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ABSTRACT

The problem of obtaining left~right asymmetry of fermion quantum
numbers in Raluza—-Klein theory is discussed. 1In the absence of elementary
gaug; fields, a theorem by Atiyah and Hirzebruch states that the Dirac equa-
tion in 4+n dimensions always leads to vector-like fermion quantum numbers in

four dimensions. The proof of this theorem is sketched. It is shown that

the same holds for the Rarita-Schwinger operator on homogeneous spaces but a

general impossibility theorem for the Rarita~Schwinger field is not proved.
{However, in view of the apparent restriction of supergravity to d < 11 this
line of approach is severely constrained,) Also discussed are some Kaluza-
Klein theories with elementary gauge fields, some difficulties in obtaining
massless charged scalars, and some speculations asbout the cosmological con-

stanc.

*Research supported in part by the National Science Foundation under grant
No, PHYB0-19754.

1. INTRODUCTION

Kaluza—Klein theory! has recently attracted increasing interest as &
progran for unifying gauge interactions with gravity. This theory can be
viewed? in terms of spontaneous symmetry breaking, the compact and nonl
compact dimensions being on an equal footing as Enr-as the lawa of nature are
concerned, just as the photon and the massive vector mesons are treated sym—
merrically in the standard weak interaction models, This simple obgervation
is one of the chief reasons for the revived interest? in Kaluza-Klein theory.

One may start with a general relacivistic theory in 4+n dimensions, and
assune the grand state to be M'xB, where M" is four dimensional Minkowski
space and B is & compact epace. Continuous symmetries of B will always be
cbserved" ss gauge symmetries in the effective four dimensionsl world., The
gauge fields (which in general can be wore numercus than the extra dimep-
sions) originate in the normal wode expansion of the fluctuations in the 44n
dimensional metric tensor. For instance, starting in eleven or more dimen-
sions, one can **5 obtain gauge fields of SU(3)x8U(2)«{1). Huch of this
paper will be devoted to the consequences of assuming that all obzerved gauge
forces originate in this way, as part of the metric tensor, from a theory
which originally had no elementary gauge fields. However, this is not neces-
sarily the only attrsctive possibility, It might be equally attractive to
start with a unified theory (perhaps a supergravity® or superstring’ theory)
that determines the original gauge group. (For instance, one of the n=2
supergravity theories in ten dimensions requires the existence of a U(1)

gauge field,) Our remarks in section VI will be relevant to such theories.

*
I.e., transforwations that leave fixed both the geowetry of B and the
expectation values of any matter fields that may be present.



As soon as one begins to think about Kaluza-Klein theory, one faces a
bewildering variety of choices. There are many assumptions one might make,
and many facts about elementary particle physics one might try to explain.

It appears unlikely that at the present time we can guess correctly the whole
detailed form of the 4+n dimensional laws and all the key points of the
dynamics, For these reasons, it seems important to isolate problems that can
be addressed without claiming to understand all the detaile of a theory., As
will become apparent, the problem of trying to predict the quark and lepton
quantum numbers is such a problem, and it will be our main interest in this
paper. However, we shall also make some remarks on certain other qualitative
problems: the gauge hierarchy problew and the problem of the cosmological
constant.

Since we will deal mainly with the problem of the fermion gquantum num-
bers, it is worth while to briefly recall some aspects of that problem as it
presently appeurs.v

One of the most striking aspects of particle physics is that left
handed fermions transform under S(3)>SU(2)xH{1) differently from the way the
right handed fermions transform. (The quantum numbers are not "vector-
Like".)

For instance, left handed quarks are SU(2) doublets but right handed
quarks are SU(2) singlets. Equivalently, oue may say that the fermions of
given helicity form a complex representation of SU{3)xsU(2)xU(1). The fer-
mions of one generation transform under SU{3}xSU(Z)xy{l) as (3,231/3 9
(3,1)"% 3¢ (3,1)2/3 ¢ (1,102 @ (1,2)"! which is a so-called complex repre-
sentation (in other words, it is nat equivalent to its complex conjugate,

which is (3,2)" %3 (3,430 (3,1)"2/3 s (1,1)"2 @ (1,4} by CPT, this is

the representation furnished by the right-handed fermions). This fact is of
utwost importance, because it means that bare masses of the quarks and lep-
tons are forbidden by gauge invariance. The quarks and leptons can acquire
mass only when 5U(2)»(1) is spontanecusly broken. This, in turn, meand that
the quarks and leptons cannot be much heavier than the mase scale at which
5U(2){1) is broken; they cannot have masses of order, say, the Planck mass.
The relative "lightness” of the fermions would therefore be explained if the
"gmallness” of the SU(2) {1} breaking scale were understood; it is not an
independent problem. In this paper we will assume, in accord with the
"survival hypotheeis"® that the only light fermions are fermions that are
required to be light by gauge invacriance; this assumption will not always be
explicitly stated.

Tﬁe fac:.that the quantum numbers are wot vector-like means that the
spectrum of light fernionu‘ depends only on the "universality class" of an
sU(3)xsU(2) (1) invariant theory. The tightness of the light fermions and
their quantum numbers cannot be wodified by any SU{3)xsU(2)xuU(1l) invariant
perturbations. We do not kuow at what length scale the spectrum of light
fermions is determined, but it may be that this reflects physics at the
smallest length scales.

0f course, there is no experimental proof that mirror fermions with V+A
couplings to the usual W mesons will not be found, restoring the vector-like
nature of the fermion spectrum. But there are many reasons to doubt that

this will occur. Tf mirror fermions are discovered, we will lose our

* .

By the "spectrum of light fermions" we means the gquactum numbers of the
light fermions. We will usually speak of the quarks and leptons as if they
were massless, ignoring the SU{2)xU(l) breaking. )
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theoretical understanding of why the quarks and leptons are ¢ H, in mass.

(Of course, in any case we don't understsnd why some of the fermions are so
wuch Lighter than'Hu.) 1f mircor fermions do exist they fail te a remarkable
extent to mix with the usual fermions; the first generation fermions are very
light and bave almost pure V-A weak interactions. If mirrors do exist it is
odd that none of the fourteen SU{3)x50U(2)xU{!) multiplets observed so far
appear to be mirrors. This is all the more remarkable in that the mirrors
cannot weigh more than at most a few hundred CeV (since they do not mix with
usual fermions, their bare masses are forbidden by SU(2)xU(1)}. Finally, and
perhaps most convincingly, the triangle anomalies cancel among the observed
quarks and leptons. This cancellation appears to be a rather striking con-
firmation of current ideas, but if mirrors exist it is just an elaborate and
unnecessary charade, since the mirrors would automatically cancel the anoma-
lies of the known fermions, whatever those anomalies might be,

What i¢ more, the fermion representation is complicated {each family
consiste of five irreducible representations of SU(3Ix§U(2)xU(1)) and redun-
dant (there are three families). On the firet point, no doubt the SU(5) and
0{10) grand unified theories are the wost successful efforte to date {a
family is EL*IOL in SU(5), or 16L in 0{10)). On the second point —— which is
an updated version of Rabi's question "who ordered the muon?" —— there is no
equally convincing answer. It is natural to try to embed the three families
as one irreducible representation of a bigger group. Perhaps the moat
attractive such idea is to use the spinor representation9 of O(N) for N218,
The spinor representation of O(H) is the representation space of N pamma
matrices, which automatically furnishes a representation of any subset of the
gamms matrices; so the O(N) spinor transforms as a sum of spinor representa-

tions of any minimally embedded O{k} subgroup. For instance, the irreducible

spinor of 0(18) transforms under 0(10) as four families plus (unfortunately)
four antifamilies. This beautifully achieves the desired multiplicity, but
it is not easy to eliminate the antifamilies. One may invoke a "hypercolor”
force which becomes stromg at ~I Tev, breaking SU(2)«I(1} and confining the
antifamilies. This elegant idea 10 has innumerable difficulties in detail.
In this paper, difficulties will be much more conspicuous than phenomenolog-
ical successes, but we will note, in section VI, that Kaluza-Klein theory
gives an alternative way to avoid antifsmilies in the O(N} approach to the
family problem.

A discussion of zero modes of non~trivial Dirac operators in Kaluza-
Klein theory was apparently first given in a special situation by Palla.ll
In (4), in connection with a discussion of some pseudo-realistic models, the
det;iled proposal was made that the quark and lepton quantum numbers are
determined by the topology of a manifold with SU(3)xsU(2)xU(l) sysmetry. The
importance and difficulty of obtaining a complex representation were pointed
out. Chapline and Slansky and Manroni? dilcu!;ed the problem of cbtaining a
complex spectrum in Kaluza-Klefn theory; they anticipated the kinematical
analysis of section II and some of the ideas of section ﬁ[. The kinematical
analysis has been recently developed in much more detail by h‘etterich,13 who
worked out all of the kinematical consequences of the mod 8 periodicity of
the spinor represenation of O(N), He also introduced in a different language
the wathematical concept of the character valued index, which as we will see
plays a very important role. Models exhibiting many of the ideas of section

*
V1 have been analyzed by Randjbar-Daemi, Salam, and Strathdee.?¥  As regards

*
1 understand, in addition, that these authors have considered {unpublished)
some of the detailed models in section VI.



fermion quantum numbers, the novelty in the present paper is primarily the
restrictions disussed in sections IV and V and the more realistic models in
section VI.

our conclusions will be as follows., If all gauge fields are part of
the metric tensor, then a theorem of Atiyah and Hirzebruch!® states that the
Diraé operator in 4+4n dimensions always leads to vector-iike quantum oumbers
in four dimensions. {The relevance of this theorem to Kaluza-Klein theory
was first noted in reference (16).) For the Rarita-Schwinger operator the
situation is more complicated. We will show that if the hiddeé dimensions
form a homogeneous space the Rarita-Schwinger operator likewise always leads
to vector-like quantum nusbers. What happens in general for the Rarita-
Schwinger operator on spaces that are not homogeneous I do not know. How-
ever, the fact that supergravity is apparently restrictd to d £ 11,17 and
certain other facts discussed in section V, indicate that this avenue is not
promiging., If one is less ambitious and introduces elementary gauge fields
in 4n dimensions, it is possible but still subtle to get complex representa-
tions. Indeed, as we will see in section VI, one can naturally get very big,
complicated, duplicated representations. In section VII, we discuss some
other ways that the assumptions might be modified.

