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Abstract. This paper continues a series of articles devoted to developing the capabilities of
a deep inelastic lepton-proton scattering event generator based on the generative adversarial
network (GAN). The investigation has focused on semi-inclusive reactions of deep inelastic
scattering and, particularly, on hadron registration. The results confirmed that GAN could
accurately generate distributions of physical properties of leptons and hadrons. It worked for
different types of leptons and hadrons in the range of initial energies from 20 to 100 GeV in the
center-of-mass system. The GAN demonstrated to preserve the inherent correlation between
the characteristics of leptons and protons.
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MOAEUPOBAHMUE NMNOJTYUHK/THO3UBHOIO IMYBOKO
HEYMPYIroro PACCEfSIHUA NENTOHA HA NMPOTOHE
NPU SHEPIUAX 20 - 100 NPB HA OCHOBE
FrEHEPATUBHO-COCTA3ATE/IbHOU HEUPOHHOM CETU
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AnHoramms. JlanHas paGora IIpOmODKAeT LMK —CTaTeil, IIOCBSILIEHHBIX Pa3BUTHIO
BO3MOXKHOCTEI TeHepaTopa COOBITUI LIIYOOKO HEYIPYroro JICNTOH-IIPOTOHHOIO pAcCesiHMSI Ha
OCHOBe TreHepaTuBHO-cocTsa3aTesbHO cetu (I'CC). 3pech paccMOTpeHbl MOJYUHKIIIO3WBHBIE
peaxiuy rryoboKo HEeYIIpYroro paccessHus ¢ perucTpanueii anpona. Ilokazano, yto I'CC no3Bojsiet
C BBICOKOM TOYHOCTBIO TE€HEPUPOBATh pacIpefeSicHUsT (PU3MIECKNX XapaKTePUCTUK KOHEYHBIX
JIETITOHA U aJpoHAa B IMamna3oHe HavaabHEIX Hepruii 100 — 20 3B B cucteme meHTpa Macc.

KiroueBble cJ10Ba: MOJIYMHKIIO3UBHOE IIYOOKO HEYIPYroe paccessHue, MalllMHHOE O0y4YeHue,
HeMpOHHAs CeThb, FTeHEPATUBHO-COCTS3aTeIbHAS CETh
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Introductio
Modern experimental research in high energy p ysflcs deals with increasingly large datasets [1],

collected from large-scale experiments or simulation results. Processing these data requires high
computational costs and much time.

Machine learning methods offer an approach to solving the above-mentioned problems [2],
allowing to construct computer simulation software (called event generators) with the following
new capabilities:

using the experimental results on interactions of particles and nuclei at discrete points to pre-
dict the characteristics of secondary particles at any energies in the given range based on interpo-
lation (and possibly extrapolation) quickly and without high computational costs;

the above-mentioned software can be developed even without experimental results, using the
simulation results for interactions of particles and nuclei obtained by the Monte Carlo method [3].

A generative-adversarial network (GAN) was described in [4] to create a generator for inclu-
sive deep inelastic lepton—proton scattering.

This paper continues the research in this direction, extending the capabilities of the given event
generator [4] to semi-inclusive deep inelastic scattering with hadron production.

The goal of the study was to build a generator that can be trained on experimental data (or
those obtained by computer simulation), allowing to collect intermediate data based on interpo-
lation and extrapolation, since the experiment cannot be carried out at arbitrary initial energies.

There are several reasons for the interest in semi-inclusive processes.

First, the production of an additional hadron allows to learn more about the structure of the
proton. Thus, the type of hadron produced by lepton—proton interaction depends on the flavor of
the quark in the proton that the virtual photon emitted by the charged lepton interacted with [5].

© JlobanoB A. A., bepmnukoB f. A., 2023. Usparenn: Cankr-IletepOyprckuii moautexHudeckuil yHuBepcuteT [leTpa
Benukoro.
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Secondly, the characteristics of an additional hadron can carry information about the processes
of parton hadronization [5].

Thirdly, various spin and azimuthal asymmetries can be measured during semi-inclusive pro-
cesses, allowing to gain an understanding on the spin structure of the proton [6].

