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Resumen

La presente tesis enfrenta la problematica de establecer si es posible construir una
version de la mecéanica cuantica (MC) en espacios de Hilbert que trate al espacio
y al tiempo en pie de igualdad, y considere a la simetria de Lorentz de manera
explicita en teorias relativistas. La relevancia actual de este problema, intrinseco al
area de fundamentos de la mecanica cuantica, radica en las potenciales implican-
cias para otras areas como la informacion, la computacién y la gravedad cuantica,
y, sobre todo, para el reciente conjunto de ideas que yace en la interseccion de las
mismas. En la tesis se construye progresivamente un formalismo con las caracteristi-
cas deseadas, proporcionando asi una respuesta afirmativa a la pregunta inicial. La
construccion comienza con la generalizacion del formalismo de Page y Wootters al
caso de particulas relativistas y luego al de varias particulas. Esto conlleva a intro-
ducir espacios de Hilbert ampliados a través de algebras que tratan al tiempo y al
espacio en pie de igualdad. A través del concepto de operador accién, una version
cuantica de la acciéon clésica, se establece la existencia de una correspondencia entre
los espacios de Hilbert ampliados y la MC convencional. Se demuestra a su vez que
la suma sobre historias de la formulacién de Feynman adquiere un nuevo significado
en estos espacios. Finalmente, se combinan todos los resultados anteriores en una
discusion sobre las deficiencias del espacio de fases clasico para abarcar explicita-
mente simetrias del espacio-tiempo, y sobre como estas son heredadas por la MC,
afectando incluso a su formulacién ampliada. Se propone entonces una version au-
mentada de la formulaciéon Hamiltoniana clasica que involucra corchetes de Poisson
simétricos en espacio-tiempo para campos de materia y corchetes de Poisson asocia-
dos a las posibles foliaciones del espacio-tiempo. Esta formulacién clasica permite
obtener ecuaciones de movimiento invariantes en el espacio de fase. Su cuantizacion
lleva directamente a los espacios de Hilbert ampliados, dénde ademas la foliacion es
cuantica y la simetria de Lorentz explicita. Condicionando con respecto a autoes-
tados de foliacion, en analogia con el formalismo de Page y Wootters, se recupera
la correspondencia con la MC convencional. Finalmente, se discuten las novedades
introducidas por el formalismo, y su potencial para proporcionar nuevas intuiciones
de caracter teérico, informacional y computacional, y para introducir teorias fisicas

que no encuentran una correspondencia con la MC usual.



Abstract

This thesis addresses the problem of establishing whether it is possible to construct a
version of quantum mechanics (QM) in Hilbert spaces that treats space and time on
equal footing and considers Lorentz symmetry explicitly in relativistic theories. The
current relevance of this problem, intrinsic to the area of the quantum foundations,
lies in its potential implications for other areas such as quantum information, quan-
tum computation, and quantum gravity, and especially for the recent set of ideas
that lie at the intersection of these fields. In this thesis, a formalism with the desired
characteristics is progressively constructed, thus providing an affirmative answer to
the initial question. The construction begins with the generalization of the Page
and Wootters formalism to the case of relativistic particles and then to multiple
particles. This involves introducing enlarged Hilbert spaces through algebras that
treat time and space equally. Through the concept of the action operator, a quan-
tum version of the classical action, the existence of a correspondence between the
enlarged Hilbert spaces and conventional QM is established. It is also demonstrated
that the path integral formulation of Feynman acquires new meaning in these spaces.
Finally, all the previous results are combined in a discussion about the deficiencies of
the classical phase space in explicitly encompassing spacetime symmetries, and how
these are inherited by QM, even affecting its extended formulation. An augmented
version of the classical Hamiltonian formulation is then proposed, involving symmet-
ric Poisson brackets in spacetime for matter fields and Poisson brackets associated
with possible foliations of spacetime. This classical formulation yields covariant
equations of motion in phase space. Its quantization leads directly to the enlarged
Hilbert spaces, where the foliation is also quantum, and the Lorentz symmetry is
explicit. By conditioning with respect to foliation eigenstates, in analogy with the
Page and Wootters formalism, the correspondence with conventional QM is recov-
ered. Finally, the novelties introduced by the formalism are discussed, as well as its
potential to provide new insights of a theoretical, informational, and computational
nature, and to introduce physical theories that do not have a correspondence with

those formulated in conventional QM.
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Introduccién y motivacion

1.1 El tiempo y las revoluciones de la fisica

El concepto de tiempo, como medida de transformacion, atraviesa toda la fisica.
Incluso, en una primera aproximacion, podriamos definir a las leyes de la fisica como
el conjunto de reglas que permiten predecir el estado de un sistema a lo largo del
tiempo dada cierta informacién sobre el mismo en un instante “inicial”. Sin embargo,
.qué entendemos por tiempo? Quizas para un fisico, mas crucial que ofrecer una
definiciéon seméanticamente precisa de un concepto, es especificar su rol en una dada
descripcion matematico/conceptual de la naturaleza, y como se relaciona con las
demés cantidades fisicas (y por ende como se mide). Queda claro, por lo tanto, que
la respuesta depende del marco conceptual, o rama de la fisica si se prefiere, que

estemos considerando.

En el contexto de la fisica clasica no relativista, el tiempo se asocia con un para-
metro real que cualquier observador puede medir mediante un movimiento periédico
(un reloj), en relacion al cual puede comparar cambios en otros sistemas fisicos. Ade-
mas, se asume que todos los sistemas de referencia van a coincidir en la descripcion
de dichos cambios, lo cual podemos reducir a que el tiempo no se ve afectado por

las transformaciones de Galileo.

Como es bien sabido, la definicién previa sufrié6 una modificaciéon radical en la
primera de las revoluciones de la fisica de principios del siglo XX: la relatividad de
Einstein. En este nuevo marco, y restringiéndonos a la relatividad especial, las coor-
denadas espacio-temporales que un observador utiliza para describir cierto conjunto
de eventos, ya no se traducen a otros observadores de acuerdo a las transformacio-
nes de Galileo. En cambio esto ocurre de acuerdo a las transformaciones de Lorentz,
que involucran “combinar al tiempo con el espacio”. Detras de esta nueva construc-

ciéon matematica esta la finitud de la velocidad de propagacion de la informacion,
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que ha de ser la misma para todo observador y que impide sincronizar relojes de
forma trivial si estos estan separados espacialmente. De manera mas abstracta, e
importante para la relatividad general, se pasa a hablar de espacio-tiempo como un
concepto més fundamental. En particular, queda claro que las leyes de la fisica tie-
nen que poder escribirse de manera tal que exhiban simetria cuadridimensional®. En
esta perspectiva geométrica, la Gnica asimetria en las ecuaciones fisicas es un signo
relativo entre las direcciones temporales y espaciales. A esta construccion todavia
hay que agregarle una nociéon que permita hablar de observadores, y observaciones,
concepto que idealizamos como medidas efectuadas “en un dado tiempo”. En una
primer aproximaciéon esto puede efectuarse volviendo a una imagen tridimensional
a través de una foliacién del espacio-tiempo: las foliaciones definen superficies de
simultaneidad y una direccion de tiempo. La covarianza (en cuatro dimensiones) de
las leyes de la fisica garantizan que las predicciones fisicas no dependan de la eleccion

de la foliacion.

La segunda gran revolucion de la fisica de principios del siglo XX, y posiblemen-
te aiin mas radical, es la mecanica cuéntica. Paraddjicamente, en este nuevo marco
el tiempo mantiene su caracter clasico y pre-relativista. Esto puede reconducirse a
que la formulaciéon canoénica de la mecanica cuantica esta fuertemente ligada a la
formulaciéon Hamiltoniana de la fisica clasica, que precede a la relatividad, y no se
adapta al caracter geométrico de las simetrias de Einstein. Atn asi, las teorfas cuin-
ticas con mayor poder predictivo, que en conjunto conforman el modelo esténdar,
combinan la relatividad especial con la cuantica. Detrds de esta “unificacion” esté
la idea de foliaciéon que describimos anteriormente: las teorias de campos se cuanti-
zan de acuerdo a una foliacion dada, proceso que esconde la simetria de Lorentz a

nivel matemaético, pero que, notablemente 2, es compatible con la covarianza de las

'Es muy interesante el punto de vista de Dirac [9] sobre la evolucién de los esquemas fisicos.
En particular, él describe el primer paso de Newton como el pasaje de una simetria bidimensional,
que no tiene en cuenta el “arriba y abajo”, a una tridimensional. El siguiente paso de Einstein nos
llevé de una simetria tridimensional, que no tiene en cuenta al tiempo, a una cuadridimensional.

) b
Por otro lado, Dirac sostiene que la mecénica cuantica parece volver a esta tltima simetria menos

fundamental.
2Cabe ir destacando que en este sentido, las teorias cuanticas de campos, escritas en el for-

malismo canonico, no tratan al tiempo y al espacio de manera completamente simétrica (veasé el
siguiente capitulo). A su vez, no es trivial que una simetria clasica escondida por el proceso de
cuantizacién se traduzca a una simetria cuantica. Un ejemplo que involucra la simetria de Lorentz
es el de una cuerda bosonica, que, bajo la cuantizacién en el cono de luz, mantiene la invarianza

de Lorentz solo en 26 dimensiones [10].
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predicciones fisicas [11].

Ciertamente, existe otra formulacién de la mecanica cuantica: la formulacién de
Feynman [12]. Esta version esta directamente ligada a la formulacion Lagrangiana de
las leyes de la mecanica. Al igual que la formulacion Lagrangiana (que como la Ha-
miltoniana precede a la relatividad) resulto ser adecuada para capturar las simetrias
cuadridimensionales, la formulaciéon de Feynman permite tratar al espacio-tiempo
de manera simétrica. Esto es particularmente conveniente a la hora de tratar con
teorias cuanticas de campos, pues en esta forma, el cardcter covariante es explicito.
Por otro lado, las integrales de Feynman estéan asociadas a “sumas cléasicas”, en el
sentido de que su definicién no esta asociada al espacio matemético caracteristico

de la cuantica, esto es, a un espacio de Hilbert.

Finalmente mencionemos que de momento no es posible compatibilizar la relati-
vidad general, esto es la completa covarianza de las leyes de la fisica, con la mecanica
cuantica. Esto es de esperarse en el caso candnico, pues hemos visto que el tiempo y
el espacio son fundamentalmente distintos en cualquier teoria cuantica, incluso en las
teorias de campos, dando asi lugar a dificultades a veces agrupadas bajo el nombre
de “el problema del tiempo” [13-15]. Sin embargo, en la formulacion de Feynman,
el problema surge una vez mas, pero adoptando una nueva forma: las integrales de
Feynman naturalmente cuentan en exceso configuraciones equivalentes, que deben
ser compensadas con la introducciéon de “ghosts”, una tarea no trivial en este caso
[16]. Esto introduce un obstéaculo (lejos de ser el tnico) a la hora de construir una

teoria cuantica de la gravedad.

Podriamos argumentar que el gran avance dado por Einstein en su famoso paper
“On the electrodynamics of moving bodies” [17], tuvo origen en un minucioso estu-
dio del proceso mediante el cual obtenemos informaciéon y como dicho proceso esté
intrinsecamente vinculado a las leyes de la fisica (en este caso, a las ecuaciones de
Maxwell). En tiempos més recientes, nos encontramos con preguntas similares y con
un alcance comparable. Por ejemplo, Michael Nielsen en su tesis doctoral [18] nos
plantea la pregunta “ What is discovered when the laws of physics are used as the
foundation for investigations of information processing and computation?”. En su
caso se refiere a aquellas leyes de la fisica que pueden formularse en el contexto de la
mecanica cuantica. Este tipo de preguntas originaron lo que algunos autores indican
como una nueva (o segunda) revolucion cuantica. Usualmente se asocia a esta revolu-
cion con la capacidad de utilizar sistemas cuanticos para procesar informacion, dando

asf origen a nuevas tecnologias, tales como las computadoras cuanticas. Sin embargo,

10
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esto es solo una parte de la revoluciéon. Notablemente, comprender el tipo de proce-
sos de informacién, comunicacion y/o computacion que son permitidos por la fisica,
nos provee de un nuevo tipo de intuicién y conocimiento. Un ejemplo clave aqui es
el del Teorema de Bell [19]: en una de sus versiones, un “juego” de comunicacion
entre dos partes [20] nos permite responder de manera cientificamente comprobable
una pregunta tan profunda como es la existencia o no de “variables ocultas” [21].
Quiero aqui remarcar que este interrogante va més alla de ciertas leyes particulares
de la fisica. Cuando se afirma que no existe una teoria de variables ocultas locales
que haga las mismas predicciones que la mecénica cuéntica, no se esta hablando de
alguna teoria especifica, sino méas bien de la mecéanica cuéntica como marco tedrico
(o si se prefiere como una generalizacion de la teoria clasica de probabilidades). Mas
de una teoria cuantica puede hacer de “soporte” para violar las desigualdades. Por
claridad posterior déjenme entonces definir lo que yo entiendo como mecanica cuan-
tica a lo largo de esta tesis: la mecdnica cudntica es un marco matemdtico para el
desarrollo de teorias fisicas. Posiblemente esta sea la version comtinmente aceptada

en el contexto de la relativamente reciente teoria de la informacioén cuantica [22].

Al poner el énfasis en el marco y no necesariamente en leyes particulares de la
fisica se abre toda una nueva dimension para estudiar viejos interrogantes. En parti-
cular, regresando al tema del tiempo, podemos preguntarnos si hay algo fundamental
en la asimetria entre espacio y tiempo que nos propone la cuantica, o si al contrario
estos conceptos han de ser tratados en pie de igualdad como indica la relatividad.
Si no hay una razon fisica, entonces dicha asimetria deberia poder eliminarse. Esto

nos lleva entonces a la pregunta principal de esta tesis.

¢ E's posible construir un marco teorico que trate tiempo y espacio en pie de igual-
dad y que, a su vez, bajo reglas matemdticas simples, produzca las mismas prediccio-

nes fisicas que la cudntica convencional?

Cabe aqui hacer un par de aclaraciones sobre nuestras intenciones. En primer
lugar, queremos conservar los elementos matematicos bésicos de la formulacién cano-
nica, como estados y operadores. Esto es, no queremos introducir ideas matematicas
ajenas a los espacios de Hilbert. En este sentido (y otros que quedarén claros a lo
largo de la tesis), la formulacion de Feynman no nos provee una respuesta. Resul-
tard de todos modos muy relevante para nuestros propoésitos, como deberia ser si
vamos por el camino indicado. En segundo lugar, si bien este tipo de pregunta estan
asociadas a la cuantica como marco, queremos ser tan conservadores como nos sea

posible. No dudamos de la necesidad de las teorias cuanticas de campos para defi-

11
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nir teorias interactuantes que sean a su vez relativistas . Lo que buscamos es un
marco suficientemente poderoso que permita reescribir a dichas teorfas de manera
explicitamente covariante. De esta manera, buscando que el marco se adapte a las
teorias de campos, sabremos identificar de manera precisa las asimetrias a tratar.
Quiero remarcar también mi principal intuicién subyacente al perseguir las ideas que
llevaron a esta tesis: El hecho de que las teorias cuanticas de campos candnicas sean
compatibles con la relatividad, y que a su vez la cuantica pueda ser formulada a lo
Feynman, nos indican que el rol especial que tiene el tiempo en mecanica cuantica no
es algo fundamental, sino mas bien un “accidente historico”. Los resultados obtenidos
en esta tesis soportan esta hipotesis. Cabe remarcar que preguntas similares se han
planteado miiltiples veces en el pasado, principalmente en el contexto de la gravedad
cuantica [14, 15, 23-27]. Sin embargo, ninguna solucién completa ha sido alcanzada,
como muestra el reciente resurgimiento de interés por el tema que ha dado lugar a
multiples propuestas novedosas en los tltimos afios [28-36] y que reflejan la intuicion
de la “segunda revolucion cuantica”. A su vez, en el estado actual, ninguna propuesta
en la literatura (hasta donde el autor conoce, y reflejado por trabajos muy recientes

[36, 37]) responde a la problemética propuesta.

1.2 Descripcién general de la propuesta

Dado que la btisqueda de una respuesta al interrogante previo ha pasado por distintas
etapas, y que las mismas se vuelcan en esta tesis, por claridad, daremos aqui una
pequena guia para el lector. Mencionemos en primer lugar que el lector interesado
exclusivamente en el resultado principal puede saltar directamente al capitulo VII.
Alli se presenta de manera auto-contenida nuestra propuesta final [5]. Sin embargo,
las ideas y aprendizajes parciales tal vez sean importantes para su entendimiento.
A su vez, los capitulos previos contienen varios resultados que son de interés en si
mismos y no necesariamente parte del formalismo final. En la figura [.1 mostramos
un esquema visual de la tesis y las motivaciones de los distintos capitulos.

Nuestro punto de partida tal vez sea natural, tratar de cuantizar al tiempo.
Esto es, definir un observable que identifiquemos con el tiempo, mateméticamente
descripto por un operador. Afortunadamente, ya existia un formalismo que permita

hacer esto: el formalismo de Page y Wootters (PW) [14]. Por su relevancia para

3Si bien no nos centraremos en las teorias de cuerdas, o en los formalismos inspirados en estas
(como el formalismo linea de mundo), algunos comentarios y conexiones con las mismas surgiran

naturalmente.
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Capitulo I. Introduccién y motivacion

e Capitulo 2 e Capitulos 3 y 4
Introduccién al problema ) L > Particulas de Dirac
tiempo cudntico Tiempo cudntico y Klein-Gordon
Y P relatividad? Y
Varias particulas
y teorias de campos?
e Capitulo 5 e Capitulo 6
Segunda cuantizacién P > Suma sobre historias como
y acciones cudnticas Riclacion con la trazas en espaciotiempo
formulacion de Feynman?

simetria de Lorentz
en espacio de fase ampliado?

e Capitulo 7

Mecénica cuantica y cldsica en el
espaciotiempo con foliacién dinamica

Figura I.1: Esquema de los capitulos de la tesis y su contenido. Junto a las flechas se indica el

interrogante principal que nos llevé de los resultados presentados en un capitulo hacia el siguiente.

nosotros, daremos una breve descripcion de esta propuesta en el capitulo I1. También
describiremos nuevas implicancias del mismo en informaciéon cuéntica en el Anexo
IX [6]. Es interesante notar que este formalismo aplica a cualquier sistema cuéntico
cuya dinamica esté descripta por la ecuacion de Schrédinger. En este sentido no es un
formalismo relativista. Tampoco es necesariamente cierto que cuantizar el tiempo
nos dé una descripcion simétrica entre espacio y tiempo. Existe, sin embargo, un
escenario donde esto si se puede lograr: en el tratamiento de particulas individuales
donde la posiciéon espacial es un observable. El primer paso de nuestra investigacion
fue generalizar el formalismo de PW a particulas con dinamica relativista. Esto nos
permitié obtener un primer modelo cuantico donde tiempo y espacio estan en pie de
igualdad. Estos resultados se presentan en los capitulos III y IV, donde se estudian

los casos de la ecuacion de Dirac [1] y Klein-Gordon [2| respectivamente.

Como es bien sabido, las teorias de una sola particula relativista (en el sentido

previo) llevan a inconsistencias. Por este motivo, en una segunda etapa estudiamos
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Capitulo I. Introduccién y motivacion

la generalizacion a sistemas de varias particulas de los formalismos anteriores. El
camino mas fructuoso resulto ser el de segunda cuantizaciéon. Tomando como uni-
dad basica a las “particulas de PW” (objetos cuadridimensionales), propusimos una
segunda cuantizacion extendida, no equivalente al espacio de Fock de las teorias de
campos canodnicas. Sorprendentemente, esto lleva directamente al concepto de accion
cuantica. Dedicamos una buena porciéon de tiempo estudiando estos objetos y sus
propiedades, con la esperanza de recuperar la dindmica usual mediante su uso. Esto
se describe en los capitulos V [3] y VI [4]. Un avance importante fue comprender su
relacion con la formulacion de Feynman, que nos permitié efectivamente conectar
con la fisica usual. La comparaciéon entre el espacio de Fock extendido y el usual,
nos permitié también comprender de manera precisa en qué sentido la formulacion
candnica, como marco, no permite un tratamiento simétrico entre espacio y tiempo
(véase la discusion sobre producto tensorial en el capitulo II).

Con el entendimiento de las acciones cuénticas logramos una correspondencia
entre la cuantica usual y una formulacién en un espacio de Hilbert simétrico en es-
pacio y tiempo a nivel del 4dlgebra de operadores. Dicha algebra involucra posiciones
(o campos) a su vez que sus momentos conjugados, y en este sentido no es mas que
una extension del algebra canoénica al espacio-tiempo. Sin embargo, a la hora de
introducir dinédmica esto origina un nuevo problema: las acciones cuanticas, escri-
tas en las variables canénicas, contienen la asimetria heredada de la transformada
de Legendre. Para enfrentar este problema, planteamos una revision de la formula-
cion Hamiltoniana clasica. En particular notamos que la elecciéon de tiempo de la
transformada de Legendre, que corresponde a elegir una foliacion, puede tratarse
“dinamicamente”, en el sentido de que es conveniente asociarle corchetes de Poisson.
A su vez comprendimos que los corchetes de Poisson clésicos de los campos pueden
extenderse también al espacio-tiempo, y usarse para reobtener las ecuaciones de mo-
vimiento. Al cuantizar esta nueva version de la fisica clasica, logramos finalmente
obtener una mecanica cuantica que es a la vez canodnica, explicitamente covariante
y cuyas predicciones coinciden con las de la formulacion usual. Esta formulacion,
que presentamos en el capitulo VII, ademéas de estar asociada a acciones cuanticas,
introduce el concepto de foliacion cuantica como ultima pieza necesaria para abarcar
simetrias del espacio-tiempo en variables de espacios de fase [5|. Finalmente, en el
capitulo VIII presentamos las conclusiones de la tesis, analizando también las nuevas

perspectivas y posibilidades abiertas por el formalismo.
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Capitulo II. Preliminares: El tiempo y la mecanica cuantica

Preliminares: El tiempo y la mecanica

cuantica

“Quantum mechanics is actually, contrary to its reputation,

unbelievably simple; once you take all the physics out.”

Scott Aaronson

2.1 Mecanica cuantica tradicional y la objecién de

Pauli

Los observables fisicos en mecéanica cuantica (MC) estan asociados a operadores
Hermiticos que acttian en el espacio de Hilbert de posibles estados del sistema. Por
ejemplo, si consideramos una particula sin estructura en una recta, el espacio de Hil-
bert que asociamos es H = span{|x)}, que puede introducirse a partir del operador
posicion & = [ dz z|z)(x| (en general obviaremos la notacion O para operadores y
escribiremos simplemente O; si usaremos extensivamente la notacion de Dirac). El
espectro continuo del operador se deduce de imponer el algebra candnica de conmu-

tadores (también impondremos i = 1)
[z, p] =1, (2.1)
con p el operador momento. Claramente un estado general puede ser expandido como
) = [ dzuia)ia) (22)

y la accion de p entonces puede ser descripta como p|¢) = [ da (—iy)'(x))|z) donde
se us6 que (2'|p|z) = —id'(z — 2') y la relacion de completitud que sigue de (z'|z) =
d(x —a').
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Hasta este punto, no se han hecho consideraciones que involucren la evolucién
del sistema a lo largo del tiempo. Incluso en este ejemplo tan elemental la intuicion
relativista sugiere introducir un operador ¢. Por otro lado necesitamos especificar
la dinamica de alguna forma, independientemente de si queremos hacer medidas de
tiempo de algin tipo. Se nos ensena desde jovenes (no dirfa desde chicos) que la
dindmica ha de ser descripta por un hamiltoniano H(z,p). Una muy buena razén
a favor de esto es el hecho de que estamos usando una variable p como parte de la
definicién de nuestro espacio matemaético y, en la formulacion clasica el espacio de

fases de variables (x, p) esta asociado a la formulacion hamiltoniana.

Supongamos entonces que queremos emplear alguna funciéon (en principio arbi-
traria) H(z,p) de los operadores posicién y momento para describir la dinamica del
sistema (y por un momento, que desconocemos los avances de Schrodinger). Trate-
mos ahora de usar la “intuicion relativista” que nos lleva a definir ¢: en analogia al
algebra canoénica, y por simetria entre espacio y tiempo, podriamos querer imponer
un algebra anéloga que nos defina completamente al operador tiempo. Esto sugiere

el dlgebra

[t7 H] =1. (23)

Inmediatamente nos encontramos con un problema: incluso en el ejemplo més bésico
de una particula libre H = % (argumentos de limite clasico nos fija esta forma)
el espectro del hamiltoniano no es toda la recta real. Este hecho, combinado con
el algebra que impusimos, impone restricciones al operador t. En otras palabras, al
algebra anterior es incompatible con un operador ¢t cuyo espectro es la recta real
a no ser que H tenga el mismo espectro': la dinamica modifica la definicion del
supuesto operador tiempo. También es bien sabido que en general H tendra un
espectro discreto. Por muy extrana que pueda ser la MC nunca se vid a un sistema

cuantico afectando a los relojes “clasicos” de un laboratorio!

Los argumentos anteriores se conocen bajo el nombre de la objecion de Pauli [38|
y aplican a cualquier sistema cuéntico. Estos muestran que si definimos al espacio
de Hilbert de la manera usual no hay ninguna posibilidad de tratar al tiempo cuan-
ticamente. En cambio, la evolucién temporal se impondré de acuerdo a la ecuaciéon

de Schrodinger con ¢ un parametro clésico.

!La manera de convencerse de esto es aplicando e!®! sobre autoestados de energfa |E) y notando

que esto induce un desfasaje E — E 4+ a con a € R.
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2.2 Relatividad especial y Teorias cuanticas de cam-
pos

Lo anterior luce muy mal desde el punto de vista relativista. Sin embargo, los fisicos
construyeron algo tan fundamental como el modelo estandar a partir de la intersec-
cion de ideas cuénticas y relativistas. ;Como se super6 dicha barrera? La respuesta
de manual es la siguiente “las teorias cuanticas de campos tratan tanto al espacio
como al tiempo como parametros clasicos”. Déjenme discutir aqui en que sentido
esto es cierto y en que sentido tiempo y espacio siguen sin estar en pie de igualdad.

Tomemos como ejemplo el caso de un campo escalar ¢(x) en D = d + 1 dimen-

siones. La cuantizacion candnica impone el algebra [39, 40|

[6(t. %), 7(t,y)] = 8 (x — y) (2.4)

con 7(t,y) el momento conjugado al campo. Notemos dos hechos mas: aqui separé
las coordenadas del espacio-tiempo de los campos z,y en z = (t,x),y = (t,y).
La razon es la siguiente. Las algebras convencionales (ya sea cuanticas o clasicas,
i.e., asociadas a corchetes de Poisson) estan definidas a tiempo fijo. Entonces, dada
una elecciéon de tiempo, tenemos que hablar de un campo en una dada posiciéon del
espacio x. Luego, jqué significa el indice temporal? Aqui ya estoy suponiendo que

estos campos se encuentran en el esquema de Heisenberg:
o(t,x) = e'p(x)e | 7(t,x) := eMlr(x)e . (2.5)

Notemos entonces que si bien es cierto que ¢ y x son parametros, su rol en la teoria
cuantica es muy diferente. Por un lado el indice de tiempo esté asociado a evolucion
y ¢(t,x) depende de la teoria particular. En cambio el indice de espacio esta asociado
al dlgebra canoénica, y todas las teorias que describen al mismo campo comparten la
misma algebra, en particular, el operador ¢(t = 0,x) = ¢(x) es el mismo para todo
H. Enfaticemos también que la distincién entre espacio y tiempo esté ligada a una
eleccion arbitraria de observador (o de foliacion del espacio-tiempo).

Lo anterior es bien sabido, aunque usualmente solo se afirma que la formulacion
candnica no permite tratar la simetria de Lorentz de manera explicita. Déjenme
discutir ahora algunas consecuencias adicionales de esta asimetria. En primer lugar,
notemos que mientras los conmutadores a tiempos iguales no se ven afectados por
iH

la eleccion de H (pues e~ es unitario), la cantidad

F(z,7") = [p(2°,x), m(2"°, )] (2.6)

17
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es una funcién complicada que depende de la teoria. Es mas, es facil ver que esta
cantidad (que no es un observable) no es invariante de Lorentz frente a un simple
cambio de coordenadas (x,z') — (Az,Az’) (con z# — A¥ " la transformacion de
coordenadas). Mostremos esto en el escenario mas simple posible, el de una teoria
de Klein-Gordon libre y fijemos D = 3 + 1. En este caso la densidad Hamiltoniana

toma la forma

1
= on+ (Vo) + 5, 27)
que puede derivarse de la densidad Lagrangiana £ = ( Du0)*— m72<;52. A estos campos

libres se los puede entonces expandir en termino de modos como

d*p , .
) = / — (ape*W +af eW) |lpo—p (2.8)
V/(27)32E, P ’
d*p E,
m(z) =

\/? (ape Pt —ale sz) lpo=£, (2.9)

con [ap, a;r),] = 00 (p — p'). Notemos también que el Hamiltoniano toma la forma

normal
H = /d%?—[ = /d?’pEpaLap, (2.10)

donde E, = /p?+m? y también fijamos ¢ = 1. También denotaremos con |0) el
estado fundamental de H.

Ahora que diagonalizamos el Hamiltoniano, es directo computar F(z,z') =
[¢(z), m(x")]. El resultado es

o)) = | (d—p

7) e P | o (2.11)

Como es bien sabido d®p, no es una medida invariante y por lo tanto la cantidad
anterior (como distribucion) no puede transformar bien 2
En cambio, la medida d®p/2F,, es invariante, y es precisamente lo que aparece al

calcular otro conmutador:
d3p —ip(z—2a’ ip(z—2x’
[p(z), p(2")] = /W (6 ple=a’) _ il )>|po:Ep. (2.12)
p

Esta cantidad, transforma adecuadamente y se anula para x — 2’ un intervalo tipo es-
pacio [40]. En particular, esto muestra que para este tipo de intervalos (0|¢(z)¢(z")]0)

(0|p(y°, y)p(y°, ¥')|0) para y, y' las coordenadas asociadas por un observador inercial

2Quizés el lector sospeche que en realidad elegimos de manera poco conveniente el algebra de
operadores de creaciéon y aniquilicaciéon, y que imponer [ap, | =2E, 6®) (p—p’) pueda de alguna

manera ayudar. Eso no es cierto, pues este resultado no depende de la eleccion de modos.
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que mide a los eventos x, 2’ como simultaneos a tiempo y°. Esto permite ver a todo
correlador tipo espacio como un correlador tradicional de operadores no evoluciona-
dos: podemos escribir, si ignoramos sutilezas del continuo, (0¢(y°,y)o(y°, y')|0) =
0|o(y°,y) ® ¢(y°,¥')|0) con el producto tensorial, enfatizando que estos operadores
actian en espacios de Hilbert distintos, i.e. que son “osciladores” independientes,
mientras que las correlaciones estan contenidas en el estado fundamental |0) (véanse
resultados sobre entrelazamiento en teorias de campos [41]). Enfaticemos también
que (0|o(x)o(z')]0) = (0|4(y°,y) @ ¢(y°,y')|0) para intervalos tipo espacio implica
automéaticamente [¢(x), ¢(x')] = 0, pues campos independientes claramente conmu-
tan.

Afortunadamente, a la hora de obtener predicciones fisicas, uno puede reescribir
las ecuaciones en términos de [¢(x), ¢(2')] en vez de [¢p(z), m(2")]. Es mas, si nos
centramos en teoria de perturbaciones, nos alcanza con el propagador anterior de
la teoria libre: la mayoria de la fisica en campos es descripta por la matriz S que

podemos expandir esqueméaticamente como

S = i (—ni!)" /dtl/dtz.../dtnT{%(tl)%(tg)...Vl(tn)}, (2.13)

con Vi(t) la parte interactuante del Hamiltoniano en el esquema de interaccion y T
indicando el orden temporal. Por ejemplo para un campo escalar podriamos tener
Vi(t) = [ d®z 5¢*(t,x). En general V;(t) = [ d*zV;(t,x) lo cual permite reescribir

la serie de Dyson como

S = i (=" /d4x1/d4x2---/d4mn T{V(z1)Vi(x2) .. Vi(z,)}.  (2.14)

|
0 n:

De no ser por el orden temporal ahora si tendriamos una expresion covariante. El
paso final que nos garantiza la preservacion de la simetria de Lorentz es el siguiente:
para intervalos conectados causalmente (tipo tiempo), el orden temporal no depende
del observador. El tinico problema podriamos tenerlo para regiones causalmente des-

conectadas (tipo espacio). Pero, notablemente, uno encuentra en teorias relativistas
Vi(z),Vi(2')] =0 para x — 2’ tipo espacio. (2.15)

Esto sucede porque los campos libres de teorias relativistas conmutan para regiones
causalmente desconectadas, como en el ejemplo de arriba (para campos no reales,
el mecanismo por el cual esto ocurre puede asociarse a la cancelacién entre propa-

gadores de particula/antiparticula en regiones tipo espacio). Este hecho conduce a
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la condicion anterior, como es claro en el ejemplo del campo escalar si se toma una
interaccion local de la forma Vi (z) = V[¢;(x)]. El ordenamiento de operadores deja
entonces de importar si estos son locales y estdn asociados a puntos desconectados

causalmente.

En resumen, las teorias cuénticas de campos nos garantizan que las predicciones
fisicas son independientes del observador. El mecanismo por el cual esto funciona, no
pasa por el adlgebra candnica, pues esta rompe la simetria de Lorentz explicitamente.
En cambio, las expresiones finales asociadas a la matriz S nos senalan que la cantidad
de interés es el conmutador de la parte interactuante de la densidad Hamiltoniana,
que a su vez se puede reconducir al conmutador entre campos libres. Cabe remarcar
que este hecho es muy peculiar: el tratamiento de otras simetrias, como pueden ser
las rotaciones en el espacio, se centran en &algebra canodnica pues corresponden a
transformaciones canoénicas. En cambio, cualquier intento de definir explicitamente
las transformaciones de Lorentz en teorias de campos requiere informaciéon dindmica.
El caracter geométrico de la relatividad se pierde en una formulacion Hamiltoniana
clasica y en consecuencia, también en el formalismo cuantico asociado a un espacio
de Hilbert. Esto no sucede en la formulaciéon de Feynman donde la forma de la matriz
S es natural con el ordenamiento temporal implicito. Sin embargo, trabajar en la
formulacion de Feynman significa abandonar el concepto de espacio de Hilbert por

completo.

2.3 Tiempo cuantico

Las consideraciones de las dos secciones previas nos dejan aparentemente sin mucha
opcion: o trabajamos con espacios de Hilbert, asociados a la formulacién candnica y
Hamiltoniana, pero donde la simetria de Lorentz (si presente) permanece implicita,
o empleamos las integrales de Feynman asociadas a sumas clasicas, abandonado a
los espacios de Hilbert. Sorprendentemente, a pesar de las objeciones historicas que
describimos previamente existe una manera muy natural de “cuantizar al tiempo”
que describimos en esta seccion. Gran parte del contenido de esta tesis fue dedicado a
entender donde “encaja” el tratamiento cuantico del tiempo en la dicotomia anterior.

Cual es la falla del argumento de Pauli? En el intento anterior propusimos definir
un operador tiempo en el espacio de Hilbert de una particula unidimensional con
base |z). Esto es para el operador tiempo ¢ buscabamos ¢t = t(x, p). Por otro lado,

una intuiciéon relativista genuina nos sugiere algo completamente distinto: tratar
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a t como una dimensiéon en si misma clasicamente, y por lo tanto considerar un
espacio de Hilbert de la forma |t,x). De hecho, esto es lo que hacemos si pasamos
de una particula unidimensional a una bidimensional en cuyo caso la generalizacion

es |z) — |x,y).

Formalismo de Page y Wootters. La propuesta anterior nos plantea inmediata-
mente el problema de recuperar la dindmica de alguna manera que no puede coincidir
con la evolucion unitaria tradicional. Notablemente, existe una solucién particular-
mente elegante a este problema dada por el mecanismo de Page y Wootters (PW)
[14] 3: guiados por el problema del tiempo en gravedad cudntica, que se origina por-
que al cuantizar canénicamente la gravedad se obtiene una “ecuacion de Schrodinger
sin tiempo”, los autores se proponen recuperar la evoluciéon cuantica de un sistema
en un “universo” globalmente estacionario. Los autores argumentan que la evolucion
temporal que observamos es en realidad una dependencia con grados de libertad de
un ‘“reloj interno” [14]. Luego muestran que dado un sistema global en un estado
estacionario, formado por dos susbsistemas no interactuantes, el reloj y el resto, la
evolucion del segundo subsistema esté determinada por las correlaciones con el reloj,
es mas, esta evolucion “imita’” la que se obtiene a través de las ecuaciones de movi-
miento. Nos referimos a este conjunto de ideas como mecanismo de Page y Wootters
[14].

Describiremos aqui la esencia matematica del formalismo de Page y Wootters.
No haremos particular énfasis en su formulacién original ni en su interpretacion, que
no seran particularmente tutiles para nuestros propositos.

La construccién comienza considerando un sistema global bipartito con espacio
de Hilbert H = H7r ® Hs, donde Hs es el espacio de Hilbert del sistema original
que queremos describir. Asumimos que el espacio del “reloj” Hy estd generado por

los autoestados del operador T" que satisface las reglas de conmutaciéon candnica
T, Pr|=i. (2.16)

Cabe destacar que Pr # H, simplemente es el momento conjugado al tiempo y actta

en Hrp, i.e. Pr = Pr ® 1. Elegimos la base de autoestados del operador tiempo que

3 Antes que estos autores, Dirac ya habia propuesto promover al tiempo a una variable dinamica
en espacios de fase [42]. A su vez propuso un método de cuantizacion de dicho esquema que lleva
directamente al espacio de Hilbert empleado en el formalismo de PW. Sin embargo, Dirac no se

centra en el uso del espacio ampliado, menos adin en su interpretacién como “sistema-reloj”.
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cumple
Tty = t|t), (2.17)
de manera tal que satisfaga (t|t') = §(t — t'). En su version mas simple, que es la
que describimos aqui Ty Pr tienen como espectro a la recta real.
Se supone luego que el estado global reloj-sistema se encuentra en un estado

estatico puro (no normalizado) de la forma

rm:/ﬁwwm. (2.18)

El estado del sistema puede recuperarse proyectando en el estado del reloj, |i(t)) =

(t|¥). Esta operacion tiene que entenderse en el siguiente sentido?:
(W) (P @)] = Tre [T W) (W], T, = [£)(t @ T. (2.19)

Si |1(t)) se encuentra normalizado entonces este es el estado condicional del sistema
luego de una medida local en el reloj con resultado .

Considerando ahora estados que satisfacen la ecuacion
J) =0, (2.20)
con
J=Prl+1®H, (2.21)

donde H es el Hamiltoniano del sistema, se recupera la evoluciéon unitaria y la

ecuacion de Schrédinger:
d
(tlT1) =0 =iz |y(t)) = H[Y(2)) - (2.22)

Esta ecuacion es simple de probar notando que ('| Pr|t) = —i46(t — t').

Vemos entonces que si bien el estado |¥) no tiene ninguna dependencia temporal,
el estado |¢(t)), obtenido condicionando sobre el sistema reloj, evoluciona de la
misma manera que en mecanica cuantica convencional. Identificamos entonces a
|1(t)) con el estado del sistema en la representacion de Schrodinger. La evolucion
del sistema es no trivial sii el estado global es entrelazado pues para un estado
estacionario del sistema U (¢, o) |1 (to)) = e *ElE=0)|a(ty)),

|m=/ﬁwwm:/wmmmmwm>
- (/ dte—iE“—to)m) ® |(to)) - (2.23)

4Consideremos una base |k) en Hs de modo que |¥) = >tk Yult k) (por simplicidad en

notacion discreta). El vector (t|¥) es el ket [1)(t)) = >, ¢u|k) de Hs que representa el mismo
estado que ps(t) = |¢(1)) (P (1)]-
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Remarquemos algunos hechos. La objecion de Pauli [38] sobre la posibilidad de
definir un operador temporal en mecéanica cuantica fue evitada: el operador Pr actia
en espacio de Hilbert diferente, y en consecuencia conmuta con el Hamiltoniano del
sistema [29]. La definicién del operador T ya no se ve afectada por la dindmica.
Es mas, si hay definido un generador de traslaciones espaciales Pg, conmuta con
el generador de las traslaciones temporales Pr, como debe ser dado que espacio y
tiempo son grados de libertad independientes [29], de acuerdo a nuestra intuicion
relativista.

Notemos ahora que el estado global cumple
(VW) :/dt:T—>oo, (2.24)

con 1" la longitud del tiempo de la historia del sistema. Si consideramos una “ventana”
de tiempo t € [-1/2,T/2], imponiendo condiciones periddicas y dividiendo al estado
por VT, el estado global esta normalizado. El precio a pagar es que no obtenemos
soluciones exactas de la ecuacion de universo anterior a no ser que el espectro de H
sea 2rm /T, con m entero. Esto en principio no es un problema grave (en el caso no
relativista) pues a medida que T crece se puede aproximar cualquier espectro con
precision arbitraria.

Consideremos ahora nuevamente el caso de la particula unidimensional. Los es-
tados |x) son base de Hgs, expandiendo en esta base a [1(t)) el estado global (ya

normalizado) se escribe

o) — % / dtdz (D[t x) = / dtdiz U (x, )|, ) | (2.25)

donde la funcion de onda ¥(x,t) = (x|¢(t)) v la funcién ¥(x,t) se relacionan de la

siguiente manera
V(x, 1)

=T

Notemos que la probabilidad dP(t,t + dt) de encontrar al reloj en un entorno dt

b(x,1) (2.26)

del autoestado t es igual a dt/T. Por otro lado la interpretacion usual de la funcion

de onda identifica |¢)(x, t)|* con la densidad de probabilidad de encontrar al sistema

en un entorno de x dado el tiempo ¢, esto es dP ((x,x + dx)|t) = |(x,t)[*d*z. Por

definiciéon de probabilidad condicional

dP((x,x + dx) A (t,t + dt))
dP(t,t+ dt)

dP ((x,x + dx)|t) = (2.27)

Comparando con (2.26), concluimos que |¥(x,t)|? es la densidad de probabilidad

conjunta de encontrar al sistema en un entorno de x y al reloj en un entorno de ¢,
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dicho de otra manera |¥(x,t)|* es la densidad de probabilidad del sistema de estar

en un entorno (x,t) en el espacio-tiempo. Como consecuencia de la homogeneidad
en el tiempo esta densidad es sencillamente proporcional a |¢(x,t)|?. Esto significa
que ambas densidades contienen la misma informacion y dada la arbitrariedad de T
en estas consideraciones podemos simplemente trabajar con T" — oc.

El caso de un Hamiltoniano dependiente del tiempo es una extension directa
del esquema previo: se remplaza el operador J por J = Pr ® 1 + H(T'), donde
el operador H(T) se obtuvo promoviendo el parametro ¢ del Hamiltoniano H(t) a
operador T'. Imponiendo el vpinculo (2.20), con el nuevo operador J, se obtiene que
|1(t)) satisface la ecuacion de Schrodinger con Hamiltoniano dependiente del tiempo
[29].

Mencionemos finalmente que es posible construir una version de tiempo discreto
del formalismo, como ha sido explorado en [43] y ampliado en [44], [45]. En el
anexo [X presentamos dicho formalismo y discutimos en mayor detalle el concepto

de entrelazamiento sistema-tiempo, en relaciéon a aplicaciones computacionales del

formalismo.

Aspectos en comun y diferencias con el formalismo linea de mundo. Cabe
agregar una pequena discusion sobre otro esquema que permite hacer MC tratando
espacio y tiempo en pie de igualdad. Se trata de formalismos inspirados en teorias
de cuerdas [46] que permiten hablar de teorias relativistas que expresan cantidades
en QFT en un formalismo de primera cuantizacion. Esto es, no se piensa en las par-
ticulas involucradas como excitaciones de los campos, sino més bien como entidades
“ficticias” pero tutiles para representar cantidades mateméaticas. Si bien encontrare-
mos muy poco este formalismo a lo largo de la tesis (con una notable excepcion
el capitulo VI), se incluye por completitud en la discusion del capitulo. A su vez,
es interesante comparar esta propuesta con el formalismo de PW aplicado a una
particula.
Consideremos el ejemplo mas simple [10, 47]. Definamos la accion

S = /dt\/§ [gtt%%% — %mQ (2.28)
donde pensamos en g como una métrica unidimensional. Esta acciéon es invarian-
te frente a difeomorfismos generales, esto es, podemos parametrizar la variedad
unidimensional (que serd un segmento o un circulo) de cualquier manera sin cam-
biar su forma. En este sentido nos provee un modelo de covarianza general. Puede

pensarse también en esta accién como una version de segundo orden de la accion
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S"=m [ds =m [ drv/—i?, que puede recuperarse de S variando sobre la métrica.
Esté claro que S describe una particula puntual relativista propagéndose en el espa-
cio tiempo, esto es definiendo una linea de mundo. A su vez podemos ver a S como
la accion de los campos X*#(7) que viven en una dimensiéon. Mencionemos también
que las teorias de cuerdas pueden entenderse como una generalizaciéon de S donde
ahora la variedad es bidimensional y asociada a una hoja de mundo, esto es a una
cuerda propagandose [10].

La cuantizacion tradicional de este tipo de acciones tiene bastante en comun con
el formalismo de PW pero también ciertas diferencias importantes. Cabe a su vez
destacar que el formalismo linea de mundo tiene muchas aplicaciones, principalmen-
te en el contexto de teorias de gauge [46]. Aqui solo comentaremos aspectos muy
elementales pero pertinentes a la tesis.

Consideremos primero el esquema mas comun [47], y més natural desde las inte-

DXDg ,iS
Vol

donde dividimos por el volumen de gauge asociado a los difeomorfismos y fijaremos

grales de Feynman. Esqueméticamente, un propagador se escribira como

los valores de X* en los extremos. Podemos calcular esta integral eligiendo ¢* = 1
y notando que el tnico invariante frente a difeomorfismos es la longitud de la linea

de mundo que llamaremos 7. Entonces tenemos

Gla,y) = Difo?g is / dr / N _ / 0r G,y 1) (2.29)

0

donde G(x,y,7) o< [dPp iP*+m*)7e=in(@=y) De modo que G(x,y) es proporcional al
propagador de Feynman de una teoria libre de un campo escalar en D dimensiones,
con D la cantidad de campos X*. Notemos que en esta construccion hay un operador
tiempo X° de modo que podemos escribir por ejemplo en un espacio de Hilbert
G(z,y,7) = (yle™ P T™)|z) para X¥|x) = a*|z).

Por otro lado, en un acercamiento a lo “cuantizacién canoénica de la gravedad”
[48, 49|, y viendo al problema desde los espacios de Hilbert, se enfatiza otro aspecto
de esta construccion. La idea es reconocer que el Hamiltoniano Hy asociado a S se
anula idénticamente (en un sentido débil siguiendo Dirac [42]) como consecuencia
de nuestra libertad de gauge. Esto constituye entonces un “constraint” (que es del
primer tipo) a imponer a nivel cuantico. Uno pide entonces H,|¥) = 0 para esta-
dos fisicos. Hasta aqui el esquema parece idéntico al de PW. Sin embargo, en vez
de considerar a esta condicion como la que define un subespacio, se la identifica
como la definiciéon de un nuevo espacio de Hilbert, distinto al espacio “cinematico”

donde actiia H,. Uno luego induce un producto interno desde el espacio cinemético,
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esencialmente imponiendo (¢)'|¢)) := (®|¥) con II|®) = |¥’) para II el proyector en
J =0y |v),|Y) estados del espacio fisico. De esta manera se evita tener estados
de norma infinita [48]. El precio a pagar es que solo los operadores que preservan el
contraint inducen observables en el espacio de Hilbert fisico. Entonces, en particular
el operador tiempo, que no cumple esta condicién, ha de ser abandonado.

Las similitudes entre estos esquemas y el formalismo de PW no son casuales. Si
uno emplea una accion no relativista clasica (que puede no ser la de una particula,
pero nos restringimos a este caso para comparar) y decide “promover” ¢ a una va-
riable dindmica, esto puede hacerse parametrizando ¢t = ¢(7) y empleando a 7 como
parametro de evolucion. Esta parametrizacion es arbitraria y la accion resultante
contiene varias caracteristicas de la simetria frente a difeomorfismos que caracteriza
S. La cuantizacion de ese esquema es muy similar a lo discutido en los parrafos
anteriores [49] (veasé también el capitulo V). Por otro lado, PW proponen algo muy
distinto. Ademas de cuantizar a esta teoria con un ¢ dinamico, éste se interpreta co-
mo un grado de libertad fisico de un sistema auxiliar, el reloj si se quiere. Al tomar
este punto de vista, el espacio de Hilbert cinématico deja de ser auxiliar. En cambio
es un espacio de Hilbert “real” asociado al sistema-+reloj. De modo que el vpinculo
J|¥) = 0 define un verdadero subespacio. El ingrediente extra, para reobtener la
fisica convencional es la idea de condicionar sobre estados del reloj. Este ingrediente

solo esta presente en el esquema de PW.
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Tiempo cuantico y la teoria de Dirac

“A great deal more was hidden in the Dirac equation than the author

had expected when he wrote it down in 1928.”

Weisskopf on Dirac

La descripcion del capitulo anterior de una particula trata al tiempo y al espacio
de manera simétrica a nivel cuéntico. En esta formulacién espacio y tiempo estan
asociados a operadores. Sin embargo, el mecanismo de Page y Wootters, en la forma
que describimos, y que se encontraba en la literatura, solo permitia reobtener la
ecuacion de Schrodinger de la particula. Como es bien sabido, esta ecuacién no es
compatible con la relatividad pues involucra, e.g., una derivada primera en tiempo y
una derivada segunda en espacio. Pero entonces, jen qué sentido tratamos a espacio

y tiempo de manera simétrica?

El tema amerita un poco de discusion. Supongamos a modo de ejemplo que tene-
mos una particula bidimensional. En el formalismo de PW disponemos entonces de
una base del espacio de Hilbert global de la forma |t, z, y) = [t)®|z, y) = |[t)®|2)®]|y)
con |z,y) base de Hg. Consideremos ahora la definicion de rotaciones en Hg. En
este caso definimos primero el generador de rotaciones en el plano L., = p, —yp, ¥
obtenemos una representacion unitaria de las rotaciones por exponenciacion. Note-
mos que la definicién de rotaciones esté dada independientemente del Hamiltoniano
H del sistema, y de si el sistema tiene simetria de rotacion. Una vez definido L,
uno puede preguntarse si [L,,, H] = 0, en caso afirmativo decimos que hay simetria
frente a rotaciones, pero incluso si no hay simetria la representaciéon unitaria de la

transformacion esta dada por el espacio de Hilbert.

Lo mismo sucede con el formalismo de PW: el tratamiento simétrico entre es-
pacio y tiempo nos permite definir por ejemplo L;, := Tp, + xPr. Notablemente,

independizamos la definicion de una transformaciéon de Lorentz de la dinamica, en

27



Capitulo III. Tiempo cuéntico y la teoria de Dirac

analogia a lo que sucede con las rotaciones. Podemos ahora preguntarnos ;cuando
se preserva el subespacio fisico frente a la accién de un boost? Es facil de ver que
la condicion es equivalente a preguntarnos si [Ly, J]| = 0 con J el operador de
universo definido en 2.21. Para una particula sin estructura (espin por ejemplo) uno
puede convencerse de que esta condicién no puede cumplirse de manera elegante *.
Esta es la forma rigurosa de afirmar que el formalismo de PW en su forma original
es no relativista.

Pero ;existe algin J que nos permita satisfacer la condicién anterior? Afortuna-
damente, la ecuacién de Dirac puede escribirse como una ecuaciéon de Schrédinger.
Esto sugiere aplicar el mecanismo de PW a una particula de Dirac, pues intuitiva-
mente el J asociado deberia satisfacer la condiciéon de invarianza. Con este argu-
mento nos propusimos estudiar la generalizacién del formalismo para reinterpretar
la ecuacion de Dirac en este marco. El resultado, descripto en este capitulo y publi-
cado en [1], muestra que efectivamente combinando los formalismos de PW y Dirac
se obtiene una formulacién explicitamente relativista de una particula en un espacio

de Hilbert 2.

!Talvez para particulas libres y permitiendo tomar raices cuadradas de operadores algo pueda
hacerse. De todas formas estas ideas claramente sufren de problemas y no se pueden generalizar a

por ejemplo la presencia de campos externos
2El lector podria verse sorprendido por esta afirmacién, después de todo la ecuaciéon de Dirac

es famosa por su éxito al combinar relatividad y cuéntica (ignorando el problema de las soluciones
de “energfa negativa”). Sin embargo, recordemos que la normalizacion de la funcion de onda de
Dirac se impone en hiper-superficies. Esto significa, que a pesar de la apariencia relativista de su
ecuacion, el espacio de Hilbert subyacente en su formulacion no es covariante (léanse los detalles

en las siguientes secciones).
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3.1 Particula de Dirac libre

Con la intencion de construir una teoria para el electron (positron) fijamos Hg =
L*(R?) @ C* de acuerdo a [50]. Una eleccion adecuada del producto interno en el
espacio completo H = L*(R*) @ C* garantizara la simetria de Lorentz. Un estado

general de universo puede ser escrito como

=3 [ vl (3.1)

donde |p, o) = |po)r|p, 0)s son los autoestados impropios de los operadores P, (para
it = 0 el operador actta en el espacio del reloj, para © = 1,2,3 en el espacio del
sistema) y, digamos,de 012 y Yo (aqui 0y = [y, 7],con go,w = ’Q—ieu,,pEp el operador
de espin para p,v = 1,2,3). Los estados |p), |o) cumplen (p'|p) = 6D (p — p'),
(0]0") = 0,4 Definimos el estado del sistema adjunto (p, o] := (p, & |7es-

Debido a que d*p es una medida invariante de Lorentz podemos introducir en

este espacio operadores de boost unitarios U(A) respecto del producto
(1) = [ iy 0, a(r). (32)

con W(p) = Wi(p)y":
U(A)|p, o) = Soe(A)|Ap, §), (3.3)

donde A# = ey S (A) = e~ 17" 3 L unitariedad surge a partir de la propiedad
S90S = ~0 para transformaciones de Lorentz que preservan la direccién del tiempo.

El estado transformado es entonces

Ul = [ dpm.o). 3:4)

U, (p) = (p. o|U(M)|¥) = SaoPa(A™'p). (3.5)

Podemos definir también los estados |z,0) = |2°)|x,0) = ﬁfd‘lpeipﬂp, o) con

pr = p,at, los cuales, empleando la Ec. (3.3), transforman como U(A)|z,0) =
See(A)|Az, €). Silos |z, 0) son autoestados de operadores X*, entonces las reglas de

conmutacion canonicas pueden resumirse como [X#, P,| = id#,.

3El espectro continuo no acotado del reloj asegura que el estado (3.3) estd bien definido. La
representacion activa del boost preserva la particion. Esto evidencia que todo observador es capaz

de identificar el reloj.
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El paso siguiente es considerar las Ecs. (2.20)-(2.21) con J contruido con el

Hamiltoniano de Dirac libre Hp = a - p + m,

J=F®1+1x Hp. (3.6)
Entonces la ecuacion
TIW) =0, (3.7)
implica (fijando 2° = t),
d
(tT1P) =0 =i [¢(t) = (a-p+ Sm)[y(t)) (3.8)

con [(t)) = (t|¥) = \/LTF S [ @pe W, (p)|p, o). De manera equivalente, defi-
niendo J = —*P,, podemos reescribir la Ec. (3.7) (una ecuacioén de autovalores de

J con autovalor 0) como una ecuacién de autovalores para J con autovalor m:
TW) = 06 —# B W) = m| ). (3.9

Como consecuencia del teorema fundamental de Pauli [51], STH(A)y*S(A) = Avy” y
por lo tanto U~ (A)y*P,U(A) = v*P,. Consecuentemente, la ecuacion (3.9) define

un subespacio invariante, i.e.,
(VWP +m)|¥) =0= (""P,+m)U(A)|¥) =0. (3.10)

Podemos también reescribir la Ec. (3.9) en términos de ¥, (z) := (z,0|V¥) recupe-
rando la forma covariante de la ecuacion de Dirac [52] (notar que (z,0|P,|¥) =

_iau\pa(@)
(z,0|("" Py +m)|¥) = 0 = i7,.0,V¢(r) = mV, (). (3.11)

Los estados que satisfacen (3.9) pueden ser escritos en la forma (en lo que sigue

las sumas sobre o, s y r estan implicitas)
W) = [ @ 36, — ) H 0 0, )
® [ dp 8, ~ mH (0 b (0. 0) (3.12)
donde, fijando E, = \/Im
ul = _ <(Ep + m)xs> (3.13a)

p.ox’
1 oy
ap—— (3.13b)
Ep +m \ (Ep +m)X" "

30



Capitulo III. Tiempo cuéntico y la teoria de Dirac

con s,r = 0,1. La presencia del cuarto ket implica ortogonalidad entre los subes-
pacios de particula y antiparticula. En el subespacio de soluciones de la ecuacion
(3.9) el producto interno pseudoeuclideo anterior se vuelve isomorfo a dos productos

euclideos como consecuencia de las relaciones [53]:

uy = 2mo"* (3.14a)

= —2mg" (3.14D)

r
p

1

b
UpUp
Dado que la superposicion de estados de particula y antiparticula no ocurren en
la naturaleza [54], consideraremos solo uno de los dos términos en (3.12). En lo que
sigue, trabajamos en el subespacio de particula sin perdida de generalidad.
El producto entre estados de diferentes masas pero misma distribucién de espin-

momento da como resultado (ver Apéndice A y B)

. d®p o
<\Ilm,|\11m> - W&(Epﬂn — Ep,m/)up,mup’m,

xai(p,m)a,(p,m’) (3.15)
= gm — ) [ %wp)u? (3.16)

La normalizacién® (U] |¥,,) = d(m — m/) implica entonces [ & pHa( =1y
en consecuencia la norma de Dirac (ver abajo). Un estado de electron-reloj puede

escribirse como (omitiendo el subindice m)

]‘ 4
) = \/—Q_W/d T U (2)|z, o), (3.17)

0ol) = o [ ol o (p)e o 315

T (2m)32 ) 2B, 7 P)a:(p ‘ '
A partir de la invarianza de d*z sigue la ley de transformacion w’ (7) = Saotha(A™1T).
Es més, un simple calculo muestra que [ d3z¢f(z,t)y = [ & Lp >[la(p 0?2 =1,

recuperando la normal de Dirac usual [52].
El estado del electron puede entonces recuperarse por probabilidad condicional

Cco1mo

4Mateméaticamente podemos pensar que estamos trabajando con un “rigged Hilbert space” y las
autofunciones del operador de masa son funciones generalizadas Su normalizacién permite expandir
estados generales [U) € Ly(R*)®C* como |¥) = [ dm ¢(m)|V,,), donde (¥|¥) = [ dm |p(m)|* = 1.
Vemos que los estados normalizados en tiempo, por ejemplo estados con historia finita, correspon-
den a estados con alguna dispersion en masa. Podemos pensar en los estados |¥,,,) como la idealiza-

cion correspondiente a una particula con una historia infinita y relacion de dispersion infinitamente
bien definida.
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(V)

t)e = ————
O = e

(3.19)

con IT)° = [t)(t| @1  y (U|II°|V) = 5= [ d®z ' (x, t)¢(x,t) = 5-. Laley de transfor-
macion de la funcion de onda implica la invarianza de esta cantidad (ver Apéndice
A).

