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Resumen

La presente tesis enfrenta la problemática de establecer si es posible construir una
versión de la mecánica cuántica (MC) en espacios de Hilbert que trate al espacio
y al tiempo en pie de igualdad, y considere a la simetría de Lorentz de manera
explícita en teorías relativistas. La relevancia actual de este problema, intrínseco al
área de fundamentos de la mecánica cuántica, radica en las potenciales implican-
cias para otras áreas como la información, la computación y la gravedad cuántica,
y, sobre todo, para el reciente conjunto de ideas que yace en la intersección de las
mismas. En la tesis se construye progresivamente un formalismo con las característi-
cas deseadas, proporcionando así una respuesta afirmativa a la pregunta inicial. La
construcción comienza con la generalización del formalismo de Page y Wootters al
caso de partículas relativistas y luego al de varias partículas. Esto conlleva a intro-
ducir espacios de Hilbert ampliados a través de álgebras que tratan al tiempo y al
espacio en pie de igualdad. A través del concepto de operador acción, una versión
cuántica de la acción clásica, se establece la existencia de una correspondencia entre
los espacios de Hilbert ampliados y la MC convencional. Se demuestra a su vez que
la suma sobre historias de la formulación de Feynman adquiere un nuevo significado
en estos espacios. Finalmente, se combinan todos los resultados anteriores en una
discusión sobre las deficiencias del espacio de fases clásico para abarcar explícita-
mente simetrías del espacio-tiempo, y sobre como estas son heredadas por la MC,
afectando incluso a su formulación ampliada. Se propone entonces una versión au-
mentada de la formulación Hamiltoniana clásica que involucra corchetes de Poisson
simétricos en espacio-tiempo para campos de materia y corchetes de Poisson asocia-
dos a las posibles foliaciones del espacio-tiempo. Esta formulación clásica permite
obtener ecuaciones de movimiento invariantes en el espacio de fase. Su cuantización
lleva directamente a los espacios de Hilbert ampliados, dónde además la foliación es
cuántica y la simetría de Lorentz explícita. Condicionando con respecto a autoes-
tados de foliación, en analogía con el formalismo de Page y Wootters, se recupera
la correspondencia con la MC convencional. Finalmente, se discuten las novedades
introducidas por el formalismo, y su potencial para proporcionar nuevas intuiciones
de carácter teórico, informacional y computacional, y para introducir teorías físicas
que no encuentran una correspondencia con la MC usual.



Abstract

This thesis addresses the problem of establishing whether it is possible to construct a
version of quantum mechanics (QM) in Hilbert spaces that treats space and time on
equal footing and considers Lorentz symmetry explicitly in relativistic theories. The
current relevance of this problem, intrinsic to the area of the quantum foundations,
lies in its potential implications for other areas such as quantum information, quan-
tum computation, and quantum gravity, and especially for the recent set of ideas
that lie at the intersection of these fields. In this thesis, a formalism with the desired
characteristics is progressively constructed, thus providing an affirmative answer to
the initial question. The construction begins with the generalization of the Page
and Wootters formalism to the case of relativistic particles and then to multiple
particles. This involves introducing enlarged Hilbert spaces through algebras that
treat time and space equally. Through the concept of the action operator, a quan-
tum version of the classical action, the existence of a correspondence between the
enlarged Hilbert spaces and conventional QM is established. It is also demonstrated
that the path integral formulation of Feynman acquires new meaning in these spaces.
Finally, all the previous results are combined in a discussion about the deficiencies of
the classical phase space in explicitly encompassing spacetime symmetries, and how
these are inherited by QM, even affecting its extended formulation. An augmented
version of the classical Hamiltonian formulation is then proposed, involving symmet-
ric Poisson brackets in spacetime for matter fields and Poisson brackets associated
with possible foliations of spacetime. This classical formulation yields covariant
equations of motion in phase space. Its quantization leads directly to the enlarged
Hilbert spaces, where the foliation is also quantum, and the Lorentz symmetry is
explicit. By conditioning with respect to foliation eigenstates, in analogy with the
Page and Wootters formalism, the correspondence with conventional QM is recov-
ered. Finally, the novelties introduced by the formalism are discussed, as well as its
potential to provide new insights of a theoretical, informational, and computational
nature, and to introduce physical theories that do not have a correspondence with
those formulated in conventional QM.
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Introducción y motivación

1.1 El tiempo y las revoluciones de la física

El concepto de tiempo, como medida de transformación, atraviesa toda la física.
Incluso, en una primera aproximación, podríamos definir a las leyes de la física como
el conjunto de reglas que permiten predecir el estado de un sistema a lo largo del
tiempo dada cierta información sobre el mismo en un instante “inicial”. Sin embargo,
¿qué entendemos por tiempo? Quizás para un físico, más crucial que ofrecer una
definición semánticamente precisa de un concepto, es especificar su rol en una dada
descripción matemático/conceptual de la naturaleza, y cómo se relaciona con las
demás cantidades físicas (y por ende cómo se mide). Queda claro, por lo tanto, que
la respuesta depende del marco conceptual, o rama de la física si se prefiere, que
estemos considerando.

En el contexto de la física clásica no relativista, el tiempo se asocia con un pará-
metro real que cualquier observador puede medir mediante un movimiento periódico
(un reloj), en relación al cual puede comparar cambios en otros sistemas físicos. Ade-
más, se asume que todos los sistemas de referencia van a coincidir en la descripción
de dichos cambios, lo cual podemos reducir a que el tiempo no se ve afectado por
las transformaciones de Galileo.

Como es bien sabido, la definición previa sufrió una modificación radical en la
primera de las revoluciones de la física de principios del siglo XX: la relatividad de
Einstein. En este nuevo marco, y restringiéndonos a la relatividad especial, las coor-
denadas espacio-temporales que un observador utiliza para describir cierto conjunto
de eventos, ya no se traducen a otros observadores de acuerdo a las transformacio-
nes de Galileo. En cambio esto ocurre de acuerdo a las transformaciones de Lorentz,
que involucran “combinar al tiempo con el espacio”. Detrás de esta nueva construc-
ción matemática está la finitud de la velocidad de propagación de la información,
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Capítulo I. Introducción y motivación

que ha de ser la misma para todo observador y que impide sincronizar relojes de
forma trivial si estos están separados espacialmente. De manera más abstracta, e
importante para la relatividad general, se pasa a hablar de espacio-tiempo como un
concepto más fundamental. En particular, queda claro que las leyes de la física tie-
nen que poder escribirse de manera tal que exhiban simetría cuadridimensional1. En
esta perspectiva geométrica, la única asimetría en las ecuaciones físicas es un signo
relativo entre las direcciones temporales y espaciales. A esta construcción todavía
hay que agregarle una noción que permita hablar de observadores, y observaciones,
concepto que idealizamos como medidas efectuadas “en un dado tiempo”. En una
primer aproximación esto puede efectuarse volviendo a una imagen tridimensional
a través de una foliación del espacio-tiempo: las foliaciones definen superficies de
simultaneidad y una dirección de tiempo. La covarianza (en cuatro dimensiones) de
las leyes de la física garantizan que las predicciones físicas no dependan de la elección
de la foliación.

La segunda gran revolución de la física de principios del siglo XX, y posiblemen-
te aún más radical, es la mecánica cuántica. Paradójicamente, en este nuevo marco
el tiempo mantiene su carácter clásico y pre-relativista. Esto puede reconducirse a
que la formulación canónica de la mecánica cuántica está fuertemente ligada a la
formulación Hamiltoniana de la física clásica, que precede a la relatividad, y no se
adapta al carácter geométrico de las simetrías de Einstein. Aún así, las teorías cuán-
ticas con mayor poder predictivo, que en conjunto conforman el modelo estándar,
combinan la relatividad especial con la cuántica. Detrás de esta “unificación” está
la idea de foliación que describimos anteriormente: las teorías de campos se cuanti-
zan de acuerdo a una foliación dada, proceso que esconde la simetría de Lorentz a
nivel matemático, pero que, notablemente 2, es compatible con la covarianza de las

1Es muy interesante el punto de vista de Dirac [9] sobre la evolución de los esquemas físicos.
En particular, él describe el primer paso de Newton como el pasaje de una simetría bidimensional,
que no tiene en cuenta el “arriba y abajo”, a una tridimensional. El siguiente paso de Einstein nos
llevó de una simetría tridimensional, que no tiene en cuenta al tiempo, a una cuadridimensional.
Por otro lado, Dirac sostiene que la mecánica cuántica parece volver a esta última simetría menos
fundamental.

2Cabe ir destacando que en este sentido, las teorías cuánticas de campos, escritas en el for-
malismo canónico, no tratan al tiempo y al espacio de manera completamente simétrica (veasé el
siguiente capítulo). A su vez, no es trivial que una simetría clásica escondida por el proceso de
cuantización se traduzca a una simetría cuántica. Un ejemplo que involucra la simetría de Lorentz
es el de una cuerda bosonica, que, bajo la cuantización en el cono de luz, mantiene la invarianza
de Lorentz solo en 26 dimensiones [10].
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predicciones físicas [11].

Ciertamente, existe otra formulación de la mecánica cuántica: la formulación de
Feynman [12]. Esta versión está directamente ligada a la formulación Lagrangiana de
las leyes de la mecánica. Al igual que la formulación Lagrangiana (que como la Ha-
miltoniana precede a la relatividad) resultó ser adecuada para capturar las simetrías
cuadridimensionales, la formulación de Feynman permite tratar al espacio-tiempo
de manera simétrica. Esto es particularmente conveniente a la hora de tratar con
teorías cuánticas de campos, pues en esta forma, el carácter covariante es explicito.
Por otro lado, las integrales de Feynman están asociadas a “sumas clásicas”, en el
sentido de que su definición no está asociada al espacio matemático característico
de la cuántica, esto es, a un espacio de Hilbert.

Finalmente mencionemos que de momento no es posible compatibilizar la relati-
vidad general, esto es la completa covarianza de las leyes de la física, con la mecánica
cuántica. Esto es de esperarse en el caso canónico, pues hemos visto que el tiempo y
el espacio son fundamentalmente distintos en cualquier teoría cuántica, incluso en las
teorías de campos, dando así lugar a dificultades a veces agrupadas bajo el nombre
de “el problema del tiempo” [13-15]. Sin embargo, en la formulación de Feynman,
el problema surge una vez más, pero adoptando una nueva forma: las integrales de
Feynman naturalmente cuentan en exceso configuraciones equivalentes, que deben
ser compensadas con la introducción de “ghosts”, una tarea no trivial en este caso
[16]. Esto introduce un obstáculo (lejos de ser el único) a la hora de construir una
teoría cuántica de la gravedad.

Podríamos argumentar que el gran avance dado por Einstein en su famoso paper
“On the electrodynamics of moving bodies” [17], tuvo origen en un minucioso estu-
dio del proceso mediante el cual obtenemos información y cómo dicho proceso está
intrínsecamente vinculado a las leyes de la física (en este caso, a las ecuaciones de
Maxwell). En tiempos más recientes, nos encontramos con preguntas similares y con
un alcance comparable. Por ejemplo, Michael Nielsen en su tesis doctoral [18] nos
plantea la pregunta “What is discovered when the laws of physics are used as the
foundation for investigations of information processing and computation? ”. En su
caso se refiere a aquellas leyes de la física que pueden formularse en el contexto de la
mecánica cuántica. Este tipo de preguntas originaron lo que algunos autores indican
como una nueva (o segunda) revolución cuántica. Usualmente se asocia a esta revolu-
ción con la capacidad de utilizar sistemas cuánticos para procesar información, dando
así origen a nuevas tecnologías, tales como las computadoras cuánticas. Sin embargo,
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esto es solo una parte de la revolución. Notablemente, comprender el tipo de proce-
sos de información, comunicación y/o computación que son permitidos por la física,
nos provee de un nuevo tipo de intuición y conocimiento. Un ejemplo clave aquí es
el del Teorema de Bell [19]: en una de sus versiones, un “juego” de comunicación
entre dos partes [20] nos permite responder de manera científicamente comprobable
una pregunta tan profunda como es la existencia o no de “variables ocultas” [21].
Quiero aquí remarcar que este interrogante va más allá de ciertas leyes particulares
de la física. Cuando se afirma que no existe una teoría de variables ocultas locales
que haga las mismas predicciones que la mecánica cuántica, no se está hablando de
alguna teoría específica, sino más bien de la mecánica cuántica como marco teórico
(o si se prefiere como una generalización de la teoría clásica de probabilidades). Más
de una teoría cuántica puede hacer de “soporte” para violar las desigualdades. Por
claridad posterior déjenme entonces definir lo que yo entiendo como mecánica cuán-
tica a lo largo de esta tesis: la mecánica cuántica es un marco matemático para el
desarrollo de teorías físicas. Posiblemente esta sea la versión comúnmente aceptada
en el contexto de la relativamente reciente teoría de la información cuántica [22].

Al poner el énfasis en el marco y no necesariamente en leyes particulares de la
física se abre toda una nueva dimensión para estudiar viejos interrogantes. En parti-
cular, regresando al tema del tiempo, podemos preguntarnos si hay algo fundamental
en la asimetría entre espacio y tiempo que nos propone la cuántica, o si al contrario
estos conceptos han de ser tratados en pie de igualdad como indica la relatividad.
Si no hay una razón física, entonces dicha asimetría debería poder eliminarse. Esto
nos lleva entonces a la pregunta principal de esta tesis.

¿Es posible construir un marco teórico que trate tiempo y espacio en pie de igual-
dad y que, a su vez, bajo reglas matemáticas simples, produzca las mismas prediccio-
nes físicas que la cuántica convencional?

Cabe aquí hacer un par de aclaraciones sobre nuestras intenciones. En primer
lugar, queremos conservar los elementos matemáticos básicos de la formulación canó-
nica, como estados y operadores. Esto es, no queremos introducir ideas matemáticas
ajenas a los espacios de Hilbert. En este sentido (y otros que quedarán claros a lo
largo de la tesis), la formulación de Feynman no nos provee una respuesta. Resul-
tará de todos modos muy relevante para nuestros propósitos, como debería ser si
vamos por el camino indicado. En segundo lugar, si bien este tipo de pregunta están
asociadas a la cuántica como marco, queremos ser tan conservadores como nos sea
posible. No dudamos de la necesidad de las teorías cuánticas de campos para defi-
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Capítulo I. Introducción y motivación

nir teorías interactuantes que sean a su vez relativistas 3. Lo que buscamos es un
marco suficientemente poderoso que permita reescribir a dichas teorías de manera
explícitamente covariante. De esta manera, buscando que el marco se adapte a las
teorías de campos, sabremos identificar de manera precisa las asimetrías a tratar.
Quiero remarcar también mi principal intuición subyacente al perseguir las ideas que
llevaron a esta tesis: El hecho de que las teorías cuánticas de campos canónicas sean
compatibles con la relatividad, y que a su vez la cuántica pueda ser formulada a lo
Feynman, nos indican que el rol especial que tiene el tiempo en mecánica cuántica no
es algo fundamental, sino más bien un “accidente historico”. Los resultados obtenidos
en esta tesis soportan esta hipótesis. Cabe remarcar que preguntas similares se han
planteado múltiples veces en el pasado, principalmente en el contexto de la gravedad
cuántica [14, 15, 23-27]. Sin embargo, ninguna solución completa ha sido alcanzada,
como muestra el reciente resurgimiento de interés por el tema que ha dado lugar a
múltiples propuestas novedosas en los últimos años [28-36] y que reflejan la intuición
de la “segunda revolución cuántica”. A su vez, en el estado actual, ninguna propuesta
en la literatura (hasta donde el autor conoce, y reflejado por trabajos muy recientes
[36, 37]) responde a la problemática propuesta.

1.2 Descripción general de la propuesta

Dado que la búsqueda de una respuesta al interrogante previo ha pasado por distintas
etapas, y que las mismas se vuelcan en esta tesis, por claridad, daremos aquí una
pequeña guía para el lector. Mencionemos en primer lugar que el lector interesado
exclusivamente en el resultado principal puede saltar directamente al capítulo VII.
Allí se presenta de manera auto-contenida nuestra propuesta final [5]. Sin embargo,
las ideas y aprendizajes parciales tal vez sean importantes para su entendimiento.
A su vez, los capítulos previos contienen varios resultados que son de interés en sí
mismos y no necesariamente parte del formalismo final. En la figura I.1 mostramos
un esquema visual de la tesis y las motivaciones de los distintos capítulos.

Nuestro punto de partida tal vez sea natural, tratar de cuantizar al tiempo.
Esto es, definir un observable que identifiquemos con el tiempo, matemáticamente
descripto por un operador. Afortunadamente, ya existía un formalismo que permita
hacer esto: el formalismo de Page y Wootters (PW) [14]. Por su relevancia para

3Si bien no nos centraremos en las teorías de cuerdas, o en los formalismos inspirados en estas
(como el formalismo línea de mundo), algunos comentarios y conexiones con las mismas surgirán
naturalmente.
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Figura I.1: Esquema de los capítulos de la tesis y su contenido. Junto a las flechas se indica el
interrogante principal que nos llevó de los resultados presentados en un capítulo hacia el siguiente.

nosotros, daremos una breve descripción de esta propuesta en el capítulo II. También
describiremos nuevas implicancias del mismo en información cuántica en el Anexo
IX [6]. Es interesante notar que este formalismo aplica a cualquier sistema cuántico
cuya dinámica está descripta por la ecuación de Schrödinger. En este sentido no es un
formalismo relativista. Tampoco es necesariamente cierto que cuantizar el tiempo
nos dé una descripción simétrica entre espacio y tiempo. Existe, sin embargo, un
escenario donde esto sí se puede lograr: en el tratamiento de partículas individuales
donde la posición espacial es un observable. El primer paso de nuestra investigación
fue generalizar el formalismo de PW a partículas con dinámica relativista. Esto nos
permitió obtener un primer modelo cuántico donde tiempo y espacio están en pie de
igualdad. Estos resultados se presentan en los capítulos III y IV, donde se estudian
los casos de la ecuación de Dirac [1] y Klein-Gordon [2] respectivamente.

Cómo es bien sabido, las teorías de una sola partícula relativista (en el sentido
previo) llevan a inconsistencias. Por este motivo, en una segunda etapa estudiamos
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la generalización a sistemas de varias partículas de los formalismos anteriores. El
camino más fructuoso resultó ser el de segunda cuantización. Tomando como uni-
dad básica a las “partículas de PW” (objetos cuadridimensionales), propusimos una
segunda cuantización extendida, no equivalente al espacio de Fock de las teorías de
campos canónicas. Sorprendentemente, esto lleva directamente al concepto de acción
cuántica. Dedicamos una buena porción de tiempo estudiando estos objetos y sus
propiedades, con la esperanza de recuperar la dinámica usual mediante su uso. Esto
se describe en los capítulos V [3] y VI [4]. Un avance importante fue comprender su
relación con la formulación de Feynman, que nos permitió efectivamente conectar
con la física usual. La comparación entre el espacio de Fock extendido y el usual,
nos permitió también comprender de manera precisa en qué sentido la formulación
canónica, como marco, no permite un tratamiento simétrico entre espacio y tiempo
(véase la discusión sobre producto tensorial en el capítulo II).

Con el entendimiento de las acciones cuánticas logramos una correspondencia
entre la cuántica usual y una formulación en un espacio de Hilbert simétrico en es-
pacio y tiempo a nivel del álgebra de operadores. Dicha álgebra involucra posiciones
(o campos) a su vez que sus momentos conjugados, y en este sentido no es más que
una extensión del álgebra canónica al espacio-tiempo. Sin embargo, a la hora de
introducir dinámica esto origina un nuevo problema: las acciones cuánticas, escri-
tas en las variables canónicas, contienen la asimetría heredada de la transformada
de Legendre. Para enfrentar este problema, planteamos una revisión de la formula-
ción Hamiltoniana clásica. En particular notamos que la elección de tiempo de la
transformada de Legendre, que corresponde a elegir una foliación, puede tratarse
“dinámicamente”, en el sentido de que es conveniente asociarle corchetes de Poisson.
A su vez comprendimos que los corchetes de Poisson clásicos de los campos pueden
extenderse también al espacio-tiempo, y usarse para reobtener las ecuaciones de mo-
vimiento. Al cuantizar esta nueva versión de la física clásica, logramos finalmente
obtener una mecánica cuántica que es a la vez canónica, explícitamente covariante
y cuyas predicciones coinciden con las de la formulación usual. Esta formulación,
que presentamos en el capítulo VII, además de estar asociada a acciones cuánticas,
introduce el concepto de foliación cuántica como última pieza necesaria para abarcar
simetrías del espacio-tiempo en variables de espacios de fase [5]. Finalmente, en el
capítulo VIII presentamos las conclusiones de la tesis, analizando también las nuevas
perspectivas y posibilidades abiertas por el formalismo.
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Preliminares: El tiempo y la mecánica

cuántica

“Quantum mechanics is actually, contrary to its reputation,

unbelievably simple; once you take all the physics out.”

Scott Aaronson

2.1 Mecánica cuántica tradicional y la objeción de

Pauli

Los observables físicos en mecánica cuántica (MC) están asociados a operadores
Hermíticos que actúan en el espacio de Hilbert de posibles estados del sistema. Por
ejemplo, si consideramos una partícula sin estructura en una recta, el espacio de Hil-
bert que asociamos es H = span{|x⟩}, que puede introducirse a partir del operador
posición x̂ =

∫
dx x|x⟩⟨x| (en general obviaremos la notación Ô para operadores y

escribiremos simplemente O; sí usaremos extensivamente la notación de Dirac). El
espectro continuo del operador se deduce de imponer el álgebra canónica de conmu-
tadores (también impondremos ℏ ≡ 1)

[x, p] = i , (2.1)

con p el operador momento. Claramente un estado general puede ser expandido como

|ψ⟩ =
∫
dxψ(x)|x⟩ (2.2)

y la acción de p entonces puede ser descripta como p|ψ⟩ =
∫
dx (−iψ′(x))|x⟩ donde

se usó que ⟨x′|p|x⟩ = −iδ′(x− x′) y la relación de completitud que sigue de ⟨x′|x⟩ =
δ(x− x′).
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Hasta este punto, no se han hecho consideraciones que involucren la evolución
del sistema a lo largo del tiempo. Incluso en este ejemplo tan elemental la intuición
relativista sugiere introducir un operador t̂. Por otro lado necesitamos especificar
la dinámica de alguna forma, independientemente de si queremos hacer medidas de
tiempo de algún tipo. Se nos enseña desde jóvenes (no diría desde chicos) que la
dinámica ha de ser descripta por un hamiltoniano H(x, p). Una muy buena razón
a favor de esto es el hecho de que estamos usando una variable p como parte de la
definición de nuestro espacio matemático y, en la formulación clásica el espacio de
fases de variables (x, p) está asociado a la formulación hamiltoniana.

Supongamos entonces que queremos emplear alguna función (en principio arbi-
traria) H(x, p) de los operadores posición y momento para describir la dinámica del
sistema (y por un momento, que desconocemos los avances de Schrödinger). Trate-
mos ahora de usar la “intuición relativista” que nos lleva a definir t̂: en analogía al
álgebra canónica, y por simetría entre espacio y tiempo, podríamos querer imponer
un álgebra análoga que nos defina completamente al operador tiempo. Esto sugiere
el álgebra

[t,H] = i . (2.3)

Inmediatamente nos encontramos con un problema: incluso en el ejemplo más básico
de una partícula libre H = p2

2m
(argumentos de límite clásico nos fija esta forma)

el espectro del hamiltoniano no es toda la recta real. Este hecho, combinado con
el álgebra que impusimos, impone restricciones al operador t. En otras palabras, al
álgebra anterior es incompatible con un operador t cuyo espectro es la recta real
a no ser que H tenga el mismo espectro1: la dinámica modifica la definición del
supuesto operador tiempo. También es bien sabido que en general H tendrá un
espectro discreto. Por muy extraña que pueda ser la MC nunca se vió a un sistema
cuántico afectando a los relojes “clásicos” de un laboratorio!

Los argumentos anteriores se conocen bajo el nombre de la objeción de Pauli [38]
y aplican a cualquier sistema cuántico. Estos muestran que si definimos al espacio
de Hilbert de la manera usual no hay ninguna posibilidad de tratar al tiempo cuán-
ticamente. En cambio, la evolución temporal se impondrá de acuerdo a la ecuación
de Schrödinger con t un parámetro clásico.

1La manera de convencerse de esto es aplicando eiαt sobre autoestados de energía |E⟩ y notando
que esto induce un desfasaje E → E + α con α ∈ R.
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2.2 Relatividad especial y Teorías cuánticas de cam-

pos

Lo anterior luce muy mal desde el punto de vista relativista. Sin embargo, los físicos
construyeron algo tan fundamental como el modelo estándar a partir de la intersec-
ción de ideas cuánticas y relativistas. ¿Cómo se superó dicha barrera? La respuesta
de manual es la siguiente “las teorías cuánticas de campos tratan tanto al espacio
como al tiempo como parámetros clásicos”. Déjenme discutir aquí en que sentido
esto es cierto y en que sentido tiempo y espacio siguen sin estar en pie de igualdad.

Tomemos como ejemplo el caso de un campo escalar ϕ(x) en D = d + 1 dimen-
siones. La cuantización canónica impone el álgebra [39, 40]

[ϕ(t,x), π(t,y)] = iδ(d)(x − y) (2.4)

con π(t,y) el momento conjugado al campo. Notemos dos hechos más: aquí separé
las coordenadas del espacio-tiempo de los campos x, y en x = (t,x), y = (t,y).
La razón es la siguiente. Las álgebras convencionales (ya sea cuánticas o clásicas,
i.e., asociadas a corchetes de Poisson) están definidas a tiempo fijo. Entonces, dada
una elección de tiempo, tenemos que hablar de un campo en una dada posición del
espacio x. Luego, ¿qué significa el índice temporal? Aquí ya estoy suponiendo que
estos campos se encuentran en el esquema de Heisenberg:

ϕ(t,x) := eiHtϕ(x)e−iHt , π(t,x) := eiHtπ(x)e−iHt . (2.5)

Notemos entonces que si bien es cierto que t y x son parámetros, su rol en la teoría
cuántica es muy diferente. Por un lado el índice de tiempo está asociado a evolución
y ϕ(t,x) depende de la teoría particular. En cambio el índice de espacio está asociado
al álgebra canónica, y todas las teorías que describen al mismo campo comparten la
misma álgebra, en particular, el operador ϕ(t = 0,x) = ϕ(x) es el mismo para todo
H. Enfaticemos también que la distinción entre espacio y tiempo está ligada a una
elección arbitraria de observador (o de foliación del espacio-tiempo).

Lo anterior es bien sabido, aunque usualmente solo se afirma que la formulación
canónica no permite tratar la simetría de Lorentz de manera explicita. Déjenme
discutir ahora algunas consecuencias adicionales de esta asimetría. En primer lugar,
notemos que mientras los conmutadores a tiempos iguales no se ven afectados por
la elección de H (pues e−iHt es unitario), la cantidad

F (x, x′) := [ϕ(x0,x), π(x′0,x′)] (2.6)
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es una función complicada que depende de la teoría. Es más, es fácil ver que esta
cantidad (que no es un observable) no es invariante de Lorentz frente a un simple
cambio de coordenadas (x, x′) → (Λx,Λx′) (con xµ → Λµνx

ν la transformación de
coordenadas). Mostremos esto en el escenario más simple posible, el de una teoría
de Klein-Gordon libre y fijemos D = 3 + 1. En este caso la densidad Hamiltoniana
toma la forma

H =
1

2
π2 +

1

2
(∇ϕ)2 + 1

2
m2ϕ2 , (2.7)

que puede derivarse de la densidad Lagrangiana L = 1
2
(∂µϕ)

2−m2

2
ϕ2. A estos campos

libres se los puede entonces expandir en termino de modos como

ϕ(x) =

∫
d3p√

(2π)32Ep

(
ape

−ipx + a†pe
ipx
)
|p0=Ep (2.8)

π(x) =

∫
d3p√
(2π)3

(−i)
√
Ep

2

(
ape

−ipx − a†pe
ipx
)
|p0=Ep (2.9)

con [ap, a
†
p′ ] = δ(3)(p − p′). Notemos también que el Hamiltoniano toma la forma

normal
H :=

∫
d3xH =

∫
d3pEpa

†
pap , (2.10)

donde Ep =
√

p2 +m2 y también fijamos c ≡ 1. También denotaremos con |0⟩ el
estado fundamental de H.

Ahora que diagonalizamos el Hamiltoniano, es directo computar F (x, x′) =

[ϕ(x), π(x′)]. El resultado es

[ϕ(x), π(x′)] = i

∫
d3p

(2π)3
e−ip(x−x

′)|p0=Ep . (2.11)

Como es bien sabido d3p, no es una medida invariante y por lo tanto la cantidad
anterior (como distribución) no puede transformar bien 2.

En cambio, la medida d3p/2Ep es invariante, y es precisamente lo que aparece al
calcular otro conmutador:

[ϕ(x), ϕ(x′)] =

∫
d3p

(2π)32Ep

(
e−ip(x−x

′) − eip(x−x
′)
)
|p0=Ep . (2.12)

Esta cantidad, transforma adecuadamente y se anula para x−x′ un intervalo tipo es-
pacio [40]. En particular, esto muestra que para este tipo de intervalos ⟨0|ϕ(x)ϕ(x′)|0⟩ =
⟨0|ϕ(y0,y)ϕ(y0,y′)|0⟩ para y, y′ las coordenadas asociadas por un observador inercial

2Quizás el lector sospeche que en realidad elegimos de manera poco conveniente el algebra de
operadores de creación y aniquilicación, y que imponer [ap, a

†
p′ ] = 2Epδ

(3)(p−p′) pueda de alguna
manera ayudar. Eso no es cierto, pues este resultado no depende de la elección de modos.
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que mide a los eventos x, x′ como simultáneos a tiempo y0. Esto permite ver a todo
correlador tipo espacio como un correlador tradicional de operadores no evoluciona-
dos: podemos escribir, si ignoramos sutilezas del continuo, ⟨0|ϕ(y0,y)ϕ(y0,y′)|0⟩ ≡
⟨0|ϕ(y0,y)⊗ϕ(y0,y′)|0⟩ con el producto tensorial, enfatizando que estos operadores
actúan en espacios de Hilbert distintos, i.e. que son “osciladores” independientes,
mientras que las correlaciones están contenidas en el estado fundamental |0⟩ (véanse
resultados sobre entrelazamiento en teorías de campos [41]). Enfaticemos también
que ⟨0|ϕ(x)ϕ(x′)|0⟩ = ⟨0|ϕ(y0,y) ⊗ ϕ(y0,y′)|0⟩ para intervalos tipo espacio implica
automáticamente [ϕ(x), ϕ(x′)] = 0, pues campos independientes claramente conmu-
tan.

Afortunadamente, a la hora de obtener predicciones físicas, uno puede reescribir
las ecuaciones en términos de [ϕ(x), ϕ(x′)] en vez de [ϕ(x), π(x′)]. Es más, si nos
centramos en teoría de perturbaciones, nos alcanza con el propagador anterior de
la teoría libre: la mayoría de la física en campos es descripta por la matriz S que
podemos expandir esquemáticamente como

S =
∞∑
n=0

(−i)n

n!

∫
dt1

∫
dt2· · ·

∫
dtn T̂{VI(t1)VI(t2) . . . VI(tn)} , (2.13)

con VI(t) la parte interactuante del Hamiltoniano en el esquema de interacción y T̂
indicando el orden temporal. Por ejemplo para un campo escalar podríamos tener
VI(t) =

∫
d3x λ

4!
ϕ4(t,x). En general VI(t) =

∫
d3xVI(t,x) lo cual permite reescribir

la serie de Dyson como

S =
∞∑
n=0

(−i)n

n!

∫
d4x1

∫
d4x2· · ·

∫
d4xn T̂{VI(x1)VI(x2) . . .VI(xn)} . (2.14)

De no ser por el orden temporal ahora sí tendríamos una expresión covariante. El
paso final que nos garantiza la preservación de la simetría de Lorentz es el siguiente:
para intervalos conectados causalmente (tipo tiempo), el orden temporal no depende
del observador. El único problema podríamos tenerlo para regiones causalmente des-
conectadas (tipo espacio). Pero, notablemente, uno encuentra en teorías relativistas

[VI(x),VI(x′)] = 0 para x− x′ tipo espacio . (2.15)

Esto sucede porque los campos libres de teorías relativistas conmutan para regiones
causalmente desconectadas, como en el ejemplo de arriba (para campos no reales,
el mecanismo por el cual esto ocurre puede asociarse a la cancelación entre propa-
gadores de partícula/antipartícula en regiones tipo espacio). Este hecho conduce a
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la condición anterior, como es claro en el ejemplo del campo escalar si se toma una
interacción local de la forma VI(x) = V [ϕI(x)]. El ordenamiento de operadores deja
entonces de importar si estos son locales y están asociados a puntos desconectados
causalmente.

En resumen, las teorías cuánticas de campos nos garantizan que las predicciones
físicas son independientes del observador. El mecanismo por el cuál esto funciona, no
pasa por el álgebra canónica, pues esta rompe la simetría de Lorentz explícitamente.
En cambio, las expresiones finales asociadas a la matriz S nos señalan que la cantidad
de interés es el conmutador de la parte interactuante de la densidad Hamiltoniana,
que a su vez se puede reconducir al conmutador entre campos libres. Cabe remarcar
que este hecho es muy peculiar: el tratamiento de otras simetrías, como pueden ser
las rotaciones en el espacio, se centran en álgebra canónica pues corresponden a
transformaciones canónicas. En cambio, cualquier intento de definir explícitamente
las transformaciones de Lorentz en teorías de campos requiere información dinámica.
El carácter geométrico de la relatividad se pierde en una formulación Hamiltoniana
clásica y en consecuencia, también en el formalismo cuántico asociado a un espacio
de Hilbert. Esto no sucede en la formulación de Feynman donde la forma de la matriz
S es natural con el ordenamiento temporal implícito. Sin embargo, trabajar en la
formulación de Feynman significa abandonar el concepto de espacio de Hilbert por
completo.

2.3 Tiempo cuántico

Las consideraciones de las dos secciones previas nos dejan aparentemente sin mucha
opción: o trabajamos con espacios de Hilbert, asociados a la formulación canónica y
Hamiltoniana, pero donde la simetría de Lorentz (si presente) permanece implícita,
o empleamos las integrales de Feynman asociadas a sumas clásicas, abandonado a
los espacios de Hilbert. Sorprendentemente, a pesar de las objeciones históricas que
describimos previamente existe una manera muy natural de “cuantizar al tiempo”
que describimos en esta sección. Gran parte del contenido de esta tesis fue dedicado a
entender donde “encaja” el tratamiento cuántico del tiempo en la dicotomía anterior.

Cuál es la falla del argumento de Pauli? En el intento anterior propusimos definir
un operador tiempo en el espacio de Hilbert de una partícula unidimensional con
base |x⟩. Esto es para el operador tiempo t buscábamos t = t(x, p). Por otro lado,
una intuición relativista genuina nos sugiere algo completamente distinto: tratar
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a t como una dimensión en sí misma clásicamente, y por lo tanto considerar un
espacio de Hilbert de la forma |t, x⟩. De hecho, esto es lo que hacemos si pasamos
de una partícula unidimensional a una bidimensional en cuyo caso la generalización
es |x⟩ → |x, y⟩.

Formalismo de Page y Wootters. La propuesta anterior nos plantea inmediata-
mente el problema de recuperar la dinámica de alguna manera que no puede coincidir
con la evolución unitaria tradicional. Notablemente, existe una solución particular-
mente elegante a este problema dada por el mecanismo de Page y Wootters (PW)
[14] 3: guiados por el problema del tiempo en gravedad cuántica, que se origina por-
que al cuantizar canónicamente la gravedad se obtiene una “ecuación de Schrodinger
sin tiempo”, los autores se proponen recuperar la evolución cuántica de un sistema
en un “universo” globalmente estacionario. Los autores argumentan que la evolución
temporal que observamos es en realidad una dependencia con grados de libertad de
un “reloj interno” [14]. Luego muestran que dado un sistema global en un estado
estacionario, formado por dos susbsistemas no interactuantes, el reloj y el resto, la
evolución del segundo subsistema está determinada por las correlaciones con el reloj,
es más, esta evolución “imita” la que se obtiene a través de las ecuaciones de movi-
miento. Nos referimos a este conjunto de ideas como mecanismo de Page y Wootters
[14].

Describiremos aquí la esencia matemática del formalismo de Page y Wootters.
No haremos particular énfasis en su formulación original ni en su interpretación, que
no serán particularmente útiles para nuestros propósitos.

La construcción comienza considerando un sistema global bipartito con espacio
de Hilbert H = HT ⊗ HS , donde HS es el espacio de Hilbert del sistema original
que queremos describir. Asumimos que el espacio del “reloj” HT está generado por
los autoestados del operador T que satisface las reglas de conmutación canónica

[T, PT ] = i . (2.16)

Cabe destacar que PT ̸= H, simplemente es el momento conjugado al tiempo y actúa
en HT , i.e. PT ≡ PT ⊗ 1. Elegimos la base de autoestados del operador tiempo que

3Antes que estos autores, Dirac ya había propuesto promover al tiempo a una variable dinámica
en espacios de fase [42]. A su vez propuso un método de cuantización de dicho esquema que lleva
directamente al espacio de Hilbert empleado en el formalismo de PW. Sin embargo, Dirac no se
centra en el uso del espacio ampliado, menos aún en su interpretación como “sistema+reloj”.
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cumple
T |t⟩ = t|t⟩ , (2.17)

de manera tal que satisfaga ⟨t|t′⟩ = δ(t − t′). En su versión más simple, que es la
que describimos aquí T y PT tienen como espectro a la recta real.

Se supone luego que el estado global reloj-sistema se encuentra en un estado
estático puro (no normalizado) de la forma

|Ψ⟩ =
∫
dt |t⟩|ψ(t)⟩ . (2.18)

El estado del sistema puede recuperarse proyectando en el estado del reloj, |ψ(t)⟩ =
⟨t|Ψ⟩. Esta operación tiene que entenderse en el siguiente sentido4:

|ψ(t)⟩⟨ψ(t)| = TrT [Πt|Ψ⟩⟨Ψ|] , Πt = |t⟩⟨t| ⊗ I . (2.19)

Si |ψ(t)⟩ se encuentra normalizado entonces este es el estado condicional del sistema
luego de una medida local en el reloj con resultado t.

Considerando ahora estados que satisfacen la ecuación

J |Ψ⟩ = 0 , (2.20)

con
J = PT ⊗ 1+ 1⊗H , (2.21)

donde H es el Hamiltoniano del sistema, se recupera la evolución unitaria y la
ecuación de Schrödinger:

⟨t|J |Ψ⟩ = 0 ⇒ i
d

dt
|ψ(t)⟩ = H|ψ(t)⟩ . (2.22)

Esta ecuación es simple de probar notando que ⟨t′|PT |t⟩ = −i d
dt
δ(t− t′).

Vemos entonces que si bien el estado |Ψ⟩ no tiene ninguna dependencia temporal,
el estado |ψ(t)⟩, obtenido condicionando sobre el sistema reloj, evoluciona de la
misma manera que en mecánica cuántica convencional. Identificamos entonces a
|ψ(t)⟩ con el estado del sistema en la representación de Schrödinger. La evolución
del sistema es no trivial sii el estado global es entrelazado pues para un estado
estacionario del sistema U(t, t0)|ψ(t0⟩) = e−iE(t−t0)|ψ(t0)⟩,

|Ψ⟩ =
∫
dt|t⟩|ψ(t)⟩ =

∫
dt|t⟩U(t, t0)|ψ(t0)⟩

=

(∫
dte−iE(t−t0)|t⟩

)
⊗ |ψ(t0)⟩ . (2.23)

4Consideremos una base |k⟩ en HS de modo que |Ψ⟩ =
∑

t,k ψtk|t, k⟩ (por simplicidad en
notación discreta). El vector ⟨t|Ψ⟩ es el ket |ψ(t)⟩ =

∑
k ψtk|k⟩ de HS que representa el mismo

estado que ρS(t) = |ψ(t)⟩⟨ψ(t)|.
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Remarquemos algunos hechos. La objeción de Pauli [38] sobre la posibilidad de
definir un operador temporal en mecánica cuántica fue evitada: el operador PT actúa
en espacio de Hilbert diferente, y en consecuencia conmuta con el Hamiltoniano del
sistema [29]. La definición del operador T ya no se ve afectada por la dinámica.
Es más, si hay definido un generador de traslaciones espaciales PS, conmuta con
el generador de las traslaciones temporales PT , como debe ser dado que espacio y
tiempo son grados de libertad independientes [29], de acuerdo a nuestra intuición
relativista.

Notemos ahora que el estado global cumple

⟨Ψ|Ψ⟩ =
∫
dt = T → ∞ , (2.24)

con T la longitud del tiempo de la historia del sistema. Si consideramos una “ventana”
de tiempo t ∈ [−T/2, T/2], imponiendo condiciones periódicas y dividiendo al estado
por

√
T , el estado global está normalizado. El precio a pagar es que no obtenemos

soluciones exactas de la ecuación de universo anterior a no ser que el espectro de H
sea 2πm/T , con m entero. Esto en principio no es un problema grave (en el caso no
relativista) pues a medida que T crece se puede aproximar cualquier espectro con
precisión arbitraria.

Consideremos ahora nuevamente el caso de la partícula unidimensional. Los es-
tados |x⟩ son base de HS , expandiendo en esta base a |ψ(t)⟩ el estado global (ya
normalizado) se escribe

|Ψ⟩ = 1√
T

∫
dtd3xψ(x, t)|t,x⟩ :=

∫
dtd3xΨ(x, t)|t,x⟩ , (2.25)

donde la función de onda ψ(x, t) = ⟨x|ψ(t)⟩ y la función Ψ(x, t) se relacionan de la
siguiente manera

ψ(x, t) =
Ψ(x, t)
1/
√
T
. (2.26)

Notemos que la probabilidad dP (t, t + dt) de encontrar al reloj en un entorno dt

del autoestado t es igual a dt/T . Por otro lado la interpretación usual de la función
de onda identifica |ψ(x, t)|2 con la densidad de probabilidad de encontrar al sistema
en un entorno de x dado el tiempo t, esto es dP ((x,x + dx)|t) = |ψ(x, t)|2d3x. Por
definición de probabilidad condicional

dP ((x,x + dx)|t) = dP ((x,x + dx) ∧ (t, t+ dt))

dP (t, t+ dt)
. (2.27)

Comparando con (2.26), concluimos que |Ψ(x, t)|2 es la densidad de probabilidad
conjunta de encontrar al sistema en un entorno de x y al reloj en un entorno de t,
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dicho de otra manera |Ψ(x, t)|2 es la densidad de probabilidad del sistema de estar
en un entorno (x, t) en el espacio-tiempo. Como consecuencia de la homogeneidad
en el tiempo esta densidad es sencillamente proporcional a |ψ(x, t)|2. Esto significa
que ambas densidades contienen la misma información y dada la arbitrariedad de T
en estas consideraciones podemos simplemente trabajar con T → ∞.

El caso de un Hamiltoniano dependiente del tiempo es una extensión directa
del esquema previo: se remplaza el operador J por J = PT ⊗ 1 + H(T ), donde
el operador H(T ) se obtuvo promoviendo el parámetro t del Hamiltoniano H(t) a
operador T . Imponiendo el vpinculo (2.20), con el nuevo operador J , se obtiene que
|ψ(t)⟩ satisface la ecuación de Schrödinger con Hamiltoniano dependiente del tiempo
[29].

Mencionemos finalmente que es posible construir una versión de tiempo discreto
del formalismo, como ha sido explorado en [43] y ampliado en [44], [45]. En el
anexo IX presentamos dicho formalismo y discutimos en mayor detalle el concepto
de entrelazamiento sistema-tiempo, en relación a aplicaciones computacionales del
formalismo.

Aspectos en común y diferencias con el formalismo línea de mundo. Cabe
agregar una pequeña discusión sobre otro esquema que permite hacer MC tratando
espacio y tiempo en pie de igualdad. Se trata de formalismos inspirados en teorías
de cuerdas [46] que permiten hablar de teorías relativistas que expresan cantidades
en QFT en un formalismo de primera cuantización. Esto es, no se piensa en las par-
tículas involucradas como excitaciones de los campos, sino más bien como entidades
“ficticias” pero útiles para representar cantidades matemáticas. Si bien encontrare-
mos muy poco este formalismo a lo largo de la tesis (con una notable excepción
el capítulo VI), se incluye por completitud en la discusión del capítulo. A su vez,
es interesante comparar esta propuesta con el formalismo de PW aplicado a una
partícula.

Consideremos el ejemplo más simple [10, 47]. Definamos la acción

S =

∫
dt

√
g

[
gtt

1

2

dXµ

dt

dXµ

dt
− 1

2
m2

]
(2.28)

donde pensamos en g como una métrica unidimensional. Esta acción es invarian-
te frente a difeomorfismos generales, esto es, podemos parametrizar la variedad
unidimensional (que será un segmento o un círculo) de cualquier manera sin cam-
biar su forma. En este sentido nos provee un modelo de covarianza general. Puede
pensarse también en esta acción como una versión de segundo orden de la acción
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S ′ = m
∫
ds ≡ m

∫
dτ

√
−ẋ2, que puede recuperarse de S variando sobre la métrica.

Está claro que S describe una partícula puntual relativista propagándose en el espa-
cio tiempo, esto es definiendo una línea de mundo. A su vez podemos ver a S como
la acción de los campos Xµ(τ) que viven en una dimensión. Mencionemos también
que las teorías de cuerdas pueden entenderse como una generalización de S donde
ahora la variedad es bidimensional y asociada a una hoja de mundo, esto es a una
cuerda propagándose [10].

La cuantización tradicional de este tipo de acciones tiene bastante en común con
el formalismo de PW pero también ciertas diferencias importantes. Cabe a su vez
destacar que el formalismo línea de mundo tiene muchas aplicaciones, principalmen-
te en el contexto de teorías de gauge [46]. Aquí solo comentaremos aspectos muy
elementales pero pertinentes a la tesis.

Consideremos primero el esquema más común [47], y más natural desde las inte-
grales de Feynman. Esquemáticamente, un propagador se escribirá como

∫ DXDg
Vol e

iS

donde dividimos por el volumen de gauge asociado a los difeomorfismos y fijaremos
los valores de Xµ en los extremos. Podemos calcular esta integral eligiendo gtt = 1

y notando que el único invariante frente a difeomorfismos es la longitud de la línea
de mundo que llamaremos τ . Entonces tenemos

G(x, y) =

∫
DXDg

Vol
eiS =

∫ ∞

0

dτ

∫ x(τ)=y

x(0)=x

DXeiS =

∫ ∞

0

dτ G(x, y, τ) (2.29)

donde G(x, y, τ) ∝
∫
dDp ei(p

2+m2)τe−ip(x−y). De modo que G(x, y) es proporcional al
propagador de Feynman de una teoría libre de un campo escalar en D dimensiones,
con D la cantidad de campos Xµ. Notemos que en esta construcción hay un operador
tiempo X0 de modo que podemos escribir por ejemplo en un espacio de Hilbert
G(x, y, τ) = ⟨y|eiτ(p2+m2)|x⟩ para Xµ|x⟩ = xµ|x⟩.

Por otro lado, en un acercamiento a lo “cuantización canónica de la gravedad”
[48, 49], y viendo al problema desde los espacios de Hilbert, se enfatiza otro aspecto
de esta construcción. La idea es reconocer que el Hamiltoniano Hs asociado a S se
anula idénticamente (en un sentido débil siguiendo Dirac [42]) como consecuencia
de nuestra libertad de gauge. Esto constituye entonces un “constraint” (que es del
primer tipo) a imponer a nivel cuántico. Uno pide entonces Hs|Ψ⟩ = 0 para esta-
dos físicos. Hasta aquí el esquema parece idéntico al de PW. Sin embargo, en vez
de considerar a esta condición como la que define un subespacio, se la identifica
como la definición de un nuevo espacio de Hilbert, distinto al espacio “cinemático”
donde actúa Hs. Uno luego induce un producto interno desde el espacio cinemático,
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esencialmente imponiendo ⟨ψ′|ψ⟩ := ⟨Φ|Ψ⟩ con Π|Φ⟩ = |Ψ′⟩ para Π el proyector en
J ≡ 0 y |ψ⟩, |ψ′⟩ estados del espacio físico. De esta manera se evita tener estados
de norma infinita [48]. El precio a pagar es que solo los operadores que preservan el
contraint inducen observables en el espacio de Hilbert físico. Entonces, en particular
el operador tiempo, que no cumple esta condición, ha de ser abandonado.

Las similitudes entre estos esquemas y el formalismo de PW no son casuales. Si
uno emplea una acción no relativista clásica (que puede no ser la de una partícula,
pero nos restringimos a este caso para comparar) y decide “promover” t a una va-
riable dinámica, esto puede hacerse parametrizando t ≡ t(τ) y empleando a τ como
parámetro de evolución. Esta parametrización es arbitraria y la acción resultante
contiene varias caracteristicas de la simetría frente a difeomorfismos que caracteriza
S. La cuantización de ese esquema es muy similar a lo discutido en los párrafos
anteriores [49] (veasé también el capítulo V). Por otro lado, PW proponen algo muy
distinto. Además de cuantizar a esta teoría con un t dinámico, éste se interpreta co-
mo un grado de libertad físico de un sistema auxiliar, el reloj si se quiere. Al tomar
este punto de vista, el espacio de Hilbert cinématico deja de ser auxiliar. En cambio
es un espacio de Hilbert “real” asociado al sistema+reloj. De modo que el vpinculo
J |Ψ⟩ = 0 define un verdadero subespacio. El ingrediente extra, para reobtener la
física convencional es la idea de condicionar sobre estados del reloj. Este ingrediente
solo está presente en el esquema de PW.
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Tiempo cuántico y la teoría de Dirac

“A great deal more was hidden in the Dirac equation than the author

had expected when he wrote it down in 1928.”

Weisskopf on Dirac

La descripción del capítulo anterior de una partícula trata al tiempo y al espacio
de manera simétrica a nivel cuántico. En esta formulación espacio y tiempo están
asociados a operadores. Sin embargo, el mecanismo de Page y Wootters, en la forma
que describimos, y que se encontraba en la literatura, solo permitía reobtener la
ecuación de Schrödinger de la partícula. Como es bien sabido, esta ecuación no es
compatible con la relatividad pues involucra, e.g., una derivada primera en tiempo y
una derivada segunda en espacio. Pero entonces, ¿en qué sentido tratamos a espacio
y tiempo de manera simétrica?

El tema amerita un poco de discusión. Supongamos a modo de ejemplo que tene-
mos una partícula bidimensional. En el formalismo de PW disponemos entonces de
una base del espacio de Hilbert global de la forma |t, x, y⟩ ≡ |t⟩⊗|x, y⟩ ≡ |t⟩⊗|x⟩⊗|y⟩
con |x, y⟩ base de HS. Consideremos ahora la definición de rotaciones en HS. En
este caso definimos primero el generador de rotaciones en el plano Lxy = xpy−ypx y
obtenemos una representación unitaria de las rotaciones por exponenciación. Note-
mos que la definición de rotaciones está dada independientemente del Hamiltoniano
H del sistema, y de si el sistema tiene simetría de rotación. Una vez definido Lxy
uno puede preguntarse si [Lxy, H] = 0, en caso afirmativo decimos que hay simetría
frente a rotaciones, pero incluso si no hay simetría la representación unitaria de la
transformación está dada por el espacio de Hilbert.

Lo mismo sucede con el formalismo de PW: el tratamiento simétrico entre es-
pacio y tiempo nos permite definir por ejemplo Ltx := Tpx + xPT . Notablemente,
independizamos la definición de una transformación de Lorentz de la dinámica, en
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analogía a lo que sucede con las rotaciones. Podemos ahora preguntarnos ¿cuando
se preserva el subespacio físico frente a la acción de un boost? Es fácil de ver que
la condición es equivalente a preguntarnos si [Ltx,J ] = 0 con J el operador de
universo definido en 2.21. Para una partícula sin estructura (espín por ejemplo) uno
puede convencerse de que esta condición no puede cumplirse de manera elegante 1.
Esta es la forma rigurosa de afirmar que el formalismo de PW en su forma original
es no relativista.

Pero ¿existe algún J que nos permita satisfacer la condición anterior? Afortuna-
damente, la ecuación de Dirac puede escribirse como una ecuación de Schrödinger.
Esto sugiere aplicar el mecanismo de PW a una partícula de Dirac, pues intuitiva-
mente el J asociado debería satisfacer la condición de invarianza. Con este argu-
mento nos propusimos estudiar la generalización del formalismo para reinterpretar
la ecuación de Dirac en este marco. El resultado, descripto en este capítulo y publi-
cado en [1], muestra que efectivamente combinando los formalismos de PW y Dirac
se obtiene una formulación explícitamente relativista de una partícula en un espacio
de Hilbert 2.

1Talvez para partículas libres y permitiendo tomar raíces cuadradas de operadores algo pueda
hacerse. De todas formas estas ideas claramente sufren de problemas y no se pueden generalizar a
por ejemplo la presencia de campos externos

2El lector podría verse sorprendido por esta afirmación, después de todo la ecuación de Dirac
es famosa por su éxito al combinar relatividad y cuántica (ignorando el problema de las soluciones
de “energía negativa”). Sin embargo, recordemos que la normalización de la función de onda de
Dirac se impone en hiper-superficies. Esto significa, que a pesar de la apariencia relativista de su
ecuación, el espacio de Hilbert subyacente en su formulación no es covariante (léanse los detalles
en las siguientes secciones).
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3.1 Partícula de Dirac libre

Con la intención de construir una teoría para el electrón (positrón) fijamos HS =

L2(R3) ⊗ C4 de acuerdo a [50]. Una elección adecuada del producto interno en el
espacio completo H = L2(R4) ⊗ C4 garantizará la simetría de Lorentz. Un estado
general de universo puede ser escrito como

|Ψ⟩ =
3∑

σ=0

∫
d4p Ψσ(p)|p, σ⟩ (3.1)

donde |p, σ⟩ = |p0⟩T |p, σ⟩S son los autoestados impropios de los operadores Pµ (para
µ = 0 el operador actúa en el espacio del reloj, para µ = 1, 2, 3 en el espacio del
sistema) y, digamos,de σ12 y γ0 (aquí σµν = i

2
[γµ, γν ],con ℏ

2
σµν =

ℏ
2
ϵµνρΣρ el operador

de espín para µ, ν = 1, 2, 3). Los estados |p⟩, |σ⟩ cumplen ⟨p′|p⟩ = δ(4)(p − p′),
⟨σ|σ′⟩ = δσσ′ . Definimos el estado del sistema adjunto ⟨p, σ| := ⟨p, ξ|γ0ξσ.

Debido a que d4p es una medida invariante de Lorentz podemos introducir en
este espacio operadores de boost unitarios U(Λ) respecto del producto

⟨Ψ̄1|Ψ2⟩ ≡
∫
d4p Ψ̄1(p)Ψ2(p) , (3.2)

con Ψ̄(p) = Ψ†(p)γ0:

U(Λ)|p, σ⟩ = Sσξ(Λ)|Λp, ξ⟩, (3.3)

donde Λµν = ew
µ
ν y S(Λ) = e−

i
4
σµνwµν 3. La unitariedad surge a partir de la propiedad

S†γ0S = γ0 para transformaciones de Lorentz que preservan la dirección del tiempo.
El estado transformado es entonces

U(Λ)|Ψ⟩ =
3∑

σ=0

∫
d4pΨ′

σ(p)|p, σ⟩ , (3.4)

con

Ψ′
σ(p) = ⟨p, σ|U(Λ)|Ψ⟩ = SασΨα(Λ

−1p) . (3.5)

Podemos definir también los estados |x, σ⟩ = |x0⟩|x, σ⟩ = 1
(2π)2

∫
d4p eipx|p, σ⟩ con

px = pµx
µ, los cuales, empleando la Ec. (3.3), transforman como U(Λ)|x, σ⟩ =

Sσξ(Λ)|Λx, ξ⟩. Si los |x, σ⟩ son autoestados de operadores Xµ, entonces las reglas de
conmutación canonicas pueden resumirse como [Xµ, Pν ] = iδµν .

3El espectro continuo no acotado del reloj asegura que el estado (3.3) está bien definido. La
representación activa del boost preserva la partición. Esto evidencia que todo observador es capaz
de identificar el reloj.
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El paso siguiente es considerar las Ecs. (2.20)-(2.21) con J contruido con el
Hamiltoniano de Dirac libre HD = α · p + βm,

J = P0 ⊗ 1+ 1⊗HD . (3.6)

Entonces la ecuación
J |Ψ⟩ = 0 , (3.7)

implica (fijando x0 = t),

⟨t|J |Ψ⟩ = 0 ⇒ i
d

dt
|ψ(t)⟩ = (α · p+ βm)|ψ(t)⟩ (3.8)

con |ψ(t)⟩ = ⟨t|Ψ⟩ = 1√
2π

∑3
σ=0

∫
d3p e−ip0tΨσ(p)|p, σ⟩. De manera equivalente, defi-

niendo J = −γµPµ, podemos reescribir la Ec. (3.7) (una ecuación de autovalores de
J con autovalor 0) como una ecuación de autovalores para J con autovalor m:

γ0J |Ψ⟩ = 0 ⇔ −γµPµ|Ψ⟩ = m|Ψ⟩ . (3.9)

Como consecuencia del teorema fundamental de Pauli [51], S−1(Λ)γµS(Λ) = Λµνγ
ν y

por lo tanto U−1(Λ)γµPµU(Λ) = γµPµ. Consecuentemente, la ecuación (3.9) define
un subespacio invariante, i.e.,

(γµPµ +m)|Ψ⟩ = 0 ⇒ (γµPµ +m)U(Λ)|Ψ⟩ = 0 . (3.10)

Podemos también reescribir la Ec. (3.9) en términos de Ψσ(x) := ⟨x, σ|Ψ⟩ recupe-
rando la forma covariante de la ecuación de Dirac [52] (notar que ⟨x, σ|Pµ|Ψ⟩ =

−i∂µΨσ(x))

⟨x, σ|(γµPµ +m)|Ψ⟩ = 0 ⇒ iγµσξ∂µΨξ(x) = mΨσ(x) . (3.11)

Los estados que satisfacen (3.9) pueden ser escritos en la forma (en lo que sigue
las sumas sobre σ, s y r están implícitas)

|Ψm⟩ =
∫
d4p δ(pµpµ −m2)H+(p0)uspσ as(p)|p, σ⟩

⊕
∫
d4p δ(pµpµ −m2)H−(p0)vr−pσ br(p)|p, σ⟩ (3.12)

donde, fijando Ep =
√

p2 +m2

uspσ =
1√

Ep +m

(
(Ep +m)χs

p.σχs

)
σ

(3.13a)

vrpσ =
1√

Ep +m

(
p.σχr

(Ep +m)χr

)
σ

(3.13b)
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con s, r = 0, 1. La presencia del cuarto ket implica ortogonalidad entre los subes-
pacios de partícula y antipartícula. En el subespacio de soluciones de la ecuación
(3.9) el producto interno pseudoeuclídeo anterior se vuelve isomorfo a dos productos
euclídeos como consecuencia de las relaciones [53]:

ūrpu
s
p = 2mδrs (3.14a)

v̄rpv
s
p = −2mδrs (3.14b)

Dado que la superposición de estados de partícula y antipartícula no ocurren en
la naturaleza [54], consideraremos solo uno de los dos términos en (3.12). En lo que
sigue, trabajamos en el subespacio de partícula sin perdida de generalidad.