We will encounter considerable difficulties in our stteampts to inter-
pret the fermion quantum ouwbers as the solution of an index problem. Never-

theless, this seems to be a quite attractive idea.
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Il. PRELIMINARLES
Let us first recall how =- in a Kaluza-Klein thecry with ground state
MY%B -~ massless particles originate as zero wodes of appropriate wave
operators on B. A massless Dirac particle in 4+o dimensions obeys
44n
o=pv= 1 r"uuq; ()
i=]
vhere Pu, i=l ... 4+n, are the gaoma matrices. Notice that we may as well use
the minimal Dirac equation. Even if non-minimal terms {couplings to matter
fields or mon-minimal couplings to gravity) are present, they cannot change
the quantum nwumbers of massless fermions in a complex representation of the
syemetry group. This is an illustration of the fact that the problem of fer-
mion quantum numbers depends only on the "universality class" of a theory.

We do not have to believe we know which Dirac operator is physically rele-

4
vant. If we define the four dimensional Dirac operator/ﬁ(“) L) r¥ Du and

=1
(s) 44n
the internal Dirac operator F = E FJDj, then (1) becomes
j=3
0 -/ﬁ“) v +/!;(t't) v @)

We see :hat/ﬂ(n) is the wass operator, in effect. 1Its eigenvalues sre
observed in four dimensions as the particle masses. 1Its zero eigenvalues are

the massiess fermions.
A similar discussion can be made for the Rarita-Schwinger operator.

There are many, equivalent ways® to write the 4+n dimensional Rarita-

Schwinger equstion. One way is
W
o=t {0 v -0, ¥) (3)

where Y a is the Rarita-Schwinger field (u = l...4%n is a vector index; a is



a spinor index). In the gauge T ¢u = 0, (3) reduces to : The crudest problem, which was pointed out in (4), arises in an odd

o number of dimensions. For odd n, the group 0{n) only has on¢ spinor repre-

0= D ¥
Bow R . R . R

sentatien. Likewise, the group O(l, 3+n) has only one spinor representation,

(4) {n) . L
=8 ¥, + ¥ n ¥, (4} which transforms under 0(1,3) x 0(n) as the product of the four component

Again zero modes of,ﬁ(n} are observed as massless particles in four dimen- spinor of 0{1,3) with the unique spinor of O(n). This being so, fermions

sions. The general zero mode is & sum of modes of two specisl kinds. Fer that are left or right handed in four dimensions transform the same way under

v = [.__4'/y(“) is the ordinary spin 1i2 Dirac operator, and the zero modes transformations of the internal space, They obey the sawe Dirac equation in

are spin 3/2 fermions in four dimensions, For v = 5...4+n, the zero modes the internal space {moduloc mon—minimal terms which cannot affect the quantum

have spin 1/2 as seen in four dimensions, while their dependence on the numbers) so they have the same quantum numbers and furnish a real repesenta-

compsct dimensions is determined by the gauge condition and the Dirac-like . tion of any relevant symmetry group.

In an even number of dimensions the situation is more subtle. For evenn

equation:
4en the operator f=rt... ™ anticommutes with all r', so it is a c-number in
v .

0= r
Ugs yV - any representation of the Clifford algebra. Since P2-1 (depending on n)
44n : the representation space of the Clifford algebras decomposes into two

0= E b ¥ (5) . r . . X . A i
=5 u v eigenspaces of T, the eigenvalues being %l or *i. Since [ commutes with the

These conditione, taken together, are equivalent to the gauge invariant 0{n) group generatocs }/4{I*, 1], the group has two inequivalent spinor

p AR
internal Rarita-Schwinger equation representations, labeled by the eigenvalue of T.

440 In a world of 4+n dimensions we define
™M ¢ -D ¥)=0
=5 By vy T=orir2 ., r&+n

ve 5 .., 4n (6} ) oopipz

in a particular gauge. (We temporarily introduced a gauge fixiog conditiom
I.Im: = 576 .. rfotn o

only to decouple the Minkowski dimensions from the compact ones.,) We see

the i Rarita—Schwinger operator become massless * 2 N i . . . :
that zera modes of the internal a-3e & P For odd n, [ commutes with the T" and is & c-number in an irreducible repre~

spin 1/2 fermions in four dimensioms. sentation of the Clifford algebra. The cliffori algebra thus has two inequi-

i valeat representations, labeled by the sign of I. They are related to each
Now, can either of these operators have zero eigenvalues? And can the other by '+ -r' (which for odd n yields T + -1, and they are equivalent as

. . i i i
zero eigenvaluss form complex represeatations of a symmetry group? representations of 0(n} since under [ + ~T the group generators el rdj

are unchanged.
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These operators have simple interpretations. I labels the spiror representa-

tions af O(I, 3+n). F(&)

measures the helicity of four dimensional fermions.
Int B . . .
And "% lables the spinor representations of O(n); it measures what wight

be called the internal helicity. These operators cbey the simple relation

+

T r(ﬂ).r[nt 8)
This equation has an important consequeace. For fixed T, the four dimension-
al and internal chiralities are correlated. [f. we start with a fermion field
restricted to (say) oI in 4+a dimengions, it breaks down under 0{1,3)x0(n}
to tomponents with*

nr(&) YRS L LS

or

nr(ﬂ) .t rInt - )

Fermions of left or right handed physical helicity are left or right handed
in the internal space. They obey different Dirac equations, whose zero modes
oight have different quantum numbers.

This idea quickly runs into trouble if the number of dimensions is
divisible by four. In &4k dimensions, T ies odd under CPT. This may be seen
readily in a Majorana basis, with real gamma matrices. In such a basis CPT
acts on spinors just by complex conjugation. T (as defined in (7)) is real
in & Majorana basis, but in 4k dimensions it may be readily seen to obey
{D2= -1. The eigenvalues of T are #i, Being complex conjugates, the
eigenvalues of T are related to each other by CPT, and CPT requires that

there be equal numbers of fields with = +i and T = -, Hence there is no

*
Here M is a phase factor that will be determined womentarily. It can be

ignored for the time being.
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net correlation between four dimensicnal chirality and internal chirality.
Fields of T = i giye one correlation and fields of T = ~i give the opposite
correlation. Thus, in 4k dimensions, CPT requires that the gravitational
interactions be vector-like. MNaturally, thervefore, if the weak inéer;iions
ate part of the gravitational force in 4#n dimensio;s, the weak interactions
are also vector-like. Alternatively, one may uay13'18 that in 4k dimensions,
bare masses are possible for any fermions coupled to gravity only. Such a

theory will, of course, always reduce to an sppropriate four dimensionsl

" theory in which bare masses are still possible,

In 4k+2 dimensions, the situation is very different. In this cage I¢ =
+1 go T has eigenvalues %l. CPT leaves T unchanged, and we can consider a
theory vith fermions of (say) T = +1 only. (This option is forced on us in
certain situations, for instance in certain ten dimensional supersywmetric
field theories and string theories.) This corresponds roughly to a theory
with ¥-A gravitational interactions that forbid fermion bare masses; the
question is whether V-A gravity can reduce to V-A weak interactions in four
dimensiocns.

The special role of 4k+2 dimensicns in multi-dimensional field theory
was first raised in constructing supersyometric Yang-Mills theories.1? Ip
the context of analyzing fermion quantum numbers this point was made and
developed in references (13} and (14). Similar observations are ipportant in
grand unified model—building.9 In the mathemstical literature the periodici-
ty of the spinor representation is an old observation.?2l

Let us now work out the phase factor n of equation (%), We note that

(&)

is (in a Majorana basis) a real matrix whose square is -1, so

{4}

as define¢ T

the eigenvalues of T are i, In 4k+2 dimensions T'"% likewise has square
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-1 and eigenvalues ti. (in 4k dimensions (Flnt]z “ +]1,) A fermi field that

obeys T= I+ P18 = 4} therefore has
(8 ot
or {10)
(e 4. plee

A CPT transformation will complex conjugate the eigenvalues, so eigenvalues
of type (A} and (B} are exchanged by CPT. This is as it should be . A zere

Int

mode of the internal Dirac or Rarita-Schwinger operator with T = =i cor-

responds to a left handed massless fermion in four dimensions, 1Its complex

conjugate will have Plnt

= +i and corresponds to & right handed massless
fermion in four dimensions. Massless fermicns in four dimensions will trans-
form in a complex represcntation of some symmetry group G if éhe zero modes
of the internal Dirac operator with et . ~i form a complex representation

Int

of G, or equivalently, if the zero modes of T = +i transform differencly

from those of P = —j,

Since the remainder of this section and the next one will deal with
“ehiral theories of gravity" with elementary fermi fields of a definite value
of T, it should be mentioned at the outset that these theories suffer from a
major problem, The fermion ¢ne loop diagrams in an external gravitational

field are anomalous.18

{The anomaly first appears in a diagram with &4k+2

external gravitons.) 1In a few specizl thesries in six or ten dimensions the
anomalies cancel between fields of different spin; beyond ten dimensions this
is impossible. We will not limit ourselves to the inomaly free theories but

will investigate the fermion quantum numbers that emerge (at the tree level)

in the whole class of chiral gravity theories. There are several justifica-

=14~

tions for ignoring the anomalies. First, general methods for treating the
whole class of chiral gravity theories are as simple as any special methods
for analyzing the particular anomaly free theories. And the general wethods
are likely to be important for other attempts to calculate fermion quantum
“numbers in Kaluza-Klein theory; for instance, we shall apply them from a
different standpoint in section VI. Second, it may happen that in the future
a massless field of some exotic spin might be successfully coupled to
gravity, This could expand the room for cancellation of ancmalies without
affecting our tree level considerations for spin 1/2 and spin 3/2 fields.
Third, though it seems unlikely, perhaps there is some way to make sense of
anomalous field theories or of other theories whose low energy limit is-an
anomalous field theory.