La correspondencia con la teoria de Dirac estd completa si notamos que el valor
de expectacion de un observable M., en un dado tiempo ¢, se obtiene como sigue:
(W[ M| ¥)

<Me> <t> - <\II|HZO |\I’>

= e<¢(t>|Me|¢(t)>ev (320)

donde M :=1 ® M..
Como consideracion final escribimos la relacion general entre el producto inva-
riante en el espacio 4-dimensional con el producto de Dirac en el espacio ordinario

3-dimensional a masa m fija:

<(I)m’|\1}m> =d0(m—m") (¢, ¢)m (3.21)

donde definimos (@, ¢)n, := [ d®z ¢l (x, 1) (x,1), ¥
<CI)m’|\I/m> = % fd4x Q_Sm’(x)wm(x)

3.2 Reloj bidimensional y tiempo propio

Hemos visto que es posible ampliar el espacio de Hilbert de la particula incluyendo
un reloj, preservando la simetria de Lorentz gracias a un producto invariante definido
en el espacio ampliado. Es mas, para estados fisicos que satisfacen una ecuacion sin
tiempo, la nocion de ortogonalidad que surge de este producto Ec. (3.16), implica
la norma usual de la teorfa de Dirac. En esta seccién mostramos que el producto
invariante que introdujimos motivados por argumentos de simetria surge natural-
mente cuando se introduce un segundo reloj. El objetivo es discutir la identificacion
usual del tiempo en el formalismo PW con el tiempo propio [55]. Mientras esta
identificacion es satisfactoria en el caso no relativista, la descripcion de la evolucion
temporal a través de la ecuacion de Dirac implica necesariamente la acciéon no local
de las transformaciones de Lorentz. Esto conlleva a interpretar la variable del reloj
como tiempo en un dado sistema de referencia. Uno puede preguntarse si no habra
un camino diferente a seguir, en particular si no es posible emplear una ecuacion
analoga a (2.20) que luego de condicionar provea la evolucion temporal del estado

del sistema parametrizada por un parametro invariante 7. Obtener dicha ecuacion
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significaria promover el rol de ¢t a una variable dinamica, pero esto es exactamente
lo que el formalismo de PW ya hace. No es entonces sorprendente que introduciendo
un “tiempo propio” de esta manera, siga una extension del formalismo de la seccion

previa. Aqui desarrollamos dicha extension.

3.2.1 Reloj bidimensional

Consideremos un reloj bidimensional con espacio de Hilbert He = L?(R?) y base
{|7) ® |t)}, de manera que (7'|7) = §(7' —7) y (¢'|t) = 6(t — '), y el mismo espacio
de Hilbert Hg para el sistema que anteriormente. Un estado del sistema completo

puede ser escrito como
B = / dr 1) T (7)) = / din. g(m)|m) [ ¥(m)) (3.22)

donde |7) = —= [dme™"™"|m) y |¥(1)) = #fdmwm)eimﬂqf(m)) € Hr ® Hs,
el espacio de Hilbert de la seccién anterior. Asumiremos que el Hamiltoniano del

universo toma la forma
J=P1+1®+"P,. (3.23)

Notemos que J tiene la misma forma no-interactuante que antes en la particion
tiempo propio-resto, pero es no separable en la particion reloj-resto.

Ahora, la ecuacion

J|P) =0 (3.24)
implica (7|J|®) = 0, i.e.,
i0-|W(7)) = ¥ Pu[¥(7)) (3.25)
y, en la base conjugada,
(v Py +m)[¥(m)) = 0. (3.26)

Esta es la ecuacion de universo de la secciéon previa, la cual determina un subespacio
invariante de of Hr ® Hs respecto a transformaciones de Lorentz propias. Esto signi-
fica que en el espacio completo U(A) := 1,®U(A) deja la forma de la ecuacion (3.25)
invariante. En general, transformaciones que dejan invariante la forma de (3.25) pre-
servan también su cuadrado y en consecuencia una métrica quintodimensional. Esto
define un espacio de Snyder [56].

Expandiendo los estados |¥(7)) en la base |z,0) de Hr ® Hg obtenemos

Yo U (x, ) =10,V (x, T) (3.27a)
(2, 7)yp, = i0, Y (z,T) (3.27b)
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con Y, (z,7) = (x,0|¥ (7)) vy ¥(x,7) := Ui(x,7)7°. De esta manera,
d -
O0uj"(2,7) = V(2 7)¥(z,7), (3.28)
T

donde j*(x,7) := U(z, 7)y*¥(x,7), lo cual implica que para funciones de onda bien
comportadas la cantidad [ d*z U(z,7)¥(z,7) = (¥(7)[¥(7)) se conserva, i.e., el
operador de evolucion U(7) = e~7"P«T preserva esta norma. Vemos entonces que el
producto invariante que hemos elegido en el espacio Hr ® Hg es aquel preservado
por la evoluciéon en 7. Mas atin si ahora expandimos en la base de masa y elegimos

la normalizacion (3.16) obtenemos
(B (7)[(r)) = /dmdm’¢*(m')¢(m)€”(m_m/)(‘I’(m')|‘1’(m)>
— [ amlo(m)P? (3.29)

Podemos entonces imponer [ dm|¢(m)|* =1 e interpretar ¢(m) como una distribu-

ci6n en masa.

3.2.2 Sobre la interpretaciéon de 7

Una version escalar de la ecuacion (3.27) con Hamiltoniano p#p, apareci6 varias
veces en la literatura [57, 58|, y una version en segundo orden fue discutida en [59],
donde 7 se identificdé con el tiempo propio.. En el presente caso, la relaciéon clasica
(relativista) momento/velocidad de una particula libre con tiempo propio 7 vale

como un promedio calculado con el producto inducido:
d _
g —(xt) = /d4x\lf(a:,7')i [V Dy, 2] U (x, T)
-
= /d4x U(z, 7))y (2, T)

//”mf m)la(p, >W(%)—<%>= (3:30)

donde hemos usado la identidad de Gordon [51]. Sin embargo, para una particula con

masa definida, la evolucion en 7 es trivial. En consecuencia, la identificacién de 7 con
el tiempo propio no es adecuada. Podemos en cambio pensar que 7 parametriza las
fases relativas de distintas historias de la particula cuya informacién estia contenida
en los estados |W(m)) a través del valor de la masa y la distribucion espin-momento.
En una hipotética superposicion de diferentes masas, i. e. , diferentes particulas, seria
posible ver interferencia entre historias separadas y entonces evoluciéon no trivial en

el pardmetro 7.
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3.3 Particula de Dirac en un campo externo

La descripcion adecuada de interacciones requiere una teoria de campos. Aqui sim-
plemente trabajamos con la teoria original de Dirac de una particula en un campo

clasico externo. Introducimos la interaccion reemplazando J = —+* P, por
Ja=—"(P,+eA, (X)), (3.31)
con A,(X)|z) = A,(z)|z). Entonces un estado |¥) = [ d*z¥,(x)|z, o) satisface
Ja|U) = m|¥), (3.32)
sii la funcion de onda ¥(z)cumple
((=i0, + eA,) —m)¥(z) =0. (3.33)

Ahora nos centramos en el caso de un A* independiente del tiempo en un da-
do sistema de referencia. Primero definimos las autofunciones (normalizadas) de
H(m)=a-(p+eA)+ fm+ eA,,

H(m)p(x,m) = Ex(m)en(x,m), (3.34)

donde el subindice [ indica autoestados con misma energia. Entonces toda solucién

de (3.33) es de la forma ¥ (z) = W D ok Chi€ —iE Mo (x,m), lo cual lleva a

W) = > x| Ep(m))|k(m)) (3.35)

k

donde aulk(m) = Ty s | Pyl o), con [e? = 2 eu? y
(K'(m)|k(m)) = Okps, mientras |Ey(m)) = m [ dte Bty
Ahora demostraremos que si excluimos potenciales que dependen de m, e.g., la

gravedad, la condicion (U,,|¥,,) = §(m — m') implica la normalizacion usual
27?/ APz Ul (x, 1) Z|ck\2 (3.36)
Demostracion

Empleando (3.35) encontramos,

(| W) = D coerd(Er(m) — Ey (m')) (K (m/) | k(m)) (3.37)

kK
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Vamos a demostrar la relacion de ortogonalidad especial

0(Er(m) — Ep (m")) (K (m")[k(m)) = 0(m —m")opw , (3.38)

que implica (W[ ¥,,) = d(m —m’) >, |ex]?, donde

— Crp € _
FElk(m)) = 32 B B m)putem). (339)
1 CwCh
Analizamos el lado derecho de la ecuacion (3.39) separadamente para k = k' y k # k'
Primero notemos que para k = k' en (3.38), (Ex(m) — Ex(m)) = o(m —
m')/|dE,(m)/dm|. Al derivar la Ec. (3.34) respecto a m se obtiene

ngkl(X, m) _ dEk(m)
dm dm

(H(m) ~ By(m) -6 utx.m).
Al multiplicar a izquierda por @Ll, (x,m) e integrar en todo el espacio obtenemos el
resultado importante de que estas autofunciones satisfacen la condicién de ortogo-

nalidad adicional

dm

donde empleamos la hermiticidad de H(m) y la ortonormalidad de sus autoestados

dsx@kl’ (X7 m)@kl (X7 m) = o (3.40)

respecto al producto usual. La primer parte de la demostracion esta completa si
asumimos el resultado estandar dEy(m)/dm > 0 para Ex(m) > 0.
El término con k # k' en (3.38) contribuye solo cuando Ejy/(m’) = Ex(m). Dado

que

H(m) pr(x,m) = Ep(m)pp(x,m)
H(m’) (X, m’) = Ly (m/)@w (x, m/) )

multiplicando a izquierda la primera (segunda) ecuacion por ¢, (m') (¢, (m)), in-
tegrando en todo el espacio y restando los resultados (conjugando uno de ellos),

encontramos
(m —m/) /dgx G (x,m ) (x,m) =
(Bum) — Bun')] [ @ ol (x, ). m). (3.41)

Entonces, si E,(m) = Ep(m') la primer integral se anula para m # m’, implicando
que estas autofunciones satisfacen en este caso una relacion de ortogonalidad exten-
dida, lo cual conlleva al valor nulo de (3.39) para k # k’. Notemos, sin embargo,

que tal relacion de ortogonalidad no vale en general para Ey(m) # Ej(m'). Los
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resultados previos implican entonces la Ec. (3.38). [

Quedd entonces demostrado que siempre que exista un sistema de referencia
en el cual A, sea independiente de ¢, el producto invariante implica la norma de
Dirac. También mencionamos que para A* independiente de ¢ (y 7) la extension del

tratamiento de la seccion 3.2 es directa.

3.4 Densidad invariante

Examinamos aqui algunas propiedades bésicas de la “densidad espacio-tiempo” W (x)¥(x)
que corresponde al producto invariante (¥|¥) que introdujimos. Tal densidad no es
definida positiva ni en el subespacio de particula ni en el de antiparticula. Sin embar-
go, en el caso 141 dimensional para la distribucion a(p) = e “F» y masa m # 0, es
positiva en todo el espacio-tiempo. M4s atin en el limite ¢ — 0 se anula en la region
tipo espacio del cono de luz centrado en (x,t) = (0,0). Notemos también que esta
distribucién corresponde al reemplazo formal ¢t — t—ie en el caso de una distribucion
de momento llana. Mas atn, para x — z, puede considerarse como una distribucién
3d x §(p:)d(py)e PP, en cuyo caso ¥(x,t,¢€) es, para e — 01 y ¢ — 0 un autoestado
de la tercer componente del operador posicién de Pryce q = x+ ﬁ(p x X+ imfPa)
[60].

Los espinores en el caso 1+1 dimensional tienen dos componentes (0 = 0,1) y

espin fijo. La correspondiente funcion de onda (no normalizada) es (Ec. (3.12))

oz, t,€) = _e—z(t—ze)Ep—Hp:v— p ’ 3.42
vt = [ op Vham\ o ) U

y satisface la ecuacion unidimensional i0;¢)(x,t) = —io10,0(x, t)+mosy(x,t). Ahora

o3 remplaza ~° cuando calculamos ¥ (z, t). Entonces, U (x, t)¥(x,t) = 5=[[to(, t,€)[?
|¢1(l‘, t? 6)|2]'
Integrando explicitamente en (3.42) [61] puede probarse explicitamente (ver Apén-

dice 3.3) que tal diferencia es positivaV x,t sie > 0. en el limite e — 0T, obtenemos,

para ¥ (z, )y (z,t) y i (z, ) (z, 1),

B s 2 <t2
w(ar,t)w(fv,t)—{ et (3.43)
0 x>t
w|t| 22 < 2
Oz, t)(z,t) = { ¥ I 3.44
(z, )Y (2, 1) 2l omyEE 2 g2 (3.44)
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De donde, (3.43) es positiva en el sector tipo tiempo, y se anula en la region tipo

espacio. En cambio, (3.44) se mantiene positiva en esta ultima [50]. Es también facil
ver que 11_{% (ll_r%w(iﬂ,t, e)(z,t, e)) x ().

100
80
60
40
20

Figura III.1: Curvas de nivel de la densidad invariante (3.43) (panel superior) y la densidad de
Dirac (3.44) (panel inferior), para m = mc/h = 1. La primera se anula en la region tipo espacio

(aqui ¢ y t = ct estan en unidades de i/mc).

En [57] la densidad tipo Schrodinger de la version escalar de la Ec. (3.27)
se interpreta como densidad de probabilidad espacio-tiempo. En el presente caso
U(z, 7)V(z,7) o [dmdm'e¢*(m')p(m)e™ ™) (x,t)1hn(2,t) es la cantidad co-

rrespondiente. En el caso 1+1 dimensional ya discutido, y en el limite e — 0F

38



Capitulo III. Tiempo cuéntico y la teoria de Dirac

encontramos
™ —i(m—m/)Vt2—a2 2 2
_ e Tt <t
U (@, ) (2, 1) = { O”LIQ Ao (3.45)

En consecuencia, V(z,t,7)¥(x,t,7) se anula fuera del cono de luz para toda distri-
bucién de masa ¢(m). En cambio en el interior del cono de luz ¥ (z,t,7)¥(x,t,7) o
\/152;_7@(7'— V12 — 22)|?, donde ®(7) indica la transformada de Fourier de la funcion
¢(m). Vemos que la region positiva de la densidad, que corresponde a la parte inter-
na del cono de luz, se mantiene positiva al evolucionar en 7, mientras que la region
externa se mantiene nula. Mas atin, en el caso general € > 0, ¥(z,t,7)¥(z,t,7) > 0

para toda distribucién de masa, como se muestra en el Apéndice 3.3.

3.5 Conclusiones

Vimos que el mecanismo de Page y Wootters es particularmente adecuado para
proveer de un espacio de Hilbert covariante a la ecuaciéon de Dirac. Por un lado,
vemos que la definicion de las transformaciones de Lorentz es puramente cinematica
y puede elegirse de manera tal que la funciéon de onda, entendida ahora como una
densidad de probabilidad en el espacio tiempo, transforme como en la formulacion
de Dirac. Frente al producto invariante en 4-dimensiones las transformaciones de
Lorentz son unitarias. Al imponer la ecuacién de universo de PW correspondiente
al Hamiltoniano de Dirac, queda claro que el subespacio fisico es invariante frente a
las transformaciones de Lorentz.

Notablemente, la ecuacion de universo puede entenderse como una ecuaciéon de
autovalores de masa. En este sentido, introducir un operador tiempo nos lleva a la
definicién de un operador de masa. Atn mas, la condiciéon de ortonormalidad entre
autovectores de masa distinta, conecta la norma en 4-dimensiones con la norma usual
de Dirac en hipersuperficies de 3-dimensiones. Esta conexién, que puede mostrarse
también para la ecuaciéon de Dirac en un campo externo, se basa en propiedades
de ortogonalidad especiales que se derivan de la ecuaciéon de Dirac misma. Este
resultado resuelve los problemas de normalizaciéon para tiempo infinito del caso no
relativista.

También se discutieron aspectos adicionales, como la derivaciéon de lo anterior
al considerar una dimensiéon extra, que puede nuevamente interpretarse desde el
mecanismo de PW, y algunas propiedades de la densidad de probabilidad en 4-

dimensiones.
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Apéndices

3.1 Norma de Dirac

De la conservacion de la carga y la ley de transformacion de la corriente 1y* ), se

sigue la invarianza de la norma de Dirac [62]:

/dgm/ﬁ(x,t)@b(x, t) = /d%@b”(x, ' (x,1), (3.46)

con ¢’ (x,t) = S(A)y(A~'z). Expandiendo la funcién de onda de una particula libre

en la base de momento, y utilizando la propiedad [53|
( ’)T — 559 E,,

encontramos
3,0t d’p 2
d’z' (%, 1)h(x,t) = lla(p)I|*,
2Lk,

con [|a(p)|[* := lao(p)[* + |as(p)I*

De la invarianza tanto de p.x|_pp como de la medida %2, la igualdad (A1)

2E g
puede reafirmarse como

d*p 5 d*p
—Z = [ ——a%(p)as(p)F*(p),
/QEpHa(p)ll /2EP2EAPGS (p)as(p)Fy °(p)

implicando la relacion
Fi/s(p) — ugTST(A)S(A)u; _ 688/2EAp 7

donde hemos definido F*(p) = u TST(A)S(A)us,.

3.2 Expansion de estados en variables continuas

Consideramos un conjunto completo continuo de estados {|p) } que abarca un espacio

H y satisface (p'|[p) = d(p — p), y un estado de la forma

= /¢(p) Ip)dp,

satisfaciendo (¥|¢) = [|¢(p)[*dp = 1. Si E(p) es una funcién monoétona de p,

podemos reescribir [¢) como

/ o(p d—EdE (3.47)
- [e®)ENE (3.49
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donde ®(F) E))/\/|dE/dp| y |E) = |p(E))/+/|dE/dp|, tal que
/|<I>(E)|2dE =1, (F'|E)=0(FE - F').

La extension a estados definidos en H®" es aparente: el cambio de n variables p;

a nuevas n variables independientes E;(p) se procede de la misma manera, con
|Ey...Ey) = |p1-..,pn)//|J] vy J el jacobiano O(FEy,..., E,)/0(p1,...,pn). Sin

embargo, note que estos estados pueden asociarse a diferentes particiones de H®": Si
Pi\pi) = pilpi), [Pi, P;] = 0, podemos escribir |py,...,p,) = |p1)...|pn) ¥y de manera
similar, |Ey, ..., E,) = |E1) ... |Ey), con Hi(p)|E;) = Ei(p)|Ei) v [H;, Hj] = 0.

Considerando ahora estados en H ® H de la forma

= / o(p, q)|pq)dpdq ,

obviamente tenemos (U, |Wy) = [ ¢1(p, ¢)¢2(p, ¢)dpdq. Y si ¢i(p, q) = g:(p, )0 (fi(p, ¢)—
¢;), obtenemos un solapamiento finito

(U1|W2) = [ 51(p,0)92(p, ) (f1(p. @) — c1)0(f2(p. q) — c2)dpdyq

= a1(p, 0)g2(p, ) /|71, (3.49)

—

donde J = 0(f1, f2)/0(p,q) y el resultado final se evalia en la interseccion de ambas
curvas (asumida aqui para existir y ser tinica; la extension al caso general es directa).

Por otro lado, si fi(p,q) = fa(p,q) = f(p,q), obtenemos,

(U1]W,) = /él(p, 0)92(ps )0(f(p. @) — c1)d(f(p, q) — c2)dpdq
= (e~ ) [ 9ip.0lpa)dv/1] (3.50)

donde la integral es a lo largo de la curva f(p,q) = ¢1, con J = 9(f,v)/(p,q) ¥y
v(p, q) cualquier funcion tal que (f,v) sean variables independientes. Por ejemplo

dv/|J| = dp/|f,| si v = p. La normalizacion adecuada de estos estados implicaria

entonces [ G:(p, q)gi(p, q)dv/|J| = 1.

Note que estos estados |¥;) pueden escribirse como
g(p p,q) = ¢)lpa)dpdg

9(p, a)lpg)dv/|J| (3.51)

I
\\\

9(p.@)lpa)dp/|fql , (3.52)
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con las dos ultimas integrales sobre la curva f(p, q) = ¢, que define la funcion ¢(p) a

usarse en la ultima integral. Ademas, también podemos reescribir la tltima integral
en las formas mas simétricas (usando |q(p)) = |p)/+/|dq/dp|, Ecs. (3.47—(3.48)),

V) :/g(p,Q)!p>lp>dp/ | fafp]
Z/g(p,q)IQ>IQ>dq/ | fafol- (3.53)

Estas expresiones representan descomposiciones de Schmidt continuas de |¥).

3.3 Densidad Invariante

Para probar que W(x,t, €)W (z,t,€) es positivo para e > 0, es suficiente mostrar que
F(x,t e) == |[to(x,t,€)/Pi(x,t,€)|> > 1. Al realizar la integracion en (3.42) [61]

encontramos

\/271'\/ 22 — (t —i€)2 +i(t — ie)e MV (tmi9?

2/x% — (t —i€)?

oz, t,€) = , (3.54)

. 2 (1_sc)2
Ymire MV (t—ie)

2¢/a? — (t — ie)2\/\/x2 — (t —i€)® +i(t — te)

Yy (x,t,€e) = : (3.55)

y por lo tanto,

Flato) =1+ 2v/f(z,t,€) (tsin (1) + ecos (%2)) + f(z,te) — (22 — & — %) |
) (3.56)
donde f(z,t,¢€) = \/(332 — €2 — 12> 4 da2e? y y(x,t, €) = arg(x2+e2—12+2iet). Note
que F(z,t,€) es independiente de m. Para e >0y ¢t >0, e >0, 0 <y < 7 mientras

que para t < 0, —7 < v < 0. En ambos casos tsin (%) > 0, cos (%) > 0. Enton-
ces el cociente en (3.56) es claramente positivo. Por otro lado, para e = 0, v = 0
y el cociente se convierte en (|2 — 2| — (2* — t?))/2?, implicando F(z,t,0) = 1
si x| > |t| y F(z,t,0) = 2t2/2® — 1 si |z| < |t|. De la Ec. (3.42) notamos,
al hacer la integral, que ¥g(z,t,e,m ) o(z,t,€,m) — Yi(x,t,e,m )y (z,t,e,m) =
Uizt e,m )y (z,t,e,m) (F(x,t,e) — 1), con F(x,t,€) definido en (3.56). Esto im-

plica
U(w,t,7)W(2,t,7) o | / dm ¢(m)e"™ i (z,t, ¢, m)|* (F(x,t,€) = 1) > 0
ya que F(x,t e) > 1.
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Tiempo cuantico y particulas escala-

res

En los capitulos anteriores describimos como el formalismo de Page y Wootters per-
mite recuperar la ecuacion de Schrodinger y nuestra extension a la ecuacion de Dirac.
En este capitulo, basado en la publicacion [2], aprovechamos estos conceptos atin mas
y desarrollamos el caso de las particulas escalares, obteniendo nuevas perspectivas
sobre el tema. Uno de los principales resultados es la definicion de un espacio de
Hilbert consistente para la ecuacion de Klein-Gordon [63, 64], tanto en el caso libre
como en presencia de un campo externo, donde el producto interno es el producto
canodnico en cuatro dimensiones. Es notable que esta construccion, y la posterior nor-
malizacion adecuada de estados de masa fija, que son autoestados de una ecuacion
tipo Wheeler-DeWitt [13], aseguren la norma tridimensional (3d) usual. Ademaés, en
el caso libre, el subespacio de masa definida se asigna a la representacion estandar
de Wigner [65], implicando directamente la medida invariante estandar 3d. Mientras
que los resultados correspondientes para el caso libre se obtuvieron previamente en
el contexto de la gravedad cuantica [48, 66-68], el espacio cuatridimensional (4d) se
consideré alli como un espacio de Hilbert auxiliar (cinemético) (del cual se inferia
el importante resultado de un producto 3d inducido para estados “fisicos”). Aqui lo
promovemos al estatus de un espacio fisico real. Esto permite elevar el tiempo de un
parametro a un operador, lo que a su vez requiere promover la masa, que en ambas
ecuaciones de Dirac y Klein-Gordon se asume como un parametro fijo, a un obser-
vable cuéntico. Este enfoque ofrece ventajas conceptuales sustanciales incluso si solo
se considera el subespacio (subespacio propio) de estados de masa definida, pero
ademés abre el camino a nuevas posibilidades [1]|, como estados cuanticos mas gene-
rales con fluctuaciones de masa y un espacio de Fock extendido basado en entidades

cuatridimensionales. Ademas, el presente tratamiento de las interacciones revela que
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tales estados generales ya estan implicitos al expresar las soluciones correspondientes
en términos de los estados libres, en analogia con las contribuciones fuera de capa de
masa en tratamientos perturbativos para sistemas de muchas particulas en interac-
cion. Estos resultados proporcionan una nueva perspectiva que podria ser adecuada
para tratar el problema del espacio de Hilbert del marco de Wheeler DeWitt de la
gravedad cuantica [13, 25, 69, 70].

La construccion béasica del espacio de Hilbert explicitamente covariante adecuado
para particulas escalares se presenta en la Sec. 4.1.1, donde se definen los estados
de eventos |r) como autoestados de los operadores hermiticos X*, con X° intro-
ducido de acuerdo con el formalismo de PW. Luego se muestra que el producto de
Klein-Gordon 3d emerge de la ortogonalidad 4d de los autoestados de masa. Esto
conduce a la Sec. 4.1.2 donde se establece la relacién con la representacion estandar
de particulas unicas del grupo de Poincaré [65], junto con la correspondencia uno
a uno entre los estados de historia de masa fija 4d y aquellos de la representacion
Wigner escalar usual. Dado que los estados de historia son mas generales, esta co-
rrespondencia solo se mantiene en un subespacio de masa particular, excluyendo asi
los estados |z). Sin embargo, se muestra en la Sec. 4.1.3 que los estados localizados
en el espacio-tiempo se pueden proyectar en el “subespacio fisico”, proporcionando
informacion fisica geométrica. Este resultado se emplea para obtener la amplitud de
propagacion libre de un campo escalar [40] dentro del presente formalismo. La accion
adecuada de operadores covariantes en subespacios fisicos se aclara atin mas en la
Sec. 4.1.4 al descomponer el espacio de Hilbert de acuerdo con sus diferentes sectores
de masa y energia. En particular, se discute la no acotacion de P, el generador de
las traslaciones temporales. La normalizacion en el tiempo se considera en la misma
seccion, donde se muestra explicitamente que un estado normalizable general en el
espacio de Hilbert covariante es una superposicion de los anteriores estados propios

impropios” de masa.

En la Sec. 4.2 se generaliza la ecuacion del universo para incluir interacciones
con un campo externo. La ecuaciéon de Klein-Gordon con un potencial se obtiene
al proyectar sobre |r) la ecuacién de valor propio asociada. Luego se demuestra
que la conexiéon correcta entre el producto extendido canénico y el producto de
Klein-Gordon se mantiene para cualquier campo externo independiente de la masa
y el tiempo (para una eleccion de calibre y marco de referencia dados). También
se comenta como la consideracion de estados sin masa definida ya esté implicita al

tratar con interacciones.
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Algunas de las nuevas perspectivas que se derivan del régimen relativista se
transfieren al caso no relativista en la Sec. 4.3. En particular, se deriva una propuesta
para la normalizacion de estados con historias infinitas en una discusion no relativista
autocontenida. También se discute brevemente el caso de un potencial dependiente
linealmente de la masa.

La construccion consistente de la representacion de particulas individuales tam-
bién permite una definicién consistente de un espacio de Fock donde el bloque de
construccion es la particula como una entidad cuatridimensional. En la Sec. 4.4 se
explora esta “segunda cuantizaciéon de historias”. La identificacion de la Sec. 4.1.2
se extiende al espacio de Fock estdndar de la teorfa de campo escalar a través de
la definicién de un subespacio adecuado y la generalizacién del operador del uni-
verso a un operador de un solo cuerpo. Finalmente, se discuten las conclusiones y

perspectivas en la Sec. 4.5.

4.1 Particula Escalar

4.1.1 Formalismo

Un estado historico general para una particula escalar puede escribirse como

v = [ vl (@)

donde [p) € H son los autoestados impropios de los cuatro operadores P,. Aqui
H = S(RY), L2(R?*), S*(R*) es el espacio de Hilbert equipado construido a partir de

L*(R*), y S(R*) es el espacio de Schwartz. Los operadores de impulso se definen por

U(A)lp) = [Ap), (4.2)
con AWy =e?Vy Wy = —W,, un tensor antisimétrico. El estado transformado se
convierte en

W) = [ dp v, (43)

con
V'(p) = (p|U(A)[T) = ¥(A™'p). (4.4)
También podemos introducir los estados |z) = ﬁ [ d*p, e®"|p) con px = pyat =

pPe® =327 | piat, que se transforman como U(A)|z) = |Az). Si |z) son autoestados de
operadores X*, estos ultimos satisfacen las relaciones de conmutacion [X*, P,| = i0*.

Claramente los operadores P,, L, := X, P,—X, P, proporcionan una representacion
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del algebra de Lie del grupo de Poincaré, donde vale la pena notar que Fy no es el
Hamiltoniano (ver Sec. 4.1.4) y que la representacion actia sobre H y no sobre un

campo cléasico. La representacion es manifiestamente unitaria ya que

(IUW)'TM)|Y) = /d4p‘if’*(p)‘1"(p) = (V). (4.5)
Consideremos ahora el operador
J=P'P,. (4.6)
La ecuacion
JN) =m?|¥), (4.7)

tiene por soluciéon general

yww>=/ﬁ%5@%u—maﬂﬂﬁmnmm

@/ﬁmwm—mwTwwmm> (4.8)

donde H* denota la funcién de Heaviside tal que #+ corresponde a p° positivo o
negativo y m? es un autovalor real del operador hermitico J. Definiendo ¥(z) =

(x|U), la Ec. (4.7) se convierte en la usual ecuacion de Klein-Gordon [63, 64|,
(z|(P*P, — m*)|¥) =0 = (0”0, +m*)¥(z) =0, (4.9)

cuya invariancia es evidente ya que ¥'(z) = (z|U(A)|¥) = ¥(A~'z). Dado que

5(170 - Epm)
2F ’

pm

S(pp —mH*(p") = (4.10)

con Epm = /P? + m?, una solucion arbitraria con p? positivo puede escribirse ex-

plicitamente como

0,0) — \/%/d% b)), (4.11)
0) = s [ el (412)

donde ¥ (z) = V27U (z). Bajo una transformacion de Lorentz, a(p) — a(A~'p) (Ec.

o 3 . . . .
(4.8)), lo que implica que 2%” es invariante, en concordancia con el resultado bien
pm

conocido. El producto de dos soluciones correspondientes a diferentes autovalores

m? y m? produce

p -
m2’\11m2 / ) E pm - Epm>06(p)04(p)
d(m

2)/2%m;vu»a@> (4.13)

46



Capitulo IV. Tiempo cuantico y particulas escalares

va que 0(Epm — Epm) = 6(m? —m?)2E,,. En el caso de dos soluciones con la misma

distribucién de momentos a igual masa, entonces

(U a W) = B(m? — 1i?) / ;prm (), (4.14)

con una expresion similar en términos de S(p) para p° negativo(las soluciones con
p° positivo y negativo son ortogonales).

Es facil ver a partir de la Ec. (4.12) que

| 35l = Q.v)

con

Qlp, o) =i / o (0 (e )0b(x. 1) — P(x, 00" (x, 1) (4.15)
y ¥(x,t) = (x). Ya que
(W02 = 6(m? — i7%) Q(4),0) (4.16)

la normalizacion apropiada de estas soluciones en S*(IR*) implica, notablemente, la
normalizacion usual de Klein-Gordon [63] Q(v,¢) = 1, es decir,

(W2 | Wp2) = 6(m? —m?) <
i/dgx (W (x, )0 (x,t) — P(x,t)0)" (x,t)) = 1. (4.17)

El estado de una particula en un momento dado ¢ puede identificarse con el estado
“condicionado” [t)(t)) := v2m(t|¥,,2), con |t) = |2°) para z° = t, y por lo tanto
Y (x,t) con la funcion de onda de Klein-Gordon (x| (t)). En el caso de particulas
masivas (m positiva), se puede elegir en cambio la normalizacion (U |W,,) = §(m —

M), en cuyo caso
(V| W,) =0(m —m) <
s / P (1" (%, )0 (x, 1) — d(x, DO (x,1)) = 1, (4.18)
es decir, [ d®z p(x,t) =1, con p(x,t) la densidad usual de Klein-Gordon [71, 72|, que
en el limite no relativista se reduce a la de Schrodinger para soluciones de energia

positiva.

Mas generalmente, ahora es facil probar las siguientes relaciones

(P52 ]P2) = £0(0° — m*)Q(p,9) (4.19)
(®r.|WF,) =0, (4.20)
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donde el signo + indica el signo de p° y (®42|V¥,,2) obviamente también se puede
expresar como 5= [ d*z ¢*(x)i(x). Es importante notar que las relaciones anteriores
proporcionan una condicién de normalizacion positiva para ambos signos de p° ya
que (UZ,|0E,) = §(m*—m?)|Q(, ¥)|. La positividad sigue del producto canénico en
L?(R*), pero implica la “norma” usual. La conexién entre ambos productos también
se puede derivar de relaciones extendidas satisfechas por la densidad de corriente.
Estas relaciones se obtienen en el Apéndice 4.1 usando el presente formalismo. Los
resultados de las Ecs. (4.19, 4.20) concuerdan con el tratamiento general dentro de
la cuantizacion de sistemas invariantes bajo reparametrizacion [66] (ver Sec. 4.1.3
y el Apéndice 4.2). Un resultado anélogo que conecta un producto invariante 4d
con el producto de Dirac 3d también es valido para particulas de Dirac [1]| (véase el

capitulo anterior).

4.1.2 Relacion con la representacion de Wigner

La relacion entre los productos tridimensionales y cuatridimensionales proporcio-

na una conexion entre una solucion de masa fija de (4.7) y la representacion usual

(escalar) de una particula en L*(R3 du(p)) donde du(p) = (271)3%. Los estados

impropios de momento usuales |p),, € L*(R* du(p)) estdn normalizados como
»(P'|P)y = (27)32E,0®) (p — p’). Notamos que la normalizacién invariante estén-
dar requiere la adicion del factor 2E}, para compensar la no invariancia del volumen
espacial [40, 73].

La conexion con el presente formalismo se hace evidente si expandimos una solu-

cion (4.8) como, estableciendo a(p) = \/a%, b(p) = %, Epm — Ep y notando
que 5(pup# - m2)Hi(po) = 5(170 + Epm)/QEpa
d3p
W,0) = [ o) Eunp). (4.21)
(27)32E, P
d3p
® [ e b(p)| ~ Eonp). (4.22)
(2m)32E, P
donde hemos introducido los estados
| Bgup) i= (200 [ dpo3(o0 F Ep)l). (4.23)
que satisfacen (r,7’ = £1) )
<TEp’m’p/|T/Epmp> - (27T)32Ep5rr’6(3) (p - p/>5(m2 - m/2) : (424)

El factor 2E}, ahora surge naturalmente de la condicion de ortogonalidad de la masa.
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La correspondencia uno a uno entre los estados

9e) = [ g @) Epup) €. (4.25)
y los estados
0 = [ G a®Iph, € L. i), (4.26)

es ahora explicita ya que en ambos casos

| G @) = 1. (427

y sus propiedades de transformacion son idénticas. Se debe notar que mientras
|¥),, (Ec. 4.26) representa una particula en un tiempo fijo (o equivalentemen-
te, en la imagen de Heisenberg), |¥,,2) (Ec. 4.25) representa en cambio la his-
toria completa de la particula. De hecho, también podemos expresar (4.25) como
Wi2) = \/gfdtf 27) 52E e""*'a(p)|tp), donde |tp) = \ﬁfdpo e [pop) (notar
que |p) difiere de |p),,) definiendo asi el estado historico apropiado de [¢),, en el

marco relativista.

4.1.3 Propagador de Klein-Gordon

Dado un estado general en H, puede proyectarse en el subespacio de estados que

satisfacen (4.7) con un autovalor fijo m? mediante el operador
I, :=6(T —m?). (4.28)

En general, esto deja contribuciones tanto de p° positivo como negativo. Para la pre-
sente discusion es 1til introducir proyectores adicionales P* := [ dpy H*(po)|po) (po|®
1, satisfaciendo [P*,11,,]=0, y definir Hiz := P*II,,,2. En particular, es interesante

proyectar |z) en el espacio de estados de particulas “fisicas™

V27T, |2) = V2r PT6(T - / —
T, |z) J L p)
d4 )
_ / 5(p"p — m2) H'* (po) e p)
V (2m)?
d*p i(Ept—px)
P

donde el factor v/27 en la primera linea se incluyé para normalizacion (ver Ec.

(4.34)). Estos estados corresponden (en el sentido discutido en la Sec. 4.1.2) a los
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estados de una particula ¢(z)|0), donde ¢(z) = [ # (e~ ap + e* al)) | 0_p,
n P

es el campo de Klein-Gordon en la imagen de Heisenberg para la teoria libre con
masa m, y \/2E,al|0) = |p). Ademas, a partir de (4.29) se deduce la siguiente
identidad

2m (Y|} |2) = (0]6(y)¢(2)[0) = D(y — =), (4.30)
donde 8
D(y —z) = / me”’(”)ywﬂp, (4.31)

es el propagador de Klein-Gordon (o amplitud) [40] para la teoria libre con masa m,
que se puede interpretar inmediatamente. Al seleccionar las contribuciones de masa
fija de un evento z (ver también Sec. 4.1.4), obtenemos un estado cuya probabilidad
de estar en otro evento y es esencialmente igual a la amplitud para que la particula
se propague de x a y. Notamos que no se introdujo explicitamente una evoluciéon
unitaria ya que los estados contienen toda la informaciéon temporal. En cambio,
se realiz6 una “seleccion” adecuada entre las historias posibles mediante el uso del
proyector.

A partir de la Ec. (4.30) vemos que podemos reescribir la proyeccion de un evento

Ccomo

1
VorlIlh, |z :—/d4sz z—1x)|2), 4.32
m2 | > \/% 2 ( ) | > ( )
donde agregamos el indice m? para hacer explicita la dependencia de la masa. Tam-
bién podemos calcular la superposicion entre dos eventos proyectados como
2m (LT fale) = 2 [ (I a12) Gl
= 216(m? — m'®) (y|ITF,|) (4.33)
= 6(m? —m"*)D(y — x) (4.34)
donde en (4.33) hemos empleado la Ec. (4.29). Por lo tanto, con la normalizacion

empleada para los eventos proyectados, su superposicion es directamente el propa-

gador multiplicado por la funcién delta de masa. La identidad (4.33) implica
/d4z D, 2(y — 2)Dp2(z — x) = 216(m? — m"*)D(y — z).. (4.35)

La parte finita es nuevamente esencialmente el propagador mientras que la presencia
de la funcion delta estd de acuerdo con la discusion de la Sec. 4.1. Sin embargo,
vemos de la Ec. (4.1.3) que podemos reinterpretar la aparicion de la delta de Dirac

como el resultado de sumar todos los puntos posibles del espacio-tiempo z de la
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z

[diz (xe N y) = 208(m? — ) (ze—>—sy)

Figura 4.1.1: Representacion pictoérica de las dos caracterizaciones equivalentes de la cantidad

I |x). Cada linea representa una amplitud D(y — x).

propagacion de z a y con el punto intermedio adicional z. Este resultado se representa
pictoricamente en la Fig. 4.1.1.

En las técnicas de promediacion de grupo, el resultado (4.1.3) se emplea para
inducir el producto interno del espacio de Hilbert fisico [67] que en este caso corres-
ponde a una particula con masa fija. En la notaciéon actual, esto se puede expresar
de la siguiente manera: Sea |®,,2) := IL,,2|®) y |V,,2) dos soluciones de la restriccion
(4.7), entonces (P2 V2 )phys == (P|¥,,2), que es equivalente a las relaciones (4.19,
4.20) sin la delta de Dirac en (4.19). En nuestro enfoque, preservamos la delta de
masa ya que se considera que el espacio de Hilbert extendido es fisicamente relevante,
como se senala en las siguientes secciones. Como consecuencia, los subespacios “fisi-
cos” de ‘H son subespacios genuinos (el espacio de soluciones de (4.7) y H comparten
el mismo producto interno).

También mencionamos que II,,2 tiene la representacion formal

1 [

:% N

I1,,2 dr exp[it(J —m?)],

que se asemeja a los métodos de tiempo propio [74]. De hecho, el resultado de restrin-
gir la misma integral a T positivos (y afadir una parte imaginaria infinitesimal i€) es
proporcional al operador inverso de J — m?, cuyos elementos de matriz son iguales
al propagador de Feynman y para el cual sigue valiendo un significado proyectivo

asintotico [66].

4.1.4 Normalizacién en Tiempo

Un estado de la forma
W)= [ 6 ) ) + 00" (mA],.0). (4.30
donde |¥*,) son estados normalizados definidos como en (4.19) (<\11j1,2]\1/§2> =
§(m? —m'’®)) con
[ am ) =1, (437)
(VW) =y P+l =1, (4.38)
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pertenece a L?(R*). Ahora demostraremos que cualquier estado |¥) € L?(R*) admite
la representacion (4.36). Esto es en principio evidente ya que la integral sobre todos
los valores reales de m? cubre el espectro del operador hermitico J y |¥,) son
estados generales con masa definida y signo de p°. Esto también significa que la
consideracion de estados que son normalizables en tiempo (por ejemplo, historial
de tiempo finito) es equivalente a permitir una incertidumbre de masa/signo de p'.
Los estados | ,) pueden considerarse como la idealizacion correspondiente a una
particula con historial infinito y relaciéon de dispersion infinitamente bien definida,

en cuyo caso sigue la correspondencia de la Sec. 4.1.2.

Prueba. Un estado normalizado arbitrario |¥) € L*(R*) puede expandirse como

vy = / d'p(p| ) |p) = / I / A (pp,, — m)](p] V) p)

d®p
= /dm2 {/ mwp,mm‘l’)wpmp) (4.39)
+ [ s~ Eubl )]~ ) (4.40)
(2m)32E,, " " P '
donde [dm?...= fooo dm? ... + fi)oo dm? ... incluye todos los valores reales de m?.

Usando las Ecs. (4.21)—(4.22), las Ecs. (4.39)—(4.40) se ven que son de la forma (4.36)
con a(p) = (Epmp|¥)/ (776" (m?)), b(p) = (= Epmp|¥)/ (v~ ¢~ (m?)) ¥

yEPE( (£ Epmp|P)|2.
¢ \// 27T32Epm P p‘ >’

Involucran cuatro términos distintos, segin los signos de m? y E,,. Para m? < 0

la integracion d®p se restringe a la region |p|> > —m?,

2. [l

como se muestra en la Fig.

Los cuatro términos que surgen de descomponer un estado general |¥) € L?(R*)
de acuerdo a los signos de m? y p° en las Ecs. (4.39)—(4.40) pertenecen a subespacios
ortogonales que son representaciones de espacio de Hilbert de las clases correspon-
dientes de representaciones irreducibles del grupo de Poincaré |65, 75|. Esta exhaus-
tividad de H es precisamente lo que permite representar eventos |x) y en particular
la definicién de un operador de tiempo T tal que T := X°|z) = z°|z). El operador
de traslacion en el tiempo P° = [ d*pp°|p)(p| es, como se esperaba, no acotado, sin

embargo, esto no es un problema en el presente formalismo, en contraste con otros
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P

Figura 4.1.2: Region de integracion en variables m? y p. Aqui |p| es el modulo del 3-momento p.

enfoques [49, 76]: Al escribir (como en las Ecs. (4.39)—(4.40))

d3p
pm
d®p
— | ————FEpm| — F —-F 4.42
/ (277)32Epm pm| Pmp>< Pmp‘ ’ ( )

se hace evidente que las cuatro regiones de H contribuyen a su espectro llevando,
como consecuencia, a que no sea acotado. En cambio, en estados que pertenecen a
una representacion irreducible particular, impuesta “a posteriori” por la Ec. (4.7) y

por una eleccién dada del signo de p°, P? actiia correctamente:
P°| £ E,,,p) = £ Epm| &+ Epmp) - (4.43)

La ventaja del presente enfoque es evidente: los operadores covariantes se definen
independientemente de la teoria particular, atin asi, después de elegir una teoria
dada, o superposicion de ellas, estos operadores, que aun se definen como antes,
acttian correctamente. Esto es precisamente lo que ya hemos encontrado al proyectar
un evento en la Sec 4.1.2: el estado |z), al que asociamos un significado geométrico,
es “no-fisico” para una teoria con masa fija m? y p° > 0, sin embargo, el estado fisico

“més cercano” corresponde al bien conocido estado ¢(z)|0). Ademas, un tratamiento
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perturbativo de una teoria interactuante implica implicitamente estados con una
masa indefinida cuando se expande en términos de la base libre. Esto ya se puede
discutir dentro de un tratamiento de “primera cuantizaciéon” de las interacciones

como se muestra en la Sec. 4.2.

4.2 Ecuaciéon de Klein-Gordon en un campo externo

Hasta ahora la discusion se centré en el caso de una particula libre. En esta secciéon
discutimos las interacciones a nivel de primera cuantizaciéon tratando los campos
como entidades externas. Esto seguira de una extension directa de las ideas previas
que, notablemente, todavia proporciona la conexién correcta entre la norma inva-
riante y la normalizaciéon de Klein-Gordon, y mas generalmente, entre el producto

canénico en L?(R*) y el producto de Klein-Gordon. Reemplazamos J = P*P, por
Ja = (P* + eA*(X)) (P, + eAu (X)), (4.44)
con A,(X)|z) = A,(x)|z). Un estado |¥) = \/%7 [ d*z 1 (x)|z) satisface
TalW) = m? ) (4.45)
sii ¢ (x) satisface la ecuacion de Klein-Gordon
((—i0, + eA,)(—i0" + eA*) —m?) Y(z) = 0. (4.46)

Ahora consideremos el caso donde A,(X) no depende de T ni de m?. Conside-
rando soluciones de energia definida E, ¥ (x) = e *F)(x), la Ec. (4.46) conduce a

la ecuacion

[F(B) = m?u(x) = 0, (4.47)

donde F(E) = (E — eAp)* — (P + eA)? es un operador hermitico con respecto al
producto estdndar en L?(R?), que no depende de m?. Entonces podemos escribir una

solucion general de (4.46) como
¢m2 (.’ﬂ) = Z Ck¢k (ZL', m2)7 (448)
k
wk (3:7 m2) = eiiEk(mQ)twk@(a m2> ) (449)

donde k etiqueta los modos de energia definida Ey(m?) y ¢x(x, m?) las funciones
propias correspondientes, obtenidas de la Ec. (4.47). Estos satisfacen la ortogona-
lidad de Klein-Gordon Q 4(¢w(m?),vr(m?)) = 0 para Ex(m?) # Ep(m?), donde
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(D = 0, — ieA,(x))

Qu(d i) = i / @ (6" (%, ) Dotb(x, ) — (x, ) D (x, 1)) |

(4.50)

La solucion resultante de (4.45) es

W2) = x| Ui(m?)), (4.51)

k

2y - L Yo (x, m?)|z
(m) = —— / de oy, m?)|z) (4.52)

Demostraremos en primer lugar que soluciones con energias definidas Ej(m?)

satisfacen la condicion de ortogonalidad

(W (m"?) Wi (m?)) = 6(m* — m*)Qa(Ww, ¥r) sk (4.53)

donde s; = sgn (%) y el lado izquierdo es el producto canénico en L*(R*). Este

es un resultado no trivial que se desprende de relaciones de ortogonalidad “espe-
ciales” de las soluciones usuales de la ecuacion de Klein-Gordon, como se muestra
a continuaciéon. Si bien garantiza la ortogonalidad esperada de estados propios con
diferentes masas, a igual masa vincula directamente el producto estandar en R* con
el producto de Klein-Gordon en R?, lo cual a su vez asegura la ortogonalidad de
estados con diferentes energias a igual masa e implica Q 4(Vx, Vx)sk = |Qa(Vk, Vr)|-

En segundo lugar, demostraremos, eligiendo modos ortogonales ;,(m?) (para
k#E, Qaltr(m?),ve(m?)) =0 ), que la relacion (4.53) implica

(U 2| Wpp2) = 0(m'? — m?) Zcﬁg*ck\QA(wk,wkﬂ : (4.54)
K

para un estado general con masa definida, que es idéntico a §(m'?2 — m?)|Q (¢, ¥)|
cuando todos los Q4 (vx, 1)) tienen el mismo signo (es decir, todos los modos de
“energia positiva” en condiciones estandar). Esta es la extension buscada de las Ecs.
(4.19).

Demostracion. La superposicion entre dos soluciones (4.52) con energias definidas

arroja
(T (M) Tr(m?)) = 6( B (m™) — Ex(m?))

x/d?’xwz,(x, m? ) (x, m?) . (4.55)
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Estados con diferentes energias son automaéaticamente ortogonales mientras que la
condicion de igual energia puede separarse en dos contribuciones: energias iguales a
masas iguales, o energias iguales a masas diferentes (y diferentes k). Consideremos

primero el segundo caso: escribiendo

[F(Ex(m?)) —m?] ¢y(x,m*) = 0 (4.56)
[F(Ew(m™)) —m”] i (x,m?) =0, (4.57)

multiplicando a la izquierda por ¥}, (x, m"?) (¢;(x, m?)) la primera (segunda) ecua-
cion, integrando en todo el espacio y restando (conjugando uno de los resultados)

obtenemos
(m® = ) [ @i xm) i) =
(Ex(m?) — Bp(m'*)Qa(tbw (m"®), ¥r(m?)) (4.58)

donde hemos utilizado la hermiticidad de (P + eA)?. Para Ej/(m'?) = Ei(m?) en-

tonces
(m? —m?) / d>x P (x, m?)p(x,m?) =0, (4.59)

implicando una condicién de ortogonalidad extendida para m’? # m? cuando las
energias coinciden. Concluimos que no surgen contribuciones de masas diferentes en
(4.55). Note también que para m’> = m? pero Ej,(m?) # Ej(m?) la Ec. (4.58) condu-
ce a la condicion de ortogonalidad estandar de Klein-Gordon Q 4 (¢ (m?), ¥x(m?)) =
0.

Los resultados anteriores (4.55), (4.59) nos permiten escribir, para modos de igual
energias (Ej(m?) = Ep/(m?)Vm?)
5(m’? —m?)

= dEy/dm?]
X / d>x P, (x, m*)(x, m?) . (4.60)

(Ui (m)[ Ui (m?))

Esta segunda parte de la demostracion implica encontrar una expresion para dEy, /dm?.

Esto se logra derivando la Ec. (4.56) con respecto a m?, que da como resultado

(0 T2 4 ) = [F(5) —m?) )

con F'(Ey) = 2(Fy —eAp). Ahora multiplicamos a la izquierda por una solucién con

dEj

la misma energia 1}, (x, m?) e integramos en el espacio; obtenemos

/d3x Vi (x, m*)e(x, m?) {F’(Ek)% — 1} =0, (4.61)
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y asi, para Ex(m?) = Ep(m?),

[ v bemtinxon?) = SR Qutu ) n(m?) (462

que es la extension natural de (4.58) para m? = m'?> y Ej,(m?) = Ey(m?). Insertando
esta relacion en (4.60) conduce al resultado (4.53). La Ec. (4.61) también revela una
condicion de ortogonalidad adicional: los modos ortogonales a energias iguales segtin
el producto de Klein-Gordon también son ortogonales en el producto canénico de
L*(R?), asumiendo que 955 £ 0. O

dm?2

Finalmente, observamos de la Ec. (4.53) que imponer la normalizacion
(Tgo () [ Wi (m?)) = 6(m?* — m'*) e

lleva directamente a la normalizacion de Klein-Gordon |Q 4(vr (m?), ¥ (m?))| = g

La extension rigurosa de los presentes resultados a un potencial general A, (X) y
espacios-tiempo curvos implica nuevos conceptos y sera presentada en otro lugar. No
obstante, se discuten identidades generales para la densidad de corriente en presencia
de un potencial general en el Apéndice 4.1. El caso de un A, dependiente de la masa
se discute brevemente en el limite no relativista para la gravedad newtoniana en la
Sec. 4.3.

Los resultados de esta seccidén pueden emplearse directamente para definir un
espacio de Hilbert fisico a m? fijo (como se mencion6 antes para el caso libre) reem-
plazando I1,,,2 — §(Ja — m?), extendiendo asi programas de cuantizacion anteriores
[66, 67] al caso donde un A,, externo esta presente. Sin embargo, y quizas més impor-
tante, observamos que los estados propios de masa de J4 en la Ec. (4.45) obviamente
no son estados propios de la particula libre J de la Ec. (4.7), ya que J4 y J no
conmutan. Por lo tanto, la expansion de estados propios |\I/ﬁl ,) de J4 en términos de
aquellos de J generalmente implica una expansion sobre diferentes masas (y tam-
bién puede involucrar energias negativas) como la considerada en la Sec. 4.1.4. Asi,
la consideracion de estados sin una masa definida en la representacion de la base
libre ya esta implicita al tratar con un campo externo, es decir, con interacciones.
Esto a su vez revela que el espacio de Hilbert extendido, cominmente considerado
como una construccion auxiliar, juega un papel fisico inevitable en un formalismo
de 4d. Ademas, cualquier fluctuacion de los campos A,, que en un escenario mas
realista también son dinamicos, llevaria al sistema a explorar diferentes sectores de

masa de H.
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4.3 Limite No Relativista

Es bien sabido que para soluciones de energia positiva en el limite no relativista
E'/m < 1 (orden (v/c)?, con E' = E —m) la ecuaciéon de Klein-Gordon se reduce
a la ecuacion de Schrodinger [71]. En particular, la norma de Klein-Gordon para
particulas masivas se convierte en la norma estandar de Schrodinger. Por lo tanto,
se espera que una version no relativista de la Ec. (4.18) en términos de la norma
mecanica cuéntica usual se mantenga como un limite. De hecho, este es el caso, pero
es instructivo derivar este resultado directamente del régimen no relativista.

Primero recordamos que la ecuacion de Schrodinger se puede recuperar para
estados [1(t)) € Hs imponiendo una restriccion estatica global sobre los estados
W) € H =Hr®@Hs. Aqui Hyp esta generado por los estados propios |t) del operador
T que satisface la conmutacion canénica [T, Pr| = i. En la interpretacion de PW
[14] Hr se considera como el espacio de Hilbert de un reloj cuantico de modo que
el parametro ¢ es una etiqueta de estados |t) de este sistema particular.

Los estados |¥) pueden expandirse como

vy = / at (1)) (4.63)

mientras que el estado del sistema en el “tiempo” ¢ es [¢(t)) = (¢|¥). Al imponer la
ecuaclion

JI) =0, (4.64)

con

J=Prol+1QH, (4.65)

donde H es el Hamiltoniano del sistema, se obtiene la ecuacién de Schrodinger
estandar [29]:

(HT10) = 0 = i 2 o(1)) = Hl(r) (1.66)

La implicacién anterior es valida para Hamiltonianos arbitrarios si el espectro de
Pr es toda la linea real, lo que también implica el mismo espectro para 7. Bajo esta
condicion los estados |¥) no pueden normalizarse en H [29]: en términos generales,
(U|W) es igual a (1 (to)]1(to)) veces la (infinita) longitud del tiempo. Por otro lado,
si nos enfocamos en el caso de una particula escalar, a partir de la discusion de
la Sec. 4.1.4 podemos inferir como relacionar adecuadamente la norma de estos
estados globales con la norma de |1(ty)). También es importante notar que en el

caso relativista la cantidad (¥|¥) no esté relacionada con la longitud del tiempo
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como antes, ya que los estados condicionados |1)(t)) estan normalizados segin la
norma de Klein-Gordon, no la de Schrodinger. Ahora nos enfocamos en el caso

Hs = span{|x)} de modo que
o) — / dda |15 (x| (1)) = / dtdz (x, D)[Ex) (4.67)

y consideramos primero el caso libre H = %. Notese que desde el punto de vista
mecénico cuantico, el valor propio cero en la Ec. (4.64) no juega un papel especial ya
que un valor propio desplazado de J corresponde a una traslacion global de energia.
Por otro lado, dado que estamos tratando con una particula libre, es prudente esta-
blecer el cero de la energia en su valor de energia de reposo (positivo) mc? (donde

hemos reintroducido momentéaneamente la velocidad de la luz ¢). Entonces tenemos

2
(tx[(T +m)|¥) =0 = (—z’% + 2Z + m) Y(x,1) =0, (4.68)

cuyas soluciones son claramente de la forma
W) = /d3p a(p)|p®/2m + m, p), (4.69)

implicando
2
(U, |V,,) =~ §(m —m') /d?’pM

2
1= o

— 6(m —m) /d3p la(p)|* x (1 o (%))

(asumimos que |a(p)| es significativa solo para p < m,m’). Hasta O(p*/m?), es-
ta ecuacion coincide con la Ec. (4.14) después de reemplazar a(p) = a(p)/(2Ep).
Encontramos que en este régimen las soluciones con diferentes “valores propios” m
son ortogonales , incluso si J depende de la masa. Ademés, para estados de mo-
mentos no relativistas, que es precisamente el régimen de validez de la ecuacion de
Schrodinger para una particula, la condicién de ortogonalidad implica la norma de

Schrédinger (hasta correcciones relativistas):
(T | ) = 0(m —m') = (¥(to)[(t)) = 1+ O(v*/c?). (4.70)

Esto también significa que los estados historia |¥) pueden normalizarse de acuerdo
con la discusion de la Sec. 4.1.4, un resultado que proporciona (en el presente caso)

una interpretacion fisica a la propuesta de regularizacion de [29].
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Este resultado puede extenderse facilmente en este mismo contexto (pero también
se deduce del limite no relativista de la Sec. 4.2) a Hamiltonianos de la forma

L (D= AR

o + V(x) + mo(x) +m, (4.71)
donde A, V' y ¢ son independientes de la masa, empleando una estrategia similar
a la de la Sec. 4.2 que ya se utiliz6 para el Hamiltoniano de Dirac en [1]. Una

modificacion menor sigue del potencial dependiente de la masa m¢(x): ya que ahora
(x|(Pr + H)|¥,,) = 0 produce

Gﬁ_Qer@P

5 - = v v

=m(l+ ¢(x))Y(x,t) (4.72)

la ecuacion del universo debe considerarse como una ecuaciéon de autovalores gene-
ralizada (hasta correcciones relativistas provenientes del término dependiente de la
masa en el lado izquierdo) Para lograr la ortogonalidad, el producto generalizado
(U|0) = (U|(1+p(X = [d*z (14 ¢(x))|1(x,t)|* debe emplearse en principio.
Sin embargo, si se remtroduce ¢, (U|0) = [d*z (14 ¢(x)/c*)|¢p(x,t)]* y vemos que
#(x)/c* debe descartarse en este orden |77]. Esto implica que los potenciales que
dependen linealmente de la masa, como un potencial gravitatorio newtoniano, no
requieren un tratamiento especial en el orden mas bajo en c. Ain es notable que
este analisis simple sugiere una conexion entre la gravedad y la curvatura ya que
solo se hicieron consideraciones de Mecénica Cuéntica y gravedad newtoniana junto

con la condicién de energia de masa en reposo £ = mc?.

