
A batch system for HEP applications on a

distributed IaaS cloud

I. Gable, A. Agarwal, M. Anderson, P. Armstrong, K. Fransham,
D. Harris C. Leavett-Brown, M. Paterson, D. Penfold-Brown, R.J.
Sobie, M. Vliet
Department of Physics and Astronomy
University of Victoria, Victoria, Canada V8W 3P6

A. Charbonneau, R. Impey, W. Podaima
National Research Council Canada
100 Sussex Drive, Ottawa, Canada

E-mail: igable@uvic.ca

Abstract. The emergence of academic and commercial Infrastructure-as-a-Service (IaaS)
clouds is opening access to new resources for the HEP community. In this paper we will describe
a system we have developed for creating a single dynamic batch environment spanning multiple
IaaS clouds of different types (e.g. Nimbus, OpenNebula, Amazon EC2). A HEP user interacting
with the system submits a job description file with a pointer to their VM image. VM images
can either be created by users directly or provided to the users. We have created a new software
component called Cloud Scheduler that detects waiting jobs and boots the user VM required on
any one of the available cloud resources. As the user VMs appear, they are attached to the job
queues of a central Condor job scheduler, the job scheduler then submits the jobs to the VMs.
The number of VMs available to the user is expanded and contracted dynamically depending
on the number of user jobs. We present the motivation and design of the system with particular
emphasis on Cloud Scheduler. We show that the system provides the ability to exploit academic
and commercial cloud sites in a transparent fashion.

1. Introduction
Grid computing, although successful for many High Energy Physics(HEP) projects, has some
well understood disadvantages [1] when compared to traditional cluster High Throughput
Computing (HTC). On of the more difficult to overcome is the need to deploy applications
to remote resources. Applications written for HEP experiments are complex software systems
usually requiring an application specialist to make the deployment. Often it can take significant
amounts of time to install and configure the software on a new cluster, making it difficult to
quickly take advantage of computing resources as they become available.

Virtual Machine software such as Xen [2] and KVM [3] can be used to wrap the application
code in a complete software environment [1]. Both Xen and KVM have been shown to present
insignificant execution overhead for HEP applications [4]. VMs can be copied and deployed at
various remote Infrastructure-as-a-Service (IaaS) cloud computing platforms, such as Nimbus

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062010 doi:10.1088/1742-6596/331/6/062010

Published under licence by IOP Publishing Ltd 1

Regular Condor Attributes
Universe = vanilla
Executable = script.sh
Arguments = one two three
Log = script.log
Output = script.out
Error = script.error
should_transfer_files = YES
when_to_transfer_output = ON_EXIT

Cloud Scheduler Attributes
Requirements =
+VMType = "vm-name"
+VMLoc = "http://repo.tld/vm.img.gz"
+VMAMI = "ami-dfasfds"
+VMCPUArch = "x86"
+VMCPUCores = "1"
+VMNetwork = "private"
+VMMem = "2048"
+VMStorage = "20"
Queue

Figure 1. A typical Condor Job description file used with Cloud Scheduler. There are several
custom attributes required which define the type of VM image required to run the job.

[5], OpenNebula [6], Eucalyptus [7]. However, having efficient VMs and the means to deploy
them to remote IaaS sites is not enough to make a usable platform for a typical HEP user with
many jobs to run. Most HEP users are already familiar with using cluster batch computing
as it has been a technology employed for at least the last decade. However, few of these users
have experience constructing a batch system as this is typically a task handled by a site system
administrator. We have implemented a dynamic multi-cloud site batch system using a simple
software component we developed called Cloud Scheduler [8]. Our goal is to produce a system
that requires little effort from the users than typical batch job submissions. In this paper we
describe this system and show how it can be used effectively with the BaBar application software
[9].

2. System Architecture
Cloud resources are typically provided at discrete sites with no mechanism for bridging multiple
sites or submitting to a central resource broker. In order to use multiple sites, requests for VMs
must be individually submitted to each site. As the number of sites grows this task becomes
increasingly onerous for the users. We solve this problem by building Condor [10] resource pools
across multiple clouds. The component which allows us to accomplish this is the aforementioned
Cloud Scheduler (for a detailed description of Cloud Scheduler’s internal design see [8]). Cloud
Scheduler is configured with a simple text file that list the available cloud resources and their
properties such as available CPU architectures, number of available VM slots, and memory per
slot.

