


ġ


Ψ

(
2Ċ(%g + 1)− C

(
3%ġ + (%g + 1)

(
λ̇− 2ξ̇

)))

(%g + 1)2

+
2CΨ̇

(%g + 1)

)
+

2Cg̈Ψ

(%g + 1)

)
+

e−ξ

Ψ
(2Ψ (Ψ′ (g (2C ′ + C (λ′ + ξ′))

− Cg′) + 2CgΨ′′) + Ψ2 (2C ′ (g′ + g (λ′ − ξ′)) + 4C ′′g + C (λ′ (g′

+ g (λ′ − ξ′)) + 2gλ′′)) + 2ωBDCgΨ′2)) , (3.2.8)

Θ0
1 =

ġ (CΨ′ − 2C ′Ψ)

C(%g + 1)
. (3.2.9)

As the second system has five (g(t, r), Θ0
0, Θ0

1, Θ1
1, Θ2

2) undetermined variables, it is

often solved by imposing either an EoS or a mimic constraint (such as p = Θ1
1).
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3.3 Anisotropic FLRW Solution

In this section, we formulate anisotropic cosmological model by assuming that the

isotropic sector represents a homogeneous universe described by the FLRW metric

given in Eq.(1.3.1). The functions λ, ξ and C, in relation to FLRW spacetime, are

defined as

eλ(t,r) = 1, eξ(t,r) =
a2(t)

1− kr2
, C(t, r) = a(t)r. (3.3.1)

Setting Ψ(t, r) = Ψ(t), Eqs.(3.2.2)-(3.2.4) reduce to

ρ =
6Ψ2 (ȧ2 + k) + 6aȧΨΨ̇ + a2

(
ΨV (Ψ)− ωBDΨ̇2

)

2a2Ψ
, (3.3.2)

p =
2Ψ2 (ȧ2 + k) + 4aΨd(Ψȧ)

dt
+ a2

(
ΨV (Ψ) + 2ΨΨ̈ + ωBDΨ̇2

)

−2a2Ψ
, (3.3.3)

while Eq.(3.2.5) identically equals to zero. The wave equation for the FLRW metric

is

3ȧΨ′

a
+ Ψ′′ =

ρ− 3p

2ωBD + 3
+

2V (Ψ)−ΨdV (Ψ)
dΨ

2ωBD + 3
. (3.3.4)

The system (3.3.2)-(3.3.4) obeys the conservation equation

ρ̇ + 3
ȧ

a
(p + ρ) = 0.

As there are three independent equations and six unknowns (a(t), Ψ(t), ρ, p,

ωBD, V (Ψ)), we apply the EoS (1.5.1).

In order to completely determine the isotropic solution we choose power-law func-

tional forms of the scale factor and massive scalar field as

a(t) = a0t
α, Ψ(t) = Ψ0t

β, (3.3.5)
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where a0 is the present value of scale factor. Moreover, α > 0 and β are constants.

Similar power-law forms have been used in literature to study the phenomenon of

expanding universe in the framework of SBD gravity [48, 111]. The potential function

and coupling parameter corresponding to the above ansatz are, respectively, evaluated

through evolution equation and EoS as

V (Ψ) = (4a2
0)
−1[Ψ0t

β−2(α+1)
(
a2

0t
2α

(
6α(βωBD + 1)− 12α2 + (β − 2)βωBD

)

− 6kt2
)
], (3.3.6)

ωBD = [2t−2α
(
a2

0t
2α

(
6α2(ς + 1) + α(4β(3ς + 2) + 3ς − 5) + 4(β2 − β)

)

+ (9ς + 1)kt2
)
]
(
a2

0β(3βς − 6α(ς + 1)− 5β + 2ς + 2)
)−1

. (3.3.7)

As the coupling parameter is constant in the context of SBD theory, therefore the

analysis of anisotropic FLRW cosmos is valid for k = 0 only. The setup corresponding

to the additional source is re-written in terms of FLRW metric as

Θ0
0 =

1

2(ra)2

(
2Ψ

(
r
(
kr2 − 1

)
g′ +

(
3kr2 − 1

)
g
)− r2ġ d

dt
(a2Ψ)

%g + 1

)
, (3.3.8)

Θ1
1 =

(kr2 − 1) Ψg

r2a2
, (3.3.9)

Θ2
2 =

1

4ra

(
2Ψ ((kr2 − 1) g′ + 2krg)

a
− r

(
Ψ

(
6ȧġ

(%g + 1)
+ a

(
2g̈

(%g + 1)

− 3%ġ2

(%g + 1)2

))
+

2aΨ̇ġ(%g + 1)

(%g + 1)2

))
, (3.3.10)

Θ0
1 =

Ψġ

%rg + r
, (3.3.11)

with the conservation equation

d

dt

(
Θ0

0

Ψ

)
+

ȧ

aΨ
(3Θ0

0 −Θ1
1 − 2Θ2

2) = 0. (3.3.12)

It is noteworthy to mention here that perfect fluid and extra source cannot exchange

matter between them as they are individually conserved.
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The field equations representing the extension of FLRW to anisotropic domain

are expressed through a combination of isotropic and additional sources as

G0
0 = ρ + %Θ0

0, (3.3.13)

G1
1 = pr = p + %Θ1

1, (3.3.14)

G2
2 = p⊥ = p + %Θ2

2, (3.3.15)

G0
1 = 0 = Θ0

1. (3.3.16)

Equations (3.3.11) and (3.3.16) imply ġ = 0 leading to the following relation between

components of Θγ
δ

Θ0
0 = Θ1

1 + 2Θ2
2.

Employing the above equation in the conservation equation (3.3.12) yields the follow-

ing decoupling function

g(r) =
c1

r (1− kr2)
− c2

2r
2

3 (1− kr2)
, (3.3.17)

where c1 and c2 are constants of dimensions L and 1
L2 , respectively (L is the dimension

of length).

In the subsequent subsections, we investigate the salient characteristics of the

anisotropic flat FLRW cosmos corresponding to different values of %. For this purpose,

we set c1 = 1 and c2 = 0.0001. Figure 3.1 shows that g(r) is negative throughout

its domain for the chosen values of the constants. The current values of the scale

factor and scalar field are normalized to 1. Recent observations show that the range

of the deceleration parameter (q = −äa
ȧ2 ) is [-1,0] [112] which implies that α > 1.

Furthermore, β measures the change in the scalar field with time and must be greater

than zero for the expanding cosmos. Thus, we choose α = 1.1 and β = 0.2 to analyze

graphically different phases of the universe for % = 0.1, 0.5.
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Figure 3.1: Behavior of g(r) for k = 0, c1 = 1 and c2 = 0.0001.

3.3.1 Massless Scalar Field Dominated Era

When ς = 1, the energy within the cosmos is purely kinetic. A scalar field is re-

sponsible for the inflation of spacetime at 10−32 seconds after the big bang. Figure

3.2 shows that the density of this anisotropic model decreases with respect to cos-

mic time corresponding to the expansion of the universe. The pressure components

are positive and decrease as % increases from 0.1 to 0.5. Moreover, the anisotropy is

negative indicating pr > p⊥.

The viability of the developed model is checked through four energy conditions

defined in Eqs.(1.9.4)-(1.9.7). If the cosmological model is consistent with SEC and

DEC then the first two conditions are automatically satisfied. Thus, we will check

viability of the anisotropic model via last two conditions only. The plots in Figure

3.3 indicate that the scalar field is consistent with the energy bounds. In order to

examine the stability of the universe represented by the anisotropic FLRW spacetime,

the criteria of causality condition is employed. Figure 3.4 confirms that the extension

of FLRW is stable corresponding to ς = 1.
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Figure 3.2: Plots of ρ, pr and p⊥ of anisotropic FLRW solution with ς = 1 for % = 0.1
(blue) and 0.5 (green).

Figure 3.3: Energy conditions with ς = 1 for % = 0.1 (blue) and 0.5 (green).
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Figure 3.4: Plots of v2
r and v2

⊥ with ς = 1 for % = 0.1 (blue) and 0.5 (green).

3.3.2 Radiation-Dominated Era

During this phase, the pressure is approximately equal to one-third of the total density

and the cosmos is dominated by matter composed of relativistic particles (photons and

neutrinos). In this era, momentum is larger as compared to mass within the universe.

The behavior of density and pressure components corresponding to this cosmic model

is presented in Figure 3.5. The rapid decrease in density with time suggests that the

universe is in expansion mode. A higher value of the decoupling parameter correlates

with a more dense cosmos but pressure decreases as the decoupling parameter attains

higher values. Negative anisotropy indicates that more pressure is exerted in the radial

direction as compared to the transverse direction. The cosmic model is consistent with

all the energy conditions (Figure 3.6) and the stability criterion (Figure 3.7). Thus,

the extended solution represents a viable and stable spacetime for ς = 1/3.
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Figure 3.5: Plots of ρ, pr and p⊥ of anisotropic FLRW solution with ς = 1/3 for
% = 0.1 (blue) and 0.5 (green).

Figure 3.6: Energy conditions with ς = 1/3 for % = 0.1 (blue) and 0.5 (green).
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Figure 3.7: Plots of v2
r and v2

⊥ with ς = 1/3 for % = 0.1 (blue) and 0.5 (green).

Figure 3.8: Plots of ρ, pr and p⊥ of anisotropic FLRW solution with ς = 0 for % = 0.1
(blue) and 0.5 (green).
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Figure 3.9: Energy conditions with ς = 0 for % = 0.1 (blue) and 0.5 (green).