4.4 Espacio de Fock Extendido

En esta seccién exploramos la construcciéon de un espacio de Fock Hgr donde el
bloque de construccion es la base de particula individual (sp) {|p)}, mientras que la
sp usual correspondiente en Hp es {a},|0)r = |p)}. Los estados |p) se reinterpretan

como la base de un espacio de sp, es decir,
p) = cbl0) (4.73)

donde los operadores de creacion/aniquilacion satisfacen, ya que (p'|p) = 6*(p — p/),

el algebra

lep ] =W (p—p'), 4.74)
[eps ] = [ch, el ] = 0. (4.75)
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Este algebra es explicitamente preservada por operadores de impulso cuya definicion,
U(A)e,UT(A) = ey, (4.76)

sigue de la Ec. (4.2). Note que U(A) = exp[—4w"”L,,] es explicitamente unitaria y

. 0 0

el generador de transformaciones de Lorentz, es un operador hermitico de un cuerpo.

que

Definiendo J como el operador de un cuerpo
J = / d'p ey, (4.77)

que es el operador del universo que corresponde a (4.6), el subespacio fisico se define
por aquellos estados construidos a partir de operadores de creaciéon que conmutan
con J:

[T, CL] =(p* - m2)c;r, =0=p*=m’. (4.78)

Como base de este subespacio, podemos emplear, para p > 0, los operadores

Cx(a : 2Epm /dpo Eom) Cpop » (4.79)
que satisfacen
[cg“), cp(m )] (27)%6®) (p — p)o(m? — m'?), (4.80)

y transforman, segtn (4.76), como

m EA m (m
U(A)c™MUT(A) = =0 e (4.81)
pm

Un estado de una particula de masa m se escribe entonces como

= —d3p a(p)cim
) = [ G @) (4.82)

= | G ®)E).

donde
| EpmP) = /2Epmci™|0) . (4.83)

De acuerdo con la discusion de la Sec. 4.1.2, el estado |W,,2) se puede identificar

con la historia de

= —d3p a a

d3p
= /ma@)\p),
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donde ap, son los operadores 3d estandar:

lap, al,] = (27)°6@) (p — p') (4.85)

con
[P) = \/2Epma}|0)r - (4.86)

Ahora es sencillo extender esta identificacion a muchas particulas. A partir de la
ley de transformacion usual de los operadores ayp, aL, y la Ec. (4.81), se sigue que
estas identificaciones son independientes del marco de referencia.

Es ahora interesante considerar un estado de dos particulas

d3p1 d3p2 t(m) T(m
|‘11> = / (271')3\/E<27T>3 2Ep a(p]_?pZ) pl |O>
1 2
f(m)

donde ¢p™ o cyop con p? = Ey,,, son los operadores definidos en (4.79). Mediante

una transformada de Fourier en p?, p), obtenemos

dtidtad®p1d®ps

V271 (2m)32E, WV 2%(277)32Ep2

Vemos entonces que este estado no tiene una estructura simple en tiempo de la forma

e~ Pritt g milipyt2 a(py, P2)611p1612p2’0> - (4.87)

[ dtdPp1d®pe (2, pr, ]Dg)czplczp2 |0). Esto es importante dado que dicha forma no puede
ser preservada por transformaciones de Lorentz. La estructura mas compleja de |¥)

es una novedad del caso relativista que es necesaria para representar boosts.

4.5 Discusion

Hemos visto que es posible construir un formalismo de estado histérico consistente
para una particula escalar cuyo concepto de tiempo comparte las ideas matematicas
subyacentes del mecanismo de Page y Wooters [14]. La consideracion de un espacio
de Hilbert adecuado para la representacion de operadores explicitamente covariantes,
junto con una ecuaciéon del universo atemporal, permite una derivacion simple de
la ecuacion de Klein-Gordon, tanto en el caso libre como con un campo externo,
que complementa las derivaciones previas de las ecuaciones de Schrédinger [29] y
Dirac [1]. El producto canénico de L*(R?), que es invariante, proporciona una norma
positiva para este espacio de Hilbert. Es notable que la posterior normalizacion
adecuada de los estados on-shell asegura directamente la norma usual en 3d incluso
en presencia del campo externo, extendiendo resultados anteriores derivados a través

de métodos de “group-averaging” en el contexto de la gravedad cuantica |66, 67].
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Pero ademés, el espacio de Hilbert extendido, normalmente considerado como
una construcciéon cinematica auxiliar, aqui se promueve a un espacio fisico real,
de acuerdo con la consideraciéon del tiempo como un operador. La importancia de
preservar el espacio completo en 4d se hace evidente cuando se toma en cuenta la
no conmutatividad de los operadores de masa para diferentes teorias, por ejemplo,
con y sin campos externos, lo que implica que el sistema naturalmente comienza
a explorar todo el espacio cuando se activa una interacciéon. Este enfoque también
proporciona un espacio de Hilbert consistente en 4d para la ecuacion de Klein-
Gordon, que es explicitamente covariante y, por lo tanto, difiere de los tratamientos
recientes de PW de formulaciones Hamiltonianas basadas en raices cuadradas [78| de
la ecuacion de Klein-Gordon [79]. Las consideraciones relativistas actuales también
nos han permitido inferir como normalizar estados con historias infinitas en un limite
no relativista bien definido, proporcionando una interpretacion fisica a la propuesta
de regularizacion previa para la ecuacion de Schrodinger [29]. En este sentido, el

mecanismo de PW resulta ser particularmente adecuado para el contexto relativista.

Al mismo tiempo, las nuevas caracteristicas del formalismo resultante plantean
dificultades en la interpretacion relacional original [14]: El parametro de tiempo que
resulta de “condicionar el reloj” se identifica inequivocamente con el tiempo en un
marco de referencia dado por la ecuacion de Klein-Gordon. Una interpretacion re-
lacional nos llevaria a la conclusion de que un tnico reloj (cuantico) es suficiente
para describir la evolucién de una particula para cualquier observador, en claro con-
traste con la necesidad de una convenciéon de sincronizaciéon como la sincronizacion
de Einstein [17]. Ademas, esto también requiere que el espectro de T' sea continuo
e ilimitado, por lo que dificilmente se puede asociar con un observable de un reloj
que no sea una coordenada. Estas consideraciones sugieren que en este contexto es
més adecuado simplemente tratar a ¢ como una coordenada adicional de la particula
misma, como también sugiere el enfoque de Stueckelberg (ver Apéndice 4.2). En
el marco de la relatividad general, identificariamos el pardmetro de tiempo con el

“tiempo coordenado” en lugar de un intervalo de tiempo medido por un reloj.

Sobre esta base, hemos explorado la construccién de un espacio de Fock donde
el bloque de construccion es la particula como una entidad de 4 dimensiones, ex-
tendiendo asi el formalismo a un escenario de muchas particulas y definiendo una
“segunda cuantizacion” de historias. A través de la definicion de un subespacio ade-
cuado, sigue una identificaciéon con los estados estdndar de muchas particulas. Al

mismo tiempo, se revela una estructura temporal més rica. Esto sugiere una exten-
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sién no trivial a la teoria cuéntica de campos, diferente de una aplicacion directa del

mecanismo original de PW.

Apéndices

4.1 Densidad de corriente

En el presente formalismo, la densidad de corriente de Klein-Gordon asociada con
un estado arbitrario |¥) = \/%7 [ d*z 1 (x)|z) en presencia de un potencial general
AM(‘X)a

Jale) =i (" () D'y (x) — P(x) D" () | (4.88)

donde D* = 0" + ie A", puede escribirse como

(@) = 2 (] Thla) (4.89)
donde

Ji = —(PW) (] + W) (Y[ PY) (4.90)
con P = P + eA", es un operador hermitico. Ahora podemos expresar la 4-

divergencia de la corriente como

= 2mi (|[[0)(¥], Tal|x) (4.91)

donde P! = P, +eA, y Ja = P{P; es el operador (4.44). Si [¥) es un autovector
de Ja, es decir, un estado con masa definida |¥,,2), entonces [|U)(V], J4] = 0y

obtenemos el resultado bien conocido
aujfi(ff) =0.

Las relaciones anteriores pueden generalizarse inmediatamente a una densidad de

corriente de dos estados

Ja(d, ¥, x) = i (¢"(2) D!p(x) — b(x) D' 67 (x))
=21 (z|J5 (P, ¥)|x), (4.92)

donde
Jh(P, W) = —(PLTN(P| + W) (| P)). (4.93)
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La Ec. (4.91) ahora se convierte en
0udia(@, 0, x) = 2mi (x|[[W)(D], Tal|x) . (4.94)

Si|¥) y |@) son ambos soluciones de la ecuacion de Klein-Gordon con la misma masa,
es decir, autoestados de Ja con el mismo autovalor m?, entonces [|W)(®|, J4] = 0,
implicando

Opja(¢,1h,2) = 0. (4.95)

Por otro lado, para dos autoestados |U,,2), |®, ) con masas diferentes m? y m'?,

obtenemos en cambio
(W) (@2 Ta] = (2 = 1) [ W2} (D, 0] (4.96)
implicando la identidad extendida

Dyudi (Des Yz, ) = A(m'> — M2 ()7 o () (4.97)

que es valida para cualquier potencial independiente de la masa A*(X) (no necesa-
riamente independiente del tiempo).

2

Para m? = m', integrando sobre d®z y asumiendo que j% (@2, ¥2,, ) desapa-

rece para grandes |x|, la Ec. (4.97) conduce al resultado bien conocido de Q(¢, )
constante en el tiempo, en acuerdo con la Ec. (4.16). Para m?, m/* generales esta
relacion puede emplearse para re-obtener las relaciones anteriores (4.16) y (4.58)
(para un potencial independiente del tiempo y de la masa) por integracion de (4.97)
sobre d®z, asumiendo nuevamente el desvanecimiento de j% para grandes |x]|.

La densidad de corriente de dos estados también puede expresarse como
Ja(@, 1, x) = (@J4(2)|¥) (4.98)
donde J'j(z) := J4(z,z) (Ec. (4.93)) es el operador hermitico
J4(x) = — (I(z) Py + Pill(x)) , (4.99)
con I1(z) = |z)(z|. Ademas, Q4(¢, 1) puede reformularse como
Qa(e, ) = (| /d3iv Ja(@)| W) = (@[QA(1)|¥) (4.100)
Qa(t) = — (I(t) P} + PRII(1)) | (4.101)

donde II(¢) = [ d®xII(z) = [¢)(t| ® 1. Todas las relaciones de este apéndice también
se aplican, por supuesto, en el caso libre A,(X) =0 (P — P*, Jax — J).
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4.2 Cuantizacién extendida de una teoria parame-

trizada

Aqui presentamos una version alternativa para derivar el formalismo de estado histo-
rico de una particula que esta estrechamente relacionada con la propuesta de Stuec-
kelberg [57]. Aunque el enfoque anterior es autocontenido, esta perspectiva diferente
aclara aiin mas que no es estrictamente necesario una interpretacion relacional para
el pardmetro t. Al mismo tiempo, recuperar el formalismo de esta manera permite
una primera comparacion con el enfoque convencional de la gravedad cuéntica [49].

Considere la acciéon de una particula unidimensional para una lagrangiana inde-

pendiente del tiempo

Sla(t)] = / C L(g,q) - (4.102)

t1
Promoviendo ¢ a una coordenada y parametrizando el espacio de configuracion (¢, q)

con una variable 7 podemos escribir

Slq(r), 4(r)] = / dr iL (q, %) _ / CarL(gdd) . (4.103)

T1

Los momentos asociados con L son [49]:

oL
Pqg = a_q = Pq
oL
=—=-H, 4.104
Pt By ( )

mientras que el Hamiltoniano es H = Dgq + pt — L = t(H + p;). Si definimos el
“super Hamiltoniano” Hy = H + p; entonces de la Ec. (4.104)

Ho=H+p, ~0, (4.105)

donde con = indicamos que esto es una restriccion débil [80]. Al aplicar la cuantiza-
cion canodnica al espacio de configuracion extendido, ya que t y p; estan en el espacio
de fases, se obtiene un Hilbert ampliado, que puede escribirse como ‘H = H; ® H,.

La restriccion del super Hamiltoniano (4.105) define el subespacio
Hg|U) = (P, ®I+1I® H)|V) =0, (4.106)

que es precisamente la ecuaciéon del universo del formalismo de PW para una par-

ticula unidimensional y tiempo continuo discutido en la Sec. 4.3. Hemos obtenido
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mediante este método las nociones familiares del formalismo de estado histérico no
relativista sin considerar un reloj de referencia: t es una coordenada.

Debe enfatizarse que el procedimiento convencional de cuantizacion de un sistema,
parametrizado no conduce al presente formalismo donde se define un operador de
tiempo [49|. La diferencia clave es que estamos asociando un espacio de Hilbert
ampliado al espacio de configuracion extendido de modo que la restriccion (4.106)
también tiene un significado fisico en lugar de solo uno formal (o auxiliar) [66]. La
presente propuesta estd mas cerca del enfoque de Stueckelberg para la mecanica
cuantica relativista [57|. De hecho, el Hamiltoniano R introducido por Stueckelberg
bajo consideraciones relativistas generales, que para una particula libre es R =
s P, P*, conduce a la ecuacion de Stueckelberg [57]

RVY(z,7) = zag\ll(m, T), (4.107)

T

que para soluciones estacionarias en 7 W(x,7) = exp(%sz)\If(x) produce la Ec.

(4.7). La norma de Stueckelberg [ d*z |¥(x, T)[?, que es independiente de 7 para una

solucion de la Ec. (4.107), es precisamente la que hemos empleado en la Sec. 4.1 y esta

relacionada con la norma de Klein-Gordon para soluciones de masa fija. Las mismas
1

consideraciones se aplican para el caso general R = ;m,7*, donde 7, = P, + €A,

como sigue inmediatamente de los resultados de la Sec. 4.2.
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Segunda cuantizacion extendida y el

concepto de acciéon cuantica

“And so I’'m stuck to have to continue this investigation, and of course
you appreciate that this is the secret reason for doing any work, no
matter how absurd and irrational and academic it looks: we all realize
that no matter how small a thing is, if it has physical interest and is
thought about carefully enough, you’re bound to think of something

that’s good for something else.”

Richard P. Feynman

Hemos visto que cuando un operador para el espacio esta definido, el uso de
un operador tiempo nos permite dar descripciones cuanticas en espacios de Hilbert
que a su vez dan una representacion explicita de la simetria de Lorentz. Hemos
mostrado esto en dos escenarios asociados a una sola particula. Podemos pensar
en lo anterior como “modelos de juguete” donde la relatividad y una formulacién
canonica (ampliada) conviven. ; Podemos ir méas alla de este modelo?

Esto nos requiere sin lugar a duda discutir la relacion de lo anterior con las
teorias cuanticas de campos. Un primer intento podria ser aplicar el formalismo de
PW directamente. Si bien nada impide seguir este camino, queda inmediatamente
claro que no hay mucho por ganar: si tratamos al tiempo como operador, pero el
espacio es un pardmetro clasico, estamos generando més asimetria que en el ca-
so convencional. En cambio, recordemos que en el ultimo capitulo introdujimos el

concepto de segunda cuantizacion del formalismo de PW !. Si bien esta idea por

1Con “segunda cuantizaciéon”, nos referimos al esquema matemético riguroso que, dado un cierto
conjunto de estados de una particula (en el presente caso estados |tg) v |¢); ver abajo), permite
construir un espacio de Fock de particulas indistinguibles. Véase, por ejemplo, [72]. No debe con-

fundirse con los argumentos histéricos de QFT [81].
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s sola no es particularmente esclarecedora, nos conduce a un resultado notable: la
segunda cuantizacion del operador de universo J toma la forma de la accion cldsica.
Este resultado, junto con la caracterizacion de las acciones cudnticas y del espacio
matematico en el cual se encuentran definidas sugiere un camino completamente
novedoso para formular las teorias cuanticas de campos. En esta formulacion, las
algebras canoénicas se encuentran extendidas al espacio-tiempo. También podriamos
decir, si se nos permite no ser particularmente rigurosos, que las excitaciones de los

campos son “particulas de Page y Wootters”.

5.1 Accion cuantica y el formalismo de Page y Woot-

ters

El tratamiento de una particula parametrizada ? (unidimensional para simplificar)
para un Lagrangiano independiente del tiempo L(g,q) conduce a una restriccion
deébil clasica [42]| Hs = p, + H =~ 0 con p; = W. Esta condicion se cuantiza
como [49, 82]

Hg|¥)=(P,®1+1® H)|V)=0, (5.1)

donde P, ® 1 =i [ dtdt'dqg L6t — t)|tq)(t'q|, 1 ® H = [ dtdqdq (¢'|H|q)|tqd’)(tq| y
(t'q|tq) = o(t = 1)0(q — ¢), (5:2)

que comunmente se considera como una condicién auxiliar en un “espacio cineméatico”
K para definir el espacio fisico (que no es un subespacio adecuado). Alternativamente,
se asigna una interpretacion relacional a esta ecuacion donde Hg se considera como
el Hamiltoniano de un sistema global compuesto “reloj’+“sistema”. Este es el caso del
formalismo PW donde se define un operador de tiempo hermitiano como observable
del reloj T = [ dt t|tq)(tq|.

En cambio, si el espacio cinemético se promueve al estatus de un espacio “fisico”
y, ademaés, las particulas se consideran como objetos de d + 1 dimensiones (para d
dimensiones espaciales), el escenario adecuado para muchas particulas idénticas es un
espacio Fock extendido H 2|, diferente del convencional y diferente del formalismo
PW aplicado a un espacio Fock (o equivalentemente, de la dindmica hamiltoniana

generalizada de un espacio Fock convencional). Esto se logra reinterpretando los

2Si bien en principio veniamos hablando del formalismo de PW, es interesante ver como consi-
deraciones similares valen para particulas parametrizadas. Ambos casos se explican y relacionan a

continuacion.
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estados |tq) como estados sp |tq) = AT(t,q)|Q2) (con A(t,q)|Q) = 0,(Q]Q) = 1) que,

considerando la Ec. (5.2) y una particula bosonica, implica

[A(t,q), AT(¢',¢)] = 6(t = ')o(q — ¢) - (5.3)

Luego se puede generalizar

HS — —j (54)

7= / dt / dadq/ A (t, ) i0,5(q — &) — (| HIg)A(,q) (5.5)

que notablemente puede relacionarse con la accién clasica. Para ver esto defina-

A(t,q)+AT (¢, . A(t,q)—AT (¢,
_ AN g q) i AbOAC),

mos operadores de campo y momento ¢(t,q) : 2

Obtenemos entonces
J = /dtdq o — /dt H (5.6)

donde llamamos H al segundo termino de J sin la integral en tiempo (véase abajo
el Hamiltoniano de segunda cuantizacion convencional). Notemos también como el
primer término tiene precisamente la forma de la transformada de Legendre cldsica.
Puede también probarse [3] que esta estructura del operador es invariante frente
a transformaciones candnicas (o de Bogoliuvob), de modo que no depende de co-
mo definamos los campos. Finalmente, remarquemos que el campo y su momento

satisfacen el dlgebra

[9(t,q), 7(t',q')] = i0(t —t')o(q — ¢') (5.7)

que no es un conmutador a tiempos iguales.

Como consecuencia de lo anterior, los estados de “single particle” (sp) (pero no
los estados de multiples particulas) en H son formalmente idénticos a los estados
PW mientras que los elementos de matriz sp de los operadores 7,7 son iguales a los
elementos de matriz de Hg, T" respectivamente (incluyendo J|¥) = 0 para |¥) € H,,
siendo formalmente equivalente a la Ec. (5.1) para estados sp). Note, sin embargo,
que la estructura de producto entre “tiempo” y ‘“resto”, esencial para “condicionar en
un reloj”; se pierde por completo [2].

También cabe destacar que la segunda cuantizacion del espacio de Hilbert con-
vencional §) de la particula, que esta generado por estados |¢), conduce también a
una teoria de campos, ahora en un espacio de Fock $ generado por operadores

a'(q) de tal manera que |¢) = a(q)|0). Este es el sistema descrito en el presente
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2 5" o)

[
>

Second Quantization

1~y

»

14

Figura 5.1.1: A la izquierda, las dos descripciones de una particula: La convencional en el espacio de
Hilbert $) (panel superior) y la descripcion generalizada en espacio-tiempo en el espacio de Hilbert
K (panel inferior). A la derecha, la segunda cuantizacion de los esquemas anteriores. La segunda
cuantizacion de § conduce a una teoria de campos en un espacio de Hilbert convencional % que es
isomorfo a un producto tensorial en el espacio de copias de $, es decir, H" ~ & ¢ 9q (panel superior
derecho). La segunda cuantizacion de K conduce en cambio a un espacio extendido H ~ ), H7 =
®t’ ¢ 9ig donde la estructura de producto tensorial se aplica tanto al espacio como al tiempo y
es posible representar configuraciones de campo en espacio-tiempo (panel inferior derecho). La
descripcion del campo en este espacio de Hilbert extendido se puede obtener inmediatamente

aplicando el formalismo presentado en este capitulo a este caso particular.

Hilbert H: J en la Ec. (5.5) es precisamente la accién cuantica espacio-temporal

que corresponde al Hamiltoniano

1 = [ dady' | Hlq)al (¢ )ala) (5.8)

obtenido mediante la segunda cuantizaciéon del Hamiltoniano de la particula. La
relacion entre estos diferentes espacios de Hilbert se representa en la Fig. 5.1.1.
Finalmente, cabe mencionar que mientras en % la estructura de producto apli-

cada al espacio permite representar configuraciones de campo en un tiempo dado
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como estados propios de ¢(q) = M\g@ [83]

o) = exp| -~ [ dala’t@)a’ (@) - 220(a))] |0} (59)

en H la estructura de producto se extiende al tiempo permitiendo representar con-

figuraciones espacio-temporales

|¢(q, 1)) = exp {—%/dtdq [AT(t, q)(A"(t, ) — 2\/5¢(t7Q))]] 2) . (5.10)

5.1.1 Consideraciones Relativistas

El formalismo presente es particularmente adecuado para una interpretacion geo-
métrica de los sitios espacio-temporales: Para ¢ — x y A(t,q) — A(x), definimos el
operador de boosts U(A) como UT(A)A(z)U(A) = A(Az). El algebra ampliada

[A(x), AT(y)] = 00 (z — y) (5.11)

se conserva explicitamente cuando A es una transformacion de Lorentz. Esto produce

U(N)|g(z)) = |¢p(A~'z)) para el estado de campo coherente

6(2)) = exp [ / d4x¢<x>AT<x>] ) (5.12)

que es la propiedad de transformacion correcta de un estado que representa una
configuracion de campo (escalar) en el espacio-tiempo (un razonamiento similar se
sostiene para los estados (5.10) para ¢ — x).

Para introducir subespacios fisicos invariantes podemos emplear una propuesta
previa de los autores |2] (més recientemente presentada también en [84]) que con-
siste en considerar una versiéon de segunda cuantizacion de la restriccion H®|¥) :=
(PP, — m3)|¥) = 0 (y P® > 0) donde los operadores hermitianos P* satisfacen
[X*#, P,] =" con X° = T el operador de tiempo PW [2]. La restriccion H*|¥) = (

también surge del tratamiento de sistemas invariantes de reparametrizacion pero con-

siderando ahora la accién clasica S = —myg [ dr 49, 82]. Este tratamiento conduce
a
HE s Joy = — / diz AT(2) (0% + m2)A(z) (5.13)
de tal manera que [U(A), Jra] = 0 e implica
(9(2)|Trel|H(2)) .
=S , 5.14
e OO ) (5.14)
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donde S[p(x), ¢*(z)] = — [ d*z ¢*(x)(0* + m3)¢p(x) es la accion cldsica de un campo
escalar libre (nog = 1, ¢ = 1). El resultado (5.14) sugiere una profunda conexion
entre técnicas de particulas y una formulacion de la QFT en este entorno ampliado.

Esta nueva forma de la acciéon cuantica también admite una descomposicion
normal de tal manera que [Jq, AT(m? p)] = (m? — m)A"(m?, p) implicando en
cada sector de masa el producto invariante tridimensional [2|. Como consecuencia,
también emergen los conmutadores correctos entre operadores de campo fisicos (el
componente de ¢(r) oc A(x) + AT(z) a masa fija) [3].

Vemos que la posibilidad de representar configuraciones espacio-temporales de
los campos abre la posibilidad de preservar explicitamente las simetrias del espacio-
tiempo (covarianza de Lorentz en el ejemplo anterior) a nivel del espacio de Hilbert
y en particular en procesos de cuantizacion. Como consecuencia fundamental, el
producto invariante correcto emerge en H, a partir del producto interno global

(estandar) de H en el caso considerado [2].

5.2 Formalismo

5.2.1 Espacio de Hilbert

Las consideraciones anteriores, si bien introductorias, muestran dos aspectos nota-
bles: en primer lugar, un formalismo de varias particulas que contenga al de PW
en el subespacio de una particula esta asociado a algebras simétricas en el espacio-
tiempo. En segundo lugar, surge naturalmente el concepto de accién cuantica, que
solo esté definida en este espacio de Hilbert ampliado. A partir de ahora ya nos
desligaremos del formalismo de PW y, basados en [3], haremos una construccion que
postula lo anterior como punto de partida. Comencemos primero por discutir mejor
qué significa tener dlgebras en espacio-tiempo y la estructura del espacio de Hilbert.

Introducimos en esta seccién un espacio de Hilbert ‘H adecuado para representar
trayectorias (ver Fig. 5.2.1) de un conjunto de bosones definidos por operadores a;,
J» laisa]
i puede representar una posicion discretizada x), que generan un espacio de Fock

“convencional” § de estados [],(al)™

al, la;,al] = 05, [a;,a;] = 0, para i, j nimeros cuanticos arbitrarios (por ejemplo,

0) (con @;]0) = 0). Con este proposito defi-
nimos operadores de creacion/aniquilacion A;(t), A;(t) en “cada’ corte temporal,
satisfaciendo [A4;(t), A;(t)] =0y

[Ai(t), AL(t)] = 6(t — )65, (5.15)
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con A;(t)|Q) = 0Vt € [-T/2,T/2], que generan un espacio de Fock extendido H.
Aqui |©2) = @), |0)¢;, donde el producto tensorial se debe interpretar como el limite
continuo de sitios temporales discretos igualmente espaciados con espaciamiento e,
tal que t; = €j, j € Z'y Ai(t;) = Au,/ /e, con Ay, |0)y, =0y [Aitj,Aj.,tj,] = 5,0
El algebra de la Ec. (5.15) se recupera de §(t; —t;) = 0,;:/e.
El espacio de Hilbert extendido H de estados []; (ALJ,)”"J‘

escribirse como H = ) ; 9, con $y, el espacio de Fock generado por los operadores

2) puede entonces

ALJ_ (fijo j). También cabe sefalar que podemos escribir § = ), $; y entonces
H = ® ij
1,J
con £ = Hit;, que es la simetria del espacio de Hilbert buscada entre el “espacio”
(indice @) y el tiempo (ver Fig. 5.2.1).

=10 = [dvl

fa(e) = %) = [ D) vla0)a(e)

2 9 H
@ Y- | t

_ o —e—|q,)
| eI ®
e lat,)

X J ®
L el
Z ®
—&— |q) L€ q,)

Figura 5.2.1: Representacion de dos particulas clasicas (distinguibles) moviéndose en el espacio-

tiempo plano cuyas trayectorias pueden parametrizarse como (t, g4 (t), g»(t)) (a la izquierda). La MC
convencional describe esta situacion empleando una base de estados de producto |q) = |ga) ® |gs)
que representan las posiciones en un tiempo dado en el espacio de Hilbert §. En cambio, en H se
representan los caminos completos por [g(t)) = |¢a(t)) ® [gv(t)) < &); ¢at;) @ lane;) (Ec. (5.21)),
donde |g;(t)) oc @; [git;) (a la derecha) que establece una aplicacién completamente simétrica del
producto tensorial a los grados de libertad espaciales y temporales. Ademés, la evolucion temporal
clasica q(t) — q(t + At) se puede ver desde un punto de vista pasivo como un desplazamiento
t — t — At del conjunto completo del “manifold”. En nuestra formulacién, la evolucion temporal
cuéntica emerge de eP+(=2%|q(t)) = |q(t + At)). La simetria entre espacio y tiempo se hace atin
maés evidente en el panel inferior con un ejemplo diferente: El producto tensorial en espacio de una

teoria cuantica de campos convencional se extiende aqui al espacio-tiempo.

Esta construccion nos permite especificar una trayectoria clasica en el espacio de
fases, dentro de los limites impuestos por la incerteza cuantica, en términos de un

estado historia coherente factorizado de la forma:
la(t)) := exp {/ dt o(t) - AT(t)] 1©2) (5.16)
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donde a(t) - At(t) = 32, au(t) Al (1) (0 un integral para etiquetas continuas).
Aquiexp [ [ dt O(t)] = @, exp [e O(t;)], donde O(t) = O(A(t), A(t),t), tal que

A(t)|(t)) = e(t)|ex(t)) - (5.17)

Note que |a(t)) = e*4'|Q), donde AT = [dta(t) - Af(t)/a con a = [[ dt|e(t)|?]?,
es un operador colectivo de creacion de bosones de trayectoria. El conjunto (so-

bre)completo de estas trayectorias genera H:
/Dga@) e [0 () ()] = 1 (5.18)

donde D*«(t) := H” Pailty)

s
Otras bases alternativas son proporcionadas, por ejemplo, por operadores Q(t) =

A(t)j;z;*(t)? P(t) = %\/‘;T(t), de tal manera que

[Qi(1), Pi(t')] = id(t — 1)y (5.19)

(establecemos i = 1). Entonces podemos definir los estados propios correspondientes

lg(t)), |p(t)), que satisfacen

Q(t)lq(t)) =qt)lq(t)), P@)|p(t)) =p@)|p)). (5.20)

Explicitamente, podemos escribir 3, [83, 85]
q(t)) = eXP{ /thT( )- (AT(1) — 2v2q(1)) | 2) (5.21)

de tal manera que |q(t)) = &;jla;,)e, con gi; = Veq(ty), v = Y elati/2 y
t;{as;|ai;);, = 6(q — q'). La relaciéon de completitud se lee

/vq< ~JlaOF | (1)) q(t)] = 1

con Dq(t) = [, dqi(t;)\/me. Férmulas similares se aplican para |p(t)). Estas ba-
ses espacio-temporales permiten un enfoque novedoso para las representaciones de

integrales de camino, como se discutiré en el siguiente capitulo.

Tyn
3El estado propio de posicién canénico |g) se puede expresar como |q) = >~ (nlq >(a ) |0) =

—a? —q? “;“2
6\4/77/2 T|0> [83]. El caso multidimensional |q) = ieé/%/ze’ z J”fq‘“i\O) %

-1 tlai— : S . .
e~ 2 ai(e 2‘/iq‘)|0> se puede generalizar inmediatamente a campos continuos [85].
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5.2.2 Traslaciones en el Tiempo y el operador Accién

Consideremos el generador de traslaciones en el tiempo P; que en el presente esce-

nario se define

P = /dw wAN (W) - A(w) = /dt Af(t) - iA(1) (5.22)
=1 [P @ - Q) ) (52

donde A( ) es la transformada de Fourier ( T) de A(t), de tal manera que A(t) =

f ) JEA(W)e ™y iA(t f o G A(w)we™™" coincide con la derivada “de sitio”.

Asumlmos condiciones perlodlcas A(—T/ 2) = A(T1/2). El operador P; satisface
e PR A()e PR = A(t + At),, (5.24)
lo que para At — 0 conduce a
[Py, A(t)] = —iA(t), (5.25)

en acuerdo con la Ec. (5.22).

Notablemente, el integrando en (5.23) tiene la forma de la transformacion de
Legendre que conecta el Hamiltoniano con el Lagrangiano en la mecanica clésica.
Esto sugiere la introducciéon de un nuevo objeto que para la teoria trivial se reduce
a Pti

J = /dt [AT(t) -1 A(t) — H(A(t), AT(2),1)], (5.26)

que serd indicado como operador de accidn cudntica espacio-temporal (no confundir
con la accion de Schwinger 4, [86]) por su coincidencia formal con la clasica. Aqui
[dtH(A(t), AT(t),t) = ZtH(At,AI,t) para H(a,a',t) un Hamiltoniano (cuanti-

co) convencional (y dt = €), de acuerdo con la convencién de que J tenga unidades

4En la formulacién de Schwinger, un conjunto completo de operadores conmutantes esta dispo-
nible en superficies espaciales [86]. Esto implica conmutadores no nulos para operadores de campo
causalmente conectados. En cambio, cualquier conmutador de tiempo desigual entre A(t) y Af(¢)
se anula. Las algebras convencionales se recuperan “a posteriori” en los subespacios fisicos. Ade-
mas, la integracion en J involucra todos los valores de tiempo sin ninguna referencia a estados

particulares.
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de P,. Un resultado notable es que J vy P; estan relacionados unitariamente’:

J =VPy = /dw wA(w) - A(w) (5.27a)
_ / dt Al(t) - iAt) (5.27b)
=4 [P G0 - Q) P, (5.27¢)
donde
V! = P exp| i / dt /t: 4t H(A(L), A'(1).1)] (5.28)

es un producto tensorial en el tiempo de operadores convencionales de evolucion
temporal U(t, tg) = T’ exp [—z’ fti dt', H(a,a', t’)] (T’ denota ordenamiento temporal
aplicado a t') y

Aw)=VAWw)Y, A@) =VIA@)V, (5.29)

con A(t) la FT de A(w) (del mismo modo Q(t) = VIQ(t)V, P(t) = VIP(t)V).
Aqui ty es un tiempo de referencia tal que A(to) = A(to). En particular, para H

independiente del tiempo,

Vi = exp [—z’/dt (t —to)H(A(t), AT())] . (5.30)

Dado que en este contexto J es el operador que define una evoluciéon temporal
particular, el resultado (5.27a) esta relacionando unitariamente todas las teorias con
la trivial. Esto también significa que en H todas las teorias fisicas parecen estar
relacionadas unitariamente entre si. Tal resultado general es una consecuencia de la
notable propiedad de las acciones cuanticas espacio-temporales de tener el mismo es-
pectro independientemente del Hamiltoniano. Esto deberia compararse con el hecho
obvio de que diferentes Hamiltonianos tienen diferentes espectros, lo que también
significa que tal relaciéon unitaria entre teorias nunca podria haberse revelado en una
formulaciéon Hamiltoniana.

La prueba de (5.27a) se basa en las propiedades bésicas de P, como generador
de traslaciones en el tiempo y supone condiciones periddicas para T finito (algo que
en principio siempre se puede forzar o implementar con un H bien comportado en

el limite T'— o0). Observe que las Ecs. (5.24) y (5.27) implican

TR AL e A = At + Al) (5.31)

®No incluiremos la prueba original dada en [3]. En cambio, se presentan resultados anilogos
en el capitulo siguiente usando una estrategia diferente. Sin embargo, puede verse este resultado

aplicado al caso de acciones cuadraticas en la siguiente subsecciéon
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de tal manera que J es el generador de traslaciones en el tiempo en la base normal

para un Hamiltoniano no nulo. Por lo tanto, los operadores A(t) satisfacen
(7, A(t)] = —iA(t), (5.32)

de acuerdo con (5.27b). De hecho, son los tnicos operadores de aniquilacion que
cumplen (5.32) y A(ty) = A(t). La unicidad es una consecuencia inmediata de
(5.31) que implica

A(t) = 72 Atg)e A (5.33)

cuando At = t — ty. La relacion (5.33) es un resultado notable por si mismo que
proporciona una expansion en potencias de At del operador “evolucionado” VI A(¢)V.

En el contexto del enfoque de historias consistentes, y para el caso particular de
un oscilador armoénico independiente del tiempo, se introdujo una accién analoga
que cumple con la Ec. (5.33) en [87].

También observamos que para un operador periodico general (o bien comportado
en el limite 7 — o0) U = exp| [ dt, M(A(t), AT(t),t)], la Ec. (5.24) produce
ou
ol
Para M(A(t), A(t)) independiente del tiempo,[P;, U] = 0. Si iM(A(t), AT(t)) tam-

bién es hermitiano, esto implica UTP,U = P,, es decir, P, es invariante bajo transfor-

[P, U] = (5.34)

maciones candnicas independientes del tiempo A(t) — UT A(t)U. Esto significa que

sin imponer condiciones iniciales, la forma diagonal (5.27a) no es tunica e implica
[u,/dt, H(A(), AT(t), )] =0=[U,T] =0. (5.35)

En particular, una simetria independiente del tiempo de H, [M(a,a’), H(t)] = 0,
es una simetria de J: [U,J] = 0, para e M(A(t), AT(t)) = M(A,, A]). Por otro

PP At

lado, para H independiente del tiempo se sigue de la Ec. (5.24) que e satisface

la Ec. (5.35), es decir, J es invariante bajo traducciones en el tiempo y por lo tanto
[Py, JT] = 0.

Finalmente, es apropiado mencionar que ahora son posibles diferentes definicio-
nes de localizacion temporal: Como ocurre con la localizacion espacial en las teorias
cuanticas de campos (QFT) con importantes implicaciones en las relaciones de in-
certidumbre espacial |53, 88|, la localizacion temporal es ahora un aspecto emergente
de la “rejilla”. Diferentes definiciones de esta nociéon también implicarian diferentes
relaciones de incertidumbre energia-tiempo de acuerdo con los operadores involucra-

dos. Un ejemplo es proporcionado por el operador de tiempo de una sola particula
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(sp) T := [dttAT(t)- A(t) que se reduce en estados sp al operador de Page y Woot-
ters (PW) [14] empleado en otros formalismos recientes con tiempo cuantico [1, 2,

29, 44, 79, 89-92]. En este caso, se puede demostrar que
[P, T] =N, (5.36)

donde N := [dtAT(t) - A(t) = [dw AT(w) - A(w) es el operador nimero (por
ejemplo, N(A!(£))"|Q) = n;(Al(£))™|Q)). Entonces ATAP, > SN a través de

la desigualdad de Cauchy—Schwarz en H. A pesar de la importancia del par energia-

tiempo en la MC [93], este tratamiento generalmente se evita por la imposibilidad

de introducir un operador de tiempo en £ [93-95].

5.2.3 El caso cuadratico

En lo siguiente, desarrollamos explicitamente el caso de teorias bosénicas cuadraticas

como un ejemplo importante de (5.26). Para un Hamiltoniano cuadrético general

H(a, aT) — % (a’r a) (wﬂ(t) ’V(t)) (a> _ %¢TK(t)¢

vt wi(t)) \af

donde wy (7y) son matrices hermitianas (simétricas) y ¥ = (&) satisface

= [, '] = ! — (")) = (IOL _01> ,

la accion cuantica (5.26) se convierte en
7 =4 [awionae - wiorowe), (5.37)

con W(t) = (A(t), AT(t)):, [®(t), ®T(t)] = II§(t — ). Se verifica primero que bajo
cualquier transformacion de Bogoliubov (BT) constante ¥(t) — Wy¥(¢), donde
WJ IIW, = II (transformacion canonica lineal independiente del tiempo), la forma

de J se preserva (con K — WJKWj). Se ve entonces que la forma diagonal (5.27a)
J=1 /dt & ()i () = 4 /dww B (0) B (W), (5.38)
puede lograrse aplicando en (5.37) una BT diagonal en tiempo

(1) = WH)B(t), (5.39)

S Para ¢; = (a; + a})/V2, pi = i(a] — a;))V2, [gi,p;] = i0ij, H = 3 2 tigpipj + vijqiq; +
ui;(gip; + pjgi) con t,v matrices simétricas, y las matrices ¢,v,u directamente relacionadas con
Wo, Y [96]
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donde W (t) satisface la ecuacion de Heisenberg 7

W (t) = ILK ()W (1) (5.40)
con W(ty) = 1 de modo que W(ty) = ¥(t,) (implicando W (t)[IW (t) = II Vt).
Esto esta de acuerdo con las Ecs. (5.28)—(5.29) ya que en el presente caso V =
exp[§ [dt®T(t)M(t)®(t)] con e ™MD =W (t), y

VB = $(t), VIE(W)V = ¥(w) (5.41)

son BTs equivalentes a (5.39).
Esta es la tinica solucion que satisface la condicion inicial A(ty) = A(tg), como

probamos en la Ec. (5.33).

5.3 Discusion

Vimos como la segunda cuantizacion de PW nos lleva directamente a definir un
operador cuantico que corresponde clasicamente al concepto de acciéon en el espacio
de fases (en las variables posicion y momento). Notablemente, la parte de la accion
que tiene la forma de la transformada de Legendre, es el generador de traslaciones
temporales. Cabe diferenciar al mismo del Hamiltoniano: el operador P; traslada
a lo largo de los espacio de Hilbert de tiempo y, en este sentido, su definicion es
geométrica no dindmica. Esto esta asociado al hecho de que el tiempo, si bien es
un parametro clasico, tiene ahora el mismo significado que el espacio en teorias de
campos: no es mas que un indice que etiqueta el espacio de Hilbert en el que actia
un dado operador. Este es también el motivo principal por el cual podemos definir
el operador accién en el espacio ampliado y no en el convencional: las acciones estan
“off-shell” esto es, los operadores que la definen no tienen relaciéon alguna con el
esquema de Heisenberg y de hecho son independientes para tiempos distintos. En
la formulacién usual, no es ttil considerar por ejemplo una integral en tiempo del
Hamiltoniano, pues operadores a tiempos distintos no son independientes.

En este capitulo se han estudiando distintas propiedades de las acciones cuanti-
cas y aclarado el espacio de Hilbert en el que estas estan definidas. Por otro lado,
he dejado afuera las propuestas publicadas en [3] que involucran recuperar la evo-

lucién unitaria convencional. La principal razén para omitir esa discusion es que la

7 Ahora asumimos que ITK (¢) tiene valores propios reales, lo que estd asegurado por K(t)

definido positivo [96], para garantizar condiciones periodicas.
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misma estaba principalmente fundamentada en intentar generalizar el concepto de
subespacio fisico del formalismo de PW. Si bien dicha generalizacién es en principio
siempre posible, no resulta particularmente ttil para teorias no cuadraticas. En cam-
bio, en el siguiente capitulo se presenta un camino mucho mas natural y relevante
para nuestros propositos para conectar el concepto de accion con la MC tradicional,

y que permite recuperar la dindmica asociada a evoluciones unitarias.
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Integrales de Feynman a partir de ac-

clones cuanticas

“There is a pleasure in recognizing old things from a new point of view.”

Richard P. Feynman

Es bien sabido que el concepto de accién clasica aparece en la MC a través
de las integrales de Feynman. A diferencia de nuestras acciones cuanticas, en la
formulacion de Feynman la accién no estd asociada a un observable. En cambio,
las propiedades cuanticas aparecen como consecuencia de la “suma sobre historias”
involucrada. En particular, esto significa que la accién necesita ser evaluada por
fuera de las trayectorias que la extremizan, esto es de las trayectorias clasicas.

A priori, ninguno de estos conceptos parece relacionarse directamente con las
ideas de PW y/o con nuestras acciones cuanticas. Notablemente, como probaremos
en esta seccion siguiendo [4] existe una clara conexion: el concepto de accion cuéntica
y los espacios de Hilbert extendidos proveen de un significado cuantico canénico (en-
tiéndase como asociado a la matematica de la formulacion canénica) a las integrales

de Feynman.

6.1 Suma sobre historias como traza cuantica

6.1.1 “Time-slicing” en espacios de Hilbert

Comenzamos nuestra exposicion considerando el ejemplo comun de “path integrals”
(PI) que describen una sola particula en 1d. Todas las ideas pueden generalizarse
inmediatamente a sistemas bosonicos generales como senalamos a lo largo de la sec-

cién. En la seccion 6.1.4 también comentamos cémo nuestro enfoque es mas general
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yva que se aplica a cualquier sistema mecénico cuantico, incluidos los de dimension
finita.

Un procedimiento estdndar para obtener la formulaciéon de Feynman a partir de
la canodnica es expresar el propagador como

N-1

N—-1
<q/’6 ZHT’Q H dg; H Qt+1|€_lH€|Qt> (6.1)
t=0

con H un Hamiltoniano independiente del tiempo, o = ¢q, v = ¢/, ¢ = T/N y donde
usamos [ dg|lg){g| = 1 (también fijamos i = 1). Cada término en el integrando
puede entonces relacionarse con la exponencial de la accién hasta primer orden en
e. Por otro lado, dado que el integrando es un producto de elementos de matriz de
e~"¢ tiene una representaciéon natural en un nuevo espacio de Hilbert H := ®.$),
construido sobre el producto tensorial de N copias del convencional §), una para

cada rebanada:

N-1
I (@rale ™ a) = (nae- - anl®Ss e Jqoqr - - qu1) = (e @ e q)
t=0
(6.2)
con |q) :=[qoq1 - --qn-1) = ®¢|q:) una base de estados cuanticos a los que podemos

referirnos como estados de trayectoria cudntica.

En la ultima igualdad hemos cambiado el orden de {(q; ... qx| a (d'| = (qna1 - - - qn—1]
de modo que tanto el ket |¢) como el bra (¢'| aparezcan en el Hilbert £ (que puede
identificarse con £)y). Esto se implementé mediante la aplicacion de un “operador

de traslacion temporal” unitario definido por

a1z av) = lanar - 1) (6.3)
Este operador traslada “geométricamente” las diferentes rebanadas de tiempo del
espacio de Hilbert, y no esta relacionado con la informaciéon dindmica proporcionada
por el Hamiltoniano. Como resultado, ha surgido naturalmente de la Ec. (6.2) el

operador cudntico adimensional S satisfaciendo
ezS — the ®t 0 e zHe' (64)

Es natural denominar & como acciéon cuantica (AC): integrar (6.2) en las variables

q: produce (ver Ec. (6.1)) el resultado ezacto

N-—-1
()" T|g) = / I da: (l¢|a) (6.50)

t=1

= Try [€|g)o(q|] (6.5b)
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donde Try denota la traza en el espacio de Hilbert extendido y |¢)0(¢'| = |¢)0(¢'| @120
1;. Vemos que la contribucién de una sola trayectoria (discreta) es el elemento de
matriz del operador e’ asociado con la trayectoria en cuestion. Asi, los elementos
de matriz de la AC estan tomando el papel de la accion clasica en la formulacion
convencional de PI. Ademaés, mientras la ecuacion (6.5a) es una suma clésica sobre
historias, representa una evaluacion particular de la traza cuéntica en (6.5b) que
emplea la base de trayectoria cuantica |g). Esto se puede ver insertando la relacion
de completitud [ [, d|q)(g] = 1 en (6.5b).

Para establecer un contacto directo con la formulaciéon de Feynman, consideremos
un Hamiltoniano estandar H = p?/2m + V(q). En este caso, el lado izquierdo en

(6.5a) puede expresarse como el conocido PI de Feynman [12], implicando

[ Pt = [ 11 da tie®la) = TouleSlaolall, 60

a(0)=q t=1

donde S, denota la accién clasica evaluada a lo largo de la trayectoria. Para un

N grande, el integrando en (6.5a) debe entonces volverse proporcional a e

Hfi;l dgq: < Dq(t). Por otro lado, la Ec. (6.6) se sostiene exactamente V N > 2 sin

con

interpolacion clésica entre ¢;, q:+1, lo que significa que en general los elementos de
matriz de § difieren de S.

Para mostrar explicitamente la relacion entre la AC y la clasica, notemos primero
que la definicion (6.3) implica

(ale|p) = T 5 g p) (6.7)

donde gy = qg, lo que revela una clara conexién entre los elementos de matriz de P;,
el generador de las traslaciones temporales, y una version discreta de la transformada
de Legendre clasica. Esto sigue directamente de la relacion canoénica (g|p) = e*4/+/21
aplicada aqui a |p) = ®@|p;) v |q), que produce (q|p) = e'2:P@ /(27)N/2 . Note
también que los estados |q), |p) son autoestados de los operadores ¢, p; actuando en
$: y globalmente satisfaciendo el algebra “extendida” (pero canoénica) [qq, py| = 0y
que puede usarse para definir H.

Para una particula libre con Hamiltoniano H = H(p) la ecuacion (6.7) se gene-
raliza exactamente a (q|e|p) = exp{i >_, €[pi(qi+1 — @) /€ — H(p:)]}{q|p) . En cam-
bio, para H = p?/2m + V(q) se puede usar una aproximacion de Trotter de primer

orden para obtener
(dle]a) = (d|¢"|a) + O(), (6.8)
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donde hemos definido €S := ¢iPr€ @, e~i(Fi/2m)ee=iV (ar)e Luego, usando la relacion de

completitud de p se obtiene

N-1
dp; . N=q
(d'e|q) = / H 5, P [ZEZ(tht - H (Ptaqt))] i

an=¢q'

, (6.9)

_ W exp [ie Z(%mqf —Via))

donde hemos usado (6.7) y con ¢ := (qi+1 — q:)/€. El resultado (6.8)-(6.9) es la

relacion anticipada entre los elementos de matriz de € y la accién clésica. La

q0=9

ecuacion (6.9) muestra que el PI de Feynman, rebanado en el tiempo, es igual a
Try [ ]g)o(d'|].

Destaquemos que los resultados anteriores son validos para sistemas bosoénicos
generales; ya que su generalizacion se sigue directamente extendiendo las algebras

convencionales, es decir
(45, pj] = 10ij — [qus, Prrj] = 10561 (6.10)

para 7, 7 nimeros cuanticos arbitrarios. Por ejemplo, si ¢« denota un indice espacial,
el algebra extendida es simétrica en el espacio-tiempo [3| (ver también sec. 6.2.3).
El caso de Hamiltonianos dependientes del tiempo también es sencillo, y se sigue
reemplazando en las Ecs. (6.2),(6.4) ®@;e~ "¢ — @,U|[(t + 1)¢, te] con las Ecs. (6.5,
6.9) manteniéndose. La consideracion a intervalos de evolucion T generales y /o pro-
pagadores que evolucionan un intervalo 77 < T se discute en 6.1, mientras que los

sistemas de dimension finita se consideran en 6.1.4.

6.1.2 Funciones de correlacién con orden temporal y térmicas

La formulacién PI proporciona un enfoque geométrico elegante para manejar fun-
ciones de correlacién que es simétrico en espacio y tiempo. Esto contrasta con el
enfoque convencional del espacio de Hilbert: la formulaciéon canénica define correla-
dores especificando los valores de tiempo de operadores en la imagen de Heisenberg,
mientras que la posicion de operadores en el espacio suele asociarse con “sitios” (y
por lo tanto con diferentes espacios de Hilbert). En cambio, la version PI de los
correladores solo implica la insercién de, por ejemplo, posiciones ¢ en ciertos pun-
tos del espacio-tiempo. En esta secciéon, mostramos como se puede desarrollar un
tratamiento simétrico en el espacio-tiempo similar dentro del espacio de Hilbert

extendido.
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Consideremos el producto tensorial de operadores de evolucion temporal
N-1 te
V=@V Us(te) = T" exp [_ iy / dt’ Ht(t’)] , (6.11)
t=0 V0

que es separable en tiempo y unitario (T’ denota ordenacién en el tiempo en la

variable t'). Su accion sobre un producto tensorial de operadores generales produce
V (2,09) V= 2,09 (1) (6.12)

con Og) (t) siendo el operador de Heisenberg evolucionado “#” en el tiempo t. Note
que el indice del sitio esta dictando la cantidad de evolucién.
Es notable que V relaciona P; con S de la siguiente manera (ver demostracion
en el Apéndice 6.2):
'S = Up(T)VieP ey . (6.13)

Esta expresion se puede utilizar para relacionar operadores S de diferentes teorias
también. Para la evolucion periodica Uy(T) = 1 y se recupera la relacion unitaria
discutida en [3]. Ademaés, (6.13) puede extenderse para considerar interacciones no
separables en el tiempo definidas por acoplamientos entre diferentes rebanadas de
tiempo, una posibilidad fisica que esta mas alla del alcance de la MC convencional.

El resultado (6.13) es particularmente util porque permite la introduccion de la
evolucion temporal a través de (6.12) en relaciones donde el operador de traslacion
temporal esta involucrado. En particular, proporciona una expresion general para
funciones de correlacion ordenadas en el tiempo, como se muestra en el Apéndice

6.2. Para la particula 1d de la seccion 6.1.1, esto se lee:

N-1
(@ T|T[gn(t1)-- an(ta)]]a) =/ L[l dgy qr, - qu, (| |a) = Try [e"(@4q0)[@)o(d ],

(6.14)

con |¢,T) = U'(T)|q) y ®, indicando que solo se incluyen operadores en los tiem-
pos ti,...t, (e identidades de lo contrario) de modo que ®}4;|q) = q,-.- g1, |q) (ver
Fig. 6.1.1). La evolucion del estado final (¢'| surge del factor de borde Uy(T) en
(6.13) mientras que el ordenamiento temporal emerge del ordenamiento de los si-
tios temporales. La traza espacio-temporal (6.14) generaliza la Ec. (6.5) y su forma
refleja la expresion PI correspondiente. También comparte la misma interpretacion
geométrica del PI, ahora valida a nivel del espacio de Hilbert.

Ya que el resultado (6.13) es una consecuencia directa de (6.3), se sostiene para

sistemas generales e incluso si V no es unitario (con VI — V=1), lo cual en particular
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Figura 6.1.1: Representacion pictérica de los operadores involucrados en la representacion extendida
de (¢, T|T[qn(t1)qn(t2)]|q) para ty > t;. Se ha “insertado” un operador apropiado en cada Hilbert
$¢. También se muestra una contribucion de una trayectoria discreta ¢(t) para enfatizar la similitud

entre la interpretacion usual y la construccion del espacio de Hilbert.

permite representar funciones de particion y funciones de correlacion térmicas. Para

obtener las primeras, notamos que la Ec. (6.5) implica, para un H general,
Tre[e " H7] = Tryle']. (6.15)

Entonces, para —iHT — —fH la ecuacion (6.15) produce la funcion de particion
de H. Ademés, utilizando las Ecs. (6.13) y (6.30), ahora obtenemos, estableciendo
(...)g:=Trle PH .. ]/Tr[e PH],

Ty [ &) q]

<TGQ(61>W(](0n)>B - Tl"’;.[[eis] (616)

que es la funcion de correlacion termodindmica de estados térmicos o< e PH. (aqui,
6 = it). Note que a diferencia de la Ec. (6.14) no estamos especificando ningan
estado inicial (final) en la rebanada 0 ya que la informacion del estado térmico ya
esté codificada dentro de €% con Uy(T) — e #H#, VT — V~Lenla Ec. (6.13). De hecho,
la linealidad y generalidad de las expresiones de la traza implican (ver también 6.1.4)
que el estado térmico en si mismo se puede obtener como una traza parcial (sobre
todos los modos excepto aquellos en ¢t = 0) del exponencial del operador de accién

cuantica !: '
_ e PH _ Trez [€%]
Trs [e=PH] - Ty [e]

La extension al caso de nimeros cuanticos adicionales ¢ — ¢;, p — p; es directa

p (6.17)

y simétrica en espacio y tiempo (las variables extendidas son ¢, p;; segun (6.10)).
De hecho, remarquemos que cuando se consideran correladores de igual tiempo, por

ejemplo, de dos puntos, se sostiene lo siguiente:

<Q¢Qj>6 = <QOiQOj>H ) <p7;pj>ﬂ = <P0ip0j>9{ (6-18)

!Note que la rotacion de Wick no afecta a e'”t€, tal que ¢® = P+ @, e H¢ en (6.16)-(6.17),
con € = f/N.
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donde (... )y := Tr[e’S ...]/Tr[e'] en acuerdo con (6.17). En este caso, tanto el lado
izquierdo como el lado derecho son correladores en el sentido tradicional, como los
que definen el entrelazamiento espacial. En cambio, cuando consideramos operadores

en diferentes tiempos, las expresiones se convierten en

<T49Qi<91)%'(9n)>ﬂ - <Qt1iQt2j>H7 <T0Pi(91)pj(9n)>ﬁ - <pt1ipt2j>H7 (6-19)

lo que, desde la perspectiva convencional (lado izquierdo), ya no son correladores
genuinos (por ejemplo, el producto de operadores en general se vuelve no hermitico,
incluso para tiempo real). De manera notable, desde la perspectiva de H (el lado
derecho), nada ha cambiado y estos valores medios siguen siendo correladores “atem-
porales” de operadores hermiticos. Esto demuestra que la informacion sobre si una
separacion entre operadores es espacial o temporal esta contenida en la AC misma.

Note también que el estado reducido py := Try[p] donde la traza parcial es sobre
modos fuera de una regiéon V' ahora puede recuperarse de

Trt;éo,f/ [eis]

py = ———— (6.20)
Tl"q.[ [61'5]

lo cual es una traza parcial en el espacio-tiempo fuera de la region de interés en el
espacio-tiempo. Para acciones cuadraticas, este resultado se sigue de los correlado-
res previos solos. Como novedad, el formalismo permite considerar trazas parciales
sobre regiones generales del espacio-tiempo. En principio, solo aquellas asociadas
con hipersuperficies espaciales corresponderian a estados cuanticos convencionales
y entropias reales, pero la traza parcial esta bien definida en general. Curiosamen-
te, investigaciones recientes [97, 98| sobre las conexiones entre el entrelazamiento
temporal y la geometria en el contexto de la correspondencia dS/CFT utilizan ma-
trices de densidad reducidas no hermiticas (en el espacio de Hilbert convencional §)

y “entropias” de entrelazamiento complejas (esencialmente ya que una “distancia’

temporal es imaginaria).

6.1.3 Bases extendidas y distintas representaciones de Inte-

grales de camino

Dado que las Ecs. (6.5b)—(6.6) y (6.14)—(6.16) se expresan en términos de trazas,
diferentes bases del presente ‘H extendido, ahora pueden ser empleadas para calcu-
larlas. Estas diferentes bases estan formadas por un conjunto completo de estados
extendidos, es decir, estados en H = ®,$);. Incluyen bases separables en el tiempo,

como la formada por los estados |q) empleados en la secciéon 6.1.1 (que genera el
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usual “PI del espacio de configuracion”), asi como, por supuesto, bases entrelazadas
en el tiempo, formadas por combinaciones lineales irreducibles de estados producto.
Ahora es conveniente definir operadores de aniquilacion (y creacion) en el sitio

temporal t,
Ap = 6i¢(77Qt + ipt/n)/\@ (6.21)

para 1, ¢ € R constantes, satisfaciendo [A;, AI,] = 0y . Denominaremos su vacio como
|©2) = ®]0;), que es un estado de trayectoria separable en el tiempo. Los estados
extendidos generales se obtienen asi por la aplicacion de operadores de creaciéon sobre
el vacio. En particular, para n = ¢ = 1, |q) = exp|—5 >, Al(AT — Zﬂqt)} 2
[3], mostrando nuevamente que las trayectorias cuanticas son estados extendidos
particulares (y separables).

También podemos emplear una base separable de “estados coherentes de trayec-

toria”
o) = eXp{ [ ZatA” }\Q) = ®qJou)e (6.22)

para |a); un estado coherente convencional (no normalizado) en $), tal que

2
JITEe = oy al =
™
t

y Aija) = a4]a). La integral resultante puede relacionarse facilmente con PI de

estados coherentes discretizados (CSPI) bajo la aproximacion usual de e pequetio

—ieH(a,at —ieH N (a,a®)

(ale o) ~ e para H = Hy con Hy =: Hy : ordenado normalmen-

te. De hecho,

ale|a , ot —at . ,
% ~ €exp [ZGZ (——tay — Hy (o, at+1))} = e, (6.23)
t

donde S es la accién clasica (en rebanadas de tiempo) para Hy a lo largo de la
trayectoria definida por |a).

