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Abstract. APEIRON is a framework encompassing the general architecture
of a distributed heterogeneous processing platform and the corresponding soft-
ware stack, from the low level device drivers up to the high level programming
model. Developers can define scalable applications that can be deployed on a
multi-FPGA system coding at high level: the APEIRON communication IPs al-
low low-latency communication between processing tasks deployed on FPGAs,
even if hosted on different computing nodes. Thanks to the use of High Level
Synthesis tools, tasks are described in high level language (C/C++) while com-
munication is expressed through a lightweight API. The aim of the APEIRON
project was to develop a flexible framework that could be adopted in the design
and implementation of both "traditional" low level trigger systems and of data
reduction stages in trigger-less or streaming readout experimental setups.

1 Introduction

The APEIRON framework [1] aims at offering hardware and software support to run dis-
tributed real-time dataflow applications on a network of interconnected FPGAs.
Its architecture has been developed taking as reference a custom distributed processing plat-
form composed by m input data streams recombined through n processing layers using a
low-latency, modular and scalable network infrastructure. This mimics the dataflow of a
typical Trigger and Data AcQuisition (TDAQ) system, where data keep streaming from the
readout to a trigger processor or a storage system through several layers of processing stages
(Fig. 1a).
Developers can use a dataflow programming model inspired by Kahn processing networks
[2] for developing and deploying scalable application on a multi-FPGAs system. An embed-
ded configuration tool allows the straightforward mapping of the application computational
dataflow graph onto the underlying network of FPGAs (Fig. 1b), linking the processing tasks
and the interconnection logic to generate the FPGA bistreams.
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(a) APEIRON architecture model: input data streams from
several different channels (data sources/sub-detectors) pro-
cessed through several NN computations, implemented as
subsequent network-interconneced computing nodes (typi-
cally CPU orchestrated via APEIRON Software Stack). Clas-
sification produced by the NN may be used as input for trigger
processor/storage online data reduction stage for triggerless
systems.

(b) Dataflow graph
(composed by differ-
ent computation steps,
indicated by different
letters) mapped on 4
interconneted FPGAs
system

Processing tasks can be implemented in C/C++ via High Level Synthesis tools (e.g. Xil-
inx Vitis) and deployed on the different FPGA interconnected boards. Communication be-
tween tasks is implemented by the APEIRON communication IP and is expressed through
a lightweight API (called HAPECOM) based on non-blocking send() and blocking receive()
primitives.

2 APEIRON Building blocks

2.1 INFN Communication IP

Based on the HPC direct network designs previously developed by our group, like APEnet
[3] and ExaNet [4], the Communication IP represents the main enabling component of the
APEIRON framework. This IP has been developed to implement a direct network enabling
low-latency data transfer between processing tasks deployed on the same FPGA (intra-node
communication) or on different FPGAs (inter-node communication).
Figure 2 shows the Communication IP hardware block structure, which contains:

• Host Interface IP interfacing the FPGA logic with the host through the system bus

• Routing IP defining the switching technique and routing algorithm. It consists of the
Switch component, the Configuration/Status Registers and the InterNode/IntraNode inter-
faces. In this scheme, the Router configures the proper path across the switch while the
Arbiter solves contentions between packets requiring the same port.

• Network IP composed by Application-dependent I/O and Network channels using
APElink, the INFN proprietary high-throughput, low-latency data transmission protocol
for direct network interconnect based on word-stuffing technique, with a bandwidth up to
40 Gbps.

The transmission is packet-based: the Communication IP sends, receives and routes packets
with a header, a variable size payload and a footer.

Figure 2: Communication IP hardware block structure with HLS kernels performing intra-
node (red line) and inter-node (green line – Ethernet, blue line– APElink) communications.

2.2 Runtime Software Stack

Within the APEIRON framework, we designed a runtime software stack, shown in Fig.
3, based on the Xilinx Runtime (XRT) architecture and implemented as a combination of
user-space and kernel driver components [5]. Apeirond, a persistent daemon used to manage
multiple access requests from user host applications to the board. It uses functions exposed by
the APEIRON library to operate on the device. Apeirond module accepts client connections
over a network socket (apeirons module) and oversees creating the socket with the client and
handling the incoming commands.

Figure 3: APEIRON Software Stack scheme

2.2.1 Workflow for FPGA bitstream generation

Via a YAML configuration file, users can describe the attributes of each HLS kernel. Starting
from this, the APEIRON framework links the Communication IP and the HLS kernels that
are connected to it and generates the bitstream for the overall design.

void example_apeiron_task(
[optional kernel-specific list of parameters]
message_stream_t message_data_in[N_INPUT_CHANNELS],
message_stream_t message_data_out[N_OUTPUT_CHANNELS])

2.2.2 HAPECOM Communication API

The communication between kernels is expressed through HAPECOM: a lightweight C++
API based on non-blocking send() and blocking receive() operations. This API allows
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the HLS developer to perform communication without knowing the details of the underly-
ing packet protocol. The HAPECOM Communication API is represented by the following
pseudo-code:

size_t send (msg, size, dest_node, task_id, ch_id);
size_t receive (ch_id);

where: msg is a user-defined data buffer to be streamed through the network; size is the
bitsize of the buffer; dest_node is the n-Dim coordinate of the destination node (FPGA)
in an n-Dim torus network; task_id is the local-to-node receiving task (kernel) identifier;
ch_id is the local-to-task receiving FIFO (channel) identifier.
Two APEIRON IPs manage the adaptation toward/from IntraNode ports of the Routing IP:
they are Aggregator and Dispatcher HLS kernels, shown in Fig. 4.

Figure 4: Aggregator and Dispatcher kernels mediating interface between Intranode Port 0
and the corresponding HLS Task.
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