3.3.3 Matter-Dominated Era

The constituent particles of the universe in the matter-dominated era are non-relativistic

(baryons), i.e., their kinetic energy is smaller as compared to the mass energy. The

matter encompassing all the non-relativistic elementary particles is also dubbed as

dust. Plots of corresponding matter variables are presented in Figure 3.8. Energy

density is directly proportional to the decoupling parameter and follows a decreasing

trend in relation to time. From the barotropic EoS, it is noted that pressure is negligi-

ble in the isotropic case (% = 0). However, plots in Figure 3.8 indicate the presence of

negative pressure (in radial/transverse directions) which approaches to zero as time

progresses. The anisotropic solution is compatible with the energy constraints as

shown in Figure 3.9. However, the causality condition, presented in Figure 3.10 is

violated for ς = 0.

3.3.4 Vacuum Energy Dominated Era

This era is the last of the four phases of the known universe. Matter density decreases

in comparison to vacuum energy (also referred to as dark energy) and the universe
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Figure 3.10: Plots of v2
r and v2

⊥ with ς = 0 for % = 0.1 (blue) and 0.5 (green).

Figure 3.11: Plots of ρ, pr and p⊥ of anisotropic FLRW solution with ς = −1 for
% = 0.1 (blue) and 0.5 (green).
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Figure 3.12: Energy conditions with ς = −1 for % = 0.1 (blue) and 0.5 (green).

Figure 3.13: Plots of v2
r and v2

⊥ with ς = −1 for % = 0.1 (blue) and 0.5 (green).

enters a phase of accelerated expansion. The graphical analysis of energy density

and pressure components is displayed in Figure 3.11. Negative pressure indicates the

presence of a repulsive force which is responsible for the increased rate of expansion.

The expansion rate drops when the decoupling parameter increases. Moreover, neg-

ative anisotropy indicates that the cosmos is expanding at a faster rate in the radial

direction. The extended solution satisfies all energy bounds except SEC as shown

in Figure 3.12. Furthermore, the anisotropic model violates the causality condition

(Figure 3.13).



Chapter 4

Extended Gravitational Decoupled
Solutions in SBD Theory

In this chapter, we construct anisotropic spherical solutions from known isotropic

solutions through EGD method in the background of SBD theory. The field equa-

tions are decoupled into two sets by applying geometric deformations on radial as

well as temporal metric components. The first array, corresponding to seed source

is determined through metric functions of isotropic (Tolman IV/KB) as well as vac-

uum (Schwarzschild) solutions whereas two constraints on the anisotropic source are

required to close the second system. The impact of the massive scalar field as well as

the decoupling parameter on the physical characteristics of the anisotropic solutions

is analyzed graphically for V (Ψ) = 1
2
m2

ΨΨ2.

This chapter is organized as follows. In the next section, viable anisotropic ver-

sions of Tolman IV and KB solutions are formulated while section 4.2 discusses the

efficiency of EGD technique in extending vacuum spacetime. The findings of this

chapter have been published in [113, 114].

74
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4.1 EGD Approach and SBD Field Equations for

Static Sphere

The field equations incorporating the anisotropic source are formulated via Eqs.(2.1.1)

and (3.1.1)-(3.1.4) as

1

r2
− e−χ

(
1

r2
− χ′

r

)
=

1

Ψ
(ρ + %Θ0

0 + T 0Ψ
0 ), (4.1.1)

− 1

r2
+ e−χ

(
1

r2
+

λ′

r

)
=

1

Ψ
(p− %Θ1

1 − T 1Ψ
1 ), (4.1.2)

e−χ

4

(
2λ′′ + λ′2 − χ′λ′ + 2

λ′ − χ′

r

)
=

1

Ψ
(p− %Θ2

2 − T 2Ψ
2 ), (4.1.3)

with T 0Ψ
0 , T 1Ψ

1 and T 2Ψ
2 given in Eqs.(2.1.6)-(2.1.8), respectively. Moreover, the evo-

lution equation (2.1.9) for the metric (2.1.1) involves the traces of energy-momentum

tensors representing seed as well as additional source.

Equations (4.1.1)-(4.1.3) form a system of non-linear differential equations with

eight unknowns: two metric potentials (λ, χ), five matter variables (ρ, p, Θ0
0,

Θ1
1, Θ2

2) and a massive scalar field. In order to evaluate the unknown functions, we

implement the novel technique of EGD [31] on SBD field equations. This technique

determines the effect of Θγ
δ on the matter distribution by inducing the following

deformations in the metric potentials

λ(r) 7→ µ(r) + %g(r), (4.1.4)

e−χ(r) 7→ e−ξ(r) + %f(r), (4.1.5)

where f(r) and g(r) encode the translations in radial and temporal metric compo-

nents, respectively. It is noteworthy that spherical symmetry of the compact object is

preserved under these geometric deformations. Substituting the deformed metric po-

tentials in Eqs.(4.1.1)-(4.1.3) splits the system into two sets. The first set corresponds



76

to % = 0 and exclusively describes the isotropic configuration as

ρ =
1

2r2Ψ(r)

{
e−ξ(r)

(
r2eξ(r)V (Ψ)Ψ(r) + r2(−ωBD)Ψ′2(r) + ((rξ′(r)

− 4) Ψ′(r)− 2rΨ′′(r)) rΨ(r) + 2Ψ2(r)
(
rξ′(r) + eξ(r) − 1

))}
, (4.1.6)

p =
1

2

{
1

r2Ψ(r)

(
e−ξ(r)

(−r2ωBDΨ′2(r) + Ψ2(r)
(
2rµ′(r)− 2eξ(r) + 2

)

+ rΨ(r) (rµ′(r) + 4) Ψ′(r)))− V (Ψ)} , (4.1.7)

p =
1

4rΨ(r)

{
e−ξ(r)

(
2Ψ(r) (Ψ′(r) (rµ′(r)− rξ′(r) + 2) + 2rΨ′′(r)) + Ψ2(r)

× (
2rµ′′(r) + µ′(r) (2− rξ′(r)) + rµ′2(r)− 2ξ′(r)

)− 2reξ(r)Ψ(r)V (Ψ)

+ 2rωBDΨ′2(r)
)}

. (4.1.8)

The conservation of isotropic matter distribution in (µ, ξ) coordinates is represented

by the conservation equation

T
1′(eff)
1 − µ′(r)

2
(T

0(eff)
0 − T

1(eff)
1 ) = 0. (4.1.9)

The second set containing evolution equations for the anisotropic source is given

as

Θ0
0 =

−1

2r2Ψ(r)

{(
rΨ(r)f ′(r) (rΨ′(r) + 2Ψ(r)) + f(r)

(
r2ωBDΨ′2(r)

+ 2rΨ(r) (rΨ′′(r) + 2Ψ′(r)) + 2Ψ2(r)
))}

, (4.1.10)

Θ1
1 =

−f(r)

2r2Ψ(r)

(−r2ωBDΨ′2(r) + rΨ(r) (rλ′(r) + 4) Ψ′(r) + 2Ψ2(r) (rλ′(r)

+ 1))− e−ξ(r)g′(r) (rΨ′(r) + 2Ψ(r))

2r
, (4.1.11)

Θ2
2 =

−f(r)

4rΨ(r)

(
2Ψ(r) ((rλ′(r) + 2) Ψ′(r) + 2rΨ′′(r)) + Ψ2(r) (2rλ′′(r)

+ rλ′2(r) + 2λ′(r)
)

+ 2rωBDΨ′2(r)
)− f ′(r)

4r
(Ψ(r) (rλ′(r) + 2)

+ 2rΨ′(r))− e−ξ(r)

4r

(
2rg′(r)Ψ′(r) + Ψ(r)

(
2rg′′(r) + %rg′2(r) + g′(r)
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× (2rµ′(r)− rξ′(r) + 2))) . (4.1.12)

The divergence of the source Θγ
δ leads to

Θ
1′(eff)
1 − λ′(r)

2
(Θ

0(eff)
0 −Θ

1(eff)
1 )− 2

r
(Θ

2(eff)
2 −Θ

1(eff)
1 ) =

g′(r)
2

(T
0(eff)
0 − T

1(eff)
1 ), (4.1.13)

where

Θ
0(eff)
0 =

1

Ψ

(
Θ0

0 +
1

2
f ′(r)Ψ′(r) + f(r)Ψ′′ +

ωBDf(r)Ψ′2

2Ψ
+

2f(r)Ψ′(r)
r

)
,

Θ
1(eff)
1 =

1

Ψ

(
Θ1

1 +
1

2rΨ
e−ξ(r)Ψ′(r)

(
f(r)eξ(r) (Ψ(r) (rλ′(r) + 4)− rωBD

× Ψ′(r)) + rΨ(r)g′(r))) ,

Θ
2(eff)
2 =

1

Ψ

(
Θ2

2 +
1

2rΨ
e−ξ(r)

(
rΨ(r)Ψ′(r)

(
eξ(r)f ′(r) + g′(r)

)
+ f(r)

× eξ(r)
(
Ψ(r) ((rλ′(r) + 2) Ψ′(r) + 2rΨ′′(r)) + rωBDΨ′2(r)

)))
.