A rather simple argument due essentially to Lichnerowicz2! severely
limits the possibility of obtaining zero modes of the Dirac operator in com-
plex represenations of a symmetry group. Lf one squares the internal Dirac
operator (which will simply be denoted if; we hen;eforth auppress the four

Hinkowskian dimensions) we find
. i 1 i3
(‘ﬂlz = “minl Y {TI'YJ][Di'Dj]
Pl P .
= -0t - 35 (VLY Rijue

i 1
-—min +pR (11)

Since -EDiDL is a non-negative operator, this shows that if R > 0 everywhere
the Dirac operator has no zero eigenvalues. Of course, in (11) we have con-
sidered a minimally coupled Dirac operater., Lf non-minimal couplings ere

present, the Dirac operator may have zero ¢igenmvatues, But the fact that the
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minimally coupled operator has no zero eigenvalues at gll, and leads to no
massless fermiocns in four dimensions, means that even in the presence of
minimal couplings, the zero eigenvalues form real representations of whatever
symmetry group may be present.* A particularly important case of thiz is the
foliowing. Suppose the compact space B has a symmetry group G. In general
there will be many G-inveriant metrics on B. If even one of thew has R > 0,
then for any G-invariant metric on B, the zero modes of the Pirac operator,
if any, form a real representation of §. (0f course, under these circum
stances the Dirac operator will generically have no zero eigenvalues.)

Huch of the literature on Kaluza-Xlein theory has concerned homogenecus
spaces B = G/H, G and H being compact non-ebelisn groups, These spaces sli
admit a canonical G-invariant metric of positive scalar curvature, so (even
if non-minimal terms are added or a different G-invariant metric is ueed) -
they give real representations for zero eigenvalues, Hore generally, a
thecrem by Laﬁson and Yau?? showa that on any compact space B {not necessari-
ly a homogeneous spsce) with a non-abelimm symmetry G, there is & G-invariant
metric of positive scalar curvature R, For non-abelian groups such as SU{3)
»SU{2)x1{1), this rules out the possibility of getting zero modes of the
Dirac operator in complex representations.

This simple line of argument does not address the question (of concep-
tual but probably not of practical interest) of whether zero modes of the
Dirac operator can form 4 complex representation of an abelian symmetry
group, (Manifolds with a continuous abelian symmwetry group in general do not

adoit an invariant metric of positive scelar curvature.} Much more important,

*
This should be obvious "physically" from the connection with fermion quantum
oumbers in four dimensions. The precise mathematical srgument will be given
shortly.
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this line of reasoning does not extend to the Rarita-Schwinger operator

whose squarte is more complicated than {11} and is not manifestly positive
even if R > 0. TFor this reason, the Rarita-Schwinger operator can have zero
eigenvalues more readily than the Dirac operator. For instance, in’ four
dimensions there is one compact manifold that is not flat but obeys Ry . 0.
It is the K3 surface, and for topological reasons it has two zere eigenvalues
of the Dirac operator and 42 gero eigenvalues of the Rarita-Schwinger
operator,

In multi-dimensional supergravity and superstring theories —— which are
the only known theories in which fermions are really unified with gravity -~
we inevitably are dealing.uith Rarita~Schwinger fields. It therefore is
important to learn to analyze the zero modes of these fields.

There is another no-go theorem, due to Atiysah and Hirzebruch,1S vhfch
for our particular problem is much wmore restrictive than the reasening
sketched above. They proved precisely that for any continuocus symmetry
group, abelian or non-abelisn, the Dirac zero modes form a real representa-
tion. As we will see, their srgument has important implications for the
Rarita-Schwinger case; for instence, we will use it to prove that if the
compsct space is & homogeneous .manifold, the Rarita-Schwinger operator always
leads to a real representation. We will present in section IV an elementary
procf of the Aciyah-Hirzebruch theorem thet fe closely related to the origin-
al argument. .

Why would a wave pperator have zero eigenvalues? And why would these
zero eigenvalues form complex representstions? We will illustrate the rele-
vant concepts in terms of the Dirac operator. 1In the rest of this paper, we

suppress the four Minkowskian dimensions and concentrate on properties of the
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n dimensional Katuza—Klein space B, To stresmline notation, gauma matrices
are henceforth gamma matrices P1, Pz, vees ™ of B, and we define an operator
? « i = (Pt I with eigenvalues I, Indices i, j, k refer to the
internal space; indices wu, v, arefer to all 4+n dimensions.

Let us define a "Hamiltonian” H = {%ﬁ)2_ Since [?, H] = 0, H eigen-
states can be chosen to be at the same time ? eigenstates., If Hy = E¥, then
H-iﬁ#- E+ify. So ¥ and iy are degenerate in energy, unless iffy = 0, But
since ﬁ‘l"\- -?‘,d, ¥ and ify have opposite eigenvalues of ? Consequently
(figure (1)), the H eigenvalues of non-zero energy are paired. For every
scate of ? = 1 there is a state of ? = -1, The zero eigenvalues
need not be paired ia this way. The number of zero eigenvalues otﬂ;’ith IP -
1 minus the number with ? = -] is calléd the index of }L

The index is invariant under arbitrary deformations of ﬂ'thnl preserve
the property ?ﬂ - -ﬁf: since no smooth distortion of fiéure (1) which pre-
serves the pairing st non-zero energy can disturb whatever chirality imbal-
ance mey exist at E = 0. In particular the index of ﬂ is a ropological
invariant, depending on the topology of B but not on its metric tensor.
Generically, in the absence of some symoetry principles (which can, however,
change the situation, as we will see)}, uera eigenvalues of ﬂ all have positive
chirality or all have negative chirality. This is so because zero eigen-
values of equal and opposite chirality would gain non-zero energy under a
generical perturbation.

Although the index is the simplest deformation invariant of the Dirac
operator that is relevant to the occurrence of zero modes, for our purposes
we need a slightly different concept. In 4k+#2 dimensions the index of the

Dirac operator always vanishes, for the simple reason that the positive and
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negative chirality zero modes of thé Dirac operator are complex conjugates of
each other (as we have seen earlier) and therefore equsl in number, The '
concept of interest to us is what mathematicians call the G-index or the
character~valued index of the Dirac operator. -

Let the manifold B have a symmetry group G. The eigenvalues of B or %ﬂ
will then form representations of G. Pick a representation Q, and draw the
same picture as before (figure (2)), but only counting multiplets in the Q
representation, We define indexq(ﬂ) to be the number of zero mode multiplets
in the Q representation of positive chirality minus the number of zero mode
multiplets in the Q representation of negative chirality. For reasons simi-
1ar to those given earlier, indexq{ﬁ) is invariant under nébitrary perturba-
tions that respect G symmetry and preserve the fact that #? = -eﬁ.

Of course, we can still complex conjugate our eigenstates of H. This
still reverses the eigenvalue of ?, but now it exchanges Q with its complex
conjugate representation Q. By complex conjugation (part (b) of figure (2}),
this implies that inder(ip) - —indexa(iﬁ). Upon reduction to four dimen—
sions, this implies the perfectly valid statement that the number of left
handed massless fermions in the Q representation equals the number of right
handed masstess fermions in the G representation.

An equivalent way to define the character-valued index is as follows.
The positive and negative chirality zerc wodes of U‘ form representationas AY
and K of G. For geG we define-

index(g) = trA+(g) - trﬂ_(g) {12)

Or equally well we define

index(g) = g indexq(i}b xQ(g) an
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where xQ(g) is the trace of g in the Q represencation.*

If the character-valued index is nonzero, iﬂ must have zero modes,
Cénerically. the number of zero modes will be the winimum requited to yield
the vight value of indexq(iﬁ) for each Q. The spectrum of zero modes
required by the character-valued index we will call the "stable spectrum" of
zero modes. We will usually assume that the actual spectrum of zero wodes
coincides with the stable spectrum and can be computed by evaluating the A
character-valued index. From the fact that SU{3)xSU(2)I(1) forbids bare
masses for all the known gquarks and leptons, it appears that this assumption
is valid im nature. A successful model would be one in which the character-
valued index consists of three families minus three anti-families.

Unfortunately, as we will see in section IV, the Atiyah-Hirzebruch
theorem ensures that the character-valued index always vanishes for the Dirac
operator in theories without elementary gauge fields. At least on howo-
geneous spaces, this is also true for the Rarita—Schwinger field. It is not
true {even on homogeneous spaces) for fields of spin 5/2 or larger; we will
discuss a counter example in section V¥ (but there does not seem to be any way
to use massless fields of spin »5/2 in physics 23), The character-valued
index also need not vanish in the presence of elementary gauge fields, and we
will construct some pseudo-realistic wmodels in section VI on the basis of
this fact.

As we will see, there are very powerful methods for calculating the
charac:ter—va!ued index of arbitrary operators. It is never necessary to

write down and solve an explicit diffevential equation.

*
This definition of index{g)} makes sense in 4k as well as 4k+2 dimensions,

though it is then not related to our physical problem, and we lose the
identity index(g) = {index{(g™!)) that follows from complex conjugation in

4k+2 dimensions.
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EIL. OPERATORS ON HOMOGENEOUS SPACES

For our first experience in calculsting the character-valued index of
various operators, we will consider the simple case in which the wanifold B
is a homogeneous space GfH. 1In that case, there is & particularly elewentary
vay 2% to compute the stable spectrum of zero wodes 'of the Dirac operator {or
any other G~invariant operator), Ome siwply expands the spinor fields on B
in harmonics (irreducible representations) of the grovp G. For any represen-
tation Q@ of G, let n,{Q) be the number of times the Q representation appears
in the harmonic expansion of positive chirality spinors, and let n_(Q) be the
number of times the Q representation appears in the expansion of negative
chirvality spioors. By standard theorems about homogeneous spaces gnd ellip-
tic operators, n,(Q) and u_(Q) are always finite, and 0,(Q) = n_(Q) for all
but finitely many Q. Horeover, inder(ﬁﬂ) = 0,(Q) - n_(Q). After all, the
index is the difference between the number of positive and negative chiralicy
multiplets, This difference normally must be regularized since there are
infinitely many states in Hilbert space, and the regulsrization veually
involves pairing off the states of equal, non-zero energy. In a howmogeneocus
space, working in a eubspace of Hilbert space defined by a definite represen-
tation Q reduces the problem to a finite dimensional problew. No regulariza-
tion is needed; inder(ip) is just the difference n,{(Q)} - n.{(Q) between the
number of positive chirality and negative chirality Q multiplets.