Methodology

The characteristics of the final state of the charged lepton (e*, e, u*, u) and hadron (z°, n*,
m, K*, K°) are their four-momenta p, = (E,p) and p,= (E,,p,) respectively, where E| is the total
energy of the scattered lepton; p, p, are the four- and three-dimensional momentum vectors of
the lepton, the latter determined in terms of its components p_, Py P E, is the total energy of
the hadron, p,, p, are four- and three—dimensional momentum vectors of the hadron, and also
the components of the latter, p_, Py Dy

For GAN to predict the four-momenta of various hadrons (n°, n*, ==, K*, K*), their types (as
well as the types of lepton) are fed to the input of the GAN as additional parameters along with
the initial energy £, defined as £ = \/STV/Z, where Vs, is the initial energy in the lepton—proton
center of mass frame [4].

Since it is currently impossible to experimentally obtain the characteristics of final-state lep-
tons and hadrons (due to the lack of experiments), the finite states of leptons and hadrons were
obtained using the PYTHIAS software package [7].

For each type of lepton (e*, e, u*, u) and hadron (=, n*, ==, K*, K7), 100,000 events were
generated at initial energies Vs, = 20, 40, 60, 80 and 100 GeV. The four-momentum values of
the final-state lepton and hadron were obtained from each event (real data).

Following the approach in [4], we solved the problems associated with irregularities in the
distributions of the quantities £, E, and p, by generating, instead of the actual quantities £, E,,
p,» the quantities obtained by their transformation (transformed quantities):

T(p.) =1log[(E, - p.)/(1 GeV/c)],

T(E)) =log[(E, —E)/(1 GeV/c)],

T(E,)=logl(E,)/(1 GeV/c)].

As established in [4], the distribution over the transformed quantities becomes smoother, pre-
venting predictions of unphysical values.

Also similarly to [4], the event generator in this study is based on GAN with a least square
loss function [8].

The generator consists of 5 layers of 512 neurons each with a Leaky ReLLU activation function
and a dropout of 0.2 [9]. A 128-dimensional noise vector (a vector of values obtained from a
Gaussian distribution with the mean equal to 0 and the variance equal to 1), energy E, lepton
type and hadron type are fed to the generator input. The generator outputs 8 characteristics:

pxl’ py/’ T(pz[)’ T(E]), pxhs pyh, pzh and T(Eh)’

corresponding to lepton and hadron.
Based on these characteristics, the model calculates additional values used to increase the
accuracy of GAN predictions [4]:

Pn=\Patph, Ppn=+Pstp, are the lepton and hadron transverse momenta,

respectively;

¢, =arctan(p,, /p,), ¢, =arctan(p,,/p,) are the lepton and hadron azimuthal angles,
respectively;

0, =arctan(p,, /p,,), 0, =arctan(p,, / p,,) are the lepton and hadron polar angles, respectively.

All additional quantities are then fed to the discriminator input during training.

The discriminator also consists of 5 layers of 512 neurons each with a Leaky ReLU activation
function and a dropout of 0.2 [9]. A dropout layer with a rate of 10% [11] is applied to each of
the layers to prevent overfitting of the discriminator, randomly dropping 10% of the layer weights.
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Spectral normalization is additionally applied to all layers for more stable training [12]. The
output layer consists of a single neuron with a linear activation function. The higher the value
obtained, the more confident the discriminator is in identifying the given values as realistic.

The model was trained for 400 epochs. RMSProp was used for gradient descent optimization,
with p = 0.9 [13], 1-107* training steps for the generator and 5-107° for the discriminator. Using
different training steps contributes to better training convergence, as shown in [14].

The Kullback—Leibler (KL) divergence was used as a measure of the divergence between the
real data and those generated by GAN [15]. This measure was used to compare the histograms
of the obtained distributions. In this case, the Kullback—Leibler divergence D,, is defined as
follows [15]:

>

Dy (PIO)=> p, 1og§,
i=1 i

where P, Q are the distributions of the real and generated data, respectively; p, g, are the proba-
bilities of the ith bins of histograms for real and generated data; » is the number of bins.