The conservation equation of the energy-momentum tensor T
γ(eff)
δ in (λ, χ)-coordinate

system yields

∇γT
γ(eff)
β = ∇(µ,ξ)

γ T
γ(eff)
β − g′(r)

2
(T

0(eff)
0 − T

1(eff)
1 )δ1

β, (4.1.14)

where ∇(µ,ξ)
γ represents the divergence of a tensor in (µ, ξ)-frame. As a direct conse-

quence of Eqs.(4.1.9) and (4.1.13), we have

∇(µ,ξ)
γ T

γ(eff)
β = 0, ∇γΘ

γ(eff)
β =

g′(r)
2

(T
0(eff)
0 − T

1(eff)
1 )δ1

β. (4.1.15)

Equations (4.1.14) and (4.1.15) imply that exchange of energy takes place between

the sources T
(m)
γδ and Θγδ but the overall energy and momentum of the system re-

main unchanged. Thus, these sources can be decoupled provided that energy can be

transferred from one setup to the other. However, if T
(m)
γδ represents either a vacuum

solution or a barotropic fluid, matter sources interacting only gravitationally can also

be decoupled via EGD approach.
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4.1.1 Anisotropic Solutions

When we apply the EGD technique, the system (4.1.1)-(4.1.3) is decomposed into two

sets: Eqs.(4.1.6)-(4.1.8) represent the seed source in terms of T
(m)
γδ , µ and ξ whereas

the influence of the additional source is determined by the second set (4.1.10)-(4.1.12)

with five unknowns (g(r), f(r), Θ0
0, Θ1

1, Θ2
2). The undetermined variables of the

second set can be evaluated if a viable solution for the isotropic sector is known.

Thus, EGD approach has simplified the process of extracting solutions of the field

equations by reducing the degrees of freedom from 4 to 2. In this section, we obtain

anisotropic analogues of two solutions: Tolman IV and KB.

In 1939, Tolman [115] constructed eight static spherically symmetric solutions for

perfect fluid and explored the conditions for smooth matching of interior and exterior

geometries. Tolman IV is one of the physically acceptable solutions [116] which

corresponds to a non-vanishing surface density. It has previously been employed to

investigate different features of self-gravitating systems [33, 117]. The line element of

Tolman IV solution is written as

ds2 = B2(1 +
r2

A2
)dt2 − 1 + 2r2

A2

(1 + r2

A2 )(1− r2

F 2 )
dr2 − r2(dθ2 + sin2 θdφ2), (4.1.16)

where the constants A, B and F are determined through the matching of internal

and external (Schwarzschild) spacetimes at the boundary of the celestial object. The

junction conditions evaluate the constants A, B and F (for % = 0) as

A2 = −R2 (R2ζ + M (28R− 2Rζ) + 2M2(ωBD − 12)− 8R2)

Rζ(R− 2M) + 2M2ωBD

, (4.1.17)

B2 =
(R− 2M) (3R2ζ − 6M (Rζ + 10R) + 6M2(ωBD + 12) + 8R2)

2R (R2ζ − 2M (Rζ + 11R) + 2M2(ωBD + 12) + 4R2)
, (4.1.18)

F 2 = (4R3(3M − 2R) (ζ + 4))(m4
ΨR6 + 4R2ζ + M2

(
4m4

ΨR4 + 2ζ(ωBD

+ 12) + 8(ωBD + 12))− 4M
(
m4

ΨR5 + 6Rζ + 16R
)
)−1. (4.1.19)
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where ζ = m2
ΨR2

√
1− 2M

R
.

Krori and Barua [118] formulated a physically acceptable solution for a static

charged sphere. The highlight of this solution is that no restrictions are imposed on

the metric functions to avoid singularities, i.e., it is regular throughout the spacetime.

This solution has proved helpful in checking the impact of electromagnetic field on

matter source. However, researchers have also employed this ansatz to inspect phys-

ical characteristics of uncharged systems [119]. The KB solution is defined by the

following line element

ds2 = eâr2+b̂dt2 − eĉr2

dr2 − r2(dθ2 + sin2 θdφ2), (4.1.20)

where the constants â, b̂ and ĉ are evaluated (for % = 0) through the matching

conditions as

â =
Rζ(R− 2M) + 2M2ωBD

4R2(R− 2M)(2R− 3M)
, (4.1.21)

b̂ =
Rζ(R− 2M) + 2M2ωBD

−4 (6M2 − 7MR + 2R2)
+ ln

(
1− 2M

R

)
, (4.1.22)

ĉ = − ln
(
1− 2M

R

)

R2
. (4.1.23)

The anisotropic model is completely specified by the following matter variables

ρ =
e−ξ(r)

2r2Ψ(r)

(−rΨ(r)
(
Ψ′(r)

(
%reξ(r)f ′(r) + 4%f(r)eξ(r) − rξ′(r) + 4

)

+ 2rΨ′′(r)
(
%f(r)eξ(r) + 1

))− 2Ψ2(r)
(
%reξ(r)f ′(r) + %f(r)eξ(r)

− rξ′(r)− eξ(r) + 1
)

+ r2(−ωBD)Ψ′2(r)
(
%f(r)eξ(r) + 1

)

+ r2eξ(r)Ψ(r)V (Ψ)
)
, (4.1.24)

pr =
Ψ(r)

r2

((
%f(r) + e−ξ(r)

)
(%rg′(r) + rµ′(r) + 1)− 1

)− 1

2rΨ(r)

× (
Ψ′(r)

(
%f(r) + e−ξ(r)

)
(rωBDΨ′(r)−Ψ(r) (%rg′(r) + rµ′(r) + 4))

)
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− V (Ψ)

2
, (4.1.25)

p⊥ =
(
%f(r) + e−ξ(r)

) (
1

2
Ψ′(r)

(
%eξ(r)f ′(r)− ξ′(r)

%f(r)eξ(r) + 1
+ %g′(r) + µ′(r)

+
2

r

)
+ Ψ′′(r) +

ωBDΨ′2(r)
2Ψ(r)

)
+

1

2
Ψ(r)

(
%f(r) + e−ξ(r)

) (
(
(
%eξ(r)f ′(r)

− ξ′(r)) (%g′(r) + µ′(r)))(2%f(r)eξ(r) + 2)−1 +
1

r
(
%eξ(r)f ′(r)− ξ′(r)

%f(r)eξ(r) + 1

+ %g′(r) + µ′(r)) + %g′′ +
1

2

(
%g′(r) + µ′2(r)

)
+ µ′′(r)

)
− V (Ψ)

2
. (4.1.26)

In order to extend the seed solutions to the anisotropic domain, we require two

constraints on Θγ
δ to close the anisotropic system. For this purpose, we choose a

mimic constraint

Θ1
1(r) = p(r), (4.1.27)

which fulfills the requirement of vanishing pressure at the hypersurface. Under this

constraint, the values of the constants F and â remain unchanged. The remaining

constants A and ĉ appear as free parameters in corresponding extended versions

whose values are chosen as presented in Eqs.(4.1.17) and (4.1.21), respectively. For

the second constraint, a linear EoS as well as a regularity condition on anisotropy is

implemented as cases I and II, respectively.

The limits enforced by the weak-field on values of the coupling parameter can

be avoided through a lower bound for mass of the scalar field (mΨ > 10−4 in di-

mensionless units). In accordance with this limit, we take mΨ = 0.01 and solve the

wave equation numerically to determine the massive scalar field. Different features of

anisotropic models are investigated graphically for three values of % (0.2, 0.55, 0.9)

by employing the observed mass (1.97MJ) and radius (11.29km) of the star PSR

J1614-2230.
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Case I: Linear Equation of State

We consider a linear EoS for the source Θγ
δ as

Θ0
0 = a1Θ

1
1 + a2Θ

2
2. (4.1.28)

Setting a1 = 1 and a2 = 0 in the above equation leads to

e−ξ(r)

rΨ(r)

(−rΨ(r)
(
Ψ′(r)

(
reξ(r)f ′(r) + 4f(r)eξ(r) + rµ′(r) + 4

)
+ 2rf(r)

× eξ(r)Ψ′′(r)
)− 2Ψ2(r)

(
reξ(r)f ′(r) + f(r)eξ(r) + rµ′(r)− eξ(r) + 1

)

+ r2(−ωBD)
(
f(r)eξ(r) − 1

)
Ψ′2(r) + r2eξ(r)Ψ(r)V (Ψ)

)
= 0, (4.1.29)

which is solved numerically for f(r) along with the wave equation with the central

conditions Ψ(0) = 0.2, Ψ′(0) = 0 and f(0) = 0. On the other hand, the mimic

constraint (4.1.27) yields the following temporal geometric function

g(r) =

∫ (
(r2ωBD

(
f(r)eξ(r) + 1

)
Ψ′(r)2 − rΨ(r)

(
f(r)eξ(r) + 1

)
(rµ′(r)

+ 4) Ψ′(r)− 2Ψ2(r)
(
f(r)eξ(r) (rµ′(r) + 1) + rµ′(r)− eξ(r) + 1

)

+ r2eξ(r)Ψ(r)V (Ψ))(rΨ(r) (rΨ′(r) + 2Ψ(r))
(
%f(r)eξ(r) + 1

)
)−1

)
dr.

(4.1.30)

Substituting the metric functions and constants corresponding to Tolman IV solution

in Eqs.(4.1.24)-(4.1.26), (4.1.29) and (4.1.30) provides the extended version of this

solution.

The graphical analysis of state determinants is provided in Figure 4.1 with ωBD =

9.87. It is observed from Figure 4.1 that energy density as well as pressure compo-

nents are positive throughout and maximum at the center for % = 0.2 and 0.55.