Let us illustrate these idess with some simple examples. Consider first
s particle of spin 1/2 wmoving on the ordinary two dimensional sphere S2, Let
¥ be the angular momentum operator, and define the "helicity” of a particle
at X to be the component of angular momentum about the X axis. It equals
21/2; it is +1/2 for statee of positive chirality, -1/2 for states of

negative chirality,
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It is well koown that a particle of helicity h can be in a state of
total angular momentum J=|k|, |n[+l, |h]+2, ... with each allowed value of J
appearing exactly once in the harmonic expansion. This is why Jal is the
lowest possible value for photons, and J=2 is the lowest possible value for
gravitons,

Whether the chirality is positive or negative, the absolute value of
the helicity of a spin 1/2 particle is 1/2. So the allowed values of angular

mowentum are the same for each chiralty:

A 1 3 5
T'=s 4] : J = L E' v
fao1 J-%, —;—% (14)

Now we can see that the Dirac operator on the sphere has no stable spectrum
of zero wodes. Since the Dirac operator commutes with J but reverses chiral-
ity, acting on (say) rthe multiplet of given J and chirality %I, the Dirac
operator gives either zero or else the multiplet of the sawe J and chirality
7t {see figure (3)). Since the Dirac operator is hermitian, it either ex-
changes these two multiplers or annihilates both of thewm. Therefore the
positive chirality zero modes have the same eigenvalues of J as the negative
chirality zero modes, and the character valued index vanishes.

This result could be obtained in various other ways. It follows from
the fact that the rotation group SU{2Z) has no complex representations, or
from the fact that a reflection of the two sphere reverses parity and ex-
changes the two chiralities, or from the fact that the two sphere with its
usual metric has positive scalar curvature so that (by Lichnerowicz's
theoren) the Dirac operator has no zero modes at all. WNow,however, we will
consider a slightly modified problem in which the character-valued index is

non-zero.

-2~

Place at the center of the sphere a magnretic monopole of strength eg =
n/2, for some integer n. The angular momentum operator now acquires an extra

25 4p% related to the quantization of magnetic charge. This adds eg to

piace
the fermion helicity, so that a fermion of chirality +1 has effective helici-
ty eg*l/2 and a ferwion of chirality -1 has effective helicity ep-1/2. 1f,

say, eg»0, the allowed values of angular momentum are now

A
F= +1 : J-eg+%, eg+%.eg+2,

A
Te-l: J-eg-l,es*%; ez+%,ez*%.--- (1s)

The ¢rucial point is now that states of J = eg - %‘exist for chirality -1 but
not for chirality +1. The Dirac operator must annihilate these states,
because acting on states of ? “« =], J = eg - %, the Dirac operator would give
states of ? = 4] and J = eg = %, and such states do not exist. Other multip-
lets cancel ocut as before (figure (4)), so the stable spectrum of zerov modes
is & single multiplet of ? = =1 and J = eg - %.

We will obtain this answer in a different way in section IV as an
illustration of a much more general and powerful method of calculating the
character~valued index of an operator. The technique for harmonic expansions
for C-invariant operators on a homogeneous space G/H does not seem to be well
known among physicists. It is explained, for instance, in Appendix IV of
Salam and Strathdee, reference (3). In later sections we will occasionally

state without detailed derivation results obtainable form harmonic expan-

sions.
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IV. THE ATIYAH-HIRZEBRUCH THEOREM

We now turn to the proof of the Atiyah-Hirzebruch theorem, which states
that the character-valued of the Dirac operator vanishes on any wanifold with
a continuous symmetry group (in any even numb_‘el-' of dimensions, though our
main interest is d¢ = 4k+2). The presentation will parallel a recent treat-
ment of Morse theory, 15 and is essentially a wore concrete version of the
original proof.

Let B be a compact Riemannian wanifold of even dimension n. Suppose B
admits the action of a symmetry group €. We wish to prove that index(g) = 0
for every geG. Since every element of G can be upproiiwated arbitrarily well
by elemeats of sui-tably chosen U(}) subgroups of G, it suffices to prove that
index{h) = 0 whenever h is an element of any U(1) subgroup R of G, We there-
fore specialize to the case of a U(1} symmetry group R. Sioce the representa-
tions of R = U(l) are labeled by an integer or half-integer n.* it suffices
to show that indexn(i}{) = Q for all m.

Let ¢i be a local coordinate system of B, Let Ki(oj) be the Killing

_vector field that generates R. (This means that, infinitessimally, the R
transformation is tbi > ¢i + d(i(tj).) Acting on spinors, the generator of R

is the "Lie derivative" operator:
- iip, + L i
5(1( ik D+ T (nixj]} (16)
where ) -% 0"1, I‘JJ. Using the Killing vector egquation Dikj + DjKi -0
and standard identities, it is not difficult to verify that il( and }ﬁ

commute —— as should be the case since {K generates a symwecry. Therefore

we may study simultaneous solutions of the equations

»
The eigenvalues on spinor states are half integers in certain cases.

-2

a”KW = 0y

ify = ay an
Our problem is to show that the Diraec index index ( if) vanishes for each

sector of Hilbert space labeled by the integer {or half-integer) a.
The basic property of this index is that it is invariant under arbit-

rary deformations of the operator i;{ that are U{1) invariant and preserve the

property iﬂ’[}- -f‘\i#. Let us therefore perturb the Dirae operator in a way

that preserves these properties and simplifies the analysis of its spectrum.
Instead of i}f we will study

g, - if + e Tk, (18
where t is a tonveniently chosen real number. The character valued index of
i}‘t wust be independent of t. We will prove that indexn(i ) vanishes for n»0
by studying the behavior as t + +%; and we will prove that indexn(i )

vanishes for n<) by studying the behavior as t + -=.

We define a "Hamiltonian"
i, = (1}‘:)2- (l’]z + eW2 4 21t KJDj + iertd Din (19
If we could show that for sufficiently large t, I{t has no zero eigenvalues,
this would establish the vanishing of the character vslued index. The
general reason this might be true is that the t22 term is positive definte
and becomes very large for large t. Hovever, the analysis is made subtle by
the term 2it Kij, which is not positive definite and can have large matrix

elements.

A crucial obgervation is that in the sector Eqw = n§, I(t reduces to

, 1., ol
Ht(n) - {1#]2 + e &2+ 2en + 5 it rt! Din (20)
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Since t is freely at our disposal, we choose t>0 if n)0 and €<0 if n<@, In
this way the term 2tn, as well as the t2kZ term, is positive.
Now, if the Killing vector field k' has no zeros, then all eigenvalues

are of order t2

as L * %, [n this case, the character valued index certainly
vanishes, 1In general, however, k' vanishes at certain points, and our
analysis is more difficult.

(n)

For large |c|, the spectrum of I{t can be calculated in an asymptotic
expansion in powers of 1/|t| by expanding near the minima of the potential.
The velevant minima (which might give states thar do not diverge in energy as
{t}] * %) are zeros of K. For simplicity, we will treat the case of an
isolated zero of K, but the general case is not much different,

We may take our isolated zero of K to be at 0‘-0. Near oi-O we can

choose the lLocally Euclidean coordinates Ql to be such that Ki -y, QJ *

1)
0(#2), with uﬁj a constant matrix
0 T4
-ty O
0 r3
-rz 0
w ., = t . (21}
ij .
¢ *af2
Tar 0

(Here d is the dimension of our manifold; the T, are integers since K gener-

ates a U(1) group.) For large |t], keeping only terma that coatribute an

{n)
4

amount of order t to the energy, H simplifies to
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d df2
{n} 32 2 2
H -~ + 7t (e, + 4,)+ 2tn
t 41 3,2 o [ T ¥
dgz irl[ | .
-t —— [0, L (22)
=1 F 2L-1 2t
The ground state energy of (22) is easily calcualted., The first two terms

are a gum of commuting harmonie cscillator Hamiltonians, The matrices

% {r, t-y» [yp) cowmute with each other and with the rest of the Hamiltonian,
d/f2

and have eigenvalues *l. The ground state emergy of (22) is |t| |ri| +
i=1

*
2tn.  This is a good approximation for Large |t|. Considering t + += if

(a)

n?, and t * -« if n{0, we see that Ht has no zero eigenvalues and
consequently that the character-valued index of ufvanishec.

If the zeros of K are not isolated points, the discussion must be
changed only slightly. Let F be any connected component of the submanifold
on which K vanishes. The potential tZK2 vanishes on F, so our spin 1/2 par-
ticle moves freely along F, but the motion orthogonal to F is restricted to a
distsnce of order 1//t, The orthogonal motion is governed by an cperator
similar to (20), and the zerc point energy of the orthogonal motion is
strictly positive if |t|+ = with tn¥), again showing that the character
valued index vanighes, (The discussion of degenerate Morse theory in refer—
eunce (16) is similar.} This completes the proof of the Atiyah-Hirzebruch

theorem,

*

If we restrict ourselves to atates of 5( P = ny {as we should) the groupd
state energy of (22) is even larger. This of course does not change the
conclusion.
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Let us, however, now look at the preceding formulas from a different
viewpoint, the goal being to obtain the fixed point formula associated with
the Atiysh-Singer index thearem.2® As we will see, this formula is a power-
tul tool for computing the character valued index when it is not zero.