Por otro lado, la accién no separable del operador de traslacion temporal sugiere
la introduccion de nuevas bases no locales en el tiempo: definimos a través de la

Transformada de Fourier (FT) los operadores
Ay = 2y et (6.24)
t

con w, = 2mn/T para n € Z, y un “vacio extendido” [Q2) definido por A,|Q) =
A;|Q2) = 0. Por lo tanto, podemos escribir [3]

ei'Pte — e’iezn wnAILAn , (625)
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que claramente satisface e/7t¢O,e~ "¢ = O,y para O, = A,, y por lo tanto también
para cualquier operador local en el tiempo como ¢ y p;. Esta forma normal de et
es invariante bajo transformaciones canonicas independientes del tiempo [3] (y por
lo tanto independiente del parametro n en A;). Y para w,,w_, tomando valores
simétricos alrededor de 0, la condicién [Py, Y, H] = 0 (y la invarianza de la forma
normal de P;) también se verifica.

El mismo estado coherente (6.22) puede reescribirse en la base de Fourier como
la) = eXn “”AL\Q) para a,, := Y, €“"*“a; /\/N. Si usamos la Ec. (6.25) y evaluamos
la traza (6.15) en esta base, se obtiene la expansion tipo Matsubara del PI de estado
coherente [99] (las frecuencias w, en P; son precisamente las frecuencias de Mastu-
bara). Dado que los CSPI aqui surgen de las bases (6.22), vemos que las expansiones
tipo Matsubara en el espacio de funciones clésicas corresponden a un cambio de base
no local en el tiempo en H.

Los modos de Fourier también proporcionan una expansion diferente para las
AC. En particular, para un oscilador armoénico de masa m y frecuencia w,

P2 1 1
Ht:ﬁ+§mw qt—w<A1At+§),

permiten una evaluaciéon directa de la traza en la base de los autoestados de S: usan-
do S, AJA, = 3 Al A, (y n = \/mw) podemos escribir directamente el operador
AC en la forma normal
S=e) [(wn—w)ALA, —w/2]. (6.26)
Vemos que la AC es diagonal en la base no local en el tiempo|n) =TT, [(A6)™ /v/Tin!]|2)
que satisface Al A,|n) = 7,|n). Al usar esta base de Fock para calcular la traza ob-
tenemos
, 1 1
T S S o sz/2 _ ) 6.27
re Z(n\e n) =e H =~ YGsm@r/d) (6.27)

Uno reconoce inmediatamente la “funcion de particion” del oscilador armoénico, en
concordancia con la Ec. (6.15) (ver la prueba de (6.27) en el Apéndice 6.3).
Por otro lado, dado que la AC es un operador cuadratico bosénico, se sostiene
que
Tre® = e ™Tdet 1 — ], (6.28)

donde la matriz S esta definida por

S, All = ZS”A (6.29)
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Esto permite escribir la AC como & =), tAI,St/tAt, que, cuando lo comparamos

con (6.26), produce

€ twne(t—t . d
Sy = N Z(Wn — w)enelt=t) = e(z@ — w)étt/ .

Entonces, es claro que el producto en la Ec. (6.27) es el determinante en la Ec. (6.28),
con €(w, —w) los autovalores de la matriz S. Un procedimiento similar se puede em-

plear en (6.5) para calcular propagadores, por ejemplo, (0,7|0) = e~ T2 et [M] !

con M la matriz obtenida al remover la primera columna y fila de M = 1 — ¢S,
Como ejemplo final, al cambiar de la base de trayectoria de estados |g) a una

base de Fourier |q), donde ¢, = \/LN o, elnteg = g'., obtenemos el util PI sobre

coeficientes de Fourier g, [99, 100]. Escenarios mas complicados y ricos pueden ser

considerados, como sugieren interacciones mas complicadas.

6.1.4 Sistemas generales y consideraciones computacionales

cuanticas

Con respecto a los sistemas cuanticos generales, la aplicacion de las ideas principales
es directa y no necesariamente relacionada con los Pls: la idea clave es que hay una
conexion natural entre el producto interno en un espacio de Hilbert convencional )
y el producto interno en H = $H®". En completa generalidad, puede expresarse para
de la siguiente manera:
Try, [OVD 0Oy (i'|] = @|OND .00y = > (#1100 ie)
i1yein_1 (6.30)
= Try [P @, 0D i) (7']]

para Y, |i)(i| = 1 una base completa general y e"*|igiy...ix_1) = |ix_1igi1...). Por
ejemplo, en el caso més bésico,

Try[e™ (i) ('] ® 1)] = Try Z ePig)(i'j| = Z<z"jljz‘> = (@) (i) = (i')i) |

J J J

lo que muestra claramente la coincidencia de la traza en H = H ® $ con la suma de
Feynman sobre una amplitud intermedia [12]. Es interesante notar que para estos
“dos cortes” el trabajo anterior funciona esencialmente como la prueba SWAP [101].
También podemos entender el caso general como una generalizacion de esta prueba,
con el generador de traslaciones temporales construido a partir de la composicion
de operadores SWAP. Esto tiene una elegante representacion diagramatica en el

lenguaje de redes tensoriales como se muestra en la figura 6.1.2.
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)
] = —
w=(___ )
o =
o= 000 =
- Tl'[(i’p”] —
—-—(2)
oM 0=
oW

Tr[SWAP] —
SWAP = X

Figura 6.1.2: Representacion diagramatica del mapa que conecta trazas en la versiéon

extendida de la Mecanica Cuantica con las convencionales. El mapa que conecta trazas
de operadores dentro de H = ®.;h; con trazas de operadores en h se representa aqui en notaciéon
de red tensorial (las convenciones se muestran en d)). En a) mostramos esencialmente una prueba
SWAP. En b) una generalizacion de dos a tres “cortes”’. En cambio, en ¢) mostramos el ejemplo de
una funcion de correlacion de dos puntos, como la trata el formalismo. Es interesante notar que las
muchas sumas en el lado izquierdo del diagrama, representadas por las lineas en cada fila vertical
(correspondiendo cada una a una rebanada de tiempo diferente), son precisamente la suma sobre

iPre

historias. También se observa que la expansion diagraméatica muestra que e puede representarse

como la composicion de muchos SWAPs.
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Aunque no exista una nocién clésica de trayectoria, atin podemos asociar el in-
dice t con cortes de tiempo y referirnos a los estados |i) := ®;]i;) como trayectorias
cuanticas en analogia con |q) (cuando se consideran operadores evolucionados en el
tiempo en el lado izquierdo también surgird un orden temporal). En otras palabras,
siempre podemos establecer un mapa entre una version de la Mecanica Cuantica que
aplica una estructura de producto tensorial en el tiempo y la formulacién convencio-
nal. Esta conexion también se empled en [102] para investigar teoremas relacionados
con funcionales de decoherencia [103, 104] dentro de espacios de Hilbert “duplicados”
de la forma H ® H (nos interesamos en H en si y en los Pls).

Una consecuencia basica de la Ec. (6.30) y la linealidad de la traza es una expre-

sion para valores medios:
Tr[OM 0D p] = Tr[ePt(2,0)p0)] (6.31)

para p una matriz de densidad general en $3 y p(® el mismo operador actuando en el

corte inicial de H. Ademas, la definicion estandar de la traza parcial (6.30) implica
OWO? . = Tr [T @, OV (6.32)

lo que da lugar en particular a una “traza parcial en el tiempo” para estados:
p = Trigole®p¥)]. (6.33)

En cambio, para O® = e~*#¢ obtenemos una expresion para el operador de evolucion
temporal: e T = Tr;40[e®].

Dado que los productos tensoriales son una caracteristica basica subyacente en
la computacion cuantica [105], la capacidad de describir propiedades temporales y
térmicas mediante un “time-slicing en espacios de Hilbert” es un hecho computacional
interesante en si mismo. Ademas, dado que los principales resultados se expresan en
términos de trazas de operadores, submodelos de computacion cuéntica que emplean
el poder de un qubit [106, 107| (ver Fig. 2, arriba) se pueden aplicar al espacio
extendido. Como ejemplo, mostramos en la Fig. 2 (abajo) un circuito que calcula el 1.
i. de la Ec. (6.31) para operadores unitarios O a través de la “suma sobre historias”
implicita en el lado derecho. Estas herramientas también podrian ser ttiles para
expandir las discusiones sobre la conexiéon entre la dinamica de circuitos cuénticos
y los integrales de trayectoria [108|.

Las expresiones anteriores se aplican directamente tanto a sistemas finitos distin-

guibles como a sistemas bosonicos. La extension natural del formalismo a fermiones
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a) b) = Trle”e @, 00O = (04) + i)

Te[Up] = (02) + i(oy) |O> —@ EI

10)
P —p— L
H®N—1
p % = ‘172” i) (i + |
(t) iPtE
LX)l —A—] ®,0WetPre]
3 i) (iv| —F— l
—_—

Sum over histories

Figura 6.1.3: Protocolo para la evaluacion de PIs mediante la prueba de Hadamard.
a) Una prueba de Hadamard genérica. La traza Tr[Up], donde p es un estado arbitrario (puro
o mixto) de n qubits y U un operador unitario arbitrario en n qubits (por lo tanto, involucra
representaciones de matrices de 2" x 2") puede evaluarse midiendo los promedios (o) y (o) del
qubit auxiliar superior, inicialmente en un estado propio de o,. El circuito cuantico involucra solo
una puerta de Hadamard (H) y una puerta U controlada. b) La aplicacion del protocolo al lado
derecho de la Ec. (6.31). Cuando se aplica a PIs (U — €S, Ec. (6.4)) la “suma sobre historias” esta
implicita en los estados mixtos completos en la entrada. También se puede emplear un subconjunto
de estados, cubriendo un subconjunto de trayectorias. Las funciones de correlacion térmicas y/o la
“evolucion en tiempo imaginario” (no implementable mediante puertas unitarias) pueden calcularse
reemplazando p y los estados mixtos maximos 1/d a la izquierda por estados térmicos adecuados
(ver sec. 6.1.2).

requiere una version anticonmutativa del algebra (6.10) [3, 109], y es mayormente
directa: en espacios de Fock, un resultado como (6.30) puede reescribirse facilmente
en términos de contracciones de Wick y verse como una consecuencia directa de la
algebra extendida. Para fermiones relativistas, se puede emplear el formalismo de

“tiempo cuantico” desarrollado en [1] para la teoria de Dirac.

Como observacion final, notamos que los postulados de la Mecanica Cuantica
[105] son un conjunto de reglas que asignan contenido fisico a las expresiones del
espacio de Hilbert. Como consecuencia, en principio se traducen directamente a las
extendidas a través de las relaciones anteriores. La evolucién temporal unitaria ha
sido cubierta a lo largo del manuscrito, mientras que los efectos de una medicion
pueden, en principio, introducirse considerando la traza parcial del estado global
(sistema mas aparato de medicion) sometido a una evolucion entrelazante unitaria
[105]. Se pueden considerar expresiones de traza méas generales y AC en H (el uso
de una acciéon de segundo orden en la secciéon 6.2 es un ejemplo no trivial), pero su

potencial significado fisico queda para futuras investigaciones.
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6.2 Formalismo con tiempo continuo

6.2.1 Formalismo y limite de 7 chico

Ahora consideraremos la generalizacion al continuo de las ideas previas. Por simpli-
cidad, comenzamos la discusiéon volviendo al caso de una particula en 1d.
Necesitamos generalizar tanto los operadores como relaciones como (6.15). En el
primer caso, el limite continuo debe obtenerse por medios estandar pero aplicado a
operadores extendidos: definimos 2 ¢(t) := q;/+/€, p(t) := p;/+/€ de tal modo que en

el limite e — 0T
[q(t),p(t)] = io(t = 1). (6.34)

De manera similar, A(t) = A;/+/€ implicando [A(t), AT(¢')] — §(t — t'). Bajo este
limite, el generador de traslaciones temporales esta explicitamente relacionado con

la transformada de Legendre:
P = [deaiwid) =} [ dtp(t)ct) - a0)ile) (6.:35)

con A(t) =3, w,e ™A, /\/T y dt = e [3]. Esto es una consecuencia directa de la
Ec. (6.25). Notamos que (6.35) es equivalente a [ dt p(t)q(t).

Por otro lado, la generalizacion al continuo del “mapa” que conecta los productos
internos de $) y H (ver, por ejemplo, Ecs. (6.15-6.16)) no es trivial: mientras que
el generador de traslaciones temporales tiene un limite adecuado, el concepto de
trasladar un paso de tiempo ya no tiene sentido. Sin embargo, si introducimos una
escala de tiempo arbitraria 7, el operador apropiado que traslada una cantidad 7,
esté bien definido como ™7 y satisface e”*" A(t)e " = A(t + 7).

Anélogamente, podemos definir una AC

P()
2m

S, =7 / at [p(yi(r) — 22 vi(g(e)] (6.36)

con V(q(t)) := 77V (q(t)\/7) de modo que para V(q) admitiendo una serie de
potencias, S, es al menos de orden /7 (hasta una constante). Por ejemplo, pa-
ra un oscilador armoénico (por el momento con energia del punto cero nula) ST =
T [dt [AT(t)(i0, — w)A(t)], un operador que comparte algunas similitudes (sin la es-
cala de tiempo 7) con el propuesto en [87] en el contexto del enfoque de Isham [110]

para la formulacion de historias continuas de la Mecanica Cuantica [103, 104].

2Por conveniencia de notacién, estamos usando la misma variable t en el caso continuo para

indicar la cantidad que en el discreto corresponde a et para t el indice discreto adimensional.

95



Capitulo VI. Integrales de Feynman a partir de acciones cuanticas

A priori, no es evidente que las definiciones anteriores sean tutiles. Sin embargo, al
menos heuristicamente (una discusién mas rigurosa se proporciona a continuacion y
en la siguiente subseccion) podemos usar estas ideas para recuperar Pls en analogia

con el caso discreto: usando la base de estados coherentes, escribimos Tr[e?7] =
[ D2a(t)e I 1O (a (1) fa (1)), con

la(t)) = exp [ / dm(t)AT(t)] Q) (6.37)

el limite continuo del estado (6.22) con «(t) ~ a;/+/e. Para el oscilador armonico,

el primer orden en una expansion formal en potencias de 7 produce
Tre ~ /DQQ(t) eim S dtler M@ —w)a®] — qet = -ir(i0, — w)], (6.38)

donde usamos ((t)[e®™|a(t)) = (a(t)|e“Ta(t + 7)). Esto es precisamente lo que se
obtiene a través del CSPI convencional si se elige 7 de tal manera que D%a(t) =
D?[a(t)/\/7], con Dia(t) la “medida de Feynman”. Este argumento se extiende a
otras bases y expone un enfoque simple para teorias generales: en una formulacion
continua, después de que calculos como (6.38) se han realizado, la identificacion ante-
rior produce a las PI convencionales bajo cambios de variables como v/Ta(t) — «(t).
Desde este punto de vista, det[iT1] es la constante convencionalmente codificada en
la medida que “regulariza” el determinante funcional divergente (6.38).

También se nota que la Ec. (6.38) es el limite formal de pequenio 7 de la Ec.
(6.28) y estamos esencialmente calculando el determinante de la “matriz” S (con

¢ — 7) en la Ec. (6.29), ahora el operador diferencial definido por
S,, AT ()] = —iT(i0, — w)AT(2). (6.39)

El formalismo introduce naturalmente este operador diferencial como una transfor-
macion lineal entre operadores extendidos A(t), sin referencia a un espacio de fun-
ciones cléasicas (que surge en algunas evaluaciones particulares de la traza). Ademas,
Ordenes superiores en 7 corrigen los problemas [111, 112] asociados con la energia
del vacio en CSPIs (continuos).

Desde una perspectiva més rigurosa, también podemos evaluar la traza anterior
en la base de Fourier en cuyo caso se sostiene la Ec. (6.26) (con € — 7). Entonces,
en completa analogia con el caso discreto (Ec. (6.27)), la traza se relaciona con un
determinante, que puede hacerse facilmente finito: bajo la ligera modificacion del

operador
St=r1 Z n(w, — w + 1€w?) Al A, (6.40)
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Tr[e7] se convierte en un determinante finito para 7¢é > 0, abriendo interesantes
perspectivas matemaéticas (también podemos establecer € = €(7), ver 6.3 y la con-
jetura alli). En lo siguiente omitimos el nuevo término pero, donde sea necesario,

puede restaurarse facilmente sin comprometer los resultados principales.

6.2.2 Funcionales generadores e invariancia-7

Es bastante notable que el operador S, tenga importantes propiedades de T-invariancia,
las cuales permiten una definicién y evaluacion simples de funcionales generadores,
véalidos para 7 finito. Ahora lo demostraremos en un ejemplo claro empleando ex-
clusivamente propiedades de operadores y trazas en el espacio de Hilbert: no es
necesaria ninguna definiciéon matemaética sutil de medidas de dimensién infinita. Sin
embargo, tanto la simplicidad que caracteriza a los PIs como la conexiéon familiar
con la fisica clasica pueden recuperarse en el espacio de Hilbert H.

Considere el operador AC S, [j], que es una funcién de una corriente j(t) que

aparece en la energfa potencial V(q) = mw?q?/2 — \/mj(t)q. Podemos expandirlo

S, il =7 / dt [A*(t)(zat —W)A(t) + \@j(t)q(t)]

— W) Af Jon Jn__ At
_TZ[ w)AT A, +mAn+WAn]

n=—oo

como

(6.41)

donde empleamos los modos de Fourier no locales en el tiempo A, y definimos
= [dte™'j(t)/\/T, los coeficientes de Fourier de la corriente fuente j(t). La

representa(non n revela inmediatamente una importante relacion unitaria entre ac-

ciones cuanticas con y sin fuente:

Jn

V2w (W, — w)

S ] =UT(S.[0] + 1 S4[j) U, para UTAU = A, + (6.42)

con

Wl=-3 ML -3 [warjrce-nin. o

Wp — W)
la accion cldsica (no un operador) evaluada en la solucion clasica. Aqui G(t —t') es
la funcion de Green del operador diferencial (9? + w?) cuya expansion de Fourier

e~ iwn (t—t")

G(t—t) —ZZTWQ_MQ

aparece naturalmente en (6.42) empleando (6.41) y la relacion (w, — w)™ — (w, +

W) = 2w(w? — w?)! (asumimos como de costumbre sin catsticas). Este resultado
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también puede verse notando que la accién clasica a lo largo de una trayectoria
arbitraria esté relacionada con el promedio (a(t)|S;[j]|a(t)) de la accion cuéntica
en el estado coherente de la trayectoria correspondiente (ver Apéndice 6.4 para

detalles).

Ahora definimos el funcional generador para esta teoria y 7 arbitrario como
Z.[j] := Tr[eS )] . (6.44)

Para pequenos 7, las consideraciones hechas en la secciéon 6.2.1 sugieren una conexion
con la definicion usual del funcional generador Z[j] = [ Dge**ll donde la accion
clasica depende de j(t) (Salj] = [ dt [mg*(t)/2 — mw?¢*(t)/2 + /mj(t)q(t)]). Nota-
blemente, dado que la transformacion (6.42) preserva la traza, la relacion Z,[j]/Z;[0]
es de hecho 7-invariante y su evaluaciéon inmediata:

Z:J] s

—= e el

(6.45)

*

en acuerdo con el resultado estandar Z[j] = Z[0]e*5all [99]. Cabe mencionar que
la Ec. (6.45) se sostiene exactamente V 7 # 0. También mencionamos que una
invariancia similar se sostiene en la formulacion discreta de intervalos de tiempo y
puede desarrollarse por medios similares.

Ademas, en el limite T — oo (considerando un intervalo de tiempo simétrico
y la adicion de una pequelia parte imaginaria a w), Y., 27/T — [ d& implicando
G(t —t) — Dp(t —t') y por lo tanto

Z.1j) = ZD0exp (= § [drat’ j(¢)Dr(t — t)j(1)) (6.46)

con Dy (t—t") = m(0|T[q;(t)q:(t)]|0) el propagador de Feynman (se puede considerar
este sistema como una teoria de campos de 0 dimensiones, en cuyo caso se suele fijar
m = 1, siendo el papel de la masa desempenado por w). Aqui |0) es el vacio “libre”,
es decir, el estado fundamental de la parte cuadratica del Hamiltoniano y g;(¢) es un
operador de posiciéon convencional evolucionado sin la fuente. Note que, en analogia
con la Ec. (6.16), no es necesario especificar el estado |0)(0| en la definicion de Z,[j].

Las derivadas funcionales de Z.[j]/Z,[0] aparecen ahora vinculadas a una va-
iS-[j]

riacion del operador e proporcionando expresiones generales T-invariantes para

funciones de correlacion en el vacio. En particular,

. /T dr [T @Tr[eiST[O]QI(t17 71)q; (t2, 72)]
0

Dp(t; —t3) =mT; — . A4
el =t =mle )2 | Te[eis-0] (6.47)
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Para obtener la Ec. (6.47) se puede escribir

¢Sl = iSO T oy (z / dt / Cj}\/ﬁj(t)ql(t,r’)) (6.48)
0 T
para q;(t,7) := e 0lg(#)e*S™0 y derivar con respecto a j(t) a nivel de operador

(el orden temporal en (6.47)-(6.48) se aplica al pardametro 7). En general, este pro-
cedimiento muestra que para cada operador en la funciéon de correlacion debemos
insertar un operador en el Hilbert apropiado, en analogia con la Fig. (6.1.1). Luego
integramos sobre cada 7; preservando el orden de 7.

Para pequenos 7, la forma de la Ec. (6.14) se recupera de (6.47), con operadores

qr(t, 7) — q(t) insertados en el tiempo de evolucion:

J Dg,eBag(t)g(ts) _ . Te[e/Tq(t) VTq(t)] (6.49)
[Dq, i s Te[eiS70] A :

Ademas, la descripcion de teorias generales en este limite corresponde a expresio-
nes de traza con acciones generales S; (Ec. (6.36)), en estrecha analogia con las
definiciones de PI y de acuerdo con la discusién de la seccién 6.2.1. En particular,
la sustitucion de una AC interactiva en (6.49), produce el propagador interactivo

correspondiente y las reglas de Feynman asociadas.

6.2.3 Estados en el espacio-tiempo y limite de 7 grande

Trazas extendidas como valores medios del vacio en el espacio-tiempo

La posibilidad de una definicién ttil de estados en escenarios de espacio-tiempo® ha,
sido explorada recientemente en la literatura 28, 30, 31, 102]. Esto ha provocado
discusiones sobre posibles modificaciones, ya sea en los axiomas que definen un estado
[28, 30] 0 en la naturaleza del espacio de Hilbert considerado [31, 102]. La propiedad
de invarianza-T nos permite considerar una nueva posibilidad: en el limite 7 > 1

tenemos

S0 5 1Q)(Q), (6.50)

es decir, la exponencial de la acciéon cuantica de espacio-tiempo se convierte en un
proyector sobre el vacio de espacio-tiempo de la teoria libre, en analogia con el li-
mite T — oo de un operador de evolucién temporal convencional e *#T — |0)(0],

con |0) el vacio no extendido libre de H (sin embargo, el limite de 7 no requiere

3Debe leerse como “estados en el espacio-tiempo”, por ejemplo, estados que representan confi-
guraciones de campo en el espacio-tiempo (en contraste con configuraciones en el espacio); no debe

confundirse con estados del propio espacio-tiempo, que no esta cuantizado en este trabajo.
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T — o0). Entonces, para cantidades 7-invariantes, las sumas asociadas sobre histo-
rias, que en principio involucran una base completa de estados de espacio-tiempo,
pueden reducirse a valores de expectacion tnicos del vacio de espacio-tiempo. La 7-
invariancia esta revelando asi una “interpolacién continua” entre estas dos nociones
aparentemente diferentes.

En particular, para el funcional generador de la seccion anterior, las Ecs. (6.46),
(6.48) y (6.50) implican

1 . .
_m/pqezscl[J] (6.51)
= 1im ([ exp (z’/dt/OT % Vinj(tar(t, ) 19). (6.52)

Vemos que el funcional generador “normalizado” es un valor medio puro del vacio de
espacio-tiempo (con Z.[0] — 1).

Consideraciones similares son validas para el propagador de Feynman y para
cualquier otra cantidad relacionada con funcionales generadores, con las Ecs. (6.47)
y (6.50) implicando

dry 7 dm
OFatar(e2l0) = tim 7, [ 2 [T

Tenga en cuenta que en el lado izquierdo el cuadro de interaccién en § correspon-

(Qlqr(ts, m1)qi(ta, 72)|2) . (6.53)

de a la evolucién en t mientras que el cuadro de interaccién en H a la evolucidon
en 7 (mientras que ¢ indica el espacio de Hilbert de ¢(t)). También es facil ver
que O(t1-12)(0lgr(t1)q: (2)[0) = lm [T <7 [ 20(r1- 72)(Qlar(tr, 7)1 (t2, 72)|2). Bl
propagador para otras teorias puede deﬁmrse a partir de estos elementos basicos y

relacionarse también con valores medios del vacio.

Estados extendidos en teorias cuanticas de campos relativistas

Podemos mejorar la relacion (6.53) eliminando el limite explicito en 7 y dejando
solo una integral sobre la variable 7, — 7. Notablemente, el resultado relaciona los
estados sp en H con aquellos considerados en enfoques inspirados en la teoria de
cuerdas (y otros formalismos de tiempo cuéntico, como se sugiere en [3]). Para una
comparacion adecuada, es apropiado trabajar en D = d + 1 dimensiones de espacio-
tiempo simplemente reemplazando ¢(t) — ¢(x), p(t) — m(z) de tal manera que el

algebra (6.10) produce
[p(a), m(y)] = 0V (z —y). (6.54)
Note que (6.54) no es una relaciéon de conmutacion en tiempo igual como la con-

vencional en d dimensiones espaciales: la “delta extra” corresponde a la dimension
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temporal (ver Ec. (6.34)). Esto no debe confundirse con la cuantizacion canonica de
una teoria clasica con una dimensién extra: no es el nimero de dimensiones lo que
se modifica, sino la construccion del espacio de Hilbert y el esquema de cuantiza-
ciéon resultante. Sin embargo, podemos especular que el parametro 7 podria tratarse
como una coordenada “holografica” que conecta la teoria de d + 1 con una teoria
canonica de d+ 2 (un poco de anélisis muestra que la teoria extra-dimensional debe
ser altamente no local para manejar interacciones).

También aprovechamos la oportunidad para discutir brevemente la invariancia de
Lorentz a nivel del espacio de Hilbert: el nuevo algebra es explicitamente covariante

para

U(M)d(2)U(A) = d(Az),  U'(M)m(x)U(A) = 7(Az).

con U(A) la transformacion sp unitaria asociada a la transformacion de Lorentz A
[2]. Por lo tanto, las transformaciones de Lorentz se definen geométricamente en
‘H, en analogia con las rotaciones e independientemente de la dindmica. Ademas, si

introducimos una AC “de segundo orden”

SO = -7 / APz [Al(2)(0 + m?) A(x) — \[2j(@)o(x)] . (6.55)

con A(z) := (vVmo(z)+ir(z)//m)/ V2, es claro que [SV]0], U(A)] = 0 (ver también
[3]). Los operadores locales A(z) satisfacen [A(x), AT(y)] = 6@V ((x — y). Esta
breve introducciéon de la covarianza de Lorentz muestra que la formulacién candnica
de espacio-tiempo dentro de H permite preservar explicitamente las simetrias de
espacio-tiempo, una ventaja previamente exclusiva de la formulaciéon PI. También
muestra que se pueden introducir formas mas generales de ACs 4.

Con estas convenciones, el campo puede expandirse como

(e7"A(p) + e Al(p)) (6.56)

dD
o(z) = / 4P
v/ (2m)P2m
con los operadores A(p) la TF de A(x), que son los que llevan S@7[0] a su forma

normal:

SO =7 [ (7 - m)AGAG) + L AG) + A (657)

“Mientras que la generalizacion a d + 1 de S, [j] y resultados relacionados es directa, estamos
empleando la accién de segundo orden para preservar explicitamente la covarianza de Lorentz en
todos los pasos. Esto se puede lograr también con S;[j], pero requiere una discusion adecuada de

la eleccion del tiempo en la transformacion de Legendre, que se presentara en el siguiente capitulo.
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Todos los resultados previos relacionados con el funcional generador, incluyendo la
T-invariancia, se mantienen en completa analogia: definiendo como antes 8 )[j] =

Tr[e?S"”' U], obtenemos

201 = 2@ exp (=} [ dPady j(@)Dp(e —1)i(y)) . (658)

una generalizacion multidimensional de la Ec. (6.43), con el propagador de Feynman
Dp(x —1vy) = (0|T¢;(x)dr(y)|0) apareciendo ahora explicitamente (como de costum-
bre, estamos ajustando m? — m? — i€). Ademas, se obtiene una nueva version de la
Ec. (6.50):

&S00y 10)(Q (6.59)

cuando 7 — oo y donde |Q2) es el espacio-tiempo de A(x) que satisface A(x)|Q2) =
A(p)|Q) = 0, U(A)|2) = |©2). Al separar las partes de la AC con y sin la fuente,

como en la Ec. (6.48), obtenemos

dTl dTQ

NG N m Qe (x, 1) or(y, 72)|Q),  (6.60)

(0T ()61 (y)|0) = lim T /

para ¢r(z,7) = e_i‘gg)[0%(96)62'5£2> 97 el operador de campo “evolucionado” con la
accion de segundo orden. Es sencillo demostrar que ambos ordenamientos de 7 pro-
ducen la mitad del propagador (Dg(x—y) = Dp(y—x)), mientras que la invariancia
de Lorentz es manifiesta en el lado izquierdo ya que ¢;(Az,7) = UT(A)d;(z, 7)U(A)
y el vacio de espacio-tiempo es invariante.

El resultado (6.60) es la version en D dimensiones de (6.53) que puede compararse
con expresiones similares a la teorfa de cuerdas: utilizando la Ec. (6.56) el integrando
en (6.60) se puede escribir para 71 > 75 como (Q]A(z)e!™ ™7 At(4)|Q) /2, con

T =500 = [ ap (o~ mt) Al (p)A). (6.61)

independiente de 7. Entonces, dado que el integrando en (6.60) depende solo de la

diferencia 71 — 7o, encontramos
(01T ¢r(2)¢1(y)|0) = /OOO dr (QA(z)e™ Al(y)|0)
_ / " dr (e y) (6.62)
0
donde hemos definido los estados de particula anica (sp)
2} = VImo(a)|) = A1), (6.63)
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Notablemente, el resultado del espacio de Fock extendido (6.62) involucra el operador
T que es la version “segunda cuantizada” de J&) = P2 — m? (ver Ec. (6.61) y
[2, 3]) definiendo la condicion de capa de masa de particulas parametrizadas [42, 67,
113 a través de Ji2|U) = 0 en § = L2(R). Asi, para contracciones de dos puntos,
la forma (6.62) se reduce a la conocida expresion “worldline” (linea de mundo) del
propagador [46, 66] (0|T ¢ ()¢ (y)|0) = Jdr (z]e"P*=m*+i9)|) que involucra solo
estados sp (en primera cuantizacion).

Cabe senalar que en el enfoque actual los resultados anteriores emergen de una
formulacién de espacio-tiempo completamente desarrollada de Pls y funciones de
correlacion de teorias cuanticas de campos (escalares). Las ezcitaciones de los cam-
pos son ahora estados de espacio-tiempo. Aunque el desarrollo adicional excede el
alcance de este manuscrito, todos los ingredientes basicos para desarrollar teorias
generales (interactuantes) ya estan contenidos en él: por un lado, se pueden intro-
ducir teorias interactuantes (como de costumbre) a través de variaciones funcionales
del funcional generador. A nivel del espacio de Hilbert extendido, esto define nue-
vas generalizaciones 7-invariantes de ACs interactuantes, reduciéndose a acciones
convencionales diagonales en tiempo solo para pequenios 7 (ademas del caso de una
“Interaccion lineal” considerada en secciones anteriores). Por otro lado, las cantidades
fisicas surgen de funciones de correlacion esencialmente a través de FTs completas
en d + 1 (por ejemplo, la formula de reduccion LSZ [114]). Mientras que en la for-
mulacién convencional la FT en tiempo esta relacionada con la evolucién unitaria,
aqui dichas FTs conducen naturalmente a los operadores no locales en tiempo A'(p)
que diagonalizan S [0].

Ademas, los momentos de cada particula externa involucrada en los elementos
de la matriz S satisfacen la condiciéon de capa de masa. Esto lleva a operadores
extendidos de creacion (aniquilacion) que son estacionarios” en la evolucion” de T,

es decir,

[S21[0), AT(Epm, p)] = 0, (6.64)

precisamente la condicion introducida en [2, 3] en operadores que crean estados
fisicos (libres) actuando sobre |€2). Tales estados surgen entonces naturalmente para
grandes 7 en la formulacion extendida de teorfas de dispersion y representan las
particulas externas (asintéticamente libres).

Cabe mencionar que una restriccion similar (pero no escrita en términos de ACs)
ha sido introducida recientemente en [115] para teorias no interactuantes en el con-

texto de una formulaciéon de la mecanica cuantica relativista en términos de eventos.
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A pesar de algunas diferencias fundamentales en la interpretacion [115] (sin em-
bargo, cabe mencionar que una trayectoria puede considerarse como un conjunto de
eventos, por lo tanto, el espacio de Hilbert es el mismo), nuestros resultados actuales
proporcionan una ruta clara para introducir interacciones en esta nueva formulacion

relacionada también.

6.3 Conclusiones

Hemos proporcionado una formulaciéon cuantica completa de los Pls de Feynman ba-
sada en un espacio de Hilbert de espacio-tiempo extendido y una AC concomitante.
Las expresiones fundamentales pueden representarse como trazas de espacio-tiempo,
y diferentes formulaciones de PI emergen naturalmente del uso de diferentes bases
extendidas. Las representaciones estdndar corresponden a bases de productos en el
tiempo tipo trayectoria (por ejemplo, estados de trayectoria de coordenadas y cohe-
rentes), pero el formalismo también hace accesibles bases no locales en el tiempo.
En particular, las evaluaciones tipo Fourier y Matsubara son casos especiales de
estas ultimas, que surgen naturalmente aqui a través de la base de autovalores de

operadores AC cuadréaticos.

En el caso de tiempo continuo (secciéon 6.2) esto permite definir y manipular
expresiones de traza sin las sutilezas de los PIs convencionales, mientras que la co-
nexion con la fisica clésica todavia puede discutirse dentro del marco de operadores
(ver Apéndice 6.4). También surge la posibilidad de nuevos esquemas de regulari-
zacion. Ademas, ahora se hace evidente una invariancia de escala temporal en las
nuevas expresiones para funciones de correlacion, lo que conduce a una conexién
directa entre una AC dada y el vacio de espacio-tiempo correspondiente, como se
muestra en 6.2.3. Cuando se aplica a campos cuanticos, se recuperan expresiones
del enfoque de primera cuantizacion inspirado en la teoria de cuerdas [46] y/o del
formalismo PW relativista descrito en |1, 2] al nivel de una particula.

Desde una perspectiva més amplia, los resultados actuales constituyen un paso
importante en el desarrollo de extensiones simétricas de espacio-tiempo generales
de la MQ: a través de la nueva representacion de los Pls, se logra formalmente
una representacion en el espacio de Hilbert simétrica de espacio-tiempo de cualquier
teoria convencional, incluyendo el caso de teorias de campos cuanticos interactuantes
(ver consideraciones en la seccion 6.2.3). También se revel6 una nueva ruta para una

definicion adecuada de estados fisicos de espacio-tiempo explotando el mencionado
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limite de gran 7. Curiosamente, incluso para 7 finito o pequeno, se puede asignar una
nocioén de estado a la representacion anterior: la idea esencial es tratar la exponencial
de la accion como un estado tipo térmico (ver algunos de los comentarios en la seccion
6.1.2). Esto puede desarrollarse a través de una técnica de purificacion “generalizada”
recientemente introducida en el contexto de dualidades holograficas con el objetivo de
discutir el entrelazamiento en el tiempo [97, 98] (en MQ convencional, no extendida).
Dado que el enfoque excede la formulacion de PI, se deja para futuras investigaciones.

En este mismo escenario, surgen posibilidades adicionales novedosas, como la
consideracion de interacciones no separables en el tiempo, la aparicion de opera-
dores cuanticos de tiempo y relaciones de incertidumbre entre energia y tiempo, y
la definicion rigurosa del entrelazamiento en el tiempo: de la misma manera que la
segunda cuantizacion estdndar es necesaria para la nocién de una matriz de densi-
dad reducida de un intervalo espacial, y por lo tanto para el entrelazamiento en el
espacio [116], el presente formalismo de estados de espacio-tiempo cuantizados de se-
gunda orden es un escenario natural para acomodar la nocién de entrelazamiento en
el tiempo. Al mismo tiempo, la convencional “suma sobre historias”, anteriormente
solo accesible a través de calculos clasicos, ahora admite la aplicaciéon de protocolos
cuénticos para la evaluacion de trazas (6.1.4). Estos aspectos estan actualmente bajo

investigacion.

Apéndices

6.1 T general en propagadores

En la construccion discreta desarrollada en el texto principal, hemos considerado
N = T/e copias del espacio de Hilbert original mientras identificamos T con la
cantidad de evolucion de los estados finales. Aqui discutimos la situaciéon més general
que surge de relajar esta identificacion en el caso de la particula bosonica.

Primero notamos que la Ec. (6.5) del cuerpo principal también se sostiene en
H =N 19, con N' > N y S todavia definido como en la Ec. (6.4) pero con P; el
generador de traslaciones temporales en H'. Esto se sigue al reemplazar en el lado

derecho de la Ec. (6.2) N — N/,
@' M = @y e @y

e integrando sobre las variables ¢;~ny_1 de tal manera que la igualdad se sostiene.

Entonces en la Ec. (6.5) N — N’ pero no en el producto de la Ec. (6.4). Esta
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invariancia permite discutir cualquier evolucion temporal de intervalo T < T/ = N'e
(con cualquier origen) dentro de un tnico espacio extendido H'.

En particular, al considerar H' = H ® Hy
(¢, T+ elg) — (¢, Tlg) = Trar | [ — €]q)o(d/| (6.65)
donde " = eiSe N — ¢=icHoeiS Fgeribiendo entonces
¢S — ¢S = [e7tHoe _ 1] (6.66)

y aplicando la Ec. (6.5) del cuerpo principal al lado derecho de la Ec. (6.65), se

recupera la ecuacion de Schrodinger discreta

(¢, T+ €lq) — (¢, Tlg) = (¢, 7|l — 1]|q) (6.67)

El limite continuo se sigue, por supuesto, al dividir ambos miembros por —ie de
tal manera que para € — 0 el lado izquierdo es i veces la derivada en el tiempo de
(¢, T|q) mientras que i[e"*¢ —1]/e — H.

También vemos que la Ec. (6.65) tiene exactamente la forma del principio de
accion de Schwinger [86], que relaciona variaciones generales de (¢’, T|q) con los ele-
mentos de matriz de variaciones del operador de acciéon de Schwinger. Sin embargo,
en la formulaciéon de Schwinger se dispone de un conjunto completo de operadores
conmutativos en superficies tipo espacio (en un tiempo dado). Desde el punto de
vista canénico, su AC involucra operadores en la imagen de Heisenberg para los
cuales no se aplica ninguna algebra extendida [3|, una diferencia fundamental con la

presente construccion.

6.2 Demostraciéon de la relaciéon entre S, P,y V, y

funciones de correlacion

En esta seccién demostraremos la ecuacion (6.13) del cuerpo principal. Primero

estableceremos la equivalencia entre ese resultado y la siguiente expresion:
e~ PrepteiPe — Ul (1) @, Uy[(t + 1)e, te] V1 (6.68)

Demostracion. La prueba de la equivalencia sigue inmediatamente reescribiendo
(6.68) como
ViePey = eP<Ul, () @, Uy[(t + 1)e, te].
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Ahora, considerando que e”DtGU]TVil(T)e*”)tE = U}(T) podemos escribir

Uo(T)V1ePy = ePt€ @, U[(t + 1)e, te] = €',

que es precisamente la Ec. (6.13) del cuerpo principal. Note que estamos conside-

rando la definicién general de €' (posiblemente dependiente del tiempo). n

La prueba de la Ec. (6.13) en el cuerpo principal ahora se reduce a demostrar
(6.68).

Demostracion. La acciéon del operador de traslacion en Vi = ®£51Ut(te) en el lado

izquierdo de (6.68) produce

e P @y Uy(te)e™ = @55 Upy (te) = @25 Uy [(t + 1)e]
= Ul (1) @ U(t + 1)€] (6.69)

donde usamos U(0) = 1 y T = Ne. Por otro lado,

R Ut + DelV = @, 55 Us[(t + 1)e] @5 U (te)
= @ Ut + DU (te) = @2 U [(t + 1)e, te], - (6.70)

Al multiplicar (6.69) a la derecha por VY = 1 y usar (6.70), recuperamos (6.68). [J

Ahora describimos como el resultado anterior permite una derivacion directa de
las expresiones de las funciones de correlacion como (6.14). Recordamos que se puede
mapear trazas convencionales de la composicién de operadores en trazas de espacio-
tiempo de productos tensoriales de operadores anadiendo el operador de traslacion

temporal P+

, como se muestra en (6.30). Por otro lado, esta claro que conjugar
productos tensoriales de operadores con V corresponde a evolucionarlos (ver (6.12)).

Juntando todos estos resultados, podemos escribir

(@, 710y (1) ... 0% (20)04 () O (0)]i) = Try [P @, OF (1)]i)o (@', T]
= TI'H [GZPtEV(®tO(t)>VT|Z>Q<’L,|U0(T)}
= Try [ Up(T)VTe™V @,001i)o (] ,
—_———
eisS

(6.71)

donde en la tltima igualdad reconocemos la combinacion de V y e7*¢ que da lugar
a €' segiin el teorema anterior. Se puede establecer que los operadores sean iguales
a la identidad, de modo que solo algunos de ellos realmente aparezcan en el lado iz-

quierdo, lo cual en el lado derecho corresponde a “inserciones” particulares. También
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debemos destacar que este resultado es general y puede aplicarse a cualquier sistema.
En particular, se puede aplicar a sistemas bosénicos generales, como campos, y por
lo tanto también se incluye el caso multidimensional discutido en la seccion 6.1.2,

que exhibe simetria de espacio-tiempo.

6.3 Sobre la “funcién de particiéon” del oscilador ar-

monico en el limite continuo

Discutimos aqui la traza de 'S para el tiempo continuo y para
Sr=7 Y (wn—w+icw))ALA, (6.72)
—r / dt AT()(i0, — w — i€02) A(L). (6.73)

Note que hemos introducido un factor de convergencia o € (por el momento € € R).
Podemos calcular inmediatamente la traza en la base de Fock de Fourier (7 € N

es el namero de ocupacion de un cierto modo n) obteniendo

Tr[ei&,-] _ Z(nlez&r H Z s T (wn —w+iéw? )iy

n n=-—00 Np,=0
o . . -1
_ H [1 . em‘(wn—w-i-zsw%):| ’ (674)

iTlon—wticen]| < 1Vn. Esto es estrictamente

donde en el ultimo paso asumimos |e
cierto para los modos n # 0. Para el modo 0, esto se mantiene para w ligeramente
imaginario (como de costumbre), mientras que para w € R la serie converge a la
distribucion Y 7 e " = + 7y, 0(Tw + 27k). Si asumimos 7w #* 27k el

término delta puede ignorarse. Note que para N = T'/e finito y € = 0, la Ec. (6.74)

l—e—tTw

se convierte en el producto finito

L(N-1)/2] o ) -1 ein/2
I B 6.75
n_lgvm [ ‘ 2i sin(wT/2) (6.75)

, . ., s . . N
donde la ultima expresion es vélida para 7 = € y se sigue al expandir £—

— en

términos de las N raices de 1, con z = e~™*,
El producto infinito en (6.74) indica el inverso de
lim H [1 — eim(wn—wiiawy)

N—>OO
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como se sigue, por ejemplo, considerando primero T/e = 2N + 1 pasos de tiempo
en H. Podemos dividir el producto para N finito en dos términos con n > 1 y una
contribuciéon de n = 0. La convergencia de los productos con n > 1 esta definida por
la convergencia de la serie Y > expliT(+w, — w + i€w?)] que claramente converge
absolutamente para 7¢ > 0 (| exp[iT(Fw, — w + iéw?)]| = exp[—Tew?]).

De hecho, si dejamos, por ejemplo, ¢ = A7% (con A > 0 una constante con
unidades de [tiempo]™!) y 7 € C, el producto infinito original define una funcién
analitica F(1) en el subconjunto del plano complejo definido por Re(73) > 0 (esto se
puede probar notando que la convergencia es compactamente normal en esta region
[117]).

También “conjeturamos” que el limite 7 — 07 de F(7) toma el valor exacto finito
lim, o+ F(7) = e*T/2/[2isin(wT/2)], de acuerdo con (6.75), lo cual verificamos
numeéricamente. Esto implicaria para la accién correspondiente

lim Tr[e®7] = Tr[e *#7], (6.76)

T—0t

donde hemos restaurado la contribuciéon del vacio ST — S, — 1Tw/2. Destacamos
la diferencia con el tratamiento continuo usual que necesita alguna regularizacion o
una constante infinita codificada en la medida para proporcionar un resultado finito
(v que no tiene en cuenta adecuadamente la contribucion del vacio en el caso de
CSPI). Considerando que para pequenos 7 podemos relacionar esta misma traza
con la expresion de PI de la funciéon de particion, la correccién de la conjetura

proporcionaria una definicién rigurosa de PI en el continuo.

6.4 Principio de accion estacionaria a partir de un

valor medio cuantico

*

% en (6.42) también se puede entender notando primero que el

La aparicion de
promedio del AC en los estados coherentes de espacio-tiempo (Ec. (6.37)) es
((t)|S-[1]] (1))
(a(t)]a(t))
con S, la accion clasica a lo largo de la trayectoria (gu(t),pa(t)) definida como
ga(t) == /7 +a*(t), palt) == /T2 a(\t}a_ Aqui vy es una constante independiente

(Srlil)a = = Sa + 7 (6.77)

V2mw

de j y 7 que surge de la energia del vacio. La relacién (6.77) es una consecuencia

directa de

A)|a(t)) = a(t)|a(t)) (6.78)
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lo que también implica (v/7q(t))a = qa(t) y (V/TP(t))a = pa(t).
Como consecuencia, la soluciéon clésica corresponde a un valor estacionario del

valor medio (6.77). Esto se puede imponer directamente en la base de Fourier |a)

notando que Sy = 7Y (W, —w)o o, + man—l— \ﬁan Por lo tanto, en el presente

caso, la condicién estacionaria

0 . aScl
%(ST[]])Q =0« Do 0 (6.79)
produce o, = —m (el simbolo “*” indica la solucién). Esto define la solucion

de trayectoria coherente a*(t) = Y e ™t /\/T. Note que (6.79) es equivalente
a una variaciéon en posicion y momento en la base de Fourier, relacionada con las
variables de posicion y momento anteriores por una transformaciéon canoénica. En

términos de las ultimas, la condicién (6.79) produce
¢t =i / dt' G(t — 1)1 (6.80)

v pa(t) = mgs(t) con (87 + w?)gy(t) = j(t)/v/m en acuerdo con la ecuacion de
Euler-Lagrange (y sin ninguna dependencia en 7). La media del AC a lo largo de la
solucion clésica es
Jnd—n
S7| = — =S57,, 6.81
(87l 4 Z 2wt (wy, — w) cl (6.81)
con S¥ la accion clasica evaluada en la solucion, en concordancia con (6.77), que

también es independiente de 7. También cabe mencionar que |a*(t)) = UT|Q) es el

vacio de los operadores desplazados UT AU con
U = ¢ TalotAl—(a3)" An] (6.82)

de tal modo que UTA, U = A, —a}, en concordancia con la definicion anterior (6.42).
Ahora esté claro que el factor constante que surge de la accion de U sobre S7[0] debe
ser Scl*: al evaluar el valor medio de la Ec. (6.42) a lo largo del estado |a*()), la con-
tribucion del segundo término se anula ya que (o*(£)|{UTST[0U|a* (1)) = (Q|ST[0]|Q) =
0.

Ademas, cuando uno expande S, alrededor de la soluciéon clasica, el primer or-
den desaparece (Ec. (6.79)) mientras que el segundo es la misma accion sin la fuente
pero evaluada a lo largo de la trayectoria “fluctuante” (los érdenes superiores, por su-
puesto, desaparecen). En términos de valores medios cuanticos esto se puede escribir

como (S;[1])a = S5+ {(S0])aar = S5+ (UIS[0]U) 4, que es justo el valor esperado
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de la Ec. (6.42). Para pequenos 7, podemos emplear las consideraciones anteriores
para reobtener (6.45) a partir de argumentos familiares tipo PI: de acuerdo con la

discusion en la sec. 6.2.1 podemos escribir

/DZ S‘r[]] _ 'LS /D2 ST[O> 7 (683)

con el reemplazo (S;[0])a—ar — (S;[0])4 sosteniéndose en la tltima igualdad porque
estamos integrando sobre todas las trayectorias. En el cociente Z.[j]/Z,[0] el "factor
de fluctuacion'"se cancela como en el enfoque convencional de PI y en acuerdo con

la derivacion mas general independiente de 7.
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Mecanica cuantica y clasica en el

espacio-tiempo con foliacién dinamica

Este capitulo presenta los resultados publicados en [5]. Los mismos constituyen en
conjunto la principal contribucién de esta tesis al problema planteado en el capitulo
I. Debido a su longitud extensa, y al hecho de que el capitulo es mayormente auto-

contenido, presentamos primero un breve resumen del mismo.

7.1 Resumen del capitulo

El espacio de fase convencional de la fisica clasica trata el espacio y el tiempo de
manera diferente, y esta diferencia se transfiere a las teorfas de campos y la me-
canica cuantica (MC). En este capitulo, el espacio de fase se amplia mediante dos
extensiones. En primer lugar, promovemos la eleccion del tiempo de la transformada
de Legendre a una variable dindmica. En segundo lugar, extendemos los corchetes
de Poisson de los campos de materia a una forma simétrica en el espacio-tiempo. El
consiguiente “espacio de fases espacio-temporal” se emplea para obtener una version
explicitamente covariante de las ecuaciones de Hamilton para teorias de campos re-
lativistas. Luego se presenta una cuantizacion tipo candnica del formalismo en la que
los campos satisfacen relaciones de conmutacion espacio-temporales y la foliacion es
cuantica. En este enfoque, la acciéon clasica también se promueve a un operador y
retiene la covarianza explicita a través de su no-separabilidad en la particion materia-
foliacion. El problema de establecer una correspondencia entre el nuevo marco no
causal (donde los campos en diferentes tiempos son independientes) y la MC con-
vencional se resuelve mediante una generalizacion de los correladores tipo espacial
a espacio-tiempo. En esta generalizacion, el Hamiltoniano es reemplazado por la

accion, y las particulas convencionales por particulas fuera de capa de masa. Cuan-
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do la foliacién es cuantizada, el mapa previo se recupera condicionando en estados
propios de la foliacion, en analogia con el mecanismo de Page y Wootters. También
proporcionamos una interpretacion de la correspondencia en la que la estructura
causal de una teoria dada emerge de las correlaciones cuanticas entre el sistema y
un entorno. Esta idea es vélida para sistemas cuénticos generales y permite generali-
zar la matriz de densidad a un operador que contiene la informaciéon de correladores

tanto en espacio como en tiempo.

7.2 Introducciéon

La mecanica clasica esté construida sobre las formulaciones Lagrangiana y Hamil-
toniana, ambas desarrolladas antes de la llegada de la relatividad y la mecanica
cuantica (MC). A pesar de los cambios revolucionarios introducidos por estas teo-
rias posteriores, las formalismos de Lagrange y Hamilton han permanecido en gran
medida sin modificaciones. El enfoque Lagrangiano ha demostrado ser muy adecuado
para manejar las simetrias del espacio-tiempo reveladas por las teorias de Einstein,
mientras que el enfoque Hamiltoniano ha inspirado ampliamente el marco de la MC
y define el procedimiento canénico para cuantizar una teoria dada. El uso de la
formulaciéon Hamiltoniana en la relatividad es menos natural: el proceso de pasar
de un Lagrangiano a un Hamiltoniano implica seleccionar una variable de tiempo
especifica, lo que tiene el efecto de distinguir a un observador particular por sobre los
demés. Esta ruptura explicita de las simetrias relativistas es heredada por el espacio
de fases de la formulacion Hamiltoniana y se transmite a las reglas algebraicas que
subyacen a toda teoria cuantica.

Al mismo tiempo, es ampliamente conocido que las teorias cuanticas de campos
relativistas (usaremos la abreviacion anglosajona QFT) producen predicciones in-
dependientes del observador, incluso si se sigue un enfoque Hamiltoniano canodnico.
Esta caracteristica importante, discutida en los afios fundacionales de las QFTs [11],
también es validada por las expresiones relacionadas en la formulacion del Integal
de Caminos de Feynman [12, 118], que enfatiza los Lagrangianos sobre los Hamil-
tonianos. El precio a pagar por usar las “Path Integrals” (PI) es que la estructura
convencional de espacio de Hilbert de la MC canonica es reemplazada por el uso de
“sumas sobre historias” en el espacio de configuracion clasico.

Lo anterior parece indicar que las asimetrias entre el espacio y el tiempo a nivel

cuantico no son fundamentales sino méas bien un artefacto de la formulaciéon Hamil-
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toniana canodnica. Entonces, se puede plantear el problema de formular la MC de
manera que extienda los elementos mateméticos familiares, como estados y opera-
dores, para que sean simétricos en el espacio-tiempo. Varias discusiones relacionadas
con este tema, que se aplican tanto a teorias relativistas como no relativistas, han
surgido recientemente [2-4, 28, 30-33, 119-121|. Estas discusiones resaltan que lo an-
terior es un problema abierto y desafiante de interés actual: una solucién genuina
tiene el potencial de extender las intuiciones asociadas con las correlaciones cuanticas
al dominio del tiempo. Por ejemplo, la reciente discusion sobre el espacio emergiendo
del entrelazamiento [122, 123] no puede extenderse de manera directa al tiempo (y
luego al espacio-tiempo). Cambiando a areas mas aplicadas, ya se han propuesto
protocolos de computaciéon cudntica que emplean ideas de tiempo cuantico |29, 43,
44] para mapear complejidades temporales a espaciales [6, 124]. También esté claro
que el tema es relevante en escenarios donde la covarianza general entra en juego,
como en la gravedad cudntica, en cuyo caso el uso de técnicas convencionales de QFT
no es suficiente [14, 15, 24, 25, 37, 66, 110, 125]. El problema requiere una revision
critica de todos los aspectos involucrados, incluyendo las formulaciones basicas de la

mecanica clasica y, en particular, del espacio fase de la formulaciéon Hamiltoniana.

En este capitulo, introducimos un marco que integra sin problemas la covarianza
relativista en un espacio fase extendido que puede ser cuantizado de manera direc-
ta. Nuestro enfoque principal es el caso de las teorias de campos de la relatividad
especial, un escenario que nos permite sentar las bases de una MC simétrica en
el espacio-tiempo guiada por la simetria de Lorentz. Notablemente, varios conoci-
mientos revelados por el caso relativista, incluido un mapa a la MC convencional,
se pueden aplicar a cualquier teoria mecanica cuantica, incluidas las teorias no re-
lativistas. Como remarcamos a lo largo del capitulo, se puede considerar el marco
final como un conjunto independiente (simétrico en el espacio-tiempo) de reglas pa-
ra formular la MC, y explorar sus consecuencias desde el punto de vista de la MC
como una generalizacion de la teoria de probabilidades clasica. Este punto de vista
complementario de nuestro trabajo, que parece ser particularmente adecuado para
abordar los problemas de fundamentos mencionados anteriormente, solo se explora

preliminarmente.

La construcciéon comienza modificando el espacio fase convencional de la diné-
mica Hamiltoniana de dos maneras: En primer lugar, la eleccion del tiempo de la
transformacion de Legendre, que define el Hamiltoniano a partir de un Lagrangiano

dado, se trata como dinamica. En segundo lugar, se introducen Corchetes de Poisson
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(CP) espacio-temporales para campos de materia que no distinguen entre espacio y
tiempo. Se proporciona una manera directa de recuperar la dinamica clasica utilizan-
do el espacio fase ampliado y la accion clasica (escrita en términos de las variables
del espacio fase ampliado). Las nuevas versiones de las ecuaciones de Hamilton son
explicitamente covariantes, una caracteristica que en la mecanica clésica convencio-
nal solo se logra en el espacio de configuracion. Todas estas caracteristicas cléasicas
se presentan en la secciéon 7.3 después de un ejemplo introductorio proporcionado en

la seccién 7.3.1.

Luego, en la seccion 7.4 se propone una version espacio-temporal de la MC re-
emplazando todos los CP por conmutadores (en el caso bosonico; ver comentarios
en la seccion 7.6). Una consecuencia directa es que la foliacion también se cuantiza,
permitiendo una definicion geométrica de las transformaciones espacio-temporales,
que no depende de la dindmica. La accion se cuantiza también, dando lugar a un
operador de “acciéon cuantica espacio-temporal”, un objeto recientemente introduci-
do en [3, 4] (ver también [87]), aqui modificado para tener en cuenta una foliacion
dindmica. En esta seccion, también mostramos como la diagonalizacion de acciones
cuanticas libres conduce a particulas con una relaciéon de dispersion general. La tinica
diferencia entre particulas en capa de masa y fuera de la capa de masa es si conmu-
tan o no con la accion. En ambos casos, sus propiedades de transformaciéon estan
bien definidas, como lo inducen las propiedades de transformacion de los campos,

momentos, foliacion y operadores de accion de teorias relativistas.

En nuestro marco, los operadores en diferentes tiempos conmutan, y el tiempo
se trata como un “indice” geométrico, en completa analogia con el espacio e indis-
tinguible de este a nivel algebraico. Esto plantea el desafio de recuperar la evolucion
de la MC convencional (en una foliacion dada) dentro de lo que es esencialmente
un marco no causal. Notablemente, este problema se puede resolver como se pre-
sent6 recientemente en [4]. En la seccion 7.4.3, desarrollamos algunas de las ideas
presentadas en [4] mas a fondo para establecer una correspondencia general entre la
formulaciéon espacio-temporal y QFT convencional a través de funciones de correla-
cion en una foliacion fija. El limite clésico también se analiza y se senalan algunas

posibles conexiones con holografia [126].

Ademas, la emergencia previa de la evolucién temporal admite una interpretacion
natural en términos de un estado puro generalizado (proyector no ortogonal) que
involucra un entorno correlacionado con el sistema dado. Este objeto matemaético,

que podemos identificar con una generalizaciéon natural de la nocién de estado al
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espacio-tiempo, codifica toda la informaciéon sobre el estado inicial, su evolucion y
la estructura causal de la teoria. Para teorias libres, se puede construir a partir
de un par de vacios globales conjugados entrelazados que abarcan el sistema y un
entorno, y en general esta asociado con una purificaciéon generalizada que involucra la
accion cuantica. También comentamos como la formulacion da un nuevo significado
operacional a las funciones de correlacion, permitiendo asi el uso de protocolos de
computacion cuantica para su estimacion. Todas estas caracteristicas se describen
en la secciéon 7.4.4 para un campo escalar, mientras que comentarios adicionales para
el espacio-tiempo discreto y sistemas generales se proporcionan en los Apéndices 7.3
y 7.4.

La seccion 7.5 trata sobre el hecho de que los estados propios invariantes de la
accion estan entrelazados en la particion materia-foliaciéon. Como consecuencia, la
nocion de particula se vuelve no separable de la foliaciéon. En particular, mostramos
que los operadores de escalera deben entenderse como operadores controlados por
la foliacion, teniendo asi estados propios entrelazados. Ademés, los estados propios
invariantes son necesariamente entrelazados y tienen la estructura subyacente al me-
canismo de Page y Wootters (PW) [14]. Explotamos esta analogia para introducir la
nocion de condicionamiento en estados de foliacién, mostrando que para estados tipo
clasicos se recupera la correspondencia de la seccion 7.4.3. Finalmente, mostramos
coémo las predicciones fisicas de la teoria se transforman adecuada y explicitamente
una vez que la foliacidon es cuéntica. La posibilidad de efectos genuinos de foliacion
cuantica también se considera brevemente.