However, for % = 0.9, the transverse pressure increases monotonically instead of
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Figure 4.1: Plots of matter variables and anisotropy of extended Tolman IV solution
for case I.

decreasing. The anisotropy is zero at the center and increases towards the surface

indicating the presence of an outward repulsive force. It is noted that higher values of

% increase the density and repulsive force in the interior of the structure whereas the

pressure components decrease. We employ energy conditions to ensure the presence

of normal matter. The first three conditions (NEC, WEC, SEC) are readily satisfied

for extended Tolman IV solution as energy density and pressure (radial/transverse)

are positive within the compact object. Figure 4.2 demonstrates that the parameters

governing the matter source agree with DEC ensuring viability of the model.

Another important physical feature of a self-gravitating system is its compactness

(u(r)) in a state of equilibrium. The compactness factor is defined as the relation of

mass to the radius of the object. Buchdahl [120] calculated the upper limit of this

parameter for a fluid with non-increasing energy density by matching the interior of
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Figure 4.2: DEC for anisotropic Tolman IV with case I.

a static sphere to Schwarzschild exterior solution. This limit is given as

u(r) =
m

R
<

4

9
, (4.1.31)

where m(r) = R
2
(1 − e−χ). The compactness factor obtained for anisotropic Tolman

IV solution (shown in Figure 4.3) conforms to Buchdahl limit. The surface red-

shift (Z(r)) of a celestial object gauges the increase in wavelength of electromagnetic

radiation due to gravitational force exerted by the star. It is defined as

Z(r) =
1√

1− 2u
− 1. (4.1.32)

For a perfect fluid distribution, Buchdahl limit restricts the value of redshift at the

stellar surface as Z(r) < 2. However, for an anisotropic configuration, the upper

limit of surface redshift changes to 5.211 [121]. It is observed from Figure 4.3 that

the range of redshift parameter complies with the above limit.

The internal structure of compact objects is determined by the gravitational (Mg)

as well as baryonic (Mb) mass. The gravitational mass of a spherical gravitationally

bound system is measured using Kepler’s law (when a satellite orbits the star) and is

defined as

Mg =
1

2

∫ R

0

ρr2dr. (4.1.33)



84

2 4 6 8 10
r

0.5

1.0

1.5

2.0

2.5

3.0

mHrL

2 4 6 8 10
r

0.05

0.10

0.15

0.20

0.25

uHrL

2 4 6 8 10
r

0.1

0.2

0.3

0.4

0.5

Z

Figure 4.3: Plots of mass, compactness and redshift parameters corresponding to
anisotropic Tolman IV for case I.
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Figure 4.5: Plots of radial/tangential velocities and |v2
⊥ − v2

r | corresponding to
anisotropic Tolman IV for case I.

The gravitational mass associated with the anisotropic star is obtained by numerically

solving the above equation along with the wave equation and (4.1.29) under the

condition Mg(0) = 0. The mass is presented in Figure 4.4 as a function of radius

for chosen values of %. It is noted that the gravitational mass of the spherical system

increases with an increase in the decoupling parameter. On the other hand, baryonic

mass is directly related to the massive iron core at the center of the stellar remnant

and is defined as the volume integral of baryon number density times mass of a baryon.

Burrows and Lattimer [122] provided the relation between gravitational and baryonic

mass as

Mb = Mg + $M2
g , (4.1.34)

where $ = 0.075 for a large number of nuclear EoS [123]. The relation between

gravitational and baryonic masses, presented in Figure 4.4, shows that maximum

baryonic mass is attained for % = 0.9.

The stability of the constructed model is investigated through causality condition

and Herrera’s cracking approach. The plots in Figure 4.5 clearly show that the

anisotropic model is stable for % = 0.2, 0.55 whereas tangential velocity becomes

positive after a certain distance corresponding to % = 0.9. Moreover, the extended
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Figure 4.6: Matter variables and anisotropy of extended KB solution for case I.

Tolman IV solution complies with this condition for % = 0.2, 0.55 as shown in Figure

4.5.

The anisotropic version of the KB solution is formulated in SBD gravity through

Eqs.(4.1.20), (4.1.24)-(4.1.26), (4.1.29) and (4.1.30). Plots of state variables are pre-

sented in Figure 4.6 for ωBD = 9.87. The profiles of energy density and pressure

components attain maximum value at the center and decrease towards the surface for

% = 0.2. However, for higher values of the decoupling parameter (0.55, 0.9), tangen-

tial pressure exhibits monotonically increasing behavior. Furthermore, the anisotropy

vanishes at the center as required. This anisotropic solution is consistent with all en-

ergy bounds for chosen values of % (Figure 4.7) leading to a viable configuration.

The compactness factor and surface redshift obey the desired restraints as shown in

Figure 4.8. Figure 4.9 shows an increment in the gravitational mass as % increases
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Figure 4.8: Plots of mass, compactness and redshift parameters corresponding to
extended KB solution for case I.

from 0.2 to 0.55. However, a drop in the mass is observed for a higher value of %.

Moreover, the baryonic mass is maximum for % = 0.55. The anisotropic model vio-

lates the causality condition as tangential velocity is negative throughout the system

for selected values of % (refer to Figure 4.10). However, the compact object is stable

with respect to Herrera’s cracking approach.

Case II: Regularity Condition on Anisotropy

Bowers and Liang [124] proposed that singularities in the Tolman-Oppenheimer-

Volkoff equation can be avoided if the following condition is imposed on the anisotropy

p⊥ − pr = Ch(pr, r)(ρ + pr)r
m,
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where the parameter C measures the strength of the anisotropy and m > 1. For

the present work, we have taken C = −0.5. Moreover, h is an arbitrary function of

radial pressure and contains information about the anisotropy of the system. In 1981,

Cosenza et al. [125] evaluated anisotropic solutions from known isotropic solutions by

assuming the energy density of a perfect fluid and taking h(pr, r) = λ′(r)
2

r1−m. These

conditions have already been employed in MGD approach to obtain new anisotropic

solutions [126, 127]. In this section, we obtain anisotropic analogues of seed solutions

by imposing Bowers-Liang constraint on Θ-sector as

Θ2
2 −Θ1

1 = Ch(Θ1
1, r)(−Θ0

0 + Θ1
1)r

m, (4.1.35)

with h(Θ1
1, r) = λ′(r)

2
r1−m. Substituting Eqs.(4.1.10)-(4.1.12) in the above equation

leads to

e−ξ(r)

rΨ(r)

(
f(r)eξ(r)

(
rΨ(r)

(
Ψ′(r)

(
C%r2g′(r)λ′(r) + Cr2µ′(r)λ′(r) + 4

)

− 2rΨ′′(r) (Crλ′(r) + 2)) + Ψ2(r)
(− (

2
(
%r2g′′(r) + r2µ′′(r)− 2

)

+ %2r2g′2(r) + 2%rg′(r) (rµ′(r)− Crλ′(r)− 1) + r2µ′2(r)− 2rµ′(r)

× (Crλ′(r) + 1)))− 2r2ωBDΨ′2(r) (Crλ′(r) + 2)
)− rΨ(r) (rΨ′(r)

× (
eξ(r)f ′(r) (Crλ′(r) + 2)− Crg′(r)λ′(r)

)
+ Ψ(r)

(
eξ(r)f ′(r) (%rg′(r)

+ rµ′(r) + 2Crλ′(r) + 2) + 2rg′′(r) + %rg′2(r) + g′(r) (2rµ′(r)− rξ′(r)

− 2Crλ′(r)− 2)))) = 0. (4.1.36)

We obtain the deformation function g(r) by simultaneously solving Eq.(4.1.36) and

wave equation numerically with the initial conditions Ψ(0) = 0.1, Ψ′(0) = 0, g(0) = 0

and g′(0) = 0.5. The function f(r) is evaluated from the constraint (4.1.27) as

f(r) = e−ξ(r)
(
2Ψ2(r)

(−rg′(r)− rµ′(r) + eξ(r) − 1
)− rΨ(r)Ψ′(r) (rg′(r)
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+ rµ′(r) + 4) + r2eξ(r)Ψ(r)V (Ψ) + r2ωBDΨ′2(r)
)
(rΨ(r)Ψ′ (%rg′(r)

+ rµ′(r) + 4) + 2Ψ2(r) (%rg′(r) + rµ′(r) + 1)− r2ωBDΨ′2(r))−1. (4.1.37)

Tolman IV solution is extended via constraint (4.1.35) by employing the associated

constants in Eqs.(4.1.24)-(4.1.26), (4.1.36) and (4.1.37). The physical characteristics

of this solution are investigated graphically for ωBD = 17.95. Figure 4.11 displays the

energy density and pressures as decreasing functions of r for the considered values of

%. A decrease in the physical parameters (ρ, pr, p⊥) is observed for higher values of

the decoupling parameter whereas anisotropy increases as % increases. Moreover, the

anisotropy within the star increases for some distance and then decreases indicating

the presence of a weaker repulsive force near the stellar surface. Figure 4.12 shows

that the system corresponding to extended Tolman IV solution is viable as it adheres

to the restrictions imposed by energy bounds. Moreover, the compactness and redshift

parameters (Figure 4.13) adhere to the respective bounds. The gravitational and

baryonic masses calculated from Eqs.(4.1.33) and (4.1.34), respectively are plotted in

Figure 4.14. The compact structure becomes more massive as % increases form 0.2 to

0.55 but decreases for % = 0.9. Furthermore, the model has maximum baryonic mass

for % = 0.55. Finally, the extended Tolman IV solution is stable for the considered

values of the decoupling parameter as it complies with the causality condition and

cracking approach as shown in Figure 4.15.

The extended version of KB solution under Bowers-Liang constraint is constructed

by plugging the associated metric potentials and constants in Eqs.(4.1.24)-(4.1.26),

(4.1.36) and (4.1.37). It is noted from Figure 4.16 that energy density and tangential

pressure are positive for the selected values of % but decrease monotonically only for

% = 0.2. However, the radial pressure has a maximum value at the center and vanishes
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Figure 4.11: Plots of matter variables and anisotropy of extended Tolman IV for case
II.