Let us now study H, for t + 4= Low-lying eigenvalues of Ht are con-
centrated near zeros of K, which for simplicity we will take to be isolated
points. Most of these states have energy of order t, but some have energy
that vanishes as t + =, (This has been obscured in the presentation until
now.,) Let agil be the number of state ¥ concentrated near the ith zero whose
energy does not diverge as t + +% and which obey ﬁ = Iy and {Kv = ny., [(We
have proved a'(‘j'): = 0 for tn?0.} Define the "local index" of the Dirac

operator at the ith zero as
o v .im® (i) | (i)
£, (8 Ee {a“'+ a“._] (23)
The character-valued index I(@) is obtained as the sum of the local indexes

e = Tt (24}
i

since this sum includes the contribution of all states whose energy is not of
order |t|, and only such states can contribute to 1{@8). Of course, we have
proved that the Dirac case has I1(0) = 0, so (24) is a set of restrictions on
the .ifl' However, we will obtain a formula like (24} for other problems in
which I(8) * 0,

To compute Fhe aijl, we could simply diagonalize the harmonic oscillat-
or Hamileonian (22). A more efficient method is as follows. Zero energy
states wust obey i,ﬁt\p- 0. Here iﬁt - [Dj - itKj] has a very simple

interpretation; it corresponds to a particle interacting with the abelian
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vector potential A, = tK. as well as the metric of the curved manifeld under

study, For large t, we know the low-lying states are concentrated near zeros

i}

of K, 1If near a zero at (say) 4=0, k' = m”¢j, with w -~ a constant matrix,

then the "magneric field" Fij =3 - ain is just the constant matrix -

A
1]

t S0 as t + =, our problem reduces to the study of the Dirac equation in

w, ..,
1}
a censtant magnetic field, As in the usual three dimensicnal case, the
ground state energy is zero {(but states of zero energy have nd0 if t + +% or
w0 if ¢ »-=),

Wwith u in the canonical form (21}, the analysis is very simple.

Define

ip!t(“ SR (o, + ik}
i=l,2

T} I i ,
iD =i I oo, +iw,)
t i=34 i i
R T L LR (25)
. 1 L
i=n-1,n

Then {iﬁt]z - ng Igﬁt(j)]z so a solution of i})’ty- 0 obeys simultaneously
iﬂt“)v- I iﬂt(nlz)t- 0. Thus, we need only the well known solution of
the problem of a consant magnetic field in two dimensions.

Choose a basis of gaoma matrices Il « (? é], 12 - (? -6] 1f the
"rotation angle" is r, so K = r¢,, K, = -r$,, then the two dimensional Dirac

operator is

0 {31 - treg) - (22 - trea)

B (26}
(34¢ trag) + {32+ treg) 0

With v = (:), ﬁtq»- 0if
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2 2
uldy, 42} = {44+ i¢2)k exp - tr (¢4 + 47 )

2 2
vies, #2) = (41 - i#z]k exp + tr (49 + 42 )

k = 0,1, 2, ... (27)
The chirality operator is T {é _?]. For t + +», if tr>0 only positive
chirelity zero modes are normalizable. If tr<0 only negative chirality zero
modes are normalizable,
The symmetry generator is
L, =i, « 3 i D;X;)
= -ir(41 92 929+ 5 (5 D) (z8)

We see that on the states (27), Jex - t? (k + 1/2).
The local index in the two dimensional problem would be h{8) =

in6 s
} e [an'+ an’_] where a“’t are the number of zero energy states ¥ with

dfkﬁ - ny, ?¢ = %y, Using (27) and (28), we see that if r>0

.t8 . 3r8 3
15— el—!~ 1Ir0

h{8) = & ° ¢ +e L

irgf2
-t
o, SR,

1- elr&

T~ a9
slnira

If r<0 we get

]
no) w - iFH2_ o 2

-ir 8/2
- e -

i
le-it® 2

(30}

It is one of the wonders of analytic functions that these expressions are
equal, so we need not worry about the sign of r,

In view of the separation of variables (zero esigenvalues of p; are zero
eigenvalues of each of the ﬁt(n)], we can now easily compute the local “index

fi(ﬁ) atene i™% zera. It is just

n/2 i 1
£(0) = 1 {2 ——(“)_) 1)
' =1 z sin L e e
@ 2 "a
where r!(i) is the ath rotation angle at the ith zero of k. The character

valued index of the Dirac operator is therefore

1(8) = (%]nlz 'En '—II(TT' (32)
1a

which is the fixed point formula. Although we obtained it by taking t + +w,
an andlysis for t + ~= leads to the same formula.

Since we know that 1{8) = 0, (32) is a setr of very restrictive condi-
tions on the ra(i). Actually the Atiyah~Hirzebruch theorem is an easy con-
sequence of (32). The right hand side of (32) defines a vational function of
v - E;Q/i which vanishes &t w=0 and w==, This function has no poles.
(Individual terms in {32) have poles at |w|=l. These poles must cancel after
summing over fixed pointe, for the following reason. An elliptic operator
always has only finitely many zero wmodes, so I{8) has an expansion I(8) =
g a, einewith only finitely many non-zero a_; therefore I(0} is always non-
singular for real 8.,) A rational function without poles that vanishes at
infinity is zero, so 1(6) = Q.

For our purposes the virtue of (32) is that it generalizes easily to

other problems. Suppese we wish to study a field You with a spinor index @

and some other index A. For instance, A way be a vector index [f we wish to
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study the spin 3/2 field; or A may be a Yang-Mills index. We wish to cal-
culate the character valued index of an operator acting on wcA' The physic-
ally relevant operator may not actually be the Dirac operator inDj, but we
will assume it differs from the Dirac operator only by irrelevant non-minimal
terms.

As before, the character valued index may be computed from the lerge
lt] limit of iﬂt -ip [Dj + itKj}. The index A only enters in the connec-
tion used to define Dj’ but the connection is irrelevant as |t| * =, as shown
by the reduction to a flat space harmonic oscillator problem. 5o our pre-
vious determination of the spectrum is still valid.

What is different is the determination of the quantum numbers of the

low-lying states. The symmetry generator is now

~

Ry = L+ e (23)
with an extra term Q (without derivatives) that acts on the A index. (It is
a generalization of the extra angular womentum term for a charge interacting
(i) .th

with a magnetic monopole.) Let @ be the value of Q at the i zero of K.

The states near the ith zero that have spproximatley zero energy are still

~
A .
given by (27), but near the ith zeru,;fki- el (k *-%) + Q(‘). The effect is
ieq(i)
very simple, 1In the sums (29) and (30}, one has an extra factor Tr e
(the trace being over the A index) so now
. L on i) /2
g8 = P71 R e (34)
a=l sinzTr B
2 a
and the Eixed paoint formuela is
. . (i) nf2
ey = G2 g AR Ty 1l (35)
7] £ 1 (i)
i a=l sin 7% &
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We will not write down here the more general formula which holds if the zeros
of X are not isolated, This formyla involves weighting the factors of

lf(sin %f&] by the number of zero modes of a certain Dirac operator on the
fixed point set. -

One may wonder "why" a fixed point formula exists. The character

. g PG
valued index is formally TrT e (since states of non-zero energy are
paired and cancel out of the trace). The trace of a matrix is the sum of the
diagonal matrix elements. 1In the coordinate basis, the diagonal wmwatrix

i

elements of e * vanish except near the zeros of K. The fixed point formula
is similar to the method of Landau and Lifshchitz?? for computing the charac-
ter of a molecular symmetry group furnished by the molecular vibratione in
terms of fixed points of the symmetry group action.

To gain some practice with (35), let us use these methods to retrieve
the results of section ITII. We consider a spin 1/2 particle moving on the
two sphere, We take K to be (figure {5)) the generator of a rotation about
the z axis, There are two fixed points, the north pole N and the south pole
5. A toration which is counter—clockwise a8 seen by an observer looking down
at N is clockwise to an observer looking down at S, So the rotation angles
are r®] at N and r#-] at 85, The fixed point formula gives

1

lin%&

+ % ! 1} (36)

we =+ -
2 sin(— —12—0]

as expected. HNow, &s in section ILI, we assume our spin 1/2 particle to be

charged, and we place at the center of the sphere a magnetic monopole with eg

- %, nel. Tt is well knownZ® that the angular mopentum operator is shifted:
* hd - 3 - .
J +J+ egi. In our case dfk is Jz; the operator ¢ is the extra piece in Jz

or egz. At N, z=l; at §, z=-1. Note that the Q(l) are numbers, %eg, not



-33-

matrices, since in the U(1l) case the charge index A has only one value. The
fixed point formula is now
-iegh 1

iegh 1
€ i
sin(— 50]

1(8) =

. i
T e
2

[y
-

sinie
. : -18/2

- - (elege - e \egﬂl e 5
l-e

- - i e (37
1
e og- 3)
This agrees with our result from section III, since the sum in (37) is the

ia1
trace of e z

in the represention of J = eg - %u

The proof of the Atiyah-Hirzebruch theorem that we have given is close-
ly related to the original argument. It has the virtue of yielding the fixed
peint formula, which has msoy other applications, as we will see, If one is
only interested in the vanishing of the character-valued index of the Dirac
operator, the following slternative argument may be sketched, For a space B
that admits action of a non—abelian group G, the Lawson-Yau theorea?? states
that B admits a G-invariant metric of positive scalar curvature. (The basic
idea of the proof is as follows. Any G-invarient metric g can be decomposed
48 g » g,*g,;, where g, is the metric transverse to the directions of the
group gaction and g is the metric along the group action. Lawson and Yau
show that the metric ga = gyt€g, has positive scalar curvature if € is suit-
ably small and positive and g4 obeys some mild conditions at the fixed points
of G.) Combined with the Lichner?wicz theorem (no zero modes of the Dirac
operator if the scalar curvature is positive), this implies the vanishing of

the character valued Dirac index for manifolds with non-abelian symmetry
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groups. For manifolds with only an abelisn symmetry group, one may reason as
follows. Let B be a manifold with U{l) symmetry that violates the Atiyah—
Hirzebruch theorem in n dimensions. Let B be a manifold of dimension n+2
defined to be a non-trivial fiber bundle over 52 with fiber B. (To construct
this bundle, consider the space $° of pairs of comple; numbers {:;) with
|=1I2 + [z2|2 = 1. In the product S?xB, make the identification {{:;), Qi} =
{{zi Q:Z). elnﬂ#& oi] for suitable n.) The space B has Su(2)x0(1) symmetry,
ty e
and has a non-trivial character-valued index of the Dirac operator if B does.
(To see this, choose on B a Kaluza-Klein metric with large radius in the $2
directions and tiny radius io the B directions; and solve the Dirac equation
on B in a Bore-Oppenheimer-Kaluza-Klein approximation.) Since the Lawson~Yau
and Lichnerowicz theorems imply that the character—valued index wust vanish

on B, it must also vanish on B,
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V. RARITA-SCHWINGER FIELDS