Simulation results

Since there is a wide range of scattering scenarios (different types of leptons and hadrons as
well as different initial energies £), only some of the individual cases are given below to illustrate
GAN’s predictive capabilities.

Fig. 1 shows the distributions of p,, 6, ¢ for the positron e¢* and the negative kaon K-, obtained
using GAN and PYTHIAS8. Multiplicity is understood (in Fig. 1 and below) as the number of
events in the bin normalized by the total number of events. Evidently, the model generates quan-
tities whose distributions are almost identical, as indicated by the values of the Kullback—Leibler
divergence shown in the graphs as well as the logarithmic ratios of GAN to PYTHIAS predictions
given for each graph.
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Fig. 1. Distributions of quantities p,, 6, ¢ for positrons e* (a, b, c)
and negative kaons K~ (d, e, /) at initial energy E, = 50 GeV.
The data were obtained using GAN (gray curves) and PYTHIAS (black).
The corresponding values of KL divergence (kl-div) and graphs of the logarithmic ratio
of GAN to PYTHIA8 (GAN/PYT) predictions are given for each distribution.
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Fig. 2. Graphs similar to those shown in Fig. 1, but for muons u~ (a, b, ¢)
and positive kaons K* (d, e, f) at the initial energy E, = 20 GeV
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Fig. 3. Distributions of quantities Xyp» Z, Q* for the reactions e p—en X (a, b, ¢)
and ep—en’X (d, e, f), respectively, at initial energy £, = 40 GeV.
The corresponding values of KL divergence (kl-div) and graphs of the logarithmic ratio
of GAN to PYTHIA8 (GAN/PYT) predictions are given for each distribution.
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Fig. 2 shows the distributions of the quantities p,, 0, ¢ for the muon p~ and the positive kaon
K*, obtained using GCC and PYTHIAS. These data demonstrate that the model can operate just
as accurately with different leptons and hadrons at different initial energies.

Fig. 3 shows the distributions of squared momentum transfer Q> = —¢* (¢ is the momentum
of the virtual photon), as well as the Bjorken variable Xy = Q*/2Pq (P is the momentum of the
incident proton) and the fraction of the energy of the virtual photon transferred to the had-
ron, z = PP, /Pq (P, is the momentum of the proton) for nuclear reactions e p — en"X and
e p — en’X, where X denotes all other reaction products.

It follows from the presented results that the distributions generated by the model only differ
slightly, as indicated by the values of the KL divergence obtained for each distribution.

Fig. 4 shows the distributions of the quantities Xy @’ for the reactions e'p — e*n*X and
e'p — e'K X, Analyzing the obtained data, we can conclude that the accuracy of GAN predic-
tions is preserved relative to real data from PYTHIAS for different types of leptons and hadrons
and different initial energies.
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Fig. 4. Distributions of quantities x, z, Q* for reactions e p — e” n X (a, b, ¢)
and ep — en’X (d, e, ﬁ at initial energy £, = 30 GeV
The corresponding values of KL divergence (kl-div) and graphs of the logarithmic ratio
of GAN to PYTHIA8 (GAN/PYT) predictions are given for each distribution.

Conclusion
We developed a generative-adversarial network model that can predict the characteristics of

final-state leptons (e*, e”, u*, u7) and hadrons (n°, n*, ==, K*, K7) in semi-exclusive deep inelastic
lepton—proton scattering in the initial energy range of 20—100 GeV.

We established that the above-mentioned GAN model is capable of faithfully reproducing
four-momentum components of final-state Ieptons and hadrons.

It was confirmed that the model constructed can calculate the distributions for particles with high
accuracy based on the transverse momentum p.. of the particles, the azimuthal (¢) and polar (6) angles,
the Bjerken variable x,, the energy fractions zof the virtual photon and the square momentum ( trans-
ferred by the lepton to the hadron. The distributions of these quantities show high accuracy relative to the
real data, proving that the model is capable of preserving the internal relationships between the values.

We also established that the GAN model accurately predicts the characteristics of leptons
and hadrons both for the initial energies at which the model was trained and for the interpolated
energies (intermediate values).
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