El producto entre estados de diferentes masas pero misma distribución de espín-
momento da como resultado (ver Apéndice A y B)

⟨Ψ̄m′ |Ψm⟩ =
∫

d3p

4Ep,m′Ep,m

δ(Ep,m − Ep,m′)ūsp,mu
r
p,m′

×a∗s(p,m)ar(p,m
′) (3.15)

= δ(m−m′)

∫
d3p

2Ep

||a(p)||2 (3.16)

La normalización4 ⟨Ψ̄′
m|Ψm⟩ = δ(m − m′) implica entonces

∫
d3p
2Ep

||a(p)||2 = 1 y
en consecuencia la norma de Dirac (ver abajo). Un estado de electrón-reloj puede
escribirse como (omitiendo el subíndice m)

|Ψ⟩ = 1√
2π

∫
d4x ψσ(x)|x, σ⟩ , (3.17)

ψσ(x) =
1

(2π)3/2

∫
d3p

2Ep

usσ(p)as(p)e
−ipx|p0=Ep . (3.18)

A partir de la invarianza de d4x sigue la ley de transformación ψ′
σ(x) = Sασψα(Λ

−1x).
Es más, un simple calculo muestra que

∫
d3xψ†(x, t)ψ(x, t) =

∫
d3p
2Ep

||a(p)||2 = 1,
recuperando la normal de Dirac usual [52].

El estado del electrón puede entonces recuperarse por probabilidad condicional
como

4Matemáticamente podemos pensar que estamos trabajando con un “rigged Hilbert space” y las
autofunciones del operador de masa son funciones generalizadas. Su normalización permite expandir
estados generales |Ψ⟩ ∈ L2(R4)⊗C4 como |Ψ⟩ =

∫
dmϕ(m)|Ψm⟩, donde ⟨Ψ̄|Ψ⟩ =

∫
dm |ϕ(m)|2 = 1.

Vemos que los estados normalizados en tiempo, por ejemplo estados con historia finita, correspon-
den a estados con alguna dispersión en masa. Podemos pensar en los estados |Ψm⟩ como la idealiza-
ción correspondiente a una partícula con una historia infinita y relación de dispersión infinitamente
bien definida.
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|ψ(t)⟩e =
⟨t|Ψ⟩√

⟨Ψ̄|Πγ0
t |Ψ⟩

(3.19)

con Πγ0
t = |t⟩⟨t|⊗γ0 y ⟨Ψ̄|Πγ0

t |Ψ⟩ = 1
2π

∫
d3xψ†(x, t)ψ(x, t) = 1

2π
. La ley de transfor-

mación de la función de onda implica la invarianza de esta cantidad (ver Apéndice
A).

La correspondencia con la teoría de Dirac está completa si notamos que el valor
de expectación de un observable Me, en un dado tiempo t, se obtiene como sigue:

⟨Me⟩(t) =
⟨Ψ̄|Πγ0

t M |Ψ⟩
⟨Ψ̄|Πγ0

t |Ψ⟩
= e⟨ψ(t)|Me|ψ(t)⟩e , (3.20)

donde M := 1⊗Me.
Como consideración final escribimos la relación general entre el producto inva-

riante en el espacio 4-dimensional con el producto de Dirac en el espacio ordinario
3-dimensional a masa m fija:

⟨Φ̄m′ |Ψm⟩ = δ(m−m′) (ϕ, ψ)m (3.21)

donde definimos (ϕ, ψ)m :=
∫
d3xϕ†

m(x, t)ψm(x, t), y
⟨Φ̄m′ |Ψm⟩ = 1

2π

∫
d4x ϕ̄m′(x)ψm(x).

3.2 Reloj bidimensional y tiempo propio

Hemos visto que es posible ampliar el espacio de Hilbert de la partícula incluyendo
un reloj, preservando la simetría de Lorentz gracias a un producto invariante definido
en el espacio ampliado. Es más, para estados físicos que satisfacen una ecuación sin
tiempo, la noción de ortogonalidad que surge de este producto Ec. (3.16), implica
la norma usual de la teoría de Dirac. En esta sección mostramos que el producto
invariante que introdujimos motivados por argumentos de simetría surge natural-
mente cuando se introduce un segundo reloj. El objetivo es discutir la identificación
usual del tiempo en el formalismo PW con el tiempo propio [55]. Mientras esta
identificación es satisfactoria en el caso no relativista, la descripción de la evolución
temporal a través de la ecuación de Dirac implica necesariamente la acción no local
de las transformaciones de Lorentz. Esto conlleva a interpretar la variable del reloj
como tiempo en un dado sistema de referencia. Uno puede preguntarse si no habrá
un camino diferente a seguir, en particular si no es posible emplear una ecuación
análoga a (2.20) que luego de condicionar provea la evolución temporal del estado
del sistema parametrizada por un parámetro invariante τ . Obtener dicha ecuación
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significaría promover el rol de t a una variable dinámica, pero esto es exactamente
lo que el formalismo de PW ya hace. No es entonces sorprendente que introduciendo
un “tiempo propio” de esta manera, siga una extensión del formalismo de la sección
previa. Aquí desarrollamos dicha extensión.

3.2.1 Reloj bidimensional

Consideremos un reloj bidimensional con espacio de Hilbert HC = L2(R2) y base
{|τ⟩ ⊗ |t⟩}, de manera que ⟨τ ′|τ⟩ = δ(τ ′ − τ) y ⟨t′|t⟩ = δ(t− t′), y el mismo espacio
de Hilbert HS para el sistema que anteriormente. Un estado del sistema completo
puede ser escrito como

|Φ⟩ =
∫
dτ |τ⟩|Ψ(τ)⟩ =

∫
dm ϕ(m)|m⟩|Ψ(m)⟩ (3.22)

donde |τ⟩ = 1√
2π

∫
dme−imτ |m⟩ y |Ψ(τ)⟩ = 1√

2π

∫
dmϕ(m)eimτ |Ψ(m)⟩ ∈ HT ⊗ HS,

el espacio de Hilbert de la sección anterior. Asumiremos que el Hamiltoniano del
universo toma la forma

J = Pτ ⊗ 1+ 1⊗ γµPµ . (3.23)

Notemos que J tiene la misma forma no-interactuante que antes en la partición
tiempo propio-resto, pero es no separable en la partición reloj-resto.

Ahora, la ecuación
J |Φ⟩ = 0 (3.24)

implica ⟨τ |J |Φ⟩ = 0, i.e.,

i∂τ |Ψ(τ)⟩ = γµPµ|Ψ(τ)⟩ (3.25)

y, en la base conjugada,
(γµPµ +m)|Ψ(m)⟩ = 0 . (3.26)

Esta es la ecuación de universo de la sección previa, la cual determina un subespacio
invariante de of HT⊗HS respecto a transformaciones de Lorentz propias. Esto signi-
fica que en el espacio completo Ũ(Λ) := 1τ⊗U(Λ) deja la forma de la ecuación (3.25)
invariante. En general, transformaciones que dejan invariante la forma de (3.25) pre-
servan también su cuadrado y en consecuencia una métrica quintodimensional. Esto
define un espacio de Snyder [56].

Expandiendo los estados |Ψ(τ)⟩ en la base |x, σ⟩ de HT ⊗HS obtenemos

γµpµΨ(x, τ) = i∂τΨ(x, τ) (3.27a)

Ψ̄(x, τ)γµpµ = i∂τ Ψ̄(x, τ) (3.27b)
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con Ψσ(x, τ) := ⟨x, σ|Ψ(τ)⟩ y Ψ̄(x, τ) := Ψ†(x, τ)γ0. De esta manera,

∂µj
µ(x, τ) = − d

dτ
Ψ̄(x, τ)Ψ(x, τ), (3.28)

donde jµ(x, τ) := Ψ̄(x, τ)γµΨ(x, τ), lo cuál implica que para funciones de onda bien
comportadas la cantidad

∫
d4x Ψ̄(x, τ)Ψ(x, τ) = ⟨Ψ̄(τ)|Ψ(τ)⟩ se conserva, i.e., el

operador de evolución U(τ) = e−iγ
µpµτ preserva esta norma. Vemos entonces que el

producto invariante que hemos elegido en el espacio HT ⊗ HS es aquel preservado
por la evolución en τ . Más aún si ahora expandimos en la base de masa y elegimos
la normalización (3.16) obtenemos

⟨Ψ̄(τ)|Ψ(τ)⟩ =
∫
dmdm′ϕ∗(m′)ϕ(m)eiτ(m−m′)⟨Ψ̄(m′)|Ψ(m)⟩

=

∫
dm|ϕ(m)|2 (3.29)

Podemos entonces imponer
∫
dm|ϕ(m)|2 = 1 e interpretar ϕ(m) como una distribu-

ción en masa.

3.2.2 Sobre la interpretación de τ

Una versión escalar de la ecuación (3.27) con Hamiltoniano pµpµ apareció varias
veces en la literatura [57, 58], y una versión en segundo orden fue discutida en [59],
donde τ se identificó con el tiempo propio.. En el presente caso, la relación clásica
(relativista) momento/velocidad de una partícula libre con tiempo propio τ vale
como un promedio calculado con el producto inducido:

d

dτ
⟨xµ⟩ =

∫
d4xΨ̄(x, τ)i [γνpν , x

µ] Ψ(x, τ)

=

∫
d4x Ψ̄(x, τ)γµΨ(x, τ)

=

∫ ∫
dmd3p

2Ep,m

|ϕ(m)|2||a(p,m)||2
(
pµ

m

)
=

〈
pµ

m

〉
, (3.30)

donde hemos usado la identidad de Gordon [51]. Sin embargo, para una partícula con
masa definida, la evolución en τ es trivial. En consecuencia, la identificación de τ con
el tiempo propio no es adecuada. Podemos en cambio pensar que τ parametriza las
fases relativas de distintas historias de la partícula cuya información está contenida
en los estados |Ψ(m)⟩ a través del valor de la masa y la distribución espín-momento.
En una hipotética superposición de diferentes masas, i. e. , diferentes partículas, sería
posible ver interferencia entre historias separadas y entonces evolución no trivial en
el parámetro τ .
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3.3 Partícula de Dirac en un campo externo

La descripción adecuada de interacciones requiere una teoría de campos. Aquí sim-
plemente trabajamos con la teoría original de Dirac de una partícula en un campo
clásico externo. Introducimos la interacción reemplazando J = −γµPµ por

JA = −γµ(Pµ + eAµ(X)) , (3.31)

con Aµ(X)|x⟩ = Aµ(x)|x⟩. Entonces un estado |Ψ⟩ =
∫
d4xΨσ(x)|x, σ⟩ satisface

JA|Ψ⟩ = m|Ψ⟩ , (3.32)

sii la función de onda Ψ(x)cumple

(γµ(−i∂µ + eAµ)−m)Ψ(x) = 0 . (3.33)

Ahora nos centramos en el caso de un Aµ independiente del tiempo en un da-
do sistema de referencia. Primero definimos las autofunciones (normalizadas) de
H(m) = α · (p + eA) + βm+ eA0,

H(m)φkl(x,m) = Ek(m)φkl(x,m) , (3.34)

donde el subíndice l indíca autoestados con misma energía. Entonces toda solución
de (3.33) es de la forma Ψ(x) = 1√

2π

∑
k,l ckle

−iEk(m)tφkl(x,m), lo cual lleva a

|Ψm⟩ =
∑
k

ck|Ek(m)⟩|k(m)⟩ , (3.35)

donde ck|k(m)⟩ =
∑

l ckl
∫
d3xφσkl(x,m)|x, σ⟩, con |ck|2 =

∑
l |ckl|2 y

⟨k′(m)|k(m)⟩ = δkk′ , mientras |Ek(m)⟩ = 1√
2π

∫
dte−iEk(m)t|t⟩.

Ahora demostraremos que si excluimos potenciales que dependen de m, e.g., la
gravedad, la condición ⟨Ψ̄m′ |Ψm⟩ = δ(m−m′) implíca la normalización usual

2π

∫
d3xΨ†(x, t)Ψ(x, t) =

∑
k

|ck|2 = 1 . (3.36)

Demostración

Empleando (3.35) encontramos,

⟨Ψ̄m′|Ψm⟩ =
∑
k,k′

c∗k′ckδ(Ek(m)− Ek′(m
′))⟨k′(m′)|k(m)⟩ . (3.37)
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Vamos a demostrar la relación de ortogonalidad especial

δ(Ek(m)− Ek′(m
′))⟨k′(m′)|k(m)⟩ = δ(m−m′)δkk′ , (3.38)

que implica ⟨Ψ̄m′|Ψm⟩ = δ(m−m′)
∑

k |ck|2, donde

⟨k′(m′)|k(m)⟩ =
∑
l′,l

c∗k′l′ckl
c∗k′ck

∫
d3xφ̄k′l′(x,m′)φkl(x,m) . (3.39)

Analizamos el lado derecho de la ecuación (3.39) separadamente para k = k′ y k ̸= k′.
Primero notemos que para k = k′ en (3.38), δ(Ek(m) − Ek(m

′)) = δ(m −
m′)/|dEk(m)/dm|. Al derivar la Ec. (3.34) respecto a m se obtiene

(H(m)− Ek(m))
dφkl(x,m)

dm
=

(
dEk(m)

dm
− β

)
φkl(x,m) .

Al multiplicar a izquierda por φ†
kl′(x,m) e integrar en todo el espacio obtenemos el

resultado importante de que estas autofunciones satisfacen la condición de ortogo-
nalidad adicional ∫

d3xφ̄kl′(x,m)φkl(x,m) =
dEk(m)

dm
δll′ , (3.40)

donde empleamos la hermiticidad de H(m) y la ortonormalidad de sus autoestados
respecto al producto usual. La primer parte de la demostración está completa si
asumimos el resultado estándar dEk(m)/dm > 0 para Ek(m) > 0.

El término con k ̸= k′ en (3.38) contribuye solo cuando Ek′(m′) = Ek(m). Dado
que

H(m)φkl(x,m) = Ek(m)φkl(x,m)

H(m′)φk′l′(x,m′) = Ek′(m
′)φk′l′(x,m′) ,

multiplicando a izquierda la primera (segunda) ecuación por φ†
k′l′(m

′) (φ†
kl(m)), in-

tegrando en todo el espacio y restando los resultados (conjugando uno de ellos),
encontramos

(m−m′)

∫
d3x φ̄k′l′(x,m′)φkl(x,m) =

[Ek(m)− Ek′(m
′)]

∫
d3xφ†

k′l′(x,m
′)φkl(x,m) . (3.41)

Entonces, si Ek(m) = Ek′(m
′) la primer integral se anula para m ̸= m′, implicando

que estas autofunciones satisfacen en este caso una relación de ortogonalidad exten-
dida, lo cual conlleva al valor nulo de (3.39) para k ̸= k′. Notemos, sin embargo,
que tal relación de ortogonalidad no vale en general para Ek(m) ̸= Ek′(m

′). Los
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resultados previos implican entonces la Ec. (3.38).

Quedó entonces demostrado que siempre que exista un sistema de referencia
en el cual Aµ sea independiente de t, el producto invariante implica la norma de
Dirac. También mencionamos que para Aµ independiente de t (y τ) la extensión del
tratamiento de la sección 3.2 es directa.

3.4 Densidad invariante

Examinamos aquí algunas propiedades básicas de la “densidad espacio-tiempo” Ψ̄(x)Ψ(x)

que corresponde al producto invariante ⟨Ψ̄|Ψ⟩ que introdujimos. Tal densidad no es
definida positiva ni en el subespacio de partícula ni en el de antipartícula. Sin embar-
go, en el caso 1+1 dimensional para la distribución a(p) = e−ϵEp y masa m ̸= 0, es
positiva en todo el espacio-tiempo. Más aún en el límite ϵ→ 0+ se anula en la región
tipo espacio del cono de luz centrado en (x, t) = (0, 0). Notemos también que esta
distribución corresponde al reemplazo formal t→ t−iϵ en el caso de una distribución
de momento llana. Más aún, para x→ z, puede considerarse como una distribución
3d ∝ δ(px)δ(py)e

−ϵEp , en cuyo caso Ψ(x, t, ϵ) es, para ϵ→ 0+ y t→ 0 un autoestado
de la tercer componente del operador posición de Pryce q = x+ 1

2E2
p
(p×Σ+ imβα)

[60].
Los espinores en el caso 1+1 dimensional tienen dos componentes (σ = 0, 1) y

espín fijo. La correspondiente función de onda (no normalizada) es (Ec. (3.12))

ψσ(x, t, ϵ) =

∫ ∞

−∞

dp

2Ep
e−i(t−iϵ)Ep+ipx

1√
Ep +m

(
Ep +m

p

)
σ

, (3.42)

y satisface la ecuación unidimensional i∂tψ(x, t) = −iσ1∂xψ(x, t)+mσ3ψ(x, t). Ahora
σ3 remplaza γ0 cuando calculamos Ψ̄(x, t). Entonces, Ψ̄(x, t)Ψ(x, t) = 1

2π
[|ψ0(x, t, ϵ)|2−

|ψ1(x, t, ϵ)|2].
Integrando explícitamente en (3.42) [61] puede probarse explícitamente (ver Apén-

dice 3.3) que tal diferencia es positiva ∀ x, t si ϵ > 0. Y en el límite ϵ→ 0+, obtenemos,
para ψ̄(x, t)ψ(x, t) y ψ†(x, t)ψ(x, t),

ψ̄(x, t)ψ(x, t) =

{
π√
t2−x2 x2 < t2

0 x2 > t2
, (3.43)

ψ†(x, t)ψ(x, t) =

{
π|t|
t2−x2 x2 < t2

π|x|
x2−t2 e

−2m
√
x2−t2 x2 > t2

. (3.44)
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De donde, (3.43) es positiva en el sector tipo tiempo, y se anula en la región tipo
espacio. En cambio, (3.44) se mantiene positiva en esta última [50]. Es también fácil
ver que ĺım

t→0

(
ĺım
ϵ→0

ψ̄(x, t, ϵ)ψ(x, t, ϵ)
)
∝ δ(x).

Figura III.1: Curvas de nivel de la densidad invariante (3.43) (panel superior) y la densidad de
Dirac (3.44) (panel inferior), para m ≡ mc/ℏ = 1. La primera se anula en la región tipo espacio
(aquí x y t ≡ ct están en unidades de ℏ/mc).

En [57] la densidad tipo Schrödinger de la versión escalar de la Ec. (3.27)
se interpreta como densidad de probabilidad espacio-tiempo. En el presente caso
Ψ̄(x, τ)Ψ(x, τ) ∝

∫
dmdm′ϕ∗(m′)ϕ(m)ei(m−m′)τ ψ̄m′(x, t)ψm(x, t) es la cantidad co-

rrespondiente. En el caso 1+1 dimensional ya discutido, y en el límite ϵ → 0+
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encontramos

ψ̄m′(x, t)ψm(x, t) =

{
π√
t2−x2 e

−i(m−m′)
√
t2−x2 x2 < t2

0 x2 > t2
. (3.45)

En consecuencia, Ψ̄(x, t, τ)Ψ(x, t, τ) se anula fuera del cono de luz para toda distri-
bución de masa ϕ(m). En cambio en el interior del cono de luz Ψ̄(x, t, τ)Ψ(x, t, τ) ∝

1√
t2−x2 |Φ(τ−

√
t2 − x2)|2, donde Φ(τ) indica la transformada de Fourier de la función

ϕ(m). Vemos que la región positiva de la densidad, que corresponde a la parte inter-
na del cono de luz, se mantiene positiva al evolucionar en τ , mientras que la región
externa se mantiene nula. Más aún, en el caso general ϵ > 0, Ψ̄(x, t, τ)Ψ(x, t, τ) > 0

para toda distribución de masa, como se muestra en el Apéndice 3.3.

3.5 Conclusiones

Vimos que el mecanismo de Page y Wootters es particularmente adecuado para
proveer de un espacio de Hilbert covariante a la ecuación de Dirac. Por un lado,
vemos que la definición de las transformaciones de Lorentz es puramente cinemática
y puede elegirse de manera tal que la función de onda, entendida ahora como una
densidad de probabilidad en el espacio tiempo, transforme como en la formulación
de Dirac. Frente al producto invariante en 4-dimensiones las transformaciones de
Lorentz son unitarias. Al imponer la ecuación de universo de PW correspondiente
al Hamiltoniano de Dirac, queda claro que el subespacio físico es invariante frente a
las transformaciones de Lorentz.

Notablemente, la ecuación de universo puede entenderse como una ecuación de
autovalores de masa. En este sentido, introducir un operador tiempo nos lleva a la
definición de un operador de masa. Aún más, la condición de ortonormalidad entre
autovectores de masa distinta, conecta la norma en 4-dimensiones con la norma usual
de Dirac en hipersuperficies de 3-dimensiones. Esta conexión, que puede mostrarse
también para la ecuación de Dirac en un campo externo, se basa en propiedades
de ortogonalidad especiales que se derivan de la ecuación de Dirac misma. Este
resultado resuelve los problemas de normalización para tiempo infinito del caso no
relativista.

También se discutieron aspectos adicionales, como la derivación de lo anterior
al considerar una dimensión extra, que puede nuevamente interpretarse desde el
mecanismo de PW, y algunas propiedades de la densidad de probabilidad en 4-
dimensiones.

39



Capítulo III. Tiempo cuántico y la teoría de Dirac

Apéndices

3.1 Norma de Dirac

De la conservación de la carga y la ley de transformación de la corriente ψ̄γµψ, se
sigue la invarianza de la norma de Dirac [62]:∫

d3xψ†(x, t)ψ(x, t) =
∫
d3xψ′†(x, t)ψ′(x, t) , (3.46)

con ψ′(x, t) = S(Λ)ψ(Λ−1x). Expandiendo la función de onda de una partícula libre
en la base de momento, y utilizando la propiedad [53]

u(s
′)†

p u(s)p = δss
′
2Ep ,

encontramos ∫
d3xψ†(x, t)ψ(x, t) =

∫
d3p

2Ep
||a(p)||2 ,

con ||a(p)||2 := |a0(p)|2 + |a1(p)||2.
De la invarianza tanto de p.x|p0=Ep como de la medida d3p

2Ep
, la igualdad (A1)

puede reafirmarse como∫
d3p

2Ep
||a(p)||2 =

∫
d3p

2Ep2EΛp
a∗s′(p)as(p)F

s′s
Λ (p) ,

implicando la relación

F s′s
Λ (p) = us

′†
p S†(Λ)S(Λ)usp = δss

′
2EΛp ,

donde hemos definido F s′s
Λ (p) = us

′†
p S†(Λ)S(Λ)usp.

3.2 Expansión de estados en variables continuas

Consideramos un conjunto completo continuo de estados {|p⟩} que abarca un espacio
H y satisface ⟨p′|p⟩ = δ(p− p′), y un estado de la forma

|ψ⟩ =
∫
ϕ(p)|p⟩dp ,

satisfaciendo ⟨ψ|ψ⟩ =
∫
|ϕ(p)|2dp = 1. Si E(p) es una función monótona de p,

podemos reescribir |ψ⟩ como

|ψ⟩ =
∫
ϕ(p(E))|p(E)⟩ dp

dE
dE (3.47)

=

∫
Φ(E)|E⟩dE , (3.48)
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donde Φ(E) = ϕ(p(E))/
√

|dE/dp| y |E⟩ = |p(E)⟩/
√
|dE/dp|, tal que∫

|Φ(E)|2dE = 1, ⟨E ′|E⟩ = δ(E − E ′) .

La extensión a estados definidos en H⊗n es aparente: el cambio de n variables pi
a nuevas n variables independientes Ei(p) se procede de la misma manera, con
|E1 . . . En⟩ = |p1 . . . , pn⟩/

√
|J | y J el jacobiano ∂(E1, . . . , En)/∂(p1, . . . , pn). Sin

embargo, note que estos estados pueden asociarse a diferentes particiones de H⊗n: Si
Pi|pi⟩ = pi|pi⟩, [Pi, Pj] = 0, podemos escribir |p1, . . . , pn⟩ = |p1⟩ . . . |pn⟩ y de manera
similar, |E1, . . . , En⟩ = |E1⟩ . . . |En⟩, con Hi(p)|Ei⟩ = Ei(p)|Ei⟩ y [Hi, Hj] = 0.

Considerando ahora estados en H⊗H de la forma

|Ψ⟩ =
∫
ϕ(p, q)|pq⟩dpdq ,

obviamente tenemos ⟨Ψ1|Ψ2⟩ =
∫
ϕ̄1(p, q)ϕ2(p, q)dpdq. Y si ϕi(p, q) = gi(p, q)δ(fi(p, q)−

ci), obtenemos un solapamiento finito

⟨Ψ1|Ψ2⟩ =
∫
ḡ1(p, q)g2(p, q)δ(f1(p, q)− c1)δ(f2(p, q)− c2)dpdq

= ḡ1(p, q)g2(p, q)/|J | , (3.49)

donde J = ∂(f1, f2)/∂(p, q) y el resultado final se evalúa en la intersección de ambas
curvas (asumida aquí para existir y ser única; la extensión al caso general es directa).
Por otro lado, si f1(p, q) = f2(p, q) = f(p, q), obtenemos,

⟨Ψ1|Ψ2⟩ =
∫
ḡ1(p, q)g2(p, q)δ(f(p, q)− c1)δ(f(p, q)− c2)dpdq

= δ(c1 − c2)

∫
ḡ1(p, q)g2(p, q)dv/|J | , (3.50)

donde la integral es a lo largo de la curva f(p, q) = c1, con J = ∂(f, v)/(p, q) y
v(p, q) cualquier función tal que (f, v) sean variables independientes. Por ejemplo
dv/|J | = dp/|fq| si v = p. La normalización adecuada de estos estados implicaría
entonces

∫
ḡi(p, q)gi(p, q)dv/|J | = 1.

Note que estos estados |Ψi⟩ pueden escribirse como

|Ψ⟩ =
∫
g(p, q)δ(f(p, q)− c)|pq⟩dpdq

=

∫
g(p, q)|pq⟩dv/|J | (3.51)

=

∫
g(p, q)|pq⟩dp/|fq| , (3.52)
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con las dos últimas integrales sobre la curva f(p, q) = c, que define la función q(p) a
usarse en la última integral. Además, también podemos reescribir la última integral
en las formas más simétricas (usando |q(p)⟩ = |p⟩/

√
|dq/dp|, Ecs. (3.47–(3.48)),

|Ψ⟩ =
∫
g(p, q)|p⟩|p⟩dp/

√
|fqfp|

=

∫
g(p, q)|q⟩|q⟩dq/

√
|fqfp| . (3.53)

Estas expresiones representan descomposiciones de Schmidt continuas de |Ψ⟩.

3.3 Densidad Invariante

Para probar que Ψ̄(x, t, ϵ)Ψ(x, t, ϵ) es positivo para ϵ > 0, es suficiente mostrar que
F (x, t, ϵ) := |ψ0(x, t, ϵ)/ψ1(x, t, ϵ)|2 > 1. Al realizar la integración en (3.42) [61]
encontramos

ψ0(x, t, ϵ) =

√
2π
√√

x2 − (t− iϵ)2 + i(t− iϵ)e−m
√
x2−(t−iϵ)2

2
√
x2 − (t− iϵ)2

, (3.54)

ψ1(x, t, ϵ) =

√
2πixe−m

√
x2−(t−iϵ)2

2
√
x2 − (t− iϵ)2

√√
x2 − (t− iϵ)2 + i(t− iϵ)

, (3.55)

y por lo tanto,

F (x, t, ϵ) = 1 +
2
√
f(x, t, ϵ)

(
t sin

(
γ
2

)
+ ϵ cos

(
γ
2

))
+ f(x, t, ϵ)− (x2 − ϵ2 − t2)

x2
,

(3.56)
donde f(x, t, ϵ) =

√
(x2 − ϵ2 − t2)2 + 4x2ϵ2 y γ(x, t, ϵ) := arg(x2+ϵ2−t2+2iϵt). Note

que F (x, t, ϵ) es independiente de m. Para ϵ > 0 y t ⩾ 0, ϵ > 0, 0 ⩽ γ ⩽ π mientras
que para t ⩽ 0, −π ⩽ γ ⩽ 0. En ambos casos t sin

(
γ
2

)
⩾ 0, cos

(
γ
2

)
⩾ 0. Enton-

ces el cociente en (3.56) es claramente positivo. Por otro lado, para ϵ = 0, γ = 0

y el cociente se convierte en (|x2 − t2| − (x2 − t2))/x2, implicando F (x, t, 0) = 1

si |x| > |t| y F (x, t, 0) = 2t2/x2 − 1 si |x| < |t|. De la Ec. (3.42) notamos,
al hacer la integral, que ψ∗

0(x, t, ϵ,m
′)ψ0(x, t, ϵ,m) − ψ∗

1(x, t, ϵ,m
′)ψ1(x, t, ϵ,m) =

ψ∗
1(x, t, ϵ,m

′)ψ1(x, t, ϵ,m) (F (x, t, ϵ)− 1), con F (x, t, ϵ) definido en (3.56). Esto im-
plica

Ψ̄(x, t, τ)Ψ(x, t, τ) ∝ |
∫
dmϕ(m)eimτψ1(x, t, ϵ,m)|2 (F (x, t, ϵ)− 1) > 0

ya que F (x, t, ϵ) > 1.
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Tiempo cuántico y partículas escala-

res

En los capítulos anteriores describimos como el formalismo de Page y Wootters per-
mite recuperar la ecuación de Schrödinger y nuestra extensión a la ecuación de Dirac.
En este capítulo, basado en la publicación [2], aprovechamos estos conceptos aún más
y desarrollamos el caso de las partículas escalares, obteniendo nuevas perspectivas
sobre el tema. Uno de los principales resultados es la definición de un espacio de
Hilbert consistente para la ecuación de Klein-Gordon [63, 64], tanto en el caso libre
como en presencia de un campo externo, donde el producto interno es el producto
canónico en cuatro dimensiones. Es notable que esta construcción, y la posterior nor-
malización adecuada de estados de masa fija, que son autoestados de una ecuación
tipo Wheeler-DeWitt [13], aseguren la norma tridimensional (3d) usual. Además, en
el caso libre, el subespacio de masa definida se asigna a la representación estándar
de Wigner [65], implicando directamente la medida invariante estándar 3d. Mientras
que los resultados correspondientes para el caso libre se obtuvieron previamente en
el contexto de la gravedad cuántica [48, 66-68], el espacio cuatridimensional (4d) se
consideró allí como un espacio de Hilbert auxiliar (cinemático) (del cual se infería
el importante resultado de un producto 3d inducido para estados “físicos”). Aquí lo
promovemos al estatus de un espacio físico real. Esto permite elevar el tiempo de un
parámetro a un operador, lo que a su vez requiere promover la masa, que en ambas
ecuaciones de Dirac y Klein-Gordon se asume como un parámetro fijo, a un obser-
vable cuántico. Este enfoque ofrece ventajas conceptuales sustanciales incluso si solo
se considera el subespacio (subespacio propio) de estados de masa definida, pero
además abre el camino a nuevas posibilidades [1], como estados cuánticos más gene-
rales con fluctuaciones de masa y un espacio de Fock extendido basado en entidades
cuatridimensionales. Además, el presente tratamiento de las interacciones revela que

43



Capítulo IV. Tiempo cuántico y partículas escalares

tales estados generales ya están implícitos al expresar las soluciones correspondientes
en términos de los estados libres, en analogía con las contribuciones fuera de capa de
masa en tratamientos perturbativos para sistemas de muchas partículas en interac-
ción. Estos resultados proporcionan una nueva perspectiva que podría ser adecuada
para tratar el problema del espacio de Hilbert del marco de Wheeler DeWitt de la
gravedad cuántica [13, 25, 69, 70].

La construcción básica del espacio de Hilbert explícitamente covariante adecuado
para partículas escalares se presenta en la Sec. 4.1.1, donde se definen los estados
de eventos |x⟩ como autoestados de los operadores hermiticos Xµ, con X0 intro-
ducido de acuerdo con el formalismo de PW. Luego se muestra que el producto de
Klein-Gordon 3d emerge de la ortogonalidad 4d de los autoestados de masa. Esto
conduce a la Sec. 4.1.2 donde se establece la relación con la representación estándar
de partículas únicas del grupo de Poincaré [65], junto con la correspondencia uno
a uno entre los estados de historia de masa fija 4d y aquellos de la representación
Wigner escalar usual. Dado que los estados de historia son más generales, esta co-
rrespondencia solo se mantiene en un subespacio de masa particular, excluyendo así
los estados |x⟩. Sin embargo, se muestra en la Sec. 4.1.3 que los estados localizados
en el espacio-tiempo se pueden proyectar en el “subespacio físico”, proporcionando
información física geométrica. Este resultado se emplea para obtener la amplitud de
propagación libre de un campo escalar [40] dentro del presente formalismo. La acción
adecuada de operadores covariantes en subespacios físicos se aclara aún más en la
Sec. 4.1.4 al descomponer el espacio de Hilbert de acuerdo con sus diferentes sectores
de masa y energía. En particular, se discute la no acotación de P 0, el generador de
las traslaciones temporales. La normalización en el tiempo se considera en la misma
sección, donde se muestra explícitamente que un estado normalizable general en el
espacio de Hilbert covariante es una superposición de los anteriores estados propios
impropios” de masa.

En la Sec. 4.2 se generaliza la ecuación del universo para incluir interacciones
con un campo externo. La ecuación de Klein-Gordon con un potencial se obtiene
al proyectar sobre |x⟩ la ecuación de valor propio asociada. Luego se demuestra
que la conexión correcta entre el producto extendido canónico y el producto de
Klein-Gordon se mantiene para cualquier campo externo independiente de la masa
y el tiempo (para una elección de calibre y marco de referencia dados). También
se comenta cómo la consideración de estados sin masa definida ya está implícita al
tratar con interacciones.
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Algunas de las nuevas perspectivas que se derivan del régimen relativista se
transfieren al caso no relativista en la Sec. 4.3. En particular, se deriva una propuesta
para la normalización de estados con historias infinitas en una discusión no relativista
autocontenida. También se discute brevemente el caso de un potencial dependiente
linealmente de la masa.

La construcción consistente de la representación de partículas individuales tam-
bién permite una definición consistente de un espacio de Fock donde el bloque de
construcción es la partícula como una entidad cuatridimensional. En la Sec. 4.4 se
explora esta “segunda cuantización de historias”. La identificación de la Sec. 4.1.2
se extiende al espacio de Fock estándar de la teoría de campo escalar a través de
la definición de un subespacio adecuado y la generalización del operador del uni-
verso a un operador de un solo cuerpo. Finalmente, se discuten las conclusiones y
perspectivas en la Sec. 4.5.

4.1 Partícula Escalar

4.1.1 Formalismo

Un estado histórico general para una partícula escalar puede escribirse como

|Ψ⟩ =
∫
d4p Ψ(p)|p⟩ (4.1)

donde |p⟩ ∈ H son los autoestados impropios de los cuatro operadores Pµ. Aquí
H = S(R4), L2(R4), S∗(R4) es el espacio de Hilbert equipado construido a partir de
L2(R4), y S(R4) es el espacio de Schwartz. Los operadores de impulso se definen por

U(Λ)|p⟩ = |Λp⟩, (4.2)

con Λµ ν = ew
µ ν y wµν = −wνµ un tensor antisimétrico. El estado transformado se

convierte en
U(Λ)|Ψ⟩ =

∫
d4pΨ′(p)|p⟩ , (4.3)

con
Ψ′(p) = ⟨p|U(Λ)|Ψ⟩ = Ψ(Λ−1p) . (4.4)

También podemos introducir los estados |x⟩ = 1
(2π)2

∫
d4p, eipx|p⟩ con px = pµx

µ =

p0x0−
∑3

i=1 p
ixi, que se transforman como U(Λ)|x⟩ = |Λx⟩. Si |x⟩ son autoestados de

operadoresXµ, estos últimos satisfacen las relaciones de conmutación [Xµ, Pν ] = iδµν .
Claramente los operadores Pµ, Lµν := XµPν−XνPµ proporcionan una representación
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del álgebra de Lie del grupo de Poincaré, donde vale la pena notar que P0 no es el
Hamiltoniano (ver Sec. 4.1.4) y que la representación actúa sobre H y no sobre un
campo clásico. La representación es manifiestamente unitaria ya que

⟨Ψ̃|U(Λ)†U(Λ)|Ψ⟩ =
∫
d4p Ψ̃′∗(p)Ψ′(p) = ⟨Ψ̃|Ψ⟩ . (4.5)

Consideremos ahora el operador

J = P µPµ . (4.6)

La ecuación
J |Ψ⟩ = m2|Ψ⟩ , (4.7)

tiene por solución general

|Ψm2⟩ =
∫
d4p δ(pµpµ −m2)H+(p0)α(p)|p⟩

⊕
∫
d4p δ(pµpµ −m2)H−(p0)β(p)|p⟩ (4.8)

donde H± denota la función de Heaviside tal que ± corresponde a p0 positivo o
negativo y m2 es un autovalor real del operador hermitico J . Definiendo Ψ(x) =

⟨x|Ψ⟩, la Ec. (4.7) se convierte en la usual ecuación de Klein-Gordon [63, 64],

⟨x|(P µPµ −m2)|Ψ⟩ = 0 ⇒ (∂µ∂µ +m2)Ψ(x) = 0, (4.9)

cuya invariancia es evidente ya que Ψ′(x) = ⟨x|U(Λ)|Ψ⟩ = Ψ(Λ−1x). Dado que

δ(pµpµ −m2)H+(p0) =
δ(p0 − Epm)

2Epm
, (4.10)

con Epm =
√

p2 +m2, una solución arbitraria con p0 positivo puede escribirse ex-
plícitamente como

|Ψm2⟩ = 1√
2π

∫
d4x ψ(x)|x⟩ , (4.11)

ψ(x) =
1

(2π)3/2

∫
d3p

2Epm
α(p)e−ipx|p

0=Epm , (4.12)

donde ψ(x) =
√
2πΨ(x). Bajo una transformación de Lorentz, α(p) → α(Λ−1p) (Ec.

(4.8)), lo que implica que d3p
2Epm

es invariante, en concordancia con el resultado bien
conocido. El producto de dos soluciones correspondientes a diferentes autovalores
m2 y m̃2 produce

⟨Ψm̃2 |Ψm2⟩ =
∫

d3p

4Epm̃Epm
δ(Epm − Epm̃)α̃

(p)α(p)

= δ(m2 − m̃2)

∫
d3p

2Epm
α̃∗(p)α(p) (4.13)
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ya que δ(Epm−Epm̃) = δ(m2− m̃2)2Epm. En el caso de dos soluciones con la misma
distribución de momentos a igual masa, entonces

⟨Ψm̃2|Ψm2⟩ = δ(m2 − m̃2)

∫
d3p

2Epm
|α(p)|2, (4.14)

con una expresión similar en términos de β(p) para p0 negativo(las soluciones con
p0 positivo y negativo son ortogonales).
Es fácil ver a partir de la Ec. (4.12) que∫

d3p

2Epm
|α(p)|2 = Q(ψ, ψ)

con
Q(φ, ψ) := i

∫
d3x (φ∗(x, t)∂tψ(x, t)− ψ(x, t)∂tφ∗(x, t)) (4.15)

y ψ(x, t) = ψ(x). Ya que

⟨Ψm̃2|Ψm2⟩ = δ(m2 − m̃2)Q(ψ, ψ) , (4.16)

la normalización apropiada de estas soluciones en S∗(R4) implica, notablemente, la
normalización usual de Klein-Gordon [63] Q(ψ, ψ) = 1, es decir,

⟨Ψm̃2|Ψm2⟩ = δ(m2 − m̃2) ⇔

i

∫
d3x (ψ∗(x, t)∂tψ(x, t)− ψ(x, t)∂tψ∗(x, t)) = 1 . (4.17)

El estado de una partícula en un momento dado t puede identificarse con el estado
“condicionado” |ψ(t)⟩ :=

√
2π⟨t|Ψm2⟩, con |t⟩ = |x0⟩ para x0 = t, y por lo tanto

ψ(x, t) con la función de onda de Klein-Gordon ⟨x|ψ(t)⟩. En el caso de partículas
masivas (m positiva), se puede elegir en cambio la normalización ⟨Ψm̃|Ψm⟩ = δ(m−
m̃), en cuyo caso

⟨Ψm̃|Ψm⟩ = δ(m− m̃) ⇔
i

2m

∫
d3x (ψ∗(x, t)∂tψ(x, t)− ψ(x, t)∂tψ∗(x, t)) = 1, (4.18)

es decir,
∫
d3x ρ(x, t) = 1, con ρ(x, t) la densidad usual de Klein-Gordon [71, 72], que

en el límite no relativista se reduce a la de Schrödinger para soluciones de energía
positiva.

Más generalmente, ahora es fácil probar las siguientes relaciones

⟨Φ±
m̃2|Ψ±

m2⟩ = ±δ(m̃2 −m2)Q(φ, ψ) , (4.19)

⟨Φ±
m̃2|Ψ∓

m2⟩ = 0 , (4.20)
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donde el signo ± indica el signo de p0 y ⟨Φm̃2|Ψm2⟩ obviamente también se puede
expresar como 1

2π

∫
d4xφ∗(x)ψ(x). Es importante notar que las relaciones anteriores

proporcionan una condición de normalización positiva para ambos signos de p0 ya
que ⟨Ψ±

m̃2|Ψ±
m2⟩ = δ(m̃2−m2)|Q(ψ, ψ)|. La positividad sigue del producto canónico en

L2(R4), pero implica la “norma” usual. La conexión entre ambos productos también
se puede derivar de relaciones extendidas satisfechas por la densidad de corriente.
Estas relaciones se obtienen en el Apéndice 4.1 usando el presente formalismo. Los
resultados de las Ecs. (4.19, 4.20) concuerdan con el tratamiento general dentro de
la cuantización de sistemas invariantes bajo reparametrización [66] (ver Sec. 4.1.3
y el Apéndice 4.2). Un resultado análogo que conecta un producto invariante 4d

con el producto de Dirac 3d también es válido para partículas de Dirac [1] (véase el
capítulo anterior).

4.1.2 Relación con la representación de Wigner

La relación entre los productos tridimensionales y cuatridimensionales proporcio-
na una conexión entre una solución de masa fija de (4.7) y la representación usual
(escalar) de una partícula en L2(R3, dµ(p)) donde dµ(p) = 1

(2π)3
d3p
2Ep

. Los estados
impropios de momento usuales |p⟩

W
∈ L2(R3, dµ(p)) están normalizados como

W
⟨p′|p⟩

W
= (2π)32Epδ

(3)(p − p′). Notamos que la normalización invariante están-
dar requiere la adición del factor 2Ep para compensar la no invariancia del volumen
espacial [40, 73].

La conexión con el presente formalismo se hace evidente si expandimos una solu-
ción (4.8) como, estableciendo a(p) = α(p)√

(2π)3
, b(p) = β(p)√

(2π)3
, Epm → Ep y notando

que δ(pµpµ −m2)H±(p0) = δ(p0 ∓ Epm)/2Ep,

|Ψm2⟩ =
∫

d3p

(2π)32Ep
a(p)|Epmp⟩ , (4.21)

⊕
∫

d3p

(2π)32Ep
b(p)| − Epmp⟩ , (4.22)

donde hemos introducido los estados

| ± Epmp⟩ := (2π)3/2
∫
dp0 δ(p0 ∓ Epm)|p0p⟩ , (4.23)

que satisfacen (r, r′ = ±1) )

⟨rEp′m′p′|r′Epmp⟩ = (2π)32Epδrr′δ
(3)(p − p′)δ(m2 −m′2) . (4.24)

El factor 2Ep ahora surge naturalmente de la condición de ortogonalidad de la masa.
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La correspondencia uno a uno entre los estados

|Ψm2⟩ =
∫

d3p

(2π)32Ep
a(p)|Epmp⟩ ∈ H , (4.25)

y los estados

|ψ⟩
W

=

∫
d3p

(2π)32Ep
a(p)|p⟩

W
∈ L2(R3, dµ(p)) , (4.26)

es ahora explícita ya que en ambos casos∫
d3p

(2π)32Ep

|a(p)|2 = 1, (4.27)

y sus propiedades de transformación son idénticas. Se debe notar que mientras
|ψ⟩

W
(Ec. 4.26) representa una partícula en un tiempo fijo (o equivalentemen-

te, en la imagen de Heisenberg), |Ψm2⟩ (Ec. 4.25) representa en cambio la his-
toria completa de la partícula. De hecho, también podemos expresar (4.25) como
|Ψm2⟩ = 1√

2π

∫
dt
∫

d3p
(2π)32Ep

e−iEpta(p)|tp⟩, donde |tp⟩ = 1√
2π

∫
dp0 e

ip0t|p0p⟩ (notar
que |p⟩ difiere de |p⟩

W
) definiendo así el estado histórico apropiado de |ψ⟩

W
en el

marco relativista.

4.1.3 Propagador de Klein-Gordon

Dado un estado general en H, puede proyectarse en el subespacio de estados que
satisfacen (4.7) con un autovalor fijo m2 mediante el operador

Πm2 : = δ(J −m2) . (4.28)

En general, esto deja contribuciones tanto de p0 positivo como negativo. Para la pre-
sente discusión es útil introducir proyectores adicionales P± :=

∫
dp0H

±(p0)|p0⟩⟨p0|⊗
1, satisfaciendo [P±,Πm]=0, y definir Π±

m2 := P±Πm2 . En particular, es interesante
proyectar |x⟩ en el espacio de estados de partículas “físicas”:

√
2πΠ+

m2 |x⟩ =
√
2π P+δ(J −m2)

∫
d4p√
(2π)4

eipx|p⟩

=

∫
d4p√
(2π)3

δ(pµpµ −m2)H+(p0)e
ipx|p⟩

=

∫
d3p

(2π)32Ep
ei(Ept−px)|Epmp⟩ , (4.29)

donde el factor
√
2π en la primera línea se incluyó para normalización (ver Ec.

(4.34)). Estos estados corresponden (en el sentido discutido en la Sec. 4.1.2) a los
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estados de una partícula ϕ(x)|0⟩, donde ϕ(x) =
∫

d3p

(2π)3
√

2Ep

(
e−ipxap + eipxa†p

)
|p0=Ep

es el campo de Klein-Gordon en la imagen de Heisenberg para la teoría libre con
masa m, y

√
2Ep a

†
p|0⟩ = |p⟩. Además, a partir de (4.29) se deduce la siguiente

identidad

2π⟨y|Π+
m2 |x⟩ = ⟨0|ϕ(y)ϕ(x)|0⟩ = D(y − x) , (4.30)

donde
D(y − x) =

∫
d3p

(2π)32Ep
eip(x−y)|p0=Ep , (4.31)

es el propagador de Klein-Gordon (o amplitud) [40] para la teoría libre con masa m,
que se puede interpretar inmediatamente. Al seleccionar las contribuciones de masa
fija de un evento x (ver también Sec. 4.1.4), obtenemos un estado cuya probabilidad
de estar en otro evento y es esencialmente igual a la amplitud para que la partícula
se propague de x a y. Notamos que no se introdujo explícitamente una evolución
unitaria ya que los estados contienen toda la información temporal. En cambio,
se realizó una “selección” adecuada entre las historias posibles mediante el uso del
proyector.

A partir de la Ec. (4.30) vemos que podemos reescribir la proyección de un evento
como

√
2πΠ+

m2 |x⟩ =
1√
2π

∫
d4z Dm2(z − x)|z⟩ , (4.32)

donde agregamos el índice m2 para hacer explícita la dependencia de la masa. Tam-
bién podemos calcular la superposición entre dos eventos proyectados como

2π⟨y|Π+
m′2Π

+
m2|x⟩ = 2π

∫
d4z ⟨y|Π+

m′2 |z⟩⟨z|Π+
m2|x⟩

= 2πδ(m2 −m′2) ⟨y|Π+
m2 |x⟩ (4.33)

= δ(m2 −m′2)D(y − x) (4.34)

donde en (4.33) hemos empleado la Ec. (4.29). Por lo tanto, con la normalización
empleada para los eventos proyectados, su superposición es directamente el propa-
gador multiplicado por la función delta de masa. La identidad (4.33) implica∫

d4z Dm′2(y − z)Dm2(z − x) = 2πδ(m2 −m′2)D(y − x) . (4.35)

La parte finita es nuevamente esencialmente el propagador mientras que la presencia
de la función delta está de acuerdo con la discusión de la Sec. 4.1. Sin embargo,
vemos de la Ec. (4.1.3) que podemos reinterpretar la aparición de la delta de Dirac
como el resultado de sumar todos los puntos posibles del espacio-tiempo z de la
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Figura 4.1.1: Representación pictórica de las dos caracterizaciones equivalentes de la cantidad
⟨y|Π+

m′Π+
m|x⟩. Cada línea representa una amplitud D(y − x).

propagación de x a y con el punto intermedio adicional z. Este resultado se representa
pictóricamente en la Fig. 4.1.1.

En las técnicas de promediación de grupo, el resultado (4.1.3) se emplea para
inducir el producto interno del espacio de Hilbert físico [67] que en este caso corres-
ponde a una partícula con masa fija. En la notación actual, esto se puede expresar
de la siguiente manera: Sea |Φm2⟩ := Πm2 |Φ⟩ y |Ψm2⟩ dos soluciones de la restricción
(4.7), entonces (Φm2 |Ψm2)phys := ⟨Φ|Ψm2⟩, que es equivalente a las relaciones (4.19,
4.20) sin la delta de Dirac en (4.19). En nuestro enfoque, preservamos la delta de
masa ya que se considera que el espacio de Hilbert extendido es físicamente relevante,
como se señala en las siguientes secciones. Como consecuencia, los subespacios “físi-
cos” de H son subespacios genuinos (el espacio de soluciones de (4.7) y H comparten
el mismo producto interno).

También mencionamos que Πm2 tiene la representación formal

Πm2 =
1

2π

∫ ∞

−∞
dτ exp

[
iτ(J −m2)

]
,

que se asemeja a los métodos de tiempo propio [74]. De hecho, el resultado de restrin-
gir la misma integral a τ positivos (y añadir una parte imaginaria infinitesimal iϵ) es
proporcional al operador inverso de J −m2, cuyos elementos de matriz son iguales
al propagador de Feynman y para el cual sigue valiendo un significado proyectivo
asintótico [66].

4.1.4 Normalización en Tiempo

Un estado de la forma

|Ψ⟩ =
∫
dm2(γ+ϕ+(m2)|Ψ+

m2⟩+ γ−ϕ−(m2)|Ψ−
m2⟩) , (4.36)

donde |Ψ±
m2⟩ son estados normalizados definidos como en (4.19) (⟨Ψ±

m′2|Ψ±
m2⟩ =

δ(m2 −m′2)) con ∫
dm2|ϕ±(m2)|2 = 1 , (4.37)

y
⟨Ψ|Ψ⟩ = |γ+|2 + |γ−|2 = 1 , (4.38)

51



Capítulo IV. Tiempo cuántico y partículas escalares

pertenece a L2(R4). Ahora demostraremos que cualquier estado |Ψ⟩ ∈ L2(R4) admite
la representación (4.36). Esto es en principio evidente ya que la integral sobre todos
los valores reales de m2 cubre el espectro del operador hermitico J y |Ψ±

m2⟩ son
estados generales con masa definida y signo de p0. Esto también significa que la
consideración de estados que son normalizables en tiempo (por ejemplo, historial
de tiempo finito) es equivalente a permitir una incertidumbre de masa/signo de p0.
Los estados |Ψ+

m2⟩ pueden considerarse como la idealización correspondiente a una
partícula con historial infinito y relación de dispersión infinitamente bien definida,
en cuyo caso sigue la correspondencia de la Sec. 4.1.2.

Prueba. Un estado normalizado arbitrario |Ψ⟩ ∈ L2(R4) puede expandirse como

|Ψ⟩ =
∫
d4p⟨p|Ψ⟩|p⟩ =

∫
d4p

∫
dm2δ(pµpµ −m2)]⟨p|Ψ⟩|p⟩

=

∫
dm2

[∫
d3p

(2π)32Epm

⟨Ep,mp|Ψ⟩|Epmp⟩ (4.39)

+

∫
d3p

(2π)32Epm

⟨−Ep,mp|Ψ⟩| − Epmp⟩
]

(4.40)

donde
∫
dm2 . . . =

∫∞
0
dm2 . . .+

∫ 0

−∞ dm2 . . . incluye todos los valores reales de m2.
Usando las Ecs. (4.21)–(4.22), las Ecs. (4.39)–(4.40) se ven que son de la forma (4.36)
con a(p) = ⟨Ep,mp|Ψ⟩/(γ+ϕ+(m2)), b(p) = ⟨−Ep,mp|Ψ⟩/(γ−ϕ−(m2)) y

γ±ϕ±(m2) =

√∫
d3p

(2π)32Epm

|⟨±Epmp|Ψ⟩|2 .

Involucran cuatro términos distintos, según los signos de m2 y Epm. Para m2 < 0

la integración d3p se restringe a la región |p|2 > −m2, como se muestra en la Fig.
2.

Los cuatro términos que surgen de descomponer un estado general |Ψ⟩ ∈ L2(R4)

de acuerdo a los signos de m2 y p0 en las Ecs. (4.39)–(4.40) pertenecen a subespacios
ortogonales que son representaciones de espacio de Hilbert de las clases correspon-
dientes de representaciones irreducibles del grupo de Poincaré [65, 75]. Esta exhaus-
tividad de H es precisamente lo que permite representar eventos |x⟩ y en particular
la definición de un operador de tiempo T tal que T := X0|x⟩ = x0|x⟩. El operador
de traslación en el tiempo P 0 =

∫
d4p p0|p⟩⟨p| es, como se esperaba, no acotado, sin

embargo, esto no es un problema en el presente formalismo, en contraste con otros
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Figura 4.1.2: Región de integración en variables m2 y p. Aquí |p| es el modulo del 3-momento p.

enfoques [49, 76]: Al escribir (como en las Ecs. (4.39)–(4.40))

P 0 =

∫
dm2

[∫
d3p

(2π)32Epm

Epm|Epmp⟩⟨Epmp| (4.41)

−
∫

d3p

(2π)32Epm

Epm| − Epmp⟩⟨−Epmp|
]
, (4.42)

se hace evidente que las cuatro regiones de H contribuyen a su espectro llevando,
como consecuencia, a que no sea acotado. En cambio, en estados que pertenecen a
una representación irreducible particular, impuesta “a posteriori” por la Ec. (4.7) y
por una elección dada del signo de p0, P 0 actúa correctamente:

P 0| ± Epmp⟩ = ±Epm| ± Epmp⟩ . (4.43)

La ventaja del presente enfoque es evidente: los operadores covariantes se definen
independientemente de la teoría particular, aún así, después de elegir una teoría
dada, o superposición de ellas, estos operadores, que aún se definen como antes,
actúan correctamente. Esto es precisamente lo que ya hemos encontrado al proyectar
un evento en la Sec 4.1.2: el estado |x⟩, al que asociamos un significado geométrico,
es “no-físico” para una teoría con masa fija m2 y p0 > 0, sin embargo, el estado físico
“más cercano” corresponde al bien conocido estado ϕ(x)|0⟩. Además, un tratamiento
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perturbativo de una teoría interactuante implica implícitamente estados con una
masa indefinida cuando se expande en términos de la base libre. Esto ya se puede
discutir dentro de un tratamiento de “primera cuantización” de las interacciones
como se muestra en la Sec. 4.2.

4.2 Ecuación de Klein-Gordon en un campo externo

Hasta ahora la discusión se centró en el caso de una partícula libre. En esta sección
discutimos las interacciones a nivel de primera cuantización tratando los campos
como entidades externas. Esto seguirá de una extensión directa de las ideas previas
que, notablemente, todavía proporciona la conexión correcta entre la norma inva-
riante y la normalización de Klein-Gordon, y más generalmente, entre el producto
canónico en L2(R4) y el producto de Klein-Gordon. Reemplazamos J = P µPµ por

JA = (P µ + eAµ(X))(Pµ + eAµ(X)) , (4.44)

con Aµ(X)|x⟩ = Aµ(x)|x⟩. Un estado |Ψ⟩ = 1√
2π

∫
d4xψ(x)|x⟩ satisface

JA|Ψ⟩ = m2|Ψ⟩ , (4.45)

sii ψ(x) satisface la ecuación de Klein-Gordon(
(−i∂µ + eAµ)(−i∂µ + eAµ)−m2

)
ψ(x) = 0 . (4.46)

Ahora consideremos el caso donde Aµ(X) no depende de T ni de m2. Conside-
rando soluciones de energía definida E, ψ(x) = e−iEtψ(x), la Ec. (4.46) conduce a
la ecuación

[F (E)−m2]ψ(x) = 0 , (4.47)

donde F (E) = (E − eA0)
2 − (P + eA)2 es un operador hermitico con respecto al

producto estándar en L2(R3), que no depende de m2. Entonces podemos escribir una
solución general de (4.46) como

ψm2(x) =
∑
k

ckψk(x,m
2), (4.48)

ψk(x,m
2) = e−iEk(m

2)tψk(x,m
2) , (4.49)

donde k etiqueta los modos de energía definida Ek(m
2) y ψk(x,m

2) las funciones
propias correspondientes, obtenidas de la Ec. (4.47). Estos satisfacen la ortogona-
lidad de Klein-Gordon QA(ψk′(m

2), ψk(m
2)) = 0 para Ek(m

2) ̸= Ek′(m
2), donde
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(Dµ = ∂µ − ieAµ(x))

QA(ϕ, ψ) = i

∫
d3x (ϕ∗(x, t)D0ψ(x, t)− ψ(x, t)D∗

0ϕ
∗(x, t)) .

(4.50)

La solución resultante de (4.45) es

|Ψm2⟩ =
∑
k

ck|Ψk(m
2)⟩ , (4.51)

|Ψk(m
2)⟩ = 1√

2π

∫
d4xψk(x,m

2)|x⟩ . (4.52)

Demostraremos en primer lugar que soluciones con energías definidas Ek(m2)

satisfacen la condición de ortogonalidad

⟨Ψk′(m
′2)|Ψk(m

2)⟩ = δ(m2 −m′2)QA(ψk′ , ψk)sk (4.53)

donde sk = sgn
(
dEk

dm2

)
y el lado izquierdo es el producto canónico en L2(R4). Este

es un resultado no trivial que se desprende de relaciones de ortogonalidad “espe-
ciales” de las soluciones usuales de la ecuación de Klein-Gordon, como se muestra
a continuación. Si bien garantiza la ortogonalidad esperada de estados propios con
diferentes masas, a igual masa vincula directamente el producto estándar en R4 con
el producto de Klein-Gordon en R3, lo cual a su vez asegura la ortogonalidad de
estados con diferentes energías a igual masa e implica QA(ψk, ψk)sk = |QA(ψk, ψk)|.

En segundo lugar, demostraremos, eligiendo modos ortogonales ψk(m2) (para
k ̸= k′, QA(ψk′(m

2), ψk(m
2)) = 0 ), que la relación (4.53) implica

⟨Ψ′
m′2|Ψm2⟩ = δ(m′2 −m2)

∑
k

c′k
∗
ck|QA(ψk, ψk)| , (4.54)

para un estado general con masa definida, que es idéntico a δ(m′2 −m2)|QA(ψ
′, ψ)|

cuando todos los QA(ψk, ψk) tienen el mismo signo (es decir, todos los modos de
“energía positiva” en condiciones estándar). Esta es la extensión buscada de las Ecs.
(4.19).