In this section we will st{udy the character valued index of the Rarita-
Schwinger field, We will not be able to reach a comprehensive result similar
to the Atiyah-Hirzebruch theorem for the Dirsc casze. We will prove that the
zero modes of the Rarita-Schwinger operator on any homogeneous space G/H form
a real representation of G. (In other words, we wil show that on any homo-
geneous space of dimension 4k+2, the character valued index vanishes. For
homogeneous spaces of dimension 4k, the same argument shows that the charae-
ter valued index vanishes except for the trivial character (the topological
index); Unfortunately, I do not know a genersl result for the Rarica-
Schwinger field on spaces that are not homogeneous spaces. {I also have been
unable, despite many actenprs, to find a case in which the character valued
index ie non-trivial, snd I believe that if such wanifolds exist, they are
rather complicated wanifolds with rather small symmetry groups in relation to
the number of dimensions.) Because our results will not be entirely conclu-
sive, we will rerurn after discussing the theore; on homogeneous spaces to a
discuseion of various problems in the use of the Rarita-Schwinger operstor.

Our basic tool wiil be the fixed point formula discussed in the pre-
vious section. In particular, we will not use the local supersymmetry of the
Rarita=Schwinger field; it may he posaible to find a stromger result by using
this property.

In an appropriate gauge, the Rarita-Schwinger field is simply a vector
spinor field Wua (v is a vector index, @ a spinor index) which obeys, up to
irrelevant non-miniwal terms, a Dirac equation )l#u = Q. Of course, we wish
to discard zero modes of vu tht can be gauged away or which violate gauge

conditions, Physically, in quantizing a theory, zero modes which are gauge
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artifacts are canceled by zero wodes of the spin 1/2 ghost fields, There-
fore, we must subtract from the character valued index of the Rarita-Schwin-
ger field the corresponding index of the apin 1/2 ghosts. {(This is the gene-
ral logic, but actually the ghost index vanishes, by the Atiyah—l{itzebr‘uch
theroem. } A

Let us work out the fixed point formula for the spin 3/2 field. Con-
sider an isolated zero of the Killing vector field K. Suppose that near the

zero (which we assume to be at Q’-O& Ki LI QJ where w is a coustant anti-~

ij

symuetric matrix

w= T (38}

~
The symmetry generator ;fk for a spin 3/2 field is

~ . C
L ot = 1Ko, + 3™ (o)) )il k) ¢
Ly 10, k1) ¥ (39)

where FCK is the generator for 2 spin 1/2 field and the extra piece acting on

. ~
the vector index is -i(DjK‘). At 0’-0, DjI(i = w., 80 ECK acts on the vecter

i3
ieQ(i)
index of Oi by multiplication by the matrix iw, The factor of Tr e in
formula (34) for the local index iz here to be replaced by

sars 2
9 o/

t e (ie) -2 I cosﬂra (ap)
a=l

The fixed point Formula for the character valued index of the Rarita-
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Schwinger Field is then

. n/2 n/2 ,
e » A2 51| (n __--l-HTTT_] (7 2cos r g -y (41)
2 i a*l sin % T, e b=l b ]
(i)

Here i runs over the fixed points or zeros of K; T, ,a=1 .., nf? are the
rotation angles ar the ith zero; and the minus one in the Laet factor in (41)
is chosen to subtract the index of the ghost fields, as discussed earlier.
(Minue one equals minus two plus one; for the quantization of ¥;. there are®
two ghoscs with the sawe chiralicy as *i and one of opposite chirality.)
(41) has a generalization when the fixed points are not isolated,

(41} places very. severe restrictions on the possibility of obtaining a
complex representation of Rerita-Schwinger zero wodes. (41) shows that 1{8)

ie/2

is a rational function of w = e with poles only for |w|= 1 or at w=0 or

weo,  The poles at |w| = | must cagcel upon swming over fixed points, as in
the epin 1/2 cagse. (Mote the discussion following (32),) The rationsl
function I(w) wust be a constant unless there reaily are poles at w=0 or wem,

(i)
-]

1f the largest rotation angle st the ith Fixed point is r then the

contribution of this fixed point to I(w) behaves for w + mor w + 0 2

Wy i)
a

£; (w) ~ u(tb afb (42)

There are poles at w=0 and we= if and only if the largest rotation angle

rb(l) is bigger than the sum of the cthers
ARSI AL “3)
a#h

If (43) is not obeyed for any i, I{w} has no singularities. Even if (43) is
obeyed, the poles may vanish in summing over i. It is difficult to satisfy
(43) in a multidimensional space with many rotation angles at each fixed

point.

.
[f for each i and each b
rb(1) < ra(1)
ath

then I(w) is a rational function without poles and bounded for w + =, sq is a
constant. The constant is an integer -~ the ordinary.or topological index of
the Rarita-Schwinger field. 1f (44) is always 2 strict inequaliry,

rb(i) < i r'(i) for all i and b, then I{w) vanishes as w + =, g0 L({w) = ¢
ath

and the topological index vanishes,

We will use these considerations to prove that the character-valued
index of the Rarita-Schwinger field on a homogeneous space always vanishes
except posaibly for the trivial character {which may appear in the case of 4k
dimensicne).

The homogenecus space G/H is defined as follows, It is the space of
all geG with g and gh considered equivalent for any heH. Because of the
equivalence relation, the dimension of G/H equals the dimension of G minus
the dimension of H. The space G/H is invariant under g+ug for any ueG. &
fixed point of this transformation is an element g of G such that ug = gh for
some heH; in other words g luge. If u is not equivalent up to similarity to
an element of H, then the symmetry transformation g + ug has no fixed points,

Lf the rank of H is less than the rank of G, then the generical gener-
ator A of the Cartan subalgebra of G is not equivalent (up to similarity) ro
any generator of H. Then eiaA acts on G/H without fixed points, so the
character valued index vanishes. Hence we need only consider the case rank H
= rank G.

Let us now make a brief detour. In general, given two spaces M,N the

character~valued Dirac and Rarita-Schwinger indexes of ¥ ,N and the product
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MXN are related by
indexp. — (MxN) = indexnirac M - i"dexDirac ()
indexp o (Mx¥) = indexp o (M) + indexp, . (N)
+ indexDirac (H) - indexn_s' (N
+ indexDirac ) - i“dexﬂirac (N} (45)

These equations hold because the Dirac and Rarita-Schwinger equations on HxN
can be solved by separation of variables. The second equation in (43) (which
is our real interest) arises because the vector index of ﬁi must be tangent
to either M or N, so a Rarita-Schwinger solution on MXN obeys the Dirac equa-
tion on M and the Rarita-Schwinger equation on N or vice-versa (the last term
in the second equation in {(45), which is not imtuitively obviocus, arises in
subtracting the ghost contributions frow the Rarita-Sehwinger indexes)., iIn
particular, (45) implies that if M and N have vanishing Dirac index, then MxN
has vanishing Rarita-Schwinger index. Since a homogeneous space has vanish-
ing Dirac index (by the Lichnerowicz or Atiyah-Hirzebruch theorems), a pro-
duct of iuc homogeneous spaces has vanishing Rarita-Schwinger index.

From these facts it follows that the Rarita-Schwinger index of G/H
vanishes unless G is simple. For suppose G = G4 %G, with non-trivial G xG,.
A subgroup of G of maximal rank is then necessarily H = Hy¥, where Hy and H,
are waximal rank subgroups of G4 and G, respectively. Then G/H = (61’“1) x
(Gy/Hz) is a product of homogenous spaces, and has vanishing character valueé
Rarita-Schwinger index.

We still must study G/H with G simple and H a subgroup of waximal rank,
Let us first calculate the rotation angles at the fixed points for a typical

infinitessimal transformation g + (1 + ieA)g, A being a generator of G.
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Since H is maximal, A is eguivalent (by conjugation) ta a generator of H, so
we may assume A is actually such a generator, A typical fixed peint is then
g = 1; because of the equivalence under right multiplication by an element

of h, the transformation g + {1 + ieA)g is equivalent to
g * {1 +ied) g (1 - ier) (46)

This again makes it clear that g = |1 is a fixed point. The fixed point is
isolated if A is chosen generically. The rotation angles at g = 1 may be
computed as Follows, The Lie algebra ;él of G can be decomposed as the Lie
algebraﬂ— of H plus an orthogonal complement?‘( :Et- ‘# 0?( . Near g~ 1,
the generic element of G/R is 1 +ik, with kt?{. The transformation (46) acrs
on k by k *k + i¢ [A,k]. The rotation aagles at g = 1 are therefore just
the eigeavalues of A actiog on ?( by conjugation,

The other fixed points are at points g such that gi‘tA gis?4'. The
roia:ion angles are the eigenvalues of gi'1A g acting by conjugation on¥ .

Now we are ready to prove that the Rarita-Schwinger index vanighes on
howogeneous spaces, except for the trivial character, Before stating the
argument in a general way let us firsfconsider the case that ¢ is SU(N). Let
Y  be the SU{N) generator

0

1/2
-1/2

o= Q an

o
1t generates an SU{2} subgroup of SU(N), so its eigenvalues in any represen-
tation are integers or half integers, Let Y = Yo + gf) where @ is a generic

SU{N) generator that commutes with Y, and € is 2 suitably small real number.
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Consider the Rarira-Schwinger equaticn on some space homogeneous under

an SU(N) action. Let A" and A be the SU(H) representztions of pasitive and
iey _ '[rA, e"eY. in any

non-trivial SU(N) representation the biggest eigenvalue of Yy is at least

negative chirality zero wodes. Define 1(@) = Tryy e

1/2, Hence, if A differs from A by a non-trivial SU(N) representation, the
most positive power of eis appearing will be at least eiﬂa where a = 1/2 +
0(e). (For suitable Q and sufficiently small €, there is no accidental can-
cellation of the highest power. This is the only role of ( and € in the

ief2

discussion.) This means that with w = e , I{w) -~ if not a constant --

diverges for w + = at least as W140Ce)

Reference to equation (42) shows the
necessary condition to achieve this; we need at one of the fixed points of
the fixed points P of the transformation generated by Y

£, - 1 r 21 (48}
b atp ¥

where L% is the largest rotarion angle at P and r, are the other rotation

angles at P.