2 4 6 8 10
r

0.1

0.2

0.3

0.4

Ρ-pr

2 4 6 8 10
r

0.1

0.2

0.3

0.4

Ρ-pÞ

Figure 4.12: DEC for anisotropic Tolman IV with case II.
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Figure 4.13: Plots of mass, compactness and redshift parameters corresponding to
anisotropic Tolman IV for case II.
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Figure 4.16: Plots of matter variables and anisotropy of extended KB solution for
case II.
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Figure 4.17: DEC for extended KB solution with case II.
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extended KB solution for case II.

2 4 6 8 10 12 14
R

0.1

0.2

0.3

0.4

0.5

Mg

0.1 0.2 0.3 0.4 0.5
Mg

0.1

0.2

0.3

0.4

0.5

0.6

Mb

Figure 4.19: Plots of gravitational mass versus radius (left) and baryonic mass versus
gravitational mass (right) corresponding to extended KB solution for case II.

2 4 6 8 10
r

-0.2

0.2

0.4

0.6

0.8

vr
2

2 4 6 8 10
r

-1.0

-0.5

0.5

vÞ
2

2 4 6 8 10
r

0.2

0.4

0.6

0.8

ÈvÞ
2
-vr

2È

Figure 4.20: Plots of radial/tangential velocities and |v2
⊥ − v2

r | corresponding to ex-
tended KB solution for case II.



95

at r = R for all values of the decoupling parameter. Moreover, the state parameters

are inversely proportional to % while the anisotropy is directly proportional to the

decoupling parameter. The plots of DEC in Figure 4.17 show that the anisotropic

solution is physically valid for the chosen values of %. The values of compactness

parameter and surface redshift also lie in the desired range as displayed in Figure

4.18. The gravitational mass increases with increase in the decoupling parameter as

shown in Figure 4.19. Moreover, the baryonic mass is maximum for % = 0.9. The

constructed model is stable only for % = 0.2 as it violates causality and cracking

conditions for higher values of the decoupling parameter (Figure 4.20).

4.2 Extended Schwarzschild Solutions

In this section, we consider the Schwarzschild metric in Eq.(1.4.1) to determine the

set (4.1.6)-(4.1.8). Consequently, eµ = e−ξ = 1 − 2M
r

. The Schwarzschild spacetime

has a singularity at r = 0 hidden behind an event horizon at r = 2M . According

to the no-hair theorem, information about the BH is lost behind the event horizon

as physical state of matter is unknown beyond this boundary. However, efforts have

been made to study BHs in different perspectives in order to avoid this theorem

[22]. The addition of scalar field [128] or another generic source of matter [35] in

the vacuum leads to different BH solutions known as hairy BHs (with mass M and a

discrete set of charges as primary hair). The major benefit of the EGD scheme is the

transformation in temporal as well as radial metric components which increases the

probability of hairy BH solutions with different horizons.
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As there are five unknowns in the system (4.1.10)-(4.1.12), we apply two con-

straints to obtain the extended solution. In order to have a well-defined causal struc-

ture of the resultant spacetime, it is necessary that the causal horizon (e−χ = 0)

either covers the Killing horizon (eλ = 0) or coincides with it. Therefore, the first

constraint is applied to the metric potentials as

λ = −χ, (4.2.1)

which leads to coinciding Killing and causal horizons. Setting e−χ = 0 implies that

both Killing and causal horizons occur at r = 2M . The second constraint is applied to

Θ-components through a linear EoS expressed in Eq.(4.1.28). Applying the condition

(4.2.1) to Eqs.(4.1.4) and (4.1.5) yields the following relation between the deformation

functions

f(r) = −(2M − r)
(
e%g(r) − 1

)

%r
. (4.2.2)

The presence of an essential singularity is confirmed through Kretschmann scalar

which is evaluated as

K =
1

r6

[
%2r4(r − 2M)2e2%g(r)g′′2 + 8%Mr2(2M − r)e2%g(r)g′′(r) + %4r4(r

− 2M)2e2%g(r)g′4 − 8%3Mr3(2M − r)e2%g(r)g′3 + 2%2r2e2%g(r)g′2
(
%r2

× (r − 2M)2g′′(r) + 2
(
12M2 − 6Mr + r2

))− 8%Mre2%g(r)g′(r)
(
%r2

× (2M − r)g′′(r) + 8M − 2r) + 4
((

12M2 − 4Mr + r2
)
e2%g(r)

+ 2r(2M − r)e%g(r) + r2
)]

.

In the subsequent subsections, K is plotted to indicate the presence of a singularity at

r = 0. We compute decoupled solutions by choosing different values of the constants

a1 and a2 corresponding to different scenarios in Eq.(4.1.28). Moreover, we determine



97

the massive scalar field by solving the wave equation numerically for mΨ = 0.1 and

ωBD = 60. The behavior of the obtained BH solutions is checked for % = −0.4, −
0.5, − 0.7. It is noteworthy to mention here that under the applied constraints,

the positive behavior of density is achieved for negative values of the decoupling

parameter only.

4.2.1 Traceless Θγ
δ

The additional source has a traceless energy-momentum tensor when

Θ0
0 + Θ1

1 = −2Θ2
2,

(since Θ2
2 = Θ3

3), i.e., Θγ
δ is traceless when a1 = −1 and a2 = −2 in Eq.(4.1.28) which

yields

1

rΨ(r)

(
e−ξ(r)

(
%Ψ(r)r

(
3Ψ′(r)r

(
eξ(r)f ′(r) + g′(r)

)
+ Ψ(r)

(
eξ(r)f ′(r)

× (%rg′(r) + rµ′(r) + 4) + 2rg′′(r) + g′(r) (%rg′(r) + 2rµ′(r)− r

×ξ′(r)) + 4)) + %f(r)eξ(r) (3rΨ(r) (Ψ′(r) (%rg′(r) + rµ′(r) + 4)

+2rΨ′′(r)) + Ψ2(r)
(
r
(
r
(
2 (%g′′(r) + µ′′(r)) + µ′2(r)

)
+ %2rg′2(r)

+2%g′(r) (rµ′(r) + 2) + 4µ′(r)) + 4) + 2r2ωBDΨ′2(r)
)))

= 0. (4.2.3)

The deformation function g(r) is evaluated by solving the above equation numerically

along with the wave equation subject to the initial conditions Ψ(2M) = 0.8, Ψ′(2M) =

0.1, g(2M) = 1 and g′(2M) = 0.1. The Kretschmann scalar shown in Figure 4.21

approaches to infinity when r → 0. Thus, a singularity exists at r = 0. The graphical

analysis of state variables is done in the region accessible to an outer-observer with

M = 1 (Figure 4.22). The energy density and tangential pressure increase as the
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Figure 4.23: Energy conditions for case I.

decoupling parameter decreases. However, radial pressure is directly proportional to

%. It is noted that positive energy density is obtained when radial pressure is nega-

tive. Figure 4.23 shows that all bounds on energy density and pressure components

are satisfied in the considered setup. The plot of metric potentials in Figure 4.24

indicates that the new solution preserves asymptotic flatness for large values of the

radial coordinate.
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Figure 4.24: Metric potentials for case I.

4.2.2 Barotropic Equation of State

The new source is polytropic if it satisfies the EoS

Θ1
1 = K(Θ0

0)
1+ 1

n .

Different values of the polytropic index correspond to different types of fluids. We

proceed by taking the simplest case of barotropic fluid (isothermal sphere of gas).

The resulting EoS is equivalent to Eq.(4.1.28) for a1 = − 1
K

and a2 = 0 which is

expressed as

1

KrΨ(r)

(
%e−ξ(r)

(
rΨ(r) (rΨ′(r) + 2Ψ(r))

(
Keξ(r)f ′(r) + g′(r)

)

+f(r)eξ(r) (rΨ(r) (Ψ′(r) (%rg′(r) + 4K + rµ′(r) + 4) + 2KrΨ′′(r))

+2Ψ2(r) (% rg′(r) + K + rµ′(r) + 1
)

+ (K − 1)r2ωBDΨ′2(r)
)))

= 0.

(4.2.4)

Employing Eq.(4.2.2) and the initial conditions used in case I, wave equation and

Eq.(4.2.4) are solved simultaneously for Ψ(r) and g(r), respectively with M = 1.

Figure 4.25 demonstrates the presence of a singularity at r = 0 in the current

setup. The plots of energy density and pressure components are displayed in Figure
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Figure 4.25: Plot of K for case II.

 ·=-0.4

 ·=-0.5

 ·=-0.7

2.2 2.4 2.6 2.8 3.0 3.2 3.4
r

0.08

0.10

0.12

0.14

0.16

Ρ

 ·=-0.4

 ·=-0.5

 ·=-0.7

2.2 2.4 2.6 2.8 3.0 3.2 3.4
r

-0.15

-0.10

pr

 ·=-0.4

 ·=-0.5

 ·=-0.7

2.2 2.4 2.6 2.8 3.0 3.2 3.4
r

0.01

0.02

0.03

0.04

0.05

0.06

pÞ

Figure 4.26: Matter variables for case II.
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Figure 4.27: Energy conditions for case II.
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Figure 4.28: Metric potentials for case II.
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4.26 for K = 0.01. The celestial object becomes less dense for higher values of %.

The density increases to a maximum and then decreases monotonically for r > 2M .