Users are provided with a VM with an unmodified installation of an operating system or
one configured with project-specific HEP application software. This serves both typical and
sophisticated users who wish to substantially modify their application software. Users create a
valid X.509 grid proxy [13], then submit a Condor job with a set of custom Condor attributes
(see Figure 1). The Condor attributes define the type of VM image which their job requires

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062010 doi:10.1088/1742-6596/331/6/062010

2

20 cores
U

Vi
c

sc
ie

nc
e

cl
ou

d

Cloud Interface
(Nimbus, EC2, Other)

...Work
Node

VM
Node

Work
Node

VM
Node

Condor Scheduler

30 cores

N
R

C
 s

ci
en

ce
 c

lo
ud

Cloud Interface
(Nimbus, EC2, Other)

...Work
Node

VM
Node

Work
Node

VM
Node

User

Am
az

on
 E

C
2

Cloud Interface
(EC2)

VM
Node

10
m1.small

VM
Node

Cloud Scheduler

40 cores

U
Vi

c
H

EP
 c

lo
ud

Cloud Interface
(Nimbus, EC2, Other)

...Work
Node

VM
Node

Work
Node

VM
Node

Sc
he

du
le

r s
ta

tu
s

co
m

m
un

ic
at

io
n

Figure 2. The figure shows the distributed cloud system used in this work. The number of VM
slots (or cores) at each site shown on the figure is the number made available to this project.

in addition to other requirements such as memory, scratch space, and CPU architecture. Once
submitted to Condor, Cloud Scheduler detects the waiting idle job in the queue and boots a
virtual machine on any number of configured IaaS cluster types such as Nimbus, Amazon EC2,
and Eucalyptus. Prior to booting, the VM is contextualized (modified by the IaaS software) to
connect back to the central Condor Scheduler to begin draining jobs. Users initially see a Condor
Scheduler with no available resources and then VMs spring to life that meet the requirements
of their jobs. When all jobs are completed the idle VMs are shutdown.

In this work we use a system consisting of four clouds as shown in Figure 2. Both the
UVic HEP cloud and UVic science cloud are located in Victoria, Canada. The NRC cloud is
located at the National Research Council in Ottawa, Canada, and Amazon EC2 is located in
Virginia. All sites are connected with 1 Gbps or better research network connections except
Amazon EC2 which is reached via a slower and more congested commodity internet connection.
The slower network connection limits the use of EC2 for applications that require access to
databases or data sets that are located at remote locations. Each one of the three research cloud
sites consists of a Linux cluster with Intel Nahalem Xeon processsors and Gigabit Ethernet or
bonded Gigabit Ethernet connections. These clusters are typical of those purchased for HEP
HTC clusters. The three research sites use Nimbus and are accessed by the Nimbus IaaS API.
Sites provided by Amazon are accessed via its REST API. Each Nimbus site uses X.509 grid
proxies for authentication, which allows HEP users to reuse their existing grid credentials. Grid
credentials are also well trusted means of authentication at other research sites. Amazon EC2

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062010 doi:10.1088/1742-6596/331/6/062010

3

uses its own access control and secret keys for authentication.

3. Results
We present a analysis run comprised of 255 jobs submitted by a BaBar user who is a member
of this project. The submitted jobs run a user analysis over three BaBar data sets: Tau1N-data
(total size: 1158 GB), Tau1N-MC (total size: 615 GB) and Tau11-MC (total size: 1386 GB).
Tau1N-data and Tau1N-MC have event sizes of 4 KB while Tau11-MC has event size of 3 KB.
All the data is stored on a Lustre filesystem hosted at UVic and is accessed by the VMs through
the Xrootd [12] protocol.

Prior to the submission the user prepared a Xen VM image containing their BaBar application
and made it available on an http server at NRC in Ottawa. This server functions as the central
virtual machine image repository which can be accessed by any one of the research clouds shown
in Figure 2. In addition the VM image must be uploaded to Amazon EC2 as Amazon requires
that images preexist on their cloud. Each VM image is roughly 16 GB in size. At present there
is no user authentication on the central VM repository, however we have an image repository
under development which can use X.509 proxies to authenticate over https.