Finalmente, en 7.6, se discute la relevancia de nuestros resultados en diferentes
contextos, junto con las perspectivas futuras de la formulacion propuesta, y su posible
impacto en la formulaciéon canénica de gravedad cuéantica y en temas de fundamentos

y computacion cuantica.

7.3 Formalismo de espacio de fases en el espacio-

tiempo

7.3.1 Una analogia espacial introductoria al problema

Comenzamos nuestra discusiéon proporcionando un ejemplo sobre cémo una trans-
formacion de Legendre de la accion y el espacio fase resultante pueden ocultar una

simetria espacial explicita de un sistema. Consideremos la siguiente densidad La-
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grangiana £ = (9;¢)* — (9,¢)* — 2(9,¢)*. Es claro que el Lagrangiano tiene una
simetria rotacional en (z,y) como parte de su simetria de Lorentz, que se manifiesta

en las ecuaciones de movimiento 9,0"¢ = 9}¢— 03¢ —0;¢ = 0. Ahora introduzcamos

oL
H(b, 006, 0ay 7] = Dy — L
6,09, 0,6, 7] : = 0,0 5055 .
1

L WAL BRI

que es una densidad “Hamiltoniana” definida por la transformada de Legendre que
reemplaza —0,¢ — 7. Aunque ciertamente es un cambio de variables mal motivado,
‘H deberia conservar la informacion completa del sistema, ya que la transformacion

es invertible. De hecho, un uso directo de la ecuaciéon de movimiento produce las

ecuaciones
Oyt =~ 96+
¢ (7.2)
oo T
v o T

que tienen la forma de las ecuaciones de Hamilton en las nuevas variables. Clara-
mente, después de derivar la primera ecuacién con respecto a 9y, la segunda ecuacién

devuelve 0,0"¢ = 0. También se pueden obtener (7.2) a partir de una variacion de

. Notemos que el lado derecho de (7.2) se

puede escribir en términos de corchetes de Poisson (CP), es decir, —%—Z = {m H},

%—7; = {¢,H}, donde H = [ dtdxH es la “Hamiltoniana” y los CP canonicos aqui

son

la accién en variables del espacio fase

{p(t, ), w(t',2")} = o(t —t")o(x — 2) (7.3)

a y fijo (con los otros CP nulos). Las versiones cuéanticas (conmutadores) de tales

CP “rotados” fueron utilizadas recientemente en [97] para definir “entrelazamiento
temporal”.

Curiosamente, vemos que uno puede recuperar las ecuaciones de movimiento

apropiadas a partir de los CP que tratan a ¢ en igualdad de condiciones con z. Ade-

més, estas relaciones candnicas se preservan explicitamente por una transformacion

'Notemos que la variacién en variables del espacio fase de la accion S= [ dtdzdy(nd, —H),
con en (7.1), estd Dbien definida (aqui ¢yn=0,¢). De hecho, se obtiene
38 = [ dtdwdy (¢, +m)om — () + du — ¢0)00]  +  [dxdtné|) +  [drdy ¢t5¢|§j -
[ dydt ¢x5¢|2f . Todos los términos de frontera desaparecen bajo suposiciones estandar, a
saber d¢(t;) = 0¢(ty) =0y ngi — 0 para |z;| grande en variedades no compactas, o d¢ = 0
en todas las fronteras de un espacio-tiempo compacto [127]. Asi, no surge ningan problema de

“diferenciabilidad” [128]. Notemos, sin embargo, que H en (7.1) no es positivo definido.
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de Lorentz de la forma ¢(t,z) — ¢(t',2'), n(t,x) — =w(t',2’), que ahora se tratan
como transformaciones simplécticas convencionales, en analogia con las rotaciones.

En cambio, las rotaciones en el plano (z,y) ya no pueden tratarse en su caracter
geométrico natural: desde el punto de vista del espacio fase, una rotaciéon involucra el
parametro de “evolucién” y; su descripcion se convierte formalmente en un problema
dindmico. Notese también que solo aparece la derivada con respecto a x en H,
y la simetria esta oculta. Esto es, por supuesto, un artefacto introducido por la
transformacion de Legendre “espacial” y la estructura del espacio fase asociada.
De hecho, en la formulacion Hamiltoniana convencional basada en m = 0,¢ los
CP {¢(z,y),n(2",y)} = d(z — 2')d(y — v/) se preservan explicitamente por una
rotacion. Por el contrario, en este enfoque convencional ya no podemos tratar las
transformaciones de impulso como transformaciones simplécticas.

Un problema claro con la transformaciéon de Legendre anterior es su seleccion de
una direccion particular en el espacio. Claramente, un segundo “observador” puede
elegir cualquier otra direccion y' y construir su propio espacio fase y CP canonicos
a un y' fijo. Sin embargo, no hay una regla simple que relacione las dos construc-
ciones que no involucre informacion dindmica a menos que y = %’ (incluso si las
condiciones iniciales se imponen a un t fijo, los espacios fase no incluyen y (v')).
Para conectar estos dos espacios fase diferentes necesitamos de alguna manera hacer
seguimiento de la eleccion del momento. Ademas, para unificarlos se debe considerar
una extension de los CP que incluya todas las dimensiones espaciales. Estas son las
principales modificaciones al enfoque Hamiltoniano convencional que desarrollamos
en la proxima seccién para el espacio-tiempo.

Notese que otra posibilidad es incluir un segundo momento en la direccién x y
tratar con una estructura multisimpléctica. No seguimos este enfoque diferente que
ha sido explorado por otros autores [129-133] y cuya cuantizacion no es directa [132].
Ademés, recientemente se ha demostrado que una manera de cuantizar estas teorias
es construir un momento canénico a partir de un poli-momento primero [134]. Uno
podria usar esta ruta para relacionar nuestro trabajo con ideas multisimplécticas;
sin embargo, nuestra propuesta es independiente de estas construcciones ya que no

requiere tal paso preliminar.

7.3.2 Transformacion de Legendre covariante

La situacion que hemos descrito en el espacio, es analoga a la asimetria convencional

en espacio-tiempo que se origina al separar el papel del espacio y el tiempo de
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la misma manera que (7.1) separa z y y en nuestro “experimento”’ anterior. En
esta seccion generalizamos la definicion convencional del momento a través de una
transformacion de Legendre covariante para eliminar la necesidad de una eleccion
preferida del tiempo.

La idea clave es que el momento convencional conjugado a un campo dado ¢ se

puede escribir como

oL
= — (7.4)
d(ntd,¢)
para n* = n"° con la convenciéon para la métrica n** = diag(1,—1,...,—1). Pero

esta eleccion de n* es arbitraria, el Gnico requisito para un espacio-tiempo plano y
foliacion siendo un vector temporal n¥n, = 1, tal que describe observadores inerciales
(no se consideraran vectores tipo espacio en el resto de este trabajo).

Por ejemplo, en el caso de 1 + 1 dimensiones podemos separar el tiempo y el
espacio eligiendo una base n*, nf con nf'n, = 0y n{'n;, = —1. Una parametrizacion
general es proporcionada por observadores inerciales a una velocidad relativa v =
tanh 7 a un marco de referencia en “reposo” (n* = n"°) de tal manera que su eleccion

corresponde a
n* = (coshn, sinhn), n} = (sinhn, coshn).

Ahora podemos introducir un H covariante como la transformacion de Legendre

n-dependiente de £ definida como sigue:
H(p, m,n0,¢] = mn"0,0 — L. (7.5)

La densidad Hamiltoniana # es una funciéon del momento 7 definido como en (7.4)
pero por una direcciéon arbitraria n*, y las derivadas que son ortogonales a esa
direccion (en este caso solo hay una). Notese que esto no es un formalismo multisim-
pléctico: solo se ha introducido un momento, simplemente retenemos la informacion
de la eleccion del tiempo.

Para escribir (7.5) explicitamente, se necesitan 0,¢ en términos de las derivadas

perpendiculares. Para el caso de 1 + 1, estas se obtienen facilmente como
0,0 = n,n* 0, — nyyni 0, = npm — ny 0,0 (7.6)

Ahora es sencillo reescribir cualquier £ como funciéon de las nuevas variables.

Como ejemplo concreto, consideremos un campo escalar con densidad Lagran-
giana £ = $(9,¢)* — 3m*¢*. Usando la Ec. (7.6) para escribir (9,0)? = (n,m)? +
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(n1,ny0,9)?, la densidad Hamiltoniana covariante para un n* tipo tiempo se puede
escribir como

1 1 1
H= §7T2 + 5(”?8u¢)2 + §m2¢2 : (7.7)

donde estamos omitiendo el argumento de H para simplificar la notaciéon. Para
n* = (1,0) se recupera la densidad Hamiltoniana usual H = 172+ 1(910)2 + m?¢?.
Sin embargo, para n* generales, la contraccién de los indices indica simetria de
Lorentz. También se nota que para un n* tipo tiempo la densidad Hamiltoniana es
positiva.

Las ecuaciones de Hamilton correspondientes a H tienen la misma forma que
antes con las derivadas temporales 0; generalizadas a n*0,. Esto se puede ver facil-

mente aplicando el principio de accién minima en el espacio de fases 2 a
S = /dd+1x (mn*0,0 —H) , (7.8)

un resultado que vale para campos generales, teorfas y dimensiones D = d+ 1. Para

la Hamiltoniana (7.7) se obtienen

oH

nto,m = 90 (nn%0,0, — m*)¢ (7.9a)
"0, = 2—7: =7 (7.9b)

lo que implica automaticamente (actuando con n*d, en la segunda ecuacion)

[(nn” —nin¥) 8,0, + m*|p =0 (7.10)
—_—

nkv

que es simplemente la ecuacion de Klein-Gordon. Claramente, la densidad Hamilto-
niana convencional también produce esta ecuacion covariante de segundo orden para
¢, sin embargo, no proporciona ecuaciones covariantes de primer orden separadas
para ¢ y m como las obtenidas en (7.9).

Ademés, el aspecto covariante de H es nuevo y no solo formal: bajo transforma-

ciones de Lorentz se tiene

¢(z) = ¢(Az) (7.11a)
n* — A¥,n" (7.11b)
m(x) — 7(Az) (7.11c)

2asumiendo condiciones de frontera estandar, es decir, campos que desaparecen asintéticamente

para |x| grande, de acuerdo con n* tipo tiempo
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donde las ecuaciones (7.11b-7.11¢) son una novedad del formalismo, mientras que
(7.11a) se mantiene para un campo escalar. La ley de transformacion de 7 se sigue
de m = n*0,¢ asumiendo (7.11a) y (7.11b). La novedad importante es que bajo estas

transformaciones la densidad Hamiltoniana se transforma como
H(z) = H(Ax), (7.12)

es decir, es un escalar de Lorentz. Esto es compatible con la nueva relacion entre H
y el tensor energia-momento que se encuentra facilmente ser H = n,n,T"".

Todas las propiedades anteriores se mantienen en dimensiones arbitrarias d + 1
con el H covariante siempre definido como en la Ec. (7.5). Por ejemplo, la generali-

zacion a d + 1 de (7.7) es
1 1 2
Ho= S+ S’ = 1)0,60,0 + m?& (7.13)

con el tensor n*n” —nt" proyectando sobre las d direcciones espaciales n'; ortogonales
a n”, de tal manera que el término central en (7.13) es 2% (n"8,6)%. Esto se puede

ver facilmente notando que los ejes completos del “marco de referencia” se pueden

escribir como n#, = dz'*/0x* con n'; = n* y utilizando

ox'* ox'v
" =

d
aff oV wo v
= S pgp | = nn E_l ntn’, (7.14)

para z'* relacionado con x* a través de una transformacion de Lorentz. Esto permite
escribir H como una funcién solo de n* (en lugar de todos los n*).
Las nuevas propiedades de transformacion también implican la invariancia de la

transformacion de Legendre “integrada”
Py = /ddﬂxﬂn“au(b. (7.15)

Como consecuencia, la accion en variables del espacio de fases (7.8) siempre tiene
una expresion invariante de Lorentz también. Para el ejemplo del campo escalar se

obtiene
S = /dde [Wn“augb — ix? — L(n'n” — 0")0,90,¢ — %m2¢2] . (7.16)

En contraste, la accién convencional en el espacio de fases, S = [ d**'z (7T¢ — %7?2 —
1 2 1,22 : : :
5(Vo)? — sm?o ) oculta la simetria de Lorentz ya que corresponde a elegir una

direccion de tiempo n* = "% en (7.16).
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En general, también es factible dejar la longitud n*n, arbitraria (pero no nu-
la), sin afectar la ecuacion final de Klein-Gordon (ver Apéndice 7.1). Mencionemos
también que el tratamiento de campos no escalares se puede desarrollar siguiendo
las mismas lineas presentadas en esta seccion, simplemente adaptando las reglas
de transformacion (7.11). Esto se muestra en el caso de un campo de Dirac en el
Apéndice 7.2. Alli se ejemplifican resultados principales adicionales para este campo,

mientras que el ejemplo bésico en el texto principal es el campo de Klein-Gordon.

7.3.3 Estructura simpléctica en el espacio-tiempo

El espacio fase convencional asociado con nuestra construcciéon previa corresponde
a algebras canoénicas satisfechas en hipersuperficies fijas por los campos de materia.
Para cada eleccion de n#, se debe definir una estructura simpléctica. Por otro lado,
nuestro objetivo es mantener n* general y promoverlo a una variable “dindmica”, en
el sentido explicado después de la Ec. (7.22), lo que involucra un algebra de foliacion.

Para mantener las édlgebras de materia-foliacién separadas, introducimos otro
elemento en el formalismo: extendemos el espacio fase tratando cada campo en el
espacio-tiempo y su momento conjugado como variables candnicas independientes

que satisfacen
{o(x),7(y)} = 8Dz —y). (7.17)
Los corchetes de Poisson se definen como de costumbre pero abarcan todas las va-

[ (OF 09 o9 8f
{f’g}‘/ d (&b(x)&r(w) 6¢<x>6w<x>) (7.18)

en perfecta simetria espacio-temporal 3 e independiente de como uno folie el espacio-

riables

tiempo.
Esta estructura simpléctica extendida permite un tratamiento directo de las si-

metrias del espacio-tiempo: Primero, la Ec. (7.17) implica
{6, Po} =n"0,9, {m, Po} = n"Oum (7.19)

lo que significa que Py, la transformacion de Legendre integrada en el tiempo, genera

traslaciones temporales en la direccién n*. En este marco, las traslaciones temporales

3Desde la perspectiva matematica podemos identificar el espacio fase resultante 2 con el limite
N — oo del producto directo 2 = thN para w; el espacio fase tradicional definido en un ¢ fijo.
Esta es precisamente la estructura matemética convencionalmente aplicada a campos en el espacio

de tal manera que w; = wM

. para M rebanadas espaciales y wy, el espacio fase de un oscilador

individual. En resumen, podriamos escribir 2 = thwN M
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son geométricas e independientes de la evolucion. Esto se refleja en el hecho de que
Po genera las transformaciones y no el Hamiltoniano (este punto se discute més
adelante cuando se considera la evolucion en la Seccion 7.3.4).

Para n* = (1,0,...) también podemos escribir {¢,P,} = 0,¢ para P, =
Ik dz 70,6 que para u = 1,...,d + 1 es simplemente el momento convencional

llevado por el campo integrado en el tiempo. Ademas,
L, = /dd“x (2,0, — ,0,)¢ (7.20)

genera las transformaciones de Lorentz

{‘CMW ¢} = _(:L‘uau - xyau)ﬁb (721&)
{L, 7} =—(2,0, — x,0,)7. (7.21D)

A través de la exponenciacion de las transformaciones anteriores, se obtienen asi
transformaciones de Poincaré generales finitas. En particular, se recuperan las pro-
piedades de transformacion de ¢ y 7 en la Ec. (7.11). La adicion de espin es directa
pero introducida en el Apéndice 7.2 por simplicidad.

Para obtener la ley de transformacion de n* de manera similar, se puede definir
una estructura simpléctica adicional: introducimos un momento conjugado &, tal
que

{n" Kk, } =nh,. (7.22)

Se puede imponer n#n, — 1 ~ 0 como una restricciéon débil. Ahora es factible intro-

ducir {,, = n,k, — n,K, de tal manera que
{laﬁa n,LL} = naé,uﬁ - nﬁéua . (723)
Entonces
j;u/ = ‘c/u/ =+ l;w (724)

genera la transformacion completa (7.11). Dentro de este formalismo, afirmar que
una teoria es invariante de Lorentz es explicito * (ver, por ejemplo, la acciéon en la
Ec. (7.16)):

{§,J.,}=0. (7.25)

Notese que {¢, n*} = {¢, k*} = {m,n*} = {7, K"} = 0, de tal manera que {L,,,, log} =

0, en otras palabras, las algebras son independientes. Por otro lado, S tiene un CP no

*Notemos que agregar en un campo escalar un término [ d?a A(z)¢™(z) con A(z) # A(Az)
0 en un campo espinorial agregar fdd+1x YTy (ver Apéndice B) llevan a {Tuw,S} # 0. Esto es,

términos que no respetan la simetria de Lorentz en el sentido usual, arruinan la condicién.
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nulo con todas las variables excepto con n*, en particular {S, L, } = —{S, 1.} # 0.
Ademas, se debe notar que los generadores 7, son independientes del Hamilto-
niano, lo que significa que hemos separado exitosamente las transformaciones de

coordenadas de la dindmica.

La introduccién de una estructura simpléctica asociada con n* proporciona la
pieza final para un tratamiento elegante de las simetrias del espacio-tiempo dentro
de un marco de espacio de fases. Sin embargo, a primera vista, parece injustificado
fisicamente ya que no se ha introducido ninguna dinamica asociada. Al reflexionar,
situaciones similares surgen en muchos escenarios fisicos: considere, por ejemplo, una
particula en un campo magnético externo B con acoplamiento Hj,; o« —B - M para
M el vector del momento magnético asociado con la particula. Esta claro que Hiy
exhibe simetria rotacional, incluso si no asociamos una estructura simpléctica con B
que implemente rotaciones. Sin embargo, podemos tratar B como un campo dina-
mico formal en un espacio de fases adicional y definir un operador de rotacion total
R'™" que también rota B tal que {Hiy, R™'} = 0, incluso si no aparecen términos
dependientes del momento en Hi,; ({Hin, B} = 0). La descripcion Hamiltoniana
genuina del campo tiene una estructura simpléctica asociada que puede coincidir

con la formal, pero se puede ignorar cuando se trata como una fuente externa.

Podemos especular que una situacion similar puede surgir en investigaciones fu-
turas con § — § + S, para S,« incluyendo k* justo como Hi,, — Hiy + Har hace
dindamicos a A* y B. Aunque hemos introducido un espacio de fases de foliacién
por conveniencia matematica, una teoria de una métrica dindmica y foliaciones aso-
ciadas puede proporcionar una descripcion dindmica genuina de n# (ver también la
discusion cuantica en las secciones 7.4.2-7.5). Por el contrario, las consideraciones

en este trabajo apuntan a su existencia.

7.3.4 Ecuaciones de movimiento a partir de corchetes exten-
didos

En el nuevo marco surge una imagen “atemporal”: todas las variables espacio-temporales,
incluyendo ¢ = z#n,, son indices de sitio de campos independientes en el espacio-
tiempo. No hay ninguna variable que parametrice la evolucién y no se asume una
estructura causal a priori. Sin embargo, cualquier informaciéon dinamica debe codi-

ficarse dentro del espacio fase extendido dado que ya contiene al “tiempo”.

Notablemente, la nueva estructura simpléctica proporciona una forma elegante
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de introducir evolucion: la definicién de los corchetes extendidos produce

oH a1 oH di1
87_{¢,/d x%} —8—¢—{w,/d x?—[} (7.26)
Como consecuencia, la accion S definida en (7.8) surge naturalmente como la dife-

rencia entre las Ecs. (7.26) y (7.19) de tal manera que

n*o,m + 86—7; ={r,S} (7.27a)
0
n"0,¢ — 8—7: ={¢,S}. (7.27Db)

Cuando se igualan a cero, son precisamente las ecuaciones de Hamilton. Podemos

definir un “subespacio fisico” (o subvariedad) como

{n(z),S} ={é(x),S} =0, (7.28)

impuesto para todos los puntos del espacio-tiempo x. En esta formulaciéon, estas
deberian considerarse igualdades débiles con la evolucion emergiendo de las propias
restricciones. Imponen una igualdad entre desplazamientos en el tiempo, como los
generados por Py (Ecs. (7.19)), v la transformacion generada por el Hamiltoniano.

Por ejemplo, para el campo de Klein-Gordon la accién esta dada por (7.16) que,

con la adicion de un término potencial H — H + V(¢), produce

{m(z),8} = n"d,m — (n"n” — n")0,0,0 + m*¢ + V' ()
{¢(x), S} =n"0up — . (7.29)

Cuando estos se igualan a cero se convierten en las ecuaciones de Hamilton (ver
(7.9)) implicando
(0,0" +m*)p+V'(¢) =0. (7.30)

Es sugestivo notar que la relacion m = n”0,¢ es compatible con

{ru, L(x)} = (7(x) = n"0,¢(2))0ud(x) = O (7.31)

con L la densidad Lagrangiana en (7.16) (tal que S = [ d*™'z £(x)). Entonces, ya
que {n* S} = 0 se cumple trivialmente, mientras que {x*,S} ~ 0 sigue de (7.31),
cualquier funcion en el espacio de fases de foliacion “conmuta” con la acciéon (en el
subespacio fisico). Si se agregara alguna parte dinamica S, a S (S = S + Spw),
la acciéon de foliacién S, determinaria las ecuaciones de movimiento de la foliacién

independientemente de la acciéon original de los campos de materia S.
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Algunos comentarios sobre las unidades son necesarios: los campos ahora tienen
unidades reescaladas con un factor 7-'/2 debido al delta de tiempo adicional. Esto
significa que se puede introducir un parametro de tiempo 7 para multiplicar ¢, =
por /7. Para acciones cuadraticas esto significa un factor general 7 de tal manera
que 75 es adimensional de acuerdo con una interpretacion de S como generador
en la “evolucion 77. Las Ecuaciones (7.28) entonces pueden identificarse como las
condiciones que definen constantes de movimiento 7 y el CP extendido (7.17) con
un algebra canénica a “tiempos 7”7 iguales en una teoria d + 2. Sin embargo, ndtese
que esta analogia no se extiende al algebra de foliaciéon. Consideramos que es mas
apropiado tratar el formalismo como describiendo teorias D = d + 1 a través de
un nuevo conjunto de reglas en lugar de teorias en d + 2 en un enfoque canoénico
(ver sin embargo los comentarios en la seccion 7.4.3). En general, si ¢, m satisfacen
las ecuaciones de movimiento que surgen de un S reescalado, entonces /7¢, /7T
tienen las unidades correctas y satisfacen las ecuaciones de movimiento convencio-
nales. En esta seccion, simplemente establecemos 7 = 1 pero este pardmetro tiene

consecuencias importantes en el caso cuantico.

Mencionemos que en el Apéndice 7.2 también se desarrolla el caso de la accion
de Dirac. Alli mostramos como recuperar la ecuacion de Dirac a partir de las res-
tricciones previas. Cabe destacar que la ecuacion en su forma Hamiltoniana exhibe
explicitamente la covarianza de Lorentz para n* general. Esto concuerda con la Ec.
(7.25), que se mantiene para la accion de Dirac y J*” incluyendo el momento angular
de spin.

También notemos que el presente formalismo se puede aplicar a cualquier sistema
clasico y no solo a campos: uno “promueve” variables ¢;, p; que satisfacen {¢;,p;} =
dij a qi(t),p;(t) tal que

{ai(t),p; ()} = 0;;0(t — ') (7.32)

Para recuperar la evolucion, entonces se introduce una accion S = [ dt (pigi — H) y

se imponen

OH
WS =g — 2~ 0 7.33
{a::S}=14q o, (7.33a)
oH
—{pi, St =pi + 90 ~0. (7.33b)

Se reconocen nuevamente las ecuaciones de Hamilton impuestas como restricciones.
Es facil ver que los subespacios fisicos son invariantes bajo las simetrias de trans-

formacion de la accidon. De hecho, el generador G de cualquier simetria satisface
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{G,S8} = 0. Entonces, para una funcion F[¢, 7| (o Flg,p]) dentro del subespacio

fisico, la identidad de Jacobi implica
[F,8} = 0= {{G.F},S8} = 0, (7.34)

es decir, el F transformado también esta en el subespacio fisico. Un ejemplo es
proporcionado por la simetria de Lorentz para el campo escalar, como se describe
en (7.25).
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7.4 Mecanica cuantica en el espacio-tiempo

7.4.1 Cuantizacion extendida

a) 14 b)
{6(2), 7(§)} = 0D (7 — ) {0(2),7(y)} = 6V (x —y)
A z — Quantizatio z p— Quantization
0 - Quantization _‘ ] >
fo sl B(T) e {|(2))) 3 o(x) é{]l:ﬁ(ﬂfl))}S
H articles
- = Fixed “‘/ 7 I Quantization { n#>}

y S——

{n*, Ky} = ok,

Figura 7.4.1: Espacio fase estandar y cuantizacién versus el nuevo enfoque en el espacio-
tiempo. a) En la mecénica clasica Hamiltoniana, se define una estructura simpléctica para una
eleccién fija de tiempo. La cuantizacion se realiza entonces en una hipersuperficie d dimensional
dada promoviendo ¢(x) y 7(x) a operadores cuanticos. Una base posible del espacio de Hilbert
resultante esta dada por configuraciones de campo en la hipersuperficie, denotadas por |¢(x)). b) En
el enfoque espacio-temporal, tanto los corchetes de Poisson como los conmutadores son simétricos
en el espacio-tiempo y la foliacion es “dinamica”’. Una base del espacio de Hilbert esta dada por el
producto tensorial entre configuraciones espacio-temporales del campo |¢(x)) y los estados propios
de la foliacion |n) = [n®,n',...n%). Operadores generales, como las acciones cuanticas del espacio-
tiempo y los operadores de escalera resultantes (asociados con particulas “off-shell” extendidas) son
no separables en la particiéon materia-foliacién. Sus caracteristicas covariantes explicitas se hacen

factibles solo en el espacio de Hilbert completo.

El primer paso en la cuantizacién candnica convencional de una teoria Hamil-
toniana es promover los corchetes de Poisson canénicos a conmutadores candnicos.

Imponemos lo mismo a la élgebra extendida (7.17) implicando (establecemos i = 1)

[gb(x)? W(y)] = Z.(S(d—’—l)(x - y) ) (735)

con los deméas conmutadores anulandose (también hemos asumido una algebra bo-
sonica). Entonces, cualquier funcion de las variables del espacio de fases también se
promueve a un operador (a menos de las ambigiiedades de ordenamiento usuales).
Notablemente, en el esquema extendido esto significa que no solo el Hamiltoniano,
sino también la accion S expresada como en (7.8), ahora se promueven.

Es importante sefialar que ¢(x) = ¢(,x) no es el operador de campo evolucio-
nado en el esquema de Heisenberg, sino que para cada tiempo se presenta un campo

independiente y un momento asociado. En particular,
[6(t,x), o(t',x)] = 0 (7.36)
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incluso para regiones causalmente conectadas. Esto es una declaracion mas fuerte
que la microcausalidad; de hecho, no hay conexién causal entre campos (y momen-
tos) en diferentes puntos del espacio-tiempo. En consecuencia, una base posible para
este espacio de Hilbert esta proporcionada por estados |¢(x)) que representan con-

figuraciones de campo en espacio-tiempo, de tal manera que

o(x)|é(x)) = ()| d(x)) , (7.37)
con (¢(x)|¢' (z)) = §[p(x) — ¢'(x)] equivalente al limite continuo de [Tz 0100 —

@.]. También podemos considerar estos estados como estados de “trayectorias cuan-
ticas” de estados propios de campo convencionales en un tiempo dado |p(x)) en el
sentido de que |¢p(z)) = ®q|Pi(x)) (con (Pp(x)]|¢' (x)) = 0°[p(x) — ¢'(x)], ver también
[3, 4] para una discusion mas detallada). En otras palabras, el espacio de Hilbert
que surge de (7.35) es isomorfo a un producto tensorial de copias en tiempo del
espacio de Hilbert tradicional (esta declaracion se vuelve rigurosa solo después de
una discretizacion adecuada, ver Apéndice 7.4). Esto es valido para una éalgebra bo-
sonica, el caso fermiénico se puede desarrollar de manera similar con conmutadores
reemplazados por anticonmutadores.

Como en el caso clasico Hamiltoniano, la ventaja de la &lgebra extendida es el
tratamiento explicito y geométrico de las simetrias del espacio-tiempo. De hecho,
con estas definiciones se puede promover Py y L£,, a operadores de tal manera
que se obtiene una version cuéantica de las Ecs. (7.19, 7.21) reemplazando { , } —
—i[, |. Entonces, por ejemplo, P, genera traslaciones geométricas en el tiempo como
e p(x)e” 0 = (20 + 7,x) para T € Ry n# = nH0.

Ademas, promovemos (7.22) a
[n* K, ] = id" (7.38)
como un algebra independiente de los campos de materia, de tal manera que
[6(x), n] = [(x), #] = [m(x), n"] = (), 5] = 0. (7.39)

Ahora podemos introducir el operador de momento angular total J,, = £, + .,
como en la Ec. (7.24), con tanto £ como [ ahora promovidos a operadores. Entonces,
dentro del espacio de Hilbert completo podemos escribir la transformaciéon de los

operadores ¢, n* y m de forma unificada

U (A)p(x)U(A) = ¢(Ax) (7.40a)
UT(N)n"U(A) = A* n” (7.40D)
UT(N)m(2)U(N) = n(Ax), (7.40c)
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donde
U(A) = exp(iw,, T" /2) (7.41)

es el operador unitario de Lorentz correspondiente a la transformacion A = e¥

(' = A" x"). Las Ecuaciones (7.40) son, por supuesto, la version cuantica de (7.11).
Cabe destacar que la definicién de U (A) no involucra al Hamiltoniano, lo que significa
que es independiente de la teoria.

La version final del espacio de Hilbert que incluye la “foliaciéon cuantica” se mues-

tra en la Figura 7.4.1 y tiene una base de la forma

{lo(z)) @ [n)} (7.42)

para A*n) = n#n) (|n) = [n°...n?)) y
UN)[d(2)) ® |n) = |o(A™2)) @ [A7'n). (7.43)

Por supuesto, en el sector de foliacion son posibles estados més generales |1)) =
[ dni(n)|n) (dn = dn®...dn?), incluyendo, por ejemplo, estados propios de mo-
mento, estados coherentes y estados de Fock. También se puede implementar la
condicion n*n, ~ 1 como la restriccién cuantica (n#n, —1)[1)) = 0 que solo permite
la superposicién de estados con n? = 1 (asumido implicitamente a lo largo de esta
seccion).

Notablemente, un estado general mostrara claramente el entrelazamiento entre la
particion materia-foliacion. Esta caracteristica emerge naturalmente del formalismo
incluso cuando no se ha impuesto ningiin mecanismo fisico (no hemos considerado
interacciones entre los sectores materia-foliacion). En particular, la acciéon cuéantica

S no es un operador producto, sino més bien un operador tipo “control”, es decir,
S = S(i) = / dn Sn") @ |n)(n|. (7.44)

Este hecho tiene consecuencias que se discuten en las secciones 7.4.2 y 7.5. Por el
momento, destacamos que es precisamente debido a esta estructura que podemos

escribir
[87 juy] =0 , (745)
indicando la covarianza de la accién explicitamente mientras

[87 E,W} = _[87 l/w] 7£ 0. (746>

Notemos también que el Hilbert de n es isomorfo a una particula d + 1. Curio-
samente, esta observacion sugiere posibles conexiones con las recientes transforma-

ciones de Marcos de Referencia Cuanticos [119] donde se define la nociéon de marco
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de reposo de la particula cuantica (sin embargo, la restriccion enfatiza diferencias
matematicas e interpretativas importantes, al menos en esta etapa de desarrollo).
Es importante mencionar que en el contexto del enfoque de historias consistentes
a la Mecanica Cuantica [24], también se ha reportado la necesidad de una foliacion
cuantica [133], un resultado que desafortunadamente no ha atraido mucha atencion o
desarrollo adicional. Aunque el tratamiento en [133] ha sido diferente (tanto clésica-
mente como en su version cuantica) las razones para su introduccion son las mismas:
un tratamiento adecuado de las transformaciones de Lorentz en una QFT con &l-
gebra extendida (también una caracteristica del enfoque de Isham para historias

continuas [110]).

7.4.2 Particulas Extendidas

Habiendo introducido el marco cinematico adecuado, comenzamos a discutir como
introducir la dindmica dentro del formalismo. Una observacién bésica es que, dado
que los campos en diferentes puntos del espacio-tiempo son independientes, no se
asume causalidad a priori, y la evolucién no puede corresponder a una transfor-
macién unitaria parametrizada como de costumbre: aunque “t” es un parametro,
su significado es completamente diferente que en QFT convencional. Aqui se trata
como un indice de “sitio” al igual que “x”. Sin embargo, nos gustaria recuperar las
mismas predicciones de las MC tradicional con respecto a la evolucién, al menos bajo
suposiciones razonables como Hamiltonianos convencionales y foliaciones “clasicas”
(posponemos la mayoria de la discusion sobre efectos relacionados con una foliacion
cuantica a la seccion 7.5).

Como sugiere el caso clésico, la evolucion deberia surgir de la accién S, ahora un
operador cuantico. Consideremos como ejemplo concreto la accién de Klein-Gordon
(7.16) con ¢, m,n* operadores. Discutamos primero su diagonalizacion. Siendo un
operador cuadratico para cada n* fijo (ver Ec. (7.44)) su forma diagonal se logra

facilmente: expandimos los campos como

o(z) = / °p ! (a(p)e™™" + h.c.) (7.47a)

(2m)" \/2E,(n)

w(z) = / (;lﬂ)pD<—z'),/Ep2(") (a(p)e™ — h.c)) (7.47D)

para a'(p), a(p) operadores de creacién (aniquilacion) extendidos que satisfacen

[a(p), al(p)] = (2m) PP (p — 1), (7.48)
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con otros conmutadores anulandose. En estas expresiones
D=d+1, (7.49)

y hemos definido

Ep(n) = \/p’”PV(%u —n,n,) +m? (7.50)
para n* un operador: una funcién F de los operadores n* deberia interpretarse
como F[n] = [dn Fn]n)(n| (para simplicidad, aqui hemos trabajado dentro del
subespacio (n*n, — 1)|¢) = 0; ver seccién 7.5 y Apéndice 7.1).

En términos de estos operadores de escalera extendidos, la accion (7.16) tiene la

forma normal
a’p
S = [ Gt Wn = Byn)al @)a(p). (751)

donde hemos omitido una “constante” relacionada con la energia del vacio (curio-
samente, el término que surge como de costumbre del ordenamiento normal de los
operadores sigue siendo un operador en el sector de foliacion; ver seccion 7.5). No-
tar las dos contribuciones diferentes a las “frecuencias normales” p#n, — E,(n), con
E

»(n) asociado con la densidad Hamiltoniana H (ver también seccién 7.5) mientras

que

d’p
%I/@ﬂMWWWMM- (7.52)

Se puede demostrar que esta forma normal de Py no es tnica [3]. Para n* = n*° uno
tiene p*n, — E,(n) — p° — /P2 + m?, es decir, E,(n) = Ep = \/p? + m? la energia
relativista convencional.

La diagonalizaciéon previa de S imita las expresiones de las QFT convencionales
respecto a la diagonalizacion de un Hamiltoniano libre en d = D — 1 dimensiones.
Sin embargo, se deben notar diferencias importantes: la expansion de los campos en
operadores de particulas es completamente off-shell, con p° no relacionado con p. Sin
embargo, la cantidad E,(n) que aparece en la forma normal de la parte Hamiltoniana
de S es positiva para todos p, permitiendo la expansion (7.47). La positividad sigue
de la Ec. (7.14) que implica p"p*(n,, — n,n,) = >, (pun';)?.

Ademas, en capa de masa, es decir, para p’ = E, = \/Im un célculo directo
produce E,(n) = Ejp para A definido como la transformacién de Lorentz que lleva
un n* normalizado a la direccién de tiempo “canénica” n* = n#°. En otras palabras,
E,(n) en capa de masa corresponde a la energia medida por el observador con eje
nt.

Un requisito béasico de consistencia para las particulas extendidas, en general

fuera de la capa de masas, es que diferentes observadores inerciales coincidan en su

132



Capitulo VII. Mecéanica cuantica y clasica en el
espacio-tiempo con foliacién dindmica

nocion (por ejemplo, su namero) y propiedades (tras transformar sus momentos).
Para que esto se cumpla, en consistencia con las reglas de transformacion de los
campos y su expansion en modos extendidos, es cructal que n* sea un operador tal
que

U (N)E,(n)U = E,(An),. (7.53)

De hecho, al notar que E,(A™'n) = Ey,(n) y que d”p es una medida invariante, se

encuentra facilmente

Ut (A)a(p)U(A) = a(Ap). (7.54)

En resumen, las particulas extendidas transforman adecuadamente (incluso fuera de
capa de masa) porque E,(n) también se ve afectada por la transformacion cuantica.
Esto requiere un n* cuantico.

Se puede obtener més intuicion notando que esto requiere [a(p), log] # 0, lo cual
solo es posible si los operadores de creacion/aniquilacion acttian de manera no trivial
en el espacio de Hilbert de la foliacién. Esto se puede ver explicitamente invirtiendo

las relaciones (7.47). El resultado es

a(p) = / au e /@gb(zw\/ﬁm)), (7.55)

donde recordamos que n* es un operador y como consecuencia [a(p),x*] # 0. La
nocion misma de particula cudntica, como una excitacion de los campos (extendidos),
se vuelve inseparable de la foliacion cuantica. Revisitamos y expandimos este punto
en la seccion 7.5.

Ahora volvemos a la nocion de subespacio fisico sugerida por la discusion clasica
de la seccion 7.3.4. Utilizando la version clasica de la expansion (7.47), se puede
mostrar que las restricciones (7.28) impuestas en todos los tiempos son equivalentes
a {S,a(p)} = 0 impuestas para todos los p (y su conjugado). Podemos imponer la
mitad de estas infinitas restricciones a nivel cuantico exigiendo que los estados fisicos

sean aniquilados por las condiciones, es decir,
[S’ a’(p>]|\11>phys - 07 . (756)

Esto requiere que las tinicas particulas presentes en el subespacio fisico sean aquellas
en capa de masas, como se sigue de [S,a(p)] = —[p"n, — Ep(n)la(p) que solo se
anula para p° = FE,,. Una particula en capa de masa es fisica en cualquier marco de
referencia como se sigue de [J,,,S] = 0 y la identidad de Jacobi.

En este caso libre simple, es directo recuperar informacion dinamica de los estados

fisicos. Por ejemplo, para teorias cuadraticas bajo una traslacién en el tiempo, los
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operadores de escalera en la capa de masas “se mueven a través del tiempo” como si
estuvieran evolucionando. Este hecho puede emplearse para obtener amplitudes de
transicion convencionales a partir del formalismo extendido, como se muestra en [3].
Otra caracteristica interesante a notar es que los estados de una sola particula (sp)
tienen la forma de los estados de Page y Wootters (PW) [14, 29|, como se muestra
en |2, 3, 36]. En este sentido, se puede decir que las excitaciones de los campos, en
su enfoque extendido, son particulas formuladas como en los formalismos inspirados

en el tiempo/la cuerda cuantica [46].

En el caso libre, el subespacio fisico tiene una interpretacion clara como el espacio
lineal de particulas en capa de masas (ver también los resultados en [1, 2] respecto a
la normalizacion de estados). No obstante, a medida que las interacciones entran en
juego, la nocion de particula se vuelve menos clara, al igual que el significado de los
subespacios fisicos. En lo siguiente, desarrollamos un enfoque mucho mas poderoso
para mapear cantidades extendidas a la evolucion cudntica estdndar que se sostiene
para teorias con interacciones. El concepto de subespacio fisico aparece nuevamente
de manera natural al considerar procesos de dispersion en los cuales las particulas
externas son consideradas (hablando no estrictamente) como asintoticamente libres

en el sentido usual.

7.4.3 Correladores en el espacio tiempo y mapeo a la MC

convencional a foliacién fija

Ademas de las particulas, otro elemento clave de las teorias cuanticas de campos (y
la MC en general) son los correladores. Los correladores convencionales estan asocia-
dos con separaciones espaciales entre operadores. Para operadores hermiticos, tales
correladores pueden interpretarse como el valor medio de un observable. En cambio,
los correladores que involucran observables separados temporalmente no correspon-
den a operadores hermiticos, pero usualmente aparecen asociados con amplitudes
de transicion, por ejemplo, en teoria de perturbaciones. En esta seccion, mostramos
de manera completamente general como el formalismo extendido permite recuperar
ambos de una manera unificadora. Esto introduce una correspondencia general entre

la version espacio-temporal de la MC y el enfoque convencional.

Recordemos primero que los operadores cuadraticos estan completamente de-

terminados por sus contracciones bésicas (teorema de Wick). En el caso diagonal,
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esencialmente se tiene el correlador

Tlexp(- Dohala)ada]
oo (- Sondda)] | oP0W) ]

(ala;) == Ol - (7.57)

Aqui los indices k, [ estan “separados espacialmente”, en el sentido de que los opera-
dores az, a; no evolucionan en el marco de referencia dado y corresponden a modos
ortogonales. También hemos asumido una algebra bosonica [ag, aﬂ = 0y, el caso fer-
mioénico es andlogo. Similarmente, uno podria considerar en cambio los correladores
de posicion-momento (g;q;) v (pip;) para [g;, pj| = i0;j, que corresponden al valor
medio de operadores hermiticos.

El 4lgebra extendida (7.35) nos permite aplicar la ecuacion (7.57) tanto a indi-
ces espaciales como temporales. Equivalentemente, podemos aplicarla a correladores
fuera de capa de masas, como ahora lo permite (7.48). Notablemente, cuando la usa-
mos en conjunto con un operador de accién cuadratica S, e “insertamos” operadores
en diferentes puntos en el tiempo, los propagadores de la MC convencional emergen
naturalmente. Inversamente, uno podria “redescubrir” el operador S como el tinico
operador cuadratico cuyas contracciones espacio-temporales son los propagadores
libres convencionales.

Este resultado, recientemente probado en [4] (capitulo VI) sin n*, proporciona
un mapa general entre la MC convencional en d dimensiones y la formulacion ex-
tendida con algebras en D = d + 1 dimensiones. También lleva directamente a una
redefinicion de la formulacion de integrales de camino como una traza que involucra
la accién cuantica S. Aqui proporcionamos una nueva derivacién del mapa especial-
mente adecuada para teorias de campos, revelando asi nuevas caracteristicas. En la
siguiente subseccion 7.4.4, lo desarrollamos atin mas proporcionando una interpreta-
cion en términos de estados generalizados y “pseudo” correlaciones. En esta seccion,
consideramos un n* clésico. La extension a un n* cuantico se desarrolla en la seccion
7.5, basandose en el caso de foliacion clasica.

Queremos exponenciar el operador de acciéon, que no es adimensional, por lo
que introducimos una escala de tiempo o energia inversa 7 (considerada como un
pardmetro real positivo por conveniencia) y definimos S, = 78 en el caso libre.
Comentarios adicionales sobre esta nueva “coordenada” se hacen al final de esta
seccion, mientras que un enfoque complementario de “slicing de tiempo” se presenta
en el Apéndice 7.4. Similarmente, para considerar campos con unidades correctas,

agregaremos un factor /7 para cada operador. Indicamos los correladores extendidos
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de €*°7 como T iSO
iy el T

0) = —

(o) Tr eiSr

Al reconocer que para un S cuadrético la ecuacion (7.58) puede considerarse

(7.58)

como un caso particular de (7.57), se puede obtener facilmente cualquier correlador
espacio-temporal. Consideramos el ejemplo de la acciéon de Klein-Gordon que en su
forma diagonal (7.51), caracterizada por particulas fuera de la capa de masas, nos

lleva a

Tr[exp {it [ &b (0° — Epr +ie)al (p))a(p') Yal (p)a(k)]
Tr[exp {ir [ G (0° — By +ic)al (#)a(p')}]

= ! HP50) () —
oxp =i = By i) 1) 0T = k), (7.59)

(a' (p)a(k)) =

donde hemos reemplazado E, — E,—ie y asumido por simplicidad n* = n*? (el caso
general corresponde a p° — B, — pFn, — E,(n)). Es interesante considerar el caso de
pequeiio 7 de esta expresion. Uno obtiene (a'(p)a(k)) = %m(2ﬂ')D5(D) (p —
k) + O(7) cuya transformada de Fourier en p” produce una funcién de Heaviside en
la variable conjugada, es decir, en la variable de tiempo.

Es importante notar que (7.59) no puede corresponder a un correlador genuino
(teniendo la forma “espacial” de la Ec. (7.57)) en la Mecéanica Cuéntica tradicional,
esencialmente porque el formalismo extendido tiene indices extra. En otras palabras,
dado que el tiempo es un “indice de sitio” que indica operadores de campo indepen-
dientes, p° también se convierte en una etiqueta y denota operadores de escalera
independientes: la mayoria de los correladores en el espacio de Hilbert extendido no
corresponden a una tnica “contraccion” de la Mecanica Cuéantica tradicional. Solo
para aquellos con operadores insertados en una tnica rebanada de tiempo es posible
una identificaciéon uno a uno. Como mostraremos ahora, la evoluciéon emerge de esta
aparente “redundancia’”.

La Ec. (7.59) es el correlador basico en el espacio de momentos “off-shell” a partir
del cual se pueden obtener correladores localizados en espacio-tiempo. Estos tltimos

se definen por la expansion (7.47). En particular, es sencillo calcular

o) =1 [ (de L e 4 o) (760)

T 2m)P p?2 — m? + ie

donde usamos P o = QEPI#QH6 y estamos considerando un pequeno
P

i
pO+Ep—ie
7. Uno reconoce inmediatamente la expresion del propagador de Feynman lo que nos

permite escribir
1im (v7(2) V7o (y)) = (0T ér(2)on(y)[0). (7.61)
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En el lado derecho, ¢p(x,t) := etftp(x)e " es el operador de campo convencional
(no extendido) en el esquema de Heisenberg y |0) es el estado fundamental usual
del Hamiltoniano de Klein-Gordon libre H, mientras que T denota el ordenamiento
temporal. En el lado izquierdo, los operadores no evolucionan con algtin operador
de evolucién, en su lugar, su “posiciéon en el tiempo” ha determinado el grado de
evolucion: el lado izquierdo de (7.61) siempre puede entenderse como un correlador
como el de la Ec. (7.57), incluso para |z — y| tipo tiempo en cuyo caso emerge
la evolucion. Notese también que en lugar de considerar el limite de pequeno 7
(positivo), lo que refleja la intuicion de un espacio-tiempo discreto (ver Apéndice
7.4), se podria considerar integrar alrededor de loops en el plano complejo y explotar
la estructura de polos de los correladores.

Los resultados anteriores también definen el tratamiento adecuado de teorias de
campo interactuantes: consideremos S; — S; + Sint[\/T¢] para Sin[v/T¢] teniendo
la forma funcional clasica en los campos, por ejemplo, para una acciéon clésica Si,; =
— [dPx ¢ se tiene Sy = — [ dPx 572¢". Entonces en el limite de pequefio 7, el
correlador “interactuante” de campos, definido al considerar toda la accion en (7.58),

tiene la siguiente expansion:

, o (0| TSm0l ()1 (y)]0)
lli%<\/;¢(x)\/;¢(y)>mt - <O|T@i5im[¢l] |0> . (762)

La igualdad es una consecuencia directa de (7.61) y el teorema de Wick (para

“estados” Gaussianos) aplicado a la parte libre de la accion, con la parte inter-
activa expandida perturbativamente para un pequeno 7. Por esta razon, la evo-
lucion que emerge es la que corresponderia al esquema de interaccion, es decir,
o1(t,x) = efolp(x)e Hot para H, el Hamiltoniano de Klein-Gordon libre. Uno
también reconoce en el lado derecho de (7.62) la expansion perturbativa del co-
rrelador interactuante (GS|Tdx (x)dx(y)|GS), con |GS) el estado fundamental del
Hamiltoniano interactuante. Asumiendo como es habitual la validez de la teoria de

perturbaciones, concluimos que

1 (v7(2) V7)) = (GS|Tén (x)dn (y)|GS) - (7.63)

A partir de estas expresiones se pueden calcular las amplitudes de dispersion co-
mo es habitual, por ejemplo, utilizando la formula de reduccion LSZ [114]. Se puede
mostrar que la transformada de Fourier en d 4+ 1 dimensiones involucrada se traduce
en insertar operadores de escalera en los correladores. En otras palabras, las amplitu-
des de dispersion son proporcionales a correladores de la forma ([T, a(k:) [T, a¥(p;))int

para p; (k;) los momentos “entrantes” (“salientes”) (ver también [4] y seccion 7.4.4).
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Notese también que para un n* fijo pero general solo es necesario hacer el reem-
plazo p°’—E, — p*n,—E,(n) enlaEc. (7.59). Las Ecuaciones (7.60-7.63) permanecen
sin cambios.

Antes de continuar, nos gustaria sefialar que las similitudes entre las expresiones
anteriores y las de PI no son una coincidencia. Mientras que los resultados anteriores
se han obtenido a partir de técnicas del espacio de Hilbert, asociadas con el algebra
de operadores, y por lo tanto son independientes del enfoque de Feynman, uno puede
evaluar las trazas anteriores explicitamente en una base dada. Si se elige la base de
configuraciones de campo del espacio-tiempo |¢(z)) (ver Ec. (7.37)) emergen Pls de
Feynman, como se muestra en [4]. En este sentido, el formalismo esta embebiendo
la formulacién PI en un espacio de Hilbert (véase el capitulo VI).

También es interesante discutir como el formalismo clasico extendido de la seccion

anterior se puede recuperar en el limite A — 0. En primer lugar, notemos que
00), 5] = idla) ~ [ola), [ a”= ]

(7.64)
[r(2),S,] = i# () + [r(2), / 4P ]

tienen la forma de ecuaciones de Heisenberg si se igualan a cero (y absorbiendo los
factores 7 en los campos). Notablemente, dado que la ciclicidad de la traza implica
([...,87]) oc Tr{e®"[...,S,]} = 0 para cualquier operador, tenemos ([¢(x),S,]) =
([r(z),S;]) = 0, lo cual, segtin nuestro mapa (valido para pequenos 7), concuerda
con las ecuaciones de Heisenberg en la Mecanica Cuéntica convencional. Por otro
lado, siguiendo un argumento similar al de la formulacién estandar de PI, para A — 0
las tinicas contribuciones a la traza vienen esencialmente de configuraciones clasicas
extremas de la accion (ver también [4]). Al mismo tiempo, dado que la forma de los

conmutadores extendidos y los PB extendidos es la misma, podemos escribir

0= <[7ST]> h:zo {"'78}|Encapademasa (765>

donde el conmutador se aplica a cualquier operador cuéntico extendido, y el CP a la
funcion asociada del espacio de fases extendido (el ordenamiento se vuelve irrelevante
en el limite de pequetio f). Este ultimo se calcula primero segun el dlgebra extendida
(7.17) y luego se evaltia en una solucién de las ecuaciones de movimiento. Concluimos
que el resultado cuantico ([...,S;]) = 0, junto con las Ecs. (7.27), implican las
ecuaciones de Hamilton para h — 0. Notablemente, emergen como un limite de la
Mecéanica Cuantica en el espacio-tiempo a través de los CP extendidos de la mecanica

clasica en el espacio-tiempo.
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Los resultados anteriores establecen una conexién basica entre las QFT exten-
didas y convencionales a temperatura cero (es decir, asociadas con el estado funda-
mental del Hamiltoniano en cuestion). También es interesante mencionar brevemente
céHmo surgen los propagadores térmicos para una ventana de tiempo finita de longi-
tud T'. Esencialmente, la diagonalizacion de la accion libre de Klein-Gordon ahora

produce

5= 7% | Gt~ ol plentv), (7.66)

para w = 2mn /T, son las frecuencias de Matsubara, que surgen de la diagonalizacion
de Py. También estamos asumiendo un tiempo compactificado (condiciones periodi-
cas) tal que (7.48) se reemplaza por [a,(p), al, (k)] = T8, (27)%6%(p — k) mientras
que las expansiones (7.47) se mantienen reemplazando la integral en p° por una suma
sobre n (con también (27)~' — T~'). Si ahora consideramos F, — —iF,, es facil
ver que (7.61) se reemplaza por la expansion de Matsubara del correlador (térmico)
[135]. La temperatura correspondiente es § = T.

Si también discretizamos el tiempo en N = T'/e pasos, resultados como (7.61)
se vuelven exactos para operadores “insertados” en tiempos conmensurables con e.
También prescindimos de 7 que es reemplazado por el intervalo de tiempo € (ver
Apéndice 7.4 para los detalles y la definicién de la accion cuantica para el espacio-
tiempo discreto). Ademaés, dado que todos los correladores espaciales se obtienen de
la acciéon cuantica simplemente considerando, por ejemplo, operadores en la rebanada
inicial

e P =Ty, 40 €™ (7.67)

es decir, podemos recuperar el estado térmico convencional de la accién cuantica
considerando una traza parcial sobre todos los tiempos excepto la rebanada inicial
(estamos asumiendo una rotacion de Wick de la parte de Hamiltoniano de la accion;
esto no afecta a Py). Aqui B = T'. Esto también implica que Z := Tre ## = Tre'.
Notablemente, en el formalismo extendido se pueden considerar trazas parciales
sobre regiones arbitrarias del espacio-tiempo. En principio, solo aquellas asociadas
con hipersuperficies espaciales corresponden a estados cuanticos convencionales (y
entropias reales, ver seccion 7.4.4) pero la traza parcial esta bien definida en general
[4].

Finalmente, mencionamos que si uno esté interesado en estados (o transiciones)
ademas de los térmicos o estados fundamentales, estos se pueden especificar agre-
gando un proyector en la “rebanada inicial”, como se desarroll6 en [4] y se muestra

en el Apéndice 7.4.
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También mencionemos que en [4]| también se ha construido una version con 7
finito, que puede emplearse para definir rigurosamente el limite 7 — 0 (un resultado
que no se requiere aqui). En cambio, para grandes 7 se puede reescribir el mapa
como un valor medio asintético de operadores mas complicados (evolucionados con
7) [4]. El valor medio anterior puede entonces asociarse a una teoria de D+1 = d+2
con volumen del espacio-tiempo o< d%*2x = drd®* 'z, esencialmente considerando 7

como un parametro de evolucion en el sentido convencional.

7.4.4 Estados generalizados al espacio-tiempo

Podria argumentarse que el elemento mas fundamental del marco matemético de la
Mecéanica Cuantica es la nocion de estado. Los estados puros convencionales codifican
toda la informacién sobre un sistema cuantico en un momento dado. El estado,
por lo tanto, se asocia con predicciones fisicas en un momento especifico, como lo
determinan los axiomas de la MC.

Aunque hemos establecido un mapa general entre cantidades del formalismo ex-
tendido a cantidades que involucran estados convencionales, este mapa depende del
operador €*" que claramente no es un estado ni una matriz de densidad °. Sin
embargo, dado que en principio, todas las predicciones del sistema en diferentes
tiempos se pueden extraer de los correladores en espacio-tiempo, se podria argu-
mentar que alguna nocion de “estado en espacio-tiempo” podria asignarse al mapa
anterior. Inversamente, de ser posible definir correctamente una nocién de estado en
espacio-tiempo, esta deberia estar relacionada con el mapa.

La Ecuacion (7.59), que es esencialmente la distribucion de Bose-Einstein con el

S+ sugiere un curso de accién interesante:

papel del estado térmico reemplazado por €
se podria considerar alguna forma de purificacién de e*®* como las consideradas
en “thermofield dynamics” para tratar efectos térmicos en QFTs con técnicas de
temperatura cero [135]. Alli, las trazas térmicas son reemplazadas por valores medios
en estados puros “ampliados” adecuadamente definidos. Esta idea se refuerza atin mas
por el hecho de que, considerando S libre como el generador de evolucién en 7 en una
teoria de d + 2, €™ toma el papel de un estado “térmico” de d + 1 con temperatura

imaginaria —i7. Ademas, la Ec. (7.67) muestra explicitamente que la informacion

de estados térmicos convencionales de d para Hamiltonianos arbitrarios también

5 . . .
°En [4] se muestra que para grandes 7 uno puede reescribir el mapa como un valor medio
asintotico de operadores mas complicados (evolucionados con 7). Aqui estamos méas preocupados

por una nocién de estado para 7 arbitrario (incluso pequeno).
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puede estar contenida en €*7. Aunque un enfoque tipo “thermofield dynamics” -
estrictamente hablando- no es necesario (pues se puede usar el mapa en la forma
de la subseccion 7.4.3), este conduce a ideas interesantes sobre la naturaleza del
operador no hermitico e*~.

Una “purificaciéon” de e’ se obtiene facilmente considerando dos estados dife-
rentes que viven en un espacio de Hilbert duplicado. Considerando por simplicidad
el limite T" — oo y la teoria libre de Klein-Gordon, indicamos los operadores del
“entorno” como, por ejemplo, @(p) (con [a(p),al (k)] = (27)P6P)(p — k)) y estados
del entorno como |¥). Entonces, considerando una traza parcial sobre el ambiente

E, podemos expresar € como un estado generalizado reducido:

2))(@2
— = Tip R, R, = 2\ 7.68
Treis — F (@ 100) 7o)

donde hemos introducido los dos estados puros globales

0.0 = exp [ [ 45 om0 B0t ) 1) )

00)) = e [ [ it e Rl )l 1)] ). (7.60)

con |Q)) = [Q)]Q) el vacio global y a(p)|2) = 0, a(p)|Q) = 0Vp (incluso fuera de capa
de masa). Los estados (7.69) son de hecho vacios de Bogoliubov entrelazados sistema-
entorno de operadores globales de aniquilacion (ver Apéndice 7.3 para detalles y
prueba de (7.68)).

En (7.68) hemos definido el proyector no ortogonal (no hermitiano) R (R* = R)
con traza 1 (y por lo tanto un dnico valor propio no nulo 1), de tal manera que
se puede considerar como una generalizacion de la nociéon de estado puro. También

notamos que

Trels = ((Q,]Q,)), (7.70)

que es no nulo.

Curiosamente, este tipo de generalizacion de la purificacion tradicional ha sido
recientemente introducido [136] en el contexto de la correspondencia dS/CFT para
definir una nocién de entrelazamiento tipo tiempo [97, 98, 137, 138| (en MC con-
vencional, no extendida donde no hay operador de accion). También se ha empleado
para definir una cantidad dual (una pseudoentropia) a superficies de area minima en
espacio-tiempos dependientes del tiempo [136], segtin la correspondencia AdS/CFT
[126]. El hecho de que estos estados generalizados surjan naturalmente tanto en esos

contextos como en la presente version en espacio-tiempo de la MC, puede ser un
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indicador de que de hecho se requieren en cualquier extension (suficientemente gene-
ral) de la nocién de estado al dominio temporal . Una observacién en apoyo de esta
hipotesis es que, a diferencia de los estados convencionales, estos estados conducen
a entropias complejas [98, 136, 137], lo cual puede estar relacionado con la natura-
leza pseudo-Riemanniana del espacio-tiempo clésico (recordamos las conjeturas de
espacio emergiendo del entrelazamiento [122, 123, 139)]).

