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Abstract. This paper continues a series of articles devoted to developing the capabilities of 
a deep inelastic lepton-proton scattering event generator based on the generative adversarial 
network (GAN). The investigation has focused on semi-inclusive reactions of deep inelastic 
scattering and, particularly, on hadron registration. The results confirmed that GAN could 
accurately generate distributions of physical properties of leptons and hadrons. It worked for 
different types of leptons and hadrons in the range of initial energies from 20 to 100 GeV in the 
center-of-mass system. The GAN demonstrated to preserve the inherent correlation between 
the characteristics of leptons and protons.
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Аннотация. Данная работа продолжает цикл статей, посвященных развитию 

возможностей генератора событий глубоко неупругого лептон-протонного рассеяния на 
основе генеративно-состязательной сети (ГСС). Здесь рассмотрены полуинклюзивные 
реакции глубоко неупругого рассеяния с регистрацией адрона. Показано, что ГСС позволяет 
с высокой точностью генерировать распределения физических характеристик конечных 
лептона и адрона в диапазоне начальных энергий 100 – 20 ГэВ в системе центра масс.

Ключевые слова: полуинклюзивное глубоко неупругое рассеяние, машинное обучение, 
нейронная сеть, генеративно-состязательная сеть 
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Introduction
Modern experimental research in high energy physics deals with increasingly large datasets [1], 

collected from large-scale experiments or simulation results. Processing these data requires high 
computational costs and much time.

Machine learning methods offer an approach to solving the above-mentioned problems [2], 
allowing to construct computer simulation software (called event generators) with the following 
new capabilities:

using the experimental results on interactions of particles and nuclei at discrete points to pre-
dict the characteristics of secondary particles at any energies in the given range based on interpo-
lation (and possibly extrapolation) quickly and without high computational costs;

the above-mentioned software can be developed even without experimental results, using the 
simulation results for interactions of particles and nuclei obtained by the Monte Carlo method [3].

A generative-adversarial network (GAN) was described in [4] to create a generator for inclu-
sive deep inelastic lepton–proton scattering.

This paper continues the research in this direction, extending the capabilities of the given event 
generator [4] to semi-inclusive deep inelastic scattering with hadron production.

The goal of the study was to build a generator that can be trained on experimental data (or 
those obtained by computer simulation), allowing to collect intermediate data based on interpo-
lation and extrapolation, since the experiment cannot be carried out at arbitrary initial energies.

There are several reasons for the interest in semi-inclusive processes.
First, the production of an additional hadron allows to learn more about the structure of the 

proton. Thus, the type of hadron produced by lepton–proton interaction depends on the flavor of 
the quark in the proton that the virtual photon emitted by the charged lepton interacted with [5].
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Secondly, the characteristics of an additional hadron can carry information about the processes 
of parton hadronization [5].

Thirdly, various spin and azimuthal asymmetries can be measured during semi-inclusive pro-
cesses, allowing to gain an understanding on the spin structure of the proton [6].

Methodology

The characteristics of the final state of the charged lepton (e+, e-, μ+, μ-) and hadron (π0, π+, 
π-, K+, K–) are their four-momenta pl = (El,pl) and ph= (Eh,ph) respectively, where El is the total 
energy of the scattered lepton; pl, pl are the four- and three-dimensional momentum vectors of 
the lepton, the latter determined in terms of its components pxl, pyl, pzl; Eh is the total energy of 
the hadron, ph, ph are four- and three–dimensional momentum vectors of the hadron, and also 
the components of the latter, pxh, pyh, pzh.

For GAN to predict the four-momenta of various hadrons (π0, π+, π–, K+, K–), their types (as 
well as the types of lepton) are fed to the input of the GAN as additional parameters along with 
the initial energy E 0, defined as E0 ≈ √slN/2, where √slN is the initial energy in the lepton–proton 
center of mass frame [4].

Since it is currently impossible to experimentally obtain the characteristics of final-state lep-
tons and hadrons (due to the lack of experiments), the finite states of leptons and hadrons were 
obtained using the PYTHIA8 software package [7].

For each type of lepton (e+, e-, μ+, μ-) and hadron (π0, π+, π–, K+, K–), 100,000 events were 
generated at initial energies √slN = 20, 40, 60, 80 and 100 GeV. The four-momentum values of 
the final-state lepton and hadron were obtained from each event (real data).

Following the approach in [4], we solved the problems associated with irregularities in the 
distributions of the quantities El, Eh and pzl by generating, instead of the actual quantities El, Eh, 
pzl, the quantities obtained by their transformation (transformed quantities):

0( ) log[( ) (1  GeV )],zl zlT p = E p c−

0( ) log[( ) (1  GeV )],l lT E = E E c−

( ) log[( ) (1  GeV )].h hT E = E c

As established in [4], the distribution over the transformed quantities becomes smoother, pre-
venting predictions of unphysical values.

Also similarly to [4], the event generator in this study is based on GAN with a least square 
loss function [8].

The generator consists of 5 layers of 512 neurons each with a Leaky ReLU activation function 
and a dropout of 0.2 [9]. A 128-dimensional noise vector (a vector of values obtained from a 
Gaussian distribution with the mean equal to 0 and the variance equal to 1), energy E0, lepton 
type and hadron type are fed to the generator input. The generator outputs 8 characteristics:

pxl, pyl, T(pzl), T(El), pxh, pyh, pzh and T(Eh),
corresponding to lepton and hadron.

Based on these characteristics, the model calculates additional values used to increase the 
accuracy of GAN predictions [4]:

2 2= ,Tl xl ylp p + p  2 2=Th xh yhp p + p  are the lepton and hadron transverse momenta,  

respectively; 
= arctan( ),l zl Tlp pϕ  = arctan( )h zh Thp pϕ   are the lepton and hadron azimuthal angles, 

respectively; 
= arctan( ),l yl xlp pθ  = arctan( )h yh xhp pθ  are the lepton and hadron polar angles, respectively.