Figure 3(a) shows the jobs submission occurring at 13:00 on Jan 8 and 255 jobs entering
the batch queue. Initially no jobs are able to run because no suitable resources have yet been
instantiated in the cloud. Cloud Scheduler detects the waiting jobs and begins to instantiate the
necessary VMs to meet the requirements of the jobs as listed in the Condor job description files
(see Figure 1). We initially see VMs rapidly starting on both the NRC cloud and EC2 as shown
in Figure 3(b). There is a delay of approximately 5 hours at which point we see VMs booting
on both clouds at the University of Victoria. Because each 16 GB VM image is transfered over
the WAN from Ottawa to Victoria we see a substantial penalty in the boot up times on Victoria
based clouds. In order to avoid this penalty VM images could have been preloaded onto those
clouds, however this would require extra work on the part of the user and knowledge of the
clouds in question. In the future, we intend to address this problem by implementing a caching
system such that identical images will only be transfered over the WAN once.

At roughly 20:00 on Jan 8 we see the full distributed cloud reaching its capacity of 100
VMs. After two hours of stable running 2 of the physical worker nodes on the UVic HEP cloud
experienced a known intermittently occurring Xen networking bug which caused the VMs on
those nodes to drop their network connection to the central Condor Scheduler. Once this occurs
those machines drop off the available Condor resources and the jobs are listed as ’evicted’
in Condor terms. Cloud scheduler immediately detects that these VMs are booted but not
connected to the job queues. It then terminates those VMs via the cluster IaaS interface and
attempts to instantiate new VMs to replace them. The cluster soon recovers and returns to full
capacity and Condor resubmits the jobs. In this fashion the user is insulated from instabilities
in the cloud system. This is particularly important in the case of these new technologies.

Near 15:00 on Jan 9 we see that there are fewer then 100 remaining running jobs and Cloud
Scheduler begins to shut down the unused resources as the jobs finish. As the job queue drains
we see the number of running VMs simultaneously reduced.

The total network I/O usage of the distributed cloud can be seen in Figure 4. Early in the
run the demands on the VM image repository are substantial with half hour average network
I/O peaking at 2.2 Gbps when all three research clouds are pulling from the image repository
simultaneously. After the NRC cloud, which is co-located with the image repository finishes
pulling the VMs we see I/O drop to 400 Mbps as the VM images are transfered across the WAN
to Victoria. Amazon EC2 has no impact on the image repository I/O as the EC2 image is
already stored at the Amazon site. The Xrootd I/O for data access for the running across all
sites peaks at a modest 400 Mbps.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062010 doi:10.1088/1742-6596/331/6/062010

4

Jan 08-12h Jan 09-00h Jan 09-12h Jan 10-00h
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

 230

 240

 250

N
u
m
b
e
r

o
f

J
o
b
s

Cloud Jobs

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 Running Jobs
 Queued Jobs

(a)

Jan 08-12h Jan 09-00h Jan 09-12h Jan 10-00h
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

N
u
m
b
e
r

o
f

V
M
s

Cloud Virtual Machines

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 Running VMs
 Starting VMs
 Error VMs

(b)

Figure 3. (a) Shows the state of 255 jobs executed on the cloud system over a 2 day period
in January 2010. The blue line shows the number of queued jobs and the black line show the
number of running jobs. (b) Shows the VMs automatically instantiated to meet the needs of
those jobs over the same period. The blue curve shows the number of VMs being booted, the
black curve shows the running VMs and the red curve shows VMs in an error state. The number
of VMs being booted shows a short spike for VMs being booted on the NRC and Amazon EC2
clouds (where the VMs are locally stored). The VMs required at the two UVic clouds needed
to be transfered from Ottawa to Victoria and this required 4-5 hours on the research network.
The dip in the number of running jobs is explained in the accompanying text.