What are the rotation angles of the transformation Y that are not of

order €? They are one, corresponding to the SU(N)} generator

010 000
Q e . . 0

A= e e e e (49}
¢ . . . .0

and its adjoint, and 1/2 corresponding to the generators

s

k
k (50}

(== =]

a
1

by ...

0

0

a
(== = ==]
SO Ure

and their adjoints. Of course, in general we do not count A and all the Xu;

-452=

we only count those that are in ?( {the complement in G of the H Lie algeb-
ra). The only way to obey (48) is to include A but none of the X . This
means H must be a subgroup of SU(N) that includes all the X and their ad-
joints and all the diagonal generators (since M has maximal rank)} but mot A.
There is no such subgroup of SU(N)., So A, and A differ at wost only by the
trivial character,

The game argument goes through with SU{N) replaced by any simple Lie
group G. One simply replaces Y, by the generator of the Cartan sub-algebra
parallel to a root E of maximum length, E ;luys the role of A} the roots not
orthogonal to E play the role of the X, The rest of the argument is
unchanged,

Thus, we have shown that on any homogenecus space G/H (of dimenuiqn 13
or 4k+2) the character valued index of the Rarita-Schwinger field is a con-
stant, a multiple of the trivial chareacter. It is equal simply to the ordin-
ary index, the difference between the total number of right-handed and left-
handed zero modes, The ordinary Rarita-Schwinger index certainly vanishes in
4k+2 dimensions but (unlike the ordinary Dirac index) it need not vanish on
homogenecus spaces of dimension 4k. It equals one on SU(4)/(SU(2)xsU(2)x
u(1)), P2, and G,/0(4). This may be seen by the methods of ¢ections T and
I, or from facts in reference (28), where properties of these spaces are
deseribed, .

Interestingly, for spin greater than 3/2, it is possible to obrain
complex representations of zero modes on homogeneous spaces. Consider a spin
5/2 field, which we may represent as a tensor spinor wija’ i and j being
vector indices and a a spinor index {we suppose 1&j =¥ ., vii = 0}, The

JL

wave equation }{Wij = 0 can have zero modes in cowplex representations on
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homogeneous spaces. For instance, on the ¢ix dimeasional wanifold CP3 chis
operator has the foliowing stable spectrum of zero modes: one multipiet of
left handed zero modes in the syowetric tensor represeatation Sij, and one
multiplet of right handed zero mwodes in the complex conjugate representation
Sij*' This may be seen with the wethods of sections ILI and IV,

Of course, physically sensible couplings of & massless spin 5/2 field
to gravity do not seem to exist, %3 However, this arises only because the
timelike couponents Y of the tensor-spinor field have the wrong metric;
because of the apparent non-existence of apin 5/2 gauge invariance there is
no way to canmcel or remove them. Purely 28 a Fuclidean equation, with i and
j tangent to the positive signature Kaluza-Klein space, the equation }&ij =0
makes perfect sense and has the properties jusc stated.

. Our result about the Rarita Schwinger operator is much less sweeping
than the Atiyah-Hirzebruch theorem of the spin 1/2 case. I do not know
whether on sowe spaces that are not homogeneous the Rarita Schwinger operator
way have zero wodes in complex vepresentations. (I an convinced, from many
unsuccessful attempts to find them, that if such spaces exisc they are rather
complicated. Tt is difficult to satisfy equation (42)).

There is actually a strategy which might very plausibly lead eventually
to & general proof that the character valued index of the Rariva~Schwinger
field always vanishes except for the trivial character. The topological
index of an cperator is a cobordism inveriant; this means that it vanishes
for any manifold M of dimension n that is theboundary of z manifold of
dimensaion n+l. The character valued index is likewise invariant under equi-
variant cobordism; this means that if M admits the action of a group G and is

the boundary of a manifold of dimension n+l to which the G action on M can be
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extended, then the character valued index vanishes for any operator on M, [If
a set of generators of the U(l) spin bordism ring (the ring of spin manifolds
with U(1) symmetry modulo those which are boundaries) were found, our conjec-
ture about the Rarita-Schwinger field could be proved by showing it to hold
for all the generators, The mathematical problem ofldetermining a set of
generators for the {oriented) U(1l) epin bordism ving has not been solved,
However, the aﬁalogoua problem has been solved for the unoriented*® and unit-
aryl‘5 U(l} bordism rings. These rings are generated by very siwmple spaces
(essentially, homogeneous spaces and fiber bundles in which the fiber is a
homogeneous space). If the U(l) spin bordism ring is found to be generated
by equally simple spaces, it will be possible to use the methods described
above to prove {or disprove) the conjecture that the character-valued Rarita-
Schwinger index is always & constant.

Because the situation for spiﬁ 3/1 fields is not completely clesr, some
general remarks on the subject may be useful. It is believed that massless
spin 3/2 fields can be consistently coupled to gravity omly in locally super-
symwetric cheoriea. This apparently means 17 that ve are limited to eleven
dimensions or less, In addition, beyond ten dimensions the chiral Rarita-
Schwinger field has one loop anomalies '? that spoil general coveriance and
cannot be canceled by the anomalies of any known fields that can be consis-
tently coupled to gravity. For both of these reasons, it appears that six
and ten dimensions are the relevant cases for chiral Rarita-Schwinger fields.
This corresponds to two or six compact dimensions respectively.

With two cowpact dimensions, the only manifolds with continuous symmet-
ty are the sphere, torus, and Klein bottle; the first two are homogenecus

spaces, and on the last two the continuous symmetries have no fixed points,
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g0 on all of them the character-valued Rarita-Schwinger index vanishes. We
turn then to the case of six cowpact dimensions,

Six compact dimensions are unfortunately too few to admit SU(3)xSU(2}x
U(1) symmetry." One may be willing to postulate an elementary U{l) gauge
field and to try to obtain only SU(3}xSU(2) as the symmetry group of a six
manifold.* The unique six manifold with SU(3)x50(2) sysmetry is Cp2xg?.
This is a homogeneous space to which our theorem applies; the character-
valued index could not be non~zera. Even worse, this space does not admit
spinﬁrs, so the Rarita-Schwinger equation on cP 452 cannot be defined,??

However, if the U(l} gauge field has a magnetic monopole expectation
valye on CFZ, splnors can be introduced (this is the so-called apinc struc-
ture}; all fermi fields, including the Rarita-Schwinger field, must have non-
zero (half-integral) U(1)} charges. The non-zero U(1)} charge of the spin 3/2
field introduces new anomalies {the mixed gauge-gravity snowalies of refer-
ence (18)) which cannct cancel among themselves unless there are many more
than two Weyl gravitinos (two is the maximum of any known or conjectured ten
dimensional supergravity thecry) and which cannot be canceled by anomalies of
spin 1/2 fields (because of a diffevent tensor structure), If ve ignore this
and proceed, we can calculate the spectrum of the Rarita-Schwinger operator
on CP32,  The SU(3)>SU(2) invariant expect-t{on value of the U(1) field
strength on CP2x52 depends on two "monopole numbers" -- & half integer p on
¢P2Z (half integer so as to get a spinc structure}, and an arbitrary integer q
on 82, The resulting zero mode spectrum can be computed by the methods of
sectiong III and IV. One obtains non-trivial complex representations, depea—

ding on p aud q, but these representations have little resemblance to physics

*
This suggestion was made independently by H. Gell-Maon,
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and are anomaly-ridden (because the ten dimensional theory with (1) coupling
to the Rarita-Schwinger Eield is anomalous).

These accumulated difficulties may encourage us to give up on accommo-
dating SU(3)»5U(2) symmetry in six compact dimensions. We may simply t;y for
SU(3) symmetry. The six-manifolds with SU(3) symmetéy are quite restricted
and cen be seen from the fixed point formula ro have vanishing Rarita-
Schwinger character valued index. 1t may be posaible to accommodate
SU(2)#U(1) in ten dimensions and to obtain leptons but not quarks as Rarita-
Schwinger zero modes.

Evidently, whatever is the behavior of the Rarita-Schwinger operator on
spaces that are not homogeneous, to obtain ph;nics in this way would not be

easy.
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equal,* The fermion representation of the 0(2p+6) wodel in 2p dimensions is
irreducible in the sense that a combined parity and internal parity operation
exchanges the left and right handed fermions. This is the simplest theory
with nen-trivial anomaly cancellation that I can find in d > 4.

Despite starting with a non-vectorlike theory; we. are not assured of

keeping this property after dimensional reduction. The familiar relation

r ... T =T ... r“ . TS e rh+n (52)

shows that the 4+n dimensional chirality operator Pl vas Pﬁ*n differs from the
four dimensional operator Ty ... T, by a factor g .+ Ty, that may be plus
or minug one. The non-vectorlike nature is washed out sfter naive dimension-
al reduction,

Indeed, if the gauge fields have zero expectation value, they are of no
help whatsoever in avoiding the problemsdiscussed in previous sections. They
sioply do not play any role. But vacuum expectation values of gauge fields
that can be smoothly turned on or off are likewise irrelevant, for the usual
ressons, We therefore must consider gauge field expectation values that can-
not be smoothly turned on or off. The prototype of such a thing is the Dirac
magnetic monopole, which because it carries topological information and obeys

a Dirac quantization condition cannot be smoothly turned on or off. We wust

place a generalized monopole "inside" the Kaluza-Klein space. Models of this-

general type have been considered before by Rand jbar-Daemi, Salam, and

Strathdee, **

* ~ o,
This is so because Tr 0, , 6, , ...0, , * I=0 for k € p+2, if [ is the pro-
1ady talp
duct of all 2p+6 gawma matrices of 0(2p+6) and %5 " lYi,yj} are the group
generators.
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For illustrative purposes we set p=5 and consider an O(lé} theory in IO
dimensions. As explained earlier, the left (or right) handed 0(1,9) spinors
will be cgosen as left (or right) handed spinors of 0(16). We will consider
three models. : -

In the first two models we take the six compact dimensions to be cp3 --
the unique six dimensional space with SU(4) symmetry. We will assume that
only a single (abelian) component of the 0{16) gauge field has an expecta-
tion value.