All additional quantities are then fed to the discriminator input during training.
The discriminator also consists of 5 layers of 512 neurons each with a Leaky ReLU activation 

function and a dropout of 0.2 [9]. A dropout layer with a rate of 10% [11] is applied to each of 
the layers to prevent overfitting of the discriminator, randomly dropping 10% of the layer weights. 
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Spectral normalization is additionally applied to all layers for more stable training [12]. The 
output layer consists of a single neuron with a linear activation function. The higher the value 
obtained, the more confident the discriminator is in identifying the given values as realistic.

The model was trained for 400 epochs. RMSProp was used for gradient descent optimization, 
with ρ = 0.9 [13], 1·10–4 training steps for the generator and 5·10–5 for the discriminator. Using 
different training steps contributes to better training convergence, as shown in [14].

The Kullback–Leibler (KL) divergence was used as a measure of the divergence between the 
real data and those generated by GAN [15]. This measure was used to compare the histograms 
of the obtained distributions. In this case, the Kullback–Leibler divergence DKL is defined as 
follows [15]:

1
( ) log ,

n
i

KL i
i i

pD P Q p
q=

=∑

where P, Q are the distributions of the real and generated data, respectively; pi, qi are the proba-
bilities of the ith bins of histograms for real and generated data; n is the number of bins.

Simulation results 

Since there is a wide range of scattering scenarios (different types of leptons and hadrons as 
well as different initial energies E0), only some of the individual cases are given below to illustrate 
GAN’s predictive capabilities.

Fig. 1 shows the distributions of pT, θ, φ for the positron e+ and the negative kaon K–, obtained 
using GAN and PYTHIA8. Multiplicity is understood (in Fig. 1 and below) as the number of 
events in the bin normalized by the total number of events. Evidently, the model generates quan-
tities whose distributions are almost identical, as indicated by the values of the Kullback–Leibler 
divergence shown in the graphs as well as the logarithmic ratios of GAN to PYTHIA8 predictions 
given for each graph.

Fig. 1. Distributions of quantities pT, θ, φ for positrons e+ (a, b, c)
and negative kaons K– (d, e, f) at initial energy E0 = 50 GeV.

The data were obtained using GAN (gray curves) and PYTHIA8 (black). 
The corresponding values of KL divergence (kl-div) and graphs of the logarithmic ratio 

of GAN to PYTHIA8 (GAN/PYT) predictions are given for each distribution.
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Fig. 2. Graphs similar to those shown in Fig. 1, but for muons μ– (a, b, c) 
and positive kaons K+ (d, e, f) at the initial energy E0 = 20 GeV 

Fig. 3. Distributions of quantities xBj, z, Q
2 for the reactions e-p→e-π-X (a, b, c) 

and e-p→e-π0X (d, e, f), respectively, at initial energy E0 = 40 GeV. 
The corresponding values of KL divergence (kl-div) and graphs of the logarithmic ratio 

of GAN to PYTHIA8 (GAN/PYT) predictions are given for each distribution.
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Fig. 2 shows the distributions of the quantities pT, θ, φ for the muon μ– and the positive kaon 
K+, obtained using GCC and PYTHIA8. These data demonstrate that the model can operate just 
as accurately with different leptons and hadrons at different initial energies.

Fig. 3 shows the distributions of squared momentum transfer Q2 = –q2 (q is the momentum 
of the virtual photon), as well as the Bjorken variable xBj = Q2/2Pq (P is the momentum of the 
incident proton) and the fraction of the energy of the virtual photon transferred to the had-
ron, z = P·Ph/P·q (Ph is the momentum of the proton) for nuclear reactions e–p → e–π–X and 
e–p → e–π0X, where X denotes all other reaction products.

It follows from the presented results that the distributions generated by the model only differ 
slightly, as indicated by the values of the KL divergence obtained for each distribution.

Fig. 4 shows the distributions of the quantities xBj, z, Q
2 for the reactions e+p → e+π+X and 

e+p → e+K–X. Analyzing the obtained data, we can conclude that the accuracy of GAN predic-
tions is preserved relative to real data from PYTHIA8 for different types of leptons and hadrons 
and different initial energies.

Conclusion
We developed a generative-adversarial network model that can predict the characteristics of 

final-state leptons (e+, e–, μ+, μ–) and hadrons (π0, π+, π–, K+, K–) in semi-exclusive deep inelastic 
lepton–proton scattering in the initial energy range of 20–100 GeV.

We established that the above-mentioned GAN model is capable of faithfully reproducing 
four-momentum components of final-state leptons and hadrons.

It was confirmed that the model constructed can calculate the distributions for particles with high 
accuracy based on the transverse momentum pT of the particles, the azimuthal (φ) and polar (θ) angles, 
the Bjerken variable xBj, the energy fractions zof the virtual photon and the square momentum Q2 trans-
ferred by the lepton to the hadron. The distributions of these quantities show high accuracy relative to the 
real data, proving that the model is capable of preserving the internal relationships between the values.

We also established that the GAN model accurately predicts the characteristics of leptons 
and hadrons both for the initial energies at which the model was trained and for the interpolated 
energies (intermediate values).

Fig. 4. Distributions of quantities xBj, z, Q
2 for reactions e–p → e– π–X (a, b, c) 

and e–p → e–π0X (d, e, f) at initial energy E0 = 30 GeV
The corresponding values of KL divergence (kl-div) and graphs of the logarithmic ratio 

of GAN to PYTHIA8 (GAN/PYT) predictions are given for each distribution.
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