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062010 doi:10.1088/1742-6596/331/6/062010

5

Jan 08-12h Jan 09-00h Jan 09-12h Jan 10-00h
 0.0

 0.1 G

 0.2 G

 0.3 G

 0.4 G

 0.5 G

 0.6 G

 0.7 G

 0.8 G

 0.9 G

 1.0 G

 1.1 G

 1.2 G

 1.3 G

 1.4 G

 1.5 G

 1.6 G

 1.7 G

 1.8 G

 1.9 G

 2.0 G

 2.1 G

 2.2 G

 2.3 G

 2.4 G

 2.5 G

b
i
t
s

p
e
r

s
e
c
o
n
d

Cloud IO

R
R
D
T
O
O
L

/

T
O
B
I

O
E
T
I
K
E
R

 Xrootd IO
 Image Repository IO

Figure 4. The total network I/O of the distributed cloud system. The blue line shows the
network traffic out of the VM image repository as the images are being sent to both the local
sites (as seen by the spike at early times) and remote sites (sustained transfer over a few hour
period). The black line shows the data I/O from the jobs in the Cloud VMs. The rate grows
with the number of jobs but there is also a dependence on the data set used in the analysis job.

4. Conclusion
We have constructed a multi-site distributed cloud using Condor and a new component called
Cloud Scheduler. This distributed cloud was able to analyze roughly 5 TB of BaBar data using
100 VMs booted across four cloud sites with no work from the user beyond job submission and
VM image preparation. Furthermore, we have shown that the system is resilient to failures in
individual cloud resources; a feature essential to any system running on new IaaS technology.

Acknowledgment
The support of CANARIE, the Natural Sciences and Engineering Research Council, the National
Research Council of Canada and Amazon are acknowledged.

References
[1] Agarwal A, Charbonneau A, Desmarais R, Enge R, Gable I, Grundy D, Penfold-Brown D, Seuster R, Sobie R

and Vanderster D C 2008 Deploying HEP Applications Using Xen and Globus Virtual Workspaces Proc. of
Computing in High Energy and Nuclear Physics 2007 J. Phys.: Conf. Ser. 119 062002 doi:10.1088/1742-
6596/119/6/062002

[2] Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I and Warfield A, 2003
Xen and the art of virtualization. Proc. of the 19th ACM Symp. on Operating Systems Principles (Bolton
Landing, NY, USA) pp 164-177

[3] The Kernel Virtual Machine http://www.linux-kvm.org/

[4] Alef M and Gable I HEP specific benchmarks of virtual machines on multi-core CPU architectures. J. Phys
Conf. Ser. 219, 052015 (2009). doi: 10.1088/1742-6596/219/5/052015

[5] Nimbus Project http://nimbusproject.org/

[6] Open Nebula Project http://www.opennebula.org/

[7] Eucalyptus Software http://www.eucalyptus.com/

[8] Armstrong P, Agarwal A, Bishop A, Charbonneau A, Desmarais R, Fransham K, Hill N, Gable I, Gaudet
S, Goliath S, Impey R, Leavett-Brown C, Ouellete J, Paterson M, Pritchet C, Penfold-Brown D, Podaima
W, Schade D, and Sobie R J Cloud Scheduler: a resource manager for a distributed compute cloud, June
2010 (arXiv:1007.0050v1 [cs.DC])

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062010 doi:10.1088/1742-6596/331/6/062010

6

[9] Aubert B et al. [BABAR Collaboration], The BaBar detector Nucl. Instrum. Meth. A 479, 1 (2002)
[arXiv:hep-ex/0105044].

[10] Thani D, Tannenbaum T and Livny M Distributed computing in practice: the Condor experience.
Concurrency and Computation: Practice and Experience Vol. 17 (2005) 323.

[11] The Scientific Linux Distribution: http://www.scientificlinux.org/

[12] Dorigo A, Elmer P, Furano F, and Hanushevsky A 2005 XROOTD/TXNetFile: a highly scalable architecture
for data access in the ROOT environment Proceedings of the 4th WSEAS International Conference on
Telecommunications and Informatics (TELE-INFO’05)

[13] Tuecke S, Welch V, Engert D, Pearlman L, Thompson M 2004 Internet X.509 public key infrastructure (PKI)
proxy certificate profile IETF RFC 3820, June 2004, http://www.ietf.org/rfc/rfc3820.txt

International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010) IOP Publishing
Journal of Physics: Conference Series 331 (2011) 062010 doi:10.1088/1742-6596/331/6/062010

7