Moreover, the radial pressure decreases while tangential pressure increases as the

decoupling parameter takes on higher values. The plots in Figure 4.27 indicate

that the extended solution fails to satisfy the energy conditions as ρ + pr < 0 and

ρ + pr + 2p⊥ < 0 for the chosen values of %. Thus, the unknown source Θγ
δ can be

treated as exotic matter in this case. Finally, the metric potentials representing the

spacetime of this setup are shown in Figure 4.28. It can be clearly observed that

trends of eλ and eχ do not approach 1 and thus, disobey the criterion of asymptotic

flatness.

4.2.3 A Particular Solution

Here, we evaluate a specific solution by inserting a1 = 1.4 and a2 = 3 in Eq.(4.1.28)

leading to

1

rΨ(r)

(
%e−ξ(r)

(
rΨ(r)

(
rΨ′(r)

(
eξ(r)f ′(r) + 2.2g′(r)

)
+ Ψ(r)

(
eξ(r)f ′(r)

× (0.75%rg′(r) + 0.75rµ′(r) + 0.5) + 1.5rg′′(r) + g′(r) (0.75%rg′(r)

+1.5rµ′(r)− 0.75rξ′(r) + 2.9))) + f(r)eξ(r) (rΨ(r) (Ψ′(r) (2.2%rg′(r)

+2.2rµ′(r) + 3.8) + 2rΨ′′(r)) + Ψ2(r)
(
r
(
1.5%rg′′(r) + 0.75%2rg′2(r)

+%g′(r) (1.5rµ′(r) + 2.9) + 1.5rµ′′(r) + 0.75rµ′2(r) + 2.9µ′(r)
)

+ 0.4
)

+0.3r2ωBDΨ′2(r)
)))

= 0. (4.2.5)

The extended solution is formulated by plugging the values of ξ(r), µ(r) and f(r)

in wave equation and Eq.(4.2.5) and solving them for initial conditions of case I with

M = 1. A singularity exists at r = 0 since the plot of K in Figure 4.29 tends to
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Figure 4.29: Plot of K for case III.
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Figure 4.30: Matter variables for case III.
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Figure 4.31: Energy conditions for case III.
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Figure 4.32: Metric potentials for case III.
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infinity for r → 0. The state variables of the solution are plotted in Figure 4.30

for chosen values of the decoupling parameter. The energy density and tangential

pressure are maximum at the horizon and decrease monotonically as r increases. The

decrease in the values of decoupling parameter causes an increase in density and

transverse pressure whereas the radial pressure increases with increase in %. The

energy constraints are satisfied by Θγ
δ (Figure 4.31) ensuring the presence of normal

matter. The metric functions represent a spacetime that is asymptotically flat as

shown in Figure 4.32.



Chapter 5

Anisotropic Strange Stars through
Embedding Technique in MBD
Gravity

This chapter investigates the existence and properties of anisotropic strange quark

stars in the context of MBD theory. The field equations are constructed by assuming a

suitable potential function with MIT bag model. We employ the embedding class-one

approach as well as junction conditions to determine the unknown metric functions.

Radius of the strange star candidate, LMC X-4, is predicted through its observed

mass for different values of the bag constant. We analyze the effects of coupling

parameter as well as mass of scalar field on state determinants and execute multiple

checks on the stability and viability of the spherical system.

This chapter is organized as follows. In section 5.1, we construct a system of

field equations and physical variables using MIT bag model. Section 5.2 gives an

overview of junction conditions for a smooth matching between intrinsic and extrinsic

geometries. The physical properties, validity and stability are examined in section

5.3. The results of this chapter are published in [129].

107
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5.1 Embedding Class-one Solution via MIT Bag

Model

The field equations required to construct the anisotropic model are represented by

Eqs.(4.1.1)-(4.1.3). The embedding class-one condition (1.8.1) leads to the following

differential equation for the metric (2.1.1)

(χ′ − λ′)λ′eχ + 2(1− eχ)λ′′ + λ′2 = 0. (5.1.1)

The solution of the above equation turns out to be

χ(r) = ln(1 + B̂λ′2eλ), (5.1.2)

where B̂ is a constant of integration. Maurya et al. [130] constructed a new class of

solutions using the following form of metric potential

λ(r) = 2r2Â + ln Ĉ, (5.1.3)

where Â and Ĉ are positive constants. Using this value in Eq.(4.1.6), we have

χ(r) = ln(1 + ÂD̂r2e2Âr2

), (5.1.4)

where D̂ = 16ÂB̂Ĉ is a constant.

Neutron stars with M > 3MJ may transform into quark stars which contain up

(u), down (d) and strange (s) quark flavors. The matter variables describing the

interior configuration of these relativistic stars obey MIT bag EoS. According to the

MIT bag model, the quark pressure is stated in Eq.(1.5.3). The simplified form of

this EoS has been used in GR and modified theories to examine the features of quark

star candidates. In our study, the numerical results of the model have been obtained
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by taking B equal to 64MeV/fm3 and 83MeV/fm3 which are within the allowed

limit [131]. The total mass of a sphere of radius r is evaluated through Misner-Sharp

formula (1.2.1).

5.1.1 Matching Conditions

The set of parameters (Â, B̂, Ĉ, D̂) defining the geometry as well as physical prop-

erties (such as mass and radius) of anisotropic compact objects can be determined

through the smooth matching of interior and exterior spacetimes on the boundary of

the star. The exterior region is taken to be the Schwarzschild spacetime. Moreover,

the scalar field corresponding to the vacuum Schwarzschild solution is derived using

the technique in [53] which comes out to be Ψ = e(1− 2M
r

). We denote the interior and

exterior regions by V− and V+, respectively.

The hypersurface (ĥ = r −R = 0, R is constant radius) is defined by the metric

ds2 = dτ 2 −R2(dθ2 + sin2 θdφ2), (5.1.5)

where τ is the proper time on the boundary. The extrinsic curvature of Σ is given by

K±
ij = −n±γ

∂2xγ
±

∂νiνj
− n±γ Γγ

δµ

∂xδ
±

∂νi

∂xµ
±

∂νj
, i, j = 1, 2, 3,

where νi are the coordinates defined on Σ. Moreover, the components of the four-

vector normal (n±γ ) to the hypersurface are defined in the coordinates (xγ
±) of V±

as

n±γ =
dĥ

dxγ
|gδµ dĥ

dxδ

dĥ

dxµ
|−1

2 ,

with nγn
γ = 1. The unit normal vectors have the following form

n−γ = (0, e
χ
2 , 0, 0), n+

γ = (0, (1− 2M

r
)
−1
2 , 0, 0). (5.1.6)
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Comparing the metrics (1.4.1) and (2.1.1) with (5.1.5), it follows that

[
dt

dτ
]Σ = [e

−λ
2 ]Σ = [(1− 2M

r
)
−1
2 ]Σ, [r]Σ = R. (5.1.7)

Using Eq.(5.1.6), the non-zero components of curvature are calculated as

K−
00 = [−e−

χ
2 λ′

2
]Σ, K−

22 =
1

sin2(θ)
K−

33 = [re−
χ
2 ]Σ,

K+
00 = [−M

r2
(1− 2M

r
)
−1
2 ]Σ, K+

22 =
1

sin2(θ)
K+

33 = [r(1− 2M

r
)

1
2 ]Σ.

The junction conditions [K−
22]Σ = [K+

22]Σ and [r]Σ = R yield

e−
χ(R)

2 = (1− 2M

R
)

1
2 . (5.1.8)

Substituting the above equation in the matching condition [K−
00]Σ = [K+

00]Σ gives

λ′(R) =
2M

R(R− 2M)
. (5.1.9)

Thus, the matching conditions in Eqs.(5.1.7)-(5.1.9) provide the following relations

at the hypersurface

eλ(R) = Ĉe2Âr2

= 1− 2M

R
,

e−χ(R) =
1

1 + ÂD̂R2e2ÂR2
= 1− 2M

R
,

λ′(R) =
2M

R(R− 2M)
.

Inserting D = 16ABC in the above equations, the deterministic parameters of the

system are expressed as

Â =
M

2R2(R− 2M)
, (5.1.10)

B̂ =
R3

2M
, (5.1.11)
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Ĉ = e
M

2M−R
R− 2M

R
, (5.1.12)

D̂ = 4e
M

2M−R . (5.1.13)

For the metric functions in Eqs.(5.1.3) and (5.1.4) along with Eqs.(5.1.10)-(5.1.13),

the state variables are expressed in Eqs.(A1)-(A3).

5.2 Physical Features of Compact Stars

The effect of coupling parameter as well as mass of scalar field on stellar structure can

now be analyzed through the energy density and radial/transverse pressure compo-

nents. Numerical results have been obtained for V (Ψ) = 1
2
m2

ΨΨ2, ωBD = 20, 25, 30

and mΨ = 0.001, 0.3 which are in accordance with the constraints imposed by the

solar system observations [43]. The expression of scalar field is derived by solving

the wave equation numerically with the initial conditions Ψ(0) = Ψc =constant and

Ψ′(0) = 0. The values of Ψc for different values of mΨ, ωBD and B are given in

Tables 5.1 and 5,2. All deductions have been presented graphically for LMC X-4

(M = 1.29MJ [132]).

Using the condition pr(R) = 0, radius as well as physical parameters of the strange

star candidate are displayed in Tables 5.1 and 5.2 for mΨ = 0.001 and mΨ = 0.3,

respectively. Here, the subscripts c and s denote that the quantity has been calculated

at the center and surface of the star, respectively. For a physically valid solution, the

metric potentials must be positive, regular and monotonically increasing functions of

the radial coordinate [133]. The metric potential functions are shown in Figure 5.1

which reveal their regular behavior leading to singularity free system.