Demostración. La superposición entre dos soluciones (4.52) con energías definidas
arroja

⟨Ψk′(m
′2)|Ψk(m

2)⟩ = δ(Ek′(m
′2)− Ek(m

2))

×
∫
d3xψ∗

k′(x,m
′2)ψk(x,m2) . (4.55)
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Estados con diferentes energías son automáticamente ortogonales mientras que la
condición de igual energía puede separarse en dos contribuciones: energías iguales a
masas iguales, o energías iguales a masas diferentes (y diferentes k). Consideremos
primero el segundo caso: escribiendo[

F (Ek(m
2))−m2

]
ψk(x,m2) = 0 (4.56)[

F (Ek′(m
′2))−m′2]ψk′(x,m′2) = 0 , (4.57)

multiplicando a la izquierda por ψ∗
k′(x,m

′2) (ψ∗
k(x,m

2)) la primera (segunda) ecua-
ción, integrando en todo el espacio y restando (conjugando uno de los resultados)
obtenemos

(m′2 −m2)

∫
d3xψ∗

k′(x,m
′2)ψk(x,m2) =

(Ek(m
2)− Ek′(m

′2))QA(ψk′(m
′2), ψk(m

2)) (4.58)

donde hemos utilizado la hermiticidad de (P + eA)2. Para Ek′(m′2) = Ek(m
2) en-

tonces
(m′2 −m2)

∫
d3xψ∗

k′(x,m
′2)ψk(x,m2) = 0 , (4.59)

implicando una condición de ortogonalidad extendida para m′2 ̸= m2 cuando las
energías coinciden. Concluimos que no surgen contribuciones de masas diferentes en
(4.55). Note también que param′2 = m2 pero Ek(m2) ̸= Ek′(m

2) la Ec. (4.58) condu-
ce a la condición de ortogonalidad estándar de Klein-Gordon QA(ψk′(m

2), ψk(m
2)) =

0.
Los resultados anteriores (4.55), (4.59) nos permiten escribir, para modos de igual

energías (Ek(m2) = Ek′(m
2)∀m2)

⟨Ψk′(m
′2)|Ψk(m

2)⟩ = δ(m′2 −m2)

|dEk/dm2|

×
∫
d3xψ∗

k′(x,m
2)ψk(x,m2) . (4.60)

Esta segunda parte de la demostración implica encontrar una expresión para dEk/dm2.
Esto se logra derivando la Ec. (4.56) con respecto a m2, que da como resultado

[F ′(Ek)
dEk
dm2

− 1]ψk(x,m2) =
[
F (Ek)−m2

] dψk(x,m2)

dm2
.

con F ′(Ek) = 2(Ek− eA0). Ahora multiplicamos a la izquierda por una solución con
la misma energía ψ∗

k′(x,m
2) e integramos en el espacio; obtenemos∫

d3xψ∗
k′(x,m

2)ψk(x,m2)

[
F ′(Ek)

dEk
dm2

− 1

]
= 0 , (4.61)
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y así, para Ek(m2) = Ek′(m
2),∫

d3xψ∗
k′(x,m

2)ψk(x,m2) =
dEk
dm2

QA(ψk′(m
2), ψk(m

2)) (4.62)

que es la extensión natural de (4.58) para m2 = m′2 y Ek(m2) = Ek′(m
2). Insertando

esta relación en (4.60) conduce al resultado (4.53). La Ec. (4.61) también revela una
condición de ortogonalidad adicional: los modos ortogonales a energías iguales según
el producto de Klein-Gordon también son ortogonales en el producto canónico de
L2(R3), asumiendo que dEk

dm2 ̸= 0.

Finalmente, observamos de la Ec. (4.53) que imponer la normalización

⟨Ψk′(m
′2)|Ψk(m

2)⟩ = δ(m2 −m′2)δkk′

lleva directamente a la normalización de Klein-Gordon |QA(ψk′(m
2), ψk(m

2))| = δkk′ .

La extensión rigurosa de los presentes resultados a un potencial general Aµ(X) y
espacios-tiempo curvos implica nuevos conceptos y será presentada en otro lugar. No
obstante, se discuten identidades generales para la densidad de corriente en presencia
de un potencial general en el Apéndice 4.1. El caso de un Aµ dependiente de la masa
se discute brevemente en el límite no relativista para la gravedad newtoniana en la
Sec. 4.3.

Los resultados de esta sección pueden emplearse directamente para definir un
espacio de Hilbert físico a m2 fijo (como se mencionó antes para el caso libre) reem-
plazando Πm2 → δ(JA−m2), extendiendo así programas de cuantización anteriores
[66, 67] al caso donde un Aµ externo está presente. Sin embargo, y quizás más impor-
tante, observamos que los estados propios de masa de JA en la Ec. (4.45) obviamente
no son estados propios de la partícula libre J de la Ec. (4.7), ya que JA y J no
conmutan. Por lo tanto, la expansión de estados propios |ΨA

m2⟩ de JA en términos de
aquellos de J generalmente implica una expansión sobre diferentes masas (y tam-
bién puede involucrar energías negativas) como la considerada en la Sec. 4.1.4. Así,
la consideración de estados sin una masa definida en la representación de la base
libre ya está implícita al tratar con un campo externo, es decir, con interacciones.
Esto a su vez revela que el espacio de Hilbert extendido, comúnmente considerado
como una construcción auxiliar, juega un papel físico inevitable en un formalismo
de 4d. Además, cualquier fluctuación de los campos Aµ, que en un escenario más
realista también son dinámicos, llevaría al sistema a explorar diferentes sectores de
masa de H.
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4.3 Límite No Relativista

Es bien sabido que para soluciones de energía positiva en el límite no relativista
E ′/m ≪ 1 (orden (v/c)2, con E ′ = E −m) la ecuación de Klein-Gordon se reduce
a la ecuación de Schrödinger [71]. En particular, la norma de Klein-Gordon para
partículas masivas se convierte en la norma estándar de Schrödinger. Por lo tanto,
se espera que una versión no relativista de la Ec. (4.18) en términos de la norma
mecánica cuántica usual se mantenga como un límite. De hecho, este es el caso, pero
es instructivo derivar este resultado directamente del régimen no relativista.

Primero recordamos que la ecuación de Schrödinger se puede recuperar para
estados |ψ(t)⟩ ∈ HS imponiendo una restricción estática global sobre los estados
|Ψ⟩ ∈ H = HT ⊗HS. Aquí HT está generado por los estados propios |t⟩ del operador
T que satisface la conmutación canónica [T, PT ] = i. En la interpretación de PW
[14] HT se considera como el espacio de Hilbert de un reloj cuántico de modo que
el parámetro t es una etiqueta de estados |t⟩ de este sistema particular.

Los estados |Ψ⟩ pueden expandirse como

|Ψ⟩ =
∫
dt |t⟩|ψ(t)⟩ , (4.63)

mientras que el estado del sistema en el “tiempo” t es |ψ(t)⟩ = ⟨t|Ψ⟩. Al imponer la
ecuación

J |Ψ⟩ = 0 , (4.64)

con

J = PT ⊗ 1+ 1⊗H , (4.65)

donde H es el Hamiltoniano del sistema, se obtiene la ecuación de Schrödinger
estándar [29]:

⟨t|J |Ψ⟩ = 0 ⇒ i
d

dt
|ψ(t)⟩ = H|ψ(t)⟩ . (4.66)

La implicación anterior es válida para Hamiltonianos arbitrarios si el espectro de
PT es toda la línea real, lo que también implica el mismo espectro para T . Bajo esta
condición los estados |Ψ⟩ no pueden normalizarse en H [29]: en términos generales,
⟨Ψ|Ψ⟩ es igual a ⟨ψ(t0)|ψ(t0)⟩ veces la (infinita) longitud del tiempo. Por otro lado,
si nos enfocamos en el caso de una partícula escalar, a partir de la discusión de
la Sec. 4.1.4 podemos inferir cómo relacionar adecuadamente la norma de estos
estados globales con la norma de |ψ(t0)⟩. También es importante notar que en el
caso relativista la cantidad ⟨Ψ|Ψ⟩ no está relacionada con la longitud del tiempo
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como antes, ya que los estados condicionados |ψ(t)⟩ están normalizados según la
norma de Klein-Gordon, no la de Schrödinger. Ahora nos enfocamos en el caso
HS = span{|x⟩} de modo que

|Ψ⟩ =
∫
dtd3x |t⟩|x⟩⟨x|ψ(t)⟩ ≡

∫
dtd3xψ(x, t)|tx⟩ , (4.67)

y consideramos primero el caso libre H = P 2

2m
. Nótese que desde el punto de vista

mecánico cuántico, el valor propio cero en la Ec. (4.64) no juega un papel especial ya
que un valor propio desplazado de J corresponde a una traslación global de energía.
Por otro lado, dado que estamos tratando con una partícula libre, es prudente esta-
blecer el cero de la energía en su valor de energía de reposo (positivo) mc2 (donde
hemos reintroducido momentáneamente la velocidad de la luz c). Entonces tenemos

⟨tx|(J +m)|Ψ⟩ = 0 ⇒
(
−i ∂
∂t

+
−∇2

2m
+m

)
ψ(x, t) = 0 , (4.68)

cuyas soluciones son claramente de la forma

|Ψm⟩ =
∫
d3p a(p)|p2/2m+m,p⟩ , (4.69)

implicando

⟨Ψm′ |Ψm⟩ ≈ δ(m−m′)

∫
d3p

|a(p)|2

|1− p2

2m2 |

= δ(m−m′)

∫
d3p |a(p)|2 ×

(
1 +O

(
E ′
p

m

))
(asumimos que |a(p)| es significativa solo para p ≪ m,m′). Hasta O(p2/m2), es-
ta ecuación coincide con la Ec. (4.14) después de reemplazar a(p) = α(p)/(2Ep).
Encontramos que en este régimen las soluciones con diferentes “valores propios” m
son ortogonales , incluso si J depende de la masa. Además, para estados de mo-
mentos no relativistas, que es precisamente el régimen de validez de la ecuación de
Schrödinger para una partícula, la condición de ortogonalidad implica la norma de
Schrödinger (hasta correcciones relativistas):

⟨Ψm′|Ψm⟩ = δ(m−m′) ⇒ ⟨ψ(t0)|ψ(t0)⟩ = 1 +O(v2/c2) . (4.70)

Esto también significa que los estados historia |Ψ⟩ pueden normalizarse de acuerdo
con la discusión de la Sec. 4.1.4, un resultado que proporciona (en el presente caso)
una interpretación física a la propuesta de regularización de [29].
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Este resultado puede extenderse fácilmente en este mismo contexto (pero también
se deduce del límite no relativista de la Sec. 4.2) a Hamiltonianos de la forma

H =
(p − eA(x))2

2m
+ V (x) +mϕ(x) +m, (4.71)

donde A, V y ϕ son independientes de la masa, empleando una estrategia similar
a la de la Sec. 4.2 que ya se utilizó para el Hamiltoniano de Dirac en [1]. Una
modificación menor sigue del potencial dependiente de la masa mϕ(x): ya que ahora
⟨x|(PT +H)|Ψm⟩ = 0 produce(

i
∂

∂t
− (p − eA(x))2

2m
− V (x)

)
ψ(x, t)

= m(1 + ϕ(x))ψ(x, t) , (4.72)

la ecuación del universo debe considerarse como una ecuación de autovalores gene-
ralizada (hasta correcciones relativistas provenientes del término dependiente de la
masa en el lado izquierdo). Para lograr la ortogonalidad, el producto generalizado
(Ψ|Ψ) := ⟨Ψ|(1+ϕ(X))|Ψ⟩ =

∫
d4x (1+ϕ(x))|ψ(x, t)|2 debe emplearse en principio.

Sin embargo, si se reintroduce c, (Ψ|Ψ) =
∫
d4x (1 + ϕ(x)/c2)|ψ(x, t)|2 y vemos que

ϕ(x)/c2 debe descartarse en este orden [77]. Esto implica que los potenciales que
dependen linealmente de la masa, como un potencial gravitatorio newtoniano, no
requieren un tratamiento especial en el orden más bajo en c. Aún es notable que
este análisis simple sugiere una conexión entre la gravedad y la curvatura ya que
solo se hicieron consideraciones de Mecánica Cuántica y gravedad newtoniana junto
con la condición de energía de masa en reposo E = mc2.

4.4 Espacio de Fock Extendido

En esta sección exploramos la construcción de un espacio de Fock HEF donde el
bloque de construcción es la base de partícula individual (sp) {|p⟩}, mientras que la
sp usual correspondiente en HF es {a†p|0⟩F = |p⟩}. Los estados |p⟩ se reinterpretan
como la base de un espacio de sp, es decir,

|p⟩ = c†p|0⟩ , (4.73)

donde los operadores de creación/aniquilación satisfacen, ya que ⟨p′|p⟩ = δ4(p− p′),
el álgebra

[cp, c
†
p′ ] = δ(4)(p− p′) , (4.74)

[cp, cp′ ] = [c†p, c
†
p′ ] = 0 . (4.75)

60



Capítulo IV. Tiempo cuántico y partículas escalares

Este álgebra es explícitamente preservada por operadores de impulso cuya definición,

U(Λ)cpU
†(Λ) = cΛp , (4.76)

sigue de la Ec. (4.2). Note que U(Λ) = exp
[
− i

2
wµνLµν

]
es explícitamente unitaria y

que

Lµν = i

∫
d4p c†p

(
pµ

∂

∂pν
− pν

∂

∂pµ

)
cp ,

el generador de transformaciones de Lorentz, es un operador hermitico de un cuerpo.
Definiendo J como el operador de un cuerpo

J =

∫
d4p (p2 −m2)c†pcp , (4.77)

que es el operador del universo que corresponde a (4.6), el subespacio físico se define
por aquellos estados construidos a partir de operadores de creación que conmutan
con J :

[J , c†p] = (p2 −m2)c†p = 0 ⇒ p2 = m2 . (4.78)

Como base de este subespacio, podemos emplear, para p0 > 0, los operadores

c(m)
p :=

√
(2π)3

2Epm

∫
dp0 δ(p0 − Epm) cp0p , (4.79)

que satisfacen
[c(m)

p , c
†(m′)
p′ ] = (2π)3δ(3)(p − p′)δ(m2 −m′2) , (4.80)

y transforman, según (4.76), como

U(Λ)c(m)
p U †(Λ) =

√
EΛpm

Epm
c
(m)
Λp . (4.81)

Un estado de una partícula de masa m se escribe entonces como

|Ψm2⟩ =
∫

d3p

(2π)3
√

2Epm
a(p)c†(m)

p |0⟩ (4.82)

=

∫
d3p

(2π)32Epm
a(p)|Epmp⟩ ,

donde
|Epmp⟩ :=

√
2Epmc

†(m)
p |0⟩ . (4.83)

De acuerdo con la discusión de la Sec. 4.1.2, el estado |Ψm2⟩ se puede identificar
con la historia de

|ψ⟩ =
∫

d3p

(2π)3
√
2Epm

a(p)a†p|0⟩F (4.84)

=

∫
d3p

(2π)32Epm
a(p)|p⟩ ,
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donde ap son los operadores 3d estándar:

[ap, a
†
p′ ] = (2π)3δ(3)(p − p′) (4.85)

con
|p⟩ =

√
2Epma

†
p|0⟩F . (4.86)

Ahora es sencillo extender esta identificación a muchas partículas. A partir de la
ley de transformación usual de los operadores ap, a†p, y la Ec. (4.81), se sigue que
estas identificaciones son independientes del marco de referencia.

Es ahora interesante considerar un estado de dos partículas

|Ψ⟩ =
∫

d3p1

(2π)3
√

2Ep1

d3p2

(2π)3
√
2Ep2

a(p1,p2)c
†(m)
p1

c†(m)
p2

|0⟩

donde c†(m)
pi

∝ cp0p con p0 = Epm son los operadores definidos en (4.79). Mediante
una transformada de Fourier en p01, p02, obtenemos

|Ψ⟩ =
∫

dt1dt2d
3p1d

3p2√
2π(2π)32Ep1

√
2π(2π)32Ep2

e−iEp1 t1e−iEp2 t2 a(p1,p2)c
†
t1p1

c†t2p2
|0⟩ . (4.87)

Vemos entonces que este estado no tiene una estructura simple en tiempo de la forma∫
dtd3p1d

3p2 ψ(t, p1, p2)c
†
tp1
c†tp2

|0⟩. Esto es importante dado que dicha forma no puede
ser preservada por transformaciones de Lorentz. La estructura más compleja de |Ψ⟩
es una novedad del caso relativista que es necesaria para representar boosts.

4.5 Discusión

Hemos visto que es posible construir un formalismo de estado histórico consistente
para una partícula escalar cuyo concepto de tiempo comparte las ideas matemáticas
subyacentes del mecanismo de Page y Wooters [14]. La consideración de un espacio
de Hilbert adecuado para la representación de operadores explícitamente covariantes,
junto con una ecuación del universo atemporal, permite una derivación simple de
la ecuación de Klein-Gordon, tanto en el caso libre como con un campo externo,
que complementa las derivaciones previas de las ecuaciones de Schrödinger [29] y
Dirac [1]. El producto canónico de L2(R4), que es invariante, proporciona una norma
positiva para este espacio de Hilbert. Es notable que la posterior normalización
adecuada de los estados on-shell asegura directamente la norma usual en 3d incluso
en presencia del campo externo, extendiendo resultados anteriores derivados a través
de métodos de “group-averaging” en el contexto de la gravedad cuántica [66, 67].
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Pero además, el espacio de Hilbert extendido, normalmente considerado como
una construcción cinemática auxiliar, aquí se promueve a un espacio físico real,
de acuerdo con la consideración del tiempo como un operador. La importancia de
preservar el espacio completo en 4d se hace evidente cuando se toma en cuenta la
no conmutatividad de los operadores de masa para diferentes teorías, por ejemplo,
con y sin campos externos, lo que implica que el sistema naturalmente comienza
a explorar todo el espacio cuando se activa una interacción. Este enfoque también
proporciona un espacio de Hilbert consistente en 4d para la ecuación de Klein-
Gordon, que es explícitamente covariante y, por lo tanto, difiere de los tratamientos
recientes de PW de formulaciones Hamiltonianas basadas en raíces cuadradas [78] de
la ecuación de Klein-Gordon [79]. Las consideraciones relativistas actuales también
nos han permitido inferir cómo normalizar estados con historias infinitas en un límite
no relativista bien definido, proporcionando una interpretación física a la propuesta
de regularización previa para la ecuación de Schrödinger [29]. En este sentido, el
mecanismo de PW resulta ser particularmente adecuado para el contexto relativista.

Al mismo tiempo, las nuevas características del formalismo resultante plantean
dificultades en la interpretación relacional original [14]: El parámetro de tiempo que
resulta de “condicionar el reloj” se identifica inequívocamente con el tiempo en un
marco de referencia dado por la ecuación de Klein-Gordon. Una interpretación re-
lacional nos llevaría a la conclusión de que un único reloj (cuántico) es suficiente
para describir la evolución de una partícula para cualquier observador, en claro con-
traste con la necesidad de una convención de sincronización como la sincronización
de Einstein [17]. Además, esto también requiere que el espectro de T sea continuo
e ilimitado, por lo que difícilmente se puede asociar con un observable de un reloj
que no sea una coordenada. Estas consideraciones sugieren que en este contexto es
más adecuado simplemente tratar a t como una coordenada adicional de la partícula
misma, como también sugiere el enfoque de Stueckelberg (ver Apéndice 4.2). En
el marco de la relatividad general, identificaríamos el parámetro de tiempo con el
“tiempo coordenado” en lugar de un intervalo de tiempo medido por un reloj.

Sobre esta base, hemos explorado la construcción de un espacio de Fock donde
el bloque de construcción es la partícula como una entidad de 4 dimensiones, ex-
tendiendo así el formalismo a un escenario de muchas partículas y definiendo una
“segunda cuantización” de historias. A través de la definición de un subespacio ade-
cuado, sigue una identificación con los estados estándar de muchas partículas. Al
mismo tiempo, se revela una estructura temporal más rica. Esto sugiere una exten-
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sión no trivial a la teoría cuántica de campos, diferente de una aplicación directa del
mecanismo original de PW.

Apéndices

4.1 Densidad de corriente

En el presente formalismo, la densidad de corriente de Klein-Gordon asociada con
un estado arbitrario |Ψ⟩ = 1√

2π

∫
d4xψ(x)|x⟩ en presencia de un potencial general

Aµ(X),

jµA(x) = i (ψ∗(x)Dµψ(x)− ψ(x)Dµ∗ψ∗(x)) , (4.88)

donde Dµ = ∂µ + ieAµ, puede escribirse como

jµ(x) = 2π ⟨x|JµA|x⟩ , (4.89)

donde

JµA = −(P µ
A|Ψ⟩⟨Ψ|+ |Ψ⟩⟨Ψ|P µ

A) , (4.90)

con P µ
A = P µ + eAµ, es un operador hermitico. Ahora podemos expresar la 4-

divergencia de la corriente como

∂µj
µ
A(x) = 2πi ⟨x|[Pµ, JµA]|x⟩ = 2πi ⟨x|[PA

µ , J
µ
A]|x⟩

= 2πi ⟨x|[|Ψ⟩⟨Ψ|,JA]|x⟩ (4.91)

donde PA
µ = Pµ + eAµ y JA = P µ

AP
A
µ es el operador (4.44). Si |Ψ⟩ es un autovector

de JA, es decir, un estado con masa definida |Ψm2⟩, entonces [|Ψ⟩⟨Ψ|,JA] = 0 y
obtenemos el resultado bien conocido

∂µj
µ
A(x) = 0 .

Las relaciones anteriores pueden generalizarse inmediatamente a una densidad de
corriente de dos estados

jµA(ϕ, ψ, x) = i (ϕ∗(x)Dµψ(x)− ψ(x)Dµ∗ϕ∗(x))

= 2π⟨x|JµA(Φ,Ψ)|x⟩ , (4.92)

donde

JµA(Φ,Ψ) = −(P µ
A|Ψ⟩⟨Φ|+ |Ψ⟩⟨Φ|P µ

A) . (4.93)
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La Ec. (4.91) ahora se convierte en

∂µj
µ
A(ϕ, ψ, x) = 2πi ⟨x|[|Ψ⟩⟨Φ|,JA]|x⟩ . (4.94)

Si |Ψ⟩ y |Φ⟩ son ambos soluciones de la ecuación de Klein-Gordon con la misma masa,
es decir, autoestados de JA con el mismo autovalor m2, entonces [|Ψ⟩⟨Φ|,JA] = 0,
implicando

∂µj
µ
A(ϕ, ψ, x) = 0 . (4.95)

Por otro lado, para dos autoestados |Ψm2⟩, |Φm′2⟩ con masas diferentes m2 y m′2,
obtenemos en cambio

[|Ψm2⟩⟨Φm′2|,JA] = (m′2 −m2)|Ψm2⟩⟨Φm′2| , (4.96)

implicando la identidad extendida

∂µj
µ
A(ϕm′2 , ψm2 , x) = i(m′2 −m2)ψm2(x)ϕ∗

m′2(x) , (4.97)

que es válida para cualquier potencial independiente de la masa Aµ(X) (no necesa-
riamente independiente del tiempo).

Para m2 = m′2, integrando sobre d3x y asumiendo que jµA(ϕm2 , ψ2
m′ , x) desapa-

rece para grandes |x|, la Ec. (4.97) conduce al resultado bien conocido de Q(ϕ, ψ)
constante en el tiempo, en acuerdo con la Ec. (4.16). Para m2, m′2 generales esta
relación puede emplearse para re-obtener las relaciones anteriores (4.16) y (4.58)
(para un potencial independiente del tiempo y de la masa) por integración de (4.97)
sobre d3x, asumiendo nuevamente el desvanecimiento de jµA para grandes |x|.

La densidad de corriente de dos estados también puede expresarse como

jµA(ϕ, ψ, x) = ⟨Φ|JµA(x)|Ψ⟩ (4.98)

donde JµA(x) := JµA(x, x) (Ec. (4.93)) es el operador hermitico

JµA(x) = − (Π(x)P µ
A + P µ

AΠ(x)) , (4.99)

con Π(x) = |x⟩⟨x|. Además, QA(ϕ, ψ) puede reformularse como

QA(ϕ, ψ) = ⟨Φ|
∫
d3x JµA(x)|Ψ⟩ = ⟨Φ|QA(t)|Ψ⟩ , (4.100)

QA(t) = −
(
Π(t)P 0

A + P 0
AΠ(t)

)
, (4.101)

donde Π(t) =
∫
d3xΠ(x) = |t⟩⟨t| ⊗1. Todas las relaciones de este apéndice también

se aplican, por supuesto, en el caso libre Aµ(X) = 0 (P µ
A → P µ, JA → J ).
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4.2 Cuantización extendida de una teoría parame-

trizada

Aquí presentamos una versión alternativa para derivar el formalismo de estado histó-
rico de una partícula que está estrechamente relacionada con la propuesta de Stuec-
kelberg [57]. Aunque el enfoque anterior es autocontenido, esta perspectiva diferente
aclara aún más que no es estrictamente necesario una interpretación relacional para
el parámetro t. Al mismo tiempo, recuperar el formalismo de esta manera permite
una primera comparación con el enfoque convencional de la gravedad cuántica [49].

Considere la acción de una partícula unidimensional para una lagrangiana inde-
pendiente del tiempo

S [q(t)] =

∫ t2

t1

dt L(q, q̇) . (4.102)

Promoviendo t a una coordenada y parametrizando el espacio de configuración (t, q)

con una variable τ podemos escribir

S [q(τ), t(τ)] =

∫ τ2

τ1

dτ ṫL

(
q,
q̇

ṫ

)
≡
∫ τ2

τ1

dτ L̃
(
q, q̇, ṫ

)
. (4.103)

Los momentos asociados con L̃ son [49]:

p̃q =
∂L̃

∂q̇
= pq

pt =
∂L̃

∂ṫ
= −H , (4.104)

mientras que el Hamiltoniano es H̃ = p̃q q̇ + ptṫ − L̃ = ṫ(H + pt). Si definimos el
“super Hamiltoniano” Hs ≡ H + p̃t entonces de la Ec. (4.104)

Hs = H + pt ≈ 0 , (4.105)

donde con ≈ indicamos que esto es una restricción débil [80]. Al aplicar la cuantiza-
ción canónica al espacio de configuración extendido, ya que t y pt están en el espacio
de fases, se obtiene un Hilbert ampliado, que puede escribirse como H = Ht ⊗Hq.
La restricción del super Hamiltoniano (4.105) define el subespacio

HS|Ψ⟩ = (Pt ⊗ I+ I⊗H)|Ψ⟩ = 0 , (4.106)

que es precisamente la ecuación del universo del formalismo de PW para una par-
tícula unidimensional y tiempo continuo discutido en la Sec. 4.3. Hemos obtenido

66



Capítulo IV. Tiempo cuántico y partículas escalares

mediante este método las nociones familiares del formalismo de estado histórico no
relativista sin considerar un reloj de referencia: t es una coordenada.

Debe enfatizarse que el procedimiento convencional de cuantización de un sistema
parametrizado no conduce al presente formalismo donde se define un operador de
tiempo [49]. La diferencia clave es que estamos asociando un espacio de Hilbert
ampliado al espacio de configuración extendido de modo que la restricción (4.106)
también tiene un significado físico en lugar de solo uno formal (o auxiliar) [66]. La
presente propuesta está más cerca del enfoque de Stueckelberg para la mecánica
cuántica relativista [57]. De hecho, el Hamiltoniano R introducido por Stueckelberg
bajo consideraciones relativistas generales, que para una partícula libre es R =
1
2
PµP

µ, conduce a la ecuación de Stueckelberg [57]

RΨ(x, τ) = i
∂

∂τ
Ψ(x, τ) , (4.107)

que para soluciones estacionarias en τ Ψ(x, τ) = exp
(

−im2

2
τ
)
Ψ(x) produce la Ec.

(4.7). La norma de Stueckelberg
∫
d4x |Ψ(x, τ)|2, que es independiente de τ para una

solución de la Ec. (4.107), es precisamente la que hemos empleado en la Sec. 4.1 y está
relacionada con la norma de Klein-Gordon para soluciones de masa fija. Las mismas
consideraciones se aplican para el caso general R = 1

2
πµπ

µ, donde πµ = Pµ + eAµ,
como sigue inmediatamente de los resultados de la Sec. 4.2.
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Segunda cuantización extendida y el

concepto de acción cuántica

“And so I’m stuck to have to continue this investigation, and of course

you appreciate that this is the secret reason for doing any work, no

matter how absurd and irrational and academic it looks: we all realize

that no matter how small a thing is, if it has physical interest and is

thought about carefully enough, you’re bound to think of something

that’s good for something else.”

Richard P. Feynman

Hemos visto que cuando un operador para el espacio está definido, el uso de
un operador tiempo nos permite dar descripciones cuánticas en espacios de Hilbert
que a su vez dan una representación explícita de la simetría de Lorentz. Hemos
mostrado esto en dos escenarios asociados a una sola partícula. Podemos pensar
en lo anterior como “modelos de juguete” donde la relatividad y una formulación
canónica (ampliada) conviven. ¿Podemos ir más allá de este modelo?

Esto nos requiere sin lugar a duda discutir la relación de lo anterior con las
teorías cuánticas de campos. Un primer intento podría ser aplicar el formalismo de
PW directamente. Si bien nada impide seguir este camino, queda inmediatamente
claro que no hay mucho por ganar: si tratamos al tiempo como operador, pero el
espacio es un parámetro clásico, estamos generando más asimetría que en el ca-
so convencional. En cambio, recordemos que en el último capítulo introdujimos el
concepto de segunda cuantización del formalismo de PW 1. Si bien esta idea por

1Con “segunda cuantización”, nos referimos al esquema matemático riguroso que, dado un cierto
conjunto de estados de una partícula (en el presente caso estados |tq⟩ y |q⟩; ver abajo), permite
construir un espacio de Fock de partículas indistinguibles. Véase, por ejemplo, [72]. No debe con-
fundirse con los argumentos históricos de QFT [81].

68



Capítulo V. Segunda cuantización extendida y el concepto de acción cuántica

sí sola no es particularmente esclarecedora, nos conduce a un resultado notable: la
segunda cuantización del operador de universo J toma la forma de la acción clásica.
Este resultado, junto con la caracterización de las acciones cuánticas y del espacio
matemático en el cual se encuentran definidas sugiere un camino completamente
novedoso para formular las teorías cuánticas de campos. En esta formulación, las
álgebras canónicas se encuentran extendidas al espacio-tiempo. También podríamos
decir, si se nos permite no ser particularmente rigurosos, que las excitaciones de los
campos son “partículas de Page y Wootters”.

5.1 Acción cuántica y el formalismo de Page y Woot-

ters

El tratamiento de una partícula parametrizada 2 (unidimensional para simplificar)
para un Lagrangiano independiente del tiempo L(q, q̇) conduce a una restricción
débil clásica [42] HS = pt + H ≈ 0 con pt =

∂(ṫL(q,q̇/ṫ))

∂ṫ
. Esta condición se cuantiza

como [49, 82]
HS|Ψ⟩ = (Pt ⊗ 1+ 1⊗H)|Ψ⟩ = 0 , (5.1)

donde Pt ⊗ 1 = i
∫
dtdt′dq d

dt′
δ(t′ − t)|tq⟩⟨t′q|, 1⊗H =

∫
dtdqdq′ ⟨q′|H|q⟩|tq′⟩⟨tq| y

⟨t′q′|tq⟩ = δ(t− t′)δ(q − q′) , (5.2)

que comúnmente se considera como una condición auxiliar en un “espacio cinemático”
K para definir el espacio físico (que no es un subespacio adecuado). Alternativamente,
se asigna una interpretación relacional a esta ecuación donde HS se considera como
el Hamiltoniano de un sistema global compuesto “reloj”+“sistema”. Este es el caso del
formalismo PW donde se define un operador de tiempo hermitiano como observable
del reloj T =

∫
dt t|tq⟩⟨tq|.

En cambio, si el espacio cinemático se promueve al estatus de un espacio “físico”
y, además, las partículas se consideran como objetos de d + 1 dimensiones (para d
dimensiones espaciales), el escenario adecuado para muchas partículas idénticas es un
espacio Fock extendido H [2], diferente del convencional y diferente del formalismo
PW aplicado a un espacio Fock (o equivalentemente, de la dinámica hamiltoniana
generalizada de un espacio Fock convencional). Esto se logra reinterpretando los

2Si bien en principio veníamos hablando del formalismo de PW, es interesante ver como consi-
deraciones similares valen para partículas parametrizadas. Ambos casos se explican y relacionan a
continuación.
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estados |tq⟩ como estados sp |tq⟩ = A†(t, q)|Ω⟩ (con A(t, q)|Ω⟩ = 0, ⟨Ω|Ω⟩ = 1) que,
considerando la Ec. (5.2) y una partícula bosónica, implica

[A(t, q), A†(t′, q′)] = δ(t− t′)δ(q − q′) . (5.3)

Luego se puede generalizar

HS → −J (5.4)

con

J =

∫
dt

∫
dqdq′A†(t, q′)[i∂tδ(q − q′)− ⟨q′|H|q⟩]A(t, q) (5.5)

que notablemente puede relacionarse con la acción clásica. Para ver esto defina-
mos operadores de campo y momento ϕ(t, q) := A(t,q)+A†(t,q)√

2
, π(t, q) := A(t,q)−A†(t,q)

i
√
2

.
Obtenemos entonces

J =

∫
dtdq ϕπ̇ −

∫
dt H (5.6)

donde llamamos H al segundo termino de J sin la integral en tiempo (véase abajo
el Hamiltoniano de segunda cuantización convencional). Notemos también como el
primer término tiene precisamente la forma de la transformada de Legendre clásica.
Puede también probarse [3] que esta estructura del operador es invariante frente
a transformaciones canónicas (o de Bogoliuvob), de modo que no depende de có-
mo definamos los campos. Finalmente, remarquemos que el campo y su momento
satisfacen el álgebra

[ϕ(t, q), π(t′, q′)] = iδ(t− t′)δ(q − q′) (5.7)

que no es un conmutador a tiempos iguales.

Como consecuencia de lo anterior, los estados de “single particle” (sp) (pero no
los estados de múltiples partículas) en H son formalmente idénticos a los estados
PW mientras que los elementos de matriz sp de los operadores J , T son iguales a los
elementos de matriz de HS, T respectivamente (incluyendo J |Ψ⟩ = 0 para |Ψ⟩ ∈ Hp

siendo formalmente equivalente a la Ec. (5.1) para estados sp). Note, sin embargo,
que la estructura de producto entre “tiempo” y “resto”, esencial para “condicionar en
un reloj”, se pierde por completo [2].

También cabe destacar que la segunda cuantización del espacio de Hilbert con-
vencional H de la partícula, que está generado por estados |q⟩, conduce también a
una teoría de campos, ahora en un espacio de Fock HF generado por operadores
a†(q) de tal manera que |q⟩ = a†(q)|0⟩. Este es el sistema descrito en el presente
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Figura 5.1.1: A la izquierda, las dos descripciones de una partícula: La convencional en el espacio de
Hilbert H (panel superior) y la descripción generalizada en espacio-tiempo en el espacio de Hilbert
K (panel inferior). A la derecha, la segunda cuantización de los esquemas anteriores. La segunda
cuantización de H conduce a una teoría de campos en un espacio de Hilbert convencional HF que es
isomorfo a un producto tensorial en el espacio de copias de H, es decir, HF ≈

⊗
q Hq (panel superior

derecho). La segunda cuantización de K conduce en cambio a un espacio extendido H ≈
⊗

t H
F
t =⊗

t,q Htq donde la estructura de producto tensorial se aplica tanto al espacio como al tiempo y
es posible representar configuraciones de campo en espacio-tiempo (panel inferior derecho). La
descripción del campo en este espacio de Hilbert extendido se puede obtener inmediatamente
aplicando el formalismo presentado en este capítulo a este caso particular.

Hilbert H: J en la Ec. (5.5) es precisamente la acción cuántica espacio-temporal
que corresponde al Hamiltoniano

H =

∫
dqdq′⟨q′|H|q⟩a†(q′)a(q) (5.8)

obtenido mediante la segunda cuantización del Hamiltoniano de la partícula. La
relación entre estos diferentes espacios de Hilbert se representa en la Fig. 5.1.1.

Finalmente, cabe mencionar que mientras en HF la estructura de producto apli-
cada al espacio permite representar configuraciones de campo en un tiempo dado
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como estados propios de ϕ(q) = a(q)+a†(q)√
2

[83]

|ϕ(q)⟩ = exp

[
−1

2

∫
dq [a†(q)(a†(q)− 2

√
2ϕ(q))]

]
|0⟩ , (5.9)

en H la estructura de producto se extiende al tiempo permitiendo representar con-
figuraciones espacio-temporales

|ϕ(q, t)⟩ = exp

[
−1

2

∫
dtdq [A†(t, q)(A†(t, q)− 2

√
2ϕ(t, q))]

]
|Ω⟩ . (5.10)

5.1.1 Consideraciones Relativistas

El formalismo presente es particularmente adecuado para una interpretación geo-
métrica de los sitios espacio-temporales: Para q → x y A(t, q) → A(x), definimos el
operador de boosts U(Λ) como U †(Λ)A(x)U(Λ) = A(Λx). El álgebra ampliada

[A(x), A†(y)] = δ(4)(x− y) (5.11)

se conserva explícitamente cuando Λ es una transformación de Lorentz. Esto produce
U(Λ)|ϕ(x)⟩ = |ϕ(Λ−1x)⟩ para el estado de campo coherente

|ϕ(x)⟩ = exp

[∫
d4xϕ(x)A†(x)

]
|Ω⟩ (5.12)

que es la propiedad de transformación correcta de un estado que representa una
configuración de campo (escalar) en el espacio-tiempo (un razonamiento similar se
sostiene para los estados (5.10) para q → x).

Para introducir subespacios físicos invariantes podemos emplear una propuesta
previa de los autores [2] (más recientemente presentada también en [84]) que con-
siste en considerar una versión de segunda cuantización de la restricción Hrel

s |Ψ⟩ :=
(P µPµ − m2

0)|Ψ⟩ = 0 (y P 0 > 0) donde los operadores hermitianos P µ satisfacen
[Xµ, Pν ] = iδµν con X0 = T el operador de tiempo PW [2]. La restricción Hrel

s |Ψ⟩ = 0

también surge del tratamiento de sistemas invariantes de reparametrización pero con-
siderando ahora la acción clásica S = −m0

∫
dτ [49, 82]. Este tratamiento conduce

a

Hrel
S → Jrel = −

∫
d4xA†(x)(∂2 +m2

0)A(x) (5.13)

de tal manera que [U(Λ),Jrel] = 0 e implica

⟨ϕ(x)|Jrel|ϕ(x)⟩
⟨ϕ(x)|ϕ(x)⟩

= S[ϕ(x), ϕ∗(x)] (5.14)

72



Capítulo V. Segunda cuantización extendida y el concepto de acción cuántica

donde S[ϕ(x), ϕ∗(x)] = −
∫
d4xϕ∗(x)(∂2+m2

0)ϕ(x) es la acción clásica de un campo
escalar libre (η00 = 1, c = 1). El resultado (5.14) sugiere una profunda conexión
entre técnicas de partículas y una formulación de la QFT en este entorno ampliado.

Esta nueva forma de la acción cuántica también admite una descomposición
normal de tal manera que [Jrel, A

†(m2,p)] = (m2 − m2
0)A

†(m2,p) implicando en
cada sector de masa el producto invariante tridimensional [2]. Como consecuencia,
también emergen los conmutadores correctos entre operadores de campo físicos (el
componente de ϕ(x) ∝ A(x) + A†(x) a masa fija) [3].

Vemos que la posibilidad de representar configuraciones espacio-temporales de
los campos abre la posibilidad de preservar explícitamente las simetrías del espacio-
tiempo (covarianza de Lorentz en el ejemplo anterior) a nivel del espacio de Hilbert
y en particular en procesos de cuantización. Como consecuencia fundamental, el
producto invariante correcto emerge en Hp a partir del producto interno global
(estándar) de H en el caso considerado [2].

5.2 Formalismo

5.2.1 Espacio de Hilbert

Las consideraciones anteriores, si bien introductorias, muestran dos aspectos nota-
bles: en primer lugar, un formalismo de varias partículas que contenga al de PW
en el subespacio de una partícula está asociado a álgebras simétricas en el espacio-
tiempo. En segundo lugar, surge naturalmente el concepto de acción cuántica, que
solo está definida en este espacio de Hilbert ampliado. A partir de ahora ya nos
desligaremos del formalismo de PW y, basados en [3], haremos una construcción que
postula lo anterior como punto de partida. Comencemos primero por discutir mejor
qué significa tener álgebras en espacio-tiempo y la estructura del espacio de Hilbert.

Introducimos en esta sección un espacio de Hilbert H adecuado para representar
trayectorias (ver Fig. 5.2.1) de un conjunto de bosones definidos por operadores ai,
a†j, [ai, a

†
j] = δij, [ai, aj] = 0, para i, j números cuánticos arbitrarios (por ejemplo,

i puede representar una posición discretizada x), que generan un espacio de Fock
“convencional” H de estados

∏
i(a

†
i )
ni |0⟩ (con ai|0⟩ = 0). Con este propósito defi-

nimos operadores de creación/aniquilación Ai(t), A†
j(t) en “cada” corte temporal,

satisfaciendo [Ai(t), Aj(t
′)] = 0 y

[Ai(t), A
†
j(t

′)] = δ(t− t′)δij , (5.15)
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con Ai(t)|Ω⟩ = 0 ∀t ∈ [−T/2, T/2], que generan un espacio de Fock extendido H.
Aquí |Ω⟩ =

⊗
j |0⟩tj , donde el producto tensorial se debe interpretar como el límite

continuo de sitios temporales discretos igualmente espaciados con espaciamiento ϵ,
tal que tj = ϵj, j ∈ Z y Ai(tj) = Aitj/

√
ϵ, con Aitj |0⟩tj = 0 y [Aitj , A

†
i′tj′

] = δjj′δii′ .
El álgebra de la Ec. (5.15) se recupera de δ(tj − tj′) ≡ δjj′/ϵ.

El espacio de Hilbert extendido H de estados
∏

i,j(A
†
itj
)nij |Ω⟩ puede entonces

escribirse como H =
⊗

j Htj con Htj el espacio de Fock generado por los operadores
A†
itj

(fijo j). También cabe señalar que podemos escribir H =
⊗

iHi y entonces

H =
⊗
i,j

Hij ,

con Hij ≡ Hitj , que es la simetría del espacio de Hilbert buscada entre el “espacio”
(índice i) y el tiempo (ver Fig. 5.2.1).

Figura 5.2.1: Representación de dos partículas clásicas (distinguibles) moviéndose en el espacio-
tiempo plano cuyas trayectorias pueden parametrizarse como (t, qa(t), qb(t)) (a la izquierda). La MC
convencional describe esta situación empleando una base de estados de producto |q⟩ = |qa⟩ ⊗ |qb⟩
que representan las posiciones en un tiempo dado en el espacio de Hilbert H. En cambio, en H se
representan los caminos completos por |q(t)⟩ = |qa(t)⟩ ⊗ |qb(t)⟩ ∝

⊗
j |qatj ⟩ ⊗ |qbtj ⟩ (Ec. (5.21)),

donde |qi(t)⟩ ∝
⊗

j |qitj ⟩ (a la derecha) que establece una aplicación completamente simétrica del
producto tensorial a los grados de libertad espaciales y temporales. Además, la evolución temporal
clásica q(t) → q(t + ∆t) se puede ver desde un punto de vista pasivo como un desplazamiento
t → t − ∆t del conjunto completo del “manifold”. En nuestra formulación, la evolución temporal
cuántica emerge de eiPt(−∆t)|q(t)⟩ = |q(t +∆t)⟩. La simetría entre espacio y tiempo se hace aún
más evidente en el panel inferior con un ejemplo diferente: El producto tensorial en espacio de una
teoría cuántica de campos convencional se extiende aquí al espacio-tiempo.

Esta construcción nos permite especificar una trayectoria clásica en el espacio de
fases, dentro de los límites impuestos por la incerteza cuántica, en términos de un
estado historia coherente factorizado de la forma:

|α(t)⟩ := exp

[∫
dtα(t) ·A†(t)

]
|Ω⟩ , (5.16)
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donde α(t) ·A†(t) =
∑

i αi(t)A
†
i (t) (o un integral para etiquetas continuas).

Aquí exp
[∫

dtO(t)
]
=
⊗

j exp [ϵO(tj)], donde O(t) ≡ O(A(t),A†(t), t), tal que

A(t)|α(t)⟩ = α(t)|α(t)⟩ . (5.17)

Note que |α(t)⟩ = eαA
†|Ω⟩, donde A† =

∫
dtα(t) ·A†(t)/α con α = [

∫
dt|α(t)|2]1/2,

es un operador colectivo de creación de bosones de trayectoria. El conjunto (so-
bre)completo de estas trayectorias genera H:∫

D2α(t) e−
∫
dt |α(t)|2|α(t)⟩⟨α(t)| = 1 (5.18)

donde D2α(t) :=
∏

i,j
d2αi(tj)

π
ϵ.

Otras bases alternativas son proporcionadas, por ejemplo, por operadoresQ(t) =
A(t)+A†(t)√

2
, P (t) = A(t)−A†(t)

i
√
2

, de tal manera que

[Qi(t), Pj(t
′)] = iδ(t− t′)δij (5.19)

(establecemos ℏ = 1). Entonces podemos definir los estados propios correspondientes
|q(t)⟩, |p(t)⟩, que satisfacen

Q(t)|q(t)⟩ = q(t)|q(t)⟩ , P (t)|p(t)⟩ = p(t)|p(t)⟩ . (5.20)

Explícitamente, podemos escribir 3, [83, 85]

|q(t)⟩ = exp

[
−1

2

∫
dtA†(t) · (A†(t)− 2

√
2q(t))

]
|Ω⟩ (5.21)

de tal manera que |q(t)⟩ =
⊗

j γj|qtj⟩tj con qtj =
√
ϵq(tj), γj = 4

√
π e|qtj |

2/2 y

tj⟨qtj |q′tj⟩tj = δ(q − q′). La relación de completitud se lee∫
Dq(t) e−

∫
dt,|q(t)|2|q(t)⟩⟨q(t)| = 1

con Dq(t) =
∏

i,j dqi(tj)
√
πϵ. Fórmulas similares se aplican para |p(t)⟩. Estas ba-

ses espacio-temporales permiten un enfoque novedoso para las representaciones de
integrales de camino, como se discutirá en el siguiente capítulo.

3El estado propio de posición canónico |q⟩ se puede expresar como |q⟩ =
∑∞

n=0⟨n|q⟩
(a†)n√

n!
|0⟩ =

e−q2/2

4
√
π
e−

a†,2
2 +

√
2qa† |0⟩ [83]. El caso multidimensional |q⟩ =

⊗
i
e−q2i /2

4
√
π
e−

a
†,2
i
2 +

√
2qia

†
i |0⟩ ∝

e−
1
2 [

∑
i a

†
i (ai−2

√
2qi)|0⟩ se puede generalizar inmediatamente a campos continuos [85].
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5.2.2 Traslaciones en el Tiempo y el operador Acción

Consideremos el generador de traslaciones en el tiempo Pt que en el presente esce-
nario se define

Pt :=
∫
dω ωA†(ω) ·A(ω) =

∫
dtA†(t) · iȦ(t) (5.22)

= 1
2

∫
dt [P (t) · Q̇(t)−Q(t) · Ṗ (t)] (5.23)

donde A(ω) es la transformada de Fourier (FT) de A(t), de tal manera que A(t) =∫
dω√
2π
A(ω)e−iωt y iȦ(t) =

∫
dω√
2π
A(ω)ωe−iωt coincide con la derivada “de sitio”.

Asumimos condiciones periódicas A(−T/2) = A(T/2). El operador Pt satisface

eiPt∆tA(t)e−iPt∆t = A(t+∆t), , (5.24)

lo que para ∆t→ 0 conduce a

[Pt,A(t)] = −iȦ(t) , (5.25)

en acuerdo con la Ec. (5.22).

Notablemente, el integrando en (5.23) tiene la forma de la transformación de
Legendre que conecta el Hamiltoniano con el Lagrangiano en la mecánica clásica.
Esto sugiere la introducción de un nuevo objeto que para la teoría trivial se reduce
a Pt:

J :=

∫
dt [A†(t) · iȦ(t)−H(A(t),A†(t), t)] , (5.26)

que será indicado como operador de acción cuántica espacio-temporal (no confundir
con la acción de Schwinger 4, [86]) por su coincidencia formal con la clásica. Aquí∫
dtH(A(t),A†(t), t) ≡

∑
tH(At,A

†
t , t) para H(a,a†, t) un Hamiltoniano (cuánti-

co) convencional (y dt = ϵ), de acuerdo con la convención de que J tenga unidades

4En la formulación de Schwinger, un conjunto completo de operadores conmutantes está dispo-
nible en superficies espaciales [86]. Esto implica conmutadores no nulos para operadores de campo
causalmente conectados. En cambio, cualquier conmutador de tiempo desigual entre A(t) y A†(t)

se anula. Las álgebras convencionales se recuperan “a posteriori” en los subespacios físicos. Ade-
más, la integración en J involucra todos los valores de tiempo sin ninguna referencia a estados
particulares.
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de Pt. Un resultado notable es que J y Pt están relacionados unitariamente5:

J = V†PtV =

∫
dω ωÃ†(ω) · Ã(ω) (5.27a)

=

∫
dt Ã†(t) · i ˙̃A(t) (5.27b)

= 1
2

∫
dt [P̃ (t) · ˙̃Q(t)− Q̃(t) · ˙̃P (t)] , (5.27c)

donde
V† := T̂ ′ exp

[
−i
∫
dt

∫ t

t0

dt′H(A(t),A†(t), t′)
]

(5.28)

es un producto tensorial en el tiempo de operadores convencionales de evolución
temporal U(t, t0) = T̂ ′ exp

[
−i
∫ t
t0
dt′, H(a,a†, t′)

]
(T̂ ′ denota ordenamiento temporal

aplicado a t′) y
Ã(ω) = V†A(ω)V , Ã(t) = V†A(t)V , (5.29)

con Ã(t) la FT de Ã(ω) (del mismo modo Q̃(t) = V†Q(t)V , P̃ (t) = V†P (t)V).
Aquí t0 es un tiempo de referencia tal que Ã(t0) = A(t0). En particular, para H

independiente del tiempo,

V† = exp

[
−i
∫
dt (t− t0)H(A(t),A†(t))

]
. (5.30)

Dado que en este contexto J es el operador que define una evolución temporal
particular, el resultado (5.27a) está relacionando unitariamente todas las teorías con
la trivial. Esto también significa que en H todas las teorías físicas parecen estar
relacionadas unitariamente entre sí. Tal resultado general es una consecuencia de la
notable propiedad de las acciones cuánticas espacio-temporales de tener el mismo es-
pectro independientemente del Hamiltoniano. Esto debería compararse con el hecho
obvio de que diferentes Hamiltonianos tienen diferentes espectros, lo que también
significa que tal relación unitaria entre teorías nunca podría haberse revelado en una
formulación Hamiltoniana.

La prueba de (5.27a) se basa en las propiedades básicas de Pt como generador
de traslaciones en el tiempo y supone condiciones periódicas para T finito (algo que
en principio siempre se puede forzar o implementar con un H bien comportado en
el límite T → ∞). Observe que las Ecs. (5.24) y (5.27) implican

eiJ∆tÃ(t)e−iJ∆t = Ã(t+∆t) (5.31)
5No incluíremos la prueba original dada en [3]. En cambio, se presentan resultados análogos

en el capítulo siguiente usando una estrategia diferente. Sin embargo, puede verse este resultado
aplicado al caso de acciones cuadráticas en la siguiente subsección
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de tal manera que J es el generador de traslaciones en el tiempo en la base normal
para un Hamiltoniano no nulo. Por lo tanto, los operadores Ã(t) satisfacen

[J , Ã(t)] = −i ˙̃A(t) , (5.32)

de acuerdo con (5.27b). De hecho, son los únicos operadores de aniquilación que
cumplen (5.32) y Ã(t0) = A(t0). La unicidad es una consecuencia inmediata de
(5.31) que implica

Ã(t) = eiJ∆tA(t0)e
−iJ∆t (5.33)

cuando ∆t = t − t0. La relación (5.33) es un resultado notable por sí mismo que
proporciona una expansión en potencias de ∆t del operador “evolucionado” V†A(t)V .

En el contexto del enfoque de historias consistentes, y para el caso particular de
un oscilador armónico independiente del tiempo, se introdujo una acción análoga
que cumple con la Ec. (5.33) en [87].

También observamos que para un operador periódico general (o bien comportado
en el límite T → ∞) U = exp

[∫
dt,M(A(t),A†(t), t)

]
, la Ec. (5.24) produce

[Pt,U ] = i
∂U
∂t

. (5.34)

Para M(A(t),A†(t)) independiente del tiempo,[Pt,U ] = 0. Si iM(A(t),A†(t)) tam-
bién es hermitiano, esto implica U †PtU = Pt, es decir, Pt es invariante bajo transfor-
maciones canónicas independientes del tiempo A(t) → U †A(t)U . Esto significa que
sin imponer condiciones iniciales, la forma diagonal (5.27a) no es única e implica

[U ,
∫
dt,H(A(t),A†(t), t)] = 0 ⇒ [U ,J ] = 0 . (5.35)

En particular, una simetría independiente del tiempo de H, [M(a,a†), H(t)] = 0,
es una simetría de J : [U ,J ] = 0, para ϵM(A(t),A†(t)) = M(At,A

†
t). Por otro

lado, para H independiente del tiempo se sigue de la Ec. (5.24) que eiPt∆t satisface
la Ec. (5.35), es decir, J es invariante bajo traducciones en el tiempo y por lo tanto
[Pt,J ] = 0.

Finalmente, es apropiado mencionar que ahora son posibles diferentes definicio-
nes de localización temporal: Como ocurre con la localización espacial en las teorías
cuánticas de campos (QFT) con importantes implicaciones en las relaciones de in-
certidumbre espacial [53, 88], la localización temporal es ahora un aspecto emergente
de la “rejilla”. Diferentes definiciones de esta noción también implicarían diferentes
relaciones de incertidumbre energía-tiempo de acuerdo con los operadores involucra-
dos. Un ejemplo es proporcionado por el operador de tiempo de una sola partícula
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(sp) T :=
∫
dt tA†(t) ·A(t) que se reduce en estados sp al operador de Page y Woot-

ters (PW) [14] empleado en otros formalismos recientes con tiempo cuántico [1, 2,
29, 44, 79, 89-92]. En este caso, se puede demostrar que

[Pt, T ] = iN , (5.36)

donde N :=
∫
dtA†(t) · A(t) =

∫
dωA†(ω) · A(ω) es el operador número (por

ejemplo, N (A†
i (t))

ni |Ω⟩ = ni(A
†
i (t))

ni |Ω⟩). Entonces ∆T ∆Pt ⩾ 1
2
|⟨N ⟩| a través de

la desigualdad de Cauchy–Schwarz en H. A pesar de la importancia del par energía-
tiempo en la MC [93], este tratamiento generalmente se evita por la imposibilidad
de introducir un operador de tiempo en H [93-95].

5.2.3 El caso cuadrático

En lo siguiente, desarrollamos explícitamente el caso de teorías bosónicas cuadráticas
como un ejemplo importante de (5.26). Para un Hamiltoniano cuadrático general 6

H(a,a†) = 1
2

(
a† a

)(ω0(t) γ(t)

γ∗(t) ω∗
0(t)

)(
a

a†

)
= 1

2
ψ†K(t)ψ

donde ω0 (γ) son matrices hermitianas (simétricas) y ψ = (a
a†) satisface

Π = [ψ,ψ†] := ψψ† − ((ψ†)tψt)t =

(
1 0

0 −1

)
,

la acción cuántica (5.26) se convierte en

J = 1
2

∫
dt[Ψ†(t)ΠiΨ̇(t)−Ψ†(t)K(t)Ψ(t)] , (5.37)

con Ψ(t) = (A(t),A†(t))t, [Ψ(t),Ψ†(t′)] = Πδ(t − t′). Se verifica primero que bajo
cualquier transformación de Bogoliubov (BT) constante Ψ(t) → W0Ψ(t), donde
W †

0 ΠW0 = Π (transformación canónica lineal independiente del tiempo), la forma
de J se preserva (con K → W †

0KW0). Se ve entonces que la forma diagonal (5.27a)

J = 1
2

∫
dt Ψ̃†(t)Πi

˙̃
Ψ(t) = 1

2

∫
dω ω Ψ̃†(ω)Ψ̃(ω) , (5.38)

puede lograrse aplicando en (5.37) una BT diagonal en tiempo

Ψ(t) = W (t)Ψ̃(t) , (5.39)

6 Para qi = (ai + a†i )/
√
2, pi = i(a†i − ai)

√
2, [qi, pj ] = iδij , H = 1

2

∑
i,j tijpipj + vijqiqj +

uij(qipj + pjqi) con t, v matrices simétricas, y las matrices t, v, u directamente relacionadas con
ω0, γ [96].
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donde W (t) satisface la ecuación de Heisenberg 7

iẆ (t) = ΠK(t)W (t) (5.40)

con W (t0) = 1 de modo que Ψ̃(t0) = Ψ(t0) (implicando W †(t)ΠW (t) = Π ∀t).
Esto está de acuerdo con las Ecs. (5.28)–(5.29) ya que en el presente caso V =

exp
[
i
2

∫
dtΨ†(t)M(t)Ψ(t)

]
con e−iΠM(t) = W (t), y

V†Ψ(t)V = Ψ̃(t), V†Ψ(ω)V = Ψ̃(ω) (5.41)

son BTs equivalentes a (5.39).

Esta es la única solución que satisface la condición inicial Ã(t0) = A(t0), como
probamos en la Ec. (5.33).

5.3 Discusión

Vimos como la segunda cuantización de PW nos lleva directamente a definir un
operador cuántico que corresponde clásicamente al concepto de acción en el espacio
de fases (en las variables posición y momento). Notablemente, la parte de la acción
que tiene la forma de la transformada de Legendre, es el generador de traslaciones
temporales. Cabe diferenciar al mismo del Hamiltoniano: el operador Pt traslada
a lo largo de los espacio de Hilbert de tiempo y, en este sentido, su definición es
geométrica no dinámica. Esto está asociado al hecho de que el tiempo, si bien es
un parámetro clásico, tiene ahora el mismo significado que el espacio en teorías de
campos: no es más que un índice que etiqueta el espacio de Hilbert en el que actúa
un dado operador. Este es también el motivo principal por el cual podemos definir
el operador acción en el espacio ampliado y no en el convencional: las acciones están
“off-shell” esto es, los operadores que la definen no tienen relación alguna con el
esquema de Heisenberg y de hecho son independientes para tiempos distintos. En
la formulación usual, no es útil considerar por ejemplo una integral en tiempo del
Hamiltoniano, pues operadores a tiempos distintos no son independientes.

En este capítulo se han estudiando distintas propiedades de las acciones cuánti-
cas y aclarado el espacio de Hilbert en el que estas están definidas. Por otro lado,
he dejado afuera las propuestas publicadas en [3] que involucran recuperar la evo-
lución unitaria convencional. La principal razón para omitir esa discusión es que la

7 Ahora asumimos que ΠK(t) tiene valores propios reales, lo que está asegurado por K(t)

definido positivo [96], para garantizar condiciones periódicas.
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misma estaba principalmente fundamentada en intentar generalizar el concepto de
subespacio físico del formalismo de PW. Si bien dicha generalización es en principio
siempre posible, no resulta particularmente útil para teorías no cuadráticas. En cam-
bio, en el siguiente capítulo se presenta un camino mucho más natural y relevante
para nuestros propósitos para conectar el concepto de acción con la MC tradicional,
y que permite recuperar la dinámica asociada a evoluciones unitarias.
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82 82

Integrales de Feynman a partir de ac-

ciones cuánticas

“There is a pleasure in recognizing old things from a new point of view.”

Richard P. Feynman

Es bien sabido que el concepto de acción clásica aparece en la MC a través
de las integrales de Feynman. A diferencia de nuestras acciones cuánticas, en la
formulación de Feynman la acción no está asociada a un observable. En cambio,
las propiedades cuánticas aparecen como consecuencia de la “suma sobre historias”
involucrada. En particular, esto significa que la acción necesita ser evaluada por
fuera de las trayectorias que la extremizan, esto es de las trayectorias clásicas.