Con estos resultados en mano, podemos escribir los correladores en espacio-

tiempo (7.58) como

{(§:[2))

(0) = =Tr[R, O® 1g]. (7.71)
Por ejemplo, el propagador de Feynman puede escribirse como ((Q-|¢(z)¢(y)|Q,)) o
(0|T ¢ 5 () (y)|0) (ver (7.61)). Notablemente, vemos que la evolucion emerge de
las correlaciones entre el sistema y el entorno: dado que no hay indicacién en los
operadores ¢(x), ¢(y) sobre si x,y son variables de espacio o tiempo, esta claro
que toda la informacion sobre la estructura causal de la teoria esté codificada en
los estados entrelazados [€2,)), [©2,)), como se representa en la Figura 7.4.2. Las
correlaciones responsables de la emergencia de la evoluciéon temporal son precisa-
mente las que las recientemente introducidas pseudo entropias intentan cuantificar

(por ejemplo, S(R,) = —TrR,log R, = 0 pero el “estado” del subsistema ¢’

T no
es un proyector). La informacion completa sobre las correlaciones espaciales con-
vencionales del estado |0) también esté codificada en R., ya que los correladores
(0]o(x)p(¥)]0), (0] (x)m(y)|0) son casos particulares de (7.71) correspondientes a
O = ¢(x,t0)P(y, to), O = m(x,to)m(y, to), es decir, a la insercion de operadores en
cortes espaciales. Estos aparecen, por ejemplo, en la definicion de entrelazamiento
espacial [41].

Ademas notemos que una cantidad del tipo (7.71) para operadores hermiticos
también aparece en la MC convencional donde se denota como wvalor débil (“weak
value”) [140]. Un correlador en espacio-tiempo entonces se puede entender como el
valor débil de O ® 1g para O hermitiano. Recordamos que mientras por ejemplo
T¢H(x)¢H(y) no es hermitico para una separacion tipo tiempo, O = ¢(z)¢(y) es
siempre un observable. Como consecuencia, se pueden usar técnicas existentes (ver,

por ejemplo, [141] para formas de medir valores débiles) para acceder a (7.71) a través

6Hay otras extensiones ttiles de la nocién de estado asociadas con “tiempo cudntico” (ver, por
ejemplo, [1, 2, 29, 43]). Sin embargo, ninguna de estas permite una traza parcial sobre regiones de

tiempo [4].
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— (spacetime) Generalized state

, ol 0@ T s
Environment TQ9,))

SS Correlations % [

_ (O 1o(@)e)|0)) _ Tre> d(z)é(y)
Dysten | e T T
‘ 6(2)8(y) [ :
Causally disconected——! * *
—— . .
[6(2), ¢(y)] = [7(x),n(y)] =0 cQM : PI Formulation

(unitary evolution):

OfFone)on (o) = [P 000)
Figura 7.4.2: Esquema de la correspondencia entre las formulaciones de la MC (n* fijo).
En la formulacion en espacio-tiempo, podemos codificar toda la informacién sobre un sistema dado
y su evolucion en estados generalizados, abarcando un entorno correlacionado con el sistema. Al
“medir” solo en el sistema (ver las observaciones sobre valores débiles) se recuperan los propagadores
convencionales y las reglas de Feynman. Se representa el ejemplo del propagador de Feynman,
que corresponde al observable hermitico ¢(x)¢(y). A diferencia de la MC canoénica (CQM) donde
[@r (), dr(y)] # 0 dentro del cono de luz, en la formulacion en espacio-tiempo cada campo ¢(z)
es independiente de los demés y [¢(z), ¢(y)] = 0 para cualquier punto del espacio-tiempo (una
afirmacion mucho maés fuerte que la microcausalidad). La informacion sobre evolucion y causalidad
estd contenida en el estado generalizado sistema-entorno R, y se puede pensar que emerge de
las (“generalizadas/pseudo”) correlaciones entre los dos. Dado que el entorno se ignora, también
se puede trabajar directamente con el “estado” parcial del sistema e*>~, como se describe en la
seccion 7.4.3. Se mostré en [4] que evaluaciones particulares de las trazas resultantes conducen a

la formulacion de PI (ver también Apéndice 7.4).

de mediciones. Este es un resultado interesante por si mismo ya que proporciona a
los correladores tipo tiempo un significado operacional directo, una observacién que
se sostiene para sistemas cuanticos generales, como se discute en el Apéndice 7.4.
Ademas, es bien sabido cémo calcular tales cantidades en computadoras cuanticas
(ver Figura 7.4.3; para un desarrollo reciente sobre circuitos cudnticos que miden
valores débiles ver [142])

Otro caso de interés es la evaluacion de amplitudes de dispersion. La Ecuacion
(7.63) sugiere considerar O = a(ky)a(ky) ... a(ky)emtal (py)al(ps) ... a'(p,). De he-
cho, para momentos en capa de masa () es proporcional a los elementos de la
matriz S (la proporcionalidad debe elegirse para coincidir con la férmula LSZ, de

tal manera que “ampute” lineas externas). Para mostrar esto es suficiente notar que
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Figura 7.4.3: Circuito cuantico para calcular una cantidad de la forma (|O|¢). El esquema

es una prueba de Hadamard donde se realizan mediciones en el qubit auxiliar (arriba) para estimar
las partes real e imaginaria de (|VOl1), y donde elegimos V' de modo que |¢) = V|1)). Utilizando
estados |1), |¢) que definen un estado generalizado, se pueden calcular funciones de correlacion en

espacio-tiempo (ver también Apéndice 7.4).

{(Q,|d(x)a’ (p)|Q,)) o e y usar los resultados de la subsecciéon anterior para
recuperar las reglas de Feynman en espacio de posicion. Una aplicacion directa de
las técnicas usuales entonces se puede usar para obtener predicciones fisicas finitas.
Como comentario final, notamos que usando la Ec. (7.71) se pueden escribir los ele-
mentos de la matriz de dispersiéon como una amplitud de transiciéon entre estados
creados por modos (extendidos) “on-shell” sobre los vacios globales (7.69). Estos es-
tados también se pueden relacionar explicitamente con los estados fisicos definidos
en la Ec. (7.56) escribiendo |©2,)), |€2,)) como transformaciones de Bogoliubov sobre

el vacio del producto [€2)) (ver Apéndice 7.4).

7.5 Entrelazamiento entre materia y foliacion

7.5.1 Particulas como operadores controlados por la foliacién

Habiendo discutido el caso clasico, su cuantizaciéon y como establecer un mapa ge-
neral a la MC convencional para un n* fijo (con una interpretacion de la evolucion
emergiendo de estados generalizados en espacio-tiempo), dedicamos una seccion final
para sentar las bases para manejar una foliacion completamente cuantica.

Antes de proceder con una exposicion matematica, vale la pena dedicar algo de
discusion sobre por qué considerar un n* cuantico podria ser fisicamente relevan-
te mas alld de la consistencia del formalismo. Recordamos que la introduccién de
un algebra asociada con n*, p” fue una necesidad matematica: una regla de trans-
formacion adecuada de las particulas off-shell extendidas solo se puede lograr si la
foliacion se modifica por la transformacién, a su vez requiriendo un n* cuantico.

Como mostramos a continuacion, esto es fundamental al considerar también los va-
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lores esperados: teniendo en cuenta las propiedades de transformaciéon de la foliacién
podemos probar la covarianza explicita de todos los valores medios, condicionada a
valores cléasicos de la foliacion. Por otro lado, no hay nada que prevenga el uso de
estados de foliacion mas generales. Aunque es razonable sospechar que esto podria
estar senalando algo més profundo fisicamente, obtener una mayor comprension re-
quiere desarrollo adicional como la aplicacién del esquema de cuantizacion extendido
a espacio-tiempos dinamicos (més alla del alcance del presente trabajo).

Por otro lado, es facil imaginar escenarios en los cuales se asigna alguna nociéon
de incertidumbre cuantica a los observadores. Dado que el formalismo proporciona
un marco riguroso que contiene esta caracteristica, es interesante explorarlo aun
si solo por esta razén. Muchos de estos escenarios se pueden construir apelando
al argumento de que en la practica los observadores necesitan realizar mediciones
para establecer su propia nociéon de espacio y tiempo. Dado que esas mediciones
estdn descritas fundamentalmente por la MC, entonces se puede concluir que se
hereda una incertidumbre cuantica. Este argumento se encuentra en la literatura en
diferentes contextos 26, 32, 119, 121, 143-145|, usualmente relacionado con alguna
generalizacion de la MC y en relacion con el “problema del tiempo”. Una observacion
particularmente interesante es que, segin el principio cosmolégico [146], se puede
definir una foliacién cosmica (o tiempo cosmico) de tal manera que el universo se
vea homogéneo e isotropico en cada momento. En una etapa temprana del universo,
donde los efectos cuanticos pueden volverse importantes, estas hipotesis podrian no
sostenerse, y la foliacion podria volverse “difusa’.

Ahora volvemos al ejemplo de la teoria de Klein-Gordon libre y la nocién de par-
ticulas extendidas introducida en 7.4.2 pero nos centramos en un n* completamente
cuantico. Ideas similares se sostienen para otras teorias de campo. Primero notemos

que el operador a(p) que hemos introducido se puede escribir correctamente como

alp) = / dn a(p,n) ® |n){n] (7.72)

para a(p,n) el operador de aniquilacion obtenido reemplazando los operadores n* en
la Ec. (7.55) con el valor fijo n. Cada a(p,n) es un operador de aniquilaciéon genuino

que satisface [a(p,n),al(p',n)] = (2m)P6P)(p — p'), mientras que estrictamente

~

[a(p), a ()] = [a(p, n),a’ (p',n)] @ 1, (7.73)

lo que era implicito en (7.48). Aqui 1,, se debe leer como el proyector sobre el

subespacio generado por aquellos |n) con n* temporal. Notemos, sin embargo, que
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podemos dejar ||n||* > 0 arbitrario en estas expresiones. Todas las expresiones en

la seccion 7.4.2 se sostienen para E,(n) = ||n||\/<% — 77‘“’) PuPy + m?, como se
muestra en el Apéndice 7.1.

La Ecuacion (7.72) revela que a(p) tiene la forma de un operador controlado
en el que los valores de los estados de foliacion determinan cuél a(p,n) actta (uno
puede comparar esto con una operacién de control-not entre qubits Ucontrolnot =
> n01(02)" @ |n)(n| para o, la matriz de Pauli X actuando en el qubit con-
trolado). Esta forma de escribir a(p) hace méas claras sus propiedades de trans-
formacion: el operador a(p,n) actia en el sector de materia y se transforma con
Uy () := exp(iw,,, L* [2) el operador de impulso que transforma los campos pero no

la foliacion. De hecho, la transformacion completa de a(p) se puede entender como
U )alpU(A) = [ do UA)alp (V) © [An)(An (170

que, comparando con (7.54) produce
Ul (A)a(p, n)Us(A) = a(Ap, An), (7.75)

una relacion que también se puede obtener de (7.55) fijando n. Al emplear (7.55)
también se puede demostrar que los diferentes operadores de aniquilacion a(p,n) y
a(p,n’) estan relacionados por transformaciones de Bogoliubov de tal manera que
en general [a(p,n),a(p’,n’)] # 0 para n # n’. En particular, (7.75) no preserva el
numero de particulas, solo la transformacion completa lo hace.

Lo anterior también conduce al tratamiento adecuado de las fluctuaciones del
vacio. Primero notemos que una expansion controlada similar se asigna a H(n) =
[ dnH(n)® |n)(n| con H(n) actuando en el sector de materia. Entonces, cada H(n)
integrado se puede diagonalizar como un Hamiltoniano cuadrético usual, en analogia
con los resultados en la seccion 7.4.2 pero con un n clasico:

e = [ EE Bt - A(0l)  (@76)
con A(||n||) una constante dependiente de n que surge de haber ordenado normalmen-
te los operadores de escalera a(p,n). Sorprendentemente, cuando esta “constante” se

tiene en cuenta en el operador completo se tiene
/dD:z:’H(ﬁ) = /d% CHR) A R]]) (7.77)

con [|a|| = [dn|[n||In)(n|, es decir, en lugar de un cambio constante, el Hamilto-
niano (integrado) almacena un operador de energia del vacio actuando en el espacio
de Hilbert de la foliacion.

146



Capitulo VII. Mecéanica cuantica y clasica en el
espacio-tiempo con foliacién dindmica

Se puede mostrar que el operador de densidad de energia del vacio asociado es
JUStO Pyac *= Pvac||7|], con pyac la densidad de energia del vacio convencional. En este
escenario simple, el tnico efecto de la foliacion cuantica en la densidad de energia

del vacio podria ser un promedio estadistico sobre escalas de energia inducido por

[¥(n)]* = [{n]¢)|* # 0 para [[n]| # 1.

7.5.2 Estados entrelazados entre materia-foliacién y la cova-

rianza explicita de los valores esperados

Otra consecuencia interesante de la expansion del operador (7.72) es que sus estados
propios estan, en general, entrelazados en la particion materia-foliacion. Lo mismo es
cierto para la accion cuantica S (ver Ec. (7.44)). Consideremos, de hecho, el concepto

de vacio. Para cada n fijo, los operadores a(p,n) tienen un vacio |§2,) tal que
a(p,n)|) =0 (7.78)

para todos los valores de p, en general off-shell. Estos vacios son todos estados
en el sector de la materia y pueden ser explicitamente expandidos como |Q2,,) =
| Do(x)¥,[¢(x)]|¢(z)) en la base (7.37) con U, [¢(x)] su funcion de onda.

Por otro lado, podemos introducir un vacio tipo historia como

Q) = /dn\Qn> 2|, (7.79)

satisfaciendo a(p)|2) = 0, con a(p) = a(p,n). El estado |2) contiene la informacion
de los vacios de todas las posibles direcciones temporales simultaneamente. Lo logra a
través de su entrelazamiento con la foliacion cuéntica. De hecho, podemos recuperar
el vacio de un observador dado como |€2,,) = (n|Q2), es decir, por condicionamiento en
la foliacion. Notablemente, esta caracteristica y la estructura de (7.79) se asemejan
al formalismo de Page y Wootters, presentado en el capitulo II, donde la evolucion
emerge de estados historia estacionarios por condicionamiento en lecturas de “relojes
internos” 14, 29|.

La simetria de Lorentz hace que el estado entrelazado |€2) sea preferible sobre

otros estados propios de a(p): este estado satisface U(A)|2) = |2) o equivalentemente
Tuwl€2) =0, (7.80)

lo cual puede compararse con la ecuaciéon del universo de PW [29], una ecuacion tipo

Wheeler-DeWitt. Esta propiedad es una consecuencia directa de (7.75) que implica
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UN)|Q,)®]|n) = |Qp-1,) ®|A"In). La integral en (7.79) deshace esta transformacion
a través de un cambio de variables trivial (| det(A)| = 1). Claramente, la invariancia
no se satisface para superposiciones méas generales, es decir, por estados que agregan
pesos a la suma (7.79). En particular, los estados producto [€2,,) ® |n) son aniquilados
por a(p) pero rompen explicitamente la simetria de Lorentz.

La estructura anterior se mantiene para estados generales. Esto se puede ver
considerando una base de estados de Fock que, como es usual, se puede obtener
actuando con operadores de creacion a'(p) en el vacio |Q). Por ejemplo, un estado

de Fock de dos particulas se puede escribir como

a'(pr)a(p2)|€2) Z/dnaT(phn)aT(pz,n)le® n) - (7.81)

En general, tenemos |¥) = [dn|¥,) ® |n) de modo que (n|V) = |¥,) para |¥,) el
estado para esa eleccion particular de tiempo, asi recuperado por condicionamiento
en la foliacion. Todos estos estados satisfacen la ecuacion de restriccion 7, | V) = 0.
Es interesante notar que se puede condicionar con respecto a estados mas generales
[y = [dni(n)n) que corresponden a una superposicion cuantica de foliaciones.
En este caso, (¢|¥) = [dnt(n)|¥,) que induce una superposiciéon particular de
estados de materia.

Por otro lado, hemos visto en la seccion 7.4.3 que la correspondencia entre el
enfoque extendido y la MC convencional no es trivial, en el sentido de que requiere
una suma (traza) sobre estados extendidos (seccion 7.4.3). Esta traza puede ser
purificada (seccion 7.4.4) y reescrita como un valor medio generalizado en un espacio

de Hilbert duplicado. Podemos entonces emplear los estados

2) = [ dnjo)) @ o)
©) = [ dn ) @ o)

para |Q.,)), [Q,)) definidos en (7.69) con la dependencia en n codificada en p° —
Ey — p*ny, — Ey(n) y el vacio |2,)) = [2,)|Q,) (los estados en la seccion 7.4.4 debe-

(7.82)

rfan escribirse, en la notacién de esta seccion, con un subindice n = n*Y). Notamos
que usamos un unico espacio de Hilbert de foliacion tanto para el sistema como para
el ambiente. Las transformaciones de Lorentz se definen como antes con el operador

de “momento angular” completo siendo
T = Lo+ Ly + L . (7.83)
Los estados de historia (7.82) satisfacen la condicién de invarianza de Lorentz

Tuw|Q)) = T |Qr)) = 0. (7.84)
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Con estas definiciones y notacion, la representacion (7.71) de correladores en
espacio-tiempo deberfa escribirse como (0), = ({Q]|O @ 1))/ {(Qrn Q).
Anadimos el subindice n para indicar que el valor medio corresponde a la foliacion
fija n*. Para recuperar (O),, de los estados de historia (7.82) recurrimos al condicio-
namiento que puede escribirse en forma compacta como
(2|0 ® 1511,]0.))

(M)

(O)n = (7.85)

con I, := |n)(n| y O no necesariamente un operador separable en la particion
materia-foliacion pero que conmuta con n* (por ejemplo, O = a'(p)a(k)). Esto

también puede reescribirse como (O),, = TrR,,O,, con

i) (@)
B = 0. (736)

el estado generalizado condicionado al valor de foliacion n*. Asi es como se recupera

la MC convencional asociada con foliaciones fijas en el formalismo completo con
foliaciones cuénticas. En otras palabras, hemos recuperado la correspondencia de
la secciéon anterior 7.4.3 entre el enfoque en espacio-tiempo y la MC convencional
introduciendo la idea de condicionamiento con respecto a los estados propios de n*.

Ademas, como evidencia la Ec. (7.83), la foliacion participa ahora en transfor-
maciones espacio-temporales. Esto se refleja también en las propiedades de transfor-
macion de los valores medios. Lo que encontramos es que para teorias relativistas la

declaracion de invarianza de Lorentz se vuelve explicita:
({2 |UT(A)(O ® 1IL)U(A)|2r))

((Q-UTMILLU (A)[S2)) (7.87)
= (O))n ,

donde, para ser concretos, hemos considerado un operador que depende explici-

(O(Ax))an =

tamente de cierto ntimero de puntos del espacio-tiempo (por ejemplo, O(x) =
O(x1,29,...) = m(x1)p(xs) . ..). Notar que la primera igualdad no es una declara-
cién dindamica: es solo una consecuencia de las reglas de transformacion geométrica
(7.40). Como tal, se sostiene independientemente de la teorfa. En cambio, la segunda
igualdad solo se mantiene para acciones relativistas que satisfacen (7.45) e implican
(7.84). El importante resultado (7.87) nos dice que para teorias relativistas los va-
lores esperados cuanticos son funciones de las coordenadas espacio-temporales x y
el vector de foliacion n#, combinados de manera invariante. Esto incluye funciones
como integrales de momento que contienen términos p* — m?, como en el propaga-

dor de Feynman, pero ademés términos como p#n,,, E,(n) estan permitidos dentro
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de estas integrales, y de hecho aparecen, por ejemplo, en correladores de momento
(regularizados) (m(z)m(y))n que ahora también son cantidades invariantes. Lo mis-
mo se aplica a cualquier otro valor medio, no necesariamente localizado en ciertos
puntos del espacio-tiempo. Asi, en nuestro enfoque, todas las predicciones fisicas son
explicitamente covariantes.

Lo anterior concluye la exposicion sobre como el enfoque extendido permite
recuperar predicciones fisicas convencionales, mientras que al mismo tiempo ha-
ce explicitas sus simetrias espacio-temporales. Ahora comentemos brevemente so-
bre la posibilidad de ir mas alla de la fisica convencional, buscando un efecto
genuino de foliacién cuéntica. Notemos que si ahora reemplazamos el proyector

IT,, con una mezcla estadistica de foliaciones II,, — p, = f dn p(n)Il,, obtenemos

{(Q7|0pa|Q7)) = (| Tre’STOY) para [¢p) = [dne'n/p(n)n) ¢, € R, lo cual es

St en la forma

solo una mezcla (“clasica”) estadistica de valores medios. Al emplear e’
actual (conmutando con n*) no surge ningun efecto cuantico genuino de la foliacion.
Esto es, en principio, esperado de una teoria de materia-foliaciéon no interactuante.
Sin embargo, podemos postular que la generalizacion adecuada de la expresion an-
terior a una foliacion cuantica (pura) completa se logra utilizando otros proyectores

cuanticos IL, = |¢)(¢]:

(2,10 @ 111, 0))
(@ T,10,))

(O)y = (7.88)

lo cual corresponde al condicionamiento (|{2,)) con [¢) un estado arbitrario de
la foliacion (al menos para O actuando trivialmente en la foliacion, por ejemplo,
O = ¢(x)p(y); a los operadores de escalera se les pueden asignar los estados mis-
mos). Estos nuevos valores medios pueden ser evaluados explicitamente utilizando,
por ejemplo, que a(p,n) y a(p,n’) estan relacionados por una transformacion de
Bogoliubov.

Notemos que los términos individuales ((Q,,/|0O ® 15|Q:,)) que surgen de (7.88)
no pueden escribirse en términos de €7 a menos que n’ = n. Asi, la traza parcial
sobre el ambiente ahora generaliza la acciéon de manera no trivial. En otras palabras,
podemos acceder a este efecto cuantico de la foliacion solo a través de la representa-
cion del sistema y ambiente de los correladores espacio-temporales (para la materia
no interactuando con la foliacion). La validez de esta generalizacion puede depender
de si atribuimos o no una existencia fisica real al ambiente. Se puede comenzar a
abordar tal pregunta considerando observables O que no ignoran el ambiente como

el considerado en la seccion 7.4.4 (es decir, usar O # O ® 1p).
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7.6 Conclusiones y perspectivas

Hemos demostrado que la MC admite una formulacién basada en un espacio de
Hilbert y a su vez simétrica en espacio-tiempo que trata todas las coordenadas
espacio-temporales de los campos de materia como indices de sitio y describe las
posibles foliaciones del espacio-tiempo a través de estados cuanticos. Hemos obtenido
el formalismo cuantizando un espacio de fase clasico aumentado que mantiene la
eleccion del tiempo de la transformacion de Legendre como dindmica y que produce
una version explicitamente covariante de las ecuaciones de Hamilton. El proceso
de cuantizacion conduce a acciones y operadores de particulas “off-shell” que son no
separables en la particion materia-foliacion, destacando la necesidad de una foliacion

cuéntica para preservar la simetria de Lorentz.

El desafio de recuperar la evolucién unitaria convencional en un marco con ope-
radores de campo que conmutan para diferentes puntos del espacio-tiempo (incluso
aquellos conectados causalmente en el sentido convencional) ha sido planteado y
superado. El hallazgo crucial es la existencia de una correspondencia entre los corre-
ladores geométricos extendidos, asociados con la accion cuantica, y los propagadores
convencionales asociados con el estado fundamental de un Hamiltoniano dado y la
evolucion unitaria. Los propagadores térmicos también pueden obtenerse compac-
tificando el tiempo. Los correladores en tiempos iguales (para una foliacion dada)
corresponden a correladores convencionales como los que definen el entrelazamiento
tipo espacio, pero para operadores insertados en diferentes tiempos, la evolucién uni-
taria en el esquema de Heisenberg emerge. A partir de estas consideraciones, también
se recuperan las reglas de Feynman y el limite clasico (en la version extendida). Se
presentaron también algunas observaciones sobre la posibilidad de reinterpretar este
mapa como una correspondencia tipo holografica, con la teoria de d + 1 dimensiones
surgiendo de una teoria de d + 2 dimensiones. En particular, la escala de tiempo 7,
que aparece naturalmente al definir el mapa, podria identificarse con una coordenada
holografica. Estos aspectos, las eventuales relaciones con dualidades holograficas co-
nocidas, y si la presencia de una escala de tiempo 7 proporciona alguna perspectiva

sobre el proceso de renormalizacion, se dejan para investigaciones futuras.

Se mostré ademas que dicha emergencia de evolucion temporal puede entenderse
en términos de correlaciones con un entorno utilizando técnicas recientemente in-

troducidas en el contexto de AdS/CFT (dS/CFT) [136, 137]. Desde este punto de

vista, el sistema y el entorno estan descritos globalmente por un estado puro gene-
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ralizado que contiene la informacién causal de la teoria. Esta perspectiva también
proporciona un significado operacional directo a los propagadores tipo tiempo en
términos de valores débiles. Esto plantea la pregunta natural de si se puede consi-
derar el entorno como un sistema fisico real inaccesible cuyas correlaciones con el
sistema inducen su evolucién en el tiempo. La situacion se asemeja al mecanismo de
PW, segin el cual la evolucion temporal emerge del entrelazamiento [43] entre un
sistema y “el resto”. Otra propuesta similar es la “hipotesis del tiempo térmico” que
utiliza la termalizacion de un estado estadistico para definir el “tiempo interno” [27]
(ver también [35]). Aunque nuestro formalismo es en principio significativamente
diferente de estas propuestas, estas ideas previas sobre la emergencia del tiempo, de
interés actual en la literatura (ver introduccion), animan a investigar méas el tema

del entorno.

La cuantizacién independiente de la foliacion de los campos de materia permite
una definiciéon muy simple y explicita de las transformaciones espacio-temporales.
Estas preservan el caracter geométrico de la relatividad de Einstein, ya que se definen
independientemente de la dindmica. En este sentido, nuestra propuesta “desenreda”
las transformaciones que mezclan espacio y tiempo de la informacion dinamica, esta
tltima siendo codificada en estados generalizados como se describié anteriormen-
te. En un sentido muy preciso, las transformaciones espacio-temporales aparecen
nuevamente entrelazadas con la dinamica: la acciéon cuéntica y los operadores de
particulas son operadores controlados por foliacion. Ademas, hemos visto que los
estados propios invariantes de Lorentz de acciones invariantes, como el vacio de las
particulas “off-shell” de la teoria dada, estan entrelazados en la particion materia-
foliacion. También tienen la misma estructura que en el formalismo PW [14], una
similitud que se ha utilizado para introducir el concepto de condicionamiento en
la foliacion. El condicionamiento especifica el observador relativo al cual se da la
descripcion dinamica del sistema (en contraposicion a la emergencia de la evolucion
en el enfoque de PW). Al condicionar con respecto a estados fijos “clasicos” de la
foliacion se recupera la MC convencional, en el sentido de la correspondencia previa.
Luego, hemos discutido bajo qué condiciones podrian surgir efectos cuanticos de la

foliacion.

En este manuscrito, nos hemos centrado en una foliacion constante y en el
espacio-tiempo de Minkowski. Aunque el espacio-tiempo sea plano, una generaliza-
cion obvia es considerar una foliacion no constante n# = n*(x), por ejemplo, asociada

con coordenadas de Rindler. En otras palabras, el formalismo admite una generaliza-
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cion obvia al caso de un campo de foliacion. Es facil ver que al reemplazar n* — n*(x)
en S para el campo escalar, se obtiene una version de las ecuaciones de Hamilton para
una foliacién curva general, equivalente a la ecuacion de Klein-Gordon. Segin nues-
tra propuesta, también se impondria {n*(z), x,(y)} = 6*6P)(x — y) clasicamente y
[n(x), K, (y)] = 10" 0 (z —y) en el caso cuantico, de modo que el espacio de Hilbert
de la foliacion ahora estaria generado por estados |n(x)) representando configuracio-
nes de campo en el espacio-tiempo (2#(x)|n(z)) = n*(z)|n(x))). Ademas, se puede
introducir un momento angular para este campo I, (z) == n,(z)k,(x) — n,(r)k, ()
de modo que se pueda transformar unitariamente cualquier estado propio de cam-
po de foliacién a otro. En particular, en el espacio-tiempo de Minkowski cualquier
estado propio de foliacién curva esta relacionado unitariamente con |n*?), es decir,
In(z)) = exp[i [ dPx 1, (x)A"™ (2)][n"°), que es una versidn cudntica del concepto
de marco de referencia momentdneamente comovil. Esta transformacion unitaria es
separable en el espacio-tiempo reflejando nuestra intuiciéon clasica, sin embargo, el
tratamiento cuantico de la foliacion permite muchas més posibilidades exéticas, como

estados de la foliacion entrelazados a través de diferentes puntos del espacio-tiempo.

Como en el caso de foliaciones constantes, cambiar de observador no afecta el
algebra de campos en acuerdo con [l,,(x),¢(x)] = [lw(z), 7(x)] = 0. Esto debe
contrastarse con el tratamiento habitual en QFT que requiere cuantizar en una
hipersuperficie dada, por ejemplo, al considerar un observador de Rindler y derivar el
efecto Unruh [147, 148]. Un cambio de observador, sin embargo, si afecta la accion S.
En particular, es claro que una acciéon libre condicionada a una foliaciéon curva sigue
siendo una forma cuadratica pero diferente de la correspondiente a un observador
inercial. Los modos normales entonces difieren en general por una transformacion
de Bogoliubov inducida por la curvatura de n*(z), lo que cambia el estado de vacio
(recordamos que para dos foliaciones constantes, no surge cambio en el vacio). Esta

serfa la derivacion del efecto Unruh desde dentro del enfoque espacio-temporal.

Hay otra caracteristica interesante en el espacio-tiempo plano a considerar, preli-
minar para extender nuestro tratamiento a variedades genuinamente curvas. Aunque
hemos empleado coordenadas de Minkowski para definir nuestra algebra béasica de
campos y cuantizacion, es factible describir, por ejemplo, la accién en diferentes
coordenadas curvilineas. En general, esto lleva a reemplazar derivadas convenciona-
les con derivadas covariantes 9, — V, de modo que una contracciéon de la forma
n*V, corresponda a invarianza bajo transformaciones de coordenadas generales. Se

puede demostrar facilmente que las ecuaciones de Hamilton derivadas para n* ge-
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neral en otros sistemas de coordenadas tienen precisamente esta forma. Es factible
obtener estos resultados imponiendo directamente algebras (tanto de campos de
materia como de foliaciones) con respecto a otros sistemas de coordenadas, lo que
parece indicar que la relacién entre sistemas de coordenadas podria tener una re-
presentacion cuantica, otra posibilidad interesante abierta al trabajar con &algebras
espacio-temporales. Curiosamente, un tratamiento cuéntico que permita generali-
zaciones paramétricas es también el objetivo principal de las llamadas “teorias de
campos parametrizadas” [37, 125], un enfoque en el que los campos de materia son
funciones de coordenadas curvilineas arbitrarias. Estas coordenadas estan asociadas
con posibles foliaciones del espacio-tiempo y también se cuantizan 7. Sin embargo,
incluso para el espacio-tiempo de Minkowski, este enfoque sufre problemas en dimen-
siones espacio-temporales distintas de 1 4 1. Estas dificultades podrian ser eludidas
desarrollando més nuestra propuesta, ya que, como mencionamos anteriormente, la
informacién dindmica y geométrica estan desacopladas.

Algunas observaciones sobre la posibilidad de aplicar el formalismo a la grave-
dad también pueden ser apropiadas (aunque actualmente especulativas): mas alla de
las justificaciones matematicas y basadas en simetria para una foliaciéon dinamica,
también hemos sugerido que un espacio-tiempo dinamico podria llevar naturalmen-
te a este concepto. Serfa interesante (y autoconsistente) si esto pudiera derivarse
aplicando el enfoque extendido a la gravedad, al menos trabajando a nivel semicla-
sico. Notamos que el formalismo emplea acciones definidas en variables del espacio
de fase, lo que significa que siempre se necesita introducir un Hamiltoniano. Esto
parece llevar directamente al enfoque convencional ADM [149] y su cuantizacion.
Sin embargo, este no es el caso: mientras la cuantizaciéon candnica usual se basa en
métricas evolucionando unitariamente en hipersuperficies, nuestro formalismo trata-
ria la métrica de cada hipersuperficie como independiente. Esta caracteristica, junto
con una foliaciéon cuéantica, parece llevar en cambio a una descripcién donde el grado
de libertad fisico es la métrica espacio-temporal completa (con algunas restriccio-
nes eventuales). En tal construccion, ain por desarrollar completamente, los tipos
naturales de interrogantes no serian de naturaleza dinamica, sino intrinsecamente
geométricos y asociados con correlaciones, en analogia con el caso de los campos que
desarrollamos en este capitulo.

En cuanto a los campos de materia, el principal ejemplo que hemos empleado

"Aunque este procedimiento es analogo al enfoque PW, como se mostro recientemente en [37],
alli los campos de materia no se cuantizan a través de un algebra extendida como en nuestro

esquema.
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es el de un campo escalar. Aunque la mayoria de los resultados e ideas se sostienen
para teorfas de campo generales, se deben hacer algunas consideraciones nuevas en
el tratamiento cuéntico de los campos espinoriales relacionados con cémo el aco-
plamiento entre la foliacién y el espin afecta la definicion de los momentos. Esta
discusion, y el caso de las teorias de gauge, tipicamente asociadas con campos con
espin, se pospone. No obstante, se presentan varias observaciones en el Apéndice
7.2, donde también se desarrolla completamente el tratamiento clésico de un campo
de Dirac.

Notablemente, la mayoria de los conceptos que hemos desarrollado para cam-
pos se aplican a cualquier sistema mecénico cuantico, incluidos los no relativistas.
De hecho, la idea de extender un algebra convencional a “espacio-tiempo” siempre
se puede aplicar. Esto permite construir el operador de acciéon cuantica asociado
con un cierto Hamiltoniano cuéntico, un procedimiento que no requiere una teoria
clasica. Notablemente, la evoluciéon unitaria siempre se recupera a través de sus co-
rreladores tipo tiempo asociados, como se muestra en [4] y el Apéndice 7.4. Como
ejemplo concreto, desarrollamos la extensioén espacio-temporal de una representa-
cion de qubit del algebra su(2) en el Apéndice 7.4. También se puede introducir una
purificacion generalizada, como la que hemos empleado para la accion libre de Klein-
Gordon, en general. Aunque esto no es trivial (y no presentamos el caso general)
proporcionamos algunas ideas y ejemplos en el mismo Apéndice. Por estos medios,
se puede reemplazar la nocién convencional de estado y evolucién unitaria de la
MC con estados generalizados que codifican no solo el estado inicial, sino también
la evolucion y estructura causal de una teoria dada. Estas consideraciones abren el
camino para desarrollar y aplicar nuevos esquemas de informaciéon y computacion
cuantica, como hemos discutido en la seccion 7.4.4. Al mismo tiempo, proporcionan
una formulacién capaz de abordar las preguntas fundacionales cuanticas planteadas

en la introduccion.

Apéndices

7.1 Expresiones clasicas y cuanticas para un n* tipo

tiempo general

En este apéndice mostramos explicitamente como las relaciones clasicas y cuénticas

que involucran la foliacién se modifican por un n* no normalizado.
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Definimos ||n|| = y/nPn, y asumimos Y, ||n;||* = —[|n||* (velocidad de la luz

fija) y ni'n, = 0. Entonces, la ecuacion (7.14) se reemplaza por

d
v mw.o_v 2 v
'n _an‘ ny = |[n|[*n"". (7.89)
i=1
Ecuaciones como (7.6) también necesitan ser reescaladas, por ejemplo,

0o = [In]|7* (npn* 0 — nipn}/0) -

Para el caso libre de Klein Gordon se obtienen las ecuaciones clasicas

nO0up = ||n||*n (7.90)
y
H = ]| 5 + 1(ﬁ T’ ) 0,006 + Sm?. (7.91)
Las ecuaciones de Hamilton son
nto,m = (% — 7]‘“’) 0,0, — m*¢ (7.92a)
n*9,¢ = ||n||*w (7.92b)

lo que produce una vez més la ecuacion de Klein-Gordon
(0" 9,0, + m*)¢p =0. (7.93)

Una expresion analoga se encuentra con la adiciéon de un potencial. Estas pueden
recuperarse como antes desde S = [ dPx (mn#d,¢ — H) y estableciendo {¢, S} =
{m, S8} =0.

Después de la cuantizacion, la diagonalizacion de [ dPzH ahora conduce a

n n”
—n H\/ )pwﬁm?

2
n; Ppu
Sy Z(”nH) Y

Todas las ecuaciones de la seccion 7.4.2 se mantienen con E,(n) dado por (7.94)

(7.94)

y mntd,¢ — ||n?||t7n*d,, de acuerdo con la nueva definicién de 7, equivalente a

un reescalado de £,. En la expansion normal de la acciéon, también se debe reem-

2([—1
|

plazar ptn, — ||n ptn, en consecuencia. Entonces se puede demostrar que las

cantidades fisicas como el propagador de Feynman permanecen invariantes, es decir,
independientes de ||n?|.

Notemos que para m = 0y D = 1+ 1 se tiene una teoria de campo conforme
(CFT) y puede hacerse cualquier eleccién de n* para diagonalizar S a través de

modos normales.
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7.2 El caso del campo de Dirac

En este apéndice consideramos la aplicacién del formalismo del texto principal al
caso de una densidad de Lagrangiana de Dirac libre Lp = @Z(m#au — m)y. Aunque
las interacciones pueden introducirse siguiendo la linea desarrollada en el caso escalar
libre, nos centramos en este ejemplo simple ya que el objetivo es mostrar como se
trata el espin en un formalismo con foliacién dindmica. Nuestro enfoque principal es
el caso clasico, con algunas observaciones sobre la cuantizacion al final de la seccion.

El momento generalizado para un n* tipo tiempo general se define como antes,
dando

= a(%aiw = iyt n, . (7.95)
Para n* = 1"0 recuperamos la relacion usual © = i9)f, ya que ¥ = 7% y (192 =1
como sigue del algebra de Clifford de las matrices gamma {v#,7"} = 2np*” | con los
corchetes indicando (solo aqui) anticonmutadores.

Por otro lado, notando que y*n,v"n, = v°y° = 1, donde hemos definido " :=
v#n, como la primera matriz de un nuevo posible conjunto de matrices gamma
(satisfaciendo el algebra de Clifford), se puede invertir la relacion del momento y
escribir ¢ = —imy#n,. Entonces, tomando la transformada de Legendre covariante

Hp = "0, — Lp da como resultado
Hp = w[(n* —v"v*n,)0, —im~y"n, . (7.96)
Podemos demostrar que en esta forma Hp solo depende de derivadas espaciales:
(0" —9"9"1,,)0, = v v n,(nun, — 1w)0"

donde recordamos que n,n, — n,, proyecta sobre las hipersuperficies espaciales or-
togonales a n*. Es interesante notar que la invariancia de Lorentz es explicita en
esta forma (ver también abajo), mientras que la densidad del Hamiltoniano de Di-
rac convencional no exhibe la simetria explicitamente. La tltima se recupera de
n* = 0 lo que implica v'n, = 4" de modo que el primer término se convierte en
(n —~4%9")id, = —ia - V (con o = Bv', B =Y.

La ecuacion de Hamilton para 1) produce

n"o, — %—7: = —iy"n, (y"i0, —m)y =0 (7.97)

lo que automéaticamente implica la ecuaciéon de Dirac en su forma covariante. Ade-

mas, si ahora introducimos el algebra del espacio-tiempo clasico (7.17), es decir,
{U(2),m(y)} = 6@ —y), (7.98)

157



Capitulo VII. Mecanica cuéntica y clasica en el
espacio-tiempo con foliacién dinamica

recuperamos lo anterior de

{1, Sp} = —in"n, (¥"i0, — m)1p, (7.99)

después de establecer {¢,Sp} = 0. Aqui la accion de Dirac en variables de espacio

de fase del espacio-tiempo es
Sp = —/ddﬂxmy”ny(y“iaﬂ —m)i, (7.100)

como se obtiene inmediatamente reemplazando v con el momento usando la relacion
inversa de (7.95) como antes.

Discutamos ahora mas sobre las propiedades de transformacion de los campos.
Asumimos la regla de transformacion usual ¢(x) — Syt)(A~1x) donde hemos intro-
ducido la matriz

Sp = exp(—iw,, 0" /4), (7.101)

para o = [y* ~"]. Esto implica, como es habitual, Sy'v*Sy = A* 4”. También
imponemos, de acuerdo con la transformacion de x#, n* — (A~!)“n”. Si ahora

combinamos estas reglas con la definicion de momento en la Ec. (7.95) obtenemos
(x) = izZ(A_lx)lefy“Alan = ith(A " w)y'n, Syt
=n(Atz)St.

Esto nos permite resumir las propiedades de transformaciéon como

P(x) — Sp(A ) (7.102a)
nt — (A"H)* n” (7.102b)
m(z) = 7(A 1) St (7.102¢)

Notese que en consecuencia, el algebra (7.98) se preserva explicitamente por una
transformacion de Lorentz, tanto en los componentes del espacio-tiempo como en
los espinoriales. Del mismo modo, cantidades como Sp y [ d*'zH son de hecho
explicitamente invariantes: las transformaciones de ¥, 7 implican v* — Sy '4#Sy
para todas las matrices gamma, y siempre aparecen contraidas con n, o 0,,.

Las Ecs. (7.102) son la generalizacion espinorial de las Ecs. del texto principal
(7.11) (la ligera diferencia en la convencion respecto a las coordenadas es comin para
campos espinoriales). Para recuperar estas transformaciones del algebra de espacio

de fases extendido, consideramos el momento angular total
JH =L 4+ SH I (7.103)
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con
L = — /dd+1x mw(xhd” — VoM ) (7.104)
SH = % / d™ oty (7.105)
" = ntK" —n"rH, (7.106)

La tunica novedad respecto al caso del campo escalar es la parte espinorial S*, como
se esperaba. Entonces las Ecs. (7.102) se pueden obtener de la accion del exponencial
del momento angular total sobre los campos. Mostremos esto explicitamente hasta

primer orden (A = 1+ w + O(w?)) para la parte espinorial:
Wy v % v
w + T#{Su ﬂ?} = (1 - ZO—M wuu)w = SA¢ + O<w2)
T+ %{S’W, T =7(1+ to"w,,) = 7Sy + O(W?).

Ademas, se puede probar facilmente que {£*, S} = 0 ya que 0®’ no depende
de las coordenadas del campo mientras que (z49” — 2¥0") es independiente de los
componentes espinoriales. También tenemos ¢ (z) + <<{LM (x)} = (A x) +

O(w?) de modo que las series completas de corchetes anidados producen

() + 2L T p(x)} + ... = Sav(A )
R S S (7.107)
m(x) + 2L { T 7(2)} + ... = 7(A'z) S,
donde los puntos suspensivos indican corchetes anidados de orden superior, por
ejemplo, el siguiente orden siendo %%{j w L7981}, Estas son precisamente
las transformaciones en las Ecs. (7.102).

Hagamos ahora algunos comentarios respecto a la cuantizacion del campo de Di-
rac segun el esquema extendido. La primera diferencia natural con el caso del campo
escalar es que se deben imponer reglas de anticonmutacion, es decir, ahora se pro-
mueve el algebra del espacio-tiempo (7.98) a un anticonmutador del espacio-tiempo.
Esto garantiza la positividad de la energia (como en el caso usual). Esto también
significa que el mapa que hemos establecido en la secciéon 7.4.3, y que discutimos
para sistemas cuanticos mas generales en el Apéndice 7.4, necesita ser modificado:
ya que los campos en diferentes tiempos no conmutan, no hay una estructura de
producto subyacente. En su lugar, se puede construir una correspondencia con la
MC convencional a través del teorema de Wick en analogia con el enfoque en la sec-
cion 7.4.3 reemplazando (7.57) con su version fermionica, con algunas modificaciones

adecuadas relacionadas con la paridad fermionica.
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Surgen sutilezas adicionales en el caso cuantico relacionadas con el hecho de que
—im # 9T para un n* general, es decir, la relaciéon de anticonmutacién no es entre
el campo y su conjugado. Se puede demostrar que esto esta en perfecto acuerdo con
la covarianza de Lorentz explicita y nuevamente una razén para introducir n*: por
ejemplo, notese que el algebra {¢(z), iy (y)} = 61D (2 —y) no es invariante ya que
Sa no es una matriz unitaria, pero (7.98) lo es. De hecho, las transformaciones de
Lorentz son unitarias con respecto a una definicién apropiada del producto interno,
inducida por lo anterior. Esto también esta relacionado con el producto interno cova-
riante introducido en [1] para particulas de Dirac (capitulo III). Finalmente, también
se puede introducir un esquema de purificaciéon generalizado para fermiones. Aun-
que ninguno de estos aspectos plantea un verdadero desafio, su exposicion detallada

justifica una discusién separada, que se abordara en trabajos futuros.

7.3 Purificacién generalizada para bosones libres ge-

nerales

En este apéndice, discutimos la purificacion generalizada introducida en (7.67). Con-

sideramos el caso de “operadores densidad generalizados” de la forma

—-H
(&
p=gom H= S Hi=> Maja (7.108)
k k

donde permitimos que Ay sea un nimero complejo general con Re(\;) > 0 (para

Ak € R, p es un estado térmico con Hamiltoniano diagonal cuadratico).

Estos operadores pueden, por supuesto, escribirse como

'
=®Z et =@ 71y e 7.109
p=0Z e 02 ) e | w (7.109)

Nk

de modo que solo necesitamos purificar cada pp = e #* (con p = ®ppy) y tomar el
producto tensorial al final. Aqui también hemos definido las “funciones de particién”

H

Zy, := Tre % de tal manera que Z := Tre ' =[], Z;. Notese que la accion libre

de Klein-Gordon ™" tiene precisamente esta forma con el indice k correspondiente

al momento en D dimensiones.

Ahora introducimos para cada k los dos estados distintos (para simplificar la
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notacion omitimos los indices k en los estados)

03)) = X ¥ i) = exp (% ala] )[0))
n kn A o
|05, )) Ze El ]n In) = exp( 2 akak>|0>), (7.110)

con [0)) :=|0) ® |0). Podemos referirnos a los estados |72) como estados del entorno
con |0y,)), [0y, )) vectores de un espacio de Hilbert doblado generado por |n)|n), tal
como en una purificacién térmica bosénica estandar. Notese que |0y, )) corresponde

al reemplazo A\, — A} en |0),)) de tal manera que

0Dk = S e 5 [y ('] @ [ (i (7.111)

n,n’

Entonces, la traza parcial sobre el entorno produce
e Mk = Trg|0y,)) ({0, ] (7.112)

donde usamos (n|n’) = d,,,/. Esto también implica
Zy, = ({05 ]0x,)) - (7.113)

Para obtener el p completo tomamos el producto de los estados anteriores y

definimos

02) = @103} = exp (D e ¥ alaf ) 0)
0)) = ©[03,)) = exp (32 afa]) 0) (7114)

para |0)) = |0) ® |0) ahora los vacios completos (|0) = ®4|0)4, |0) = ®4|0)x). Ahora
es claro que

= Trp|0,))((0,] (7.115)

Z = ((0,]04)) - (7.116)

Es importante notar que para A € R, |[¥)) = |¥)) y todas las expresiones anteriores
se reducen a las de la purificaciéon convencional.

Notese también que [0y)), [0x)) son vacios de Bogoliubov de los operadores de

aniquilacion
(l;C = u(Ak)ak + U()\k)dz
ay = u( )k + v(\i)al
k ( k) k ( k) k (7.117)
@, == u(\p)ag +v(\p)a)
a, = u(\Dag + v(\)al
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respectivamente, para

\ 1 \ e~ k/2
_ _ e 11
wM) = g V) =T (7.118)
satisfaciendo |u(Ag)[?> — [v(Ae)|> = 1 (y por lo tanto [a}, a]'] = [a,a)] = [@},a)] =
[@,,@,'] = 0 con los otros conmutadores anulandose). Esto puede ser facilmente
probado mostrando explicitamente que
a;0x)) = @;|0x)) = @;|0x)) = @;[0x)) = 0. (7.119)

Entonces se puede aplicar el formalismo desarrollado en [150] para expresar los
valores medios generalizados (como la Ec. (7.71)) como un valor de expectacion en
vacio en bases bi-ortogonales.

Para obtener las ecuaciones (7.69) se puede tomar el limite continuo de (7.114)
directamente dentro de las sumas. Este paso se puede justificar atin mas considerando
primero un volumen de espacio-tiempo finito que hace que los indices de momento
p sean discretos, recuperandose el algebra (7.48) como el limite de volumen grande
(véase también el enfoque convencional de la dinamica de campos térmicos [135]).
Notese que estos resultados se aplican directamente a un 7T finito y €, lo que permite

recuperar correladores térmicos del mismo esquema de purificacion (véase 7.4.3).

7.4 Correspondencia con la MC convencional para
espacio-tiempo discreto y sistemas cuanticos ge-

nerales

En este Apéndice discutimos como funciona la correspondencia del texto principal
con la MC convencional para tiempo discreto y para sistemas y teorias generales.
La nocién de estado generalizado de espacio-tiempo, que surge de la purificacion del
mapa, también se puede aplicar, como mostramos en un sistema simple de un qubit.

Formalismo discreto. Escribamos primero una version de espacio-tiempo discreto
del algebra extendida (7.35):

[Gims Tjn] = 96ij0mmn , (7.120)

donde i, j representan sitios de tiempo y m, n sitios espaciales. El dlgebra canénica
convencional correspondiente es [¢,, ] = @0m,, en tiempos iguales. Notese que

en el enfoque estandar los operadores de campo en diferentes puntos del espacio

162



Capitulo VII. Mecéanica cuantica y clasica en el
espacio-tiempo con foliacién dindmica

conmutan, lo que significa que el espacio de Hilbert total tiene la estructura de
producto H = ®,,h,, con h el espacio de Hilbert de un solo modo bosénico. Cuando
extendemos el algebra como en (7.120) esto se generaliza al tiempo, con la nueva

estructura del espacio de Hilbert siendo
H=H;, = ®i,mhim‘ (7.121)

Vemos que una estructura de producto tensorial se aplica tanto al espacio como al
tiempo. De hecho, no hay nada que distinga el tiempo y el espacio en (7.120), solo
fijamos una convencién para introducir la dinamica a continuacion.

Tal estructura de producto en el tiempo se puede definir para cualquier sistema
cuantico (el caso fermionico es mas sutil como se discute en el Apéndice 7.2): uno
considera un espacio de Hilbert A y luego construye un espacio de Hilbert extendido
‘H = ®;h; para un nimero dado de tiempos. Si el espacio de Hilbert h tiene una

base de estados |n), entonces
H = span{|nins...ny)}, (7.122)

es decir, tiene una base tipo "trayectoria cuéntica", con N el ntimero de cortes de

tiempo. Definamos ahora un operador extendido e’"° tal que
e“Molniny ... ny) == |nyning...). (7.123)
Se puede demostrar facilmente [4] que

Tr[e’™ ®; O] = Te[T 1,09] | (7.124)

7

donde la primera traza se toma en el espacio de Hilbert extendido mientras que la
segunda en el convencional. El operador de ordenamiento temporal T indica que el
producto de operadores a la derecha debe seguir el ordenamiento temporal (de mayor
a menor) a la izquierda. Esta es la esencia detras de la correspondencia: el operador
ePo esta traduciendo trazas de productos tensoriales de operadores a trazas de la
composicion convencional de esos mismos operadores. Para concretar, mostremos
esto para N = 2:
Tr[e"™ A ® B] = Z (nany|A ® Blninsg)

ni,n2

=Y (n1|Bna)(na| Alny) (7.125)

ni,n2

= (n|BAn) = Tx[BA],
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0o = T

2) 01— oLHm @ 0M)] — m
00 o@Ho THO®0
oW 02 = -

Tr[SWAP] =
SWAP = X

Figura 7.4.1: Representacion a lo “Tensor Network” de la correspondencia. El operador

L w=(____ )
]

€*Po permite traducir trazas en H = ®;h; a trazas en h;, como se ve facilmente en la notaciéon de

tensor networks. La notacién se introduce en c¢) mientras que los paneles a) y b) se han afnadido
para enfatizar que un espacio de Hilbert se asigna a cada rebanada de tiempo. Para las QFT, cada
plano representa el espacio de Hilbert de campos cuantizados en una hipersuperficie dada. En a)
representamos la Ec. (7.125). En b) mostramos la representacion de la misma traza con un mayor

nimero de rebanadas de tiempo.

que es la Ec. (7.124) para A = OW, B = O®. Nétese que para N = 2, ¢Po
es simplemente el operador SWAP, y lo anterior es esencialmente una prueba de
SWAP [101]. Notar también que este mismo correlador puede representarse en un
espacio de Hilbert extendido con un ntmero arbitrario de tiempos, como se muestra
en la Figura 7.4.1 en notaciéon de redes tensoriales.

El siguiente paso es relacionar la construcciéon cinematica anterior con correlado-
res reales y con el operador de acciéon. En este escenario, la definicion adecuada de

la accién para un paso de tiempo € es
'S 1= eiP0 @, eTieH = ie(Po—L Hi) | (7.126)
De hecho, se demostré en [4] que
Tr[[e)o(w] e @ OF] = (v TITILOR (t:)]w) (7.127)

con t; = €i, T = eN y |[1p,t) := e”H1)). En otras palabras, reemplazar P, con la

accion S en (7.124) corresponde a agregar evolucion. La cantidad de evolucion de
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cada operador esté determinada por el espacio de Hilbert en el que actian. Ademas,
para especificar el estado inicial lo insertamos en la rebanada de tiempo inicial
(1)) = [¥)o(4| @ 1).

También es sencillo extender (7.127) a Hamiltonianos dependientes del tiempo
definiendo la accién como e = €70 @, U;[(i + 1)¢,i€] con U;(t',t) el operador de
evolucion temporal, evolucionando de ¢ a ¢/, actuando en la rebanada i. También
se podria afiadir una dependencia temporal explicita a los operadores O®. El or-
denamiento temporal se preserva siempre y cuando la posiciéon en el tiempo y la
dependencia temporal externa sean consistentes (por ejemplo, si se esta consideran-
do un operador O = j(t)d.,, con j(t) una funcion, se deberia insertar O; = j(t)dim
para ie = t).

Si solo se esta interesado en el estado fundamental, se puede omitir el estado
inicial agregando una parte imaginaria al tiempo (todo lo anterior se mantiene para
un H no hermitiano [3]) y considerando el limite de tiempo grande, justo como se
suele hacer en la formulaciéon PI. Nuestro ejemplo principal podria reinterpretarse
de esta manera. También se pueden considerar funciones de correlacion térmicas
haciendo el reemplazo (rotacion de Wick) H — —iH en la definicion del operador
S. Un simple cambio de etiquetas de las ecuaciones anteriores da Tr [ei‘s ®;i OEi)] =
Tr [e*ﬂHﬁg HZ-OE?(HZ-)} donde Oy (0) = e"0e~*? indicando “evolucién térmica”, es
decir, el operador “evolucionado” hasta la temperatura inversa 6 y 0; = ie. Esto
también implica la Ec. (7.67) en el cuerpo principal y Tr [¢*°] = Tr [e=P].

Tratamiento del espacio-tiempo de sistemas de qubits. Ahora mostraremos en un
ejemplo muy simple como se aplica la purificacion generalizada ademas del caso de
campo bosoénico. Primero introducimos una situaciéon convencional de dos qubits
separados en el espacio en un momento dado para comparacion. En este escenario
describimos el estado asociado del sistema a través de una matriz de densidad que

se puede escribir como

3
p=> (ROP), ek, (7.128)
1,j=0

con (P,®P;), = Tr[pP;® P;] y P; matrices de Pauli para Py = 1. Esto significa que el
estado define completamente los correladores en un momento dado y viceversa. Si el
estado no es puro siempre podemos considerar una purificacién y reescribir lo anterior
como un valor medio de estado puro. Por ejemplo, para p = p|00)(00|+(1—p)|11)(11]

podemos escribir

(P @ Py)p = (Y|P @ Py @ 1p[0)) (7.129)
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donde el estado global que involucra el “entorno” puede ser elegido como |¥)) :=

v/P|000) + /1 — p[111) de tal manera que
p = Trg|V){(¥]]. (7.130)

Ahora consideremos el caso de un solo qubit y dos tiempos en el nuevo enfoque.
El nuevo formalismo describe la situaciéon a través de un espacio de Hilbert que es
isomorfo al del ejemplo anterior que involucra dos qubits. De hecho, describimos
convencionalmente el espacio de Hilbert de un qubit como la representacion mas
pequena (irreducible) del algebra [P, P;] = 2i€;jx Py, donde 4,5,k = 1,2,3 v €% €s

el simbolo de Levi-Civita. Nuestro formalismo impone entonces,
[Piis Pyj] = Our2i€55 P (7.131)

con la prescripcion de emplear la representacion convencional del espacio de Hilbert
para cada rebanada de tiempo fija.
Por otro lado, segiin la discusion anterior, el operador de interés, es decir, el que

produce los correladores en el espacio-tiempo (ver Ec. (7.127)) no es p sino

po= ) (Y] ® 1 = §:w’zd®|<,d, (7.132)

donde asumimos un estado inicial puro |¢)) por simplicidad y usamos que para dos
tiempos € = ePoeill @ ¢~ También recordamos que |, €) = e*H|h). Como
cualquier otro operador, p se puede escribir en términos de los correladores como

3
p=SN (PoP),P®P;, (7.133)

4,7=0

donde sabemos por construcciéon que los valores medios satisfacen (P, ® P;) =
Tr[pP, ® P;] = (¢, T|P;(e) P;|v), con T = 2¢. Podemos verificar esto explicitamente:

(P @ Fj)p :ZW% €| P; i) (i, €| P |))
= Z 0, 2€¢| Pj(€)|i, €) (i, €| P;|1))
= (¢, T|P;(e)Pl)

donde reorganizamos los términos en la primera igualdad y usamos la relaciéon de
completitud en la ultima. Notese como los operadores aparecen segin el orden tem-

poral en el lado izquierdo, de acuerdo con (7.127). Lo anterior implica que p es el
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operador tnico en este espacio de Hilbert cuyos correladores en el tiempo son los
propagadores convencionales. Notese que los correladores en el tiempo ahora se tra-
tan exactamente como en nuestro ejemplo espacial anterior. La diferencia entre las
dos situaciones se codifica en las diferentes caracteristicas de p, p, siendo el primero
un estado pero no el segundo.

Notablemente, podemos interpretar p como que surge de un estado generalizado:
sin pérdida de generalidad escribamos |¢)) = |0). Ahora introducimos un par de
estados correlacionados con un entorno de qubit:

0 = |000>\%/—§|011)

 (ieH o ieH o 141000) + [101)
|P)) = (" ®e ®1)T. (7.134)
Se puede verificar facilmente que
(PeR)y (@R 1) _OTROPN) o
Trp {(2]T)) (0,700) ~
como se sigue de
l_:TrER, R := M (7.136)

(@)’

con R un estado generalizado, es decir, un proyector no ortogonal. También tenemos
2 ((®|V)) = Trp = (0,70), donde el factor 2 puede ser absorbido en los estados sin
cambiar la condiciéon R? = R. Hemos obtenido asf una purificacién generalizada de
p, como las que discutimos en la seccion 7.4.4 del cuerpo principal y el Apéndice 7.3
para un campo bosoénico. De hecho, se puede demostrar que obtener R es posible
para cualquier sistema y evolucion (véase también la discusion reciente en el contexto
de espacio-tiempos hologréficos dependientes del tiempo [97, 98, 137, 138]).