The influence of physical variables such as energy density and pressure cannot be
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Table 5.1: Physical parameters of LMC X-4 with mΨ = 0.001 for different values of
ωBD and B.

B = 64MeV/fm3

ωBD Ψc Predicted ρc (gm/cm3) ρs (gm/cm3) pc (dyne/cm2)
Radius (km)

20 0.0204 8.3141+0.3293
−0.3285 6.6437× 1014 4.6155× 1014 7.1544× 1034

25 003055 9.6173+0.3863
−0.3847 6.2865× 1014 4.5450× 1014 5.6021× 1034

30 0.04445 10.9515+0.449
−0.446 6.1019× 1014 4.6035× 1014 4.8650× 1034

GR limit 5.54 9.498× 1016 6.823× 1016 3.540× 1036

B = 83MeV/fm3

ωBD Ψc Predicted ρc (gm/cm3) ρs (gm/cm3) pc (dyne/cm2)
Radius (km)

20 00264 8.3397+0.3582
−0.3315 8.5180× 1014 5.9133× 1014 9.0542× 1034

25 0.0399 9.6669+0.3931
−0.3908 8.1568× 1014 5.9266× 1014 7.1989× 1034

30 0.0578 11.0422+0.4622
−0.4577 7.9254× 1014 5.8838× 1014 6.3199× 1034

GR limit 5.55 9.498× 1016 6.823× 1016 3.564× 1036

Table 5.2: Physical parameters of LMC X-4 with mΨ = 0.3 for different values of
ωBD and B.

B = 64MeV/fm3

ωBD Ψc Predicted ρc (gm/cm3) ρs (gm/cm3) pc (dyne/cm2)
Radius (km)

20 0.0204 8.3141+0.3293
−0.3285 6.7762× 1014 4.7467× 1014 7.1905× 1034

25 0.03055 9.6173+0.3863
−0.3847 6.6665× 1014 4.9018× 1014 5.8065× 1034

30 0.04555 10.9515+0.449
−0.446 6.7427× 1014 5.1681× 1014 4.9215× 1034

B = 83MeV/fm3

ωBD Ψc Predicted ρc (gm/cm3) ρs (gm/cm3) pc (dyne/cm2)
Radius (km)

20 0.0264 8.3397+0.3582
−0.3315 8.7829× 1014 6.1661× 1014 9.1757× 1034

25 0.0399 9.6669+0.3931
−0.3908 8.5916× 1014 6.3427× 1014 7.2289× 1034

30 0.0578 11.0422+0.4622
−0.4577 8.8271× 1014 6.9153× 1014 6.0806× 1034
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Figure 5.1: Plots of metric potentials for massive scalar field versus radial coordinate.
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Figure 5.2: Effective energy density, effective radial/transverse pressure as functions
of r with mΨ = 0.001.
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Figure 5.3: Effective energy density, effective radial/transverse pressure as functions
of r with mΨ = 0.3.

neglected in extremely dense strange stars. The behavior of these physical quantities

with respect to the radial coordinate is positive throughout and maximum at the

center of compact configuration as presented in Figures 5.2 and 5.3 which shows that

the core is highly concentrated for the chosen values of the parameters (mΨ, ωBD, B).

The plots also depict the monotonic decreasing trend of energy density and pressure

components away from the center of stars leading to a compact profile. Hence, for the

considered values of B, the existence of quark stars is ensured for V (Ψ) = 1
2
m2

ΨΨ2.

The radial and tangential components of pressure give rise to anisotropy within the

structure. The anisotropy of pressure is positive when p⊥ > pr and negative otherwise.

The positive and increasing behavior of anisotropy suggests that an outward directed

repelling force is in play in the interior of stellar models stabilizing the system against

gravity. Utilizing Eqs.(A2) and (A3), the anisotropy comes out to be

∆ =
ξΨ

r

[
M2r3Ψ2(r)

(
1− 2e

M(r−R)(r+R)

R2(R−2M)

)2

− rR2ωBD(2M −R)
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Figure 5.4: Variation of effective anisotropy as a function of r.

×
(

2Mr2e
M(r−R)(r+R)

R2(R−2M) + R2(R− 2M)

)
Ψ′2(r) + Ψ(r)

(
R4

(−(R− 2M)2
)

× (Ψ′(r)− rΨ′′(r))− 2Mr2e
M(r−R)(r+R)

R2(R−2M)
((

Mr2 − 4MR2 + 2R3
)
Ψ′(r)

+ rR2(2M −R)Ψ′′(r)
))]

.

Figure 5.4 indicates that the behavior of anisotropy is acceptable for the selected

model.

5.2.1 Energy Conditions

A configuration is said to be realistic if it satisfies all four energy conditions, i.e.,

NEC, WEC, SEC and DEC. These conditions are expressed in Eqs.(1.9.4)-(1.9.7).

As Figures 5.2 and 5.3 depict positive behavior of ρ, pr and p⊥ throughout the

stellar structure, therefore the first three conditions are readily satisfied. The plot

of DEC in Figure 5.5 is positive at each point within the stellar structure. Hence,
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Figure 5.5: DEC plotted against the radial coordinate.



117

B=64 MeV � fm3

2 4 6 8 10
r

0.5

1.0

1.5

m

B=64 MeV � fm3

2 4 6 8 10
r

0.05

0.10

0.15

0.20

u

B=64 MeV � fm3

2 4 6 8 10
r

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Z

B=83 MeV � fm3

2 4 6 8 10
r

0.5

1.0

1.5

m

B=83 MeV � fm3

2 4 6 8 10
r

0.05

0.10

0.15

0.20

u

B=83 MeV � fm3

2 4 6 8 10
r

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Z

Figure 5.6: Plots of relation between mass, compactness factor and redshift against
radial coordinate.

all energy conditions are satisfied which validate the model for the chosen values of

mΨ, B and ωBD.

5.2.2 Effective Mass, Compactness and Redshift

The size and mass are two inter-related observable features of a compact object. The

effective mass for the current structure is calculated via Eq.(1.2.1) as

m(r) =
r

2


 2Mr2e

M(R2−r2)

R2(2M−R)

R2(R− 2M) + 2Mr2e
M(R2−r2)

R2(2M−R)


 ,

which is dependent on the radius of celestial body. Figure 5.6 shows a decrease in

mass for a larger value of B. The compactness function is the ratio of mass to radius

given as

u(r) =
m(r)

r
=

1

2


 2Mr2e

M(R2−r2)

R2(2M−R)

R2(R− 2M) + 2Mr2e
M(R2−r2)

R2(2M−R)


 .
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Figure 5.6 displays the compactness factor as a monotonic increasing function with

respect to the radial coordinate. The values attained by the function adhere to the

upper limit m
R

< 4
9
, proposed by Buchdal [120] for both values of bag constant.

Further, the gravitational redshift is a measure of the force exerted on light as a

consequence of strong gravity. The relativistic effect can be measured from the X-ray

spectrum of the cosmic object using the compactness factor which is defined as

Z =
1√

1− 2u(r)
− 1,

leading to the following expression

Z = −1 +

√√√√
1 +

2Mr2e
M(R2−r2)

R2(2M−R)

R2(R− 2M)
.

Figure 5.6 exhibits the redshift as an increasing function of radial coordinate. We

would like to mention here that the surface redshift for the stellar candidate is con-

sistent with the limit for relativistic stars (Z < 5.211) [121].

5.2.3 Stability of Stellar System

In this section, we examine stability of the anisotropic setup through causality con-

dition, cracking approach and adiabatic index. Figures 5.7 and 5.8 shows that

anisotropic distribution agrees with the causality condition as well as cracking ap-

proach in the framework of MBD theory.

The expression for adiabatic index for our system is given by

Γ =
pr + ρ

pr

dpr

dρ
=

pr + ρ

pr

v2
r .

The graphical analysis of adiabatic index in the presence of a scalar field can be

seen in Figure 5.9. The value of this index is more than 4
3

for all stars which is in
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Figure 5.7: Variation of radial velocity, tangential velocity and |v2
⊥− v2

r | with respect
to radial coordinate with mΨ = 0.001.
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Figure 5.9: Plots of adiabatic index versus r.

agreement with the constraint [103]. Hence, the stellar structure is stable for the

considered values of MBD parameters.



Chapter 6

Concluding Remarks

In this thesis, firstly we have formulated definitions of complexity for static as well

as non-static spherical systems in the framework of SBD theory. The condition of

vanishing complexity has been employed to formulate possible solutions. We have

also adopted the technique of MGD to develop anisotropic extension of a non-static

spherical system. In particular, we have deformed the radial metric of FLRW space-

time to extend it to anisotropic domain. Furthermore, we incorporated an additional

source in the simple seed source (isotropic or vacuum) and used the EGD scheme

to devise extended versions of Tolman IV, KB and Schwarzschild spacetimes. We

have inspected physical properties of the models constructed via decoupling method

graphically. Finally, we have investigated the possible existence of anisotropic strange

quark stars in SBD gravity by utilizing embedding class-one condition with MIT bag

model.