A priori, ninguno de estos conceptos parece relacionarse directamente con las
ideas de PW y/o con nuestras acciones cuánticas. Notablemente, como probaremos
en esta sección siguiendo [4] existe una clara conexión: el concepto de acción cuántica
y los espacios de Hilbert extendidos proveen de un significado cuántico canónico (en-
tiéndase como asociado a la matemática de la formulación canónica) a las integrales
de Feynman.

6.1 Suma sobre historias como traza cuántica

6.1.1 “Time-slicing” en espacios de Hilbert

Comenzamos nuestra exposición considerando el ejemplo común de “path integrals”
(PI) que describen una sola partícula en 1d. Todas las ideas pueden generalizarse
inmediatamente a sistemas bosónicos generales como señalamos a lo largo de la sec-
ción. En la sección 6.1.4 también comentamos cómo nuestro enfoque es más general
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ya que se aplica a cualquier sistema mecánico cuántico, incluidos los de dimensión
finita.

Un procedimiento estándar para obtener la formulación de Feynman a partir de
la canónica es expresar el propagador como

⟨q′|e−iHT |q⟩ =
∫ N−1∏

t=1

dqt
N−1∏
t=0

⟨qt+1|e−iHϵ|qt⟩ (6.1)

con H un Hamiltoniano independiente del tiempo, q0 = q, qN = q′, ϵ = T/N y donde
usamos

∫
dq |q⟩⟨q| = 1 (también fijamos ℏ = 1). Cada término en el integrando

puede entonces relacionarse con la exponencial de la acción hasta primer orden en
ϵ. Por otro lado, dado que el integrando es un producto de elementos de matriz de
e−iHϵ, tiene una representación natural en un nuevo espacio de Hilbert H := ⊗tHt

construido sobre el producto tensorial de N copias del convencional H, una para
cada rebanada:

N−1∏
t=0

⟨qt+1|e−iHϵ|qt⟩ = ⟨q1q2 . . . qN |⊗N−1
t=0 e

−iHϵ|q0q1 . . . qN91⟩ = ⟨q′|eiPtϵ⊗N−1
t=0 e

−iHϵ|q⟩

(6.2)
con |q⟩ := |q0q1 . . . qN91⟩ = ⊗t|qt⟩ una base de estados cuánticos a los que podemos
referirnos como estados de trayectoria cuántica.

En la última igualdad hemos cambiado el orden de ⟨q1 . . . qN | a ⟨q′| = ⟨qNq1 . . . qN−1|
de modo que tanto el ket |q⟩ como el bra ⟨q′| aparezcan en el Hilbert H0 (que puede
identificarse con HN). Esto se implementó mediante la aplicación de un “operador
de traslación temporal” unitario definido por

eiPtϵ|q1q2 . . . qN⟩ := |qNq1 . . . qN91⟩ . (6.3)

Este operador traslada “geométricamente” las diferentes rebanadas de tiempo del
espacio de Hilbert, y no está relacionado con la información dinámica proporcionada
por el Hamiltoniano. Como resultado, ha surgido naturalmente de la Ec. (6.2) el
operador cuántico adimensional S satisfaciendo

eiS := eiPtϵ ⊗N−1
t=0 e−iHϵ . (6.4)

Es natural denominar S como acción cuántica (AC): integrar (6.2) en las variables
qt produce (ver Ec. (6.1)) el resultado exacto

⟨q′|e−iHT |q⟩ =
∫ N−1∏

t=1

dqt ⟨q′|eiS |q⟩ (6.5a)

= TrH
[
eiS |q⟩0⟨q′|

]
, (6.5b)
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donde TrH denota la traza en el espacio de Hilbert extendido y |q⟩0⟨q′| = |q⟩0⟨q′|⊗t̸=0

1t. Vemos que la contribución de una sola trayectoria (discreta) es el elemento de
matriz del operador eiS asociado con la trayectoria en cuestión. Así, los elementos
de matriz de la AC están tomando el papel de la acción clásica en la formulación
convencional de PI. Además, mientras la ecuación (6.5a) es una suma clásica sobre
historias, representa una evaluación particular de la traza cuántica en (6.5b) que
emplea la base de trayectoria cuántica |q⟩. Esto se puede ver insertando la relación
de completitud

∫ ∏N−1
t=0 dqt|q⟩⟨q| = 1 en (6.5b).

Para establecer un contacto directo con la formulación de Feynman, consideremos
un Hamiltoniano estándar H = p2/2m + V (q). En este caso, el lado izquierdo en
(6.5a) puede expresarse como el conocido PI de Feynman [12], implicando∫

q(T )=q′
q(0)=q

Dq(t)eiScl =

∫ N−1∏
t=1

dqt ⟨q′|eiS |q⟩ = TrH [eiS |q⟩0⟨q′|] , (6.6)

donde Scl denota la acción clásica evaluada a lo largo de la trayectoria. Para un
N grande, el integrando en (6.5a) debe entonces volverse proporcional a eiScl con∏N−1

t=1 dqt ∝ Dq(t). Por otro lado, la Ec. (6.6) se sostiene exactamente ∀ N ⩾ 2 sin
interpolación clásica entre qt, qt+1, lo que significa que en general los elementos de
matriz de S difieren de Scl.

Para mostrar explícitamente la relación entre la AC y la clásica, notemos primero
que la definición (6.3) implica

⟨q|eiPtϵ|p⟩ = eiϵ
∑

t pt
(qt+1−qt)

ϵ ⟨q|p⟩ , (6.7)

donde qN = q0, lo que revela una clara conexión entre los elementos de matriz de Pt,
el generador de las traslaciones temporales, y una versión discreta de la transformada
de Legendre clásica. Esto sigue directamente de la relación canónica ⟨q|p⟩ = eipq/

√
2π

aplicada aquí a |p⟩ = ⊗t|pt⟩ y |q⟩, que produce ⟨q|p⟩ = ei
∑

t ptqt/(2π)N/2 . Note
también que los estados |q⟩, |p⟩ son autoestados de los operadores qt, pt actuando en
Ht y globalmente satisfaciendo el álgebra “extendida” (pero canónica) [qt, pt′ ] = iδtt′

que puede usarse para definir H.
Para una partícula libre con Hamiltoniano H = H(p) la ecuación (6.7) se gene-

raliza exactamente a ⟨q|eiS |p⟩ = exp{i
∑

t ϵ[pt(qt+1 − qt)/ϵ−H(pt)]}⟨q|p⟩ . En cam-
bio, para H = p2/2m+ V (q) se puede usar una aproximación de Trotter de primer
orden para obtener

⟨q′|eiS |q⟩ = ⟨q′|eiS̄ |q⟩+O(ϵ2) , (6.8)
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donde hemos definido eiS̄ := eiPtϵ⊗t e
−i(p2t /2m)ϵe−iV (qt)ϵ. Luego, usando la relación de

completitud de p se obtiene

⟨q′|eiS̄ |q⟩ = 1

2π

∫ N−1∏
t=1

dpt
2π

exp

[
iϵ
∑
t

(ptq̇t −H(pt, qt))

]∣∣qN=q′

q0=q

=
1

(
√

2πiϵ/m )N
exp

[
iϵ
∑
t

(1
2
mq̇2t − V (qt))

]∣∣∣qN=q′

q0=q
, (6.9)

donde hemos usado (6.7) y con q̇t := (qt+1 − qt)/ϵ. El resultado (6.8)-(6.9) es la
relación anticipada entre los elementos de matriz de eiS y la acción clásica. La
ecuación (6.9) muestra que el PI de Feynman, rebanado en el tiempo, es igual a
TrH [eiS̄ |q⟩0⟨q′|].

Destaquemos que los resultados anteriores son válidos para sistemas bosónicos
generales, ya que su generalización se sigue directamente extendiendo las álgebras
convencionales, es decir

[qi, pj] = iδij −→ [qti, pt′j] = iδijδtt′ (6.10)

para i, j números cuánticos arbitrarios. Por ejemplo, si i denota un índice espacial,
el álgebra extendida es simétrica en el espacio-tiempo [3] (ver también sec. 6.2.3).
El caso de Hamiltonianos dependientes del tiempo también es sencillo, y se sigue
reemplazando en las Ecs. (6.2),(6.4) ⊗te

−iHtϵ → ⊗tU [(t + 1)ϵ, tϵ] con las Ecs. (6.5,
6.9) manteniéndose. La consideración a intervalos de evolución T generales y/o pro-
pagadores que evolucionan un intervalo T ′ < T se discute en 6.1, mientras que los
sistemas de dimensión finita se consideran en 6.1.4.

6.1.2 Funciones de correlación con orden temporal y térmicas

La formulación PI proporciona un enfoque geométrico elegante para manejar fun-
ciones de correlación que es simétrico en espacio y tiempo. Esto contrasta con el
enfoque convencional del espacio de Hilbert: la formulación canónica define correla-
dores especificando los valores de tiempo de operadores en la imagen de Heisenberg,
mientras que la posición de operadores en el espacio suele asociarse con “sitios” (y
por lo tanto con diferentes espacios de Hilbert). En cambio, la versión PI de los
correladores solo implica la inserción de, por ejemplo, posiciones q en ciertos pun-
tos del espacio-tiempo. En esta sección, mostramos cómo se puede desarrollar un
tratamiento simétrico en el espacio-tiempo similar dentro del espacio de Hilbert
extendido.
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Consideremos el producto tensorial de operadores de evolución temporal

V† := ⊗N−1
t=0 Ut(tϵ) = T̂ ′ exp

[
− i

N−1∑
t=0

∫ tϵ

0

dt′Ht(t
′)
]
, (6.11)

que es separable en tiempo y unitario (T̂ ′ denota ordenación en el tiempo en la
variable t′). Su acción sobre un producto tensorial de operadores generales produce

V
(
⊗tO

(t)
)
V† = ⊗tO

(t)
H (t) (6.12)

con O
(t)
H (t) siendo el operador de Heisenberg evolucionado “t” en el tiempo t. Note

que el índice del sitio está dictando la cantidad de evolución.
Es notable que V relaciona Pt con S de la siguiente manera (ver demostración

en el Apéndice 6.2):
eiS = U0(T )V†eiPtϵV . (6.13)

Esta expresión se puede utilizar para relacionar operadores S de diferentes teorías
también. Para la evolución periódica U0(T ) = 1 y se recupera la relación unitaria
discutida en [3]. Además, (6.13) puede extenderse para considerar interacciones no
separables en el tiempo definidas por acoplamientos entre diferentes rebanadas de
tiempo, una posibilidad física que está más allá del alcance de la MC convencional.

El resultado (6.13) es particularmente útil porque permite la introducción de la
evolución temporal a través de (6.12) en relaciones donde el operador de traslación
temporal está involucrado. En particular, proporciona una expresión general para
funciones de correlación ordenadas en el tiempo, como se muestra en el Apéndice
6.2. Para la partícula 1d de la sección 6.1.1, esto se lee:

⟨q′, T |T̂ [qh(t1)... qh(tn)]|q⟩ =
∫ N−1∏

t=1

dqt qt1 ... qtn⟨q′|eiS |q⟩ = TrH [eiS(⊗′
tqt)|q⟩0⟨q′|] ,

(6.14)

con |q, T⟩ = U †(T )|q⟩ y ⊗′
t indicando que solo se incluyen operadores en los tiem-

pos t1, . . . tn (e identidades de lo contrario) de modo que ⊗′
tq̂t|q⟩ = qt1 ... qtn|q⟩ (ver

Fig. 6.1.1). La evolución del estado final ⟨q′| surge del factor de borde U0(T ) en
(6.13) mientras que el ordenamiento temporal emerge del ordenamiento de los si-
tios temporales. La traza espacio-temporal (6.14) generaliza la Ec. (6.5) y su forma
refleja la expresión PI correspondiente. También comparte la misma interpretación
geométrica del PI, ahora válida a nivel del espacio de Hilbert.

Ya que el resultado (6.13) es una consecuencia directa de (6.3), se sostiene para
sistemas generales e incluso si V no es unitario (con V† → V−1), lo cual en particular
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Figura 6.1.1: Representación pictórica de los operadores involucrados en la representación extendida
de ⟨q′, T |T̂ [qh(t1)qh(t2)]|q⟩ para t2 > t1. Se ha “insertado” un operador apropiado en cada Hilbert
Ht. También se muestra una contribución de una trayectoria discreta q̃(t) para enfatizar la similitud
entre la interpretación usual y la construcción del espacio de Hilbert.

permite representar funciones de partición y funciones de correlación térmicas. Para
obtener las primeras, notamos que la Ec. (6.5) implica, para un H general,

TrH[e
−iHT ] = TrH[e

iS ] . (6.15)

Entonces, para −iHT → −βH la ecuación (6.15) produce la función de partición
de H. Además, utilizando las Ecs. (6.13) y (6.30), ahora obtenemos, estableciendo
⟨. . .⟩β := Tr[e−βH . . .]/Tr[e−βH ],

⟨T̂θq(θ1)...q(θn)⟩β =
TrH[e

iS ⊗′
t qt]

TrH[eiS ]
(6.16)

que es la función de correlación termodinámica de estados térmicos ∝ e−βH . (aquí,
θ = it). Note que a diferencia de la Ec. (6.14) no estamos especificando ningún
estado inicial (final) en la rebanada 0 ya que la información del estado térmico ya
está codificada dentro de eiS con U0(T ) → e−βH , V† → V−1 en la Ec. (6.13). De hecho,
la linealidad y generalidad de las expresiones de la traza implican (ver también 6.1.4)
que el estado térmico en sí mismo se puede obtener como una traza parcial (sobre
todos los modos excepto aquellos en t = 0) del exponencial del operador de acción
cuántica 1:

ρ =
e−βH

TrH [e−βH ]
=

Trt̸=0[e
iS ]

TrH [eiS ]
. (6.17)

La extensión al caso de números cuánticos adicionales q → qi, p → pi es directa
y simétrica en espacio y tiempo (las variables extendidas son qti, ptj según (6.10)).
De hecho, remarquemos que cuando se consideran correladores de igual tiempo, por
ejemplo, de dos puntos, se sostiene lo siguiente:

⟨qiqj⟩β = ⟨q0iq0j⟩H , ⟨pipj⟩β = ⟨p0ip0j⟩H (6.18)
1Note que la rotación de Wick no afecta a eiPtϵ, tal que eiS = eiPtϵ ⊗t e

−Hϵ en (6.16)-(6.17),
con ϵ = β/N .
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donde ⟨. . . ⟩H := Tr[eiS . . . ]/Tr[eiS ] en acuerdo con (6.17). En este caso, tanto el lado
izquierdo como el lado derecho son correladores en el sentido tradicional, como los
que definen el entrelazamiento espacial. En cambio, cuando consideramos operadores
en diferentes tiempos, las expresiones se convierten en

⟨T̂θqi(θ1)qj(θn)⟩β = ⟨qt1iqt2j⟩H , ⟨T̂θpi(θ1)pj(θn)⟩β = ⟨pt1ipt2j⟩H , (6.19)

lo que, desde la perspectiva convencional (lado izquierdo), ya no son correladores
genuinos (por ejemplo, el producto de operadores en general se vuelve no hermítico,
incluso para tiempo real). De manera notable, desde la perspectiva de H (el lado
derecho), nada ha cambiado y estos valores medios siguen siendo correladores “atem-
porales” de operadores hermíticos. Esto demuestra que la información sobre si una
separación entre operadores es espacial o temporal está contenida en la AC misma.

Note también que el estado reducido ρV := TrV̄ [ρ] donde la traza parcial es sobre
modos fuera de una región V ahora puede recuperarse de

ρV =
Trt̸=0,V̄ [e

iS ]

TrH [eiS ]
(6.20)

lo cual es una traza parcial en el espacio-tiempo fuera de la región de interés en el
espacio-tiempo. Para acciones cuadráticas, este resultado se sigue de los correlado-
res previos solos. Como novedad, el formalismo permite considerar trazas parciales
sobre regiones generales del espacio-tiempo. En principio, solo aquellas asociadas
con hipersuperficies espaciales corresponderían a estados cuánticos convencionales
y entropías reales, pero la traza parcial está bien definida en general. Curiosamen-
te, investigaciones recientes [97, 98] sobre las conexiones entre el entrelazamiento
temporal y la geometría en el contexto de la correspondencia dS/CFT utilizan ma-
trices de densidad reducidas no hermíticas (en el espacio de Hilbert convencional H)
y “entropías” de entrelazamiento complejas (esencialmente ya que una “distancia”
temporal es imaginaria).

6.1.3 Bases extendidas y distintas representaciones de Inte-

grales de camino

Dado que las Ecs. (6.5b)–(6.6) y (6.14)–(6.16) se expresan en términos de trazas,
diferentes bases del presente H extendido, ahora pueden ser empleadas para calcu-
larlas. Estas diferentes bases están formadas por un conjunto completo de estados
extendidos, es decir, estados en H = ⊗tHt. Incluyen bases separables en el tiempo,
como la formada por los estados |q⟩ empleados en la sección 6.1.1 (que genera el

88



Capítulo VI. Integrales de Feynman a partir de acciones cuánticas

usual “PI del espacio de configuración”), así como, por supuesto, bases entrelazadas
en el tiempo, formadas por combinaciones lineales irreducibles de estados producto.

Ahora es conveniente definir operadores de aniquilación (y creación) en el sitio
temporal t,

At := eiϕ(ηqt + ipt/η)/
√
2 (6.21)

para η, ϕ ∈ R constantes, satisfaciendo [At, A
†
t′ ] = δtt′ . Denominaremos su vacío como

|Ω⟩ = ⊗t|0t⟩, que es un estado de trayectoria separable en el tiempo. Los estados
extendidos generales se obtienen así por la aplicación de operadores de creación sobre
el vacío. En particular, para η ≡ eiϕ ≡ 1, |q⟩ = exp

[
−1

2

∑
t A

†
t(A

†
t − 2

√
2qt)

]
|Ω⟩

[3], mostrando nuevamente que las trayectorias cuánticas son estados extendidos
particulares (y separables).

También podemos emplear una base separable de “estados coherentes de trayec-
toria”

|α⟩ := exp

{[ ∑
t

αtA
†
t

]}
|Ω⟩ = ⊗t|αt⟩t (6.22)

para |α⟩t un estado coherente convencional (no normalizado) en Ht tal que∫ ∏
t

d2αt
π

e−
∑

t |αt|2|α⟩⟨α| = 1H

y At|α⟩ = αt|α⟩. La integral resultante puede relacionarse fácilmente con PI de
estados coherentes discretizados (CSPI) bajo la aproximación usual de ϵ pequeño
⟨α|e−iϵH(a,a†)|α⟩ ≈ e−iϵHN (α,α∗) para H = HN con HN =: HN : ordenado normalmen-
te. De hecho,

⟨α|eiS |α⟩
⟨α|α⟩

≈ exp
[
iϵ
∑
t

(
α∗
t+1−α∗

t

ϵ
αt −HN(αt, α

∗
t+1))

]
= eiScl , (6.23)

donde Scl es la acción clásica (en rebanadas de tiempo) para HN a lo largo de la
trayectoria definida por |α⟩.

Por otro lado, la acción no separable del operador de traslación temporal sugiere
la introducción de nuevas bases no locales en el tiempo: definimos a través de la
Transformada de Fourier (FT) los operadores

An := 1√
N

∑
t

eiωntϵAt (6.24)

con ωn = 2πn/T para n ∈ Z, y un “vacío extendido” |Ω⟩ definido por An|Ω⟩ =

At|Ω⟩ = 0. Por lo tanto, podemos escribir [3]

eiPtϵ = eiϵ
∑

n ωnA
†
nAn , (6.25)
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que claramente satisface eiPtϵOte
−iPtϵ = Ot+1 para Ot = At, y por lo tanto también

para cualquier operador local en el tiempo como qt y pt. Esta forma normal de eiPtϵ

es invariante bajo transformaciones canónicas independientes del tiempo [3] (y por
lo tanto independiente del parámetro η en At). Y para ωn, ω−n tomando valores
simétricos alrededor de 0, la condición [Pt,

∑
tHt] = 0 (y la invarianza de la forma

normal de Pt) también se verifica.
El mismo estado coherente (6.22) puede reescribirse en la base de Fourier como

|α⟩ = e
∑

n αnA
†
n|Ω⟩ para αn :=

∑
t e
iωntϵαt/

√
N . Si usamos la Ec. (6.25) y evaluamos

la traza (6.15) en esta base, se obtiene la expansión tipo Matsubara del PI de estado
coherente [99] (las frecuencias ωn en Pt son precisamente las frecuencias de Mastu-
bara). Dado que los CSPI aquí surgen de las bases (6.22), vemos que las expansiones
tipo Matsubara en el espacio de funciones clásicas corresponden a un cambio de base
no local en el tiempo en H.

Los modos de Fourier también proporcionan una expansión diferente para las
AC. En particular, para un oscilador armónico de masa m y frecuencia ω,

Ht =
p2t
2m

+
1

2
mω2q2t = ω

(
A†
tAt +

1

2

)
,

permiten una evaluación directa de la traza en la base de los autoestados de S: usan-
do
∑

tA
†
tAt =

∑
nA

†
nAn (y η =

√
mω) podemos escribir directamente el operador

AC en la forma normal

S = ϵ
∑
n

[(ωn − ω)A†
nAn − ω/2] . (6.26)

Vemos que la AC es diagonal en la base no local en el tiempo |ñ⟩=
∏

n[(A
†
n)
ñn/

√
ñn!]|Ω⟩

que satisface A†
nAn|ñ⟩ = ñn|ñ⟩. Al usar esta base de Fock para calcular la traza ob-

tenemos

Tr eiS =
∑
ñ

⟨ñ|eiS |ñ⟩ = e−iωT /2
∏
n

1

1− eiϵ(ωn−ω)
=

1

2i sin(ωT/2)
. (6.27)

Uno reconoce inmediatamente la “función de partición” del oscilador armónico, en
concordancia con la Ec. (6.15) (ver la prueba de (6.27) en el Apéndice 6.3).

Por otro lado, dado que la AC es un operador cuadrático bosónico, se sostiene
que

Tr eiS = e−iωTdet−1[1− eiS] , (6.28)

donde la matriz S está definida por

[S, A†
t ] =

∑
t′

St′tA
†
t′ . (6.29)
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Esto permite escribir la AC como S =
∑

t′,tA
†
t′St′tAt, que, cuando lo comparamos

con (6.26), produce

St′t =
ϵ

N

∑
n

(ωn − ω)eiωnϵ(t−t′) = ϵ
(
i
d

dt′
− ω

)
δtt′ .

Entonces, es claro que el producto en la Ec. (6.27) es el determinante en la Ec. (6.28),
con ϵ(ωn−ω) los autovalores de la matriz S. Un procedimiento similar se puede em-
plear en (6.5) para calcular propagadores, por ejemplo, ⟨0, T |0⟩ = e−iωT /2 det

[
M̄
]−1

con M̄ la matriz obtenida al remover la primera columna y fila de M = 1− eiS .
Como ejemplo final, al cambiar de la base de trayectoria de estados |q⟩ a una

base de Fourier |q̃⟩, donde q̃n = 1√
N

∑
t e
iωntϵqt = q̃†−n, obtenemos el útil PI sobre

coeficientes de Fourier q̃n [99, 100]. Escenarios más complicados y ricos pueden ser
considerados, como sugieren interacciones más complicadas.

6.1.4 Sistemas generales y consideraciones computacionales

cuánticas

Con respecto a los sistemas cuánticos generales, la aplicación de las ideas principales
es directa y no necesariamente relacionada con los PIs: la idea clave es que hay una
conexión natural entre el producto interno en un espacio de Hilbert convencional H
y el producto interno en H = H⊗N . En completa generalidad, puede expresarse para
de la siguiente manera:

TrH [O
(N−1) . . . O(0)|i⟩⟨i′|] = ⟨i′|O(N−1) . . . O(0)|i⟩ =

∑
i1,...,iN−1

∏
t

⟨it+1|O(t)|it⟩

= TrH [eiPtϵ ⊗t O
(t)|i⟩0⟨i′|]

(6.30)

para
∑

i |i⟩⟨i| = 1 una base completa general y eiϵPt |i0i1...iN−1⟩ = |iN−1i0i1...⟩. Por
ejemplo, en el caso más básico,

TrH[e
iPtϵ(|i⟩⟨i′| ⊗ 1)] = TrH

∑
j

eiPtϵ|ij⟩⟨i′j| =
∑
j

⟨i′j|ji⟩ =
∑
j

⟨i′|j⟩⟨j|i⟩ = ⟨i′|i⟩ ,

lo que muestra claramente la coincidencia de la traza en H = H⊗H con la suma de
Feynman sobre una amplitud intermedia [12]. Es interesante notar que para estos
“dos cortes” el trabajo anterior funciona esencialmente como la prueba SWAP [101].
También podemos entender el caso general como una generalización de esta prueba,
con el generador de traslaciones temporales construido a partir de la composición
de operadores SWAP. Esto tiene una elegante representación diagramática en el
lenguaje de redes tensoriales como se muestra en la figura 6.1.2.
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Figura 6.1.2: Representación diagramática del mapa que conecta trazas en la versión
extendida de la Mecánica Cuántica con las convencionales. El mapa que conecta trazas
de operadores dentro de H = ⊗tht con trazas de operadores en h se representa aquí en notación
de red tensorial (las convenciones se muestran en d)). En a) mostramos esencialmente una prueba
SWAP. En b) una generalización de dos a tres “cortes”. En cambio, en c) mostramos el ejemplo de
una función de correlación de dos puntos, como la trata el formalismo. Es interesante notar que las
muchas sumas en el lado izquierdo del diagrama, representadas por las líneas en cada fila vertical
(correspondiendo cada una a una rebanada de tiempo diferente), son precisamente la suma sobre
historias. También se observa que la expansión diagramática muestra que eiPtϵ puede representarse
como la composición de muchos SWAPs.
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Aunque no exista una noción clásica de trayectoria, aún podemos asociar el ín-
dice t con cortes de tiempo y referirnos a los estados |i⟩ := ⊗t|it⟩ como trayectorias
cuánticas en analogía con |q⟩ (cuando se consideran operadores evolucionados en el
tiempo en el lado izquierdo también surgirá un orden temporal). En otras palabras,
siempre podemos establecer un mapa entre una versión de la Mecánica Cuántica que
aplica una estructura de producto tensorial en el tiempo y la formulación convencio-
nal. Esta conexión también se empleó en [102] para investigar teoremas relacionados
con funcionales de decoherencia [103, 104] dentro de espacios de Hilbert “duplicados”
de la forma H⊗H (nos interesamos en H en sí y en los PIs).

Una consecuencia básica de la Ec. (6.30) y la linealidad de la traza es una expre-
sión para valores medios :

Tr[O(1)O(2)...ρ] = Tr[eiPtϵ(⊗tO
(t))ρ(0)] (6.31)

para ρ una matriz de densidad general en H y ρ(0) el mismo operador actuando en el
corte inicial de H. Además, la definición estándar de la traza parcial (6.30) implica

O(1)O(2)... = Trt̸=0[e
iPtϵ ⊗t O

(t)] (6.32)

lo que da lugar en particular a una “traza parcial en el tiempo” para estados:

ρ = Trt̸=0[e
iPtϵρ(0)] . (6.33)

En cambio, para O(t) = e−iHϵ obtenemos una expresión para el operador de evolución
temporal: e−iHT = Trt̸=0[e

iS ].

Dado que los productos tensoriales son una característica básica subyacente en
la computación cuántica [105], la capacidad de describir propiedades temporales y
térmicas mediante un “time-slicing en espacios de Hilbert” es un hecho computacional
interesante en sí mismo. Además, dado que los principales resultados se expresan en
términos de trazas de operadores, submodelos de computación cuántica que emplean
el poder de un qubit [106, 107] (ver Fig. 2, arriba) se pueden aplicar al espacio
extendido. Como ejemplo, mostramos en la Fig. 2 (abajo) un circuito que calcula el l.
i. de la Ec. (6.31) para operadores unitarios O(i), a través de la “suma sobre historias”
implícita en el lado derecho. Estas herramientas también podrían ser útiles para
expandir las discusiones sobre la conexión entre la dinámica de circuitos cuánticos
y los integrales de trayectoria [108].

Las expresiones anteriores se aplican directamente tanto a sistemas finitos distin-
guibles como a sistemas bosónicos. La extensión natural del formalismo a fermiones
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Figura 6.1.3: Protocolo para la evaluación de PIs mediante la prueba de Hadamard.
a) Una prueba de Hadamard genérica. La traza Tr [Uρ], donde ρ es un estado arbitrario (puro
o mixto) de n qubits y U un operador unitario arbitrario en n qubits (por lo tanto, involucra
representaciones de matrices de 2n × 2n) puede evaluarse midiendo los promedios ⟨σx⟩ y ⟨σy⟩ del
qubit auxiliar superior, inicialmente en un estado propio de σz. El circuito cuántico involucra solo
una puerta de Hadamard (H) y una puerta U controlada. b) La aplicación del protocolo al lado
derecho de la Ec. (6.31). Cuando se aplica a PIs (U → eiS , Ec. (6.4)) la “suma sobre historias” está
implícita en los estados mixtos completos en la entrada. También se puede emplear un subconjunto
de estados, cubriendo un subconjunto de trayectorias. Las funciones de correlación térmicas y/o la
“evolución en tiempo imaginario” (no implementable mediante puertas unitarias) pueden calcularse
reemplazando ρ y los estados mixtos máximos 1/d a la izquierda por estados térmicos adecuados
(ver sec. 6.1.2).

requiere una versión anticonmutativa del álgebra (6.10) [3, 109], y es mayormente
directa: en espacios de Fock, un resultado como (6.30) puede reescribirse fácilmente
en términos de contracciones de Wick y verse como una consecuencia directa de la
álgebra extendida. Para fermiones relativistas, se puede emplear el formalismo de
“tiempo cuántico” desarrollado en [1] para la teoría de Dirac.

Como observación final, notamos que los postulados de la Mecánica Cuántica
[105] son un conjunto de reglas que asignan contenido físico a las expresiones del
espacio de Hilbert. Como consecuencia, en principio se traducen directamente a las
extendidas a través de las relaciones anteriores. La evolución temporal unitaria ha
sido cubierta a lo largo del manuscrito, mientras que los efectos de una medición
pueden, en principio, introducirse considerando la traza parcial del estado global
(sistema más aparato de medición) sometido a una evolución entrelazante unitaria
[105]. Se pueden considerar expresiones de traza más generales y AC en H (el uso
de una acción de segundo orden en la sección 6.2 es un ejemplo no trivial), pero su
potencial significado físico queda para futuras investigaciones.
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6.2 Formalismo con tiempo continuo

6.2.1 Formalismo y límite de τ chico

Ahora consideraremos la generalización al continuo de las ideas previas. Por simpli-
cidad, comenzamos la discusión volviendo al caso de una partícula en 1d.

Necesitamos generalizar tanto los operadores como relaciones como (6.15). En el
primer caso, el límite continuo debe obtenerse por medios estándar pero aplicado a
operadores extendidos: definimos 2 q(t) := qt/

√
ϵ, p(t) := pt/

√
ϵ de tal modo que en

el límite ϵ→ 0+

[q(t), p(t′)] = iδ(t− t′) . (6.34)

De manera similar, A(t) = At/
√
ϵ implicando [A(t), A†(t′)] → δ(t − t′). Bajo este

límite, el generador de traslaciones temporales está explícitamente relacionado con
la transformada de Legendre:

Pt =
∫
dtA†(t)iȦ(t) = 1

2

∫
dt [p(t)q̇(t)− q(t)ṗ(t)] (6.35)

con Ȧ(t) =
∑

n ωne
−iωntAn/

√
T y dt ≡ ϵ [3]. Esto es una consecuencia directa de la

Ec. (6.25). Notamos que (6.35) es equivalente a
∫
dt p(t)q̇(t).

Por otro lado, la generalización al continuo del “mapa” que conecta los productos
internos de H y H (ver, por ejemplo, Ecs. (6.15-6.16)) no es trivial: mientras que
el generador de traslaciones temporales tiene un límite adecuado, el concepto de
trasladar un paso de tiempo ya no tiene sentido. Sin embargo, si introducimos una
escala de tiempo arbitraria τ , el operador apropiado que traslada una cantidad τ ,
está bien definido como eiPtτ y satisface eiPtτA(t)e−iPtτ = A(t+ τ).

Análogamente, podemos definir una AC

Sτ := τ

∫
dt
[
p(t)q̇(t)− p2(t)

2m
− V(q(t))

]
, (6.36)

con V(q(t)) := τ−1V (q(t)
√
τ) de modo que para V (q) admitiendo una serie de

potencias, Sτ es al menos de orden
√
τ (hasta una constante). Por ejemplo, pa-

ra un oscilador armónico (por el momento con energía del punto cero nula) Sτ =

τ
∫
dt [A†(t)(i∂t − ω)A(t)], un operador que comparte algunas similitudes (sin la es-

cala de tiempo τ) con el propuesto en [87] en el contexto del enfoque de Isham [110]
para la formulación de historias continuas de la Mecánica Cuántica [103, 104].

2Por conveniencia de notación, estamos usando la misma variable t en el caso continuo para
indicar la cantidad que en el discreto corresponde a ϵt para t el índice discreto adimensional.

95



Capítulo VI. Integrales de Feynman a partir de acciones cuánticas

A priori, no es evidente que las definiciones anteriores sean útiles. Sin embargo, al
menos heurísticamente (una discusión más rigurosa se proporciona a continuación y
en la siguiente subsección) podemos usar estas ideas para recuperar PIs en analogía
con el caso discreto: usando la base de estados coherentes, escribimos Tr[eiSτ ] =∫
D2α(t)e−

∫
dt |α(t)|2⟨α(t)|eiSτ |α(t)⟩, con

|α(t)⟩ = exp
[∫

dt α(t)A†(t)
]
|Ω⟩ (6.37)

el límite continuo del estado (6.22) con α(t) ≈ αt/
√
ϵ. Para el oscilador armónico,

el primer orden en una expansión formal en potencias de τ produce

Tr eiSτ ≈
∫

D2α(t) eiτ
∫
dt [α∗(t)(i∂t−ω)α(t)] = det−1[9iτ(i∂t − ω)] , (6.38)

donde usamos ⟨α(t)|eiSτ |α(t)⟩ = ⟨α(t)|eiωτα(t + τ)⟩. Esto es precisamente lo que se
obtiene a través del CSPI convencional si se elige τ de tal manera que D2

Fα(t) ≡
D2[α(t)/

√
τ ], con D2

Fα(t) la “medida de Feynman”. Este argumento se extiende a
otras bases y expone un enfoque simple para teorías generales: en una formulación
continua, después de que cálculos como (6.38) se han realizado, la identificación ante-
rior produce a las PI convencionales bajo cambios de variables como

√
τα(t) → α(t).

Desde este punto de vista, det[iτ1] es la constante convencionalmente codificada en
la medida que “regulariza” el determinante funcional divergente (6.38).

También se nota que la Ec. (6.38) es el límite formal de pequeño τ de la Ec.
(6.28) y estamos esencialmente calculando el determinante de la “matriz” S (con
ϵ→ τ) en la Ec. (6.29), ahora el operador diferencial definido por

[Sτ , A†(t)] = −iτ(i∂t − ω)A†(t) . (6.39)

El formalismo introduce naturalmente este operador diferencial como una transfor-
mación lineal entre operadores extendidos A(t), sin referencia a un espacio de fun-
ciones clásicas (que surge en algunas evaluaciones particulares de la traza). Además,
órdenes superiores en τ corrigen los problemas [111, 112] asociados con la energía
del vacío en CSPIs (continuos).

Desde una perspectiva más rigurosa, también podemos evaluar la traza anterior
en la base de Fourier en cuyo caso se sostiene la Ec. (6.26) (con ϵ → τ). Entonces,
en completa analogía con el caso discreto (Ec. (6.27)), la traza se relaciona con un
determinante, que puede hacerse fácilmente finito: bajo la ligera modificación del
operador

Sτ = τ
∑

n(ωn − ω + iϵ̃ω2
n)A

†
nAn , (6.40)
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Tr[eiSτ ] se convierte en un determinante finito para τ ϵ̃ > 0, abriendo interesantes
perspectivas matemáticas (también podemos establecer ϵ̃ = ϵ̃(τ), ver 6.3 y la con-
jetura allí). En lo siguiente omitimos el nuevo término pero, donde sea necesario,
puede restaurarse fácilmente sin comprometer los resultados principales.

6.2.2 Funcionales generadores e invariancia-τ

Es bastante notable que el operador Sτ tenga importantes propiedades de τ -invariancia,
las cuales permiten una definición y evaluación simples de funcionales generadores,
válidos para τ finito. Ahora lo demostraremos en un ejemplo claro empleando ex-
clusivamente propiedades de operadores y trazas en el espacio de Hilbert: no es
necesaria ninguna definición matemática sutil de medidas de dimensión infinita. Sin
embargo, tanto la simplicidad que caracteriza a los PIs como la conexión familiar
con la física clásica pueden recuperarse en el espacio de Hilbert H.

Considere el operador AC Sτ [j], que es una función de una corriente j(t) que
aparece en la energía potencial V (q) = mω2q2/2 −

√
mj(t)q. Podemos expandirlo

como

Sτ [j] = τ

∫
dt
[
A†(t)(i∂t − ω)A(t) +

√
m
τ
j(t)q(t)

]
= τ

∞∑
n=−∞

[
(ωn − ω)A†

nAn +
j9n√
2ωτ

An +
jn√
2ωτ

A†
n

]
.

(6.41)

donde empleamos los modos de Fourier no locales en el tiempo An y definimos
jn :=

∫
dt eiωntj(t)/

√
T , los coeficientes de Fourier de la corriente fuente j(t). La

representación n revela inmediatamente una importante relación unitaria entre ac-
ciones cuánticas con y sin fuente:

Sτ [j] = U † (Sτ [0] + 1S⋆cl[j])U , para U †AnU = An +
jn√

2ωτ(ωn − ω)
(6.42)

con
S⋆cl[j] = −

∑
n

|jn|2

2ω(ωn − ω)
=
i

2

∫
dtdt′ j(t′)G(t− t′)j(t) , (6.43)

la acción clásica (no un operador) evaluada en la solución clásica. Aquí G(t− t′) es
la función de Green del operador diferencial (∂2t + ω2) cuya expansión de Fourier

G(t− t′) = i
∑
n

e−iωn(t−t′)

T (ω2
n − ω2)

,

aparece naturalmente en (6.42) empleando (6.41) y la relación (ωn − ω)91 − (ωn +

ω)91 = 2ω(ω2
n − ω2)91 (asumimos como de costumbre sin caústicas). Este resultado
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también puede verse notando que la acción clásica a lo largo de una trayectoria
arbitraria está relacionada con el promedio ⟨α(t)|Sτ [j]|α(t)⟩ de la acción cuántica
en el estado coherente de la trayectoria correspondiente (ver Apéndice 6.4 para
detalles).

Ahora definimos el funcional generador para esta teoría y τ arbitrario como

Zτ [j] := Tr[eiSτ [j]] . (6.44)

Para pequeños τ , las consideraciones hechas en la sección 6.2.1 sugieren una conexión
con la definición usual del funcional generador Z[j] =

∫
Dq eiScl[j], donde la acción

clásica depende de j(t) (Scl[j] =
∫
dt [mq̇2(t)/2−mω2q2(t)/2 +

√
mj(t)q(t)]). Nota-

blemente, dado que la transformación (6.42) preserva la traza, la relación Zτ [j]/Zτ [0]
es de hecho τ -invariante y su evaluación inmediata:

Zτ [j]

Zτ [0]
= eiS

⋆
cl[j] (6.45)

en acuerdo con el resultado estándar Z[j] = Z[0]eiS
⋆
cl[j] [99]. Cabe mencionar que

la Ec. (6.45) se sostiene exactamente ∀ τ ̸= 0. También mencionamos que una
invariancia similar se sostiene en la formulación discreta de intervalos de tiempo y
puede desarrollarse por medios similares.

Además, en el límite T → ∞ (considerando un intervalo de tiempo simétrico
y la adición de una pequeña parte imaginaria a ω),

∑
n 2π/T →

∫
dω̃ implicando

G(t− t′) → DF (t− t′) y por lo tanto

Zτ [j] = Zτ [0] exp
(
− 1

2

∫
dtdt′ j(t′)DF (t− t′)j(t)

)
(6.46)

conDF (t−t′) = m⟨0|T̂ [qI(t)qI(t′)]|0⟩ el propagador de Feynman (se puede considerar
este sistema como una teoría de campos de 0 dimensiones, en cuyo caso se suele fijar
m = 1, siendo el papel de la masa desempeñado por ω). Aquí |0⟩ es el vacío “libre”,
es decir, el estado fundamental de la parte cuadrática del Hamiltoniano y qI(t) es un
operador de posición convencional evolucionado sin la fuente. Note que, en analogía
con la Ec. (6.16), no es necesario especificar el estado |0⟩⟨0| en la definición de Zτ [j].

Las derivadas funcionales de Zτ [j]/Zτ [0] aparecen ahora vinculadas a una va-
riación del operador eiSτ [j] proporcionando expresiones generales τ -invariantes para
funciones de correlación en el vacío. En particular,

DF (t1 − t2) = mT̂τ

∫ τ

0

dτ1√
τ

∫ τ

0

dτ2√
τ

Tr[eiSτ [0]qI(t1, τ1)qI(t2, τ2)]

Tr[eiSτ [0]]
. (6.47)
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Para obtener la Ec. (6.47) se puede escribir

eiSτ [j] = eiSτ [0] T̂τ exp
(
i
∫
dt

∫ τ

0

dτ ′√
τ

√
mj(t)qI(t, τ

′)
)

(6.48)

para qI(t, τ̃) := e−iSτ [0]q(t)eiSτ [0] y derivar con respecto a j(t) a nivel de operador
(el orden temporal en (6.47)-(6.48) se aplica al parámetro τ). En general, este pro-
cedimiento muestra que para cada operador en la función de correlación debemos
insertar un operador en el Hilbert apropiado, en analogía con la Fig. (6.1.1). Luego
integramos sobre cada τi preservando el orden de τ .

Para pequeños τ , la forma de la Ec. (6.14) se recupera de (6.47), con operadores
qI(t, τ) → q(t) insertados en el tiempo de evolución:∫

Dq, eiSclq(t1)q(t2)∫
Dq, eiScl

= ĺım
τ→0

Tr[eiSτ [0]
√
τq(t1)

√
τq(t2)]

Tr[eiSτ [0]]
, . (6.49)

Además, la descripción de teorías generales en este límite corresponde a expresio-
nes de traza con acciones generales Sτ (Ec. (6.36)), en estrecha analogía con las
definiciones de PI y de acuerdo con la discusión de la sección 6.2.1. En particular,
la sustitución de una AC interactiva en (6.49), produce el propagador interactivo
correspondiente y las reglas de Feynman asociadas.

6.2.3 Estados en el espacio-tiempo y límite de τ grande

Trazas extendidas como valores medios del vacío en el espacio-tiempo

La posibilidad de una definición útil de estados en escenarios de espacio-tiempo3 ha
sido explorada recientemente en la literatura [28, 30, 31, 102]. Esto ha provocado
discusiones sobre posibles modificaciones, ya sea en los axiomas que definen un estado
[28, 30] o en la naturaleza del espacio de Hilbert considerado [31, 102]. La propiedad
de invarianza-τ nos permite considerar una nueva posibilidad: en el límite τ ≫ 1

tenemos
eiSτ [0] → |Ω⟩⟨Ω| , (6.50)

es decir, la exponencial de la acción cuántica de espacio-tiempo se convierte en un
proyector sobre el vacío de espacio-tiempo de la teoría libre, en analogía con el lí-
mite T → ∞ de un operador de evolución temporal convencional e−iHT → |0⟩⟨0|,
con |0⟩ el vacío no extendido libre de H (sin embargo, el límite de τ no requiere

3Debe leerse como “estados en el espacio-tiempo”, por ejemplo, estados que representan confi-
guraciones de campo en el espacio-tiempo (en contraste con configuraciones en el espacio); no debe
confundirse con estados del propio espacio-tiempo, que no está cuantizado en este trabajo.
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T → ∞). Entonces, para cantidades τ -invariantes, las sumas asociadas sobre histo-
rias, que en principio involucran una base completa de estados de espacio-tiempo,
pueden reducirse a valores de expectación únicos del vacío de espacio-tiempo. La τ -
invariancia está revelando así una “interpolación continua” entre estas dos nociones
aparentemente diferentes.

En particular, para el funcional generador de la sección anterior, las Ecs. (6.46),
(6.48) y (6.50) implican

Zτ [j]

Zτ [0]
=

1

Z[0]

∫
Dq eiScl[j] (6.51)

= ĺım
τ→∞

⟨Ω|T̂τ exp
(
i
∫
dt

∫ τ

0

dτ ′√
τ

√
mj(t)qI(t, τ

′)
)
|Ω⟩ . (6.52)

Vemos que el funcional generador “normalizado” es un valor medio puro del vacío de
espacio-tiempo (con Zτ [0] → 1).

Consideraciones similares son válidas para el propagador de Feynman y para
cualquier otra cantidad relacionada con funcionales generadores, con las Ecs. (6.47)
y (6.50) implicando

⟨0|T̂ qI(t1)qI(t2)|0⟩ = ĺım
τ→∞

T̂τ

∫ τ

0

dτ1√
τ

∫ τ

0

dτ2√
τ
⟨Ω|qI(t1, τ1)qI(t2, τ2)|Ω⟩ . (6.53)

Tenga en cuenta que en el lado izquierdo el cuadro de interacción en H correspon-
de a la evolución en t mientras que el cuadro de interacción en H a la evolución
en τ (mientras que t indica el espacio de Hilbert de q(t)). También es fácil ver
que θ(t19 t2)⟨0|qI(t1)qI(t2)|0⟩ = ĺım

τ→∞

∫ τ
0
dτ1√
τ

∫ τ
0
dτ2√
τ
θ(τ19 τ2)⟨Ω|qI(t1, τ1)qI(t2, τ2)|Ω⟩. El

propagador para otras teorías puede definirse a partir de estos elementos básicos y
relacionarse también con valores medios del vacío.

Estados extendidos en teorías cuánticas de campos relativistas

Podemos mejorar la relación (6.53) eliminando el límite explícito en τ y dejando
solo una integral sobre la variable τ1 − τ2. Notablemente, el resultado relaciona los
estados sp en H con aquellos considerados en enfoques inspirados en la teoría de
cuerdas (y otros formalismos de tiempo cuántico, como se sugiere en [3]). Para una
comparación adecuada, es apropiado trabajar en D = d+1 dimensiones de espacio-
tiempo simplemente reemplazando q(t) → ϕ(x), p(t) → π(x) de tal manera que el
álgebra (6.10) produce

[ϕ(x), π(y)] = iδ(d+1)(x− y) . (6.54)

Note que (6.54) no es una relación de conmutación en tiempo igual como la con-
vencional en d dimensiones espaciales: la “delta extra” corresponde a la dimensión
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temporal (ver Ec. (6.34)). Esto no debe confundirse con la cuantización canónica de
una teoría clásica con una dimensión extra: no es el número de dimensiones lo que
se modifica, sino la construcción del espacio de Hilbert y el esquema de cuantiza-
ción resultante. Sin embargo, podemos especular que el parámetro τ podría tratarse
como una coordenada “holográfica” que conecta la teoría de d + 1 con una teoría
canónica de d+2 (un poco de análisis muestra que la teoría extra-dimensional debe
ser altamente no local para manejar interacciones).

También aprovechamos la oportunidad para discutir brevemente la invariancia de
Lorentz a nivel del espacio de Hilbert: el nuevo álgebra es explícitamente covariante
para

U †(Λ)ϕ(x)U(Λ) = ϕ(Λx) , U †(Λ)π(x)U(Λ) = π(Λx) .

con U(Λ) la transformación sp unitaria asociada a la transformación de Lorentz Λ

[2]. Por lo tanto, las transformaciones de Lorentz se definen geométricamente en
H, en analogía con las rotaciones e independientemente de la dinámica. Además, si
introducimos una AC “de segundo orden”

S(2)
τ [j] := −τ

∫
dDx

[
A†(x)(∂2 +m2)A(x)−

√
m
τ
j(x)ϕ(x)

]
, (6.55)

con A(x) := (
√
mϕ(x)+iπ(x)/

√
m)/

√
2, es claro que [S(2)

τ [0], U(Λ)] = 0 (ver también
[3]). Los operadores locales A(x) satisfacen [A(x), A†(y)] = δ(d+1)((x − y). Esta
breve introducción de la covarianza de Lorentz muestra que la formulación canónica
de espacio-tiempo dentro de H permite preservar explícitamente las simetrías de
espacio-tiempo, una ventaja previamente exclusiva de la formulación PI. También
muestra que se pueden introducir formas más generales de ACs 4.

Con estas convenciones, el campo puede expandirse como

ϕ(x) =

∫
dDp√

(2π)D2m

(
eipxA(p) + e−ipxA†(p)

)
, (6.56)

con los operadores A(p) la TF de A(x), que son los que llevan S(2)τ [0] a su forma
normal:

S(2)
τ [j] := τ

∫
dDp

[
(p2 −m2)A†(p)A(p) + j(−p)√

2τ
A(p) + j(p)√

2τ
A†(p)

]
. (6.57)

4Mientras que la generalización a d + 1 de Sτ [j] y resultados relacionados es directa, estamos
empleando la acción de segundo orden para preservar explícitamente la covarianza de Lorentz en
todos los pasos. Esto se puede lograr también con Sτ [j], pero requiere una discusión adecuada de
la elección del tiempo en la transformación de Legendre, que se presentará en el siguiente capítulo.
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Todos los resultados previos relacionados con el funcional generador, incluyendo la
τ -invariancia, se mantienen en completa analogía: definiendo como antes Z(2)

τ [j] =

Tr[eiS
(2)
τ [j]], obtenemos

Z(2)
τ [j] = Z(2)

τ [0] exp
(
− 1

2

∫
dDxdDy j(x)DF (x− y)j(y)

)
, (6.58)

una generalización multidimensional de la Ec. (6.43), con el propagador de Feynman
DF (x− y) = ⟨0|T̂ ϕI(x)ϕI(y)|0⟩ apareciendo ahora explícitamente (como de costum-
bre, estamos ajustando m2 → m2 − iϵ). Además, se obtiene una nueva versión de la
Ec. (6.50):

eiS
(2)
τ [0] → |Ω⟩⟨Ω| (6.59)

cuando τ → ∞ y donde |Ω⟩ es el espacio-tiempo de A(x) que satisface A(x)|Ω⟩ =
A(p)|Ω⟩ = 0, U(Λ)|Ω⟩ = |Ω⟩. Al separar las partes de la AC con y sin la fuente,
como en la Ec. (6.48), obtenemos

⟨0|T̂ ϕI(x)ϕI(y)|0⟩ = ĺım
τ→∞

T̂τ

∫ τ

0

dτ1√
τ

∫ τ

0

dτ2√
τ
m ⟨Ω|ϕI(x, τ1)ϕI(y, τ2)|Ω⟩ , (6.60)

para ϕI(x, τ) := e−iS
(2)
τ [0]ϕ(x)eiS

(2)
τ [0], el operador de campo “evolucionado” con la

acción de segundo orden. Es sencillo demostrar que ambos ordenamientos de τ pro-
ducen la mitad del propagador (DF (x−y) = DF (y−x)), mientras que la invariancia
de Lorentz es manifiesta en el lado izquierdo ya que ϕI(Λx, τ) = U †(Λ)ϕI(x, τ)U(Λ)

y el vacío de espacio-tiempo es invariante.

El resultado (6.60) es la versión enD dimensiones de (6.53) que puede compararse
con expresiones similares a la teoría de cuerdas: utilizando la Ec. (6.56) el integrando
en (6.60) se puede escribir para τ1 > τ2 como ⟨Ω|A(x)ei(τ1−τ2)J (2)

A†(y)|Ω⟩/2 , con

J (2) := τ−1S(2)
τ [0] =

∫
dDp (p2 −m2)A†(p)A(p) , (6.61)

independiente de τ . Entonces, dado que el integrando en (6.60) depende solo de la
diferencia τ1 − τ2, encontramos

⟨0|T̂ ϕI(x)ϕI(y)|0⟩ =
∫ ∞

0

dτ ⟨Ω|A(x)eiτJ (2)

A†(y)|Ω⟩

=

∫ ∞

0

dτ ⟨x|eiτJ (2)|y⟩ (6.62)

donde hemos definido los estados de partícula única (sp)

|x⟩ :=
√
2mϕ(x)|Ω⟩ = A†(x)|Ω⟩ . (6.63)
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Notablemente, el resultado del espacio de Fock extendido (6.62) involucra el operador
J (2), que es la versión “segunda cuantizada” de J (2)

sp = P 2 − m2 (ver Ec. (6.61) y
[2, 3]) definiendo la condición de capa de masa de partículas parametrizadas [42, 67,
113] a través de J (2)

sp |Ψ⟩ = 0 en H = L2(Rd+1). Así, para contracciones de dos puntos,
la forma (6.62) se reduce a la conocida expresión “worldline” (línea de mundo) del
propagador [46, 66] ⟨0|T̂ ϕI(x)ϕI(y)|0⟩ =

∫∞
0
dτ ⟨x|eiτ(P 2−m2+iϵ)|y⟩, que involucra solo

estados sp (en primera cuantización).

Cabe señalar que en el enfoque actual los resultados anteriores emergen de una
formulación de espacio-tiempo completamente desarrollada de PIs y funciones de
correlación de teorías cuánticas de campos (escalares). Las excitaciones de los cam-
pos son ahora estados de espacio-tiempo. Aunque el desarrollo adicional excede el
alcance de este manuscrito, todos los ingredientes básicos para desarrollar teorías
generales (interactuantes) ya están contenidos en él: por un lado, se pueden intro-
ducir teorías interactuantes (como de costumbre) a través de variaciones funcionales
del funcional generador. A nivel del espacio de Hilbert extendido, esto define nue-
vas generalizaciones τ -invariantes de ACs interactuantes, reduciéndose a acciones
convencionales diagonales en tiempo solo para pequeños τ (además del caso de una
“interacción lineal” considerada en secciones anteriores). Por otro lado, las cantidades
físicas surgen de funciones de correlación esencialmente a través de FTs completas
en d + 1 (por ejemplo, la fórmula de reducción LSZ [114]). Mientras que en la for-
mulación convencional la FT en tiempo está relacionada con la evolución unitaria,
aquí dichas FTs conducen naturalmente a los operadores no locales en tiempo A†(p)

que diagonalizan S(2)
τ [0].

Además, los momentos de cada partícula externa involucrada en los elementos
de la matriz S satisfacen la condición de capa de masa. Esto lleva a operadores
extendidos de creación (aniquilación) que son estacionarios” en la evolución” de τ ,
es decir,

[S(2)
τ [0], A†(Epm,p)] = 0 , (6.64)

precisamente la condición introducida en [2, 3] en operadores que crean estados
físicos (libres) actuando sobre |Ω⟩. Tales estados surgen entonces naturalmente para
grandes τ en la formulación extendida de teorías de dispersión y representan las
partículas externas (asintóticamente libres).

Cabe mencionar que una restricción similar (pero no escrita en términos de ACs)
ha sido introducida recientemente en [115] para teorías no interactuantes en el con-
texto de una formulación de la mecánica cuántica relativista en términos de eventos.
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A pesar de algunas diferencias fundamentales en la interpretación [115] (sin em-
bargo, cabe mencionar que una trayectoria puede considerarse como un conjunto de
eventos, por lo tanto, el espacio de Hilbert es el mismo), nuestros resultados actuales
proporcionan una ruta clara para introducir interacciones en esta nueva formulación
relacionada también.

6.3 Conclusiones

Hemos proporcionado una formulación cuántica completa de los PIs de Feynman ba-
sada en un espacio de Hilbert de espacio-tiempo extendido y una AC concomitante.
Las expresiones fundamentales pueden representarse como trazas de espacio-tiempo,
y diferentes formulaciones de PI emergen naturalmente del uso de diferentes bases
extendidas. Las representaciones estándar corresponden a bases de productos en el
tiempo tipo trayectoria (por ejemplo, estados de trayectoria de coordenadas y cohe-
rentes), pero el formalismo también hace accesibles bases no locales en el tiempo.
En particular, las evaluaciones tipo Fourier y Matsubara son casos especiales de
estas últimas, que surgen naturalmente aquí a través de la base de autovalores de
operadores AC cuadráticos.

En el caso de tiempo continuo (sección 6.2) esto permite definir y manipular
expresiones de traza sin las sutilezas de los PIs convencionales, mientras que la co-
nexión con la física clásica todavía puede discutirse dentro del marco de operadores
(ver Apéndice 6.4). También surge la posibilidad de nuevos esquemas de regulari-
zación. Además, ahora se hace evidente una invariancia de escala temporal en las
nuevas expresiones para funciones de correlación, lo que conduce a una conexión
directa entre una AC dada y el vacío de espacio-tiempo correspondiente, como se
muestra en 6.2.3. Cuando se aplica a campos cuánticos, se recuperan expresiones
del enfoque de primera cuantización inspirado en la teoría de cuerdas [46] y/o del
formalismo PW relativista descrito en [1, 2] al nivel de una partícula.

Desde una perspectiva más amplia, los resultados actuales constituyen un paso
importante en el desarrollo de extensiones simétricas de espacio-tiempo generales
de la MQ: a través de la nueva representación de los PIs, se logra formalmente
una representación en el espacio de Hilbert simétrica de espacio-tiempo de cualquier
teoría convencional, incluyendo el caso de teorías de campos cuánticos interactuantes
(ver consideraciones en la sección 6.2.3). También se reveló una nueva ruta para una
definición adecuada de estados físicos de espacio-tiempo explotando el mencionado
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límite de gran τ . Curiosamente, incluso para τ finito o pequeño, se puede asignar una
noción de estado a la representación anterior: la idea esencial es tratar la exponencial
de la acción como un estado tipo térmico (ver algunos de los comentarios en la sección
6.1.2). Esto puede desarrollarse a través de una técnica de purificación “generalizada”
recientemente introducida en el contexto de dualidades holográficas con el objetivo de
discutir el entrelazamiento en el tiempo [97, 98] (en MQ convencional, no extendida).
Dado que el enfoque excede la formulación de PI, se deja para futuras investigaciones.

En este mismo escenario, surgen posibilidades adicionales novedosas, como la
consideración de interacciones no separables en el tiempo, la aparición de opera-
dores cuánticos de tiempo y relaciones de incertidumbre entre energía y tiempo, y
la definición rigurosa del entrelazamiento en el tiempo: de la misma manera que la
segunda cuantización estándar es necesaria para la noción de una matriz de densi-
dad reducida de un intervalo espacial, y por lo tanto para el entrelazamiento en el
espacio [116], el presente formalismo de estados de espacio-tiempo cuantizados de se-
gunda orden es un escenario natural para acomodar la noción de entrelazamiento en
el tiempo. Al mismo tiempo, la convencional “suma sobre historias”, anteriormente
solo accesible a través de cálculos clásicos, ahora admite la aplicación de protocolos
cuánticos para la evaluación de trazas (6.1.4). Estos aspectos están actualmente bajo
investigación.

Apéndices

6.1 T general en propagadores

En la construcción discreta desarrollada en el texto principal, hemos considerado
N = T/ϵ copias del espacio de Hilbert original mientras identificamos T con la
cantidad de evolución de los estados finales. Aquí discutimos la situación más general
que surge de relajar esta identificación en el caso de la partícula bosónica.