El ejemplo anterior muestra una vez mas cémo el nuevo formalismo trata el
espacio y el tiempo por igual, con el espacio de Hilbert de un qubit y dos tiempos
teniendo dimension 22 y siendo el mismo que el de dos qubits separados en el espacio
en un solo tiempo. Las Ecuaciones (7.128) y (7.133) son formalmente las mismas,
con las diferencias codificadas en los correladores. También vemos que la purificacion
generalizada (7.136) es andloga a la tradicional mostrada en (7.130). Por supuesto,
considerar, por ejemplo, dos qubits y dos tiempos conduce a un espacio de dimension
24 con todas las variables en igualdad de condiciones. Las diferencias entre espacio
y tiempo no son aparentes a nivel del espacio de Hilbert, en cambio, se manifiestan
en las propiedades de los “estados” con |¥))((¥| siendo un proyector ortogonal pero
no R. Este ultimo codifica no solo el estado inicial sino también la evolucién y la

estructura causal de la teoria.
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Caso bosonico y limite continuo. Es interesante ver las consecuencias de este
mapa en el caso del campo bosdnico en espacio-tiempo discreto. Por ejemplo, lo

anterior nos permite escribir

Tr[0)o(] € Gimdsn] = (&, T|Tbr1m(t:) brra(t;)|0) (7.137)

que es el “propagador de Feynman” para una ventana de tiempo finito 1" y para
una configuracion inicial y finita del campo en el espacio |¢) = Qu|dm) (dm|d) =
®m|P) en una rebanada de tiempo dada, donde hemos introducido el sombrero para
claridad).

Notese que el lado derecho puede escribirse naturalmente como una integral de
trayectoria entre las configuraciones ¢ e insertando dos operadores de campo. El lado
izquierdo parece sospechosamente similar a tal construccién, excepto por el hecho
de que involucra operadores y una traza en el espacio de Hilbert (extendido). Para
entender la relacion entre los dos, uno debe expandir la traza en alguna base. Aunque
son posibles infinitas elecciones, la base de autoestados del espacio-tiempo del campo
@) := Qi Dim) (Dim|P) = Gim|®)®) lleva directamente a la PI de Feynman [4]. En
este sentido, la formulacion de PI emerge también del formalismo. Por ejemplo,

facilmente se ve que

(ple"P?| ) = exp [z’e Z Tim (¢i+l’m€_ Gim) (¢|m) , (7.138)

,m
revelando que Py esté relacionado con la transformada de Legendre, donde |m) :=
®im|mim) es la base de autoestados del momento del campo.

Uno puede justificar atin méas la apariciéon de la transformada de Legendre em-

pleando una representaciéon de modos normales de Py. Dados los operadores de
.|.

aniquilacion (creacion) a;m,, a;,, que satisfacen [aim,a}n] = 0;;0mn (relacionados li-
nealmente con ¢j,, m,) se pueden definir modos de Fourier en el tiempo mediante
An 1= \/LN Zj e™riq;, donde wy = 2wk/T y k toma N = T'/e valores diferentes.
Entonces

Po =) Wkl aim (7.139)
k,m

produce eiepoajme_iepo = a;41.m de acuerdo con (7.123). Si ahora reescribimos Py en
- _ (Yo 1 [ i (—i)e

la base de tiempo tenemos Po = >_ .. aj,, iDjja;, con D = —5 >, iwge

que es una version discreta de una derivada en el tiempo de la delta de Kronecker d;;.

La forma es una vez més la de la transformada de Legendre, ahora en las “variables”

8En la version continua del texto principal, |¢) corresponde a |¢(x)) mientras que |@) a |¢(x))
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s a}m. Notese también que la Ec. (7.139) es una version discreta de la expresion
(7.52) del cuerpo principal para foliaciéon canonica.

Ademés, considere el limite de espacio-tiempo continuo en el espacio de Hilbert.
El procedimiento es el mismo que se suele hacer en el espacio, asi que primero revise-

mos el escenario convencional espacial. Dado un espaciado constante a, se consideran

operadores ¢(x) := j;‘};, m(x) == 7% para X = am (asumiendo d dimensiones) y
m un vector de entradas enteras. Entonces, el algebra canoénica [pm, Tm/| = 10mm’

implica

[o(x), 7(X')] = ia_démm/ — 0@ (x — %)

en el limite @ — 0. El mismo tratamiento se puede aplicar para obtener (7.35) de

(7.120) definiendo ¢(x) := %, m(z) = %, con x = (€j,am), de modo que
[o(z), 7(2)] = ie a0, 0 — 10V (z — 2') .

Aunque ya no hay un ntmero contable de rebanadas de tiempo (ni de rebanadas
espaciales) atn se puede definir un operador de traslacion en el tiempo y relacionar-
lo con la version anterior. De hecho, se puede demostrar rigurosamente [3, 4] que
la expansion (7.139) (con el indice k tomando valores enteros arbitrarios) lleva a
Po — [dPx(x)p(x) para e,a — 0, como sugiere (7.138) pero sosteniendo a nivel
del operador y en acuerdo con los resultados del cuerpo principal. El limite de es-
paciado pequeno también supone e N = T constante, asi como la condicién espacial
usual aM = L (para M el nimero de rebanadas espaciales y L la longitud total de
la “caja”). Uno puede entonces tomar los limites T, L. — oo para recuperar el forma-
lismo del cuerpo principal. En este caso, los operadores de creacion (aniquilacion)
de Fourier satisfacen también un algebra continua, de acuerdo con Ec. (7.48): por
ejemplo, manteniendo L finito se define a,,(p°) := VT agn, con p° = 27k /T de modo
que [am(p), aly, (p°)) = TSk Oms — 276(p° = P°) -

Notese que el limite de tiempo continuo esti bien definido para el operador P
en si, de modo que ¢ implementa traslaciones geométricas en el tiempo como

d(x) — ¢(2° + 7,x) para 7 € R. Por otro lado, si uno quisiera considerar primero

N

5,...,%yT:eN—>oo) la

el limite N — oo (manteniendo e finito, tal que j = —
FT ahora lleva a p° continuo en (—A, A) con A := (2¢)~* funcionando como un corte
natural, de modo que la definicién adecuada del generador de traslaciones en el tiem-
po se convierte en Py := ) fi\A dp® plal (p°)am(p°), que toma el lugar de (7.139).
Entonces eifpoajme_iepo = Gjy1,m para cualquier entero j. En conclusion, en todos

estos limites el generador de traslaciones en el tiempo esté definido adecuadamente.
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Estas definiciones constituyen una extension natural del caso de un tiempo discreto
compactificado y concuerdan con los posibles limites (es decir, pequenio espaciado
y/o gran T') de ese escenario basico.

Notese que un tratamiento similar podria emplearse para otras algebras de espacio-

tiempo, como la de Ec. (7.131), llevando al reemplazo 6y — §(t — t').
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Conclusiones y perspectivas de la tesis

Presentamos a lo largo de la tesis un conjunto de resultados y aprendizajes parciales
que nos llevaron finalmente a proponer una version de la MC basada en espacios de
Hilbert y que a su vez, cuando aplicada a teorias de campos, permiten hacer explicita
la simetria de Lorentz. El espacio de Hilbert que introdujimos, no es el convencio-
nal sino que esta basado en algebras ampliadas para tratar a espacio y tiempo en
pie de igualdad. A su vez, en el caso de teorfas de campos relativistas mostramos
que es también necesario cuantizar las posibles foliaciones del espacio-tiempo, algo
que puede interpretarse como una cuantizacion de los sistemas de referencia. Otra
importante novedad del formalismo son las acciones cuanticas, que nos permiten es-
tablecer un mapeo con la MC convencional y reinterpretar el rol de la formulacion de
Feynman. Al mismo tiempo, hemos mostrado que el mapeo lleva a generalizaciones
del concepto de estado cuéntico a objetos que codifican no solo el estado del sistema
a tiempo fijo sino también su evolucién y la estructura causal de una teoria. Por
otra parte, introdujimos una formulaciéon de la mecanica clasica en espacios de fases
ampliados, cuya cuantizacion lleva al formalismo cuéntico.

Vale la pena incluir una discusion sobre las diferencias conceptuales fundamenta-
les entre nuestra propuesta y la MC tradicional, basada en evoluciéon unitaria. Estas
diferencias han sido pues totalmente cruciales para enfrentar el problema planteado y
“acercar la cuantica a la relatividad”. Notablemente, el esquema final es en cierto sen-
tido mds cudntico que la formulacion estandar, pues, en vez de asociar la evolucion
con un parametro externo clasico, nuestro esquema codifica la informacion dinamica
a través de (nuevas) correlaciones cuanticas, en sintonia con el espiritu de esta época.
Para explicar mejor esta idea, déjenme retomar el ejemplo de un campo escalar ¢(x)
y su momento conjugado 7(z). En la nueva formulacion [¢(t,x), ¢(t',x)] = 0 para
todo par de tiempos y [¢(t,x), 7(t',x)] = 0 si t # t'. Esto significa que el momento
es completamente independiente del campo, y de ninguna manera ligado a la can-

tidad <b (0 a n*0,¢ si se prefiere). Vemos explicitamente que el momento no tiene,
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a priori, ningtn significado dinamico. En el caso clésico, recuperamos su significado
tradicional a través de imponer un vinculo débil de la forma {¢, S} = 7—n*0,¢ ~ 0.
Cuénticamente, la situacion es mas compleja ! y requiere computar “valores medios”
con respecto a la accion. Esto es, dentro de llaves (...) = Tr[e®...] el momento 7
si adquiere significado dindmico. De igual manera, si bien ¢(x) es independiente de
¢(y) para = # y, incluso para un intervalo tipo tiempo, (¢(x)p(y)) es el propagador
de Feynman. Recordemos también que podemos reescribir lo anterior como un valor
débil (weak value) [140] (...) = ((®|...|¥)) 2, de modo que toda la informacion
dindmica ha de estar contenida en los estados |¥)), |®)), no porque los hemos evo-
lucionado unitariamente, sino porque contienen correlaciones cuénticas a través de
distintos “slices” espacio-temporales. Considero que este resultado es realmente no-
table, pues la receta general para imponer las correlaciones que permitan recuperar
la dindmica de una cierta teoria es extremadamente simple. Solo requiere “purificar”
a la exponencial de la correspondiente acciéon cuantica S, cuya forma suele ser la de
la accion clasica.

Las consideraciones anteriores han sido de particular relevancia para obtener co-
varianza en espacios de Hilbert. Solo eliminando toda referencia a un parametro
externo de evolucion se logra separar completamente la informacion dinamica de la
geométrica. En particular, en nuestro formalismo, cuando definimos transformacio-
nes de Lorentz para un dado campo, éstas estdn definidas geométricamente y de
una vez por todas: la definicién es la misma para todas las teorias, interactuantes
o no, en analogia a lo que sucede con las rotaciones. Para saber si una teoria es
invariante de Lorentz, nos preguntamos si [J,,,S] =0con J, =L, @ 1 +1®1,,
el generador de boosts, que hemos separado explicitamente en los sectores campos
de materia y foliacion. Decir que la accién conmuta con 7, si es una afirmacion de
indole dinamica. A su vez, hemos visto que las acciones cuanticas son operadores no
separables en la particion materia-foliacion. Esta es la manera en la que reaparece en

el formalismo la conexién entre transformaciones del espacio-tiempo y la dindmica.

IE] lector familiarizado con la cuantizaciéon de teorfas con vinculos podria preguntarse porqué
no aplicamos el esquema correspondiente a nuestra propuesta clasica. De hecho, el formalismo de
PW puede reobtenerse con dichos métodos, aplicados a una particula parametrizada. Sin embargo,
uno puede ver facilmente que a diferencia de la particula parametrizada los vinculos clésicos que
introdujimos en el capitulo VII son de segunda clase y no de primera. Aplicar el esquema de Dirac
lleva entonces a la cuantica tradicional, pues los corchetes de Dirac [42] coinciden con los de Poisson

no ampliados. Ideas nuevas fueron entonces necesarias para no abandonar las algebras ampliadas.
2Esta propiedad solo se mostr6 en 7.4.3 con |¥)), |®)) vacios de Bogoliubov para teorfas libres,

y en el caso de un qubit en 7.4, sin embargo puede mostrarse que es general.
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A posteriori, esto es facil de justificar si consideramos por ejemplo el efecto Unruh
[147, 148]. El concepto de particula y vacio esta intrinsecamente ligado a como un
observador separa espacio y tiempo. En nuestro formalismo dicha conexion aparece
porque la accién no es separable de la foliacion, de modo que su diagonalizacion, que
determina el concepto de particula, es foliacion-dependiente. En particular, como se
discutié en las conclusiones del capitulo VII, podemos aplicar facilmente nuestro
formalismo a observadores no inerciales (esto es, foliaciones curvas n*(z)), y espe-
ramos reobtener la no equivalencia entre conceptos de vacio. Remarquemos que al
emplear nuestro formalismo en fondo de Minkowski, las algebras cumplidas por los
campos no se modifican, solo habra que especificar un estado cuantico diferente pa-
ra la foliacion, correspondiente por ejemplo a la de un observador de Rindler [148|.
Para dar una idea concreta ? sobre por qué es esto cierto consideremos coordenadas
de Rindler (n,£) € R? en 1 + 1 dimensiones tal que = = e* cosh(n), t = ¢ sinh(n).
Usando que 9, = Qg—:@u = x0; + t0, puede verse que P, = Ly, esto es, el gene-
rador de traslaciones en el parametro n es el generador de boosts 4. A su vez Lo
puede obtenerse a partir de Py[n] (el generador de traslaciones con n#(x) un ope-
rador) imponiendo n#(x) = (x,t)*. El tratamiento de esta situacion es claramente
muy distinto al canénico, donde se imponen algebras candnicas en hiper-superficies
dependientes del observador y se conecta la cuantizacion “a lo Rindler” con la cuan-
tizacion “a lo Minkowski” a través de condiciones adecuadas (usualmente se usa que

los campos y momentos coinciden en la semirrecta positiva a t =7 = 0).

Antes de proseguir analizando las nuevas posibilidades abiertas por el formalis-
mo, cabe discutir aunque brevemente sobre algunas cuestiones mas elementales que
no han sido tratadas en detalle. En particular, en una tesis que habla de relatividad
y teorias cuanticas de campos (sin que sean los temas centrales) no hemos incluido
ningun calculo que involucre un proceso de renormalizacién, proceso fundamental
para extraer predicciones fisicas. A su vez, si hemos dado las expresiones generales a
partir de las cuales derivar las reglas de Feynman y obtener funciones de correlacion
generales. Esto significa que si agregamos a esas expresiones la “maquinaria’ con-
vencional para obtener predicciones fisicas, se llega a los mismos resultados. En este

argumento estamos omitiendo una pieza importante, que no hemos tratado con sufi-

3Quiero aqui agradecer a Lucas Manzo, Jonatan Chaves y a Facundo Cruz por discusiones sobre

el efecto Unruh.
4Estrictamente hablando esto es cierto en el “Rindler’s wedge”, sin embargo si uno considera

correladores térmicos, que es lo relevante al derivar el efecto Unruh, entonces P, coincide con el

generador de rotaciones en (t,z) en todo el espacio-tiempo, siendo el equivalente Euclideo de Lo;.
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ciente profundidad atn: ;qué nos dice el formalismo ampliado sobre esta “maquinaria
extra” que estamos dando por sentada? Siendo mas concretos, japarece algo nuevo
en el proceso de renormalizacion al emplear el formalismo aqui propuesto? Coémo
se menciono en los capitulos VI y VII, la escala de tiempo 7 que empleamos para
establecer el mapeo con la MC convencional para tiempo continuo podria ser una
novedad importante. A su vez vimos en estos capitulos que en mas de una situacién
es posible pensar (parcialmente) en el formalismo ampliado como un formalismo ca-
nonico en D+1 = d+2 dimensiones con 7 un parametro de evolucion (recordemos el
resultado en el capitulo VI que conecta nuestro mapa con expresiones del formalismo
de linea de mundo [46]), es esto un indicio de que existe una interpretacion holo-
grafica de nuestros resultados? Como hemos mencionado, no es simple escribir las
teorias d+ 2 dimensionales que se obtienen para 7 finito, pues estas son altamente no
locales. Dejamos este asunto abierto de momento. Otro aspecto que no consideramos
es el de establecer el mapeo entre el formalismo cuéntico ampliado y el usual para
el caso de fermiones y teorias de gauge. Respecto al primer caso, es simple definir
acciones cuénticas fermionicas basadas en algebras de anticonmutadores ampliadas
aunque hay que tener algin cuidado extra con la paridad a la hora de introducir
las trazas que conectan con la MC tradicional. Esto no complica la discusion del
formalismo introducido y provee una nueva manera de definir a las Integrales de
Feynman para fermiones. Sin embargo, la presencia de un n* cuéntico para campos
con espin si introduce novedades que mencionamos brevemente en 7.2. Es interesante
mencionar que en el caso de teorias clasicas emplear un formalismo multisimpléctico
en presencia de teorias de gauge (a lo que puede asociarse un n*) puede dar ventajas
a priori no obvias, como sucede en el caso de la formulacion Hamiltoniana de la
gravedad [151]. Serfa interesante ver si dichas ventajas pueden importarse al caso
cuéntico a través de nuestro nuevo esquema de cuantizacion (recordemos que no hay
una cuantizacion directa de los formalismo multisimplécticos). A su vez, queda claro
que nuestro mapeo usado de forma directa ha de contar configuraciones equivalentes
en exceso. Esto es, no hemos desarrollado el equivalente a lo que en Path Integrals
se conoce como método de Faddeev—Popov [40]. Finalmente cabe mencionar que
todo lo construido es suficiente en principio para representar de manera ampliada
cualquier cantidad fisica de interés en MC tradicional no relativista. Esto significa
que las bases para aplicar el formalismo a escenarios que incluyan medidas, canales
cuénticos (por ej. sistemas abiertos), etc estan dadas, aunque no hayamos ahondado

en estos temas.
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Perspectivas

Podemos decir que el resultado principal de la tesis ha sido construir el formalismo
del capitulo VII y mostrar su equivalencia con la fisica tradicional. Sin duda un
formalismo es valioso si nos da un punto de vista novedoso que pueda servir para
abordar problemas desde distintos angulos. Creo haber cumplido el criterio de “no-
vedad”, y considero haber dado algunas pistas sobre como el nuevo punto de vista
puede dar ventajas a la hora de plantear viejos problemas. Por otro lado, posible-
mente un mejor criterio para juzgar la utilidad de un formalismo nuevo es si este,
ademaéas de ser equivalente a lo que conocemos en donde esperamos que lo sea, nos
permite ir mas alla. Existen sin duda varias direcciones a explorar que se han vuelto
accesibles desde nuestra propuesta. Si bien su desarrollo se encuentra en una etapa
inicial, me gustaria concluir la tesis indicando claramente estas perspectivas, que

ademas son muy concretas:

e Nuevos algoritmos de simulacién en computadoras cuanticas. En el
anexo IX incluimos una aplicacién computacional del formalismo de PW que permi-
te hacer promedios temporales de cantidades fisicas en paralelo en una computadora
cuantica. En esta propuesta es clave tratar al tiempo como un operador de modo que
podamos asignar parte de los qubits al tiempo mismo. ;Podemos emplear nuestra
propuesta final, basada en élgebras ampliadas y no en el operador tiempo de PW,
para encontrar nuevos algoritmos cuanticos? La direccion més prometedora parece
ser la de computar integrales de Feynman como se discutio en el capitulo VI. Alli
vimos que la suma sobre historias que caracteriza a las integrales de Feynman puede
obtenerse en una computadora cuantica. Més alla del algoritmo particular que he-
mos propuesto °, lo valioso de este resultado esta en notar que al embeber nociones
fisicas como las trayectorias “off-shell” en un espacio de Hilbert, podemos automati-
camente traducir dichas nociones a una computadora cuantica. Es més, el mapa de
los capitulos VI y VII no esté ligado necesariamente a integrales de Feynman de mo-
do que podemos computar correladores espacio-temporales generales (por ejemplo

de sistemas de espines) con la misma idea.

5Cabe notar que el algoritmo DQC1, que forma parte de nuestra idea para computar trazas,
contrariamente a lo que sugiere un analisis superficial, no es eficiente en general [152]. Esto ocurre
porque las trazas que este esquema computa se encuentran normalizadas, por ende solo trazas de
operadores suficientemente cercanos a la identidad pueden obtenerse con pocas medidas al final de

un circuito.
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e Generalizacion del concepto de estado cuantico. Recordemos en primer
lugar que en el formalismo ampliado del capitulo VII es posible codificar la evolucion
en estados |U)), |P)), o tal vez mas propiamente dicho, en el proyector no ortogo-
nal R = |U))((®|/((¥|P)). Mencionemos también que recientemente surgi6 interés
por estudiar las correlaciones de este tipo de “estados” en la MC convencional (i.e.,
no ampliada), en el contexto de la correspondencia dS/CFT, para establecer si es
posible pensar en el tiempo como una cantidad emergente de alguna medida en infor-
macion cuéantica [97], en analogia a lo que sucede con el espacio y el entrelazamiento
en AdS/CFT [139]. En nuestro formalismo, las correlaciones contenidas en R son
precisamente las responsables de que la evolucion emerja de cantidades estaticas.
Nuestra propuesta nos provee entonces de un marco capaz de definir rigurosamente
y facilmente cantidades analogas al entrelazamiento tipo espacio (el anico que tiene
sentido definir en MC convencional). En particular, tiene un claro significado ha-
blar de correlaciones a través de “slices” temporales y esta claro que las hay, de lo
contrario encontrariamos siempre una evolucion trivial. Es mas, si recordamos que
estas trazas estan profundamente ligadas a la formulacion de Feynman, podemos
argumentar, sin hacer ninguna cuenta, que las correlaciones de estos estados han
de proveer una nueva perspectiva sobre el limite clasico definido por A~ — 0. En
particular, podemos plantear el problema de “comprimir” estos estados en analogia
a lo que suele hacerse en las descomposiciones en Matrix Product States y Tensor
Networks que emplean como criterio la no extensividad (leyes de area en vez de
volumen) del entrelazamiento tipo espacio [153|. Mencionemos también que las des-
composiciones en Tensor Networks proveen més que métodos numéricos, pues, al dar
una gran intuicion sobre la estructura de estados cuénticos, estos pueden usarse por
ejemplo para capturar aspectos claves de holografia [154, 155]. Es natural investigar
cuestiones similares empleando nuestra generalizacion de estado. A su vez, el tipo
de correlaciones tipo tiempo permitidas por la MC tradicional esta acotado. Esto es
facil de ver en el formalismo discreto donde escribimos €*® = ¥ ®, e*¥ . de modo
que la parte entrelazante proviene del operador de traslaciones temporales.

e Teorias fisicas no mapeables a la MC convencional. Las consideraciones
anteriores nos llevan directamente a otro tema interesante que describiremos breve-
mente. Esta claro que hay mas operadores unitarios en los Hilbert ampliados que
los que tienen la forma de e*° asociados a evoluciéon separable desde la perspecti-
va ampliada (la parte Hamiltoniana es ®@,e~%H). En particular esto significa que la
cantidad de correladores independientes que podemos definir con el formalismo am-

pliado es drasticamente mayor a los que podemos obtener con el formalismo canénico
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estandar. Podemos entonces definir teorias fisicas que no tienen una corresponden-
cia con las obtenidas desde la MC convencional. Se deja para el futuro explorar
el significado de estas teorias y si es posible compatibilizarlas con las simetrias del
espacio-tiempo que querramos imponer. Notemos también que en principio, este ti-
po de teorias asociadas a una parte Hamiltoniana entrelazante en tiempo podria no
aportar correcciones en el limite clasico pues el efecto de entrelazamiento se perderia
(ver también el punto previo).

e Estados de foliacién no clasicos. Una novedad algo sorprendente del for-
malismo es el concepto de foliacion como grado de libertad. Como hemos visto en
el capitulo VII, hemos introducido este concepto por necesidad matemaética y ar-
gumentado por su plausibilidad fisica por fuera de una verdadera teoria fisica que
nos determine una dindmica asociada. Podriamos especular que una dinadmica ge-
nuina ha de emerger si consideramos al espacio-tiempo mismo como dinamico y en
consecuencia a sus posibles foliaciones. Sin embargo, este ingrediente no es parte
del enfoque tradicional canénico que intenta cuantizar la gravedad tomando como
grado de libertad la métricas inducidas en una dada hiper-superficies “inicial” y
sus momentos conjugados de acuerdo a una foliacion dada. En cambio, la indepen-
dencia de dicha foliacién, heredada de la covarianza general queda impuesta por
“constraints” adicionales, siendo la ecuacién de Wheeler-DeWitt uno de ellos [13].
Podemos preguntarnos, jqué ocurre si aplicamos nuestro esquema extendido a la
gravedad misma? Lejos de tener un tratamiento completo del tema (recordemos en
particular que no hemos tratado teorias de gauge en la tesis), déjenme notar que el
esquema que surge es muy distinto. Por un lado, las métricas de hiper-superficies
distintas serfan independientes. Por otro, las foliaciones serian tratadas de manera
dinamica. Esto parece indicar que el grado de libertad fisico que se considera es la
métrica completa del espacio-tiempo. A su vez habra que tener en cuenta transfor-
maciones de gauge y en principio al condicionar sobre estados de foliaciéon fijos y
cldsicos uno recuperaria el tratamiento canénico usual. La ventaja seria simplemente
no romper con la covarianza general en los pasos intermedios. A su vez es clara la
analogia con el formalismo de PW, empleado justamente como modelo simplificado
de este escenario, y que preserva los grados de libertad que usualmente se consideran
“cinématicos” (ver capitulo II). Por otro lado, el formalismo permite usar estados de
foliacion sin analogo clésico, por ejemplo asociado a superposicion de foliaciones, que
podemos asociar a un sistema de referencia cuantizado, o, de manera mas exotica,
podemos plantear estados entrelazados entre distintas regiones del espacio-tiempo

como |n(x)) o< |ny(z))1|ne(z))n + [na2(x))1|n1(x)), con Iy II regiones desconectadas
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que cubren todo el espacio-tiempo. Para que estas propuestas generen efectos cuan-
ticos genuinos deberiamos considerar observables que no conmutan con n*, lo cuél
sugiere agregar un término que contenga al momento conjugado de n* a la accién
cuantica ya sea acoplado a la métrica o a los campos de materia. Una posible justifi-
cacion semi-clasica de tal esquema surge de pensar que a la hora de determinar una
foliacion, un observador tiene que hacer medidas y dichas medidas estan asociadas a
interactuar con materia, siendo esta misma cuantica. Més concretamente, recordan-
do los comentarios del observador de Rindler hechos mas arriba, es natural asociar
n* o ‘{%, esto es pensar que la foliacion esta asociada a hiper-superficies ortogona-
les a la linea de mundo de una particula (o varias si queremos cubrir una region).
Un primer modelo de foliacion cuantica dindmica se obtiene al cuantizar esta(s) par-
ticula(s) de modo que en el limite de masa grande uno recupere, a lo Feynman (ver
el formalismo de linea de mundo del capitulo II), solo la linea de mundo clasica.
Esto es, si tomamos el limite clasico de la particula estamos en efecto condicionando
sobre estados clasicos de foliacion, precisamente lo que postulamos previamente. En
cambio, si consideramos la dindmica cuéntica de la particula, que a su vez puede
estar sometida a campos externos, lo que tenemos es una acciéon total que en general
no conmuta con el operador n* y donde la particula y los campos estan acoplados
por este ultimo de acuerdo a la forma de & que hemos introducido. Lejos de ser una
propuesta fundamental, este modelo nos provee de un primer ejemplo de cuantiza-
cion semi-clasica de un sistema de referencia y que se reduce al esquema de nuestra

propuesta cuando la particula es muy masiva 6. Este simple modelo muestra de por

si el potencial del formalismo para abrir nuevos caminos de investigacion.

Hecho un resumen de nuestra propuesta, habiendo explicitado los temas atin
en desarrollo, y considerando la nueva intuiciéon que el formalismo final nos provee
sobre el concepto de tiempo, creo poder concluir que el rol especial del tiempo
que caracteriza a la formulacién canénica convencional de la MC no es mas que
una construccion util. Esta construccion puede eludirse sin abandonar el espiritu de
la MC. Al contrario, la MC puede ampliarse dando lugar a un marco puramente
cuantico que ya no describe a la materia en un tiempo dado, sometida a leyes de
evolucion dependientes de un parametro clasico externo. En cambio, en su version
ampliada, la MC representa enteramente y de forma auto-contenida a la materia en

el espacio-tiempo.

5Es interesante notar que en un experimento real que involucre acelerar a velocidades relativistas

un “detector de Unruh”, conviene que el detector no sea particularmente masivo.
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Anexo: Aplicacion computacional de
PW

En esta seccion presentamos un conjunto de aplicaciones del formalismo de tiempo
cuantico del capitulo II, desarrolladas en colaboraciéon con un grupo de computacion
cuantica de Los Alamos (EEUU). Omitiremos los detalles més técnicos, que pueden
encontrarse en [6]. El principal objetivo ha sido la construccion de nuevos algoritmos
cuanticos que emplean “qubits de tiempo”. También mostramos como el formalismo
de PW y la nocién de entrelazamiento sistema-tiempo nos proveen nuevas herramien-
tas para el estudio de equilibraciéon de sistemas cuanticos aislados. La idea basica

detras de este anexo esté esquematizada en la Figura 9.0.1.

9.1 Formalismo del tiempo cuantico y su discretiza-
cion

Consideremos un sistema cuéntico de n-qubits con espacio de Hilbert asociado Hg.
Sea H un Hamiltoniano independiente del tiempo bajo el cual evoluciona el sistema.

La evolucion dinamica del sistema esta determinada por la ecuacion de Schrodinger

d
i [0(0) = H |¥(t) (9.1)

donde hemos establecido i = 1. Es bien sabido que la solucion de la Ec. (9.1) es
dada por
() =U(t) [vo) , con U(t) =e ™", (9.2)
y donde |1)y) es algin estado inicial del sistema.
Como se ha discutido anteriormente, y como se muestra en la Fig. 9.0.1(a),

existe una asimetria inherente entre las variables de espacio y tiempo en la mecanica

cuantica. A saber, la variable ¢ sobre la cual tomamos una derivada es un parametro
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Standard Quantum Mechanics
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Figura 9.0.1: Algoritmos cuanticos basados en la mecanica cuantica estandar o el for-
malismo PW. a) En la mecénica clasica hamiltoniana, las variables dinamicas son funciones de
las coordenadas del espacio de fases, posicion & y momento p. En la mecanica cuantica estandar,
se promueven & y p a operadores cuénticos, pero la variable tiempo ¢ se trata como un parametro
clasico que es externo al sistema cuéntico estudiado. Los algoritmos cuénticos para estudiar propie-
dades dinamicas basados en este marco se implementan para un tiempo fijo t. Si queremos calcular
un promedio de N tiempos, necesitamos repetir la ejecuciéon en N experimentos secuenciales en
el tiempo. b) En el formalismo PW, el tiempo se trata como una variable cuantica, con su propio
espacio de Hilbert asociado. En este trabajo presentamos algoritmos cuénticos para simulaciones
paralelas en el tiempo que intercambian repeticiones de circuito por qubits auxiliares de reloj. ¢)
Después de un protocolo de enlace adecuado, se tiene acceso no solo a propiedades del sistema
en un tiempo dado, sino también a su historia completa. Esta informaciéon se puede recuperar
realizando mediciones al final del circuito, que ahora pueden involucrar a los qubits del reloj, los
qubits del sistema o ambos. Las mediciones en el sistema que estan condicionadas a un valor de
tiempo determinado dan propiedades del sistema en un tiempo dado. Mas interesantemente, si
solo se mide en el sistema e ignora completamente los valores del reloj, se obtienen promedios
temporales. Esto es una consecuencia del entrelazamiento entre el sistema y el reloj que induce un
canal cuantico util cuando el reloj se trata como un entorno. Debido a la naturaleza cuantica del
reloj y el sistema simulados, se pueden proponer muchas otras mediciones, lo que significa que los
diferentes protocolos que discutimos en este manuscrito no agotan todas las posibilidades abiertas

por este marco computacional.

completamente clasico que es externo al sistema cuantico. Una alternativa para
incorporar completamente el tiempo en un marco cuéntico es introducir un nuevo
espacio de Hilbert Hr generado por algunos estados |t) (ver Fig. 9.0.1(b)) tal que
T|ty = tlt) y [T, Pr] = ih, que en la base del tiempo lleva a Pr = —ih4. Note
que Pr no es el Hamiltoniano del sistema y de hecho [T, H] = 0 (ya que actian en
espacios de Hilbert distintos). La evolucion es entonces recuperada de una ecuacion
de Schrodinger extendida, involucrando ambos espacios de Hilbert del sistema y del
reloj, que se da por J|¥) = 0, para J = Pr®@ lg+ 1y @ Hy |¥) € Hr ® Hs.

Aqui 17 y 1g denotan respectivamente las identidades en Hy y Hg. En general,
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la ecuacion de Schrédinger extendida, junto con una condiciéon inicial, conduce al
entrelazamiento entre el sistema y el espacio de Hilbert del tiempo (hemos visto una
descripcion mas detallada del formalismo en el capitulo II).

El esquema anterior también puede considerarse como la base matemaética del
mecanismo de Page y Wootters (PW). Bajo este marco, el estado del universo |¥) es
estacionario (ya que J|¥) = 0) mientras que la evolucion unitaria del subsistema S
emerge condicionando el resto. En nuestra notacion anterior esto significa que dado

un estado del universo
W= [ dt ) (o). (93)

podemos recuperar el estado del sistema como [¢(t)) = (¢|¥) (asumiendo (t|t') =
d(t —t')). Mas notablemente, se puede ver que J|V¥) = (i0; — H)|¢(t)) = 0 recupera
precisamente la ecuaciéon de Schrodinger estandar con el indice ¢ siendo degradado
de una etiqueta de estado cuantico a un parametro de tiempo.

Para hacer los estados |W) accesibles a computadoras cuanticas convencionales
basadas en qubits (discretos), se necesita un marco de tiempo discreto adecuado.
Afortunadamente, es facil adivinar la forma de un estado historia de tiempo discre-
to. A saber, comenzamos introduciendo un espacio de Hilbert de dimension finita
Hr, que denominamos como el espacio de Hilbert de tiempo o reloj con base |t)
satisfaciendo (t'|t) = & parat =0,..., N — 1. Un estado historia discreto entonces

se define como el estado
| Nl
V) = —— tY|y(et)) , (9.4)
)= % S e

con |Y(et)) = Ulet)|vy) € Hs. Aqui, tenemos ¢ = T/N el espaciado temporal
para una ventana de tiempo dada 7', mientras que ¢ denota un indice adimensional
discreto (de modo que et es un intervalo de tiempo fisico).

En analogia con el caso continuo, se puede recuperar el estado del sistema en
un tiempo dado condicionando como |¢(et)) (W (et)| = Trp[| W) (V|I1,] /(¥ |I1,| V) para
IT; = [t)(t] ® 15. De esta manera, el estado evolucionado unitariamente se recupera
para los valores de tiempo permitidos por Hr. Note que esta operacion es diferente
de una traza parcial directa sobre los estados del reloj que generalmente produce
un estado mixto. Resulta que la traza parcial induce un canal cuantico que también
codifica informacion ttil sobre la dindmica del sistema y su (eventual) equilibrio. De
hecho, se puede pensar en los estados historia como una purificacion de ese canal
cuantico particular. Esto estd relacionado con el entrelazamiento sistema-tiempo

como discutimos en la Seccién 9.3.
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Aqui observamos que en el caso de que N sea una potencia de dos, el estado
historia discreto se puede preparar con el circuito similar a la estimacion de fase
cudntica de la Fig. 9.2.1. Para N siendo una potencia de dos, se requieren log(N)
qubits auxiliares o de reloj (de ahora en adelante suponemos que los logaritmos
son en base 2). Como tal, el espacio de Hilbert del reloj Hr tiene una dimension
dim(Hy) = 2'9¢N) = N. Este resultado ha sido reportado recientemente en [43] y
[44], donde el estado historia discreto de la Ec. (9.4) también ha sido extensamente
estudiado.

Las ventajas de codificar estados historia en una computadora cuéntica se vuelven
claras una vez que se comienza a considerar mediciones al final del circuito que son
diferentes de la simple condicionalidad: mientras que las mediciones condicionadas
permiten recuperar propiedades del sistema en un tiempo dado, nuevas posibilidades
genuinamente cuanticas se vuelven accesibles a través de los qubits del reloj. Un

pequenio resumen de tales posibilidades se proporciona en la Fig. 9.0.1(c).

9.2 Derelojes-qubit a simulaciones paralelas en tiem-
po

Aqui discutimos como el formalismo mateméatico de los relojes-qubit presentado en
la seccion anterior puede ser aprovechado para crear nuevos algoritmos cuénticos
destinados a estudiar promedios de propiedades dindmicas en tiempo de sistemas
cuanticos. En particular, en esta seccidén nos enfocamos en desarrollar algoritmos de

tipo paralelo en tiempo que estiman promedios temporales de cantidades fisicas.

9.2.1 Formalismo

Dado un Hamiltoniano independiente del tiempo H que actta sobre n-qubits, y su

operador de evolucién temporal asociado U(t) = e *#!  consideramos el problema

de estimar cantidades generales de la forma

_ Tar
F(Ol, 02’ w) = jlf_lg’l Teilw%Ol (t)02>p (95>
*Jo
i [ it y,0,(000, (9.6)
—Tl_{Tolo ; Te rpts 2] .

donde O (t) = Ut(t)O,U(t). Aqui, p es un estado de n-qubits actuando en el espacio
de Hilbert d-dimensional Hg (con d = 2™), O; y Oy son dos operadores, y w € R.

182



Capitulo IX. Anexo: Aplicaciéon computacional de PW
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Figura 9.2.1: Circuito para preparar estados historia. Como se muestra arriba, el estado inicial

‘0>® log(N)

de los qubits del reloj es mientras que el del sistema es |1g). La accion de las compuertas

de Hadamard es mapear el estado inicial a |+)% log(N) [10). Aqui, nos resulta conveniente escribir
|+)® s — \/% ®;-051N (10;) +11,)) = ﬁ Zi\;l [t) donde hemos expresado t en su forma binaria
t= Z;‘le ¢;2771. A continuacion, las log N compuertas controladas U (2771 L) = IU(N%)2J71 para
o, j—1
j=1,...,1log N realizan las operaciones U (t) |1)o) = |1)(ct)) para U(et) = U(%)Zifl L2

Para ilustrar la relevancia de la cantidad F'(p, O, Os,w) en la Ec. (9.5) consi-
deremos varios casos especiales. Primero, dejemos w = 0 y O, = 1, lo que conduce

a

F(Oy) := F(0y,1,0)
(Tt
= lim T(Ol(t»p. (9.7)

T—o0 0

Podemos ver que F(p, O;) simplemente corresponde a un promedio temporal infinito
del observable O;. Estas cantidades son cruciales para entender las propiedades
dindmicas de sistemas cuanticos cerrados y en particular su equilibrio [156-158|.
También son relevantes para el estudio de procesos de “quench” cuantico en teorias
de campo [159] y de indicadores de transicion de fase cuantica fuera del equilibrio
a través de promedios de tiempo infinito de ecos de Loschmidt [160-164]. Luego,

cuando w = 0, tenemos

F(Ol, Og) = F(Ol, OQ, O)

(T at
= lim T<Ol (t)Os), . (9.8)

T—o0 0

Aqui podemos reconocer (O(t)O2), como una funciéon de correlacion de dos puntos

(también conocida como funcién de Green dindmica). Las funciones de correlacion
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Figura 9.2.2: Compromiso entre precision y resolucion. Considere la aproximacion del pro-
medio de tiempo infinito de la Ec. (9.5) dada por la suma discreta en la Ec. (9.9). Para un namero
fijo de pasos de tiempo N, existe un compromiso entre el tamano de la ventana € y el tiempo final
T. Es decir, un T més grande implica un tamano de ventana £ mas grande, y por lo tanto menos
precision. Por otro lado, un tiempo final 7' més pequeno implica mas resoluciéon en el promedio

temporal a costa de menos precision.

de dos puntos se utilizan para describir el comportamiento de un sistema bajo per-
turbaciones y son una herramienta ampliamente utilizada en sistemas de muchos
cuerpos cuanticos y fisica de la materia condensada [165-168|. El promedio de tiem-
po infinito de (O1(t)O2), ha sido recientemente considerado en [169] para estudiar
propiedades termodinamicas de sistemas cuanticos cerrados como la emergencia de

disipacién en tiempos tardios.

Finalmente, notamos que la funcién general F(O;,O,,w) corresponde a una
transformada de Fourier de la funcion de correlacion de dos puntos, que comiinmen-
te se refiere como el factor de estructura dindmico en la comunidad de la materia
condensada [170, 171]. Crucialmente, los factores de estructura dinamicos se utilizan
para estudiar propiedades dindmicas de un sistema dado y tienen la propiedad de ser
experimentalmente accesibles [172, 173|, y generalmente siendo dificiles de calcular

mediante simulaciones clasicas [171].

Aunque la importancia de la Ec. (9.5) es clara, el calculo de F(Oy, Oy,w) puede
no ser sencillo. Por un lado, se espera generalmente que la simulacién clésica de
algin proceso dindmico cuantico mecanico sea exponencialmente costosa en compu-
tadoras clasicas. Tal escalado puede ser mitigado usando una computadora cuantica.
Aqui, hay varios esquemas capaces de calcular cantidades de tiempo fijo de la for-
ma (O1(t)Os), [170, 174-176]. Sin embargo, el problema persiste en que se necesita

realizar el promedio temporal. En la préctica, esto se puede lograr mediante la apro-
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(n + 1) Qubits + O(N/§?) Experiments

Experiment 1: (01(0)02), Experiment 2: (01 (%) 02),
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o Cmme @i — T mm
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Figura 9.2.3: Algoritmo para la estimacién secuencial en el tiempo de la Ec. (9.9). El
algoritmo mostrado puede ser utilizado para calcular individualmente cada término en la suma-
toria. Es decir, los circuitos pueden ser usados para estimar cantidades de la forma (O;(t)O2),.
Luego, se pueden combinar esos valores esperados clasicamente (asi como afiadir las fases apropia-
das e~™*¢!) para estimar la cantidad ﬁ(Ol, O2,w) con una precision J. La compuerta discontinua
de color se reemplaza con una identidad (una compuerta ST) para calcular la parte real (imagi-
naria) de (O1(t)O2),. Este enfoque requiere un dispositivo cuéntico con (n + 1)-qubits y O(N/§?)

experimentos diferentes.

ximacién de tiempo discreto

N—

—

1
N

t=

F(O1,04,w) = e~ (04 (1) 0y), (9.9)
donde tenemos ¢ = T'/N (por simplicidad, de ahora en adelante supondremos que
N es una potencia de 2). Es decir, para una ventana de tiempo (finita) dada T,
estamos calculando el promedio sobre N puntos separados por un espaciado €. Como
se muestra en la Fig. 9.2.2, el espaciado € determina el nivel de precision en la
aproximacion, ya que un € mas pequeno conduce a una discretizacién mas precisa
del integral y una mejor aproximacion del verdadero promedio de tiempo infinito.
Por otro lado, el tiempo final T determina la resoluciéon de la aproximacién, ya que
un 7' mas grande permite un intervalo de tiempo mas largo a promediar, capturando
maés informacién sobre el comportamiento del sistema a lo largo del tiempo. Se puede
ver que tanto la resoluciéon como la precision pueden mejorar con un mayor nimero

de pasos de tiempo discretos V.
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(n +logy(N) 4+ 1) Qubits + O(1/6%) Experiments
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Figura 9.2.4: Algoritmo para la estimaciéon paralela en el tiempo de la Ec. (9.9). El
algoritmo mostrado puede ser utilizado para estimar directamente la cantidad F (01,02,w) con
una precision . En la figura, P denota una compuerta de fase de we. Es claro que este algoritmo
contiene como subrutina el circuito para preparar el estado historia de la Fig. 9.2.1. Este enfoque
requiere un dispositivo cudntico con (n+log(N)+1)-qubits y O(1/§?) experimentos. La compuerta
discontinua de color se reemplaza con una identidad (una compuerta ST) para calcular la parte

real (imaginaria) de F(O1, O, w).

9.2.2 Protocolos secuenciales y en paralelo en el tiempo

Consideremos ahora la tarea de estimar F (O1, 04, w) cuando O y Oy son operadores
de Pauli mediante simulaciones secuenciales o en paralelo en el tiempo. Aqui, por
secuencial, entendemos que cada término en la suma en la Ec. (9.9) se estima en
un dispositivo cuéntico ejecutando un ntmero finito de “experimentos”. Por ejemplo,
consideremos el circuito en la Fig. 9.2.3, como se muestra explicitamente en la In-
formacion Suplementaria, puede ser utilizado para estimar un valor esperado de la

forma (O;(et)Oz),. Por lo tanto, sostenemos que la siguiente proposicion es valida.

Proposition 1. El circuito en la Fig. 9.2.3, que requiere (n + 1)-qubits, puede ser
utilizado para estimar la cantidad F(Oy,0s,w) de la Ec. (9.9) hasta una precision
de § con O(N/?) experimentos.

La prueba de la Proposicion 1, asi como la de todos los otros resultados princi-
pales, se presenta en la Informacion Suplementaria.
Claramente, el hecho de que necesitemos estimar secuencialmente (O;(et)Os),

para cadat =0,..., N — 1, conlleva una complejidad en el niimero de experimentos
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(es decir, nimero de llamadas al ordenador cuantico) que escala como O(N). Como
mostramos ahora, esta complejidad puede ser reducida utilizando un esquema basado
en el formalismo de estado historia discreto, que nos permite estimar directamente

la suma total de la Ec. (9.9). Es decir, se sostiene el siguiente resultado.

Teorema 9.2.1. FEl circuito en la Fig. 9.2.4, que requiere (n + log(N) + 1)-qubits,
puede ser utilizado para estimar la cantidad F(Oy, Os,w) de la Ec. (9.9) hasta una

precision de & con O(1/6%) experimentos.

Comparando la Proposicion 1 y el Teorema 9.2.1 revela que al aprovechar el
formalismo del estado historia discreto podemos cambiar la complejidad de experi-
mentos de O(N) por O(log(V))-qubits auxiliares. Es decir, el algoritmo en paralelo
en el tiempo de la Fig. 9.2.4 permite un intercambio exponencial de recursos tem-
porales a qubits.

Aqui destacamos que se puede observar en la Fig. 9.2.4 que el paso clave detrés
del algoritmo para computar F (O1,04,w) es el estado historia discreto. De hecho,
el circuito en la Fig. 9.2.1 utilizado para crear el estado historia es una subrutina en
la Fig. 9.2.4. Asi, al aprovechar log(/N) ancillas, se pueden implementar simultdnea-
mente todos los N operadores de evolucion temporal U(et) parat =0,...,N—1,y
por lo tanto computar todos los términos en la sumatoria que lleva a F (01,09, w).

Note que mientras la Proposicion 1 y el Teorema 9.2.1 son derivados y probados
para el caso de Oy y Oy siendo operadores unitarios, uno puede facilmente generalizar
los resultados anteriores para el caso en que en su lugar se expresan como una

combinacién lineal de operadores de Pauli. En particular, si

My
p=1

para U, siendo un operador de Pauli, entonces las complejidades de experimento en
la Proposicién 1 y el Teorema 9.2.1 cambian respectivamente a O(N M; M, /6%) y
O(M;M,/6?). Aqui, nuevamente recuperamos un intercambio exponencial de recur-
sos temporales a qubits mediante el algoritmo en paralelo en el tiempo.

Ahora, consideremos p = O; = [1o){¢g], O2 = 1 y w = 0. En este caso especial,

P ol 1.0) = Jim [ ZHalU @) (9.11)

La cantidad en el lado derecho es el promedio del eco de Loschmidt en tiempo infinito
[160, 161, 163, 164], que denotamos como L(¢g). Vemos que

L(0) = F(|to)(tho ,1,0). (9.12)
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Figura 9.2.5: Algoritmo para la estimacién secuencial en el tiempo del eco de Loschmidt
de la Ec. (9.13). Mostramos un algoritmo que calcula, con precision 4, el overlap entre |¢g) y
U(et) [¢o) para t = 0,...,(N — 1). El algoritmo se basa en mediciones en la base de Bell como
se describe en [177]. Una vez que se estiman estos overlaps, podemos promediarlos clasicamente
para estimar el promedio temporal discreto del eco de Loschmidt Z(d)g). Este enfoque requiere un

dispositivo cuantico con (2n) qubits y O(N/§?) experimentos diferentes.

De manera similar, para su aproximacion discreta en tiempo E(%), podemos escribir
| N
L (o) = F(lo){¥ol, 1,0) = N;¢waMM. (9.13)

Es claro que aunque Z(lpg) puede ser calculado técnicamente con los circuitos en
las Figs. (9.2.3) y (9.2.4), esto requiere expandir O = |t)o) (1| en una combinacion
lineal de unitarios, y dicha suma generalmente contendré exponencialmente muchos
términos. Para mitigar este problema, también presentamos dos resultados que nos
permiten estimar la Ec. (9.13) mediante simulaciones en tiempo secuencial o paralelo.

Primero, consideremos la siguiente proposicion.

Proposition 2. El circuito en la Fig. 9.2.5, que requiere (2n) qubits, puede ser

usado para estimar la cantidad L(vo) de la Ec. (9.13) hasta una precision & con
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(2n +1og,(N)) Qubits + O(1/§?) Experiments
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Figura 9.2.6: Algoritmo para la estimaciéon paralela en el tiempo del eco de Loschmidt
de la Ec. (9.13). Mostramos un algoritmo que calcula, con precision 4, el overlap entre el estado
historia discreto |¥)(¥| y 1 ® |¢bg)(thg|. Como se muestra en la Ec. (9.14), el overlap entre estos
dos estados es igual a Z(?/Jo)~ El algoritmo se basa en mediciones en la base de Bell como se
describe en [177]. Este enfoque requiere un dispositivo cudntico con (2n+log(N)) qubits y O(1/§2)

experimentos diferentes.

O(N/6?%) experimentos.

La Proposicion (2) simplemente sigue de aplicar un test SWAP [101, 177-179]
(o mas especificamente, el algoritmo de superposicion de estados de [177]) entre
Ulet) |vo) v |to) parat =1,..., (N —1). Notamos que el caso t = 0 es trivial ya que
| (o U(0) |1ho) |* = 1. Cuando usamos el estado historia discreto podemos probar el

siguiente teorema.

Teorema 9.2.2. FEl circuito en la Fig. 9.2.6, que requiere (2n+log(N)) qubits, puede
ser usado para estimar la cantidad L(hy) de la Ec. (9.9) hasta una precision § con
O(1/6?) experimentos.

Nuevamente, podemos ver a partir del Teorema 9.2.2 que realizar una simulacion
en paralelo en tiempo nos permite reducir exponencialmente la complejidad del
experimento (de lineal en N a ser independiente de V) al costo de log(V) ancilas.

De manera similar a la Proposiciéon 2, la prueba del Teorema 9.2.2 simplemente se
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deriva del calculo del “overlap” entre el estado historia discreto [W) (U] y 17®]1)0) (1.

Explicitamente, tenemos

Tel[ W) (W] (Ir @ [¢ho) (vo])] = (W[(Lz @ [¢ho) (0]} ¥)

1
N
t

(¢

WE

(¥ (et) [1ho) (Yol (et))

Il
o

™

(=)
~—

(9.14)

9.3 Acceso a informacion dindmica a través del en-

trelazamiento sistema-tiempo

Hasta ahora, hemos visto que usar el estado historia nos permite transferir la comple-
jidad de realizar multiples experimentos a los requisitos de qubits de reloj auxiliares.
Sin embargo, como mostraremos ahora, el entrelazamiento presente entre los qubits
de tiempo y sistema en el estado historia tiene un significado operacional y contiene
informacion que podemos usar para aprender sobre la dindmica del sistema. Ademas,
revelaremos una conexion rigurosa y explicita entre estas correlaciones y el problema
de equilibracion. Los protocolos para obtener estas cantidades de variaciones de los

circuitos anteriores también se proporcionan en esta seccion.

9.3.1 Propiedades, relaciéon con el problema de equilibracién

y con las fluctuaciones temporales de observables

Primero, recordemos nuevamente que el estado historia discreto es un estado bipar-
tito entre el espacio de Hilbert del sistema Hg y el tiempo, o espacio de Hilbert del
reloj Hr. Es decir, |¥) € Hr ® Hs. Ademas, es evidente desde la Fig. 9.2.1 y la
Ec. (9.4) que los estados historia estéan, en general, entrelazados a través de la par-
ticion sistema-tiempo. A partir de ahora, nos referiremos a las correlaciones entre
los qubits del sistema y los qubits del reloj como entrelazamiento sistema-tiempo
(siguiendo [43]).

Es importante notar que, en general, (9.4) no esta en la descomposicion de Sch-
midt [22| de |¥) (ya que los estados [¢)(t)) no son necesariamente ortogonales). Sin

embargo, existe una base en la que podemos escribir el estado historia como
@) = Val)rll)s, (9.15)
!
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donde /p; son los llamados coeficientes de Schmidt, y {|l)s}, y {|l)r} son conjuntos
ortogonales de estados en Hg y Hr, respectivamente. Una forma sencilla de cuan-
tificar el entrelazamiento sistema-tiempo es a través de la entropia lineal, definida

CcOo1mo

By=1-Te[p7] =1-Tr[pt] =1-) ], (9.16)
l

donde pr(sy = Trgr)[|¥)(¥]] es el estado reducido del estado historia en los qubits
del reloj (sistema). Aqui, denotamos como Trgry la traza parcial sobre los qubits del
sistema (reloj). En principio, también se podrian considerar otras entropias como
la entropia de Von Neumann. Sin embargo, la entropia lineal tiene la propiedad
deseable de ser eficientemente calculable en un dispositivo cuantico (ver abajo).

Existe una conexién profunda entre el entrelazamiento sistema-tiempo y las
propiedades dinamicas del sistema, en particular con el problema de su equilibra-
cion: Recordemos primero que dado un estado puro arbitrario (por simplicidad)
|Y) = >, ck|k) el promedio en el tiempo infinito de la matriz de densidad asociada
es

dt :
b= [ G ace BEINE 5 S laPR®E, 017

k.k k

donde se asume un 7' grande (infinito) y con H|k) = Ei|k). En otras palabras, si
el estado del sistema se promedia durante tiempos suficientemente largos, pierde
todas las coherencias en la base de energia. Bajo condiciones experimentalmente
realistas, es factible identificar este estado con el estado de equilibrio estacionario
[156]. Para “la mayoria” de los observables esto de hecho se mantiene por tiempos
cortos T [158], lo que significa que un promedio en una ventana de tiempo finita
de los observables también es una cantidad interesante en general. El formalismo
del tiempo cuéntico ofrece una nueva interpretacién a la pérdida de coherencias
inducida por un promedio en el tiempo: dado que el sistema esté “entrelazado con el
tiempo”, perdemos informacion al ignorar los “qubits del reloj”. Esta pérdida induce
precisamente el canal cuantico (de desfase) p — p en el limite de T grande y ¢
pequeno, un resultado que se puede derivar directamente de un formalismo cuantico

del tiempo continuo !. Para el tiempo discreto se mantiene el siguiente resultado.

Teorema 9.3.1. Sea |¥) el estado historia discreto en la Ec. (9.4). La traza parcial

sobre el reloj induce un canal cudntico que, en el limite de tiempo grande, implica

IPara T infinito se deben considerar sutilezas relacionadas con la normalizacion de estados; ver
[1, 2, 29].
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que ps — p. Ademds, para cualquier € y N se sostiene la siguiente relacion de
MayYorizacion:

donde p es una discretizacion de la Ec. (9.17). Ademds, para una evolucion periddica
con periodo T generada por un Hamiltoniano con M wvalores propios distintos (es
iH

decir, e="™7 = 1) y dado un estado historia conlog(M) qubits de reloj y una ventana

de tiempo T' = 1, tenemos
ps=p. (9.19)

Aunque expresado de una manera bastante abstracta, este resultado tiene mu-
chos corolarios interesantes con un significado operacional claro. La razén de esto es
que, en términos generales, el estado historia proporciona una manera de preparar
el estado equilibrado de un sistema cuantico: simplemente se necesita preparar el
estado historia e ignorar los qubits de reloj. De hecho, esta es la razén por la que
funcionan las evaluaciones anteriores de promedios en el tiempo. Ademas, las en-
tropias de entrelazamiento sistema-tiempo son de hecho un limite inferior para las
entropias del estado en equilibrio, como se sigue directamente del Teorema 9.3.1 y
las propiedades basicas de mayorizacion. Ademés, mostramos en [6] que uno puede
redescubrir el formalismo del tiempo cuantico desde la purificaciéon natural de este
canal de desfasamiento aproximado: el estado historia surge de una extension isomé-
trica simple U[K;] del canal como |¥) = U[K¢||¢y) con K; los operadores de Krauss
K, = e~ /\/N. El lector interesado puede referirse a [6] donde se proporciona la
prueba del Teorema 9.3.1 junto con una discusién més detallada.

Con lo anterior en mente, consideremos nuevamente la tarea de estimar el pro-
medio del eco de Loschmidt en el tiempo infinito en la Ec. (9.11). Recordemos que
L (1) cuantifica el grado de reversibilidad de la evolucién temporal y es un indicador

de la estabilidad del sistema cuantico. Ademés, es facil ver que

£(bo) = Te[77]. (9.20)

es decir, el promedio en el tiempo infinito del eco de Loschmidt es la pureza del
estado desfasado p. Ahora podemos usar estas consideraciones y el Teorema 9.3.1

para obtener el siguiente resultado.

Corolario 9.3.1.1. Sea |V) el estado historia discreto de la Ec. (9.4), y sea Es la

entropia lineal de la particion sistema-tiempo. Entonces, para todo T y N wvale que
By < (1— £(y). (9.21)
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El corolario 9.3.1.1 tiene varias implicaciones importantes. Primero, limita la
cantidad de entrelazamiento entre el sistema y los qubits del reloj. En particular,
muestra que el entrelazamiento sistema-tiempo solo puede ser grande si el promedio
en el tiempo infinito del valor del eco de Loschmidt es pequeno. A la inversa, si
L(1y) es grande, E, tiene que ser pequenio. Segundo, sefialemos que la Ec. (9.21) es
valida para todos los valores de T', pero sobre todo, también para todos los valores
de N. Para N y T grandes, la igualdad se alcanza asintéticamente, y tenemos que
la Ec. (9.21) se convierte en Tr[p%] = L(v)y). Ademas, como veremos a continuacion,
nuestro anélisis numérico muestra que Tr[p2] puede proporcionar una mejor aproxi-
macion a L(1)y) que Z(@/JO), lo que implica que no existe una relaciéon general simple
entre By y L(1y).

Podemos entender la intuicion detréas del Corolario 9.3.1.1 de la siguiente manera.
Supongamos que |1)) es un estado estacionario de la evolucion unitaria. Por ejemplo,
supongamos que [1g) es un estado propio de H con energia propia Ej, de modo que

Ulet) |1ho) = e 0 |¢y). Entonces, el estado historia discreto se convierte en

1Nl
VNS

La Ec. (9.22) revela que |V) es separable. Tampoco es dificil verificar que en este

e B |t) @ [abg) (9.22)

caso L(1hy) = 1. Por otro lado, si [t)) evoluciona a través de N estados ortogonales
(W(et)||Y(et’)) = 0y entonces la Ec. (9.4) ya es la descomposicion de Schmidt de
|W) y el estado es maximamente entrelazado. El modelo de juguete anterior muestra
que si el estado es cuasi estacionario (es decir, eco de Loschmidt grande), podemos
esperar valores pequenos de entrelazamiento. De manera similar, si el estado cambia
significativamente durante la evolucién (por ejemplo, valor de eco de Loschmidt
pequenio), entonces el estado historia probablemente poseera grandes cantidades de
entrelazamiento. Cabe senalar que la relaciéon entre la distinguibilidad del estado
evolucionado y el entrelazamiento sistema-tiempo fue reportada por primera vez
n [43]. Sin embargo, la conexién con el eco de Loschmidt no se explor6 en ese
trabajo.