Chapter 2 comprises of two sections. In the first section, we have investigated the

complexity of static sphere. We have used Misner-Sharp and Tolman definitions for

calculating the mass of the sphere. We measure the complexity of the self-gravitating

objects through the structure scalar YTF as it establishes a relation between these
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factors as well as measures their effect on Tolman mass. In the case of homogeneous

energy density and isotropic pressure, the complexity factor of the system vanishes

in the context of GR [2]. However, our results do not reduce to a complexity free

structure under these assumptions which highlight the effect of including scalar field

and potential function to the complexity factor. The simplest configuration in SBD

corresponds to two cases of fluids (either the fluid is homogeneous and isotropic or the

inhomogeneity and anisotropy terms cancel each other) which must also satisfy an ad-

ditional condition ( e−χΨ′
2rΨ

= 0). Hence, the presence of scalar field and self-interacting

potential has increased the complexity of the system. The use of vanishing complex-

ity condition in two models representing self-gravitating objects have provided open

systems which can be closed by assigning suitable values to V (Ψ).

In the second section of Chapter 2, we have considered an anisotropic radiating

non-static sphere with inhomogeneous energy density. The structure scalar YTF has

been selected as an appropriate choice for complexity factor based on the following

reasons.

• It has already served as an adequate measure of complexity in the static case,

thereby ensuring that the current definition of complexity is recovered in the

static regime.

• It includes the effects of anisotropy, inhomogeneous energy density and dissipa-

tion.

Since the homologous condition has implied that the fluid is geodesic (for both q = 0

and q 6= 0) therefore, a homologous pattern of evolution has been chosen to minimize

the complexity in the evolution of the system. Further, in the non-dissipative case,

the complexity factor and shear-tensor do not vanish in contrast to the GR analog
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[3]. Furthermore, we have deduced that in SBD gravity the stability of vanishing

complexity condition depends on the scalar field in addition to the matter variables

(pressure, heat flux, energy density).

In Chapter 3, the system of SBD field equations corresponding to FLRW metric

are decoupled into two sets through a transformation of the radial metric function.

The anisotropic version of flat FLRW model has been graphically analyzed for ς =

1, 1/3, 0, − 1 which correspond to various phases of the universe. The important

results are summarized below.

• In the massless scalar field dominated era, energy density and pressure decrease

with respect to cosmic time. The model depicts a stable expanding cosmos

which adheres to the energy bounds.

• The universe model dominated by radiation has positive energy density and

pressure components which agree with the energy bounds and stability criterion.

Moreover, the radiation dominated universe is more dense than the cosmos with

a massless scalar field.

• The cosmic model corresponding to ς = 0 expands due to the presence of a

repulsive force (which is absent in the isotropic case) characterized by the nega-

tive pressure. This viable model attains a higher energy density as compared to

the previous two phases. However, the solution violates the causality condition.

• The vacuum energy dominated cosmos experiences a stronger repulsive force

due to large negative pressure which increases its rate of expansion. This is the

most dense cosmic model which violates the SEC as well as causality condition.

We would like to mention here that energy density of the universe in all eras is
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directly proportional to the decoupling parameter whereas pressure decreases when

σ increases. The negative anisotropy indicates that the cosmos expands more rapidly

in the radial direction.

Chapter 4 has been divided into two sections. In the first section, we have

examined the efficiency of EGD method by considering metric coefficients of two

isotropic solutions: Tolman IV and KB. The anisotropic models corresponding to case

I are viable as well as obey Buchdahl limit for compactness and redshift. Moreover,

higher values of the decoupling parameter correspond to denser and more compact

stellar structures in both models. The extended Tolman IV solution is stable for

% = 0.2, 0.55 whereas anisotropic KB solution is stable according to Herrera’s cracking

approach but violates the causality condition 0 ≤ v2
⊥ ≤ 1 for the considered values of

%.

For case II, both solutions satisfy energy conditions as well as the limits on com-

pactness and surface redshift. Moreover, increase in the decoupling parameter leads

to a decrease in the density and compactness of both anisotropic models. Finally, the

strength of the repulsive force due to positive anisotropy increases with the increase

in % in all four solutions. The model corresponding to extended Tolman IV solution

is consistent with both stability criteria whereas anisotropic KB solution is stable for

% = 0.2 only. It is inferred that viability of the extended Tolman IV solutions in GR

[33, 126] is preserved in SBD gravity as well. Moreover, the anisotropic analogues of

KB solution obtained here are viable for higher values of the decoupling parameter

in contrast to the extended KB solutions obtained through MGD technique in [134].

Thus, EGD method yields anisotropic solutions with suitable physical properties.

In the second section of Chapter 4, we have considered the seed source as a
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vacuum and employed the metric potentials of Schwarzschild spacetime. The number

of unknown constants has been reduced by imposing the EoS Θ0
0 = a1Θ

1
1 + a2Θ

2
2.

Three solutions have been generated corresponding to

• a1 = −1 and a2 = −2 (represents a traceless additional source).

• a1 = − 1
K

and a2 = 0 (provides a barotropic fluid distribution).

• a1 = 1.4 and a2 = 3 (yields a particular solution).

The energy density in all cases is positive for negative values of the decoupling para-

meter only which results in negative radial pressure. This behavior of matter variables

is consistent with the work in [26]. Moreover, higher energy density is observed for

lower values of %. The analysis of state parameters has revealed that the extended

models corresponding to cases I and III are consistent with energy conditions. This

implies that Θγ
δ is sourced by normal matter. However, the extended model obtained

for a barotropic EoS violates the energy conditions indicating the presence of exotic

matter. Moreover, the metrics formulated for I and III are asymptotically flat whereas

the metric obtained for II does not approach to a flat spacetime when r →∞. All the

BH solutions mentioned above have a singularity covered by the horizon at r = 2M .

Moreover, the extended Schwarzschild solutions obtained through the technique of

MGD in GR violate the DEC. However, in the context of SBD gravity two solutions

have been generated that adhere to all the energy constraints.

In Chapter 5, we have constructed a static stellar model representing strange

star by assuming a well-behaved metric potential and embedding class-one condition

with MIT bag model. Tables 5.1 and 5.2 indicate that predicted radius increases

while Figure 5.6 implies that the quark star becomes less dense with increase in the
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bag constant. Moreover, higher values of scalar field mass lead to more dense stellar

systems. The regular behavior of state variables indicates that the system has no

singularity. We have established that the interior of star consists of normal matter as

all energy conditions are satisfied for the considered values of the parameters as well

as the bag constant.

The positive trend of anisotropy confirms the presence of a repelling force required

to save the star from further collapse. The graphical analysis of redshift parameter

depicts that as the radius of the star increases, the amount of redshift decreases. We

have also calculated the compactness factor and the mass-radius ratio which are in

agreement with the Buchdahl criterion. Figure 5.6 indicates that a more dense star

exerts additional force on light leading to greater redshift. Finally, we have checked

the stability conditions for the prototype stellar model using three approaches. All

these imply stability of the system coupled to a massive scalar field. However, plots of

vr and v⊥ represent smooth behavior for increasing values of ωBD as shown in Figures

5.7 and 5.8. Hence, the celestial object is more stable for larger values of coupling

parameter. We conclude that the cosmic structure governed by MIT bag model in the

framework of SBD is consistent with all the critical requirements and can be treated

as a viable and stable model.

It would be interesting to address the following issues in future in the framework

of SBD gravity.

• To explore the complexity of anisotropic self-gravitating spheres following either

a quasi-homologous or homogeneous regime.

• To extend the definition of complexity to cosmological models.
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• To investigate the influence of electromagnetic field on the complexity of static

as well as dynamical systems in different symmetries.

• To apply the decoupling approach in the background of other symmetries in the

presence as well as absence of charge.

• To devise a configuration representing ultracompact stars with a polynomial

form of complexity factor by employing the decoupling approach.

• To develop decoupled compact models using the MIT bag model along with

embedding class-one condition.

• To determine the effect of different forms of self-interacting potential functions

on charged as well as uncharged quark stellar models for various well-behaved

metric functions.
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Energy density and pressure components take the following form

ρ =
1

2r2

{
ξ2Ψ2

[
2R2(2M −R)

(
M

(
r2 − 2R2

)
+ R3

)
(rΨ′(r) + 2Ψ(r))

]

− ξ
[
r2R2ωBD(R− 2M)Ψ′2(r) + 2rΨ(r)

((
R3 −M

(
r2 + 2R2

))
Ψ′(r)

+ rR2(R− 2M)Ψ′′(r)
)− 2Ψ2(r)

(
2M(r −R)(r + R) + R3

)]

+ r2V (Ψ) + 2Ψ(r)} , (A1)

pr =
ξ

4r2
r2R2ωBD(2M −R)Ψ′2(r) + 2Ψ2(r)

(
2M(r −R)(r + R) + R3

)

+ rΨ(r)
((

2M(r −R)(r + R) + R3
)
Ψ′(r) + rR2(2M −R)Ψ′′(r)

)

+
ξ2Ψ2

4r
(R2(2M −R)

(
M

(
r2 − 2R2

)
+ R3

)
(rΨ′(r) + 2Ψ(r)))− B, (A2)

p⊥ =
Ψξ

4r2

[(
M

(
r2 − 2R2

)
+ R3

) (
2Ψ(r)

(
2M(r −R)(r + R) + R3

)

+ 3rR2(R− 2M)Ψ′(r)
)]

+ ξ
[
3r2R2ωBD(R− 2M)Ψ′2(r) + rΨ(r)

× ((−2Mr2 + 14MR2 − 7R3
)
Ψ′(r) + 3rR2(R− 2M)Ψ′′(r)

)− 2Ψ2(r)

× (
2M

(
r2 − 3R2

)
+ 3R3

)]− B +
Ψ(r)

r2
, (A3)

where ξ = Ψ−1(r)

2Mr2e

M(r−R)(r+R)

R2(R−2M) +R2(R−2M)

.
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