Primero notamos que la Ec. (6.5) del cuerpo principal también se sostiene en
H′ = ⊗N ′−1

t=0 Ht con N ′ > N y S todavía definido como en la Ec. (6.4) pero con Pt el
generador de traslaciones temporales en H′. Esto se sigue al reemplazar en el lado
derecho de la Ec. (6.2) N → N ′,

⊗N−1
t=0 e

−iHϵ ≡ ⊗N−1
t=0 e

−iHϵ ⊗t>N−1 1t

e integrando sobre las variables qt>N−1 de tal manera que la igualdad se sostiene.
Entonces en la Ec. (6.5) N → N ′ pero no en el producto de la Ec. (6.4). Esta
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invariancia permite discutir cualquier evolución temporal de intervalo T < T ′ = N ′ϵ

(con cualquier origen) dentro de un único espacio extendido H′.

En particular, al considerar H′ = H⊗ HN

⟨q′, T + ϵ|q⟩ − ⟨q′, T |q⟩ = TrH′

[
[eiS

′ − eiS ]|q⟩0⟨q′|
]

(6.65)

donde eiS′
= eiSe−iϵHN = e−iϵH0eiS . Escribiendo entonces

eiS
′ − eiS = [e−iH0ϵ − 1]eiS , (6.66)

y aplicando la Ec. (6.5) del cuerpo principal al lado derecho de la Ec. (6.65), se
recupera la ecuación de Schrödinger discreta

⟨q′, T + ϵ|q⟩ − ⟨q′, T |q⟩ = ⟨q′, T |[e−iHϵ − 1]|q⟩ (6.67)

El límite continuo se sigue, por supuesto, al dividir ambos miembros por −iϵ de
tal manera que para ϵ → 0 el lado izquierdo es i veces la derivada en el tiempo de
⟨q′, T |q⟩ mientras que i[e−iHϵ − 1]/ϵ→ H.

También vemos que la Ec. (6.65) tiene exactamente la forma del principio de
acción de Schwinger [86], que relaciona variaciones generales de ⟨q′, T |q⟩ con los ele-
mentos de matriz de variaciones del operador de acción de Schwinger. Sin embargo,
en la formulación de Schwinger se dispone de un conjunto completo de operadores
conmutativos en superficies tipo espacio (en un tiempo dado). Desde el punto de
vista canónico, su AC involucra operadores en la imagen de Heisenberg para los
cuales no se aplica ninguna álgebra extendida [3], una diferencia fundamental con la
presente construcción.

6.2 Demostración de la relación entre S, Pt y V, y

funciones de correlación

En esta sección demostraremos la ecuación (6.13) del cuerpo principal. Primero
estableceremos la equivalencia entre ese resultado y la siguiente expresión:

e−iPtϵV†eiPtϵ = U †
N−1(T )⊗t Ut[(t+ 1)ϵ, tϵ]V† (6.68)

Demostración. La prueba de la equivalencia sigue inmediatamente reescribiendo
(6.68) como

V†eiPtϵV = eiPtϵU †
N−1

(T )⊗t Ut[(t+ 1)ϵ, tϵ] .
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Ahora, considerando que eiPtϵU †
N−1

(T )e−iPtϵ = U †
0(T ) podemos escribir

U0(T )V†eiPtϵV = eiPtϵ ⊗t Ut[(t+ 1)ϵ, tϵ] = eiS ,

que es precisamente la Ec. (6.13) del cuerpo principal. Note que estamos conside-
rando la definición general de eiS (posiblemente dependiente del tiempo).

La prueba de la Ec. (6.13) en el cuerpo principal ahora se reduce a demostrar
(6.68).

Demostración. La acción del operador de traslación en V† = ⊗N−1
t=0 Ut(tϵ) en el lado

izquierdo de (6.68) produce

e−iPtϵ ⊗N−1
t=0 Ut(tϵ)e

iPtϵ = ⊗N−1
t=0 Ut−1(tϵ) = ⊗N−2

t=0 Ut[(t+ 1)ϵ]

= U †
N−1(T )⊗N−1

t=0 Ut[(t+ 1)ϵ] (6.69)

donde usamos U(0) = 1 y T = Nϵ. Por otro lado,

⊗N−1
t=0 Ut[(t+ 1)ϵ]V = ⊗N−1

t=0 Ut[(t+ 1)ϵ]⊗N−1
t=0 U †

t (tϵ)

= ⊗N−1
t=0 Ut[(t+ 1)ϵ]U †

t (tϵ) = ⊗N−1
t=0 Ut[(t+ 1)ϵ, tϵ], . (6.70)

Al multiplicar (6.69) a la derecha por VV† = 1 y usar (6.70), recuperamos (6.68).

Ahora describimos cómo el resultado anterior permite una derivación directa de
las expresiones de las funciones de correlación como (6.14). Recordamos que se puede
mapear trazas convencionales de la composición de operadores en trazas de espacio-
tiempo de productos tensoriales de operadores añadiendo el operador de traslación
temporal eiPtϵ, como se muestra en (6.30). Por otro lado, está claro que conjugar
productos tensoriales de operadores con V corresponde a evolucionarlos (ver (6.12)).
Juntando todos estos resultados, podemos escribir

⟨i′, T |O(N−1)
H (T ) . . . O

(2)
H (2ϵ)O

(1)
H (ϵ)O

(0)
H (0)|i⟩ = TrH

[
eiPtϵ ⊗t O

(t)
H (t)|i⟩0⟨i′, T |

]
= TrH

[
eiPtϵV(⊗tO

(t))V†|i⟩0⟨i′|U0(T )
]

= TrH
[
U0(T )V†eiPtϵV︸ ︷︷ ︸

eiS

⊗tO
(t)|i⟩0⟨i′|

]
,

(6.71)

donde en la última igualdad reconocemos la combinación de V y eiPtϵ que da lugar
a eiS según el teorema anterior. Se puede establecer que los operadores sean iguales
a la identidad, de modo que solo algunos de ellos realmente aparezcan en el lado iz-
quierdo, lo cual en el lado derecho corresponde a “inserciones” particulares. También
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debemos destacar que este resultado es general y puede aplicarse a cualquier sistema.
En particular, se puede aplicar a sistemas bosónicos generales, como campos, y por
lo tanto también se incluye el caso multidimensional discutido en la sección 6.1.2,
que exhibe simetría de espacio-tiempo.

6.3 Sobre la “función de partición” del oscilador ar-

mónico en el límite continuo

Discutimos aquí la traza de eiSτ para el tiempo continuo y para

Sτ = τ
∞∑

n=−∞

(ωn − ω + iϵ̃ω2
n)A

†
nAn (6.72)

= τ

∫
dtA†(t)(i∂t − ω − iϵ̃∂2t )A(t) . (6.73)

Note que hemos introducido un factor de convergencia ∝ ϵ̃ (por el momento ϵ̃ ∈ R).
Podemos calcular inmediatamente la traza en la base de Fock de Fourier (ñ ∈ N

es el número de ocupación de un cierto modo n) obteniendo

Tr[eiSτ ] =
∑
ñ

⟨ñ|eiSτ |ñ⟩ =
∞∏

n=−∞

∞∑
ñn=0

eiτ(ωn−ω+iϵ̃ω2
n)ñn

=
∞∏

n=−∞

[
1− eiτ(ωn−ω+iϵ̃ω2

n)
]−1

, (6.74)

donde en el último paso asumimos |eiτ [ωn−ω+iϵ̃ω2
n]| < 1∀n. Esto es estrictamente

cierto para los modos n ̸= 0. Para el modo 0, esto se mantiene para ω ligeramente
imaginario (como de costumbre), mientras que para ω ∈ R la serie converge a la
distribución

∑∞
n=0 e

−iτωn = 1
1−e−iτω + π

∑
k δ(τω + 2πk). Si asumimos τω ̸= 2πk el

término delta puede ignorarse. Note que para N = T/ϵ finito y ϵ̃ = 0, la Ec. (6.74)
se convierte en el producto finito

⌊(N−1)/2⌋∏
n=−⌊N/2⌋

[
1− eiτ(ωn−ω)

]−1

=
eiωT/2

2i sin(ωT/2)
(6.75)

donde la última expresión es válida para τ = ϵ y se sigue al expandir zN

zN−1
en

términos de las N raíces de 1, con z = e−iωϵ.
El producto infinito en (6.74) indica el inverso de

ĺım
N→∞

N∏
n=−N

[
1− eiτ(ωn−ω+iϵ̃ω2

n)
]
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como se sigue, por ejemplo, considerando primero T/ϵ = 2N + 1 pasos de tiempo
en H. Podemos dividir el producto para N finito en dos términos con n ⩾ 1 y una
contribución de n = 0. La convergencia de los productos con n ⩾ 1 está definida por
la convergencia de la serie

∑∞
n=1 exp[iτ(±ωn − ω + iϵ̃ω2

n)] que claramente converge
absolutamente para τ ϵ̃ > 0 (| exp[iτ(±ωn − ω + iϵ̃ω2

n)]| = exp[−τϵω2
n]).

De hecho, si dejamos, por ejemplo, ϵ̃ = λτ 2 (con λ > 0 una constante con
unidades de [tiempo]−1) y τ ∈ C, el producto infinito original define una función
analítica F (τ) en el subconjunto del plano complejo definido por Re(τ 3) > 0 (esto se
puede probar notando que la convergencia es compactamente normal en esta región
[117]).

También “conjeturamos” que el límite τ → 0+ de F (τ) toma el valor exacto finito
ĺımτ→0+ F (τ) = eiωT /2/[2i sin(ωT/2)], de acuerdo con (6.75), lo cual verificamos
numéricamente. Esto implicaría para la acción correspondiente

ĺım
τ→0+

Tr[eiSτ ] = Tr[e−iHT ] , (6.76)

donde hemos restaurado la contribución del vacío Sτ → Sτ − 1Tω/2. Destacamos
la diferencia con el tratamiento continuo usual que necesita alguna regularización o
una constante infinita codificada en la medida para proporcionar un resultado finito
(y que no tiene en cuenta adecuadamente la contribución del vacío en el caso de
CSPI). Considerando que para pequeños τ podemos relacionar esta misma traza
con la expresión de PI de la función de partición, la corrección de la conjetura
proporcionaría una definición rigurosa de PI en el continuo.

6.4 Principio de acción estacionaria a partir de un

valor medio cuántico

La aparición de S⋆cl en (6.42) también se puede entender notando primero que el
promedio del AC en los estados coherentes de espacio-tiempo (Ec. (6.37)) es

⟨Sτ [j]⟩α =
⟨α(t)|Sτ [j]|α(t)⟩

⟨α(t)|α(t)⟩
= Scl + γ (6.77)

con Scl la acción clásica a lo largo de la trayectoria (qcl(t), pcl(t)) definida como
qcl(t) :=

√
τ α(t)+α

∗(t)√
2mω

, pcl(t) :=
√
τ α(t)−α

∗(t)

i
√

2/mω
. Aquí γ es una constante independiente

de j y τ que surge de la energía del vacío. La relación (6.77) es una consecuencia
directa de

A(t)|α(t)⟩ = α(t)|α(t)⟩ (6.78)
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lo que también implica ⟨
√
τq(t)⟩α = qcl(t) y ⟨

√
τp(t)⟩α = pcl(t).

Como consecuencia, la solución clásica corresponde a un valor estacionario del
valor medio (6.77). Esto se puede imponer directamente en la base de Fourier |α⟩
notando que Scl = τ

∑
n(ωn−ω)α∗

nαn+
j∗n√
2ωτ

αn+
jn√
2ωτ

α∗
n. Por lo tanto, en el presente

caso, la condición estacionaria

∂

∂α∗
n

⟨Sτ [j]⟩α = 0 ⇔ ∂Scl

∂α∗
n

= 0 (6.79)

produce α⋆n = − jn√
2ωτ(ωn−ω)

(el símbolo “⋆” indica la solución). Esto define la solución
de trayectoria coherente α⋆(t) =

∑
n e

−iωntα⋆n/
√
T . Note que (6.79) es equivalente

a una variación en posición y momento en la base de Fourier, relacionada con las
variables de posición y momento anteriores por una transformación canónica. En
términos de las últimas, la condición (6.79) produce

q⋆cl(t) = i

∫
dt′G(t− t′) j(t

′)√
m

(6.80)

y p⋆cl(t) = mq⋆cl(t) con (∂2t + ω2)q⋆cl(t) = j(t)/
√
m en acuerdo con la ecuación de

Euler-Lagrange (y sin ninguna dependencia en τ). La media del AC a lo largo de la
solución clásica es

⟨Sτ [j]⟩α⋆ = −τ
∑
n

jnj−n
2ωτ(ωn − ω)

= S⋆cl, , (6.81)

con S⋆cl la acción clásica evaluada en la solución, en concordancia con (6.77), que
también es independiente de τ . También cabe mencionar que |α⋆(t)⟩ = U †|Ω⟩ es el
vacío de los operadores desplazados U †AnU con

U := e−
∑

n[α
⋆
nA

†
n−(α⋆

n)
∗An] (6.82)

de tal modo que U †AnU = An−α⋆n, en concordancia con la definición anterior (6.42).
Ahora está claro que el factor constante que surge de la acción de U sobre Sτ [0] debe
ser Scl⋆: al evaluar el valor medio de la Ec. (6.42) a lo largo del estado |α⋆(t)⟩, la con-
tribución del segundo término se anula ya que ⟨α⋆(t)|U †Sτ [0]U|α⋆(t)⟩ = ⟨Ω|Sτ [0]|Ω⟩ =
0.

Además, cuando uno expande Scl alrededor de la solución clásica, el primer or-
den desaparece (Ec. (6.79)) mientras que el segundo es la misma acción sin la fuente
pero evaluada a lo largo de la trayectoria “fluctuante” (los órdenes superiores, por su-
puesto, desaparecen). En términos de valores medios cuánticos esto se puede escribir
como ⟨Sτ [j]⟩α = S⋆cl+ ⟨Sτ [0]⟩α−α⋆ = S⋆cl+ ⟨U †Sτ [0]U⟩α, que es justo el valor esperado
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de la Ec. (6.42). Para pequeños τ , podemos emplear las consideraciones anteriores
para reobtener (6.45) a partir de argumentos familiares tipo PI: de acuerdo con la
discusión en la sec. 6.2.1 podemos escribir

Zτ [j] ≈
∫

D2α(t)ei⟨Sτ [j]⟩α = eiS
⋆
cl

∫
D2α(t)ei⟨Sτ [0]⟩α, , (6.83)

con el reemplazo ⟨Sτ [0]⟩α−α⋆ → ⟨Sτ [0]⟩α sosteniéndose en la última igualdad porque
estamos integrando sobre todas las trayectorias. En el cociente Zτ [j]/Zτ [0] el "factor
de fluctuación"se cancela como en el enfoque convencional de PI y en acuerdo con
la derivación más general independiente de τ .
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Mecánica cuántica y clásica en el

espacio-tiempo con foliación dinámica

Este capítulo presenta los resultados publicados en [5]. Los mismos constituyen en
conjunto la principal contribución de esta tesis al problema planteado en el capítulo
I. Debido a su longitud extensa, y al hecho de que el capítulo es mayormente auto-
contenido, presentamos primero un breve resumen del mismo.

7.1 Resumen del capítulo

El espacio de fase convencional de la física clásica trata el espacio y el tiempo de
manera diferente, y esta diferencia se transfiere a las teorías de campos y la me-
cánica cuántica (MC). En este capítulo, el espacio de fase se amplía mediante dos
extensiones. En primer lugar, promovemos la elección del tiempo de la transformada
de Legendre a una variable dinámica. En segundo lugar, extendemos los corchetes
de Poisson de los campos de materia a una forma simétrica en el espacio-tiempo. El
consiguiente “espacio de fases espacio-temporal” se emplea para obtener una versión
explícitamente covariante de las ecuaciones de Hamilton para teorías de campos re-
lativistas. Luego se presenta una cuantización tipo canónica del formalismo en la que
los campos satisfacen relaciones de conmutación espacio-temporales y la foliación es
cuántica. En este enfoque, la acción clásica también se promueve a un operador y
retiene la covarianza explícita a través de su no-separabilidad en la partición materia-
foliación. El problema de establecer una correspondencia entre el nuevo marco no
causal (donde los campos en diferentes tiempos son independientes) y la MC con-
vencional se resuelve mediante una generalización de los correladores tipo espacial
a espacio-tiempo. En esta generalización, el Hamiltoniano es reemplazado por la
acción, y las partículas convencionales por partículas fuera de capa de masa. Cuan-
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do la foliación es cuantizada, el mapa previo se recupera condicionando en estados
propios de la foliación, en analogía con el mecanismo de Page y Wootters. También
proporcionamos una interpretación de la correspondencia en la que la estructura
causal de una teoría dada emerge de las correlaciones cuánticas entre el sistema y
un entorno. Esta idea es válida para sistemas cuánticos generales y permite generali-
zar la matriz de densidad a un operador que contiene la información de correladores
tanto en espacio como en tiempo.

7.2 Introducción

La mecánica clásica está construida sobre las formulaciones Lagrangiana y Hamil-
toniana, ambas desarrolladas antes de la llegada de la relatividad y la mecánica
cuántica (MC). A pesar de los cambios revolucionarios introducidos por estas teo-
rías posteriores, las formalismos de Lagrange y Hamilton han permanecido en gran
medida sin modificaciones. El enfoque Lagrangiano ha demostrado ser muy adecuado
para manejar las simetrías del espacio-tiempo reveladas por las teorías de Einstein,
mientras que el enfoque Hamiltoniano ha inspirado ampliamente el marco de la MC
y define el procedimiento canónico para cuantizar una teoría dada. El uso de la
formulación Hamiltoniana en la relatividad es menos natural: el proceso de pasar
de un Lagrangiano a un Hamiltoniano implica seleccionar una variable de tiempo
específica, lo que tiene el efecto de distinguir a un observador particular por sobre los
demás. Esta ruptura explícita de las simetrías relativistas es heredada por el espacio
de fases de la formulación Hamiltoniana y se transmite a las reglas algebraicas que
subyacen a toda teoría cuántica.

Al mismo tiempo, es ampliamente conocido que las teorías cuánticas de campos
relativistas (usaremos la abreviación anglosajona QFT) producen predicciones in-
dependientes del observador, incluso si se sigue un enfoque Hamiltoniano canónico.
Esta característica importante, discutida en los años fundacionales de las QFTs [11],
también es validada por las expresiones relacionadas en la formulación del Integal
de Caminos de Feynman [12, 118], que enfatiza los Lagrangianos sobre los Hamil-
tonianos. El precio a pagar por usar las “Path Integrals” (PI) es que la estructura
convencional de espacio de Hilbert de la MC canónica es reemplazada por el uso de
“sumas sobre historias” en el espacio de configuración clásico.

Lo anterior parece indicar que las asimetrías entre el espacio y el tiempo a nivel
cuántico no son fundamentales sino más bien un artefacto de la formulación Hamil-
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toniana canónica. Entonces, se puede plantear el problema de formular la MC de
manera que extienda los elementos matemáticos familiares, como estados y opera-
dores, para que sean simétricos en el espacio-tiempo. Varias discusiones relacionadas
con este tema, que se aplican tanto a teorías relativistas como no relativistas, han
surgido recientemente [2-4, 28, 30-33, 119-121]. Estas discusiones resaltan que lo an-
terior es un problema abierto y desafiante de interés actual: una solución genuina
tiene el potencial de extender las intuiciones asociadas con las correlaciones cuánticas
al dominio del tiempo. Por ejemplo, la reciente discusión sobre el espacio emergiendo
del entrelazamiento [122, 123] no puede extenderse de manera directa al tiempo (y
luego al espacio-tiempo). Cambiando a áreas más aplicadas, ya se han propuesto
protocolos de computación cuántica que emplean ideas de tiempo cuántico [29, 43,
44] para mapear complejidades temporales a espaciales [6, 124]. También está claro
que el tema es relevante en escenarios donde la covarianza general entra en juego,
como en la gravedad cuántica, en cuyo caso el uso de técnicas convencionales de QFT
no es suficiente [14, 15, 24, 25, 37, 66, 110, 125]. El problema requiere una revisión
crítica de todos los aspectos involucrados, incluyendo las formulaciones básicas de la
mecánica clásica y, en particular, del espacio fase de la formulación Hamiltoniana.

En este capítulo, introducimos un marco que integra sin problemas la covarianza
relativista en un espacio fase extendido que puede ser cuantizado de manera direc-
ta. Nuestro enfoque principal es el caso de las teorías de campos de la relatividad
especial, un escenario que nos permite sentar las bases de una MC simétrica en
el espacio-tiempo guiada por la simetría de Lorentz. Notablemente, varios conoci-
mientos revelados por el caso relativista, incluido un mapa a la MC convencional,
se pueden aplicar a cualquier teoría mecánica cuántica, incluidas las teorías no re-
lativistas. Como remarcamos a lo largo del capítulo, se puede considerar el marco
final como un conjunto independiente (simétrico en el espacio-tiempo) de reglas pa-
ra formular la MC, y explorar sus consecuencias desde el punto de vista de la MC
como una generalización de la teoría de probabilidades clásica. Este punto de vista
complementario de nuestro trabajo, que parece ser particularmente adecuado para
abordar los problemas de fundamentos mencionados anteriormente, solo se explora
preliminarmente.

La construcción comienza modificando el espacio fase convencional de la diná-
mica Hamiltoniana de dos maneras: En primer lugar, la elección del tiempo de la
transformación de Legendre, que define el Hamiltoniano a partir de un Lagrangiano
dado, se trata como dinámica. En segundo lugar, se introducen Corchetes de Poisson
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(CP) espacio-temporales para campos de materia que no distinguen entre espacio y
tiempo. Se proporciona una manera directa de recuperar la dinámica clásica utilizan-
do el espacio fase ampliado y la acción clásica (escrita en términos de las variables
del espacio fase ampliado). Las nuevas versiones de las ecuaciones de Hamilton son
explícitamente covariantes, una característica que en la mecánica clásica convencio-
nal solo se logra en el espacio de configuración. Todas estas características clásicas
se presentan en la sección 7.3 después de un ejemplo introductorio proporcionado en
la sección 7.3.1.

Luego, en la sección 7.4 se propone una versión espacio-temporal de la MC re-
emplazando todos los CP por conmutadores (en el caso bosónico; ver comentarios
en la sección 7.6). Una consecuencia directa es que la foliación también se cuantiza,
permitiendo una definición geométrica de las transformaciones espacio-temporales,
que no depende de la dinámica. La acción se cuantiza también, dando lugar a un
operador de “acción cuántica espacio-temporal”, un objeto recientemente introduci-
do en [3, 4] (ver también [87]), aquí modificado para tener en cuenta una foliación
dinámica. En esta sección, también mostramos cómo la diagonalización de acciones
cuánticas libres conduce a partículas con una relación de dispersión general. La única
diferencia entre partículas en capa de masa y fuera de la capa de masa es si conmu-
tan o no con la acción. En ambos casos, sus propiedades de transformación están
bien definidas, como lo inducen las propiedades de transformación de los campos,
momentos, foliación y operadores de acción de teorías relativistas.

En nuestro marco, los operadores en diferentes tiempos conmutan, y el tiempo
se trata como un “índice” geométrico, en completa analogía con el espacio e indis-
tinguible de este a nivel algebraico. Esto plantea el desafío de recuperar la evolución
de la MC convencional (en una foliación dada) dentro de lo que es esencialmente
un marco no causal. Notablemente, este problema se puede resolver como se pre-
sentó recientemente en [4]. En la sección 7.4.3, desarrollamos algunas de las ideas
presentadas en [4] más a fondo para establecer una correspondencia general entre la
formulación espacio-temporal y QFT convencional a través de funciones de correla-
ción en una foliación fija. El límite clásico también se analiza y se señalan algunas
posibles conexiones con holografía [126].

Además, la emergencia previa de la evolución temporal admite una interpretación
natural en términos de un estado puro generalizado (proyector no ortogonal) que
involucra un entorno correlacionado con el sistema dado. Este objeto matemático,
que podemos identificar con una generalización natural de la noción de estado al
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espacio-tiempo, codifica toda la información sobre el estado inicial, su evolución y
la estructura causal de la teoría. Para teorías libres, se puede construir a partir
de un par de vacíos globales conjugados entrelazados que abarcan el sistema y un
entorno, y en general está asociado con una purificación generalizada que involucra la
acción cuántica. También comentamos cómo la formulación da un nuevo significado
operacional a las funciones de correlación, permitiendo así el uso de protocolos de
computación cuántica para su estimación. Todas estas características se describen
en la sección 7.4.4 para un campo escalar, mientras que comentarios adicionales para
el espacio-tiempo discreto y sistemas generales se proporcionan en los Apéndices 7.3
y 7.4.

La sección 7.5 trata sobre el hecho de que los estados propios invariantes de la
acción están entrelazados en la partición materia-foliación. Como consecuencia, la
noción de partícula se vuelve no separable de la foliación. En particular, mostramos
que los operadores de escalera deben entenderse como operadores controlados por
la foliación, teniendo así estados propios entrelazados. Además, los estados propios
invariantes son necesariamente entrelazados y tienen la estructura subyacente al me-
canismo de Page y Wootters (PW) [14]. Explotamos esta analogía para introducir la
noción de condicionamiento en estados de foliación, mostrando que para estados tipo
clásicos se recupera la correspondencia de la sección 7.4.3. Finalmente, mostramos
cómo las predicciones físicas de la teoría se transforman adecuada y explícitamente
una vez que la foliación es cuántica. La posibilidad de efectos genuinos de foliación
cuántica también se considera brevemente.

Finalmente, en 7.6, se discute la relevancia de nuestros resultados en diferentes
contextos, junto con las perspectivas futuras de la formulación propuesta, y su posible
impacto en la formulación canónica de gravedad cuántica y en temas de fundamentos
y computación cuántica.

7.3 Formalismo de espacio de fases en el espacio-

tiempo

7.3.1 Una analogía espacial introductoria al problema

Comenzamos nuestra discusión proporcionando un ejemplo sobre cómo una trans-
formación de Legendre de la acción y el espacio fase resultante pueden ocultar una
simetría espacial explícita de un sistema. Consideremos la siguiente densidad La-
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grangiana L = 1
2
(∂tϕ)

2 − 1
2
(∂xϕ)

2 − 1
2
(∂yϕ)

2. Es claro que el Lagrangiano tiene una
simetría rotacional en (x, y) como parte de su simetría de Lorentz, que se manifiesta
en las ecuaciones de movimiento ∂µ∂µϕ = ∂2t ϕ−∂2xϕ−∂2yϕ = 0. Ahora introduzcamos

H[ϕ, ∂tϕ, ∂xϕ, π] : = ∂yϕ
∂L

∂(∂yϕ)
− L

= −1

2
π2 − 1

2
(∂tϕ)

2 +
1

2
(∂xϕ)

2

(7.1)

que es una densidad “Hamiltoniana” definida por la transformada de Legendre que
reemplaza −∂yϕ→ π. Aunque ciertamente es un cambio de variables mal motivado,
H debería conservar la información completa del sistema, ya que la transformación
es invertible. De hecho, un uso directo de la ecuación de movimiento produce las
ecuaciones

∂yπ = −∂H
∂ϕ

= −∂2t ϕ+ ∂2xϕ

∂yϕ =
∂H
∂π

= −π ,
(7.2)

que tienen la forma de las ecuaciones de Hamilton en las nuevas variables. Clara-
mente, después de derivar la primera ecuación con respecto a ∂y, la segunda ecuación
devuelve ∂µ∂µϕ = 0. También se pueden obtener (7.2) a partir de una variación de
la acción en variables del espacio fase 1. Notemos que el lado derecho de (7.2) se
puede escribir en términos de corchetes de Poisson (CP), es decir, −∂H

∂ϕ
= {π,H},

∂H
∂π

= {ϕ,H}, donde H =
∫
dtdxH es la “Hamiltoniana” y los CP canónicos aquí

son
{ϕ(t, x), π(t′, x′)} = δ(t− t′)δ(x− x′) (7.3)

a y fijo (con los otros CP nulos). Las versiones cuánticas (conmutadores) de tales
CP “rotados” fueron utilizadas recientemente en [97] para definir “entrelazamiento
temporal”.

Curiosamente, vemos que uno puede recuperar las ecuaciones de movimiento
apropiadas a partir de los CP que tratan a t en igualdad de condiciones con x. Ade-
más, estas relaciones canónicas se preservan explícitamente por una transformación

1Notemos que la variación en variables del espacio fase de la acción S=
∫
dtdxdy(πϕy −H),

con H en (7.1), está bien definida (aquí ϕxµ ≡∂µϕ). De hecho, se obtiene
δS =

∫
dtdxdy [(ϕy + π)δπ − (πy + ϕtt − ϕxx)δϕ] +

∫
dxdt πδϕ

∣∣yf

yi
+

∫
dxdy ϕtδϕ

∣∣tf
ti

−∫
dydt ϕxδϕ

∣∣xf

xi
. Todos los términos de frontera desaparecen bajo suposiciones estándar, a

saber δϕ(ti) = δϕ(tf ) = 0 y ∂L
∂ϕi

→ 0 para |xi| grande en variedades no compactas, o δϕ = 0

en todas las fronteras de un espacio-tiempo compacto [127]. Así, no surge ningún problema de
“diferenciabilidad” [128]. Notemos, sin embargo, que H en (7.1) no es positivo definido.
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de Lorentz de la forma ϕ(t, x) → ϕ(t′, x′), π(t, x) → π(t′, x′), que ahora se tratan
como transformaciones simplécticas convencionales, en analogía con las rotaciones.

En cambio, las rotaciones en el plano (x, y) ya no pueden tratarse en su carácter
geométrico natural: desde el punto de vista del espacio fase, una rotación involucra el
parámetro de “evolución” y; su descripción se convierte formalmente en un problema
dinámico. Nótese también que solo aparece la derivada con respecto a x en H,
y la simetría está oculta. Esto es, por supuesto, un artefacto introducido por la
transformación de Legendre “espacial” y la estructura del espacio fase asociada.
De hecho, en la formulación Hamiltoniana convencional basada en π = ∂tϕ los
CP {ϕ(x, y), π(x′, y′)} = δ(x − x′)δ(y − y′) se preservan explícitamente por una
rotación. Por el contrario, en este enfoque convencional ya no podemos tratar las
transformaciones de impulso como transformaciones simplécticas.

Un problema claro con la transformación de Legendre anterior es su selección de
una dirección particular en el espacio. Claramente, un segundo “observador” puede
elegir cualquier otra dirección y′ y construir su propio espacio fase y CP canónicos
a un y′ fijo. Sin embargo, no hay una regla simple que relacione las dos construc-
ciones que no involucre información dinámica a menos que y = y′ (incluso si las
condiciones iniciales se imponen a un t fijo, los espacios fase no incluyen y (y′)).
Para conectar estos dos espacios fase diferentes necesitamos de alguna manera hacer
seguimiento de la elección del momento. Además, para unificarlos se debe considerar
una extensión de los CP que incluya todas las dimensiones espaciales. Estas son las
principales modificaciones al enfoque Hamiltoniano convencional que desarrollamos
en la próxima sección para el espacio-tiempo.

Nótese que otra posibilidad es incluir un segundo momento en la dirección x y
tratar con una estructura multisimpléctica. No seguimos este enfoque diferente que
ha sido explorado por otros autores [129-133] y cuya cuantización no es directa [132].
Además, recientemente se ha demostrado que una manera de cuantizar estas teorías
es construir un momento canónico a partir de un poli-momento primero [134]. Uno
podría usar esta ruta para relacionar nuestro trabajo con ideas multisimplécticas;
sin embargo, nuestra propuesta es independiente de estas construcciones ya que no
requiere tal paso preliminar.

7.3.2 Transformación de Legendre covariante

La situación que hemos descrito en el espacio, es análoga a la asimetría convencional
en espacio-tiempo que se origina al separar el papel del espacio y el tiempo de
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la misma manera que (7.1) separa x y y en nuestro “experimento” anterior. En
esta sección generalizamos la definición convencional del momento a través de una
transformación de Legendre covariante para eliminar la necesidad de una elección
preferida del tiempo.

La idea clave es que el momento convencional conjugado a un campo dado ϕ se
puede escribir como

π =
∂L

∂(nµ∂µϕ)
(7.4)

para nµ = ηµ0, con la convención para la métrica ηµν = diag(1,−1, . . . ,−1). Pero
esta elección de nµ es arbitraria, el único requisito para un espacio-tiempo plano y
foliación siendo un vector temporal nµnµ = 1, tal que describe observadores inerciales
(no se considerarán vectores tipo espacio en el resto de este trabajo).

Por ejemplo, en el caso de 1 + 1 dimensiones podemos separar el tiempo y el
espacio eligiendo una base nµ, nµ1 con nµ1nµ = 0 y nµ1n1µ = −1. Una parametrización
general es proporcionada por observadores inerciales a una velocidad relativa v =

tanh η a un marco de referencia en “reposo” (nµ ≡ ηµ0) de tal manera que su elección
corresponde a

nµ = (cosh η, sinh η), nµ1 = (sinh η, cosh η) .

Ahora podemos introducir un H covariante como la transformación de Legendre
n-dependiente de L definida como sigue:

H[ϕ, π, nµ1∂µϕ] := πnµ∂µϕ− L . (7.5)

La densidad Hamiltoniana H es una función del momento π definido como en (7.4)
pero por una dirección arbitraria nµ, y las derivadas que son ortogonales a esa
dirección (en este caso solo hay una). Nótese que esto no es un formalismo multisim-
pléctico: solo se ha introducido un momento, simplemente retenemos la información
de la elección del tiempo.

Para escribir (7.5) explícitamente, se necesitan ∂ρϕ en términos de las derivadas
perpendiculares. Para el caso de 1 + 1, estas se obtienen fácilmente como

∂ρϕ = nρn
µ∂µϕ− n1ρn

µ
1∂µϕ = nρπ − n1ρn

µ
1∂µϕ . (7.6)

Ahora es sencillo reescribir cualquier L como función de las nuevas variables.

Como ejemplo concreto, consideremos un campo escalar con densidad Lagran-
giana L = 1

2
(∂µϕ)

2 − 1
2
m2ϕ2. Usando la Ec. (7.6) para escribir (∂ρϕ)

2 = (nρπ)
2 +
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(n1ρn
µ
1∂µϕ)

2, la densidad Hamiltoniana covariante para un nµ tipo tiempo se puede
escribir como

H =
1

2
π2 +

1

2
(nµ1∂µϕ)

2 +
1

2
m2ϕ2 , (7.7)

donde estamos omitiendo el argumento de H para simplificar la notación. Para
nµ = (1, 0) se recupera la densidad Hamiltoniana usual H = 1

2
π2+ 1

2
(∂1ϕ)

2+ 1
2
m2ϕ2.

Sin embargo, para nµ generales, la contracción de los índices indica simetría de
Lorentz. También se nota que para un nµ tipo tiempo la densidad Hamiltoniana es
positiva.

Las ecuaciones de Hamilton correspondientes a H tienen la misma forma que
antes con las derivadas temporales ∂t generalizadas a nµ∂µ. Esto se puede ver fácil-
mente aplicando el principio de acción mínima en el espacio de fases 2 a

S =

∫
dd+1x (πnµ∂µϕ−H) , (7.8)

un resultado que vale para campos generales, teorías y dimensiones D = d+1. Para
la Hamiltoniana (7.7) se obtienen

nµ∂µπ = 9
∂H
∂ϕ

= (nµ1n
ν
1∂µ∂ν −m2)ϕ (7.9a)

nµ∂µϕ =
∂H
∂π

= π (7.9b)

lo que implica automáticamente (actuando con nµ∂µ en la segunda ecuación)

[(nµnν − nµ1n
ν
1)︸ ︷︷ ︸

ηµν

∂µ∂ν +m2]ϕ = 0 (7.10)

que es simplemente la ecuación de Klein-Gordon. Claramente, la densidad Hamilto-
niana convencional también produce esta ecuación covariante de segundo orden para
ϕ, sin embargo, no proporciona ecuaciones covariantes de primer orden separadas
para ϕ y π como las obtenidas en (7.9).

Además, el aspecto covariante de H es nuevo y no solo formal: bajo transforma-
ciones de Lorentz se tiene

ϕ(x) → ϕ(Λx) (7.11a)

nµ → Λµνn
ν (7.11b)

π(x) → π(Λx) (7.11c)

2asumiendo condiciones de frontera estándar, es decir, campos que desaparecen asintóticamente
para |x| grande, de acuerdo con nµ tipo tiempo
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donde las ecuaciones (7.11b-7.11c) son una novedad del formalismo, mientras que
(7.11a) se mantiene para un campo escalar. La ley de transformación de π se sigue
de π = nµ∂µϕ asumiendo (7.11a) y (7.11b). La novedad importante es que bajo estas
transformaciones la densidad Hamiltoniana se transforma como

H(x) → H(Λx) , (7.12)

es decir, es un escalar de Lorentz. Esto es compatible con la nueva relación entre H
y el tensor energía-momento que se encuentra fácilmente ser H = nµnνT

µν .

Todas las propiedades anteriores se mantienen en dimensiones arbitrarias d + 1

con el H covariante siempre definido como en la Ec. (7.5). Por ejemplo, la generali-
zación a d+ 1 de (7.7) es

H =
1

2
π2 +

1

2
(nµnν − ηµν)∂µϕ∂νϕ+

m2

2
ϕ2 (7.13)

con el tensor nµnν−ηµν proyectando sobre las d direcciones espaciales nµi ortogonales
a nµ, de tal manera que el término central en (7.13) es

∑d
i=1(n

µ
i∂µϕ)

2. Esto se puede
ver fácilmente notando que los ejes completos del “marco de referencia” se pueden
escribir como nµα ≡ ∂x′µ/∂xα con nµ0 ≡ nµ y utilizando

ηµν =
∂x′µ

∂xα
∂x′ν

∂xβ
ηαβ = nµnν −

d∑
i=1

nµin
ν
i (7.14)

para x′µ relacionado con xµ a través de una transformación de Lorentz. Esto permite
escribir H como una función solo de nµ (en lugar de todos los nµα).

Las nuevas propiedades de transformación también implican la invariancia de la
transformación de Legendre “integrada”

P0 :=

∫
dd+1x π nµ∂µϕ . (7.15)

Como consecuencia, la acción en variables del espacio de fases (7.8) siempre tiene
una expresión invariante de Lorentz también. Para el ejemplo del campo escalar se
obtiene

S =

∫
dd+1x

[
πnµ∂µϕ− 1

2
π2 − 1

2
(nµnν − ηµν)∂µϕ∂νϕ− 1

2
m2ϕ2

]
. (7.16)

En contraste, la acción convencional en el espacio de fases, S =
∫
dd+1x

(
πϕ̇− 1

2
π2−

1
2
(∇ϕ)2 − 1

2
m2ϕ2

)
oculta la simetría de Lorentz ya que corresponde a elegir una

dirección de tiempo nµ = ηµ0 en (7.16).
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En general, también es factible dejar la longitud nµnµ arbitraria (pero no nu-
la), sin afectar la ecuación final de Klein-Gordon (ver Apéndice 7.1). Mencionemos
también que el tratamiento de campos no escalares se puede desarrollar siguiendo
las mismas líneas presentadas en esta sección, simplemente adaptando las reglas
de transformación (7.11). Esto se muestra en el caso de un campo de Dirac en el
Apéndice 7.2. Allí se ejemplifican resultados principales adicionales para este campo,
mientras que el ejemplo básico en el texto principal es el campo de Klein-Gordon.

7.3.3 Estructura simpléctica en el espacio-tiempo

El espacio fase convencional asociado con nuestra construcción previa corresponde
a álgebras canónicas satisfechas en hipersuperficies fijas por los campos de materia.
Para cada elección de nµ, se debe definir una estructura simpléctica. Por otro lado,
nuestro objetivo es mantener nµ general y promoverlo a una variable “dinámica”, en
el sentido explicado después de la Ec. (7.22), lo que involucra un álgebra de foliación.

Para mantener las álgebras de materia-foliación separadas, introducimos otro
elemento en el formalismo: extendemos el espacio fase tratando cada campo en el
espacio-tiempo y su momento conjugado como variables canónicas independientes
que satisfacen

{ϕ(x), π(y)} = δ(d+1)(x− y) . (7.17)

Los corchetes de Poisson se definen como de costumbre pero abarcan todas las va-
riables

{f, g} =

∫
dd+1x

(
δf

δϕ(x)

δg

δπ(x)
− δg

δϕ(x)

δf

δπ(x)

)
(7.18)

en perfecta simetría espacio-temporal 3 e independiente de cómo uno folie el espacio-
tiempo.

Esta estructura simpléctica extendida permite un tratamiento directo de las si-
metrías del espacio-tiempo: Primero, la Ec. (7.17) implica

{ϕ,P0} = nµ∂µϕ , {π,P0} = nµ∂µπ (7.19)

lo que significa que P0, la transformación de Legendre integrada en el tiempo, genera
traslaciones temporales en la dirección nµ. En este marco, las traslaciones temporales

3Desde la perspectiva matemática podemos identificar el espacio fase resultante Ω con el límite
N → ∞ del producto directo Ω ≡ ω×N

t para ωt el espacio fase tradicional definido en un t fijo.
Esta es precisamente la estructura matemática convencionalmente aplicada a campos en el espacio
de tal manera que ωt ≡ ω×M

tx para M rebanadas espaciales y ωtx el espacio fase de un oscilador
individual. En resumen, podríamos escribir Ω ≡ ω×N ·M

tx .
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son geométricas e independientes de la evolución. Esto se refleja en el hecho de que
P0 genera las transformaciones y no el Hamiltoniano (este punto se discute más
adelante cuando se considera la evolución en la Sección 7.3.4).

Para nµ = (1, 0, . . . ) también podemos escribir {ϕ,Pµ} = ∂µϕ para Pµ =∫
dd+1x π∂µϕ que para µ = 1, . . . , d + 1 es simplemente el momento convencional

llevado por el campo integrado en el tiempo. Además,

Lµν :=
∫
dd+1x π(xµ∂ν − xν∂µ)ϕ (7.20)

genera las transformaciones de Lorentz

{Lµν , ϕ} = −(xµ∂ν − xν∂µ)ϕ (7.21a)

{Lµν , π} = −(xµ∂ν − xν∂µ)π . (7.21b)

A través de la exponenciación de las transformaciones anteriores, se obtienen así
transformaciones de Poincaré generales finitas. En particular, se recuperan las pro-
piedades de transformación de ϕ y π en la Ec. (7.11). La adición de espin es directa
pero introducida en el Apéndice 7.2 por simplicidad.

Para obtener la ley de transformación de nµ de manera similar, se puede definir
una estructura simpléctica adicional: introducimos un momento conjugado κν tal
que

{nµ, κν} = ηµν . (7.22)

Se puede imponer nµnµ − 1 ≈ 0 como una restricción débil. Ahora es factible intro-
ducir lµν = nνκµ − nµκν de tal manera que

{lαβ, nµ} = nαδµβ − nβδµα . (7.23)

Entonces
Jµν := Lµν + lµν (7.24)

genera la transformación completa (7.11). Dentro de este formalismo, afirmar que
una teoría es invariante de Lorentz es explícito 4 (ver, por ejemplo, la acción en la
Ec. (7.16)):

{S,Jµν} = 0 . (7.25)

Nótese que {ϕ, nµ} = {ϕ, κµ} = {π, nµ} = {π, κµ} = 0, de tal manera que {Lµν , lαβ} =

0, en otras palabras, las álgebras son independientes. Por otro lado, S tiene un CP no
4Notemos que agregar en un campo escalar un término

∫
dd+1xλ(x)ϕn(x) con λ(x) ̸= λ(Λx)

o en un campo espinorial agregar
∫
dd+1xψ†ψ (ver Apéndice B) llevan a {Jµν ,S} ̸= 0. Esto es,

términos que no respetan la simetría de Lorentz en el sentido usual, arruinan la condición.
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nulo con todas las variables excepto con nµ, en particular {S,Lµν} = −{S, lµν} ≠ 0.
Además, se debe notar que los generadores Jµν son independientes del Hamilto-
niano, lo que significa que hemos separado exitosamente las transformaciones de
coordenadas de la dinámica.

La introducción de una estructura simpléctica asociada con nµ proporciona la
pieza final para un tratamiento elegante de las simetrías del espacio-tiempo dentro
de un marco de espacio de fases. Sin embargo, a primera vista, parece injustificado
físicamente ya que no se ha introducido ninguna dinámica asociada. Al reflexionar,
situaciones similares surgen en muchos escenarios físicos: considere, por ejemplo, una
partícula en un campo magnético externo B con acoplamiento Hint ∝ −B ·M para
M el vector del momento magnético asociado con la partícula. Está claro que Hint

exhibe simetría rotacional, incluso si no asociamos una estructura simpléctica con B

que implemente rotaciones. Sin embargo, podemos tratar B como un campo diná-
mico formal en un espacio de fases adicional y definir un operador de rotación total
Rtot que también rota B tal que {Hint, R

tot} = 0, incluso si no aparecen términos
dependientes del momento en Hint ({Hint,B} = 0). La descripción Hamiltoniana
genuina del campo tiene una estructura simpléctica asociada que puede coincidir
con la formal, pero se puede ignorar cuando se trata como una fuente externa.

Podemos especular que una situación similar puede surgir en investigaciones fu-
turas con S → S + Snµ para Snµ incluyendo κµ justo como Hint → Hint +HAµ hace
dinámicos a Aµ y B. Aunque hemos introducido un espacio de fases de foliación
por conveniencia matemática, una teoría de una métrica dinámica y foliaciones aso-
ciadas puede proporcionar una descripción dinámica genuina de nµ (ver también la
discusión cuántica en las secciones 7.4.2-7.5). Por el contrario, las consideraciones
en este trabajo apuntan a su existencia.

7.3.4 Ecuaciones de movimiento a partir de corchetes exten-

didos

En el nuevo marco surge una imagen “atemporal”: todas las variables espacio-temporales,
incluyendo t ≡ xµnµ, son índices de sitio de campos independientes en el espacio-
tiempo. No hay ninguna variable que parametrice la evolución y no se asume una
estructura causal a priori. Sin embargo, cualquier información dinámica debe codi-
ficarse dentro del espacio fase extendido dado que ya contiene al “tiempo”.

Notablemente, la nueva estructura simpléctica proporciona una forma elegante
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de introducir evolución: la definición de los corchetes extendidos produce

∂H
∂π

=
{
ϕ,
∫
dd+1xH

}
, −∂H

∂ϕ
=
{
π,
∫
dd+1xH

}
. (7.26)

Como consecuencia, la acción S definida en (7.8) surge naturalmente como la dife-
rencia entre las Ecs. (7.26) y (7.19) de tal manera que

nµ∂µπ +
∂H
∂ϕ

= {π,S} (7.27a)

nµ∂µϕ− ∂H
∂π

= {ϕ,S} . (7.27b)

Cuando se igualan a cero, son precisamente las ecuaciones de Hamilton. Podemos
definir un “subespacio físico” (o subvariedad) como

{π(x),S} = {ϕ(x),S} ≈ 0 , (7.28)

impuesto para todos los puntos del espacio-tiempo x. En esta formulación, estas
deberían considerarse igualdades débiles con la evolución emergiendo de las propias
restricciones. Imponen una igualdad entre desplazamientos en el tiempo, como los
generados por P0 (Ecs. (7.19)), y la transformación generada por el Hamiltoniano.

Por ejemplo, para el campo de Klein-Gordon la acción está dada por (7.16) que,
con la adición de un término potencial H → H + V(ϕ), produce

{π(x),S} = nµ∂µπ − (nµnν − ηµν)∂µ∂νϕ+m2ϕ+ V ′(ϕ)

{ϕ(x),S} = nµ∂µϕ− π . (7.29)

Cuando estos se igualan a cero se convierten en las ecuaciones de Hamilton (ver
(7.9)) implicando

(∂µ∂
µ +m2)ϕ+ V ′(ϕ) = 0 . (7.30)

Es sugestivo notar que la relación π = nν∂νϕ es compatible con

{κµ,L(x)} = (π(x)− nν∂νϕ(x))∂µϕ(x) ≈ 0 (7.31)

con L la densidad Lagrangiana en (7.16) (tal que S =
∫
dd+1xL(x)). Entonces, ya

que {nµ,S} = 0 se cumple trivialmente, mientras que {κµ,S} ≈ 0 sigue de (7.31),
cualquier función en el espacio de fases de foliación “conmuta” con la acción (en el
subespacio físico). Si se agregara alguna parte dinámica Snµ a S (S → S + Snµ),
la acción de foliación Snµ determinaría las ecuaciones de movimiento de la foliación
independientemente de la acción original de los campos de materia S.
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Algunos comentarios sobre las unidades son necesarios: los campos ahora tienen
unidades reescaladas con un factor T−1/2 debido al delta de tiempo adicional. Esto
significa que se puede introducir un parámetro de tiempo τ para multiplicar ϕ, π
por

√
τ . Para acciones cuadráticas esto significa un factor general τ de tal manera

que τS es adimensional de acuerdo con una interpretación de S como generador
en la “evolución τ ”. Las Ecuaciones (7.28) entonces pueden identificarse como las
condiciones que definen constantes de movimiento τ y el CP extendido (7.17) con
un álgebra canónica a “tiempos τ ” iguales en una teoría d+ 2. Sin embargo, nótese
que esta analogía no se extiende al álgebra de foliación. Consideramos que es más
apropiado tratar el formalismo como describiendo teorías D = d + 1 a través de
un nuevo conjunto de reglas en lugar de teorías en d + 2 en un enfoque canónico
(ver sin embargo los comentarios en la sección 7.4.3). En general, si ϕ, π satisfacen
las ecuaciones de movimiento que surgen de un S reescalado, entonces

√
τϕ,

√
τπ

tienen las unidades correctas y satisfacen las ecuaciones de movimiento convencio-
nales. En esta sección, simplemente establecemos τ ≡ 1 pero este parámetro tiene
consecuencias importantes en el caso cuántico.

Mencionemos que en el Apéndice 7.2 también se desarrolla el caso de la acción
de Dirac. Allí mostramos cómo recuperar la ecuación de Dirac a partir de las res-
tricciones previas. Cabe destacar que la ecuación en su forma Hamiltoniana exhibe
explícitamente la covarianza de Lorentz para nµ general. Esto concuerda con la Ec.
(7.25), que se mantiene para la acción de Dirac y J µν incluyendo el momento angular
de spin.

También notemos que el presente formalismo se puede aplicar a cualquier sistema
clásico y no solo a campos: uno “promueve” variables qi, pj que satisfacen {qi, pj} =

δij a qi(t), pj(t) tal que

{qi(t), pj(t′)} = δijδ(t− t′) . (7.32)

Para recuperar la evolución, entonces se introduce una acción S =
∫
dt (piq̇i −H) y

se imponen

{qi,S} = q̇i −
∂H

∂pi
≈ 0 (7.33a)

−{pi,S} = ṗi +
∂H

∂qi
≈ 0 . (7.33b)

Se reconocen nuevamente las ecuaciones de Hamilton impuestas como restricciones.

Es fácil ver que los subespacios físicos son invariantes bajo las simetrías de trans-
formación de la acción. De hecho, el generador G de cualquier simetría satisface
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{G,S} = 0. Entonces, para una función F [ϕ, π] (o F [q, p]) dentro del subespacio
físico, la identidad de Jacobi implica

{F,S} = 0 ⇒ {{G,F},S} = 0 , (7.34)

es decir, el F transformado también está en el subespacio físico. Un ejemplo es
proporcionado por la simetría de Lorentz para el campo escalar, como se describe
en (7.25).

127



Capítulo VII. Mecánica cuántica y clásica en el
espacio-tiempo con foliación dinámica

7.4 Mecánica cuántica en el espacio-tiempo

7.4.1 Cuantización extendida

Figura 7.4.1: Espacio fase estándar y cuantización versus el nuevo enfoque en el espacio-
tiempo. a) En la mecánica clásica Hamiltoniana, se define una estructura simpléctica para una
elección fija de tiempo. La cuantización se realiza entonces en una hipersuperficie d dimensional
dada promoviendo ϕ(x) y π(x) a operadores cuánticos. Una base posible del espacio de Hilbert
resultante está dada por configuraciones de campo en la hipersuperficie, denotadas por |ϕ(x)⟩. b) En
el enfoque espacio-temporal, tanto los corchetes de Poisson como los conmutadores son simétricos
en el espacio-tiempo y la foliación es “dinámica”. Una base del espacio de Hilbert está dada por el
producto tensorial entre configuraciones espacio-temporales del campo |ϕ(x)⟩ y los estados propios
de la foliación |n⟩ ≡ |n0, n1, . . . nd⟩. Operadores generales, como las acciones cuánticas del espacio-
tiempo y los operadores de escalera resultantes (asociados con partículas “off-shell” extendidas) son
no separables en la partición materia-foliación. Sus características covariantes explícitas se hacen
factibles solo en el espacio de Hilbert completo.

El primer paso en la cuantización canónica convencional de una teoría Hamil-
toniana es promover los corchetes de Poisson canónicos a conmutadores canónicos.
Imponemos lo mismo a la álgebra extendida (7.17) implicando (establecemos ℏ ≡ 1)

[ϕ(x), π(y)] = iδ(d+1)(x− y) , (7.35)

con los demás conmutadores anulándose (también hemos asumido una álgebra bo-
sónica). Entonces, cualquier función de las variables del espacio de fases también se
promueve a un operador (a menos de las ambigüedades de ordenamiento usuales).
Notablemente, en el esquema extendido esto significa que no solo el Hamiltoniano,
sino también la acción S expresada como en (7.8), ahora se promueven.

Es importante señalar que ϕ(x) = ϕ(t,x) no es el operador de campo evolucio-
nado en el esquema de Heisenberg, sino que para cada tiempo se presenta un campo
independiente y un momento asociado. En particular,

[ϕ(t,x), ϕ(t′,x′)] = 0 (7.36)
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incluso para regiones causalmente conectadas. Esto es una declaración más fuerte
que la microcausalidad; de hecho, no hay conexión causal entre campos (y momen-
tos) en diferentes puntos del espacio-tiempo. En consecuencia, una base posible para
este espacio de Hilbert está proporcionada por estados |ϕ(x)⟩ que representan con-
figuraciones de campo en espacio-tiempo, de tal manera que

ϕ̂(x)|ϕ(x)⟩ = ϕ(x)|ϕ(x)⟩ , (7.37)

con ⟨ϕ(x)|ϕ′(x)⟩ = δ∞[ϕ(x)−ϕ′(x)] equivalente al límite continuo de
∏

x=(t,x) δ[ϕx−
ϕ′
x]. También podemos considerar estos estados como estados de “trayectorias cuán-

ticas” de estados propios de campo convencionales en un tiempo dado |ϕ(x)⟩ en el
sentido de que |ϕ(x)⟩ ≡ ⊗t|ϕt(x)⟩ (con ⟨ϕ(x)|ϕ′(x)⟩ = δ∞[ϕ(x)−ϕ′(x)], ver también
[3, 4] para una discusión más detallada). En otras palabras, el espacio de Hilbert
que surge de (7.35) es isomorfo a un producto tensorial de copias en tiempo del
espacio de Hilbert tradicional (esta declaración se vuelve rigurosa solo después de
una discretización adecuada, ver Apéndice 7.4). Esto es válido para una álgebra bo-
sónica, el caso fermiónico se puede desarrollar de manera similar con conmutadores
reemplazados por anticonmutadores.

Como en el caso clásico Hamiltoniano, la ventaja de la álgebra extendida es el
tratamiento explícito y geométrico de las simetrías del espacio-tiempo. De hecho,
con estas definiciones se puede promover P0 y Lµν a operadores de tal manera
que se obtiene una versión cuántica de las Ecs. (7.19, 7.21) reemplazando { , } →
−i[ , ]. Entonces, por ejemplo, P0 genera traslaciones geométricas en el tiempo como
eiτP0ϕ(x)e−iτP0 = ϕ(x0 + τ,x) para τ ∈ R y nµ = ηµ0.

Además, promovemos (7.22) a

[nµ, κν ] = iδµν (7.38)

como un álgebra independiente de los campos de materia, de tal manera que

[ϕ(x), nµ] = [ϕ(x), κµ] = [π(x), nµ] = [π(x), κµ] = 0 . (7.39)

Ahora podemos introducir el operador de momento angular total Jµν = Lµν + lµν ,
como en la Ec. (7.24), con tanto L como l ahora promovidos a operadores. Entonces,
dentro del espacio de Hilbert completo podemos escribir la transformación de los
operadores ϕ, nµ y π de forma unificada

U †(Λ)ϕ(x)U(Λ) = ϕ(Λx) (7.40a)

U †(Λ)nµU(Λ) = Λµνn
ν (7.40b)

U †(Λ)π(x)U(Λ) = π(Λx) , (7.40c)
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donde
U(Λ) := exp(iωµνJ µν/2) (7.41)

es el operador unitario de Lorentz correspondiente a la transformación Λ = eω

(x′µ = Λµνx
ν). Las Ecuaciones (7.40) son, por supuesto, la versión cuántica de (7.11).

Cabe destacar que la definición de U(Λ) no involucra al Hamiltoniano, lo que significa
que es independiente de la teoría.

La versión final del espacio de Hilbert que incluye la “foliación cuántica” se mues-
tra en la Figura 7.4.1 y tiene una base de la forma

{|ϕ(x)⟩ ⊗ |n⟩} (7.42)

para n̂µ|n⟩ = nµ|n⟩ (|n⟩ ≡ |n0 . . . nd⟩) y

U(Λ)|ϕ(x)⟩ ⊗ |n⟩ = |ϕ(Λ−1x)⟩ ⊗ |Λ−1n⟩ . (7.43)

Por supuesto, en el sector de foliación son posibles estados más generales |ψ⟩ =∫
dnψ(n)|n⟩ (dn ≡ dn0 . . . dnd), incluyendo, por ejemplo, estados propios de mo-

mento, estados coherentes y estados de Fock. También se puede implementar la
condición nµnµ ≈ 1 como la restricción cuántica (nµnµ− 1)|ψ⟩ = 0 que solo permite
la superposición de estados con n2 = 1 (asumido implícitamente a lo largo de esta
sección).

Notablemente, un estado general mostrará claramente el entrelazamiento entre la
partición materia-foliación. Esta característica emerge naturalmente del formalismo
incluso cuando no se ha impuesto ningún mecanismo físico (no hemos considerado
interacciones entre los sectores materia-foliación). En particular, la acción cuántica
S no es un operador producto, sino más bien un operador tipo “control”, es decir,

S ≡ S(n̂µ) =
∫
dnS(nµ)⊗ |n⟩⟨n| . (7.44)

Este hecho tiene consecuencias que se discuten en las secciones 7.4.2 y 7.5. Por el
momento, destacamos que es precisamente debido a esta estructura que podemos
escribir

[S,Jµν ] = 0 , (7.45)

indicando la covarianza de la acción explícitamente mientras

[S,Lµν ] = −[S, lµν ] ̸= 0 . (7.46)

Notemos también que el Hilbert de n es isomorfo a una partícula d + 1. Curio-
samente, esta observación sugiere posibles conexiones con las recientes transforma-
ciones de Marcos de Referencia Cuánticos [119] donde se define la noción de marco
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de reposo de la partícula cuántica (sin embargo, la restricción enfatiza diferencias
matemáticas e interpretativas importantes, al menos en esta etapa de desarrollo).

Es importante mencionar que en el contexto del enfoque de historias consistentes
a la Mecánica Cuántica [24], también se ha reportado la necesidad de una foliación
cuántica [133], un resultado que desafortunadamente no ha atraído mucha atención o
desarrollo adicional. Aunque el tratamiento en [133] ha sido diferente (tanto clásica-
mente como en su versión cuántica) las razones para su introducción son las mismas:
un tratamiento adecuado de las transformaciones de Lorentz en una QFT con ál-
gebra extendida (también una característica del enfoque de Isham para historias
continuas [110]).