El resultado en el Corolario 9.3.1.1 puede ser ain mas reforzado para el caso

especial donde la evolucion temporal es periddica. Es decir, cuando
e”HT =1, (9.23)

para algin 7, y donde asumimos que H tiene M valores propios distintos, siendo M

una potencia de dos. Ahora, encontramos que el siguiente resultado es valido.
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Corolario 9.3.1.2. Para una evolucion periodica con periodo T generada por un
Hamiltoniano con M wvalores propios distintos, como en la Ec. (9.23), entonces para

un estado historia con log(M) qubits de reloj y ventana de tiempo T = T, tenemos

Ey = (1= L(th)) = (1 = L(th)). (9.24)

El Corolario 9.3.1.2 muestra que para Hamiltonianos periddicos el entrelazamien-
to sistema-tiempo es exactamente el mismo que el promedio en tiempo infinito del
eco de Loschmidt £(1)), asi como la aproximacion en tiempo discreto £(t). Como
se muestra en [6], el tracear induce ahora un canal completamente de desfase en la
base de eigenestados de energia de modo que ps = p = p.

Los resultados anteriores que conectan el entrelazamiento sistema-tiempo con
el eco de Loschmidt nos permiten derivar atin mas significado operacional para Fs
como un limite para las fluctuaciones temporales de observables. En Ref. [156], se
demostré que dado un observable O, £(1)) proporciona un limite en las fluctuaciones

temporales de observables como
06 < AHL (o) (9.25)

con A% = A\uax[O] — Aum[O] (la diferencia entre los valores propios mas grande y
més pequenio de O en el subespacio de estados que satisfacen (n|y) # 0), y donde

02 denota la varianza temporal

— lim 0 %(O(t)ﬁo—(Tll;rgo/o %(0(?5)%) :

Aqui hemos utilizado la notaciéon definida en la Ec. (9.7) con F(O) = (O) (en un
tiempo dado) mientras que el “promedio” denota promedio temporal. La Ec. (9.25)
muestra que pequenos promedios de eco de Loschmidt temporales implican una pe-
quena varianza temporal del observable O, y viceversa. En otras palabras, un sistema
con un pequenio £(1)y) solo puede exhibir fluctuaciones temporales mas pequenas en
sus observables en comparacion con un sistema con un gran eco de Loschmidt.
Deberia ser claro ver que el Teorema 9.3.1.1 implica facilmente el siguiente coro-

lario.

Corolario 9.3.1.3. Sea O un observable, y o3 su varianza temporal como en la
FEe. (9.26). El entrelazamiento sistema-reloj proporciona un limite en las fluctuacio-
nes temporales como

05 < AR (1= Ez) = A Tr[p3]. (9.27)
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(2n + 2log,(N)) Qubits + O(1/§2%) Experiments

o) ]
o) {H]

=

b [

=

|0)

&
-

[10)

|0)

1A
iy

0y -{H]
1A

B

a
Ay

B

[v0)

Figura 9.3.1: Algoritmo para estimar F; a través del solapamiento de estados. Aqui
consideramos la tarea de evaluar la Ec. (9.16). Al tomar dos copias del estado historia, podemos
estimar Tr[p%] hasta una precision § mediante el circuito de solapamiento de estados en [177].
Este enfoque requiere un dispositivo cudntico con (2n + 2log(N))-qubits y O(1/6%) diferentes

experimentos.

El Corolario 9.3.1.3 muestra un claro significado fisico del entrelazamiento sistema-
tiempo. Es decir, si s es pequeno, entonces el sistema es estable y predecible. Esto
se deduce del hecho de que las varianzas temporales de los valores esperados seran
pequenas. Por el contrario, si el entrelazamiento sistema-tiempo es grande, enton-
ces el sistema puede ser inestable e impredecible, como lo demuestran las posibles

grandes fluctuaciones de observables.

9.3.2 Protocolos para calcular el entrelazamiento sistema-

tiempo

Los teoremas y corolarios anteriores arrojan luz sobre la emocionante posibilidad de

comprender la dindmica del sistema a través del entrelazamiento sistema-tiempo. Sin
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embargo, para que estos resultados sean verdaderamente ttiles, es necesario poder
medir Es desde el estado historia. Como podemos ver en la Ec. (9.16), necesitamos
estimar Tr[p%] o Tr[p%]. Aunque matematicamente no importa en absoluto en qué
subsistema nos centramos, ya que su pureza es la misma (ver Ec. (9.15)), en la

practica puede ser sustancialmente mas facil trabajar con un sistema u otro.

Como evidencia heuristicamente nuestra numeracion (ver més abajo), el estado
historia discreto con un niimero de qubits de reloj log(/N) mucho menor que el tama-
no del sistema n produce resultados que reproducen con precisiéon las propiedades
promedio de tiempo infinito de la dindmica del sistema. Por lo tanto, asumiremos de
ahora en adelante que log(N) < n. Esta suposiciéon implica que podemos calcular
E5, vy por lo tanto aprender sobre el sistema, simplemente observando los qubits de

reloj. Ahora presentamos dos métodos para estimar Tr[p%].

Teorema 9.3.2. La cantidad Ey de la Ec. (9.16) puede ser estimada hasta una preci-
sion & con el circuito en la Fig. 9.3.1, que requiere (2n+21og(N))-qubits con O(1/6%)
experimentos. De manera similar, también puede ser estimada con el circuito en la

Fig. 9.3.2, que requiere (n + log(N))-qubits con O(N/§?) experimentos.

Cuando se usa el circuito en la Fig. 9.3.1, se preparan dos copias del estado
historia |¥) y luego se realiza el circuito de solapamiento de estados de Ref. [177].
Por otro lado, cuando se utiliza el circuito en la Fig. 9.3.2, se puede estimar F5 con
una sola copia de |¥) utilizando sombras clasicas, o mediciones aleatorizadas [180,
181]. Por ejemplo, uno puede preparar el estado historia y realizar una unitaria
aleatoria en cada qubit, seguido de una mediciéon en la base computacional. Los
resultados de las mediciones se almacenan y luego se combinan clasicamente para

estimar Tr[p3].

Para terminar esta seccidon, notamos que al comparar la Proposicion 2, el Teo-
rema 9.2.2, y el Teorema 9.3.2, el método para estimar Z(@b()) o E5 con el menor
requisito computacional (asumiendo log(N) < n) es el de la Fig. 9.3.2. Es decir,
aqui podemos calcular F, hasta una precision 0 con un ordenador cuantico con
(n 4+ log(N)) < 2n qubits y con O(N/d) experimentos. Este resultado muestra en-
tonces el poder de usar el estado historia ya que nos permite estudiar propiedades
fisicas del sistema (como delimitar £(v) o las varianzas temporales AO?) con menos

requisitos de lo que de otra manera necesitariamos.
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(n +1logy(IN)) Qubits + O(N/§?) Experiments
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Figura 9.3.2: Algoritmo para estimar F; mediante mediciones aleatorias. Aqui considera-
mos la tarea de evaluar la Ec. (9.16). Comenzamos con una copia del estado historia, y aplicamos
una unitaria aleatoria (indicada por una compuerta de color) a cada qubit. Luego medimos cada
qubit en la base computacional y registramos el resultado de la medicién. Estos constituyen las
llamadas "sombras clasicas"de pr. Como se muestra en [180], este procedimiento nos permite esti-
mar Tr[p2] hasta una precisién § con un dispositivo cuantico con (n + log(NN))-qubits y O(N/§?)

experimentos diferentes.

9.4 Simulaciones numeéricas

En esta seccion, primero proporcionamos simulaciones numéricas que muestran como
las aproximaciones en tiempo discreto (computables a través de nuestros algoritmos)
pueden capturar el comportamiento de sus contrapartes en tiempo continuo. De
manera similar, también mostramos numéricamente que el entrelazamiento sistema-
tiempo proporciona una nueva forma de entender las propiedades dinamicas del

sistema.

En todos nuestros experimentos, consideramos un sistema de n-qubits evolucio-

nando por una unidad generada por el modelo XX no uniforme dependiente del
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Figura 9.4.1: Error promedio de aproximacion |£(ihy) — £(1)| para una cadena de n = 200
sitios. La vertical indica el niimero de qubits de reloj mientras que el eje horizontal es el tamafo de
ventana e. Las curvas azules (solidas) representan valores constantes de T" con las flechas apuntando
hacia la direcciéon de mayor resolucion. Las flechas verdes indican un corte transversal de ¢ fijo y

un log(N) creciente que se muestra con méas detalle en la Fig. 9.4.2.

tiempo, cuyo Hamiltoniano se lee como

J P .
H=7 ]Z:;(ijj+1 +YYiu) + ; cos(2maf)(Z; +2) (9.28)
donde definimos condiciones de frontera periédicas como h,.; = hy (para h =

X, Y, Z). Mediante la transformacion de Jordan-Wigner [182|, se puede mostrar que
en el limite termodinamico este modelo exhibe una transiciéon de deslocalizacion-
localizacion en el punto critico A = J. De hecho, es bien sabido que tal transicion
induce cambios bruscos en propiedades dinamicas a largo plazo como el promedio
del eco de Loschmidt [164]. Nuestro objetivo es entonces usar este modelo paradig-
mético como un banco de pruebas para mostrar que nuestro promedio de tiempo
discreto propuesto del eco de Loschmidt puede capturar el comportamiento de sus

contrapartes de tiempo continuo.
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Figura 9.4.2: Aproximaciones en tiempo discreto al eco de Loschmidt L() (puntos
negros) en funciéon de A\ para una cadena de n = 200 sitios. En el panel a) mostramos
el promedio exacto de tiempo infinito, asi como la aproximacién en tiempo discreto 2(1/)0) para
diferentes valores de qubits de reloj log(N) y para € = 0,45. En b) presentamos el promedio exacto
de tiempo infinito £(1)y) (puntos negros), asi como la pureza del estado reducido pg = Trz[|¥)(¥|]
para diferentes valores de qubits de reloj log(N) y para ¢ = 0,45. En ¢) mostramos el promedio
exacto de tiempo infinito £(v)y) (puntos negros), su aproximacién en tiempo discreto E(wo), asi
como la pureza del estado reducido pg = Trr[|¥)(¥|] para diferentes valores de qubits de reloj

log(N) y para € = 1,25. El recuadro corresponde a la diferencia entre cada aproximacion y £(¢p).

9.4.1 Promedios de tiempo discreto y entrelazamiento sistema-
tiempo

Para estudiar el promedio en tiempo discreto del eco de Loschmidt hemos conside-

rado una cadena de n = 200 sitios con J = 2, a = \/52’1, y un nimero de qubits

de reloj que varia de 1 a 10, correspondiendo a un nimero méximo de N = 1024
tiempos. Note que con esta eleccion, la dimension del sistema es igual a 22°° y por
lo tanto, mucho mayor que la dimension del espacio de Hilbert del reloj, N. Para
estudiar los efectos del tamano de la ventana, también hemos considerado valores de
e que van desde 0,05 hasta 1,95 con un espaciado de 0,1 (ver Fig. 9.2.2). El estado
inicial de nuestras simulaciones es [to) = (sdy 4 5790 + 5701)| 44 - .. 1)/v/3, donde s;
denota el operador de creaciéon en el sitio j. Por lo tanto, en t = 0, el estado esta
solo parcialmente deslocalizado en el medio de la cadena. Todas las simulaciones,
incluyendo el calculo del promedio exacto de tiempo infinito £(1)y), se realizaron
mediante diagonalizacion de Jordan-Wigner, y remitimos al lector a [6] para detalles
adicionales.

En la Fig. 9.4.1 presentamos primero un grafico bidimensional del error entre el
promedio de tiempo infinito del eco de Loschmidt £ (1)) y su aproximacién en tiempo
discreto £(1bo) (|£(1bo) — L(1h)]) promediado sobre A € (0,1,3,5) (con un espaciado
AN = 0,05), para diferentes valores de € y n. Aqui, podemos ver que, como se

esperaba, el error se reduce al aumentar el nimero de qubits de reloj. La mejora
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sigue dos tendencias. Primero, hay una mejora general al aumentar T' (es decir, al
moverse hacia arriba en el eje log(N) para un ¢ fijo), ya que esto corresponde a una
mayor precision. Por otro lado, para un 7' constante, es beneficioso reducir € (es

decir, aumentar la resolucion), como lo muestran las curvas solidas azules.

Exploramos més a fondo el efecto de fijar £ y aumentar log(N) en la Fig. 9.4.2
a). Alli mostramos £(1), asi como su aproximacién en tiempo discreto E(’Q/)()) para
diferentes ntimeros de qubits de reloj como funciéon de \ para una resolucion fija
e = 0,45 (linea discontinua vertical en la Fig. 9.4.1). Primero, notamos que el eco
de Loschmidt de tiempo infinito capta la transiciéon de deslocalizacién-localizacion
que ocurre en A = J = 2. En particular, para A < 2 vemos que ﬁ_(%) es pequeno,
indicando una fase deslocalizada. Por otro lado, para A > 2 el estado evolucionado
esta localizado ya que £(1)p) es grande. A continuacién, observamos que a medida que
log(N) aumenta, Z(@DO) rapidamente se convierte en una buena aproximacion para
su contraparte de tiempo infinito (como se esperaba de la Fig. 9.4.1). Sin embargo, la
Fig. 9.4.2 también revela que L (1) capta la transicion de deslocalizacion-localizacion
incluso para un pequeno namero de qubits de reloj. Ya para log(N) = 6 el punto de

inflexion de £(1)) se acerca al valor critico A = 2.

A continuacion, estudiamos como el entrelazamiento sistema-tiempo, medido a
través de la pureza del subsistema Tr[p%] para ps = Tr[|V)(¥|], aproxima el prome-
dio de tiempo infinito del eco de Loschmidt (ver Corolario 9.3.1.1). En la Fig. 9.4.2
b) trazamos L(1h), asf como Tr[p%], para diferentes ntimeros de qubits de reloj co-
mo funcién de A. Nuevamente, vemos una clara convergencia hacia £(1y) a medida
que se aumenta el nimero de qubits de reloj. Este resultado muestra que la pure-
za del subsistema proporciona una excelente aproximacion de £(1). Ademés, uno
también puede observar que el entrelazamiento sistema-tiempo capta claramente la
transicion de deslocalizacion-localizacion. Este hecho puede entenderse facilmente
desde el hecho de que en la fase localizada el estado no cambia considerablemente
con el tiempo, y por lo tanto se espera una pequena cantidad de entrelazamiento.
Este ejemplo ejemplifica perfectamente el hecho de que el entrelazamiento sistema-
tiempo en el estado historia lleva informacion valiosa sobre la dinamica del sistema.
Ademas, dado que sabemos que Tr[p%] = Tr[p%], entonces se puede estimar la tomo-
grafia del estado reducido estudiando solo el estado reducido en los qubits de reloj
log(N)(< n).

Las Figuras 9.4.2 a) y b) muestran que tanto el eco de Loschmidt en tiempo dis-

creto como la pureza del subsistema proporcionan buenas aproximaciones de L(1)p).
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Figura 9.4.3: Fluctuaciones observables como funcién de A para una cadena de n = 100
sitios. Mostramos las fluctuaciones observables o’%, el promedio de tiempo infinito del eco de
Loschmidt £(v0) y la pureza del subsistema reducido Tr [p%] Consideramos log(N) = 9 qubits de

reloj, y tomamos € = 0,5

Para comparar mejor su rendimiento, mostramos en la Fig. 9.4.2 ¢) curvas para
L (1), Z(@ZJO) y Tr[p%] para la misma cadena de n = 200 espines, pero para & = 1,25,
es decir, para menos precision (ver Fig. 9.2.2). En este régimen, se puede ver que
mientras £(t,) sufre de oscilaciones no deseadas, Tr[p2] atin puede proporcionar una
buena aproximaciéon para el mismo nimero de qubits. En particular, la Fig. 9.4.2
¢) muestra que £(1) puede ser menor que £(t) de maneras impredecibles (debido
a la resolucion insuficiente), lo que significa que L no se puede usar estrictamen-
te para proporcionar limites estrictos como el del Corolario 9.3.1.1. Mientras que
Tr[p%] también oscila, esta cantidad nunca cruza los puntos negros, en acuerdo con
nuestros limites. Aqui también observamos que el entrelazamiento sistema-tiempo
proporciona una mejor convergencia en la region localizada. Por otro lado, las curvas
de entrelazamiento estan por encima de las curvas de L en el sector deslocalizado.
Sin embargo, esta discrepancia puede mitigarse aumentando el ntmero de qubits.
Finalmente, notamos que en la Fig. 9.4.2 ¢) también representamos las diferencias
(E(wg) - /j(wo)> y (Tr[p3] — L(¢0)), que confirman que Tr[p3] siempre es estric-
tamente mayor que L(¢y), mientras que Z(wo) de hecho puede ser menor que el
promedio de tiempo infinito.

Finalmente, como ejemplo del Corolario 9.3.1.3, también mostramos numérica-
mente como el entrelazamiento sistema-tiempo proporciona un limite para la fluc-
tuacion de los observables. Usamos como ejemplo el observable O = s} /2507241 T
sJLr/Hlsz/2 y como estado inicial |¢g) = (:52’/2 + S—IL—/2+1)‘ ... 1) /V2. En este caso,

los limites de la Ec. (9.27) se convierten en

06 < 4L(Yo) < 4Tr[pg] (9.29)
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va que Ap = 2. En la Fig. 9.4.3 mostramos los resultados numéricos para una
cadena de n = 100 sitios y log(/N) = 9 qubits de reloj (es decir, 512 tiempos).
Observamos que, aunque el limite no es estricto, tanto £ (1) como Tr[p3] son capaces
de separar claramente las diferentes fases. Como se esperaba de nuestros limites, el
entrelazamiento sistema-tiempo proporciona un limite menos estricto pero riguroso.
Sin embargo, dado que se puede calcular eficientemente el entrelazamiento sistema-
tiempo en computadoras cuénticas, este limite sigue siendo 1til para fines préacticos.
Ademés, es importante destacar nuevamente el hecho de que el entrelazamiento
sistema-tiempo se obtiene de un formalismo de tiempo discreto (en contraste con
L(1py) que requiere promedios de tiempo infinito). Como tal, nuestra nueva nocién
de entrelazamiento sistema-tiempo proporciona informaciéon valiosa y estricta sobre
la dindmica observable del sistema y su eventual equilibraciéon (una caracteristica no

disponible para el eco de Loschmidt en tiempo discreto £(t)).

9.5 Discusion

La simulacion de sistemas cuanticos ha sido considerada ampliamente como la apli-
cacion mas importante de la computacion cuéntica desde su concepcion [183]. Tra-
dicionalmente, el enfoque de las simulaciones cuanticas ha girado en torno al calculo
de estados cuanticos y cantidades fisicas en un momento dado, aprovechando el
crecimiento exponencial del espacio de Hilbert de los qubits para imitar el com-
portamiento de los sistemas de muchos cuerpos. Sin embargo, muchas cantidades
fundamentales, como las funciones de correlacion o el estado de equilibrio de un sis-
tema cuantico, estan asociadas con grandes sumas temporales de las anteriores. En
este manuscrito hemos demostrado que al tratar el tiempo mismo de manera cuanti-
ca, lo cual en un esquema computacional corresponde al uso de qubits de reloj, esas

cantidades se vuelven facilmente accesibles.

Detalles adicionales de esta propuesta pueden encontrarse en [6]. Alli se dis-
cute en mayor profundidad los aspectos técnicos, incluyendo una estimacion de la
profundidad de los circuitos paralelos en tiempo, y se propone el uso de métodos
variacionales cuénticos |7, 8, 184] para reducir atin mas dicha profundidad.

Destaquemos también que, ademas de permitir la construccion de algoritmos
novedosos, tratar al tiempo de manera cuantica nos provee de una nueva intuicion
sobre la equilibracion de sistemas cuanticos, heredada de la estructura de los estados

historia. Podemos especular que, en un futuro cercano, motivados por los resultados
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actuales, los demas desarrollos en esta tesis podrian proporcionar més aplicaciones

de caracter informacional y computacional relacionadas con el dominio temporal.

203



204

204

Bibliografia

[

2l

3]

4]

5]

7l

19]

[10]

N. L. Diaz y R. Rossignoli, “History State Formalism for Dirac’s Theory”,
Phys. Rev. D 99, 045008 (2019).

N. L. Diaz, J. M. Matera y R. Rossignoli, “History State Formalism for Scalar
Particles”, Phys. Rev. D 100, 125020 (2019).

N. L. Diaz, J. M. Matera y R. Rossignoli, “Spacetime Quantum Actions”,
Phys. Rev. D 103, 065011 (2021).

N. L. Diaz, J. M. Matera y R. Rossignoli, “Path Integrals from Spacetime
Quantum Actions”, arXiv:2111.05383 (2021).

N. L. Diaz, J. M. Matera y R. Rossignoli, “Spacetime quantum and classical
mechanics with dynamical foliation”, Phys. Rev. D 109, 105008 (2024).

N. L. Diaz, P. Braccia, M. Larocca, J. M. Matera, R. Rossignoli y M. Cere-
zo, “Parallel-in-Time Quantum Simulation via Page and Wootters Quantum
Time”, arXiv:2308.12944 (2023).

N. L. Diaz, D. Garcia-Martin, S. Kazi, M. Larocca y M Cerezo, “Showcasing a
Barren Plateau Theory beyond the Dynamical Lie Algebra”, arXiv:2310.11505
(2023).

M Cerezo, M. Larocca, D. Garcia-Martin, N. L. Diaz, P. Braccia, E. Fontana,
M. S. Rudolph, P. Bermejo, A. Ijaz, S. Thanasilp et al., “Does Provable
Absence of Barren Plateaus Imply Classical Simulability? Or, Why We Need
to Rethink Variational Quantum Computing”, arXiv:2312.09121 (2023).

P. A. M. Dirac, “The Evolution of the Physicist’s Picture of Nature”, Scientific
American 208, 45-53 (1963).

M. Green, J. Schwarz y E. Witten, Superstring Theory: Volume 1, Introduc-
tion, Cambridge Monographs on Mathematical Physics (Cambridge Univer-
sity Press, 1988).

204


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.045008
https://doi.org/10.1103/PhysRevD.100.125020
https://doi.org/10.1103/PhysRevD.103.065011
https://doi.org/10.48550/arXiv.2111.05383
https://doi.org/10.1103/PhysRevD.109.105008
https://doi.org/10.48550/arXiv.2308.12944
https://doi.org/10.48550/arXiv.2310.11505
https://doi.org/10.48550/arXiv.2310.11505
https://doi.org/10.48550/arXiv.2312.09121

Bibliografia

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

20]

[21]

22]

23]

[24]

[25]

[26]

F. J. Dyson, “The Radiation Theories of Tomonaga, Schwinger, and Feyn-
man”, Phys. Rev. 75, 486 (1949).

R. P. Feynman, “Space-Time Approach to Non-Relativistic Quantum Mecha-
nics”, Rev. Mod. Phys. 20, 367 (1948).

B. S. DeWitt, “Quantum Theory of Gravity. I. The Canonical Theory”, Phys.
Rev. 160, 1113 (1967).

D. N. Page y W. K. Wootters, “Evolution without Evolution: Dynamics
Described by Stationary Observables”, Phys. Rev. D 27, 2885 (1983).

R. Gambini, R. A. Porto, J. Pullin y S. Torterolo, “Conditional Probabilities
with Dirac Observables and the Problem of Time in Quantum Gravity”, Phys.
Rev. D 79, 041501(R) (2009).

L. D. Faddeev y V. N. Popov, “Covariant Quantization of the Gravitational
Field”, Soviet Physics Uspekhi 16, 777 (1974).

A. Einstein, “On the Electrodynamics of Moving Bodies”, Ann. Phys. (Berl.)
17, 50 (1905).

M. A. Nielsen, “Quantum Information Theory”, quant-ph/0011036 (2000).

J. S. Bell, “On the Einstein Podolsky Rosen Paradox”, Physics Physique
Fizika 1, 195 (1964).

J. F. Clauser, M. A. Horne, A. Shimony y R. A. Holt, “Proposed Experiment
to Test Local Hidden-Variable Theories”, Phys. Rev. Lett. 23, 830 (1969).

A. Einstein, B. Podolsky y N. Rosen, “Can Quantum-Mechanical Description
of Physical Reality Be Considered Complete?”, Phys. Rev. 47, 777 (1935).

M. A. Nielsen e I. L. Chuang, Quantum Computation and Quantum Infor-
mation (Cambridge University Press, Cambridge, 2000).

C. J. Isham, “Canonical Quantum Gravity and the Problem of Time”, Inte-

grable systems, quantum groups, and quantum field theories, 157 (1993).

C. J. Isham, “Quantum Logic and the Histories Approach to Quantum
Theory”, J. Math. Phys. 35, 2157 (1994).

K. V. Kuchaf, “Time and Interpretations of Quantum Gravity”, Int. J. Mod.
Phys. D 20, 3 (2011).

C. Rovelli, “Time in Quantum Gravity: An Hypothesis”, Phys. Rev. D 43,
442 (1991).

205


https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1007/978-94-011-1980-1_6
https://doi.org/10.1007/978-94-011-1980-1_6
https://doi.org/10.1103/PhysRevD.43.442
https://doi.org/10.1103/PhysRevD.43.442

Bibliografia

27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

37|

38]
[39]

[40]
[41]

206

C Rovelli, “Statistical Mechanics of Gravity and the Thermodynamical Origin
of Time”, Classical and Quantum Gravity 10, 1549 (1993).

J. F. Fitzsimons, J. A. Jones y V. Vedral, “Quantum Correlations Which
Imply Causation”, Sci. Rep. 5, 18281 (2015).

V. Giovannetti, S. Lloyd y L. Maccone, “Quantum Time”, Phys. Rev. D 92,
045033 (2015).

D. Horsman, C. Heunen, M. F. Pusey, J. Barrett y R. W. Spekkens, “Can
a Quantum State over Time Resemble a Quantum State at a Single Time?”,

Proc. R. Soc. A 473, 20170395 (2017).

J. Cotler, C. M. Jian, X. Qi y F. Wilczek, “Superdensity Operators for Spa-
cetime Quantum Mechanics”, J. High Energy Phys. 2018, 93 (2018).

P. A. Hohn, A. R. H. Smith y M. P. E. Lock, “Trinity of Relational Quantum
Dynamics”, Phys. Rev. D 104, 066001 (2021).

C Foti, A Coppoli, G. Barni, A Cuccoliy V. P, “Time and Classical Equations
of Motion from Quantum Entanglement via the Page and Wootters Mecha-
nism with Generalized Coherent States”, Nat. Commun. 12, 1787 (2021).

I. L. Paiva, A. C. Lobo y E. Cohen, “Flow of Time during Energy Measure-
ments and the Resulting Time-Energy Uncertainty Relations”, Quantum 6,
683 (2022).

T. Favalli y A. Smerzi, “Peaceful Coexistence of Thermal Equilibrium and
the Emergence of Time”, Phys. Rev.D 105, 023525 (2022).

V. Giovannetti, S. Lloyd y L. Maccone, “Geometric Event-Based Quantum
Mechanics”, New J. Phys. 25, 023027 (2023).

P. A. Hoehn, A. Russo y A. R. Smith, “Matter Relative to Quantum Hyper-
surfaces”, arXiv:2308.12912 (2023).

W. Pauli, Die Allgemeinen Prinzipien Der Wellenmechanik (Springer, 1933).

S. Weinberg, The Quantum Theory of Fields: Volume 1, Foundations (Cam-
bridge Univ. Press, 2005).

M. E. Peskin, An Introduction to Quantum Field Theory (CRC Press, 2018).

H. Casini y M. Huerta, “Entanglement Entropy in Free Quantum Field
Theory”, J. Phys. A: Math. Theor. 42, 504007 (2009).


https://doi.org/10.1088/0264-9381/10/8/015
https://doi.org/10.1088/1367-2630/acb793

Bibliografia

[42]

143]

[44]

[45]

|46]

147]

48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

P. A. M. Dirac, “Generalized Hamiltonian Dynamics”, Canadian Journal of
Mathematics 2, 129-148 (1950).

A. Boette, R. Rossignoli, N. Gigena y M. Cerezo, “System-Time Entanglement
in a Discrete-Time Model”, Phys. Rev. A 93, 062127 (2016).

A. Boette y R. Rossignoli, “History States of Systems and Operators”, Phys.
Rev. A 98, 032108 (2018).

F Lomoc, AP Boette, N Canosa y R Rossignoli, “History States of One-
Dimensional Quantum Walks”, Phys. Rev. A 106, 062215 (2022).

C. Schubert, “Perturbative Quantum Field Theory in the String-Inspired
Formalism”, Phys. Rep. 355, 73 (2001).

E. Witten, “What Every Physicist Should Know about String Theory”, Phy-
sics Today 68, 38 (2015).

D. Marolf, “Quantum Observables and Recollapsing Dynamics”, Class. Quan-
tum Gravity 12, 1199 (1995).

C. Kiefer, “Quantum Gravity”, Int. Ser. Monogr. Phys. 155, 1-432 (2004).
B. Thaller, The Dirac Equation (Springer-Verlag, Berlin Heidelberg, 1992).

F. Schwabl, Advanced Quantum Mechanics (Springer-Verlag, Berlin Heidel-
berg, 2005).

P. A. M. Dirac, “The Quantum Theory of the Electron. Part II”, Proc. R.
Soc. Lond. A 118, 351 (1928).

L. C. Céleri, V. Kiosses y D. R. Terno, “Spin and Localization of Relativistic
Fermions and Uncertainty Relations”, Phys. Rev. A 94, 062115 (2016).

F. Strocchi y A. S. Wightman, “Proof of the charge superselection rule in
local relativistic quantum field theory”, J. Math. Phys. 15, 2198 (1974).

V. Giovannetti, S. Lloyd y L. Maccone, “Quantum Time”, Phys. Rev. D 92,
045033 (2015).

H. S. Snyder, “Quantized Space-Time”, Phys. Rev. 71, 38 (1947).

E. C. G. Stiickelberg, “La Mecanique du point materiel en theorie de relativite
et en theorie des quanta”, Helv. Phys. Acta 15, 23 (1942).

H. V. Borzeszkowski y M. B. Mensky, “EPR Effect in Gravitational Field:
Nature of Non-Locality”, Phys. Lett. A 269, 197 (2000).

207


https://doi.org/10.1103/PhysRevA.93.062127
https://doi.org/10.1088/0264-9381/12/5/011
https://doi.org/10.1088/0264-9381/12/5/011

Bibliografia

[59]

60]
61

62]

[63]

[64]

|65]

6]

67]

68

[69]

[70]

71

72|
73]

[74]

208

V. Fock, “Die Eigenzeit in der klassischen und in der Quantennechanik”, Phys.
Z. Sowjetunion 12, 404 (1937).

M. H. L. Pryce, Proc. R. Soc. A 195, 1040 (1948).

[. S. Gradshteyn e I. M. Ryzhik, Table of Integrals, Series, and Products,
editado por D. Zwillinger (Elsevier, USA, 2007).

J. D. Bjorken y S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill,
New York, 1964).

O. Klein, “Quantentheorie Und Fiinfdimensionale Relativitatstheorie”, Z.
Phys. 37, 895-906 (1926).

W. Gordon, “Der Comptoneffekt Nach Der Schrodingerschen Theorie”, Z.
Phys. 40, 117-133 (1926).

E. Wigner, “On Unitary Representations of the Inhomogeneous Lorentz
Group”, Ann. of Math. 40, 149-204 (1939).

J. B. Hartle y D. Marolf, “Comparing Formulations of Generalized Quantum
Mechanics for Reparametrization-Invariant Systems”, Phys. Rev. D 56, 6247
(1997).

D. Marolf, “Group Averaging and Refined Algebraic Quantization: Where Are
We Now?”, en 9th Marcel Grossmann Conference (World Scientific, 2000),
pagina 1348.

D. Marolf, “Almost Ideal Clocks in Quantum Cosmology: A Brief Derivation
of Time”, Class. Quantum Gravity 12, 2469 (1995).

E. Anderson, “Problem of Time in Quantum Gravity”, Ann. Phys. (Berl.)
524, 757 (2012).

M. Bojowald, P. A. Hoehn y A. Tsobanjan, “An Effective Approach to the
Problem of Time”, Class. Quantum Gravity 28, 035006 (2011).

W. Greiner et al., Relativistic Quantum Mechanics, volumen 3 (Springer,
1990).

F. Schwabl, Advanced Quantum Mechanics (Springer, 2008).

M. Maggiore, A Modern Introduction to Quantum Field Theory, volumen 12
(Oxford University Press, 2005).

J. Schwinger, “On Gauge Invariance and Vacuum Polarization”, Phys. Rev.
82, 664 (1951).


https://doi.org/10.1007/BF01397481
https://doi.org/10.1007/BF01397481
https://doi.org/10.1007/BF01390840
https://doi.org/10.1007/BF01390840
https://doi.org/10.1103/PhysRevD.56.6247
https://doi.org/10.1103/PhysRevD.56.6247
https://doi.org/10.1088/0264-9381/12/10/007

Bibliografia

[75]

[76]

7]

78]

[79]

[80]

[81]

82]

[83]

[84]

[85]

[36]
187]

33

[89]

N. N. Bogolyubov, A. A. Logunov e I. T. Todorov, Introduction to Axiomatic
Quantum Field Theory (W.A. Benjamin, Inc., 1975).

W. G. Unruh y R. M. Wald, “Time and the Interpretation of Canonical
Quantum Gravity”, Phys. Rev. D 40, 2598 (1989).

H. Padmanabhan y T Padmanabhan, “Nonrelativistic Limit of Quantum
Field Theory in Inertial and Noninertial Frames and the Principle of Equiva-
lence”, Phys. Rev. D 84, 085018 (2011).

K. Kowalski y J. Rembielinn iski, “Salpeter Equation and Probability Cu-
rrent in the Relativistic Hamiltonian Quantum Mechanics”, Phys. Rev. A 84,
012108 (2011).

A. R. Smith y M. Ahmadi, “Quantizing Time: Interacting Clocks and Sys-
tems”, Quantum 3, 160 (2019).

P. A. M. Dirac, “The Theory of Gravitation in Hamiltonian Form”, Proc.
Royal Soc. Lond. A 246, 333-343 (1958).

S. Weinberg, The Quantum Theory of Fields, volumen 2 (Cambridge Univ.
Press, 1995).

C. Rovelli y F. Vidotto, Covariant Loop Quantum Gravity: An Elementary
Introduction to Quantum Gravity and Spinfoam Theory (Cambridge Univer-
sity Press, 2014).

F. Soto-Eguibar y H. M. Moya-Cessa, “Harmonic Oscillator Position Eigens-
tates via Application of an Operator on the Vacuum”, Rev. Mex. Fis. E 59,
122 (2013).

V. Vedral, Spacetime as a Tightly Bound Quantum Crystal, 2020.

M. Schwartz, Quantum Field Theory and the Standard Model (Cambridge
Univ. Press, 2014).

J. Schwinger, “The Theory of Quantized Fields”, Phys. Rev. 82, 914 (1951).

K. Savvidou, “The Action Operator for Continuous-Time Histories”, J. Math.
Phys. 40, 5657 (1999).

I. Bialynicki-Birula y Z. Bialynicka-Birula, “Uncertainty Relation for Pho-
tons”, Phys. Rev. Lett. 108, 140401 (2012).

L. Maccone y K. Sacha, “Quantum Measurements of Time”, Phys. Rev. Lett.
124, 110402 (2020).

209


https://doi.org/10.1103/PhysRevA.84.012108
https://doi.org/10.1103/PhysRevA.84.012108

Bibliografia

[90]

191

192]

93]

[94]

195]

196]

197]

98]

199]

[100]

[101]

[102]

[103]

[104]

210

G. Wendel, L. Martinez y M. Bojowald, “Physical Implications of a Funda-
mental Period of Time”, Phys. Rev. Lett. 124, 241301 (2020).

A. Nikolova, G. K. Brennen, T. J. Osborne, G. J. Milburn y T. M. Stace,
“Relational Time in Anyonic Systems”, Phys. Rev. A 97, 030101 (2018).

L. R. S. Mendes y D. O. Soares-Pinto, “Time as a Consequence of Internal
Coherence”, Proc. Royal Soc. Lond A 475, 20190470 (2019).

P. J. Coles, V. Katariya, S. Lloyd, I. Marvian y M. M. Wilde, “Entropic
Energy-Time Uncertainty Relation”, Phys. Rev. Lett. 122, 100401 (2019).

W. Pauli y N. Straumann, Die Allgemeinen Prinzipien derWellenmechanik
(Springer, Berlin, Heidelberg, 1990).

Y. Aharonov y D. Bohm, “Time in the Quantum Theory and the Uncertainty
Relation for Time and Energy”, Phys. Rev. 122, 1649 (1961).

R. Rossignoli y A. M. Kowalski, “Complex Modes in Unstable Quadratic
Bosonic Forms”, Phys. Rev. A 72, 032101 (2005).

J. Harper, A. Mollabashi, T. Takayanagi, Y. Taki et al., “Timelike Entangle-
ment Entropy”, arXiv:2302.11695 (2023).

K Narayan, “De Sitter Space, Extremal Surfaces and"Time-Entanglement"”,

arXiv preprint arXiv:2210.12963 (2022).

E. Fradkin, Quantum Field Theory: An Integrated Approach (Princeton Univ.
Press, 2021).

R Rossignoli, N Canosa y P Ring, “Thermal and Quantal Fluctuations for
Fixed Particle Number in Finite Superfluid Systems”, Phys. Rev. Lett. 80,
1853 (1998).

H. Buhrman, R. Cleve, J. Watrous y R. De Wolf, “Quantum Fingerprinting”,
Phys. Rev. Lett. 87, 167902 (2001).

C. J. Isham, N. Linden y S. Schreckenberg, “The Classification of Decoherence
Functionals: An Analog of Gleason’s Theorem”, J. Math. Phys. 35, 6360
(1994).

R. B Griffiths, “Consistent Histories and the Interpretation of Quantum Me-
chanics”, J. Stat. Phys. 36, 219 (1984).

M. Gell-Mann y J. Hartle, “Alternative Decohering Histories in Quantum
Mechanics”, arXiv 1905.05859 (2019).


https://doi.org/10.1103/PhysRevA.72.032101

Bibliografia

[105]

[106]

107]

[108]

[109]

[110]

111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

M. A. Nielsen e I. L. Chuang, “Quantum Computation and Quantum Infor-
mation”, Phys. Today 54, 60 (2001).

E. Knill y R. Laflamme, “Power of One Bit of Quantum Information”, Phys.
Rev. Lett. 81, 5672-5675 (1998).

A. Datta, A. Shaji y C. Caves, “Quantum Discord and the Power of One
Qubit”, Phys. Rev. Lett. 100, 050502 (2008).

M. D. Penney, D. E. Koh y R. W. Spekkens, “Quantum Circuit Dynamics via
Path Integrals: Is There a Classical Action for Discrete-Time Paths?”, New
J. Phys. 19, 073006117 (2017).

Z. Cheng y C. A. Marianetti, “Foundations of Variational Discrete Action
Theory”, Phys, Rev, B 103, 195138 (2021).

C. J. Isham, N. Linden, K. Savvidou y S. Schreckenberg, “Continuous Time
and Consistent Histories”, J. Math. Phys. 39, 1818 (1998).

L. C. L. Y. Voon, “An Investigation of Coherent State Path Integrals as Ap-
plied to a Harmonic Oscillator and a Single Spin”, Tesis doctoral (University
of British Columbia, 1989).

J. H. Wilson y V. Galitski, “Breakdown of the Coherent State Path Integral:
Two Simple Examples”, Phys. Rev. Lett. 106, 110401 (2011).

A. Chakraborty, P. Nandi y B. Chakraborty, “Fingerprints of the Quantum
Space-Time in Time-Dependent Quantum Mechanics: An Emergent Geome-
tric Phase”, Nucl. Phys. B 975, 115691 (2022).

M. Srednicki, Quantum Field Theory (Cambridge Univ. Press, 2007).

V. Giovannetti, S. Lloyd y L. Maccone, “Geometric Event-Based Relativistic
Quantum Mechanics”, New J. Phys. 25, 023027 (2023).

G. Mussardo y J. Viti, “h —0 Limit of the Entanglement Entropy”, Phys.
Rev. A 105, 032404 (2022).

R. Remmert, Classical Topics in Complex Function Theory, volumen 172
(Springer Science & Business Media, 2013).

R. P. Feynman, “The Principle of Least Action in Quantum Mechanics, PhD
Dissertation (1942)”, en Feynman’s Thesis—a New Approach to Quantum
Theory (World Scientific, 2005).

211


https://doi.org/10.1103/PhysRevLett.100.050502

Bibliografia

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

212

F. Giacomini, E. Castro-Ruiz y C. Brukner, “Quantum Mechanics and the
Covariance of Physical Laws in Quantum Reference Frames”, Nat. Comm.
10, 494 (2019).

T Favalli y A Smerzi, “A Model of Quantum Spacetime”, AVS Quantum
Science 4, 044403 (2022).

I. L. Paiva, A. Te’eni, B. Y. Peled, E. Cohen e Y. Aharonov, “Non-Inertial
Quantum Clock Frames Lead to Non-Hermitian Dynamics”, Comm. Phys. 5,
298 (2022).

M. Van Raamsdonk, “Building up Spacetime with Quantum Entanglement”,
Gen. Relativ. Gravit. 42, 2323 (2010).

C. Cao, S. M. Carroll y S. Michalakis, “Space from Hilbert Space: Recovering
Geometry from Bulk Entanglement”, Phys. Rev. D 95, 024031 (2017).

S. Barison, F. Vicentini, I. Cirac y G. Carleo, “Variational Dynamics as a
Ground-State Problem on a Quantum Computer”, Phys.Rev.Res. 4, 043161
(2022).

C. Isham y K. Kuchar, “Representations of Spacetime Diffeomorphisms. I.
Canonical Parametrized Field Theories”, Ann. Phys. (N.Y.) 164, 288 (1985).

J. Maldacena, “The Large-N Limit of Superconformal Field Theories and
Supergravity”, Int. J. Theor. Phys. 38, 1113 (1999).

M. Banados e I. Reyes, “A Short Review on Noether’s Theorems, Gauge
Symmetries and Boundary Terms”, Int.J.Mod.Phys.D 25, 1630021 (2016).

T. Regge y C. Teitelboim, “Role of Surface Integrals in the Hamiltonian
Formulation of General Relativity”, Ann. Phys. (NY) 88, 286 (1974).

T. de Donder, Théorie Invariantive Du Calcul Des Variations (Gauthier-
Villars, 1930).

H. Weyl, “Geodesic Fields in the Calculus of Variation for Multiple Integrals”,
Annals of Mathematics 36, 607 (1935).

M. J. Gotay, “A Multisymplectic Framework for Classical Field Theory and
the Calculus of Variations II: Space+ Time Decomposition”, Differential Geo-
metry and its Applications 1, 375 (1991).

I. V. Kanatchikov, “Canonical Structure of Classical Field Theory in the
Polymomentum Phase Space”, Rep. Math. Phys. 41, 49 (1998).


https://doi.org/10.1016/0003-4916(85)90018-1

Bibliografia

[133]

[134]

[135]

[136]

137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

C. Isham y K. Savvidou, “The Foliation Operator in History Quantum Field
Theory”, J. Math. Phys. 43, 5493 (2002).

D. Chester, X. D. Arsiwalla, L. H. Kauffman, M. Planat y K. Irwin, “Quanti-
zation of a New Canonical, Covariant, and Symplectic Hamiltonian Density”,
Symmetry 16, 316 (2024).

F. Khanna, Thermal Quantum Field Theory: Algebraic Aspects and Applica-
tions (World Scientific, 2009).

Y. Nakata, T. Takayanagi, Y. Taki, K. Tamaoka y Z. Wei, “New Holographic
Generalization of Entanglement Entropy”, Phys. Rev. D 103, 026005 (2021).

K. Doi, J. Harper, A. Mollabashi, T. Takayanagi e Y. Taki, “Pseudoentropy in
dS/CFT and Timelike Entanglement Entropy”, Phys. Rev. Lett. 130, 031601
(2023).

C.-S. Chu y H. Parihar, “Time-like Entanglement Entropy in AdS/BCFT”,
arXiv:2304.10907 (2023).

S. Ryu y T. Takayanagi, “Holographic Derivation of Entanglement Entropy
from the Anti-de Sitter Space/Conformal Field Theory Correspondence”,
Phys. Rev. Lett. 96, 181602 (2006).

Y. Aharonov, D. Z. Albert y L. Vaidman, “How the Result of a Measurement
of a Component of the Spin of a Spin-1/2 Particle Can Turn out to Be 1007,
Phys. Rev. Lett. 60, 1351 (1988).

J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan y R. W. Boyd, “Colloquium:
Understanding Quantum Weak Values: Basics and Applications”, Rev. Mod.
Phys. 86, 307 (2014).

R. Wagner, Z. Schwartzman-Nowik, I. L. Paiva, A. Te’eni, A. Ruiz-Molero,
R. S. Barbosa, E. Cohen y E. F. Galvao, “Quantum Circuits Measuring
Weak Values and Kirkwood-Dirac Quasiprobability Distributions, with Ap-
plications”, arXiv:2302.00705 (2023).

Y. Aharonov y T. Kaufherr, “Quantum Frames of Reference”, Phys. Rev. D
30, 368 (1984).

E. Castro-Ruiz, F. Giacomini y C. Brukner, “Dynamics of Quantum Causal
Structures”, Phys. Rev. X 8, 011047 (2018).

T. Favalli y A. Smerzi, “Time Observables in a Timeless Universe”, Quantum
4, 354 (2020).

213


https://doi.org/10.1103/PhysRevD.103.026005
https://doi.org/10.1103/PhysRevLett.60.1351
https://doi.org/10.1103/PhysRevD.30.368
https://doi.org/10.1103/PhysRevD.30.368

Bibliografia

[146]

[147]

[148]
[149]

[150]

[151]

[152]

[153)]

[154]

155

[156]

[157]

158

[159]

214

S. Weinberg, Gravitation and Cosmology: Principles and Applications of the
General Theory of Relativity (New York: Wiley, 1972).

S. A. Fulling, “Nonuniqueness of Canonical Field Quantization in Riemannian
Space-Time”, Phys. Rev. D 7, 2850 (1973).

W. Unruh, “Notes on Black-Hole Evaporation”, Phys. Rev. D 14, 870 (1976).

R. Arnowitt, S. Deser y C. W. Misner, “Dynamical Structure and Definition
of Energy in General Relativity”, Phys. Rev. 116, 1322 (1959).

R Balian y E Brezin, “Nonunitary Bogoliubov Transformations and Extension
of Wick’s Theorem”, 11 Nuovo Cimento B (1965-1970) 64, 37 (1969).

D. Harlow y J.-q. Wu, “Covariant Phase Space with Boundaries”, J. High
Energy Phys. 2020, 1-52 (2020).

J. M. Matera, D. Egloff, N. Killoran y M. Plenio, “Coherent control of quan-
tum systems as a resource theory”, Quantum Sci. Technol. 1, 01LT01 (2016).

J. Eisert, M. Cramer y M. B. Plenio, “Area Laws for the Entanglement
Entropy: a Review”, arXiv:0808.3773 (2008).

F. Pastawski, B. Yoshida, D. Harlow y J. Preskill, “Holographic Quantum
Error-Correcting Codes: Toy Models for the Bulk/Boundary Corresponden-
ce”, J. High Energy Phys. 2015, 1-55 (2015).

A. Jahn y J. Eisert, “Holographic Tensor Network Models and Quantum
Error Correction: A Topical Review”, Quantum Science and Technology 6,
033002 (2021).

P. Reimann, “Foundation of Statistical Mechanics under Experimentally Rea-
listic Conditions”, Phys. Rev. Lett. 101, 190403 (2008).

N. Linden, S. Popescu, A. J. Short y A. Winter, “Quantum Mechanical
Evolution towards Thermal Equilibrium”, Phys. Rev. E 79, 061103 (2009).

A. S. Malabarba, L. P. Garcia-Pintos, N. Linden, T. C. Farrelly y A. J. Short,
“Quantum Systems Equilibrate Rapidly for Most Observables”, Phys. Rev. E
90, 012121 (2014).

G. Mussardo, “Infinite-Time Average of Local Fields in an Integrable Quan-
tum Field Theory after a Quantum Quench”, Phys. Rev. Lett. 111, 100401
(2013).


https://doi.org/10.1103/PhysRev.116.1322
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1103/PhysRevLett.111.100401
https://doi.org/10.1103/PhysRevLett.111.100401

Bibliografia

[160]

[161]

[162]

[163]

[164]

[165]

[166]

167]

[168]

[169]

[170]

[171]

L. C. Venuti y P. Zanardi, “Universality in the Equilibration of Quantum
Systems after a Small Quench”, Phys. Rev. A 81, 032113 (2010).

L. C. Venuti, N. T. Jacobson, S. Santra y P. Zanardi, “Exact Infinite-Time
Statistics of the Loschmidt Echo for a Quantum Quench”, Phys. Rev. Lett.
107, 010403 (2011).

A. Goussev, R. A. Jalabert, H. M. Pastawski y D. A. Wisniacki, “Loschmidt
Echo”, Scholarpedia 7, 11687 (2012).

J. Yang y A. Hamma, “Many-Body Localization Transition, Temporal Fluc-
tuations of the Loschmidt Echo, and Scrambling”, arXiv:1702.00445 (2017).

B. Zhou, C. Yang y S. Chen, “Signature of a Nonequilibrium Quantum Phase
Transition in the Long-Time Average of the Loschmidt Echo”, Phys. Rev. B
100, 184313 (2019).

G. Rickayzen, Green’s Functions and Condensed Matter (Courier Corpora-
tion, 2013).

E. Khatami, G. Pupillo, M. Srednicki y M. Rigol, “Fluctuation-Dissipation
Theorem in an Isolated System of Quantum Dipolar Bosons after a Quench”,
Phys. Rev. Lett. 111, 050403 (2013).

D. J. Luitz e Y. B. Lev, “Anomalous Thermalization in Ergodic Systems”,
Phys. Rev. Lett. 117, 170404 (2016).

E. Kokeii, H. A. Labib, JK Freericks y A. F. Kemper, “A Linear Response
Framework for Simulating Bosonic and Fermionic Correlation Functions Illus-

trated on Quantum Computers”, arXiv preprint arXiv:2302.10219 (2023).

A. M. Alhambra, J. Riddell y L. P. Garcia-Pintos, “Time Evolution of Co-
rrelation Functions in Quantum Many-Body Systems”, Phys. Rev. Lett. 124,
110605 (2020).

J. S. Pedernales, R. Di Candia, I. L. Egusquiza, J. Casanova y E. Solano,
“Efficient Quantum Algorithm for Computing n-Time Correlation Functions”,
Phys. Rev. Lett. 113, 020505 (2014).

M. L. Baez, M. Goihl, J. Haferkamp, J. Bermejo-Vega, M. Gluza y J. Eisert,
“Dynamical Structure Factors of Dynamical Quantum Simulators”, Procee-
dings of the National Academy of Sciences 117, 26123 (2020).

215


https://doi.org/10.1103/PhysRevA.81.032113
https://doi.org/10.1103/PhysRevLett.107.010403
https://doi.org/10.1103/PhysRevLett.107.010403
https://doi.org/10.4249/scholarpedia.11687
https://doi.org/10.1103/PhysRevB.100.184313
https://doi.org/10.1103/PhysRevB.100.184313
https://doi.org/10.1103/PhysRevLett.111.050403
https://doi.org/10.1103/PhysRevLett.117.170404
https://doi.org/10.1103/PhysRevLett.124.110605
https://doi.org/10.1103/PhysRevLett.124.110605
https://doi.org/10.1103/PhysRevLett.113.020505
https://doi.org/10.1073/pnas.2006103117
https://doi.org/10.1073/pnas.2006103117

Bibliografia

172

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

216

R. Coldea, DA Tennant, EM Wheeler, E Wawrzynska, D Prabhakaran, M
Telling, K Habicht, P Smeibidl y K Kiefer, “Quantum Criticality in an Ising
Chain: Experimental Evidence for Emergent E8 Symmetry”, Science 327, 177
(2010).

CJ Jia, EA Nowadnick, K Wohlfeld, YF Kung, C.-C. Chen, S Johnston, T
Tohyama, B Moritz y TP Devereaux, “Persistent Spin Excitations in Do-
ped Antiferromagnets Revealed by Resonant Inelastic Light Scattering”, Nat.
Commun. 5, 3314 (2014).

B. Bauer, D. Wecker, A. J. Millis, M. B. Hastings y M. Troyer, “Hybrid
Quantum-Classical Approach to Correlated Materials”, Phys. Rev. X 6,
031045 (2016).

JM Kreula, S. R. Clark y D Jaksch, “Non-Linear Quantum-Classical Sche-
me to Simulate Non-Equilibrium Strongly Correlated Fermionic Many-Body
Dynamics”, Sci. Rep. 6, 1 (2016).

R. Sakurai, W. Mizukami y H. Shinaoka, “Hybrid Quantum-Classical Al-

gorithm for Computing Imaginary-Time Correlation Functions”, Phys. Rev.
Res. 4, 023219 (2022).

L. Cincio, Y. Subagi, A. T. Sornborger y P. J. Coles, “Learning the Quantum
Algorithm for State Overlap”, New J. Phys. 20, 113022 (2018).

A. W. Harrow y A. Montanaro, “Testing Product States, Quantum Merlin-
Arthur Games and Tensor Optimization”, Journal of the ACM (JACM) 60,
1-43 (2013).

G. Gutoski, P. Hayden, K. Milner y M. M. Wilde, “Quantum Interactive
Proofs and the Complexity of Separability Testing”, Theory of Computing
11, 59 (2015).

H.-Y. Huang, R. Kueng y J. Preskill, “Predicting Many Properties of a Quan-
tum System from Very Few Measurements”, Nat. Phys, 16, 1050 (2020).

T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon,
P. Zoller, R. Blatt y C. F. Roos, “Probing Rényi Entanglement Entropy via
Randomized Measurements”, Science 364, 260 (2019).

“Analyticity Breaking and Anderson Localization in Incommensurate Latti-
ces”, Ann. Israel Phys. Soc. 3, 133 (1980).


https://doi.org/10.1126/science.1180085
https://doi.org/10.1126/science.1180085
https://doi.org/10.1038/ncomms4314
https://doi.org/10.1038/ncomms4314
https://doi.org/10.1038/srep32940
https://doi.org/10.1103/PhysRevResearch.4.023219
https://doi.org/10.1103/PhysRevResearch.4.023219
https://doi.org/10.1088/1367-2630/aae94a
https://doi.org/10.1109/FOCS.2010.66 10.1145/2432622.2432625
https://doi.org/10.1109/FOCS.2010.66 10.1145/2432622.2432625
https://doi.org/10.4086/toc.2015.v011a003
https://doi.org/10.4086/toc.2015.v011a003
https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1126/science.aau4963

Bibliografia

[183] R. P. Feynman, “Simulating Physics with Computers”, Int. J. Theor. Phys.
21, 467 (1982).

[184] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii,
J. R. McClean, K. Mitarai, X. Yuan, L. Cincio y P. J. Coles, “Variational
Quantum Algorithms”, Nat. Rev. Phys. 3, 625 (2021).

217


https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1038/s42254-021-00348-9

	Introducción y motivación
	El tiempo y las revoluciones de la física
	Descripción general de la propuesta

	Preliminares: El tiempo y la mecánica cuántica
	Mecánica cuántica tradicional y la objeción de Pauli
	Relatividad especial y Teorías cuánticas de campos
	Tiempo cuántico

	Tiempo cuántico y la teoría de Dirac
	Partícula de Dirac libre
	Reloj bidimensional y tiempo propio
	Reloj bidimensional
	Sobre la interpretación de  

	Partícula de Dirac en un campo externo
	Densidad invariante
	Conclusiones
	Apéndices
	Norma de Dirac 
	Expansión de estados en variables continuas 
	Densidad Invariante 

	Tiempo cuántico y partículas escalares
	Partícula Escalar
	Formalismo
	Relación con la representación de Wigner
	Propagador de Klein-Gordon
	Normalización en Tiempo

	Ecuación de Klein-Gordon en un campo externo
	Límite No Relativista
	Espacio de Fock Extendido
	Discusión
	Apéndices
	Densidad de corriente 
	Cuantización extendida de una teoría parametrizada 

	Segunda cuantización extendida y el concepto de acción cuántica
	Acción cuántica y el formalismo de Page y Wootters 
	Consideraciones Relativistas

	Formalismo
	Espacio de Hilbert
	Traslaciones en el Tiempo y el operador Acción
	El caso cuadrático

	Discusión



	Integrales de Feynman a partir de acciones cuánticas
	Suma sobre historias como traza cuántica
	``Time-slicing'' en espacios de Hilbert
	Funciones de correlación con orden temporal y térmicas
	Bases extendidas y distintas representaciones de Integrales de camino
	Sistemas generales y consideraciones computacionales cuánticas 

	Formalismo con tiempo continuo 
	Formalismo y límite de  chico 
	Funcionales generadores e invariancia-
	Estados en el espacio-tiempo y límite de  grande 

	Conclusiones
	Apéndices
	T general en propagadores
	Demostración de la relación entre S, Pt y V, y funciones de correlación 
	Sobre la ``función de partición'' del oscilador armónico en el límite continuo 
	Principio de acción estacionaria a partir de un valor medio cuántico 

	Mecánica cuántica y clásica en el  espacio-tiempo con foliación dinámica
	Resumen del capítulo
	Introducción
	Formalismo de espacio de fases en el espacio-tiempo
	Una analogía espacial introductoria al problema
	Transformación de Legendre covariante
	Estructura simpléctica en el espacio-tiempo
	Ecuaciones de movimiento a partir de corchetes extendidos

	Mecánica cuántica en el espacio-tiempo
	Cuantización extendida
	Partículas Extendidas
	Correladores en el espacio tiempo y mapeo a la MC convencional a foliación fija
	Estados generalizados al espacio-tiempo

	Entrelazamiento entre materia y foliación
	Partículas como operadores controlados por la foliación
	Estados entrelazados entre materia-foliación y la covarianza explícita de los valores esperados

	Conclusiones y perspectivas
	Apéndices
	Expresiones clásicas y cuánticas para un n tipo tiempo general
	El caso del campo de Dirac
	Purificación generalizada para bosones libres generales
	Correspondencia con la MC convencional para espacio-tiempo discreto y sistemas cuánticos generales

	Conclusiones y perspectivas de la tesis
	Anexo: Aplicación computacional de PW
	Formalismo del tiempo cuántico y su discretización
	De relojes-qubit a simulaciones paralelas en tiempo
	Formalismo
	Protocolos secuenciales y en paralelo en el tiempo

	Acceso a información dinámica a través del entrelazamiento sistema-tiempo
	Propiedades, relación con el problema de equilibración y con las fluctuaciones temporales de observables
	Protocolos para calcular el entrelazamiento sistema-tiempo

	Simulaciones numéricas
	Promedios de tiempo discreto y entrelazamiento sistema-tiempo

	Discusión