7.4.2 Partículas Extendidas

Habiendo introducido el marco cinemático adecuado, comenzamos a discutir cómo
introducir la dinámica dentro del formalismo. Una observación básica es que, dado
que los campos en diferentes puntos del espacio-tiempo son independientes, no se
asume causalidad a priori, y la evolución no puede corresponder a una transfor-
mación unitaria parametrizada como de costumbre: aunque “t” es un parámetro,
su significado es completamente diferente que en QFT convencional. Aquí se trata
como un índice de “sitio” al igual que “x”. Sin embargo, nos gustaría recuperar las
mismas predicciones de las MC tradicional con respecto a la evolución, al menos bajo
suposiciones razonables como Hamiltonianos convencionales y foliaciones “clásicas”
(posponemos la mayoría de la discusión sobre efectos relacionados con una foliación
cuántica a la sección 7.5).

Como sugiere el caso clásico, la evolución debería surgir de la acción S, ahora un
operador cuántico. Consideremos como ejemplo concreto la acción de Klein-Gordon
(7.16) con ϕ, π, nµ operadores. Discutamos primero su diagonalización. Siendo un
operador cuadrático para cada nµ fijo (ver Ec. (7.44)) su forma diagonal se logra
fácilmente: expandimos los campos como

ϕ(x) =

∫
dDp

(2π)D
1√

2Ep(n)

(
a(p)e−ipx + h.c.

)
(7.47a)

π(x) =

∫
dDp

(2π)D
(−i)

√
Ep(n)

2

(
a(p)e−ipx − h.c.

)
(7.47b)

para a†(p), a(p) operadores de creación (aniquilación) extendidos que satisfacen

[a(p), a†(p′)] = (2π)(D)δ(D)(p− p′) , (7.48)

131



Capítulo VII. Mecánica cuántica y clásica en el
espacio-tiempo con foliación dinámica

con otros conmutadores anulándose. En estas expresiones

D = d+ 1 , (7.49)

y hemos definido
Ep(n) :=

√
pµpν(ηµν − nµnν) +m2 (7.50)

para nµ un operador: una función F de los operadores nµ debería interpretarse
como F [n] ≡

∫
dnF [n]|n⟩⟨n| (para simplicidad, aquí hemos trabajado dentro del

subespacio (nµnµ − 1)|ψ⟩ = 0; ver sección 7.5 y Apéndice 7.1).
En términos de estos operadores de escalera extendidos, la acción (7.16) tiene la

forma normal
S =

∫
dDp

(2π)D
(
pµnµ − Ep(n)

)
a†(p)a(p) , (7.51)

donde hemos omitido una “constante” relacionada con la energía del vacío (curio-
samente, el término que surge como de costumbre del ordenamiento normal de los
operadores sigue siendo un operador en el sector de foliación; ver sección 7.5). No-
tar las dos contribuciones diferentes a las “frecuencias normales” pµnµ − Ep(n), con
Ep(n) asociado con la densidad Hamiltoniana H (ver también sección 7.5) mientras
que

P0 =

∫
dDp

(2π)D
pµnµ a

†(p)a(p) . (7.52)

Se puede demostrar que esta forma normal de P0 no es única [3]. Para nµ ≡ ηµ0 uno
tiene pµnµ −Ep(n) → p0 −

√
p2 +m2, es decir, Ep(n) ≡ Ep =

√
p2 +m2 la energía

relativista convencional.
La diagonalización previa de S imita las expresiones de las QFT convencionales

respecto a la diagonalización de un Hamiltoniano libre en d = D − 1 dimensiones.
Sin embargo, se deben notar diferencias importantes: la expansión de los campos en
operadores de partículas es completamente off-shell, con p0 no relacionado con p. Sin
embargo, la cantidad Ep(n) que aparece en la forma normal de la parte Hamiltoniana
de S es positiva para todos p, permitiendo la expansión (7.47). La positividad sigue
de la Ec. (7.14) que implica pµpµ(ηµν − nµnν) =

∑
i(pµn

µ
i)
2.

Además, en capa de masa, es decir, para p0 = Ep =
√

p2 +m2 un cálculo directo
produce Ep(n) = EΛp para Λ definido como la transformación de Lorentz que lleva
un nµ normalizado a la dirección de tiempo “canónica” nµ = ηµ0. En otras palabras,
Ep(n) en capa de masa corresponde a la energía medida por el observador con eje
nµ.

Un requisito básico de consistencia para las partículas extendidas, en general
fuera de la capa de masas, es que diferentes observadores inerciales coincidan en su
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noción (por ejemplo, su número) y propiedades (tras transformar sus momentos).
Para que esto se cumpla, en consistencia con las reglas de transformación de los
campos y su expansión en modos extendidos, es crucial que nµ sea un operador tal
que

U †(Λ)Ep(n)U = Ep(Λn), . (7.53)

De hecho, al notar que Ep(Λ−1n) = EΛp(n) y que dDp es una medida invariante, se
encuentra fácilmente

U †(Λ)a(p)U(Λ) = a(Λp) . (7.54)

En resumen, las partículas extendidas transforman adecuadamente (incluso fuera de
capa de masa) porque Ep(n) también se ve afectada por la transformación cuántica.
Esto requiere un nµ cuántico.

Se puede obtener más intuición notando que esto requiere [a(p), lαβ] ̸= 0, lo cual
solo es posible si los operadores de creación/aniquilación actúan de manera no trivial
en el espacio de Hilbert de la foliación. Esto se puede ver explícitamente invirtiendo
las relaciones (7.47). El resultado es

a(p) =

∫
dDx eipx

(√Ep(n)

2
ϕ(x) +

i√
2Ep(n)

π(x)
)
, (7.55)

donde recordamos que nµ es un operador y como consecuencia [a(p), κα] ̸= 0. La
noción misma de partícula cuántica, como una excitación de los campos (extendidos),
se vuelve inseparable de la foliación cuántica. Revisitamos y expandimos este punto
en la sección 7.5.

Ahora volvemos a la noción de subespacio físico sugerida por la discusión clásica
de la sección 7.3.4. Utilizando la versión clásica de la expansión (7.47), se puede
mostrar que las restricciones (7.28) impuestas en todos los tiempos son equivalentes
a {S, a(p)} ≈ 0 impuestas para todos los p (y su conjugado). Podemos imponer la
mitad de estas infinitas restricciones a nivel cuántico exigiendo que los estados físicos
sean aniquilados por las condiciones, es decir,

[S, a(p)]|Ψ⟩phys = 0, . (7.56)

Esto requiere que las únicas partículas presentes en el subespacio físico sean aquellas
en capa de masas, como se sigue de [S, a(p)] = −[pµnµ − Ep(n)]a(p) que solo se
anula para p0 = Ep. Una partícula en capa de masa es física en cualquier marco de
referencia como se sigue de [Jµν ,S] = 0 y la identidad de Jacobi.

En este caso libre simple, es directo recuperar información dinámica de los estados
físicos. Por ejemplo, para teorías cuadráticas bajo una traslación en el tiempo, los
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operadores de escalera en la capa de masas “se mueven a través del tiempo” como si
estuvieran evolucionando. Este hecho puede emplearse para obtener amplitudes de
transición convencionales a partir del formalismo extendido, como se muestra en [3].
Otra característica interesante a notar es que los estados de una sola partícula (sp)
tienen la forma de los estados de Page y Wootters (PW) [14, 29], como se muestra
en [2, 3, 36]. En este sentido, se puede decir que las excitaciones de los campos, en
su enfoque extendido, son partículas formuladas como en los formalismos inspirados
en el tiempo/la cuerda cuántica [46].

En el caso libre, el subespacio físico tiene una interpretación clara como el espacio
lineal de partículas en capa de masas (ver también los resultados en [1, 2] respecto a
la normalización de estados). No obstante, a medida que las interacciones entran en
juego, la noción de partícula se vuelve menos clara, al igual que el significado de los
subespacios físicos. En lo siguiente, desarrollamos un enfoque mucho más poderoso
para mapear cantidades extendidas a la evolución cuántica estándar que se sostiene
para teorías con interacciones. El concepto de subespacio físico aparece nuevamente
de manera natural al considerar procesos de dispersión en los cuales las partículas
externas son consideradas (hablando no estrictamente) como asintóticamente libres
en el sentido usual.

7.4.3 Correladores en el espacio tiempo y mapeo a la MC

convencional a foliación fija

Además de las partículas, otro elemento clave de las teorías cuánticas de campos (y
la MC en general) son los correladores. Los correladores convencionales están asocia-
dos con separaciones espaciales entre operadores. Para operadores hermíticos, tales
correladores pueden interpretarse como el valor medio de un observable. En cambio,
los correladores que involucran observables separados temporalmente no correspon-
den a operadores hermíticos, pero usualmente aparecen asociados con amplitudes
de transición, por ejemplo, en teoría de perturbaciones. En esta sección, mostramos
de manera completamente general cómo el formalismo extendido permite recuperar
ambos de una manera unificadora. Esto introduce una correspondencia general entre
la versión espacio-temporal de la MC y el enfoque convencional.

Recordemos primero que los operadores cuadráticos están completamente de-
terminados por sus contracciones básicas (teorema de Wick). En el caso diagonal,
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esencialmente se tiene el correlador

⟨a†kal⟩ :=
Tr
[
exp
(
−
∑

i λia
†
iai

)
a†kal

]
Tr
[
exp
(
−
∑

i λia
†
iai

)] =
1

exp(λk)− 1
δkl . (7.57)

Aquí los índices k, l están “separados espacialmente”, en el sentido de que los opera-
dores a†k, al no evolucionan en el marco de referencia dado y corresponden a modos
ortogonales. También hemos asumido una álgebra bosónica [ak, a

†
l ] = δkl, el caso fer-

miónico es análogo. Similarmente, uno podría considerar en cambio los correladores
de posición-momento ⟨qiqj⟩ y ⟨pipj⟩ para [qi, pj] = iδij, que corresponden al valor
medio de operadores hermiticos.

El álgebra extendida (7.35) nos permite aplicar la ecuación (7.57) tanto a índi-
ces espaciales como temporales. Equivalentemente, podemos aplicarla a correladores
fuera de capa de masas, como ahora lo permite (7.48). Notablemente, cuando la usa-
mos en conjunto con un operador de acción cuadrática S, e “insertamos” operadores
en diferentes puntos en el tiempo, los propagadores de la MC convencional emergen
naturalmente. Inversamente, uno podría “redescubrir” el operador S como el único
operador cuadrático cuyas contracciones espacio-temporales son los propagadores
libres convencionales.

Este resultado, recientemente probado en [4] (capítulo VI) sin nµ, proporciona
un mapa general entre la MC convencional en d dimensiones y la formulación ex-
tendida con álgebras en D = d + 1 dimensiones. También lleva directamente a una
redefinición de la formulación de integrales de camino como una traza que involucra
la acción cuántica S. Aquí proporcionamos una nueva derivación del mapa especial-
mente adecuada para teorías de campos, revelando así nuevas características. En la
siguiente subsección 7.4.4, lo desarrollamos aún más proporcionando una interpreta-
ción en términos de estados generalizados y “pseudo” correlaciones. En esta sección,
consideramos un nµ clásico. La extensión a un nµ cuántico se desarrolla en la sección
7.5, basándose en el caso de foliación clásica.

Queremos exponenciar el operador de acción, que no es adimensional, por lo
que introducimos una escala de tiempo o energía inversa τ (considerada como un
parámetro real positivo por conveniencia) y definimos Sτ = τS en el caso libre.
Comentarios adicionales sobre esta nueva “coordenada” se hacen al final de esta
sección, mientras que un enfoque complementario de “slicing de tiempo” se presenta
en el Apéndice 7.4. Similarmente, para considerar campos con unidades correctas,
agregaremos un factor

√
τ para cada operador. Indicamos los correladores extendidos
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de eiSτ como
⟨O⟩ := Tr eiSτO

Tr eiSτ
. (7.58)

Al reconocer que para un S cuadrático la ecuación (7.58) puede considerarse
como un caso particular de (7.57), se puede obtener fácilmente cualquier correlador
espacio-temporal. Consideramos el ejemplo de la acción de Klein-Gordon que en su
forma diagonal (7.51), caracterizada por partículas fuera de la capa de masas, nos
lleva a

⟨a†(p)a(k)⟩ =
Tr
[
exp

{
iτ
∫

dDp′

(2π)D
(p′0 − Ep’ + iϵ)a†(p′)a(p′)}a†(p)a(k)

]
Tr
[
exp

{
iτ
∫

dDp′

(2π)D
(p′0 − Ep’ + iϵ)a†(p′)a(p′)

}]
=

1

exp{−iτ(p0 − Ep + iϵ)} − 1
(2π)Dδ(D)(p− k) , (7.59)

donde hemos reemplazado Ep → Ep−iϵ y asumido por simplicidad nµ = ηµ0 (el caso
general corresponde a p0−Ep → pµnµ−Ep(n)). Es interesante considerar el caso de
pequeño τ de esta expresión. Uno obtiene ⟨a†(p)a(k)⟩ = 1

τ
i

(p0−Ep+iϵ)
(2π)Dδ(D)(p −

k) +O(τ) cuya transformada de Fourier en p0 produce una función de Heaviside en
la variable conjugada, es decir, en la variable de tiempo.

Es importante notar que (7.59) no puede corresponder a un correlador genuino
(teniendo la forma “espacial” de la Ec. (7.57)) en la Mecánica Cuántica tradicional,
esencialmente porque el formalismo extendido tiene índices extra. En otras palabras,
dado que el tiempo es un “índice de sitio” que indica operadores de campo indepen-
dientes, p0 también se convierte en una etiqueta y denota operadores de escalera
independientes: la mayoría de los correladores en el espacio de Hilbert extendido no
corresponden a una única “contracción” de la Mecánica Cuántica tradicional. Solo
para aquellos con operadores insertados en una única rebanada de tiempo es posible
una identificación uno a uno. Como mostraremos ahora, la evolución emerge de esta
aparente “redundancia”.

La Ec. (7.59) es el correlador básico en el espacio de momentos “off-shell” a partir
del cual se pueden obtener correladores localizados en espacio-tiempo. Estos últimos
se definen por la expansión (7.47). En particular, es sencillo calcular

⟨ϕ(x)ϕ(y)⟩ = 1

τ

∫
dDp

(2π)D
i

p2 −m2 + iϵ
e−ip(x−y) +O(τ) (7.60)

donde usamos i
p0−Ep+iϵ

− i
p0+Ep−iϵ ≡ 2Ep

i
p2−m2+iϵ

y estamos considerando un pequeño
τ . Uno reconoce inmediatamente la expresión del propagador de Feynman lo que nos
permite escribir

ĺım
τ→0

⟨
√
τϕ(x)

√
τϕ(y)⟩ = ⟨0|T̂ ϕH(x)ϕH(y)|0⟩ . (7.61)
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En el lado derecho, ϕH(x, t) := eiHtϕ(x)e−iHt es el operador de campo convencional
(no extendido) en el esquema de Heisenberg y |0⟩ es el estado fundamental usual
del Hamiltoniano de Klein-Gordon libre H, mientras que T̂ denota el ordenamiento
temporal. En el lado izquierdo, los operadores no evolucionan con algún operador
de evolución, en su lugar, su “posición en el tiempo” ha determinado el grado de
evolución: el lado izquierdo de (7.61) siempre puede entenderse como un correlador
como el de la Ec. (7.57), incluso para |x − y| tipo tiempo en cuyo caso emerge
la evolución. Nótese también que en lugar de considerar el límite de pequeño τ

(positivo), lo que refleja la intuición de un espacio-tiempo discreto (ver Apéndice
7.4), se podría considerar integrar alrededor de loops en el plano complejo y explotar
la estructura de polos de los correladores.

Los resultados anteriores también definen el tratamiento adecuado de teorías de
campo interactuantes: consideremos Sτ → Sτ + Sint[

√
τϕ] para Sint[

√
τϕ] teniendo

la forma funcional clásica en los campos, por ejemplo, para una acción clásica Sint =

−
∫
dDx λ

4!
ϕ4 se tiene Sint = −

∫
dDx λ

4!
τ 2ϕ4. Entonces en el límite de pequeño τ , el

correlador “interactuante” de campos, definido al considerar toda la acción en (7.58),
tiene la siguiente expansión:

ĺım
τ→0

⟨
√
τϕ(x)

√
τϕ(y)⟩int =

⟨0|T̂ eiSint[ϕI ]ϕI(x)ϕI(y)|0⟩
⟨0|T̂ eiSint[ϕI ]|0⟩

. (7.62)

La igualdad es una consecuencia directa de (7.61) y el teorema de Wick (para
“estados” Gaussianos) aplicado a la parte libre de la acción, con la parte inter-
activa expandida perturbativamente para un pequeño τ . Por esta razón, la evo-
lución que emerge es la que correspondería al esquema de interacción, es decir,
ϕI(t,x) = eiH0tϕ(x)e−iH0t para H0 el Hamiltoniano de Klein-Gordon libre. Uno
también reconoce en el lado derecho de (7.62) la expansión perturbativa del co-
rrelador interactuante ⟨GS|T̂ ϕH(x)ϕH(y)|GS⟩, con |GS⟩ el estado fundamental del
Hamiltoniano interactuante. Asumiendo como es habitual la validez de la teoría de
perturbaciones, concluimos que

ĺım
τ→0

⟨
√
τϕ(x)

√
τϕ(y)⟩int = ⟨GS|T̂ ϕH(x)ϕH(y)|GS⟩ . (7.63)

A partir de estas expresiones se pueden calcular las amplitudes de dispersión co-
mo es habitual, por ejemplo, utilizando la fórmula de reducción LSZ [114]. Se puede
mostrar que la transformada de Fourier en d+1 dimensiones involucrada se traduce
en insertar operadores de escalera en los correladores. En otras palabras, las amplitu-
des de dispersión son proporcionales a correladores de la forma ⟨

∏
i a(ki)

∏
j a

†(pj)⟩int

para pj (ki) los momentos “entrantes” (“salientes”) (ver también [4] y sección 7.4.4).
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Nótese también que para un nµ fijo pero general solo es necesario hacer el reem-
plazo p0−Ep → pµnµ−Ep(n) en la Ec. (7.59). Las Ecuaciones (7.60-7.63) permanecen
sin cambios.

Antes de continuar, nos gustaría señalar que las similitudes entre las expresiones
anteriores y las de PI no son una coincidencia. Mientras que los resultados anteriores
se han obtenido a partir de técnicas del espacio de Hilbert, asociadas con el álgebra
de operadores, y por lo tanto son independientes del enfoque de Feynman, uno puede
evaluar las trazas anteriores explícitamente en una base dada. Si se elige la base de
configuraciones de campo del espacio-tiempo |ϕ(x)⟩ (ver Ec. (7.37)) emergen PIs de
Feynman, como se muestra en [4]. En este sentido, el formalismo está embebiendo
la formulación PI en un espacio de Hilbert (véase el capítulo VI).

También es interesante discutir cómo el formalismo clásico extendido de la sección
anterior se puede recuperar en el límite ℏ → 0. En primer lugar, notemos que

[ϕ(x),Sτ ] = iϕ̇(x)− [ϕ(x),

∫
dDzH]

−[π(x),Sτ ] = iπ̇(x) + [π(x),

∫
dDzH]

(7.64)

tienen la forma de ecuaciones de Heisenberg si se igualan a cero (y absorbiendo los
factores τ en los campos). Notablemente, dado que la ciclicidad de la traza implica
⟨[. . . ,Sτ ]⟩ ∝ Tr{eiSτ [. . . ,Sτ ]} = 0 para cualquier operador, tenemos ⟨[ϕ(x),Sτ ]⟩ =

⟨[π(x),Sτ ]⟩ = 0, lo cual, según nuestro mapa (válido para pequeños τ), concuerda
con las ecuaciones de Heisenberg en la Mecánica Cuántica convencional. Por otro
lado, siguiendo un argumento similar al de la formulación estándar de PI, para ℏ → 0

las únicas contribuciones a la traza vienen esencialmente de configuraciones clásicas
extremas de la acción (ver también [4]). Al mismo tiempo, dado que la forma de los
conmutadores extendidos y los PB extendidos es la misma, podemos escribir

0 = ⟨[. . . ,Sτ ]⟩
ℏ→0∼ {. . . ,S}|En capa de masa (7.65)

donde el conmutador se aplica a cualquier operador cuántico extendido, y el CP a la
función asociada del espacio de fases extendido (el ordenamiento se vuelve irrelevante
en el límite de pequeño ℏ). Este último se calcula primero según el álgebra extendida
(7.17) y luego se evalúa en una solución de las ecuaciones de movimiento. Concluimos
que el resultado cuántico ⟨[. . . ,Sτ ]⟩ = 0, junto con las Ecs. (7.27), implican las
ecuaciones de Hamilton para ℏ → 0. Notablemente, emergen como un límite de la
Mecánica Cuántica en el espacio-tiempo a través de los CP extendidos de la mecánica
clásica en el espacio-tiempo.
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Los resultados anteriores establecen una conexión básica entre las QFT exten-
didas y convencionales a temperatura cero (es decir, asociadas con el estado funda-
mental del Hamiltoniano en cuestión). También es interesante mencionar brevemente
cómo surgen los propagadores térmicos para una ventana de tiempo finita de longi-
tud T . Esencialmente, la diagonalización de la acción libre de Klein-Gordon ahora
produce

S =
1

T

∑
n

∫
ddp

(2π)d
(wn − Ep)a

†
n(p)an(p) , (7.66)

para w = 2πn/T , son las frecuencias de Matsubara, que surgen de la diagonalización
de P0. También estamos asumiendo un tiempo compactificado (condiciones periódi-
cas) tal que (7.48) se reemplaza por [an(p), a

†
n′(k)] = Tδnn′(2π)dδd(p − k) mientras

que las expansiones (7.47) se mantienen reemplazando la integral en p0 por una suma
sobre n (con también (2π)−1 → T−1). Si ahora consideramos Ep → −iEp, es fácil
ver que (7.61) se reemplaza por la expansión de Matsubara del correlador (térmico)
[135]. La temperatura correspondiente es β ≡ T .

Si también discretizamos el tiempo en N = T/ϵ pasos, resultados como (7.61)
se vuelven exactos para operadores “insertados” en tiempos conmensurables con ϵ.
También prescindimos de τ que es reemplazado por el intervalo de tiempo ϵ (ver
Apéndice 7.4 para los detalles y la definición de la acción cuántica para el espacio-
tiempo discreto). Además, dado que todos los correladores espaciales se obtienen de
la acción cuántica simplemente considerando, por ejemplo, operadores en la rebanada
inicial

e−βH = Trt̸=0 e
iS , (7.67)

es decir, podemos recuperar el estado térmico convencional de la acción cuántica
considerando una traza parcial sobre todos los tiempos excepto la rebanada inicial
(estamos asumiendo una rotación de Wick de la parte de Hamiltoniano de la acción;
esto no afecta a P0). Aquí β ≡ T . Esto también implica que Z := Tr e−βH = Tr eiS .
Notablemente, en el formalismo extendido se pueden considerar trazas parciales
sobre regiones arbitrarias del espacio-tiempo. En principio, solo aquellas asociadas
con hipersuperficies espaciales corresponden a estados cuánticos convencionales (y
entropías reales, ver sección 7.4.4) pero la traza parcial está bien definida en general
[4].

Finalmente, mencionamos que si uno está interesado en estados (o transiciones)
además de los térmicos o estados fundamentales, estos se pueden especificar agre-
gando un proyector en la “rebanada inicial”, como se desarrolló en [4] y se muestra
en el Apéndice 7.4.
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También mencionemos que en [4] también se ha construido una versión con τ

finito, que puede emplearse para definir rigurosamente el límite τ → 0 (un resultado
que no se requiere aquí). En cambio, para grandes τ se puede reescribir el mapa
como un valor medio asintótico de operadores más complicados (evolucionados con
τ) [4]. El valor medio anterior puede entonces asociarse a una teoría de D+1 = d+2

con volumen del espacio-tiempo ∝ dd+2x = dτdd+1x, esencialmente considerando τ
como un parámetro de evolución en el sentido convencional.

7.4.4 Estados generalizados al espacio-tiempo

Podría argumentarse que el elemento más fundamental del marco matemático de la
Mecánica Cuántica es la noción de estado. Los estados puros convencionales codifican
toda la información sobre un sistema cuántico en un momento dado. El estado,
por lo tanto, se asocia con predicciones físicas en un momento específico, como lo
determinan los axiomas de la MC.

Aunque hemos establecido un mapa general entre cantidades del formalismo ex-
tendido a cantidades que involucran estados convencionales, este mapa depende del
operador eiSτ que claramente no es un estado ni una matriz de densidad 5. Sin
embargo, dado que en principio, todas las predicciones del sistema en diferentes
tiempos se pueden extraer de los correladores en espacio-tiempo, se podría argu-
mentar que alguna noción de “estado en espacio-tiempo” podría asignarse al mapa
anterior. Inversamente, de ser posible definir correctamente una noción de estado en
espacio-tiempo, esta debería estar relacionada con el mapa.

La Ecuación (7.59), que es esencialmente la distribución de Bose-Einstein con el
papel del estado térmico reemplazado por eiSτ , sugiere un curso de acción interesante:
se podría considerar alguna forma de purificación de eiSτ como las consideradas
en “thermofield dynamics” para tratar efectos térmicos en QFTs con técnicas de
temperatura cero [135]. Allí, las trazas térmicas son reemplazadas por valores medios
en estados puros “ampliados” adecuadamente definidos. Esta idea se refuerza aún más
por el hecho de que, considerando S libre como el generador de evolución en τ en una
teoría de d+ 2, eiτS toma el papel de un estado “térmico” de d+ 1 con temperatura
imaginaria −iτ . Además, la Ec. (7.67) muestra explícitamente que la información
de estados térmicos convencionales de d para Hamiltonianos arbitrarios también

5En [4] se muestra que para grandes τ uno puede reescribir el mapa como un valor medio
asintótico de operadores más complicados (evolucionados con τ). Aquí estamos más preocupados
por una noción de estado para τ arbitrario (incluso pequeño).
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puede estar contenida en eiSτ . Aunque un enfoque tipo “thermofield dynamics” -
estrictamente hablando- no es necesario (pues se puede usar el mapa en la forma
de la subsección 7.4.3), este conduce a ideas interesantes sobre la naturaleza del
operador no hermitico eiSτ .

Una “purificación” de eiSτ se obtiene fácilmente considerando dos estados dife-
rentes que viven en un espacio de Hilbert duplicado. Considerando por simplicidad
el límite T → ∞ y la teoría libre de Klein-Gordon, indicamos los operadores del
“entorno” como, por ejemplo, ã(p) (con [ã(p), ã†(k)] = (2π)Dδ(D)(p − k)) y estados
del entorno como |Ψ̃⟩. Entonces, considerando una traza parcial sobre el ambiente
E, podemos expresar eiSτ como un estado generalizado reducido:

eiSτ

Tr eiSτ
= TrE Rτ , Rτ :=

|Ωτ ⟩⟩⟨⟨Ωτ |
⟨⟨Ωτ |Ωτ ⟩⟩

, (7.68)

donde hemos introducido los dos estados puros globales

|Ωτ ⟩⟩ := exp
[ ∫ dDp

(2π)D
eiτ(p

0−Ep+iϵ)/2a†(p)ã†(p)
]
|Ω⟩⟩

|Ωτ ⟩⟩ := exp
[ ∫ dDp

(2π)D
eiτ(Ep−p0+iϵ)/2a†(p)ã†(p)

]
|Ω⟩⟩ , (7.69)

con |Ω⟩⟩ = |Ω⟩|Ω̃⟩ el vacío global y a(p)|Ω⟩ = 0, ã(p)|Ω̃⟩ = 0 ∀p (incluso fuera de capa
de masa). Los estados (7.69) son de hecho vacíos de Bogoliubov entrelazados sistema-
entorno de operadores globales de aniquilación (ver Apéndice 7.3 para detalles y
prueba de (7.68)).

En (7.68) hemos definido el proyector no ortogonal (no hermitiano) R (R2 = R)
con traza 1 (y por lo tanto un único valor propio no nulo 1), de tal manera que
se puede considerar como una generalización de la noción de estado puro. También
notamos que

Tr eiSτ = ⟨⟨Ωτ |Ωτ ⟩⟩ , (7.70)

que es no nulo.
Curiosamente, este tipo de generalización de la purificación tradicional ha sido

recientemente introducido [136] en el contexto de la correspondencia dS/CFT para
definir una noción de entrelazamiento tipo tiempo [97, 98, 137, 138] (en MC con-
vencional, no extendida donde no hay operador de acción). También se ha empleado
para definir una cantidad dual (una pseudoentropía) a superficies de área mínima en
espacio-tiempos dependientes del tiempo [136], según la correspondencia AdS/CFT
[126]. El hecho de que estos estados generalizados surjan naturalmente tanto en esos
contextos como en la presente versión en espacio-tiempo de la MC, puede ser un
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indicador de que de hecho se requieren en cualquier extensión (suficientemente gene-
ral) de la noción de estado al dominio temporal 6. Una observación en apoyo de esta
hipótesis es que, a diferencia de los estados convencionales, estos estados conducen
a entropías complejas [98, 136, 137], lo cual puede estar relacionado con la natura-
leza pseudo-Riemanniana del espacio-tiempo clásico (recordamos las conjeturas de
espacio emergiendo del entrelazamiento [122, 123, 139]).

Con estos resultados en mano, podemos escribir los correladores en espacio-
tiempo (7.58) como

⟨O⟩ = ⟨⟨Ωτ |O ⊗ 1E|Ωτ ⟩⟩
⟨⟨Ωτ |Ωτ ⟩⟩

= Tr
[
Rτ O ⊗ 1E

]
. (7.71)

Por ejemplo, el propagador de Feynman puede escribirse como ⟨⟨Ωτ |ϕ(x)ϕ(y)|Ωτ ⟩⟩ ∝
⟨0|T̂ ϕH(x)ϕH(y)|0⟩ (ver (7.61)). Notablemente, vemos que la evolución emerge de
las correlaciones entre el sistema y el entorno: dado que no hay indicación en los
operadores ϕ(x), ϕ(y) sobre si x, y son variables de espacio o tiempo, está claro
que toda la información sobre la estructura causal de la teoría está codificada en
los estados entrelazados |Ωτ ⟩⟩, |Ωτ ⟩⟩, como se representa en la Figura 7.4.2. Las
correlaciones responsables de la emergencia de la evolución temporal son precisa-
mente las que las recientemente introducidas pseudo entropías intentan cuantificar
(por ejemplo, S(Rτ ) = −TrRτ logRτ = 0 pero el “estado” del subsistema eiSτ no
es un proyector). La información completa sobre las correlaciones espaciales con-
vencionales del estado |0⟩ también está codificada en Rτ , ya que los correladores
⟨0|ϕ(x)ϕ(y)|0⟩, ⟨0|π(x)π(y)|0⟩ son casos particulares de (7.71) correspondientes a
O = ϕ(x, t0)ϕ(y, t0), O = π(x, t0)π(y, t0), es decir, a la inserción de operadores en
cortes espaciales. Estos aparecen, por ejemplo, en la definición de entrelazamiento
espacial [41].

Además notemos que una cantidad del tipo (7.71) para operadores hermiticos
también aparece en la MC convencional donde se denota como valor débil (“weak
value”) [140]. Un correlador en espacio-tiempo entonces se puede entender como el
valor débil de O ⊗ 1E para O hermitiano. Recordamos que mientras por ejemplo
T̂ ϕH(x)ϕH(y) no es hermítico para una separación tipo tiempo, O = ϕ(x)ϕ(y) es
siempre un observable. Como consecuencia, se pueden usar técnicas existentes (ver,
por ejemplo, [141] para formas de medir valores débiles) para acceder a (7.71) a través

6Hay otras extensiones útiles de la noción de estado asociadas con “tiempo cuántico” (ver, por
ejemplo, [1, 2, 29, 43]). Sin embargo, ninguna de estas permite una traza parcial sobre regiones de
tiempo [4].

142



Capítulo VII. Mecánica cuántica y clásica en el
espacio-tiempo con foliación dinámica

Figura 7.4.2: Esquema de la correspondencia entre las formulaciones de la MC (nµ fijo).
En la formulación en espacio-tiempo, podemos codificar toda la información sobre un sistema dado
y su evolución en estados generalizados, abarcando un entorno correlacionado con el sistema. Al
“medir” solo en el sistema (ver las observaciones sobre valores débiles) se recuperan los propagadores
convencionales y las reglas de Feynman. Se representa el ejemplo del propagador de Feynman,
que corresponde al observable hermitico ϕ(x)ϕ(y). A diferencia de la MC canónica (CQM) donde
[ϕH(x), ϕH(y)] ̸= 0 dentro del cono de luz, en la formulación en espacio-tiempo cada campo ϕ(x)
es independiente de los demás y [ϕ(x), ϕ(y)] = 0 para cualquier punto del espacio-tiempo (una
afirmación mucho más fuerte que la microcausalidad). La información sobre evolución y causalidad
está contenida en el estado generalizado sistema-entorno Rτ y se puede pensar que emerge de
las (“generalizadas/pseudo”) correlaciones entre los dos. Dado que el entorno se ignora, también
se puede trabajar directamente con el “estado” parcial del sistema eiSτ , como se describe en la
sección 7.4.3. Se mostró en [4] que evaluaciones particulares de las trazas resultantes conducen a
la formulación de PI (ver también Apéndice 7.4).

de mediciones. Este es un resultado interesante por sí mismo ya que proporciona a
los correladores tipo tiempo un significado operacional directo, una observación que
se sostiene para sistemas cuánticos generales, como se discute en el Apéndice 7.4.
Además, es bien sabido cómo calcular tales cantidades en computadoras cuánticas
(ver Figura 7.4.3; para un desarrollo reciente sobre circuitos cuánticos que miden
valores débiles ver [142])

Otro caso de interés es la evaluación de amplitudes de dispersión. La Ecuación
(7.63) sugiere considerar O = a(k1)a(k2) . . . a(km)e

iSinta†(p1)a
†(p2) . . . a

†(pn). De he-
cho, para momentos en capa de masa ⟨O⟩ es proporcional a los elementos de la
matriz S (la proporcionalidad debe elegirse para coincidir con la fórmula LSZ, de
tal manera que “ampute” líneas externas). Para mostrar esto es suficiente notar que
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Figura 7.4.3: Circuito cuántico para calcular una cantidad de la forma ⟨φ|O|ψ⟩. El esquema
es una prueba de Hadamard donde se realizan mediciones en el qubit auxiliar (arriba) para estimar
las partes real e imaginaria de ⟨ψ|VO|ψ⟩, y donde elegimos V de modo que |φ⟩ = V†|ψ⟩. Utilizando
estados |ψ⟩, |φ⟩ que definen un estado generalizado, se pueden calcular funciones de correlación en
espacio-tiempo (ver también Apéndice 7.4).

⟨⟨Ωτ |ϕ(x)a†(p)|Ωτ ⟩⟩ ∝ e−ipx y usar los resultados de la subsección anterior para
recuperar las reglas de Feynman en espacio de posición. Una aplicación directa de
las técnicas usuales entonces se puede usar para obtener predicciones físicas finitas.
Como comentario final, notamos que usando la Ec. (7.71) se pueden escribir los ele-
mentos de la matriz de dispersión como una amplitud de transición entre estados
creados por modos (extendidos) “on-shell” sobre los vacíos globales (7.69). Estos es-
tados también se pueden relacionar explícitamente con los estados físicos definidos
en la Ec. (7.56) escribiendo |Ωτ ⟩⟩, |Ωτ ⟩⟩ como transformaciones de Bogoliubov sobre
el vacío del producto |Ω⟩⟩ (ver Apéndice 7.4).

7.5 Entrelazamiento entre materia y foliación

7.5.1 Partículas como operadores controlados por la foliación

Habiendo discutido el caso clásico, su cuantización y cómo establecer un mapa ge-
neral a la MC convencional para un nµ fijo (con una interpretación de la evolución
emergiendo de estados generalizados en espacio-tiempo), dedicamos una sección final
para sentar las bases para manejar una foliación completamente cuántica.

Antes de proceder con una exposición matemática, vale la pena dedicar algo de
discusión sobre por qué considerar un nµ cuántico podría ser físicamente relevan-
te más allá de la consistencia del formalismo. Recordamos que la introducción de
un álgebra asociada con nµ, pν fue una necesidad matemática: una regla de trans-
formación adecuada de las partículas off-shell extendidas solo se puede lograr si la
foliación se modifica por la transformación, a su vez requiriendo un nµ cuántico.
Como mostramos a continuación, esto es fundamental al considerar también los va-
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lores esperados: teniendo en cuenta las propiedades de transformación de la foliación
podemos probar la covarianza explícita de todos los valores medios, condicionada a
valores clásicos de la foliación. Por otro lado, no hay nada que prevenga el uso de
estados de foliación más generales. Aunque es razonable sospechar que esto podría
estar señalando algo más profundo físicamente, obtener una mayor comprensión re-
quiere desarrollo adicional como la aplicación del esquema de cuantización extendido
a espacio-tiempos dinámicos (más allá del alcance del presente trabajo).

Por otro lado, es fácil imaginar escenarios en los cuales se asigna alguna noción
de incertidumbre cuántica a los observadores. Dado que el formalismo proporciona
un marco riguroso que contiene esta característica, es interesante explorarlo aún
si solo por esta razón. Muchos de estos escenarios se pueden construir apelando
al argumento de que en la práctica los observadores necesitan realizar mediciones
para establecer su propia noción de espacio y tiempo. Dado que esas mediciones
están descritas fundamentalmente por la MC, entonces se puede concluir que se
hereda una incertidumbre cuántica. Este argumento se encuentra en la literatura en
diferentes contextos [26, 32, 119, 121, 143-145], usualmente relacionado con alguna
generalización de la MC y en relación con el “problema del tiempo”. Una observación
particularmente interesante es que, según el principio cosmológico [146], se puede
definir una foliación cósmica (o tiempo cósmico) de tal manera que el universo se
vea homogéneo e isotrópico en cada momento. En una etapa temprana del universo,
donde los efectos cuánticos pueden volverse importantes, estas hipótesis podrían no
sostenerse, y la foliación podría volverse “difusa”.

Ahora volvemos al ejemplo de la teoría de Klein-Gordon libre y la noción de par-
tículas extendidas introducida en 7.4.2 pero nos centramos en un nµ completamente
cuántico. Ideas similares se sostienen para otras teorías de campo. Primero notemos
que el operador a(p) que hemos introducido se puede escribir correctamente como

a(p) =

∫
dn a(p, n)⊗ |n⟩⟨n| (7.72)

para a(p, n) el operador de aniquilación obtenido reemplazando los operadores nµ en
la Ec. (7.55) con el valor fijo n. Cada a(p, n) es un operador de aniquilación genuino
que satisface [a(p, n), a†(p′, n)] = (2π)Dδ(D)(p− p′), mientras que estrictamente

[a(p), a†(p′)] = [a(p, n), a†(p′, n)]⊗ 1̂n (7.73)

lo que era implícito en (7.48). Aquí 1̂n se debe leer como el proyector sobre el
subespacio generado por aquellos |n⟩ con nµ temporal. Notemos, sin embargo, que
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podemos dejar ||n||2 > 0 arbitrario en estas expresiones. Todas las expresiones en

la sección 7.4.2 se sostienen para Ep(n) = ||n||
√(

nµnν

||n||2 − ηµν
)
pµpν +m2, como se

muestra en el Apéndice 7.1.
La Ecuación (7.72) revela que a(p) tiene la forma de un operador controlado

en el que los valores de los estados de foliación determinan cuál a(p, n) actúa (uno
puede comparar esto con una operación de control-not entre qubits Ucontrol-not =∑

n=0,1(σx)
n ⊗ |n⟩⟨n| para σx la matriz de Pauli X actuando en el qubit con-

trolado). Esta forma de escribir a(p) hace más claras sus propiedades de trans-
formación: el operador a(p, n) actúa en el sector de materia y se transforma con
Uϕ(Λ) := exp(iωµνLµν/2) el operador de impulso que transforma los campos pero no
la foliación. De hecho, la transformación completa de a(p) se puede entender como

U †(Λ)a(p)U(Λ) =
∫
dn
(
U †
ϕ(Λ)a(p, n)Uϕ(Λ)

)
⊗ |Λn⟩⟨Λn| (7.74)

que, comparando con (7.54) produce

U †
ϕ(Λ)a(p, n)Uϕ(Λ) = a(Λp,Λn) , (7.75)

una relación que también se puede obtener de (7.55) fijando n. Al emplear (7.55)
también se puede demostrar que los diferentes operadores de aniquilación a(p, n) y
a(p, n′) están relacionados por transformaciones de Bogoliubov de tal manera que
en general [a(p, n), a(p′, n′)] ̸= 0 para n ̸= n′. En particular, (7.75) no preserva el
número de partículas, solo la transformación completa lo hace.

Lo anterior también conduce al tratamiento adecuado de las fluctuaciones del
vacío. Primero notemos que una expansión controlada similar se asigna a H(n̂) =∫
dnH(n)⊗|n⟩⟨n| con H(n) actuando en el sector de materia. Entonces, cada H(n)

integrado se puede diagonalizar como un Hamiltoniano cuadrático usual, en analogía
con los resultados en la sección 7.4.2 pero con un n clásico:∫

dDxH(n) =

∫
dDp

(2π)D
Ep(n)a

†(p, n)a(p, n) + λ(||n||) (7.76)

con λ(||n||) una constante dependiente de n que surge de haber ordenado normalmen-
te los operadores de escalera a(p, n). Sorprendentemente, cuando esta “constante” se
tiene en cuenta en el operador completo se tiene∫

dDxH(n̂) =

∫
dDx : H(n̂) : +λ(||n̂||) , (7.77)

con ||n̂|| =
∫
dn ||n|||n⟩⟨n|, es decir, en lugar de un cambio constante, el Hamilto-

niano (integrado) almacena un operador de energía del vacío actuando en el espacio
de Hilbert de la foliación.
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Se puede mostrar que el operador de densidad de energía del vacío asociado es
justo ρ̂vac := ρvac||n̂||, con ρvac la densidad de energía del vacío convencional. En este
escenario simple, el único efecto de la foliación cuántica en la densidad de energía
del vacío podría ser un promedio estadístico sobre escalas de energía inducido por
|ψ(n)|2 = |⟨n|ψ⟩|2 ̸= 0 para ||n|| ≠ 1.

7.5.2 Estados entrelazados entre materia-foliación y la cova-

rianza explícita de los valores esperados

Otra consecuencia interesante de la expansión del operador (7.72) es que sus estados
propios están, en general, entrelazados en la partición materia-foliación. Lo mismo es
cierto para la acción cuántica S (ver Ec. (7.44)). Consideremos, de hecho, el concepto
de vacío. Para cada n fijo, los operadores a(p, n) tienen un vacío |Ωn⟩ tal que

a(p, n)|Ωn⟩ = 0 (7.78)

para todos los valores de p, en general off-shell. Estos vacíos son todos estados
en el sector de la materia y pueden ser explícitamente expandidos como |Ωn⟩ =∫
Dϕ(x)Ψn[ϕ(x)]|ϕ(x)⟩ en la base (7.37) con Ψn[ϕ(x)] su función de onda.

Por otro lado, podemos introducir un vacío tipo historia como

|Ω⟩ =
∫
dn |Ωn⟩ ⊗ |n⟩ , (7.79)

satisfaciendo a(p)|Ω⟩ = 0, con a(p) ≡ a(p, n̂). El estado |Ω⟩ contiene la información
de los vacíos de todas las posibles direcciones temporales simultáneamente. Lo logra a
través de su entrelazamiento con la foliación cuántica. De hecho, podemos recuperar
el vacío de un observador dado como |Ωn⟩ = ⟨n|Ω⟩, es decir, por condicionamiento en
la foliación. Notablemente, esta característica y la estructura de (7.79) se asemejan
al formalismo de Page y Wootters, presentado en el capítulo II, donde la evolución
emerge de estados história estacionarios por condicionamiento en lecturas de “relojes
internos” [14, 29].

La simetría de Lorentz hace que el estado entrelazado |Ω⟩ sea preferible sobre
otros estados propios de a(p): este estado satisface U(Λ)|Ω⟩ = |Ω⟩ o equivalentemente

Jµν |Ω⟩ = 0 , (7.80)

lo cual puede compararse con la ecuación del universo de PW [29], una ecuación tipo
Wheeler-DeWitt. Esta propiedad es una consecuencia directa de (7.75) que implica
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U(Λ)|Ωn⟩⊗|n⟩ = |ΩΛ−1n⟩⊗|Λ−1n⟩. La integral en (7.79) deshace esta transformación
a través de un cambio de variables trivial (| det(Λ)| = 1). Claramente, la invariancia
no se satisface para superposiciones más generales, es decir, por estados que agregan
pesos a la suma (7.79). En particular, los estados producto |Ωn⟩⊗|n⟩ son aniquilados
por a(p) pero rompen explícitamente la simetría de Lorentz.

La estructura anterior se mantiene para estados generales. Esto se puede ver
considerando una base de estados de Fock que, como es usual, se puede obtener
actuando con operadores de creación a†(p) en el vacío |Ω⟩. Por ejemplo, un estado
de Fock de dos partículas se puede escribir como

a†(p1)a
†(p2)|Ω⟩ =

∫
dn a†(p1, n)a

†(p2, n)|Ωn⟩ ⊗ |n⟩ . (7.81)

En general, tenemos |Ψ⟩ =
∫
dn |Ψn⟩ ⊗ |n⟩ de modo que ⟨n|Ψ⟩ = |Ψn⟩ para |Ψn⟩ el

estado para esa elección particular de tiempo, así recuperado por condicionamiento
en la foliación. Todos estos estados satisfacen la ecuación de restricción Jµν |Ψ⟩ = 0.
Es interesante notar que se puede condicionar con respecto a estados más generales
|ψ⟩ =

∫
dnψ(n)|n⟩ que corresponden a una superposición cuántica de foliaciones.

En este caso, ⟨ψ|Ψ⟩ =
∫
dnψ(n)|Ψn⟩ que induce una superposición particular de

estados de materia.
Por otro lado, hemos visto en la sección 7.4.3 que la correspondencia entre el

enfoque extendido y la MC convencional no es trivial, en el sentido de que requiere
una suma (traza) sobre estados extendidos (sección 7.4.3). Esta traza puede ser
purificada (sección 7.4.4) y reescrita como un valor medio generalizado en un espacio
de Hilbert duplicado. Podemos entonces emplear los estados

|Ωτ ⟩⟩ =
∫
dn |Ωτn⟩⟩ ⊗ |n⟩

|Ωτ ⟩⟩ =
∫
dn |Ωτn⟩⟩ ⊗ |n⟩

(7.82)

para |Ωτn⟩⟩, |Ωτn⟩⟩ definidos en (7.69) con la dependencia en n codificada en p0 −
Ep → pµnµ−Ep(n) y el vacío |Ωn⟩⟩ = |Ωn⟩|Ω̃n⟩ (los estados en la sección 7.4.4 debe-
rían escribirse, en la notación de esta sección, con un subíndice n ≡ ηµ0). Notamos
que usamos un único espacio de Hilbert de foliación tanto para el sistema como para
el ambiente. Las transformaciones de Lorentz se definen como antes con el operador
de “momento angular” completo siendo

Jµν = Lµν + L̃µν + lµν . (7.83)

Los estados de historia (7.82) satisfacen la condición de invarianza de Lorentz

Jµν |Ωτ ⟩⟩ = Jµν |Ωτ ⟩⟩ = 0 . (7.84)
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Con estas definiciones y notación, la representación (7.71) de correladores en
espacio-tiempo debería escribirse como ⟨O⟩n = ⟨⟨Ωτn|O ⊗ 1E|Ωτn⟩⟩/⟨⟨Ωτn|Ωτn⟩⟩.
Añadimos el subíndice n para indicar que el valor medio corresponde a la foliación
fija nµ. Para recuperar ⟨O⟩n de los estados de historia (7.82) recurrimos al condicio-
namiento que puede escribirse en forma compacta como

⟨O⟩n =
⟨⟨Ωτ |O ⊗ 1EΠn|Ωτ ⟩⟩

⟨⟨Ωτ |Πn|Ωτ ⟩⟩
, (7.85)

con Πn := |n⟩⟨n| y O no necesariamente un operador separable en la partición
materia-foliación pero que conmuta con nµ (por ejemplo, O = a†(p)a(k)). Esto
también puede reescribirse como ⟨O⟩n = TrRτnOn con

Rτn :=
⟨n|Ωτ ⟩⟩⟨⟨Ωτ |n⟩
⟨⟨Ωτ |Πn|Ωτ ⟩⟩

, (7.86)

el estado generalizado condicionado al valor de foliación nµ. Así es como se recupera
la MC convencional asociada con foliaciones fijas en el formalismo completo con
foliaciones cuánticas. En otras palabras, hemos recuperado la correspondencia de
la sección anterior 7.4.3 entre el enfoque en espacio-tiempo y la MC convencional
introduciendo la idea de condicionamiento con respecto a los estados propios de nµ.

Además, como evidencia la Ec. (7.83), la foliación participa ahora en transfor-
maciones espacio-temporales. Esto se refleja también en las propiedades de transfor-
mación de los valores medios. Lo que encontramos es que para teorías relativistas la
declaración de invarianza de Lorentz se vuelve explícita:

⟨O(Λx)⟩Λn =
⟨⟨Ωτ |U †(Λ)(O ⊗ 1EΠn)U(Λ)|Ωτ ⟩⟩

⟨⟨Ωτ |U †(Λ)ΠnU(Λ)|Ωτ ⟩⟩
= ⟨O(x)⟩n ,

(7.87)

donde, para ser concretos, hemos considerado un operador que depende explíci-
tamente de cierto número de puntos del espacio-tiempo (por ejemplo, O(x) ≡
O(x1, x2, . . . ) = π(x1)ϕ(x2) . . . ). Notar que la primera igualdad no es una declara-
ción dinámica: es solo una consecuencia de las reglas de transformación geométrica
(7.40). Como tal, se sostiene independientemente de la teoría. En cambio, la segunda
igualdad solo se mantiene para acciones relativistas que satisfacen (7.45) e implican
(7.84). El importante resultado (7.87) nos dice que para teorías relativistas los va-
lores esperados cuánticos son funciones de las coordenadas espacio-temporales x y
el vector de foliación nµ, combinados de manera invariante. Esto incluye funciones
como integrales de momento que contienen términos p2 −m2, como en el propaga-
dor de Feynman, pero además términos como pµnµ, Ep(n) están permitidos dentro

149



Capítulo VII. Mecánica cuántica y clásica en el
espacio-tiempo con foliación dinámica

de estas integrales, y de hecho aparecen, por ejemplo, en correladores de momento
(regularizados) ⟨π(x)π(y)⟩n que ahora también son cantidades invariantes. Lo mis-
mo se aplica a cualquier otro valor medio, no necesariamente localizado en ciertos
puntos del espacio-tiempo. Así, en nuestro enfoque, todas las predicciones físicas son
explícitamente covariantes.

Lo anterior concluye la exposición sobre cómo el enfoque extendido permite
recuperar predicciones físicas convencionales, mientras que al mismo tiempo ha-
ce explícitas sus simetrías espacio-temporales. Ahora comentemos brevemente so-
bre la posibilidad de ir más allá de la física convencional, buscando un efecto
genuino de foliación cuántica. Notemos que si ahora reemplazamos el proyector
Πn con una mezcla estadística de foliaciones Πn → ρn =

∫
dn p(n)Πn obtenemos

⟨⟨Ωτ |Oρn|Ωτ⟩⟩ = ⟨ψ|TreiSτO|ψ⟩ para |ψ⟩ =
∫
dn eiϕn

√
p(n)|n⟩ϕn ∈ R, lo cual es

solo una mezcla (“clásica”) estadística de valores medios. Al emplear eiSτ en la forma
actual (conmutando con nµ) no surge ningún efecto cuántico genuino de la foliación.
Esto es, en principio, esperado de una teoría de materia-foliación no interactuante.
Sin embargo, podemos postular que la generalización adecuada de la expresión an-
terior a una foliación cuántica (pura) completa se logra utilizando otros proyectores
cuánticos Πψ = |ψ⟩⟨ψ|:

⟨O⟩ψ =
⟨⟨Ωτ |O ⊗ 1EΠψ|Ωτ ⟩⟩

⟨⟨Ωτ |Πψ|Ωτ ⟩⟩
(7.88)

lo cual corresponde al condicionamiento ⟨ψ|Ωτ ⟩⟩ con |ψ⟩ un estado arbitrario de
la foliación (al menos para O actuando trivialmente en la foliación, por ejemplo,
O = ϕ(x)ϕ(y); a los operadores de escalera se les pueden asignar los estados mis-
mos). Estos nuevos valores medios pueden ser evaluados explícitamente utilizando,
por ejemplo, que a(p, n) y a(p, n′) están relacionados por una transformación de
Bogoliubov.

Notemos que los términos individuales ⟨⟨Ωτn′|O⊗1E|Ωτn⟩⟩ que surgen de (7.88)
no pueden escribirse en términos de eiSτ a menos que n′ = n. Así, la traza parcial
sobre el ambiente ahora generaliza la acción de manera no trivial. En otras palabras,
podemos acceder a este efecto cuántico de la foliación solo a través de la representa-
ción del sistema y ambiente de los correladores espacio-temporales (para la materia
no interactuando con la foliación). La validez de esta generalización puede depender
de si atribuimos o no una existencia física real al ambiente. Se puede comenzar a
abordar tal pregunta considerando observables O que no ignoran el ambiente como
el considerado en la sección 7.4.4 (es decir, usar O ≠ O ⊗ 1E).
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7.6 Conclusiones y perspectivas

Hemos demostrado que la MC admite una formulación basada en un espacio de
Hilbert y a su vez simétrica en espacio-tiempo que trata todas las coordenadas
espacio-temporales de los campos de materia como índices de sitio y describe las
posibles foliaciones del espacio-tiempo a través de estados cuánticos. Hemos obtenido
el formalismo cuantizando un espacio de fase clásico aumentado que mantiene la
elección del tiempo de la transformación de Legendre como dinámica y que produce
una versión explícitamente covariante de las ecuaciones de Hamilton. El proceso
de cuantización conduce a acciones y operadores de partículas “off-shell” que son no
separables en la partición materia-foliación, destacando la necesidad de una foliación
cuántica para preservar la simetría de Lorentz.

El desafío de recuperar la evolución unitaria convencional en un marco con ope-
radores de campo que conmutan para diferentes puntos del espacio-tiempo (incluso
aquellos conectados causalmente en el sentido convencional) ha sido planteado y
superado. El hallazgo crucial es la existencia de una correspondencia entre los corre-
ladores geométricos extendidos, asociados con la acción cuántica, y los propagadores
convencionales asociados con el estado fundamental de un Hamiltoniano dado y la
evolución unitaria. Los propagadores térmicos también pueden obtenerse compac-
tificando el tiempo. Los correladores en tiempos iguales (para una foliación dada)
corresponden a correladores convencionales como los que definen el entrelazamiento
tipo espacio, pero para operadores insertados en diferentes tiempos, la evolución uni-
taria en el esquema de Heisenberg emerge. A partir de estas consideraciones, también
se recuperan las reglas de Feynman y el límite clásico (en la versión extendida). Se
presentaron también algunas observaciones sobre la posibilidad de reinterpretar este
mapa como una correspondencia tipo holográfica, con la teoría de d+1 dimensiones
surgiendo de una teoría de d+ 2 dimensiones. En particular, la escala de tiempo τ ,
que aparece naturalmente al definir el mapa, podría identificarse con una coordenada
holográfica. Estos aspectos, las eventuales relaciones con dualidades holográficas co-
nocidas, y si la presencia de una escala de tiempo τ proporciona alguna perspectiva
sobre el proceso de renormalización, se dejan para investigaciones futuras.

Se mostró además que dicha emergencia de evolución temporal puede entenderse
en términos de correlaciones con un entorno utilizando técnicas recientemente in-
troducidas en el contexto de AdS/CFT (dS/CFT) [136, 137]. Desde este punto de
vista, el sistema y el entorno están descritos globalmente por un estado puro gene-
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ralizado que contiene la información causal de la teoría. Esta perspectiva también
proporciona un significado operacional directo a los propagadores tipo tiempo en
términos de valores débiles. Esto plantea la pregunta natural de si se puede consi-
derar el entorno como un sistema físico real inaccesible cuyas correlaciones con el
sistema inducen su evolución en el tiempo. La situación se asemeja al mecanismo de
PW, según el cual la evolución temporal emerge del entrelazamiento [43] entre un
sistema y “el resto”. Otra propuesta similar es la “hipótesis del tiempo térmico” que
utiliza la termalización de un estado estadístico para definir el “tiempo interno” [27]
(ver también [35]). Aunque nuestro formalismo es en principio significativamente
diferente de estas propuestas, estas ideas previas sobre la emergencia del tiempo, de
interés actual en la literatura (ver introducción), animan a investigar más el tema
del entorno.

La cuantización independiente de la foliación de los campos de materia permite
una definición muy simple y explícita de las transformaciones espacio-temporales.
Estas preservan el carácter geométrico de la relatividad de Einstein, ya que se definen
independientemente de la dinámica. En este sentido, nuestra propuesta “desenreda”
las transformaciones que mezclan espacio y tiempo de la información dinámica, esta
última siendo codificada en estados generalizados como se describió anteriormen-
te. En un sentido muy preciso, las transformaciones espacio-temporales aparecen
nuevamente entrelazadas con la dinámica: la acción cuántica y los operadores de
partículas son operadores controlados por foliación. Además, hemos visto que los
estados propios invariantes de Lorentz de acciones invariantes, como el vacío de las
partículas “off-shell” de la teoría dada, están entrelazados en la partición materia-
foliación. También tienen la misma estructura que en el formalismo PW [14], una
similitud que se ha utilizado para introducir el concepto de condicionamiento en
la foliación. El condicionamiento especifica el observador relativo al cual se da la
descripción dinámica del sistema (en contraposición a la emergencia de la evolución
en el enfoque de PW). Al condicionar con respecto a estados fijos “clásicos” de la
foliación se recupera la MC convencional, en el sentido de la correspondencia previa.
Luego, hemos discutido bajo qué condiciones podrían surgir efectos cuánticos de la
foliación.

En este manuscrito, nos hemos centrado en una foliación constante y en el
espacio-tiempo de Minkowski. Aunque el espacio-tiempo sea plano, una generaliza-
ción obvia es considerar una foliación no constante nµ = nµ(x), por ejemplo, asociada
con coordenadas de Rindler. En otras palabras, el formalismo admite una generaliza-

152



Capítulo VII. Mecánica cuántica y clásica en el
espacio-tiempo con foliación dinámica

ción obvia al caso de un campo de foliación. Es fácil ver que al reemplazar nµ → nµ(x)

en S para el campo escalar, se obtiene una versión de las ecuaciones de Hamilton para
una foliación curva general, equivalente a la ecuación de Klein-Gordon. Según nues-
tra propuesta, también se impondría {nµ(x), κν(y)} = δµνδ

(D)(x− y) clásicamente y
[nµ(x), κν(y)] = iδµνδ

(D)(x−y) en el caso cuántico, de modo que el espacio de Hilbert
de la foliación ahora estaría generado por estados |n(x)⟩ representando configuracio-
nes de campo en el espacio-tiempo (n̂µ(x)|n(x)⟩ = nµ(x)|n(x)⟩). Además, se puede
introducir un momento angular para este campo lµν(x) := nν(x)κµ(x)− nµ(x)κν(x)

de modo que se pueda transformar unitariamente cualquier estado propio de cam-
po de foliación a otro. En particular, en el espacio-tiempo de Minkowski cualquier
estado propio de foliación curva está relacionado unitariamente con |ηµ0⟩, es decir,
|n(x)⟩ = exp

[
i
∫
dDx lµν(x)Λ

µν(x)
]
|ηµ0⟩, que es una versión cuántica del concepto

de marco de referencia momentáneamente comóvil. Esta transformación unitaria es
separable en el espacio-tiempo reflejando nuestra intuición clásica, sin embargo, el
tratamiento cuántico de la foliación permite muchas más posibilidades exóticas, como
estados de la foliación entrelazados a través de diferentes puntos del espacio-tiempo.

Como en el caso de foliaciones constantes, cambiar de observador no afecta el
álgebra de campos en acuerdo con [lµν(x), ϕ(x)] = [lµν(x), π(x)] = 0. Esto debe
contrastarse con el tratamiento habitual en QFT que requiere cuantizar en una
hipersuperficie dada, por ejemplo, al considerar un observador de Rindler y derivar el
efecto Unruh [147, 148]. Un cambio de observador, sin embargo, sí afecta la acción S.
En particular, es claro que una acción libre condicionada a una foliación curva sigue
siendo una forma cuadrática pero diferente de la correspondiente a un observador
inercial. Los modos normales entonces difieren en general por una transformación
de Bogoliubov inducida por la curvatura de nµ(x), lo que cambia el estado de vacío
(recordamos que para dos foliaciones constantes, no surge cambio en el vacío). Esta
sería la derivación del efecto Unruh desde dentro del enfoque espacio-temporal.

Hay otra característica interesante en el espacio-tiempo plano a considerar, preli-
minar para extender nuestro tratamiento a variedades genuinamente curvas. Aunque
hemos empleado coordenadas de Minkowski para definir nuestra álgebra básica de
campos y cuantización, es factible describir, por ejemplo, la acción en diferentes
coordenadas curvilíneas. En general, esto lleva a reemplazar derivadas convenciona-
les con derivadas covariantes ∂µ → ∇µ de modo que una contracción de la forma
nµ∇µ corresponda a invarianza bajo transformaciones de coordenadas generales. Se
puede demostrar fácilmente que las ecuaciones de Hamilton derivadas para nµ ge-
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neral en otros sistemas de coordenadas tienen precisamente esta forma. Es factible
obtener estos resultados imponiendo directamente álgebras (tanto de campos de
materia como de foliaciones) con respecto a otros sistemas de coordenadas, lo que
parece indicar que la relación entre sistemas de coordenadas podría tener una re-
presentación cuántica, otra posibilidad interesante abierta al trabajar con álgebras
espacio-temporales. Curiosamente, un tratamiento cuántico que permita generali-
zaciones paramétricas es también el objetivo principal de las llamadas “teorías de
campos parametrizadas” [37, 125], un enfoque en el que los campos de materia son
funciones de coordenadas curvilíneas arbitrarias. Estas coordenadas están asociadas
con posibles foliaciones del espacio-tiempo y también se cuantizan 7. Sin embargo,
incluso para el espacio-tiempo de Minkowski, este enfoque sufre problemas en dimen-
siones espacio-temporales distintas de 1 + 1. Estas dificultades podrían ser eludidas
desarrollando más nuestra propuesta, ya que, como mencionamos anteriormente, la
información dinámica y geométrica están desacopladas.

Algunas observaciones sobre la posibilidad de aplicar el formalismo a la grave-
dad también pueden ser apropiadas (aunque actualmente especulativas): más allá de
las justificaciones matemáticas y basadas en simetría para una foliación dinámica,
también hemos sugerido que un espacio-tiempo dinámico podría llevar naturalmen-
te a este concepto. Sería interesante (y autoconsistente) si esto pudiera derivarse
aplicando el enfoque extendido a la gravedad, al menos trabajando a nivel semiclá-
sico. Notamos que el formalismo emplea acciones definidas en variables del espacio
de fase, lo que significa que siempre se necesita introducir un Hamiltoniano. Esto
parece llevar directamente al enfoque convencional ADM [149] y su cuantización.
Sin embargo, este no es el caso: mientras la cuantización canónica usual se basa en
métricas evolucionando unitariamente en hipersuperficies, nuestro formalismo trata-
ría la métrica de cada hipersuperficie como independiente. Esta característica, junto
con una foliación cuántica, parece llevar en cambio a una descripción donde el grado
de libertad físico es la métrica espacio-temporal completa (con algunas restriccio-
nes eventuales). En tal construcción, aún por desarrollar completamente, los tipos
naturales de interrogantes no serían de naturaleza dinámica, sino intrínsecamente
geométricos y asociados con correlaciones, en analogía con el caso de los campos que
desarrollamos en este capítulo.

En cuanto a los campos de materia, el principal ejemplo que hemos empleado

7Aunque este procedimiento es análogo al enfoque PW, como se mostró recientemente en [37],
allí los campos de materia no se cuantizan a través de un álgebra extendida como en nuestro
esquema.
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es el de un campo escalar. Aunque la mayoría de los resultados e ideas se sostienen
para teorías de campo generales, se deben hacer algunas consideraciones nuevas en
el tratamiento cuántico de los campos espinoriales relacionados con cómo el aco-
plamiento entre la foliación y el espín afecta la definición de los momentos. Esta
discusión, y el caso de las teorías de gauge, típicamente asociadas con campos con
espín, se pospone. No obstante, se presentan varias observaciones en el Apéndice
7.2, donde también se desarrolla completamente el tratamiento clásico de un campo
de Dirac.

Notablemente, la mayoría de los conceptos que hemos desarrollado para cam-
pos se aplican a cualquier sistema mecánico cuántico, incluidos los no relativistas.
De hecho, la idea de extender un álgebra convencional a “espacio-tiempo” siempre
se puede aplicar. Esto permite construir el operador de acción cuántica asociado
con un cierto Hamiltoniano cuántico, un procedimiento que no requiere una teoría
clásica. Notablemente, la evolución unitaria siempre se recupera a través de sus co-
rreladores tipo tiempo asociados, como se muestra en [4] y el Apéndice 7.4. Como
ejemplo concreto, desarrollamos la extensión espacio-temporal de una representa-
ción de qubit del álgebra su(2) en el Apéndice 7.4. También se puede introducir una
purificación generalizada, como la que hemos empleado para la acción libre de Klein-
Gordon, en general. Aunque esto no es trivial (y no presentamos el caso general)
proporcionamos algunas ideas y ejemplos en el mismo Apéndice. Por estos medios,
se puede reemplazar la noción convencional de estado y evolución unitaria de la
MC con estados generalizados que codifican no solo el estado inicial, sino también
la evolución y estructura causal de una teoría dada. Estas consideraciones abren el
camino para desarrollar y aplicar nuevos esquemas de información y computación
cuántica, como hemos discutido en la sección 7.4.4. Al mismo tiempo, proporcionan
una formulación capaz de abordar las preguntas fundacionales cuánticas planteadas
en la introducción.

Apéndices

7.1 Expresiones clásicas y cuánticas para un nµ tipo

tiempo general

En este apéndice mostramos explícitamente cómo las relaciones clásicas y cuánticas
que involucran la foliación se modifican por un nµ no normalizado.

155



Capítulo VII. Mecánica cuántica y clásica en el
espacio-tiempo con foliación dinámica

Definimos ||n|| = √
nρnρ y asumimos

∑
i ||ni||2 = −||n||2 (velocidad de la luz

fija) y nµi nµ = 0. Entonces, la ecuación (7.14) se reemplaza por

nµnν −
d∑
i=1

nµi n
ν
i = ||n||2ηµν . (7.89)

Ecuaciones como (7.6) también necesitan ser reescaladas, por ejemplo,

∂ρϕ = ||n||−2(nρn
µ∂µϕ− niρn

µ
i ∂µϕ) .

Para el caso libre de Klein Gordon se obtienen las ecuaciones clásicas

nµ∂µϕ = ||n||2π (7.90)

y
H = ||n2||1

2
π2 +

1

2

(nµnν
||n||2

− ηµν
)
∂µϕ∂νϕ+

1

2
m2ϕ2 . (7.91)

Las ecuaciones de Hamilton son

nµ∂µπ =
(nµnν
||n||2

− ηµν
)
∂µ∂νϕ−m2ϕ (7.92a)

nµ∂µϕ = ||n||2π (7.92b)

lo que produce una vez más la ecuación de Klein-Gordon

(ηµν∂µ∂ν +m2)ϕ = 0 . (7.93)

Una expresión análoga se encuentra con la adición de un potencial. Estas pueden
recuperarse como antes desde S =

∫
dDx (πnµ∂µϕ − H) y estableciendo {ϕ,S} =

{π,S} ≡ 0.
Después de la cuantización, la diagonalización de

∫
dDxH ahora conduce a

Ep(n) = ||n||

√(
nµnν

||n||2
− ηµν

)
pµpν +m2

= ||n||

√√√√∑
i

(
nµi pµ
||n||

)2

+m2 .

(7.94)

Todas las ecuaciones de la sección 7.4.2 se mantienen con Ep(n) dado por (7.94)
y πnµ∂µϕ → ||n2||−1πnµ∂µ, de acuerdo con la nueva definición de π, equivalente a
un reescalado de Ep. En la expansión normal de la acción, también se debe reem-
plazar pµnµ → ||n2||−1pµnµ en consecuencia. Entonces se puede demostrar que las
cantidades físicas como el propagador de Feynman permanecen invariantes, es decir,
independientes de ||n2||.

Notemos que para m = 0 y D = 1 + 1 se tiene una teoría de campo conforme
(CFT) y puede hacerse cualquier elección de nµ para diagonalizar S a través de
modos normales.
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7.2 El caso del campo de Dirac

En este apéndice consideramos la aplicación del formalismo del texto principal al
caso de una densidad de Lagrangiana de Dirac libre LD = ψ̄(iγµ∂µ −m)ψ. Aunque
las interacciones pueden introducirse siguiendo la línea desarrollada en el caso escalar
libre, nos centramos en este ejemplo simple ya que el objetivo es mostrar cómo se
trata el espín en un formalismo con foliación dinámica. Nuestro enfoque principal es
el caso clásico, con algunas observaciones sobre la cuantización al final de la sección.

El momento generalizado para un nµ tipo tiempo general se define como antes,
dando

π =
∂LD

∂(nµ∂µψ)
= iψ̄γµnµ . (7.95)

Para nµ = ηµ0 recuperamos la relación usual π = iψ†, ya que ψ̄ = ψ†γ0 y (γ0)2 = 1

como sigue del álgebra de Clifford de las matrices gamma {γµ, γν} = 2ηµν , con los
corchetes indicando (solo aquí) anticonmutadores.

Por otro lado, notando que γµnµγνnν = γ′0γ′0 = 1, donde hemos definido γ′0 :=
γµnµ como la primera matriz de un nuevo posible conjunto de matrices gamma
(satisfaciendo el álgebra de Clifford), se puede invertir la relación del momento y
escribir ψ̄ = −iπγµnµ. Entonces, tomando la transformada de Legendre covariante
HD = πnµ∂µψ − LD da como resultado

HD = π[(nµ − γνγµnν)∂µ − imγνnν ]ψ . (7.96)

Podemos demostrar que en esta forma HD solo depende de derivadas espaciales:

(nµ − γνγµnν)∂µ = γργµnρ(nµnν − ηµν)∂
ν ,

donde recordamos que nµnν − ηµν proyecta sobre las hipersuperficies espaciales or-
togonales a nµ. Es interesante notar que la invariancia de Lorentz es explícita en
esta forma (ver también abajo), mientras que la densidad del Hamiltoniano de Di-
rac convencional no exhibe la simetría explícitamente. La última se recupera de
nµ = ηµ0 lo que implica γνnν = γ0 de modo que el primer término se convierte en
(nµ − γ0γµ)i∂µ ≡ −iα · ∇ (con αi = βγi, β = γ0).

La ecuación de Hamilton para ψ produce

nµ∂µψ − ∂H
∂π

= −iγνnν(γµi∂µ −m)ψ = 0 (7.97)

lo que automáticamente implica la ecuación de Dirac en su forma covariante. Ade-
más, si ahora introducimos el álgebra del espacio-tiempo clásico (7.17), es decir,

{ψ(x), π(y)} = δ(d+1)(x− y) , (7.98)
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recuperamos lo anterior de

{ψ,SD} = −iγνnν(γµi∂µ −m)ψ , (7.99)

después de establecer {ψ,SD} ≡ 0. Aquí la acción de Dirac en variables de espacio
de fase del espacio-tiempo es

SD = −
∫
dd+1x iπγνnν(γ

µi∂µ −m)ψ , (7.100)

como se obtiene inmediatamente reemplazando ψ̄ con el momento usando la relación
inversa de (7.95) como antes.

Discutamos ahora más sobre las propiedades de transformación de los campos.
Asumimos la regla de transformación usual ψ(x) → SΛψ(Λ

−1x) donde hemos intro-
ducido la matriz

SΛ := exp(−iωµνσµν/4) , (7.101)

para σµν = [γµ, γν ]. Esto implica, como es habitual, S−1
Λ γµSΛ = Λµνγ

ν . También
imponemos, de acuerdo con la transformación de xµ, nµ → (Λ−1)µνn

ν . Si ahora
combinamos estas reglas con la definición de momento en la Ec. (7.95) obtenemos

π(x) → iψ̄(Λ−1x)S−1
Λ γµΛ ν

µ nν = iψ̄(Λ−1x)γνnνS
−1
Λ

= π(Λ−1x)S−1
Λ .

Esto nos permite resumir las propiedades de transformación como

ψ(x) → SΛψ(Λ
−1x) (7.102a)

nµ → (Λ−1)µνn
ν (7.102b)

π(x) → π(Λ−1x)S−1
Λ . (7.102c)

Nótese que en consecuencia, el álgebra (7.98) se preserva explícitamente por una
transformación de Lorentz, tanto en los componentes del espacio-tiempo como en
los espinoriales. Del mismo modo, cantidades como SD y

∫
dd+1xH son de hecho

explícitamente invariantes: las transformaciones de ψ, π implican γµ → S−1
Λ γµSΛ

para todas las matrices gamma, y siempre aparecen contraidas con nµ o ∂µ.
Las Ecs. (7.102) son la generalización espinorial de las Ecs. del texto principal

(7.11) (la ligera diferencia en la convención respecto a las coordenadas es común para
campos espinoriales). Para recuperar estas transformaciones del álgebra de espacio
de fases extendido, consideramos el momento angular total

J µν = Lµν + Sµν + lµν (7.103)
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con

Lµν := −
∫
dd+1x π(xµ∂ν − xν∂µ)ψ (7.104)

Sµν := i

2

∫
dd+1x πσµνψ (7.105)

lµν := nµκν − nνκµ , (7.106)

La única novedad respecto al caso del campo escalar es la parte espinorial Sµν , como
se esperaba. Entonces las Ecs. (7.102) se pueden obtener de la acción del exponencial
del momento angular total sobre los campos. Mostremos esto explícitamente hasta
primer orden (Λ = 1 + ω +O(ω2)) para la parte espinorial:

ψ +
ωµν
2

{Sµν , ψ} =
(
1− i

4
σµνωµν

)
ψ = SΛψ +O(ω2)

π +
ωµν
2

{Sµν , π} = π
(
1 + i

4
σµνωµν

)
= πS−1

Λ +O(ω2) .

Además, se puede probar fácilmente que {Lµν ,Sαβ} = 0 ya que σαβ no depende
de las coordenadas del campo mientras que (xµ∂ν − xν∂µ) es independiente de los
componentes espinoriales. También tenemos ψ(x) + ωµν

2
{Lµν , ψ(x)} = ψ(Λ−1x) +

O(ω2) de modo que las series completas de corchetes anidados producen

ψ(x) + ωµν

2
{J µν , ψ(x)}+ . . . = SΛψ(Λ

−1x)

nρ + ωµν

2
{J µν , nα}+ . . . = (Λ−1)ραn

α

π(x) + ωµν

2
{J µν , π(x)}+ . . . = π(Λ−1x)S−1

Λ ,

(7.107)

donde los puntos suspensivos indican corchetes anidados de orden superior, por
ejemplo, el siguiente orden siendo 1

2!

ωµνωαβ

4
{J µν , {J αβ, ...}}. Estas son precisamente

las transformaciones en las Ecs. (7.102).
Hagamos ahora algunos comentarios respecto a la cuantización del campo de Di-

rac según el esquema extendido. La primera diferencia natural con el caso del campo
escalar es que se deben imponer reglas de anticonmutación, es decir, ahora se pro-
mueve el álgebra del espacio-tiempo (7.98) a un anticonmutador del espacio-tiempo.
Esto garantiza la positividad de la energía (como en el caso usual). Esto también
significa que el mapa que hemos establecido en la sección 7.4.3, y que discutimos
para sistemas cuánticos más generales en el Apéndice 7.4, necesita ser modificado:
ya que los campos en diferentes tiempos no conmutan, no hay una estructura de
producto subyacente. En su lugar, se puede construir una correspondencia con la
MC convencional a través del teorema de Wick en analogía con el enfoque en la sec-
ción 7.4.3 reemplazando (7.57) con su versión fermiónica, con algunas modificaciones
adecuadas relacionadas con la paridad fermiónica.

159



Capítulo VII. Mecánica cuántica y clásica en el
espacio-tiempo con foliación dinámica

Surgen sutilezas adicionales en el caso cuántico relacionadas con el hecho de que
−iπ ̸= ψ† para un nµ general, es decir, la relación de anticonmutación no es entre
el campo y su conjugado. Se puede demostrar que esto está en perfecto acuerdo con
la covarianza de Lorentz explícita y nuevamente una razón para introducir nµ: por
ejemplo, nótese que el álgebra {ψ(x), iψ†(y)} = δ(d+1)(x− y) no es invariante ya que
SΛ no es una matriz unitaria, pero (7.98) lo es. De hecho, las transformaciones de
Lorentz son unitarias con respecto a una definición apropiada del producto interno,
inducida por lo anterior. Esto también está relacionado con el producto interno cova-
riante introducido en [1] para partículas de Dirac (capítulo III). Finalmente, también
se puede introducir un esquema de purificación generalizado para fermiones. Aun-
que ninguno de estos aspectos plantea un verdadero desafío, su exposición detallada
justifica una discusión separada, que se abordará en trabajos futuros.

7.3 Purificación generalizada para bosones libres ge-

nerales

En este apéndice, discutimos la purificación generalizada introducida en (7.67). Con-
sideramos el caso de “operadores densidad generalizados” de la forma

ρ =
e−H

Tr e−H
, H =

∑
k

Hk =
∑
k

λka
†
kak (7.108)

donde permitimos que λk sea un número complejo general con Re(λk) > 0 (para
λk ∈ R, ρ es un estado térmico con Hamiltoniano diagonal cuadrático).

Estos operadores pueden, por supuesto, escribirse como

ρ = ⊗
k
Z−1
k e−λka

†
kak = ⊗

k
Z−1
k

∑
nk

e−λknk |nk⟩k⟨nk| (7.109)

de modo que solo necesitamos purificar cada ρk = e−Hk (con ρ = ⊗kρk) y tomar el
producto tensorial al final. Aquí también hemos definido las “funciones de partición”
Zk := Tre−Hk de tal manera que Z := Tr e−H =

∏
k Zk. Nótese que la acción libre

de Klein-Gordon eiSτ tiene precisamente esta forma con el índice k correspondiente
al momento en D dimensiones.

Ahora introducimos para cada k los dos estados distintos (para simplificar la
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notación omitimos los índices k en los estados)

|0λk⟩⟩ =
∑
n

e−
λkn

2 |n⟩|n⟩ = exp
(
e−

λk
2 a†kã

†
k

)
|0⟩⟩

|0λk⟩⟩ =
∑
n

e−
λ∗k
2
n|n⟩|n⟩ = exp

(
e−

λ∗k
2 a†kã

†
k

)
|0⟩⟩ , (7.110)

con |0⟩⟩ := |0⟩ ⊗ |0̃⟩. Podemos referirnos a los estados |ñ⟩ como estados del entorno
con |0λk⟩⟩, |0λk⟩⟩ vectores de un espacio de Hilbert doblado generado por |n⟩|ñ⟩, tal
como en una purificación térmica bosónica estándar. Nótese que |0λk⟩⟩ corresponde
al reemplazo λk → λ∗k en |0λk⟩⟩ de tal manera que

|0λk⟩⟩k⟨⟨0λk | =
∑
n,n′

e−λk
n+n′

2 |n⟩⟨n′| ⊗ |ñ⟩⟨ñ′| . (7.111)

Entonces, la traza parcial sobre el entorno produce

e−Hk = TrE|0λk⟩⟩⟨⟨0λk | (7.112)

donde usamos ⟨ñ|ñ′⟩ = δnn′ . Esto también implica

Zk = k⟨⟨0λk |0λk⟩⟩ . (7.113)

Para obtener el ρ completo tomamos el producto de los estados anteriores y
definimos

|0λ⟩⟩ = ⊗
k
|0λk⟩⟩k = exp

(∑
k

e−
λk
2 a†kã

†
k

)
|0⟩⟩

|0λ⟩⟩ = ⊗
k
|0λk⟩⟩ = exp

(∑
k

e−
λ∗k
2 a†kã

†
k

)
|0⟩⟩ , (7.114)

para |0⟩⟩ = |0⟩ ⊗ |0̃⟩ ahora los vacíos completos (|0⟩ = ⊗k|0⟩k, |0̃⟩ = ⊗k|0̃⟩k). Ahora
es claro que

e−H = TrE|0λ⟩⟩⟨⟨0λ| (7.115)

y
Z = ⟨⟨0λ|0λ⟩⟩ . (7.116)

Es importante notar que para λ ∈ R, |Ψ⟩⟩ = |Ψ⟩⟩ y todas las expresiones anteriores
se reducen a las de la purificación convencional.

Nótese también que |0λ⟩⟩, |0λ⟩⟩ son vacíos de Bogoliubov de los operadores de
aniquilación

a′k := u(λk)ak + v(λk)ã
†
k

ã′k := u(λk)ãk + v(λk)a
†
k

a′k := u(λ∗k)ak + v(λ∗k)ã
†
k

ã
′
k := u(λ∗k)ãk + v(λ∗k)a

†
k

(7.117)
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respectivamente, para

u(λk) =
1√

1− e−Re(λk)
v(λk) = − e−λk/2√

1− e−Re(λk)
(7.118)

satisfaciendo |u(λk)|2 − |v(λk)|2 = 1 (y por lo tanto [a′k, a
′†
l ] = [ã′k, ã

′†
l ] = [ā′k, ā

′†
l ] =

[˜̄a′k, ˜̄a
′†
l ] = δkl con los otros conmutadores anulándose). Esto puede ser fácilmente

probado mostrando explícitamente que

a′k|0λ⟩⟩ = ã′k|0λ⟩⟩ = ā′k|0λ⟩⟩ = ˜̄a′k|0λ⟩⟩ = 0 . (7.119)

Entonces se puede aplicar el formalismo desarrollado en [150] para expresar los
valores medios generalizados (como la Ec. (7.71)) como un valor de expectación en
vacío en bases bi-ortogonales.

Para obtener las ecuaciones (7.69) se puede tomar el límite continuo de (7.114)
directamente dentro de las sumas. Este paso se puede justificar aún más considerando
primero un volumen de espacio-tiempo finito que hace que los índices de momento
p sean discretos, recuperándose el álgebra (7.48) como el límite de volumen grande
(véase también el enfoque convencional de la dinámica de campos térmicos [135]).
Nótese que estos resultados se aplican directamente a un T finito y ϵ, lo que permite
recuperar correladores térmicos del mismo esquema de purificación (véase 7.4.3).

7.4 Correspondencia con la MC convencional para

espacio-tiempo discreto y sistemas cuánticos ge-

nerales

En este Apéndice discutimos cómo funciona la correspondencia del texto principal
con la MC convencional para tiempo discreto y para sistemas y teorías generales.
La noción de estado generalizado de espacio-tiempo, que surge de la purificación del
mapa, también se puede aplicar, como mostramos en un sistema simple de un qubit.

Formalismo discreto. Escribamos primero una versión de espacio-tiempo discreto
del álgebra extendida (7.35):

[ϕim, πjn] = iδijδmn , (7.120)

donde i, j representan sitios de tiempo y m,n sitios espaciales. El álgebra canónica
convencional correspondiente es [ϕm, πn] = iδmn en tiempos iguales. Nótese que
en el enfoque estándar los operadores de campo en diferentes puntos del espacio
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conmutan, lo que significa que el espacio de Hilbert total tiene la estructura de
producto H = ⊗mhm con h el espacio de Hilbert de un solo modo bosónico. Cuando
extendemos el álgebra como en (7.120) esto se generaliza al tiempo, con la nueva
estructura del espacio de Hilbert siendo

H = ⊗iHi = ⊗i,mhim . (7.121)

Vemos que una estructura de producto tensorial se aplica tanto al espacio como al
tiempo. De hecho, no hay nada que distinga el tiempo y el espacio en (7.120), solo
fijamos una convención para introducir la dinámica a continuación.

Tal estructura de producto en el tiempo se puede definir para cualquier sistema
cuántico (el caso fermiónico es más sutil como se discute en el Apéndice 7.2): uno
considera un espacio de Hilbert h y luego construye un espacio de Hilbert extendido
H = ⊗ihi para un número dado de tiempos. Si el espacio de Hilbert h tiene una
base de estados |n⟩, entonces

H = span{|n1n2 . . . nN⟩} , (7.122)

es decir, tiene una base tipo "trayectoria cuántica", con N el número de cortes de
tiempo. Definamos ahora un operador extendido eiϵP0 tal que

eiϵP0 |n1n2 . . . nN⟩ := |nNn1n2 . . . ⟩ . (7.123)

Se puede demostrar fácilmente [4] que

Tr[eiϵP0 ⊗i O
(i)
i ] = Tr[T̂ ΠiO

(i)] , (7.124)

donde la primera traza se toma en el espacio de Hilbert extendido mientras que la
segunda en el convencional. El operador de ordenamiento temporal T̂ indica que el
producto de operadores a la derecha debe seguir el ordenamiento temporal (de mayor
a menor) a la izquierda. Esta es la esencia detrás de la correspondencia: el operador
eiϵP0 está traduciendo trazas de productos tensoriales de operadores a trazas de la
composición convencional de esos mismos operadores. Para concretar, mostremos
esto para N = 2:

Tr[eiϵP0A⊗B] =
∑
n1,n2

⟨n2n1|A⊗B|n1n2⟩

=
∑
n1,n2

⟨n1|B|n2⟩⟨n2|A|n1⟩

=
∑
n

⟨n|BA|n⟩ = Tr[BA] ,

(7.125)
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Figura 7.4.1: Representación a lo “Tensor Network” de la correspondencia. El operador
eiϵP0 permite traducir trazas en H = ⊗ihi a trazas en hi, como se ve fácilmente en la notación de
tensor networks. La notación se introduce en c) mientras que los paneles a) y b) se han añadido
para enfatizar que un espacio de Hilbert se asigna a cada rebanada de tiempo. Para las QFT, cada
plano representa el espacio de Hilbert de campos cuantizados en una hipersuperficie dada. En a)
representamos la Ec. (7.125). En b) mostramos la representación de la misma traza con un mayor
número de rebanadas de tiempo.

que es la Ec. (7.124) para A = O(1), B = O(2). Nótese que para N = 2, eiP0

es simplemente el operador SWAP, y lo anterior es esencialmente una prueba de
SWAP [101]. Notar también que este mismo correlador puede representarse en un
espacio de Hilbert extendido con un número arbitrario de tiempos, como se muestra
en la Figura 7.4.1 en notación de redes tensoriales.

El siguiente paso es relacionar la construcción cinemática anterior con correlado-
res reales y con el operador de acción. En este escenario, la definición adecuada de
la acción para un paso de tiempo ϵ es

eiS := eiϵP0 ⊗i e
−iϵHi = eiϵ(P0−

∑
iHi) . (7.126)

De hecho, se demostró en [4] que

Tr
[
|ψ⟩0⟨ψ| eiS ⊗i O

(i)
i

]
= ⟨ψ, T |T̂ ΠiO

(i)
H (ti)|ψ⟩ (7.127)

con ti = ϵi, T = ϵN y |ψ, t⟩ := e−iHt|ψ⟩. En otras palabras, reemplazar P0 con la
acción S en (7.124) corresponde a agregar evolución. La cantidad de evolución de
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cada operador está determinada por el espacio de Hilbert en el que actúan. Además,
para especificar el estado inicial lo insertamos en la rebanada de tiempo inicial
(|ψ⟩0⟨ψ| ≡ |ψ⟩0⟨ψ| ⊗ 1).

También es sencillo extender (7.127) a Hamiltonianos dependientes del tiempo
definiendo la acción como eiS = eiϵP0 ⊗i Ui[(i + 1)ϵ, iϵ] con Ui(t

′, t) el operador de
evolución temporal, evolucionando de t a t′, actuando en la rebanada i. También
se podría añadir una dependencia temporal explícita a los operadores O(i). El or-
denamiento temporal se preserva siempre y cuando la posición en el tiempo y la
dependencia temporal externa sean consistentes (por ejemplo, si se está consideran-
do un operador O = j(t)ϕm, con j(t) una función, se debería insertar Oi = j(t)ϕim

para iϵ = t).

Si solo se está interesado en el estado fundamental, se puede omitir el estado
inicial agregando una parte imaginaria al tiempo (todo lo anterior se mantiene para
un H no hermitiano [3]) y considerando el límite de tiempo grande, justo como se
suele hacer en la formulación PI. Nuestro ejemplo principal podría reinterpretarse
de esta manera. También se pueden considerar funciones de correlación térmicas
haciendo el reemplazo (rotación de Wick) H → −iH en la definición del operador
S. Un simple cambio de etiquetas de las ecuaciones anteriores da Tr

[
eiS ⊗i O

(i)
i

]
=

Tr
[
e−βH T̂θ ΠiO

(i)
H (θi)

]
donde OH(θ) ≡ eHθOe−Hθ indicando “evolución térmica”, es

decir, el operador “evolucionado” hasta la temperatura inversa θ y θi = iϵ. Esto
también implica la Ec. (7.67) en el cuerpo principal y Tr [eiS ] = Tr [e−βH ].

Tratamiento del espacio-tiempo de sistemas de qubits. Ahora mostraremos en un
ejemplo muy simple cómo se aplica la purificación generalizada además del caso de
campo bosónico. Primero introducimos una situación convencional de dos qubits
separados en el espacio en un momento dado para comparación. En este escenario
describimos el estado asociado del sistema a través de una matriz de densidad que
se puede escribir como

ρ =
3∑

i,j=0

⟨Pi ⊗ Pj⟩ρ Pi ⊗ Pj (7.128)

con ⟨Pi⊗Pj⟩ρ = Tr[ρPi⊗Pj] y Pi matrices de Pauli para P0 = 1. Esto significa que el
estado define completamente los correladores en un momento dado y viceversa. Si el
estado no es puro siempre podemos considerar una purificación y reescribir lo anterior
como un valor medio de estado puro. Por ejemplo, para ρ = p|00⟩⟨00|+(1−p)|11⟩⟨11|
podemos escribir

⟨Pi ⊗ Pj⟩ρ = ⟨⟨Ψ|Pi ⊗ Pj ⊗ 1E|Ψ⟩⟩ (7.129)
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donde el estado global que involucra el “entorno” puede ser elegido como |Ψ⟩⟩ :=
√
p|000⟩+

√
1− p|111⟩ de tal manera que

ρ = TrE|Ψ⟩⟩⟨⟨Ψ|| . (7.130)

Ahora consideremos el caso de un solo qubit y dos tiempos en el nuevo enfoque.
El nuevo formalismo describe la situación a través de un espacio de Hilbert que es
isomorfo al del ejemplo anterior que involucra dos qubits. De hecho, describimos
convencionalmente el espacio de Hilbert de un qubit como la representación más
pequeña (irreducible) del álgebra [Pi, Pj] = 2iϵijkPk, donde i, j, k = 1, 2, 3 y ϵijk es
el símbolo de Levi-Civita. Nuestro formalismo impone entonces,

[Pti, Pt′j] = δtt′2iϵijkPtk , (7.131)

con la prescripción de emplear la representación convencional del espacio de Hilbert
para cada rebanada de tiempo fija.

Por otro lado, según la discusión anterior, el operador de interés, es decir, el que
produce los correladores en el espacio-tiempo (ver Ec. (7.127)) no es ρ sino

ρ̄ := |ψ⟩⟨ψ| ⊗ 1eiS =
1∑
i=0

|ψ⟩⟨i, ϵ| ⊗ |i⟩⟨ψ, ϵ| , (7.132)

donde asumimos un estado inicial puro |ψ⟩ por simplicidad y usamos que para dos
tiempos eiS = eiϵP0e−iϵH ⊗ e−iϵH . También recordamos que |ψ, ϵ⟩ ≡ eiϵH |ψ⟩. Como
cualquier otro operador, ρ̄ se puede escribir en términos de los correladores como

ρ̄ =
3∑

i,j=0

⟨Pi ⊗ Pj⟩ρ̄ Pi ⊗ Pj , (7.133)

donde sabemos por construcción que los valores medios satisfacen ⟨Pi ⊗ Pj⟩ =

Tr[ρ̄Pi ⊗ Pj] = ⟨ψ, T |Pj(ϵ)Pi|ψ⟩, con T = 2ϵ. Podemos verificar esto explícitamente:

⟨Pi ⊗ Pj⟩ρ̄ =
∑
i

⟨ψ, ϵ|Pj|i⟩⟨i, ϵ|Pj|ψ⟩

=
∑
i

⟨ψ, 2ϵ|Pj(ϵ)|i, ϵ⟩⟨i, ϵ|Pj|ψ⟩

= ⟨ψ, T |Pj(ϵ)Pi|ψ⟩ ,

donde reorganizamos los términos en la primera igualdad y usamos la relación de
completitud en la última. Nótese cómo los operadores aparecen según el orden tem-
poral en el lado izquierdo, de acuerdo con (7.127). Lo anterior implica que ρ̄ es el
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operador único en este espacio de Hilbert cuyos correladores en el tiempo son los
propagadores convencionales. Nótese que los correladores en el tiempo ahora se tra-
tan exactamente como en nuestro ejemplo espacial anterior. La diferencia entre las
dos situaciones se codifica en las diferentes características de ρ, ρ̄, siendo el primero
un estado pero no el segundo.

Notablemente, podemos interpretar ρ̄ como que surge de un estado generalizado:
sin pérdida de generalidad escribamos |ψ⟩ = |0⟩. Ahora introducimos un par de
estados correlacionados con un entorno de qubit:

|Ψ⟩⟩ := |000⟩+ |011⟩√
2

|Φ⟩⟩ := (eiϵH ⊗ eiϵH ⊗ 1)
|000⟩+ |101⟩√

2
. (7.134)

Se puede verificar fácilmente que

⟨Pi ⊗ Pj⟩ρ̄
Tr ρ̄

=
⟨⟨Φ|Pi ⊗ Pj ⊗ 1E|Ψ⟩⟩

⟨⟨Φ|Ψ⟩⟩
=

⟨0, T |Pj(ϵ)Pi|0⟩
⟨0, T |0⟩

, (7.135)

como se sigue de
ρ̄

Tr ρ̄
= TrE R , R :=

|Ψ⟩⟩⟨⟨Φ|
⟨⟨Φ|Ψ⟩⟩

, (7.136)

con R un estado generalizado, es decir, un proyector no ortogonal. También tenemos
2 ⟨⟨Φ|Ψ⟩⟩ = Tr ρ̄ = ⟨0, T |0⟩, donde el factor 2 puede ser absorbido en los estados sin
cambiar la condición R2 = R. Hemos obtenido así una purificación generalizada de
ρ̄, como las que discutimos en la sección 7.4.4 del cuerpo principal y el Apéndice 7.3
para un campo bosónico. De hecho, se puede demostrar que obtener R es posible
para cualquier sistema y evolución (véase también la discusión reciente en el contexto
de espacio-tiempos holográficos dependientes del tiempo [97, 98, 137, 138]).

El ejemplo anterior muestra una vez más cómo el nuevo formalismo trata el
espacio y el tiempo por igual, con el espacio de Hilbert de un qubit y dos tiempos
teniendo dimensión 22 y siendo el mismo que el de dos qubits separados en el espacio
en un solo tiempo. Las Ecuaciones (7.128) y (7.133) son formalmente las mismas,
con las diferencias codificadas en los correladores. También vemos que la purificación
generalizada (7.136) es análoga a la tradicional mostrada en (7.130). Por supuesto,
considerar, por ejemplo, dos qubits y dos tiempos conduce a un espacio de dimensión
24 con todas las variables en igualdad de condiciones. Las diferencias entre espacio
y tiempo no son aparentes a nivel del espacio de Hilbert, en cambio, se manifiestan
en las propiedades de los “estados” con |Ψ⟩⟩⟨⟨Ψ| siendo un proyector ortogonal pero
no R. Este último codifica no solo el estado inicial sino también la evolución y la
estructura causal de la teoría.
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Caso bosónico y límite continuo. Es interesante ver las consecuencias de este
mapa en el caso del campo bosónico en espacio-tiempo discreto. Por ejemplo, lo
anterior nos permite escribir

Tr
[
|ϕ⟩0⟨ϕ| eiSϕimϕjn

]
= ⟨ϕ, T |T̂ ϕHm(ti)ϕHn(tj)|ϕ⟩ (7.137)

que es el “propagador de Feynman” para una ventana de tiempo finito T y para
una configuración inicial y finita del campo en el espacio |ϕ⟩ := ⊗m|ϕm⟩ (ϕ̂m|ϕ⟩ =
ϕm|ϕ⟩ en una rebanada de tiempo dada, donde hemos introducido el sombrero para
claridad).

Nótese que el lado derecho puede escribirse naturalmente como una integral de
trayectoria entre las configuraciones ϕ e insertando dos operadores de campo. El lado
izquierdo parece sospechosamente similar a tal construcción, excepto por el hecho
de que involucra operadores y una traza en el espacio de Hilbert (extendido). Para
entender la relación entre los dos, uno debe expandir la traza en alguna base. Aunque
son posibles infinitas elecciones, la base de autoestados del espacio-tiempo del campo
|ϕ⟩ := ⊗i,m|ϕim⟩ (ϕ̂im|ϕ⟩ = ϕim|ϕ⟩8) lleva directamente a la PI de Feynman [4]. En
este sentido, la formulación de PI emerge también del formalismo. Por ejemplo,
fácilmente se ve que

⟨ϕ|eiϵP0|π⟩ = exp
[
iϵ
∑
i,m

πim
(ϕi+1,m − ϕim)

ϵ

]
⟨ϕ|π⟩ , (7.138)

revelando que P0 está relacionado con la transformada de Legendre, donde |π⟩ :=
⊗i,m|πim⟩ es la base de autoestados del momento del campo.

Uno puede justificar aún más la aparición de la transformada de Legendre em-
pleando una representación de modos normales de P0. Dados los operadores de
aniquilación (creación) aim, a†im que satisfacen [aim, a

†
jn] = δijδmn (relacionados li-

nealmente con ϕim, πim) se pueden definir modos de Fourier en el tiempo mediante
akm := 1√

N

∑
j e

iωkjϵajm donde ωk = 2πk/T y k toma N = T/ϵ valores diferentes.
Entonces

P0 =
∑
k,m

ωka
†
kmakm (7.139)

produce eiϵP0ajme
−iϵP0 = aj+1,m de acuerdo con (7.123). Si ahora reescribimos P0 en

la base de tiempo tenemos P0 =
∑

m,j,j′ a
†
j′miDjj′ajm con D := − 1

N

∑
k iωke

iωk(j−j′)ϵ

que es una versión discreta de una derivada en el tiempo de la delta de Kronecker δjj′ .
La forma es una vez más la de la transformada de Legendre, ahora en las “variables”

8En la versión continua del texto principal, |ϕ⟩ corresponde a |ϕ(x)⟩ mientras que |ϕ⟩ a |ϕ(x)⟩
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ajm, a
†
jm. Nótese también que la Ec. (7.139) es una versión discreta de la expresión

(7.52) del cuerpo principal para foliación canónica.

Además, considere el límite de espacio-tiempo continuo en el espacio de Hilbert.
El procedimiento es el mismo que se suele hacer en el espacio, así que primero revise-
mos el escenario convencional espacial. Dado un espaciado constante a, se consideran
operadores ϕ(x) := ϕm

ad/2
, π(x) := πm

ad/2
para x = am (asumiendo d dimensiones) y

m un vector de entradas enteras. Entonces, el álgebra canónica [ϕm, πm′ ] = iδm,m′

implica

[ϕ(x), π(x′)] = ia−dδm,m′ → iδ(d)(x − x′)

en el límite a → 0. El mismo tratamiento se puede aplicar para obtener (7.35) de
(7.120) definiendo ϕ(x) := ϕjm√

ϵad/2
, π(x) := πjm√

ϵad/2
, con x = (ϵj, am), de modo que

[ϕ(x), π(x′)] = iϵ−1a−dδjj′δm,m′ → iδ(d+1)(x− x′) .

Aunque ya no hay un número contable de rebanadas de tiempo (ni de rebanadas
espaciales) aún se puede definir un operador de traslación en el tiempo y relacionar-
lo con la versión anterior. De hecho, se puede demostrar rigurosamente [3, 4] que
la expansión (7.139) (con el índice k tomando valores enteros arbitrarios) lleva a
P0 →

∫
dDx π(x)ϕ̇(x) para ϵ, a → 0, como sugiere (7.138) pero sosteniendo a nivel

del operador y en acuerdo con los resultados del cuerpo principal. El límite de es-
paciado pequeño también supone ϵN = T constante, así como la condición espacial
usual aM = L (para M el número de rebanadas espaciales y L la longitud total de
la “caja”). Uno puede entonces tomar los límites T, L→ ∞ para recuperar el forma-
lismo del cuerpo principal. En este caso, los operadores de creación (aniquilación)
de Fourier satisfacen también un álgebra continua, de acuerdo con Ec. (7.48): por
ejemplo, manteniendo L finito se define am(p0) :=

√
Takm con p0 = 2πk/T de modo

que [am(p
0), a†m′(p′0)] = Tδkk′δmm′ → 2πδ(p0 − p′0)δmm′ .

Nótese que el límite de tiempo continuo está bien definido para el operador P0

en sí, de modo que eiτP0 implementa traslaciones geométricas en el tiempo como
ϕ(x) → ϕ(x0 + τ,x) para τ ∈ R. Por otro lado, si uno quisiera considerar primero
el límite N → ∞ (manteniendo ϵ finito, tal que j = −N

2
, . . . , N

2
y T = ϵN → ∞) la

FT ahora lleva a p0 continuo en (−Λ,Λ) con Λ := (2ϵ)−1 funcionando como un corte
natural, de modo que la definición adecuada del generador de traslaciones en el tiem-
po se convierte en P0 :=

∑
m

∫ Λ

−Λ
dp0 p0a†m(p

0)am(p
0), que toma el lugar de (7.139).

Entonces eiϵP0ajme
−iϵP0 = aj+1,m para cualquier entero j. En conclusión, en todos

estos límites el generador de traslaciones en el tiempo está definido adecuadamente.
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Capítulo VII. Mecánica cuántica y clásica en el
espacio-tiempo con foliación dinámica

Estas definiciones constituyen una extensión natural del caso de un tiempo discreto
compactificado y concuerdan con los posibles límites (es decir, pequeño espaciado
y/o gran T ) de ese escenario básico.

Nótese que un tratamiento similar podría emplearse para otras álgebras de espacio-
tiempo, como la de Ec. (7.131), llevando al reemplazo δtt′ → δ(t− t′).
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Conclusiones y perspectivas de la tesis

Presentamos a lo largo de la tesis un conjunto de resultados y aprendizajes parciales
que nos llevaron finalmente a proponer una versión de la MC basada en espacios de
Hilbert y que a su vez, cuando aplicada a teorías de campos, permiten hacer explícita
la simetría de Lorentz. El espacio de Hilbert que introdujimos, no es el convencio-
nal sino que está basado en álgebras ampliadas para tratar a espacio y tiempo en
pie de igualdad. A su vez, en el caso de teorías de campos relativistas mostramos
que es también necesario cuantizar las posibles foliaciones del espacio-tiempo, algo
que puede interpretarse como una cuantización de los sistemas de referencia. Otra
importante novedad del formalismo son las acciones cuánticas, que nos permiten es-
tablecer un mapeo con la MC convencional y reinterpretar el rol de la formulación de
Feynman. Al mismo tiempo, hemos mostrado que el mapeo lleva a generalizaciones
del concepto de estado cuántico a objetos que codifican no solo el estado del sistema
a tiempo fijo sino también su evolución y la estructura causal de una teoría. Por
otra parte, introdujimos una formulación de la mecánica clásica en espacios de fases
ampliados, cuya cuantización lleva al formalismo cuántico.

Vale la pena incluir una discusión sobre las diferencias conceptuales fundamenta-
les entre nuestra propuesta y la MC tradicional, basada en evolución unitaria. Estas
diferencias han sido pues totalmente cruciales para enfrentar el problema planteado y
“acercar la cuántica a la relatividad”. Notablemente, el esquema final es en cierto sen-
tido más cuántico que la formulación estándar, pues, en vez de asociar la evolución
con un parámetro externo clásico, nuestro esquema codifica la información dinámica
a través de (nuevas) correlaciones cuánticas, en sintonía con el espíritu de esta época.
Para explicar mejor esta idea, déjenme retomar el ejemplo de un campo escalar ϕ(x)
y su momento conjugado π(x). En la nueva formulación [ϕ(t,x), ϕ(t′,x)] = 0 para
todo par de tiempos y [ϕ(t,x), π(t′,x)] = 0 si t ̸= t′. Esto significa que el momento
es completamente independiente del campo, y de ninguna manera ligado a la can-
tidad ϕ̇ (o a nµ∂µϕ si se prefiere). Vemos explícitamente que el momento no tiene,
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a priori, ningún significado dinámico. En el caso clásico, recuperamos su significado
tradicional a través de imponer un vínculo débil de la forma {ϕ,S} = π−nµ∂µϕ ≈ 0.
Cuánticamente, la situación es más compleja 1 y requiere computar “valores medios”
con respecto a la acción. Esto es, dentro de llaves ⟨. . . ⟩ ≡ Tr[eiS . . . ] el momento π
sí adquiere significado dinámico. De igual manera, si bien ϕ(x) es independiente de
ϕ(y) para x ̸= y, incluso para un intervalo tipo tiempo, ⟨ϕ(x)ϕ(y)⟩ es el propagador
de Feynman. Recordemos también que podemos reescribir lo anterior como un valor
débil (weak value) [140] ⟨. . . ⟩ = ⟨⟨Φ| . . . |Ψ⟩⟩ 2, de modo que toda la información
dinámica ha de estar contenida en los estados |Ψ⟩⟩, |Φ⟩⟩, no porque los hemos evo-
lucionado unitariamente, sino porque contienen correlaciones cuánticas a través de
distintos “slices” espacio-temporales. Considero que este resultado es realmente no-
table, pues la receta general para imponer las correlaciones que permitan recuperar
la dinámica de una cierta teoría es extremadamente simple. Solo requiere “purificar”
a la exponencial de la correspondiente acción cuántica S, cuya forma suele ser la de
la acción clásica.

Las consideraciones anteriores han sido de particular relevancia para obtener co-
varianza en espacios de Hilbert. Solo eliminando toda referencia a un parámetro
externo de evolución se logra separar completamente la información dinámica de la
geométrica. En particular, en nuestro formalismo, cuando definimos transformacio-
nes de Lorentz para un dado campo, éstas están definidas geométricamente y de
una vez por todas: la definición es la misma para todas las teorías, interactuantes
o no, en analogía a lo que sucede con las rotaciones. Para saber si una teoría es
invariante de Lorentz, nos preguntamos si [Jµν ,S] = 0 con Jµν = Lµν ⊗ 1+ 1⊗ lµν

el generador de boosts, que hemos separado explícitamente en los sectores campos
de materia y foliación. Decir que la acción conmuta con Jµν sí es una afirmación de
índole dinámica. A su vez, hemos visto que las acciones cuánticas son operadores no
separables en la partición materia-foliación. Esta es la manera en la que reaparece en
el formalismo la conexión entre transformaciones del espacio-tiempo y la dinámica.

1El lector familiarizado con la cuantización de teorías con vínculos podría preguntarse porqué
no aplicamos el esquema correspondiente a nuestra propuesta clásica. De hecho, el formalismo de
PW puede reobtenerse con dichos métodos, aplicados a una partícula parametrizada. Sin embargo,
uno puede ver fácilmente que a diferencia de la partícula parametrizada los vínculos clásicos que
introdujimos en el capítulo VII son de segunda clase y no de primera. Aplicar el esquema de Dirac
lleva entonces a la cuántica tradicional, pues los corchetes de Dirac [42] coinciden con los de Poisson
no ampliados. Ideas nuevas fueron entonces necesarias para no abandonar las álgebras ampliadas.

2Esta propiedad solo se mostró en 7.4.3 con |Ψ⟩⟩, |Φ⟩⟩ vacíos de Bogoliubov para teorías libres,
y en el caso de un qubit en 7.4, sin embargo puede mostrarse que es general.
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A posteriori, esto es fácil de justificar si consideramos por ejemplo el efecto Unruh
[147, 148]. El concepto de partícula y vacío está intrínsecamente ligado a como un
observador separa espacio y tiempo. En nuestro formalismo dicha conexión aparece
porque la acción no es separable de la foliación, de modo que su diagonalización, que
determina el concepto de partícula, es foliación-dependiente. En particular, como se
discutió en las conclusiones del capítulo VII, podemos aplicar fácilmente nuestro
formalismo a observadores no inerciales (esto es, foliaciones curvas nµ(x)), y espe-
ramos reobtener la no equivalencia entre conceptos de vacío. Remarquemos que al
emplear nuestro formalismo en fondo de Minkowski, las álgebras cumplidas por los
campos no se modifican, solo habrá que especificar un estado cuántico diferente pa-
ra la foliación, correspondiente por ejemplo a la de un observador de Rindler [148].
Para dar una idea concreta 3 sobre por qué es esto cierto consideremos coordenadas
de Rindler (η, ξ) ∈ R2 en 1 + 1 dimensiones tal que x = eξ cosh(η), t = eξ sinh(η).
Usando que ∂η = ∂xµ

∂η
∂µ = x∂t + t∂x puede verse que Pη ≡ L01, esto es, el gene-

rador de traslaciones en el parámetro η es el generador de boosts 4. A su vez L01

puede obtenerse a partir de P0[n̂] (el generador de traslaciones con n̂µ(x) un ope-
rador) imponiendo nµ(x) = (x, t)µ. El tratamiento de esta situación es claramente
muy distinto al canónico, donde se imponen álgebras canónicas en hiper-superficies
dependientes del observador y se conecta la cuantización “a lo Rindler” con la cuan-
tización “a lo Minkowski” a través de condiciones adecuadas (usualmente se usa que
los campos y momentos coinciden en la semirrecta positiva a t = η = 0).

Antes de proseguir analizando las nuevas posibilidades abiertas por el formalis-
mo, cabe discutir aunque brevemente sobre algunas cuestiones más elementales que
no han sido tratadas en detalle. En particular, en una tesis que habla de relatividad
y teorías cuánticas de campos (sin que sean los temas centrales) no hemos incluido
ningún cálculo que involucre un proceso de renormalización, proceso fundamental
para extraer predicciones físicas. A su vez, sí hemos dado las expresiones generales a
partir de las cuales derivar las reglas de Feynman y obtener funciones de correlación
generales. Esto significa que si agregamos a esas expresiones la “maquinaria” con-
vencional para obtener predicciones físicas, se llega a los mismos resultados. En este
argumento estamos omitiendo una pieza importante, que no hemos tratado con sufi-

3Quiero aquí agradecer a Lucas Manzo, Jonatan Chaves y a Facundo Cruz por discusiones sobre
el efecto Unruh.

4Estrictamente hablando esto es cierto en el “Rindler’s wedge”, sin embargo si uno considera
correladores térmicos, que es lo relevante al derivar el efecto Unruh, entonces Pη coincide con el
generador de rotaciones en (t, x) en todo el espacio-tiempo, siendo el equivalente Euclídeo de L01.
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ciente profundidad aún: ¿qué nos dice el formalismo ampliado sobre esta “maquinaria
extra” que estamos dando por sentada? Siendo más concretos, ¿aparece algo nuevo
en el proceso de renormalización al emplear el formalismo aquí propuesto? Cómo
se mencionó en los capítulos VI y VII, la escala de tiempo τ que empleamos para
establecer el mapeo con la MC convencional para tiempo continuo podría ser una
novedad importante. A su vez vimos en estos capítulos que en más de una situación
es posible pensar (parcialmente) en el formalismo ampliado como un formalismo ca-
nónico en D+1 = d+2 dimensiones con τ un parámetro de evolución (recordemos el
resultado en el capítulo VI que conecta nuestro mapa con expresiones del formalismo
de línea de mundo [46]), ¿es esto un indicio de que existe una interpretación holo-
gráfica de nuestros resultados? Como hemos mencionado, no es simple escribir las
teorías d+2 dimensionales que se obtienen para τ finito, pues estas son altamente no
locales. Dejamos este asunto abierto de momento. Otro aspecto que no consideramos
es el de establecer el mapeo entre el formalismo cuántico ampliado y el usual para
el caso de fermiones y teorías de gauge. Respecto al primer caso, es simple definir
acciones cuánticas fermionicas basadas en álgebras de anticonmutadores ampliadas
aunque hay que tener algún cuidado extra con la paridad a la hora de introducir
las trazas que conectan con la MC tradicional. Esto no complica la discusión del
formalismo introducido y provee una nueva manera de definir a las Integrales de
Feynman para fermiones. Sin embargo, la presencia de un nµ cuántico para campos
con espín sí introduce novedades que mencionamos brevemente en 7.2. Es interesante
mencionar que en el caso de teorías clásicas emplear un formalismo multisimpléctico
en presencia de teorías de gauge (a lo que puede asociarse un nµ) puede dar ventajas
a priori no obvias, como sucede en el caso de la formulación Hamiltoniana de la
gravedad [151]. Sería interesante ver si dichas ventajas pueden importarse al caso
cuántico a través de nuestro nuevo esquema de cuantización (recordemos que no hay
una cuantización directa de los formalismo multisimplécticos). A su vez, queda claro
que nuestro mapeo usado de forma directa ha de contar configuraciones equivalentes
en exceso. Esto es, no hemos desarrollado el equivalente a lo que en Path Integrals
se conoce como método de Faddeev–Popov [40]. Finalmente cabe mencionar que
todo lo construido es suficiente en principio para representar de manera ampliada
cualquier cantidad física de interés en MC tradicional no relativista. Esto significa
que las bases para aplicar el formalismo a escenarios que incluyan medidas, canales
cuánticos (por ej. sistemas abiertos), etc están dadas, aunque no hayamos ahondado
en estos temas.
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Perspectivas

Podemos decir que el resultado principal de la tesis ha sido construir el formalismo
del capítulo VII y mostrar su equivalencia con la física tradicional. Sin duda un
formalismo es valioso si nos da un punto de vista novedoso que pueda servir para
abordar problemas desde distintos ángulos. Creo haber cumplido el criterio de “no-
vedad”, y considero haber dado algunas pistas sobre como el nuevo punto de vista
puede dar ventajas a la hora de plantear viejos problemas. Por otro lado, posible-
mente un mejor criterio para juzgar la utilidad de un formalismo nuevo es si este,
además de ser equivalente a lo que conocemos en donde esperamos que lo sea, nos
permite ir más allá. Existen sin duda varias direcciones a explorar que se han vuelto
accesibles desde nuestra propuesta. Si bien su desarrollo se encuentra en una etapa
inicial, me gustaría concluir la tesis indicando claramente estas perspectivas, que
además son muy concretas:

• Nuevos algoritmos de simulación en computadoras cuánticas. En el
anexo IX incluimos una aplicación computacional del formalismo de PW que permi-
te hacer promedios temporales de cantidades físicas en paralelo en una computadora
cuántica. En esta propuesta es clave tratar al tiempo como un operador de modo que
podamos asignar parte de los qubits al tiempo mismo. ¿Podemos emplear nuestra
propuesta final, basada en álgebras ampliadas y no en el operador tiempo de PW,
para encontrar nuevos algoritmos cuánticos? La dirección más prometedora parece
ser la de computar integrales de Feynman como se discutió en el capítulo VI. Allí
vimos que la suma sobre historias que caracteriza a las integrales de Feynman puede
obtenerse en una computadora cuántica. Más allá del algoritmo particular que he-
mos propuesto 5, lo valioso de este resultado está en notar que al embeber nociones
físicas como las trayectorias “off-shell” en un espacio de Hilbert, podemos automáti-
camente traducir dichas nociones a una computadora cuántica. Es más, el mapa de
los capítulos VI y VII no está ligado necesariamente a integrales de Feynman de mo-
do que podemos computar correladores espacio-temporales generales (por ejemplo
de sistemas de espínes) con la misma idea.

5Cabe notar que el algoritmo DQC1, que forma parte de nuestra idea para computar trazas,
contrariamente a lo que sugiere un análisis superficial, no es eficiente en general [152]. Esto ocurre
porque las trazas que este esquema computa se encuentran normalizadas, por ende solo trazas de
operadores suficientemente cercanos a la identidad pueden obtenerse con pocas medidas al final de
un circuito.
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• Generalización del concepto de estado cuántico. Recordemos en primer
lugar que en el formalismo ampliado del capítulo VII es posible codificar la evolución
en estados |Ψ⟩⟩, |Φ⟩⟩, o tal vez más propiamente dicho, en el proyector no ortogo-
nal R = |Ψ⟩⟩⟨⟨Φ|/⟨⟨Ψ|Φ⟩⟩. Mencionemos también que recientemente surgió interés
por estudiar las correlaciones de este tipo de “estados” en la MC convencional (i.e.,
no ampliada), en el contexto de la correspondencia dS/CFT, para establecer si es
posible pensar en el tiempo como una cantidad emergente de alguna medida en infor-
mación cuántica [97], en analogía a lo que sucede con el espacio y el entrelazamiento
en AdS/CFT [139]. En nuestro formalismo, las correlaciones contenidas en R son
precisamente las responsables de que la evolución emerja de cantidades estáticas.
Nuestra propuesta nos provee entonces de un marco capaz de definir rigurosamente
y fácilmente cantidades análogas al entrelazamiento tipo espacio (el único que tiene
sentido definir en MC convencional). En particular, tiene un claro significado ha-
blar de correlaciones a través de “slices” temporales y está claro que las hay, de lo
contrario encontraríamos siempre una evolución trivial. Es más, si recordamos que
estas trazas están profundamente ligadas a la formulación de Feynman, podemos
argumentar, sin hacer ninguna cuenta, que las correlaciones de estos estados han
de proveer una nueva perspectiva sobre el límite clásico definido por ℏ → 0. En
particular, podemos plantear el problema de “comprimir” estos estados en analogía
a lo que suele hacerse en las descomposiciones en Matrix Product States y Tensor
Networks que emplean como criterio la no extensividad (leyes de área en vez de
volumen) del entrelazamiento tipo espacio [153]. Mencionemos también que las des-
composiciones en Tensor Networks proveen más que métodos numéricos, pues, al dar
una gran intuición sobre la estructura de estados cuánticos, estos pueden usarse por
ejemplo para capturar aspectos claves de holografía [154, 155]. Es natural investigar
cuestiones similares empleando nuestra generalización de estado. A su vez, el tipo
de correlaciones tipo tiempo permitidas por la MC tradicional está acotado. Esto es
fácil de ver en el formalismo discreto donde escribimos eiS = eiϵP ⊗t e

−iϵH , de modo
que la parte entrelazante proviene del operador de traslaciones temporales.

• Teorías físicas no mapeables a la MC convencional. Las consideraciones
anteriores nos llevan directamente a otro tema interesante que describiremos breve-
mente. Está claro que hay más operadores unitarios en los Hilbert ampliados que
los que tienen la forma de eiS asociados a evolución separable desde la perspecti-
va ampliada (la parte Hamiltoniana es ⊗te

−iϵH). En particular esto significa que la
cantidad de correladores independientes que podemos definir con el formalismo am-
pliado es drásticamente mayor a los que podemos obtener con el formalismo canónico
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estándar. Podemos entonces definir teorías físicas que no tienen una corresponden-
cia con las obtenidas desde la MC convencional. Se deja para el futuro explorar
el significado de estas teorías y si es posible compatibilizarlas con las simetrías del
espacio-tiempo que querramos imponer. Notemos también que en principio, este ti-
po de teorías asociadas a una parte Hamiltoniana entrelazante en tiempo podría no
aportar correcciones en el límite clásico pues el efecto de entrelazamiento se perdería
(ver también el punto previo).

• Estados de foliación no clásicos. Una novedad algo sorprendente del for-
malismo es el concepto de foliación como grado de libertad. Como hemos visto en
el capítulo VII, hemos introducido este concepto por necesidad matemática y ar-
gumentado por su plausibilidad física por fuera de una verdadera teoría física que
nos determine una dinámica asociada. Podríamos especular que una dinámica ge-
nuina ha de emerger si consideramos al espacio-tiempo mismo como dinámico y en
consecuencia a sus posibles foliaciones. Sin embargo, este ingrediente no es parte
del enfoque tradicional canónico que intenta cuantizar la gravedad tomando como
grado de libertad la métricas inducidas en una dada hiper-superficies “inicial” y
sus momentos conjugados de acuerdo a una foliación dada. En cambio, la indepen-
dencia de dicha foliación, heredada de la covarianza general queda impuesta por
“constraints” adicionales, siendo la ecuación de Wheeler–DeWitt uno de ellos [13].
Podemos preguntarnos, ¿qué ocurre si aplicamos nuestro esquema extendido a la
gravedad misma? Lejos de tener un tratamiento completo del tema (recordemos en
particular que no hemos tratado teorías de gauge en la tesis), déjenme notar que el
esquema que surge es muy distinto. Por un lado, las métricas de hiper-superficies
distintas serían independientes. Por otro, las foliaciones serían tratadas de manera
dinámica. Esto parece indicar que el grado de libertad físico que se considera es la
métrica completa del espacio-tiempo. A su vez habrá que tener en cuenta transfor-
maciones de gauge y en principio al condicionar sobre estados de foliación fijos y
clásicos uno recuperaría el tratamiento canónico usual. La ventaja sería simplemente
no romper con la covarianza general en los pasos intermedios. A su vez es clara la
analogía con el formalismo de PW, empleado justamente como modelo simplificado
de este escenario, y que preserva los grados de libertad que usualmente se consideran
“cinématicos” (ver capítulo II). Por otro lado, el formalismo permite usar estados de
foliación sin análogo clásico, por ejemplo asociado a superposición de foliaciones, que
podemos asociar a un sistema de referencia cuantizado, o, de manera más exótica,
podemos plantear estados entrelazados entre distintas regiones del espacio-tiempo
como |n(x)⟩ ∝ |n1(x)⟩I|n2(x)⟩II + |n2(x)⟩I|n1(x)⟩II, con I y II regiones desconectadas
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que cubren todo el espacio-tiempo. Para que estas propuestas generen efectos cuán-
ticos genuinos deberíamos considerar observables que no conmutan con nµ, lo cuál
sugiere agregar un término que contenga al momento conjugado de nµ a la acción
cuántica ya sea acoplado a la métrica o a los campos de materia. Una posible justifi-
cación semi-clásica de tal esquema surge de pensar que a la hora de determinar una
foliación, un observador tiene que hacer medidas y dichas medidas están asociadas a
interactuar con materia, siendo esta misma cuántica. Más concretamente, recordan-
do los comentarios del observador de Rindler hechos más arriba, es natural asociar
nµ ∝ ∂Xµ

∂τ
, esto es pensar que la foliación está asociada a hiper-superficies ortogona-

les a la línea de mundo de una partícula (o varias si queremos cubrir una región).
Un primer modelo de foliación cuántica dinámica se obtiene al cuantizar esta(s) par-
tícula(s) de modo que en el límite de masa grande uno recupere, a lo Feynman (ver
el formalismo de línea de mundo del capítulo II), solo la línea de mundo clásica.
Esto es, si tomamos el límite clásico de la partícula estamos en efecto condicionando
sobre estados clásicos de foliación, precisamente lo que postulamos previamente. En
cambio, si consideramos la dinámica cuántica de la partícula, que a su vez puede
estar sometida a campos externos, lo que tenemos es una acción total que en general
no conmuta con el operador nµ y donde la partícula y los campos están acoplados
por este último de acuerdo a la forma de S que hemos introducido. Lejos de ser una
propuesta fundamental, este modelo nos provee de un primer ejemplo de cuantiza-
ción semi-clásica de un sistema de referencia y que se reduce al esquema de nuestra
propuesta cuando la partícula es muy masiva 6. Este simple modelo muestra de por
sí el potencial del formalismo para abrir nuevos caminos de investigación.

Hecho un resumen de nuestra propuesta, habiendo explicitado los temas aún
en desarrollo, y considerando la nueva intuición que el formalismo final nos provee
sobre el concepto de tiempo, creo poder concluir que el rol especial del tiempo
que caracteriza a la formulación canónica convencional de la MC no es más que
una construcción útil. Esta construcción puede eludirse sin abandonar el espíritu de
la MC. Al contrario, la MC puede ampliarse dando lugar a un marco puramente
cuántico que ya no describe a la materia en un tiempo dado, sometida a leyes de
evolución dependientes de un parámetro clásico externo. En cambio, en su versión
ampliada, la MC representa enteramente y de forma auto-contenida a la materia en
el espacio-tiempo.

6Es interesante notar que en un experimento real que involucre acelerar a velocidades relativistas
un “detector de Unruh”, conviene que el detector no sea particularmente masivo.
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Anexo: Aplicación computacional de

PW

En esta sección presentamos un conjunto de aplicaciones del formalismo de tiempo
cuántico del capítulo II, desarrolladas en colaboración con un grupo de computación
cuántica de Los Alamos (EEUU). Omitiremos los detalles más técnicos, que pueden
encontrarse en [6]. El principal objetivo ha sido la construcción de nuevos algoritmos
cuánticos que emplean “qubits de tiempo”. También mostramos como el formalismo
de PW y la noción de entrelazamiento sistema-tiempo nos proveen nuevas herramien-
tas para el estudio de equilibración de sistemas cuánticos aislados. La idea básica
detrás de este anexo está esquematizada en la Figura 9.0.1.

9.1 Formalismo del tiempo cuántico y su discretiza-

ción

Consideremos un sistema cuántico de n-qubits con espacio de Hilbert asociado HS.
Sea H un Hamiltoniano independiente del tiempo bajo el cual evoluciona el sistema.
La evolución dinámica del sistema está determinada por la ecuación de Schrödinger

i
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ , (9.1)

donde hemos establecido ℏ = 1. Es bien sabido que la solución de la Ec. (9.1) es
dada por

|ψ(t)⟩ = U(t) |ψ0⟩ , con U(t) = e−iHt , (9.2)

y donde |ψ0⟩ es algún estado inicial del sistema.
Como se ha discutido anteriormente, y como se muestra en la Fig. 9.0.1(a),

existe una asimetría inherente entre las variables de espacio y tiempo en la mecánica
cuántica. A saber, la variable t sobre la cual tomamos una derivada es un parámetro
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Figura 9.0.1: Algoritmos cuánticos basados en la mecánica cuántica estándar o el for-
malismo PW. a) En la mecánica clásica hamiltoniana, las variables dinámicas son funciones de
las coordenadas del espacio de fases, posición x y momento p. En la mecánica cuántica estándar,
se promueven x y p a operadores cuánticos, pero la variable tiempo t se trata como un parámetro
clásico que es externo al sistema cuántico estudiado. Los algoritmos cuánticos para estudiar propie-
dades dinámicas basados en este marco se implementan para un tiempo fijo t. Si queremos calcular
un promedio de N tiempos, necesitamos repetir la ejecución en N experimentos secuenciales en
el tiempo. b) En el formalismo PW, el tiempo se trata como una variable cuántica, con su propio
espacio de Hilbert asociado. En este trabajo presentamos algoritmos cuánticos para simulaciones
paralelas en el tiempo que intercambian repeticiones de circuito por qubits auxiliares de reloj. c)
Después de un protocolo de enlace adecuado, se tiene acceso no solo a propiedades del sistema
en un tiempo dado, sino también a su historia completa. Esta información se puede recuperar
realizando mediciones al final del circuito, que ahora pueden involucrar a los qubits del reloj, los
qubits del sistema o ambos. Las mediciones en el sistema que están condicionadas a un valor de
tiempo determinado dan propiedades del sistema en un tiempo dado. Más interesantemente, si
solo se mide en el sistema e ignora completamente los valores del reloj, se obtienen promedios
temporales. Esto es una consecuencia del entrelazamiento entre el sistema y el reloj que induce un
canal cuántico útil cuando el reloj se trata como un entorno. Debido a la naturaleza cuántica del
reloj y el sistema simulados, se pueden proponer muchas otras mediciones, lo que significa que los
diferentes protocolos que discutimos en este manuscrito no agotan todas las posibilidades abiertas
por este marco computacional.

completamente clásico que es externo al sistema cuántico. Una alternativa para
incorporar completamente el tiempo en un marco cuántico es introducir un nuevo
espacio de Hilbert HT generado por algunos estados |t⟩ (ver Fig. 9.0.1(b)) tal que
T |t⟩ = t|t⟩ y [T, PT ] = iℏ, que en la base del tiempo lleva a PT ≡ −iℏ d

dt
. Note

que PT no es el Hamiltoniano del sistema y de hecho [T,H] = 0 (ya que actúan en
espacios de Hilbert distintos). La evolución es entonces recuperada de una ecuación
de Schrödinger extendida, involucrando ambos espacios de Hilbert del sistema y del
reloj, que se da por J |Ψ⟩ = 0, para J = PT ⊗ 1S + 1T ⊗ H y |Ψ⟩ ∈ HT ⊗ HS.
Aquí 1T y 1S denotan respectivamente las identidades en HT y HS. En general,
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la ecuación de Schrödinger extendida, junto con una condición inicial, conduce al
entrelazamiento entre el sistema y el espacio de Hilbert del tiempo (hemos visto una
descripción más detallada del formalismo en el capítulo II).

El esquema anterior también puede considerarse como la base matemática del
mecanismo de Page y Wootters (PW). Bajo este marco, el estado del universo |Ψ⟩ es
estacionario (ya que J |Ψ⟩ = 0) mientras que la evolución unitaria del subsistema S
emerge condicionando el resto. En nuestra notación anterior esto significa que dado
un estado del universo

|Ψ⟩ =
∫
dt |t⟩ |ψ(t)⟩ , (9.3)

podemos recuperar el estado del sistema como |ψ(t)⟩ = ⟨t|Ψ⟩ (asumiendo ⟨t|t′⟩ =

δ(t− t′)). Más notablemente, se puede ver que J |Ψ⟩ = (i∂t−H)|ψ(t)⟩ = 0 recupera
precisamente la ecuación de Schrödinger estándar con el índice t siendo degradado
de una etiqueta de estado cuántico a un parámetro de tiempo.

Para hacer los estados |Ψ⟩ accesibles a computadoras cuánticas convencionales
basadas en qubits (discretos), se necesita un marco de tiempo discreto adecuado.
Afortunadamente, es fácil adivinar la forma de un estado historia de tiempo discre-
to. A saber, comenzamos introduciendo un espacio de Hilbert de dimensión finita
HT , que denominamos como el espacio de Hilbert de tiempo o reloj con base |t⟩
satisfaciendo ⟨t′|t⟩ = δtt′ para t = 0, . . . , N − 1. Un estado historia discreto entonces
se define como el estado

|Ψ⟩ = 1√
N

N−1∑
t=0

|t⟩|ψ(εt)⟩ , (9.4)

con |ψ(εt)⟩ = U(εt)|ψ0⟩ ∈ HS. Aquí, tenemos ε = T/N el espaciado temporal
para una ventana de tiempo dada T , mientras que t denota un índice adimensional
discreto (de modo que εt es un intervalo de tiempo físico).

En analogía con el caso continuo, se puede recuperar el estado del sistema en
un tiempo dado condicionando como |ψ(εt)⟩⟨ψ(εt)| = TrT [|Ψ⟩⟨Ψ|Πt]/⟨Ψ|Πt|Ψ⟩ para
Πt = |t⟩⟨t| ⊗ 1S. De esta manera, el estado evolucionado unitariamente se recupera
para los valores de tiempo permitidos por HT . Note que esta operación es diferente
de una traza parcial directa sobre los estados del reloj que generalmente produce
un estado mixto. Resulta que la traza parcial induce un canal cuántico que también
codifica información útil sobre la dinámica del sistema y su (eventual) equilibrio. De
hecho, se puede pensar en los estados historia como una purificación de ese canal
cuántico particular. Esto está relacionado con el entrelazamiento sistema-tiempo
como discutimos en la Sección 9.3.
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Aquí observamos que en el caso de que N sea una potencia de dos, el estado
historia discreto se puede preparar con el circuito similar a la estimación de fase
cuántica de la Fig. 9.2.1. Para N siendo una potencia de dos, se requieren log(N)

qubits auxiliares o de reloj (de ahora en adelante suponemos que los logaritmos
son en base 2). Como tal, el espacio de Hilbert del reloj HT tiene una dimensión
dim(HT ) = 2log(N) = N . Este resultado ha sido reportado recientemente en [43] y
[44], donde el estado historia discreto de la Ec. (9.4) también ha sido extensamente
estudiado.

Las ventajas de codificar estados historia en una computadora cuántica se vuelven
claras una vez que se comienza a considerar mediciones al final del circuito que son
diferentes de la simple condicionalidad: mientras que las mediciones condicionadas
permiten recuperar propiedades del sistema en un tiempo dado, nuevas posibilidades
genuinamente cuánticas se vuelven accesibles a través de los qubits del reloj. Un
pequeño resumen de tales posibilidades se proporciona en la Fig. 9.0.1(c).

9.2 De relojes-qubit a simulaciones paralelas en tiem-

po

Aquí discutimos cómo el formalismo matemático de los relojes-qubit presentado en
la sección anterior puede ser aprovechado para crear nuevos algoritmos cuánticos
destinados a estudiar promedios de propiedades dinámicas en tiempo de sistemas
cuánticos. En particular, en esta sección nos enfocamos en desarrollar algoritmos de
tipo paralelo en tiempo que estiman promedios temporales de cantidades físicas.

9.2.1 Formalismo

Dado un Hamiltoniano independiente del tiempo H que actúa sobre n-qubits, y su
operador de evolución temporal asociado U(t) = e−iHt, consideramos el problema
de estimar cantidades generales de la forma

F (O1, O2, ω) = ĺım
T→∞

∫ T

0

dt

T
e−iωt⟨O1(t)O2⟩ρ (9.5)

= ĺım
T→∞

∫ T

0

dt

T
e−iωtTr[ρO1(t)O2] , (9.6)

donde O1(t) = U †(t)O1U(t). Aquí, ρ es un estado de n-qubits actuando en el espacio
de Hilbert d-dimensional HS (con d = 2n), O1 y O2 son dos operadores, y ω ∈ R.
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Figura 9.2.1: Circuito para preparar estados historia. Como se muestra arriba, el estado inicial
de los qubits del reloj es |0⟩⊗ log(N) mientras que el del sistema es |ψ0⟩. La acción de las compuertas
de Hadamard es mapear el estado inicial a |+⟩⊗ log(N)⊗|ψ0⟩. Aquí, nos resulta conveniente escribir
|+⟩⊗ log(N)

= 1√
N
⊗logN

j=1 (|0j⟩+ |1j⟩) = 1√
N

∑N−1
t=0 |t⟩ donde hemos expresado t en su forma binaria

t =
∑logN

j=1 tj2
j−1. A continuación, las logN compuertas controladas U(2j−1 T

N ) = U( T
N )2

j−1

para
j = 1, . . . , logN realizan las operaciones U(εt) |ψ0⟩ = |ψ(εt)⟩ para U(εt) = U( T

N )
∑log N

j=1 tj2
j−1

.

Para ilustrar la relevancia de la cantidad F (ρ,O1, O2, ω) en la Ec. (9.5) consi-
deremos varios casos especiales. Primero, dejemos ω = 0 y O2 = 1, lo que conduce
a

F (O1) := F (O1,1, 0)

= ĺım
T→∞

∫ T

0

dt

T
⟨O1(t)⟩ρ . (9.7)

Podemos ver que F (ρ,O1) simplemente corresponde a un promedio temporal infinito
del observable O1. Estas cantidades son cruciales para entender las propiedades
dinámicas de sistemas cuánticos cerrados y en particular su equilibrio [156-158].
También son relevantes para el estudio de procesos de “quench” cuántico en teorías
de campo [159] y de indicadores de transición de fase cuántica fuera del equilibrio
a través de promedios de tiempo infinito de ecos de Loschmidt [160-164]. Luego,
cuando ω = 0, tenemos

F (O1, O2) := F (O1, O2, 0)

= ĺım
T→∞

∫ T

0

dt

T
⟨O1(t)O2⟩ρ . (9.8)

Aquí podemos reconocer ⟨O1(t)O2⟩ρ como una función de correlación de dos puntos
(también conocida como función de Green dinámica). Las funciones de correlación
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Figura 9.2.2: Compromiso entre precisión y resolución. Considere la aproximación del pro-
medio de tiempo infinito de la Ec. (9.5) dada por la suma discreta en la Ec. (9.9). Para un número
fijo de pasos de tiempo N , existe un compromiso entre el tamaño de la ventana ε y el tiempo final
T . Es decir, un T más grande implica un tamaño de ventana ε más grande, y por lo tanto menos
precisión. Por otro lado, un tiempo final T más pequeño implica más resolución en el promedio
temporal a costa de menos precisión.

de dos puntos se utilizan para describir el comportamiento de un sistema bajo per-
turbaciones y son una herramienta ampliamente utilizada en sistemas de muchos
cuerpos cuánticos y física de la materia condensada [165-168]. El promedio de tiem-
po infinito de ⟨O1(t)O2⟩ρ ha sido recientemente considerado en [169] para estudiar
propiedades termodinámicas de sistemas cuánticos cerrados como la emergencia de
disipación en tiempos tardíos.

Finalmente, notamos que la función general F (O1, O2, ω) corresponde a una
transformada de Fourier de la función de correlación de dos puntos, que comúnmen-
te se refiere como el factor de estructura dinámico en la comunidad de la materia
condensada [170, 171]. Crucialmente, los factores de estructura dinámicos se utilizan
para estudiar propiedades dinámicas de un sistema dado y tienen la propiedad de ser
experimentalmente accesibles [172, 173], y generalmente siendo difíciles de calcular
mediante simulaciones clásicas [171].

Aunque la importancia de la Ec. (9.5) es clara, el cálculo de F (O1, O2, ω) puede
no ser sencillo. Por un lado, se espera generalmente que la simulación clásica de
algún proceso dinámico cuántico mecánico sea exponencialmente costosa en compu-
tadoras clásicas. Tal escalado puede ser mitigado usando una computadora cuántica.
Aquí, hay varios esquemas capaces de calcular cantidades de tiempo fijo de la for-
ma ⟨O1(t)O2⟩ρ [170, 174-176]. Sin embargo, el problema persiste en que se necesita
realizar el promedio temporal. En la práctica, esto se puede lograr mediante la apro-
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Figura 9.2.3: Algoritmo para la estimación secuencial en el tiempo de la Ec. (9.9). El
algoritmo mostrado puede ser utilizado para calcular individualmente cada término en la suma-
toria. Es decir, los circuitos pueden ser usados para estimar cantidades de la forma ⟨O1(t)O2⟩ρ.
Luego, se pueden combinar esos valores esperados clásicamente (así como añadir las fases apropia-
das e−iωεt) para estimar la cantidad F̃ (O1, O2, ω) con una precisión δ. La compuerta discontinua
de color se reemplaza con una identidad (una compuerta S†) para calcular la parte real (imagi-
naria) de ⟨O1(t)O2⟩ρ. Este enfoque requiere un dispositivo cuántico con (n+ 1)-qubits y O(N/δ2)

experimentos diferentes.

ximación de tiempo discreto

F̃ (O1, O2, ω) =
1

N

N−1∑
t=0

e−iωεt⟨O1(εt)O2⟩ρ , (9.9)

donde tenemos ε = T/N (por simplicidad, de ahora en adelante supondremos que
N es una potencia de 2). Es decir, para una ventana de tiempo (finita) dada T ,
estamos calculando el promedio sobre N puntos separados por un espaciado ε. Como
se muestra en la Fig. 9.2.2, el espaciado ε determina el nivel de precisión en la
aproximación, ya que un ε más pequeño conduce a una discretización más precisa
del integral y una mejor aproximación del verdadero promedio de tiempo infinito.
Por otro lado, el tiempo final T determina la resolución de la aproximación, ya que
un T más grande permite un intervalo de tiempo más largo a promediar, capturando
más información sobre el comportamiento del sistema a lo largo del tiempo. Se puede
ver que tanto la resolución como la precisión pueden mejorar con un mayor número
de pasos de tiempo discretos N .
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Figura 9.2.4: Algoritmo para la estimación paralela en el tiempo de la Ec. (9.9). El
algoritmo mostrado puede ser utilizado para estimar directamente la cantidad F̃ (O1, O2, ω) con
una precisión δ. En la figura, P denota una compuerta de fase de ωε. Es claro que este algoritmo
contiene como subrutina el circuito para preparar el estado historia de la Fig. 9.2.1. Este enfoque
requiere un dispositivo cuántico con (n+log(N)+1)-qubits y O(1/δ2) experimentos. La compuerta
discontinua de color se reemplaza con una identidad (una compuerta S†) para calcular la parte
real (imaginaria) de F̃ (O1, O2, ω).

9.2.2 Protocolos secuenciales y en paralelo en el tiempo

Consideremos ahora la tarea de estimar F̃ (O1, O2, ω) cuando O1 y O2 son operadores
de Pauli mediante simulaciones secuenciales o en paralelo en el tiempo. Aquí, por
secuencial, entendemos que cada término en la suma en la Ec. (9.9) se estima en
un dispositivo cuántico ejecutando un número finito de “experimentos”. Por ejemplo,
consideremos el circuito en la Fig. 9.2.3, como se muestra explícitamente en la In-
formación Suplementaria, puede ser utilizado para estimar un valor esperado de la
forma ⟨O1(εt)O2⟩ρ. Por lo tanto, sostenemos que la siguiente proposición es válida.

Proposition 1. El circuito en la Fig. 9.2.3, que requiere (n + 1)-qubits, puede ser
utilizado para estimar la cantidad F̃ (O1, O2, ω) de la Ec. (9.9) hasta una precisión
de δ con O(N/δ2) experimentos.

La prueba de la Proposición 1, así como la de todos los otros resultados princi-
pales, se presenta en la Información Suplementaria.

Claramente, el hecho de que necesitemos estimar secuencialmente ⟨O1(εt)O2⟩ρ
para cada t = 0, . . . , N − 1, conlleva una complejidad en el número de experimentos
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(es decir, número de llamadas al ordenador cuántico) que escala como O(N). Como
mostramos ahora, esta complejidad puede ser reducida utilizando un esquema basado
en el formalismo de estado historia discreto, que nos permite estimar directamente
la suma total de la Ec. (9.9). Es decir, se sostiene el siguiente resultado.

Teorema 9.2.1. El circuito en la Fig. 9.2.4, que requiere (n + log(N) + 1)-qubits,
puede ser utilizado para estimar la cantidad F̃ (O1, O2, ω) de la Ec. (9.9) hasta una
precisión de δ con O(1/δ2) experimentos.

Comparando la Proposición 1 y el Teorema 9.2.1 revela que al aprovechar el
formalismo del estado historia discreto podemos cambiar la complejidad de experi-
mentos de O(N) por O(log(N))-qubits auxiliares. Es decir, el algoritmo en paralelo
en el tiempo de la Fig. 9.2.4 permite un intercambio exponencial de recursos tem-
porales a qubits.

Aquí destacamos que se puede observar en la Fig. 9.2.4 que el paso clave detrás
del algoritmo para computar F̃ (O1, O2, ω) es el estado historia discreto. De hecho,
el circuito en la Fig. 9.2.1 utilizado para crear el estado historia es una subrutina en
la Fig. 9.2.4. Así, al aprovechar log(N) ancillas, se pueden implementar simultánea-
mente todos los N operadores de evolución temporal U(εt) para t = 0, . . . , N − 1, y
por lo tanto computar todos los términos en la sumatoria que lleva a F̃ (O1, O2, ω).

Note que mientras la Proposición 1 y el Teorema 9.2.1 son derivados y probados
para el caso de O1 y O2 siendo operadores unitarios, uno puede fácilmente generalizar
los resultados anteriores para el caso en que en su lugar se expresan como una
combinación lineal de operadores de Pauli. En particular, si

Oi =

M1∑
µ=1

c(i)µ Uµ , (9.10)

para Uµ siendo un operador de Pauli, entonces las complejidades de experimento en
la Proposición 1 y el Teorema 9.2.1 cambian respectivamente a O(NM1M2/δ

2) y
O(M1M2/δ

2). Aquí, nuevamente recuperamos un intercambio exponencial de recur-
sos temporales a qubits mediante el algoritmo en paralelo en el tiempo.

Ahora, consideremos ρ = O1 = |ψ0⟩⟨ψ0|, O2 = 1 y ω = 0. En este caso especial,

F (|ψ0⟩⟨ψ0| ,1, 0) = ĺım
T→∞

∫ T

0

dt

T
|⟨ψ0|U(t)|ψ0⟩|2 . (9.11)

La cantidad en el lado derecho es el promedio del eco de Loschmidt en tiempo infinito
[160, 161, 163, 164], que denotamos como L̄(ψ0). Vemos que

L̄(ψ0) ≡ F (|ψ0⟩⟨ψ0| ,1, 0) . (9.12)
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Figura 9.2.5: Algoritmo para la estimación secuencial en el tiempo del eco de Loschmidt
de la Ec. (9.13). Mostramos un algoritmo que calcula, con precisión δ, el overlap entre |ψ0⟩ y
U(εt) |ψ0⟩ para t = 0, . . . , (N − 1). El algoritmo se basa en mediciones en la base de Bell como
se describe en [177]. Una vez que se estiman estos overlaps, podemos promediarlos clásicamente
para estimar el promedio temporal discreto del eco de Loschmidt L̃(ψ0). Este enfoque requiere un
dispositivo cuántico con (2n) qubits y O(N/δ2) experimentos diferentes.

De manera similar, para su aproximación discreta en tiempo L̃(ψ0), podemos escribir

L̃(ψ0) ≡ F̃ (|ψ0⟩⟨ψ0| ,1, 0) =
1

N

N−1∑
t=0

|⟨ψ0|U(εt)|ψ0⟩|2 . (9.13)

Es claro que aunque L̃(ψ0) puede ser calculado técnicamente con los circuitos en
las Figs. (9.2.3) y (9.2.4), esto requiere expandir O1 = |ψ0⟩⟨ψ0| en una combinación
lineal de unitarios, y dicha suma generalmente contendrá exponencialmente muchos
términos. Para mitigar este problema, también presentamos dos resultados que nos
permiten estimar la Ec. (9.13) mediante simulaciones en tiempo secuencial o paralelo.

Primero, consideremos la siguiente proposición.

Proposition 2. El circuito en la Fig. 9.2.5, que requiere (2n) qubits, puede ser
usado para estimar la cantidad L̃(ψ0) de la Ec. (9.13) hasta una precisión δ con
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Figura 9.2.6: Algoritmo para la estimación paralela en el tiempo del eco de Loschmidt
de la Ec. (9.13). Mostramos un algoritmo que calcula, con precisión δ, el overlap entre el estado
historia discreto |Ψ⟩⟨Ψ| y 1 ⊗ |ψ0⟩⟨ψ0|. Como se muestra en la Ec. (9.14), el overlap entre estos
dos estados es igual a L̃(ψ0). El algoritmo se basa en mediciones en la base de Bell como se
describe en [177]. Este enfoque requiere un dispositivo cuántico con (2n+log(N)) qubits y O(1/δ2)

experimentos diferentes.

O(N/δ2) experimentos.

La Proposición (2) simplemente sigue de aplicar un test SWAP [101, 177-179]
(o más específicamente, el algoritmo de superposición de estados de [177]) entre
U(εt) |ψ0⟩ y |ψ0⟩ para t = 1, . . . , (N −1). Notamos que el caso t = 0 es trivial ya que
| ⟨ψ0|U(0) |ψ0⟩ |2 = 1. Cuando usamos el estado historia discreto podemos probar el
siguiente teorema.

Teorema 9.2.2. El circuito en la Fig. 9.2.6, que requiere (2n+log(N)) qubits, puede
ser usado para estimar la cantidad L̃(ψ0) de la Ec. (9.9) hasta una precisión δ con
O(1/δ2) experimentos.

Nuevamente, podemos ver a partir del Teorema 9.2.2 que realizar una simulación
en paralelo en tiempo nos permite reducir exponencialmente la complejidad del
experimento (de lineal en N a ser independiente de N) al costo de log(N) ancilas.
De manera similar a la Proposición 2, la prueba del Teorema 9.2.2 simplemente se
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deriva del cálculo del “overlap” entre el estado historia discreto |Ψ⟩⟨Ψ| y 1T⊗|ψ0⟩⟨ψ0|.
Explícitamente, tenemos

Tr[|Ψ⟩⟨Ψ| (1T ⊗ |ψ0⟩⟨ψ0|)] = ⟨Ψ|(1T ⊗ |ψ0⟩⟨ψ0|)|Ψ⟩

=
1

N

N∑
t=0

⟨ψ(εt) |ψ0⟩⟨ψ0|ψ(εt)⟩

= L̃(ψ0) . (9.14)

9.3 Acceso a información dinámica a través del en-

trelazamiento sistema-tiempo

Hasta ahora, hemos visto que usar el estado historia nos permite transferir la comple-
jidad de realizar múltiples experimentos a los requisitos de qubits de reloj auxiliares.
Sin embargo, como mostraremos ahora, el entrelazamiento presente entre los qubits
de tiempo y sistema en el estado historia tiene un significado operacional y contiene
información que podemos usar para aprender sobre la dinámica del sistema. Además,
revelaremos una conexión rigurosa y explícita entre estas correlaciones y el problema
de equilibración. Los protocolos para obtener estas cantidades de variaciones de los
circuitos anteriores también se proporcionan en esta sección.

9.3.1 Propiedades, relación con el problema de equilibración

y con las fluctuaciones temporales de observables

Primero, recordemos nuevamente que el estado historia discreto es un estado bipar-
tito entre el espacio de Hilbert del sistema HS y el tiempo, o espacio de Hilbert del
reloj HT . Es decir, |Ψ⟩ ∈ HT ⊗ HS. Además, es evidente desde la Fig. 9.2.1 y la
Ec. (9.4) que los estados historia están, en general, entrelazados a través de la par-
tición sistema-tiempo. A partir de ahora, nos referiremos a las correlaciones entre
los qubits del sistema y los qubits del reloj como entrelazamiento sistema-tiempo
(siguiendo [43]).

Es importante notar que, en general, (9.4) no está en la descomposición de Sch-
midt [22] de |Ψ⟩ (ya que los estados |ψ(t)⟩ no son necesariamente ortogonales). Sin
embargo, existe una base en la que podemos escribir el estado historia como

|Ψ⟩ =
∑
l

√
pl|l⟩T |l⟩S , (9.15)
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donde √
pl son los llamados coeficientes de Schmidt, y {|l⟩S}, y {|l⟩T} son conjuntos

ortogonales de estados en HS y HT , respectivamente. Una forma sencilla de cuan-
tificar el entrelazamiento sistema-tiempo es a través de la entropía lineal, definida
como

E2 = 1− Tr
[
ρ2T
]
= 1− Tr

[
ρ2S
]
= 1−

∑
l

p2l , (9.16)

donde ρT (S) = TrS(T )[|Ψ⟩⟨Ψ|] es el estado reducido del estado historia en los qubits
del reloj (sistema). Aquí, denotamos como TrS(T ) la traza parcial sobre los qubits del
sistema (reloj). En principio, también se podrían considerar otras entropías como
la entropía de Von Neumann. Sin embargo, la entropía lineal tiene la propiedad
deseable de ser eficientemente calculable en un dispositivo cuántico (ver abajo).

Existe una conexión profunda entre el entrelazamiento sistema-tiempo y las
propiedades dinámicas del sistema, en particular con el problema de su equilibra-
ción: Recordemos primero que dado un estado puro arbitrario (por simplicidad)
|ψ⟩ =

∑
k ck|k⟩ el promedio en el tiempo infinito de la matriz de densidad asociada

es

ρ̄ =

∫
dt

T

∑
k,k′

ckc
∗
k′e

−i(Ek−Ek′ )t|k⟩⟨k′| →
∑
k

|ck|2|k⟩⟨k| , (9.17)

donde se asume un T grande (infinito) y con H|k⟩ = Ek|k⟩. En otras palabras, si
el estado del sistema se promedia durante tiempos suficientemente largos, pierde
todas las coherencias en la base de energía. Bajo condiciones experimentalmente
realistas, es factible identificar este estado con el estado de equilibrio estacionario
[156]. Para “la mayoría” de los observables esto de hecho se mantiene por tiempos
cortos T [158], lo que significa que un promedio en una ventana de tiempo finita
de los observables también es una cantidad interesante en general. El formalismo
del tiempo cuántico ofrece una nueva interpretación a la pérdida de coherencias
inducida por un promedio en el tiempo: dado que el sistema está “entrelazado con el
tiempo”, perdemos información al ignorar los “qubits del reloj”. Esta pérdida induce
precisamente el canal cuántico (de desfase) ρ → ρ̄ en el límite de T grande y ε

pequeño, un resultado que se puede derivar directamente de un formalismo cuántico
del tiempo continuo 1. Para el tiempo discreto se mantiene el siguiente resultado.

Teorema 9.3.1. Sea |Ψ⟩ el estado historia discreto en la Ec. (9.4). La traza parcial
sobre el reloj induce un canal cuántico que, en el límite de tiempo grande, implica

1Para T infinito se deben considerar sutilezas relacionadas con la normalización de estados; ver
[1, 2, 29].
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que ρS → ρ̄. Además, para cualquier ε y N se sostiene la siguiente relación de
mayorización:

ρ̄ ≺ ρS = ρ̃ , (9.18)

donde ρ̃ es una discretización de la Ec. (9.17). Además, para una evolución periódica
con período τ generada por un Hamiltoniano con M valores propios distintos (es
decir, e−iHτ = 1) y dado un estado historia con log(M) qubits de reloj y una ventana
de tiempo T = τ , tenemos

ρS = ρ̄ . (9.19)

Aunque expresado de una manera bastante abstracta, este resultado tiene mu-
chos corolarios interesantes con un significado operacional claro. La razón de esto es
que, en términos generales, el estado historia proporciona una manera de preparar
el estado equilibrado de un sistema cuántico: simplemente se necesita preparar el
estado historia e ignorar los qubits de reloj. De hecho, esta es la razón por la que
funcionan las evaluaciones anteriores de promedios en el tiempo. Además, las en-
tropías de entrelazamiento sistema-tiempo son de hecho un límite inferior para las
entropías del estado en equilibrio, como se sigue directamente del Teorema 9.3.1 y
las propiedades básicas de mayorización. Además, mostramos en [6] que uno puede
redescubrir el formalismo del tiempo cuántico desde la purificación natural de este
canal de desfasamiento aproximado: el estado historia surge de una extensión isomé-
trica simple U [Kt] del canal como |Ψ⟩ = U [Kt]|ψ0⟩ con Kt los operadores de Krauss
Kt = e−iHtϵ/

√
N . El lector interesado puede referirse a [6] donde se proporciona la

prueba del Teorema 9.3.1 junto con una discusión más detallada.
Con lo anterior en mente, consideremos nuevamente la tarea de estimar el pro-

medio del eco de Loschmidt en el tiempo infinito en la Ec. (9.11). Recordemos que
L̄(ψ0) cuantifica el grado de reversibilidad de la evolución temporal y es un indicador
de la estabilidad del sistema cuántico. Además, es fácil ver que

L̄(ψ0) = Tr
[
ρ̄2
]
, (9.20)

es decir, el promedio en el tiempo infinito del eco de Loschmidt es la pureza del
estado desfasado ρ̄. Ahora podemos usar estas consideraciones y el Teorema 9.3.1
para obtener el siguiente resultado.

Corolario 9.3.1.1. Sea |Ψ⟩ el estado historia discreto de la Ec. (9.4), y sea E2 la
entropía lineal de la partición sistema-tiempo. Entonces, para todo T y N vale que

E2 ⩽ (1− L̄(ψ0)) . (9.21)
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El corolario 9.3.1.1 tiene varias implicaciones importantes. Primero, limita la
cantidad de entrelazamiento entre el sistema y los qubits del reloj. En particular,
muestra que el entrelazamiento sistema-tiempo solo puede ser grande si el promedio
en el tiempo infinito del valor del eco de Loschmidt es pequeño. A la inversa, si
L̄(ψ0) es grande, E2 tiene que ser pequeño. Segundo, señalemos que la Ec. (9.21) es
válida para todos los valores de T , pero sobre todo, también para todos los valores
de N . Para N y T grandes, la igualdad se alcanza asintóticamente, y tenemos que
la Ec. (9.21) se convierte en Tr[ρ2T ] ≡ L̄(ψ0). Además, como veremos a continuación,
nuestro análisis numérico muestra que Tr[ρ2T ] puede proporcionar una mejor aproxi-
mación a L̄(ψ0) que L̃(ψ0), lo que implica que no existe una relación general simple
entre E2 y L̃(ψ0).

Podemos entender la intuición detrás del Corolario 9.3.1.1 de la siguiente manera.
Supongamos que |ψ0⟩ es un estado estacionario de la evolución unitaria. Por ejemplo,
supongamos que |ψ0⟩ es un estado propio de H con energía propia E0, de modo que
U(εt) |ψ0⟩ = e−iεtE0 |ψ0⟩. Entonces, el estado historia discreto se convierte en

|Ψ⟩ = 1√
N

N−1∑
t=1

e−iεtE0 |t⟩ ⊗ |ψ0⟩ . (9.22)

La Ec. (9.22) revela que |Ψ⟩ es separable. Tampoco es difícil verificar que en este
caso L̃(ψ0) = 1. Por otro lado, si |ψ0⟩ evoluciona a través de N estados ortogonales
⟨ψ(εt)| |ψ(εt′)⟩ = δtt′ entonces la Ec. (9.4) ya es la descomposición de Schmidt de
|Ψ⟩ y el estado es máximamente entrelazado. El modelo de juguete anterior muestra
que si el estado es cuasi estacionario (es decir, eco de Loschmidt grande), podemos
esperar valores pequeños de entrelazamiento. De manera similar, si el estado cambia
significativamente durante la evolución (por ejemplo, valor de eco de Loschmidt
pequeño), entonces el estado historia probablemente poseerá grandes cantidades de
entrelazamiento. Cabe señalar que la relación entre la distinguibilidad del estado
evolucionado y el entrelazamiento sistema-tiempo fue reportada por primera vez
en [43]. Sin embargo, la conexión con el eco de Loschmidt no se exploró en ese
trabajo.

El resultado en el Corolario 9.3.1.1 puede ser aún más reforzado para el caso
especial donde la evolución temporal es periódica. Es decir, cuando

e−iHτ = 1 , (9.23)

para algún τ , y donde asumimos que H tiene M valores propios distintos, siendo M
una potencia de dos. Ahora, encontramos que el siguiente resultado es válido.
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Corolario 9.3.1.2. Para una evolución periódica con periodo τ generada por un
Hamiltoniano con M valores propios distintos, como en la Ec. (9.23), entonces para
un estado historia con log(M) qubits de reloj y ventana de tiempo T = τ , tenemos

E2 = (1− L̄(ψ0)) = (1− L̃(ψ0)) . (9.24)

El Corolario 9.3.1.2 muestra que para Hamiltonianos periódicos el entrelazamien-
to sistema-tiempo es exactamente el mismo que el promedio en tiempo infinito del
eco de Loschmidt L̄(ψ0), así como la aproximación en tiempo discreto L̃(ψ0). Como
se muestra en [6], el tracear induce ahora un canal completamente de desfase en la
base de eigenestados de energía de modo que ρS = ρ̃ = ρ̄.

Los resultados anteriores que conectan el entrelazamiento sistema-tiempo con
el eco de Loschmidt nos permiten derivar aún más significado operacional para E2

como un límite para las fluctuaciones temporales de observables. En Ref. [156], se
demostró que dado un observable O, L̄(ψ0) proporciona un límite en las fluctuaciones
temporales de observables como

σ2
O ⩽ ∆2

OL̄(ψ0) (9.25)

con ∆2
O = λmáx[O] − λmı́n[O] (la diferencia entre los valores propios más grande y

más pequeño de O en el subespacio de estados que satisfacen ⟨n|ψ⟩ ̸= 0), y donde
σ2
O denota la varianza temporal

σ2
O :=F (O)2 − F (O)2 (9.26)

= ĺım
T→∞

∫ T

0

dt

T
⟨O(t)⟩2ψ0

−
(

ĺım
T→∞

∫ T

0

dt

T
⟨O(t)⟩ψ0

)2

.

Aquí hemos utilizado la notación definida en la Ec. (9.7) con F (O) ≡ ⟨O⟩ (en un
tiempo dado) mientras que el “promedio” denota promedio temporal. La Ec. (9.25)
muestra que pequeños promedios de eco de Loschmidt temporales implican una pe-
queña varianza temporal del observable O, y viceversa. En otras palabras, un sistema
con un pequeño L̄(ψ0) solo puede exhibir fluctuaciones temporales más pequeñas en
sus observables en comparación con un sistema con un gran eco de Loschmidt.

Debería ser claro ver que el Teorema 9.3.1.1 implica fácilmente el siguiente coro-
lario.

Corolario 9.3.1.3. Sea O un observable, y σ2
O su varianza temporal como en la

Ec. (9.26). El entrelazamiento sistema-reloj proporciona un límite en las fluctuacio-
nes temporales como

σ2
O ⩽ ∆2

O (1− E2) = ∆2
OTr[ρ

2
S] . (9.27)
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Figura 9.3.1: Algoritmo para estimar E2 a través del solapamiento de estados. Aquí
consideramos la tarea de evaluar la Ec. (9.16). Al tomar dos copias del estado historia, podemos
estimar Tr

[
ρ2T
]

hasta una precisión δ mediante el circuito de solapamiento de estados en [177].
Este enfoque requiere un dispositivo cuántico con (2n + 2 log(N))-qubits y O(1/δ2) diferentes
experimentos.

El Corolario 9.3.1.3 muestra un claro significado físico del entrelazamiento sistema-
tiempo. Es decir, si E2 es pequeño, entonces el sistema es estable y predecible. Esto
se deduce del hecho de que las varianzas temporales de los valores esperados serán
pequeñas. Por el contrario, si el entrelazamiento sistema-tiempo es grande, enton-
ces el sistema puede ser inestable e impredecible, como lo demuestran las posibles
grandes fluctuaciones de observables.

9.3.2 Protocolos para calcular el entrelazamiento sistema-

tiempo

Los teoremas y corolarios anteriores arrojan luz sobre la emocionante posibilidad de
comprender la dinámica del sistema a través del entrelazamiento sistema-tiempo. Sin
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embargo, para que estos resultados sean verdaderamente útiles, es necesario poder
medir E2 desde el estado historia. Como podemos ver en la Ec. (9.16), necesitamos
estimar Tr[ρ2S] o Tr[ρ2T ]. Aunque matemáticamente no importa en absoluto en qué
subsistema nos centramos, ya que su pureza es la misma (ver Ec. (9.15)), en la
práctica puede ser sustancialmente más fácil trabajar con un sistema u otro.

Como evidencia heurísticamente nuestra numeración (ver más abajo), el estado
historia discreto con un número de qubits de reloj log(N) mucho menor que el tama-
ño del sistema n produce resultados que reproducen con precisión las propiedades
promedio de tiempo infinito de la dinámica del sistema. Por lo tanto, asumiremos de
ahora en adelante que log(N) ≪ n. Esta suposición implica que podemos calcular
E2, y por lo tanto aprender sobre el sistema, simplemente observando los qubits de
reloj. Ahora presentamos dos métodos para estimar Tr[ρ2T ].

Teorema 9.3.2. La cantidad E2 de la Ec. (9.16) puede ser estimada hasta una preci-
sión δ con el circuito en la Fig. 9.3.1, que requiere (2n+2 log(N))-qubits con O(1/δ2)

experimentos. De manera similar, también puede ser estimada con el circuito en la
Fig. 9.3.2, que requiere (n+ log(N))-qubits con O(N/δ2) experimentos.

Cuando se usa el circuito en la Fig. 9.3.1, se preparan dos copias del estado
historia |Ψ⟩ y luego se realiza el circuito de solapamiento de estados de Ref. [177].
Por otro lado, cuando se utiliza el circuito en la Fig. 9.3.2, se puede estimar E2 con
una sola copia de |Ψ⟩ utilizando sombras clásicas, o mediciones aleatorizadas [180,
181]. Por ejemplo, uno puede preparar el estado historia y realizar una unitaria
aleatoria en cada qubit, seguido de una medición en la base computacional. Los
resultados de las mediciones se almacenan y luego se combinan clásicamente para
estimar Tr[ρ2T ].

Para terminar esta sección, notamos que al comparar la Proposición 2, el Teo-
rema 9.2.2, y el Teorema 9.3.2, el método para estimar L̃(ψ0) o E2 con el menor
requisito computacional (asumiendo log(N) ≪ n) es el de la Fig. 9.3.2. Es decir,
aquí podemos calcular E2 hasta una precisión δ con un ordenador cuántico con
(n + log(N)) ≪ 2n qubits y con O(N/δ) experimentos. Este resultado muestra en-
tonces el poder de usar el estado historia ya que nos permite estudiar propiedades
físicas del sistema (como delimitar L̄(ψ0) o las varianzas temporales ∆O2) con menos
requisitos de lo que de otra manera necesitaríamos.
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Figura 9.3.2: Algoritmo para estimar E2 mediante mediciones aleatorias. Aquí considera-
mos la tarea de evaluar la Ec. (9.16). Comenzamos con una copia del estado historia, y aplicamos
una unitaria aleatoria (indicada por una compuerta de color) a cada qubit. Luego medimos cada
qubit en la base computacional y registramos el resultado de la medición. Estos constituyen las
llamadas "sombras clásicas"de ρT . Como se muestra en [180], este procedimiento nos permite esti-
mar Tr

[
ρ2T
]

hasta una precisión δ con un dispositivo cuántico con (n+ log(N))-qubits y O(N/δ2)

experimentos diferentes.

9.4 Simulaciones numéricas

En esta sección, primero proporcionamos simulaciones numéricas que muestran cómo
las aproximaciones en tiempo discreto (computables a través de nuestros algoritmos)
pueden capturar el comportamiento de sus contrapartes en tiempo continuo. De
manera similar, también mostramos numéricamente que el entrelazamiento sistema-
tiempo proporciona una nueva forma de entender las propiedades dinámicas del
sistema.

En todos nuestros experimentos, consideramos un sistema de n-qubits evolucio-
nando por una unidad generada por el modelo XX no uniforme dependiente del
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Figura 9.4.1: Error promedio de aproximación |L̄(ψ0)−L̃(ψ0)| para una cadena de n = 200

sitios. La vertical indica el número de qubits de reloj mientras que el eje horizontal es el tamaño de
ventana ε. Las curvas azules (sólidas) representan valores constantes de T con las flechas apuntando
hacia la dirección de mayor resolución. Las flechas verdes indican un corte transversal de ε fijo y
un log(N) creciente que se muestra con más detalle en la Fig. 9.4.2.

tiempo, cuyo Hamiltoniano se lee como

H =
J

4

n∑
j=1

(XjXj+1 + YjYj+1) +
λ

4

n∑
j=1

cos(2παj)(Zj + 2) , (9.28)

donde definimos condiciones de frontera periódicas como hn+1 ≡ h1 (para h =

X, Y, Z). Mediante la transformación de Jordan-Wigner [182], se puede mostrar que
en el límite termodinámico este modelo exhibe una transición de deslocalización-
localización en el punto crítico λ = J . De hecho, es bien sabido que tal transición
induce cambios bruscos en propiedades dinámicas a largo plazo como el promedio
del eco de Loschmidt [164]. Nuestro objetivo es entonces usar este modelo paradig-
mático como un banco de pruebas para mostrar que nuestro promedio de tiempo
discreto propuesto del eco de Loschmidt puede capturar el comportamiento de sus
contrapartes de tiempo continuo.
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Figura 9.4.2: Aproximaciones en tiempo discreto al eco de Loschmidt L̄(ψ0) (puntos
negros) en función de λ para una cadena de n = 200 sitios. En el panel a) mostramos
el promedio exacto de tiempo infinito, así como la aproximación en tiempo discreto L̃(ψ0) para
diferentes valores de qubits de reloj log(N) y para ε = 0,45. En b) presentamos el promedio exacto
de tiempo infinito L̄(ψ0) (puntos negros), así como la pureza del estado reducido ρS = TrT [|Ψ⟩⟨Ψ|]
para diferentes valores de qubits de reloj log(N) y para ε = 0,45. En c) mostramos el promedio
exacto de tiempo infinito L̄(ψ0) (puntos negros), su aproximación en tiempo discreto L̃(ψ0), así
como la pureza del estado reducido ρS = TrT [|Ψ⟩⟨Ψ|] para diferentes valores de qubits de reloj
log(N) y para ε = 1,25. El recuadro corresponde a la diferencia entre cada aproximación y L̄(ψ0).

9.4.1 Promedios de tiempo discreto y entrelazamiento sistema-

tiempo

Para estudiar el promedio en tiempo discreto del eco de Loschmidt hemos conside-
rado una cadena de n = 200 sitios con J = 2, α =

√
5−1
2

, y un número de qubits
de reloj que varía de 1 a 10, correspondiendo a un número máximo de N = 1024

tiempos. Note que con esta elección, la dimensión del sistema es igual a 2200 y por
lo tanto, mucho mayor que la dimensión del espacio de Hilbert del reloj, N . Para
estudiar los efectos del tamaño de la ventana, también hemos considerado valores de
ε que van desde 0,05 hasta 1,95 con un espaciado de 0,1 (ver Fig. 9.2.2). El estado
inicial de nuestras simulaciones es |ψ0⟩ = (s+99 + s+100 + s+101)| ↓↓ . . . ↓⟩/

√
3, donde s+j

denota el operador de creación en el sitio j. Por lo tanto, en t = 0, el estado está
solo parcialmente deslocalizado en el medio de la cadena. Todas las simulaciones,
incluyendo el cálculo del promedio exacto de tiempo infinito L̄(ψ0), se realizaron
mediante diagonalización de Jordan-Wigner, y remitimos al lector a [6] para detalles
adicionales.

En la Fig. 9.4.1 presentamos primero un gráfico bidimensional del error entre el
promedio de tiempo infinito del eco de Loschmidt L̄(ψ0) y su aproximación en tiempo
discreto L̃(ψ0) (|L̄(ψ0)− L̃(ψ0)|) promediado sobre λ ∈ (0,1, 3,5) (con un espaciado
∆λ = 0,05), para diferentes valores de ε y n. Aquí, podemos ver que, como se
esperaba, el error se reduce al aumentar el número de qubits de reloj. La mejora
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sigue dos tendencias. Primero, hay una mejora general al aumentar T (es decir, al
moverse hacia arriba en el eje log(N) para un ε fijo), ya que esto corresponde a una
mayor precisión. Por otro lado, para un T constante, es beneficioso reducir ε (es
decir, aumentar la resolución), como lo muestran las curvas sólidas azules.

Exploramos más a fondo el efecto de fijar ε y aumentar log(N) en la Fig. 9.4.2
a). Allí mostramos L̄(ψ0), así como su aproximación en tiempo discreto L̃(ψ0) para
diferentes números de qubits de reloj como función de λ para una resolución fija
ε = 0,45 (línea discontinua vertical en la Fig. 9.4.1). Primero, notamos que el eco
de Loschmidt de tiempo infinito capta la transición de deslocalización-localización
que ocurre en λ = J = 2. En particular, para λ < 2 vemos que L̄(ψ0) es pequeño,
indicando una fase deslocalizada. Por otro lado, para λ > 2 el estado evolucionado
está localizado ya que L̄(ψ0) es grande. A continuación, observamos que a medida que
log(N) aumenta, L̃(ψ0) rápidamente se convierte en una buena aproximación para
su contraparte de tiempo infinito (como se esperaba de la Fig. 9.4.1). Sin embargo, la
Fig. 9.4.2 también revela que L̃(ψ0) capta la transición de deslocalización-localización
incluso para un pequeño número de qubits de reloj. Ya para log(N) = 6 el punto de
inflexión de L̃(ψ0) se acerca al valor crítico λ = 2.

A continuación, estudiamos cómo el entrelazamiento sistema-tiempo, medido a
través de la pureza del subsistema Tr[ρ2S] para ρS = TrT [|Ψ⟩⟨Ψ|], aproxima el prome-
dio de tiempo infinito del eco de Loschmidt (ver Corolario 9.3.1.1). En la Fig. 9.4.2
b) trazamos L̄(ψ0), así como Tr[ρ2S], para diferentes números de qubits de reloj co-
mo función de λ. Nuevamente, vemos una clara convergencia hacia L̄(ψ0) a medida
que se aumenta el número de qubits de reloj. Este resultado muestra que la pure-
za del subsistema proporciona una excelente aproximación de L̄(ψ0). Además, uno
también puede observar que el entrelazamiento sistema-tiempo capta claramente la
transición de deslocalización-localización. Este hecho puede entenderse fácilmente
desde el hecho de que en la fase localizada el estado no cambia considerablemente
con el tiempo, y por lo tanto se espera una pequeña cantidad de entrelazamiento.
Este ejemplo ejemplifica perfectamente el hecho de que el entrelazamiento sistema-
tiempo en el estado historia lleva información valiosa sobre la dinámica del sistema.
Además, dado que sabemos que Tr[ρ2S] = Tr[ρ2T ], entonces se puede estimar la tomo-
grafía del estado reducido estudiando solo el estado reducido en los qubits de reloj
log(N)(≪ n).

Las Figuras 9.4.2 a) y b) muestran que tanto el eco de Loschmidt en tiempo dis-
creto como la pureza del subsistema proporcionan buenas aproximaciones de L̄(ψ0).
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Figura 9.4.3: Fluctuaciones observables como función de λ para una cadena de n = 100

sitios. Mostramos las fluctuaciones observables σ2
O, el promedio de tiempo infinito del eco de

Loschmidt L̄(ψ0) y la pureza del subsistema reducido Tr
[
ρ2S
]
. Consideramos log(N) = 9 qubits de

reloj, y tomamos ε = 0,5

Para comparar mejor su rendimiento, mostramos en la Fig. 9.4.2 c) curvas para
L̄(ψ0), L̃(ψ0) y Tr[ρ2S] para la misma cadena de n = 200 espines, pero para ε = 1,25,
es decir, para menos precisión (ver Fig. 9.2.2). En este régimen, se puede ver que
mientras L̃(ψ0) sufre de oscilaciones no deseadas, Tr[ρ2S] aún puede proporcionar una
buena aproximación para el mismo número de qubits. En particular, la Fig. 9.4.2
c) muestra que L̃(ψ0) puede ser menor que L̄(ψ0) de maneras impredecibles (debido
a la resolución insuficiente), lo que significa que L̃ no se puede usar estrictamen-
te para proporcionar límites estrictos como el del Corolario 9.3.1.1. Mientras que
Tr[ρ2S] también oscila, esta cantidad nunca cruza los puntos negros, en acuerdo con
nuestros límites. Aquí también observamos que el entrelazamiento sistema-tiempo
proporciona una mejor convergencia en la región localizada. Por otro lado, las curvas
de entrelazamiento están por encima de las curvas de L̃ en el sector deslocalizado.
Sin embargo, esta discrepancia puede mitigarse aumentando el número de qubits.
Finalmente, notamos que en la Fig. 9.4.2 c) también representamos las diferencias(
L̃(ψ0)− L̄(ψ0)

)
y
(
Tr[ρ2S]− L̄(ψ0)

)
, que confirman que Tr[ρ2S] siempre es estric-

tamente mayor que L̄(ψ0), mientras que L̃(ψ0) de hecho puede ser menor que el
promedio de tiempo infinito.

Finalmente, como ejemplo del Corolario 9.3.1.3, también mostramos numérica-
mente cómo el entrelazamiento sistema-tiempo proporciona un límite para la fluc-
tuación de los observables. Usamos como ejemplo el observable O = s+L/2s

−
L/2+1 +

s+L/2+1s
−
L/2 y como estado inicial |ψ0⟩ = (s+L/2 + s+L/2+1)| ↓↓ . . . ↓⟩/

√
2. En este caso,

los límites de la Ec. (9.27) se convierten en

σ2
O ⩽ 4L̄(ψ0) ⩽ 4Tr

[
ρ2S
]

(9.29)
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ya que ∆O = 2. En la Fig. 9.4.3 mostramos los resultados numéricos para una
cadena de n = 100 sitios y log(N) = 9 qubits de reloj (es decir, 512 tiempos).
Observamos que, aunque el límite no es estricto, tanto L̄(ψ0) como Tr[ρ2S] son capaces
de separar claramente las diferentes fases. Como se esperaba de nuestros límites, el
entrelazamiento sistema-tiempo proporciona un límite menos estricto pero riguroso.
Sin embargo, dado que se puede calcular eficientemente el entrelazamiento sistema-
tiempo en computadoras cuánticas, este límite sigue siendo útil para fines prácticos.
Además, es importante destacar nuevamente el hecho de que el entrelazamiento
sistema-tiempo se obtiene de un formalismo de tiempo discreto (en contraste con
L̄(ψ0) que requiere promedios de tiempo infinito). Como tal, nuestra nueva noción
de entrelazamiento sistema-tiempo proporciona información valiosa y estricta sobre
la dinámica observable del sistema y su eventual equilibración (una característica no
disponible para el eco de Loschmidt en tiempo discreto L̃(ψ0)).

9.5 Discusión

La simulación de sistemas cuánticos ha sido considerada ampliamente como la apli-
cación más importante de la computación cuántica desde su concepción [183]. Tra-
dicionalmente, el enfoque de las simulaciones cuánticas ha girado en torno al cálculo
de estados cuánticos y cantidades físicas en un momento dado, aprovechando el
crecimiento exponencial del espacio de Hilbert de los qubits para imitar el com-
portamiento de los sistemas de muchos cuerpos. Sin embargo, muchas cantidades
fundamentales, como las funciones de correlación o el estado de equilibrio de un sis-
tema cuántico, están asociadas con grandes sumas temporales de las anteriores. En
este manuscrito hemos demostrado que al tratar el tiempo mismo de manera cuánti-
ca, lo cual en un esquema computacional corresponde al uso de qubits de reloj, esas
cantidades se vuelven fácilmente accesibles.

Detalles adicionales de esta propuesta pueden encontrarse en [6]. Allí se dis-
cute en mayor profundidad los aspectos técnicos, incluyendo una estimación de la
profundidad de los circuitos paralelos en tiempo, y se propone el uso de métodos
variacionales cuánticos [7, 8, 184] para reducir aún más dicha profundidad.

Destaquemos también que, además de permitir la construcción de algoritmos
novedosos, tratar al tiempo de manera cuántica nos provee de una nueva intuición
sobre la equilibración de sistemas cuánticos, heredada de la estructura de los estados
historia. Podemos especular que, en un futuro cercano, motivados por los resultados
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actuales, los demás desarrollos en esta tesis podrían proporcionar más aplicaciones
de carácter informacional y computacional relacionadas con el dominio temporal.
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