On CP? there is a topologically non-trivial U(1) gauge field, (It ia a
U(1) connection on the basic non~trivial line bundle over CPY.) This U(1)
gauge field can be chosen to be SU(4) invariant in & unique way. Ite
strength, like the Dirac monopole charge, must be an integer n in certain
units.

OQur first two models correspond to two ways of embedding U(1) in 0(16).

(i) the embedding
-t
~!
. (53}

breaks 0(16) to SU(8)x(l). The four dimensional gauge group is therefore
SU(4) xsu(8) x(1), where SU(4)} originates from gravity and SU(B}»(1) from
o{i6).

The quantum numbers of fermion zero modes cam be computed wsing the
methods of sectionm III or IV. One finds rather complicated anomaly free

representations. We will here consider only the minimal case of monopole
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number n=l. The representation of SU{4)xSU(8)={}} that emerges is as fol-
lows. Let V' and W) be the fundameatal four and eight dimensional represent-
ations of SU(4) and SU(B), respectively. Let 5'J be the symmetric product of

two V', and 5., its complex conjugate; and let AJ* be the antisymetric pro-

ij
duct of two W) and Rjk its complex conjugate. Then the left handed zero
modes transform as [Vi, Wj}3 @ (1, Aij)-z @ [gij' 1)7%; ‘the superscript is
the U(1) charge. The right handed massless ferwions transform of course in
the conjugate representation (Fi' ﬁj]‘s ® (1, Aij]z ® [Sij, 1)%, Dbespite its
complexity, this representation is anomaly free. For reasocns that are not at

all clear, this representation is closely related to the supergroup SU(HS).30

{ii) We csn instead embed U(l) in 0(16) as

(54)

breaking 0(16) te 0(10)>S0(3)w(l). In this case the monopole number must be
even, for topological reasons (to ensure proper Dirac quantization for par-
ticles in the spinor as well as vector represerdations of 0{10)). So we take
the minimal case n=2,

The zero modes can be shown in this case to consist of eight 0{10)
families (left haaded 16 and tTight handed 16} and no antifsmilies. Under
sU(4) (Erom gravity) x su(3) x U(l)} (frow 0(16)) they transform as follows:
they are neutcral under SU(3) and transform as 43 @ &~3 under SU(A)xu(1),

(iii) For our last wmodel, we consider & case in which & non-abelian
subgroup of 0(16} has a vacuum expectation velue. On any six dimensional

Riemannian manifold there is a natural 0(6) gauge field. - One siuply takes
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the spin connection wuij and regards it as a gauge field Auij. We embed 0{6)
in 0(16} in the obvious way
£{55)
0 0(6)
This breaks 0(16) down to 0(10).

We will not assume the eix compact dimensions to be cP3. The Dirac
equation for this system can be analyzed in general. The zero modes are
always ordinary families, never antifamilies and never other representa:ions
of 0(10), The families are neutral under any continuous symmetries of the aix
dimensional space B,

The number of families always equals the Euler characteristic of B.

Here are some examples:

s$ 2 families
52xg" 4 families
5525?38  families (56}
cpd 4  families
she? 0 families

In ten dimensions, the number of families is always even. A similar model in
eight ér twelve dimensions can give an cdd nuaber of families.

Why is the number of families equal to the Euler characteristic of B?
With Auij -~ uy.j, the 0(16} spinor index behaves as an extrz Lorentz spinor
index of B. The fermi field is therefore & spinor-spinor, a field with two
independent six dimensional spinor indices. Such a field is equivalent to
the de Rham complex of antisymmetric tensor fields. The Dirac operator
becomes the d and d* operators on differential forms, and the number of zero

modes {weighted by c¢hirality) is the Euler characteristic.
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VII. QTHER CONTEXTS

The preceding diacussion has made clear that in Riemannian geometry it
will be very difficult to obtain realistic fermion quantum numbers as zero
modes of physically acceptable wave operators. One way out, considered in
the last section, iz to introduce elementary gauge Fields. In the context of
Kaluza-Klein theory, this is a rather disappeinting possibility. What other
alternatives might-lhere be?

We must modify Riemannian geometry in some way. One possibility is
that the tangeut space group in 4+n dimensions is not O(1, 3+n) but a smaller
group G, (This possibility has been considered by Davidson?? and in much
detail by Weinberg.?') The smaller group will have more representations, in
g€neral; some of the new representations may correspond to new options for
the apins of massless particles.

For instance, G may be 0(1,3) x 0{n). Thias group has a representation
with epin 1/2 under 0{(1,3) and (say) spin 5/2 under 0(n), Since the “true"
spin is 1/2, there are no timelike modes with wrong metric and no difficulty
in writing a sensible wave operator., In fact, in the ground state the gpin
(1/2,5/2) field may be regarded as a tensor spinor *&ju with i and j con~
strained to be tangent to the Kaluza-Klein dimensions; a satisfactory wave
equation is )yvij = (). {Once one considers fluctuations away from the ground
state these formulas do not have a simple generalizaction, but some generaliz-
ation would emerge in any theory with restricted tangent space group.) Since
the spin 3/2 and higher spin operators in the internal spae can readily have
complex zero modes (note the discussion of CP? in section (5)), this would
enable us to obtain non-vector-like theories after compactification.

1f n is even, n=2k, one could consider a theory with tangent space

group 0(1,3) x U(k). The U(k) group of the internal gpace is the tangent

-5

space group in Kahler geometry. In Kahler geometry, one may write many vari-
ants of the Dirac equation (corresponding to the many representations of B(k)
= SU(k) = U(1) which do not extend to representations of 0(2k)) which lack
analogues in Riemanmian geometry. This is the subject of & cohomolugf; a
major eubject in Kahler geometry. The modified Dira; equations of Kahler
geomeLry can readily have complex zero modes. For instance, the equations
for a charged spin 1/2 field interacting with a magnetic monopole on $% or
cr? can be regarded as equations in Kahler geometry; therefore, the model of
section three and the first two models of section six can be viewed in this
light.

Of course, it is disappointing to consider tangent space groups like
0(1,3) x0(n) or 0{1,3) = U{k) that are product groups. One would much
prefer a unified group, even if smaller than O(l, 3+n}, However, Heiuber333
has shown thet if one desires Lorentz invariance in four dimensions producct
groups are the only poesibilities.

If one is willing to envisage a4 product group G, one must still find a
sensible equation — replacing the Einstein equation -- for the time depend-
ence of the & conn;ction. And presumably one must face at some point the
unrenormalizability of quantum field theory in 4+0 dimensins, which is likely
to persist in this cnntexf.

A wmore drastic modification of Rieminnian geowetry would be to assume
that the underlying theory is not & field theory of the usual kind but a
theory of gome other type. For instance, at present the supersymmetric

string theories in ten dimensions ’

would appear to be very attractive candi-
dates -- egpecially the n=2 theory which is chirally asymmetric and anomaly

free. This theory naively reduces at low energies to ten dimensional super-
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gravity, but wnlike that theory, 7?32 ip is likely to be a finite theory to
all orders.

MNeive compactification of the string theory proceeds via ten dimensioo—
al field theory and suffers from the problems of ten dimensional field theory

“inherently

in describing fermion quantum numbers. However, there may be
stringy" ways to compactify the string theory directly to four dimensions,
without tea dimensionsl field theory as aun intermediate stage. The rules and
problems of Riemannien geometry might not apply in such a case -- though I
hope some of the concepts of this paper would be relevant. [ would consider
this the most attractive possibility, but unfortunately with the present
incomplete understanding of the string theory, it is difficult to pureue this
possibilicy.

I will, however, discuss one aspect of the problem., The string theory
has a gingle dimensionless coupling constant A, (It is essentially Hewton's
constant written in units of the Regge slope.) It is generally believed that
A is an arbitrarily adjustable constant. If so, the fermion quantur numbers
cannot depend on A. I believe that instead, when the string theory is more
fully understood, it will be seen that (vith proper normalization of A} the
wathematical consistency of the theory will require that 1/X be an integer,
The action of the string field theory which has been partly constructed?? {¢
rather analogous to the effective action of the large N expansion in QCD. We
now know 3 that the large N effective action is multi-valued, defined only
modulo 28N, This means that, internally to the 1/N expansion, N must be an
integer; this is analogous to the quantization of coupling constants in some
2+1 dimenaicnsl field theories.35 The close analogy between A and 1/N

stroogly suggests that the string field theory action is likewise wulti-

56~

valued, defined only modulo 2#/X, This would mean that 1/} would have to be
an integer n; the proper quark and lepton quantum numbers might emerge only

for a definite value of n.
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VIII, MASSLESS SCALARS

The main focus of this paper is the question of obtaining massless
termions as zero modes in Kaluzz-Klein theory. However, massless bosons are
also important. Massless spin one and spin two bosons have a well-known
origin in Kaluza-Klein theory, and arisze for a simple reason, as reflections
of unbroken local symmetries. Massless gcalars do not have such a simple
rationale. Yet a good explanation of the existence of massless charged
scalars would be of utmost importance: it would offer a sclution?® to the
problem of the existence of widely disparate mass scales in physics.

Any bose field of a Kaluza-Klein theory wight have modes that would be
seen as charged scalars in four dimensions. We wust consider, then the
gravitational field; the antisymmetric tensor fields of certain supergravity
and other theories; and gauge fields. {More generally, in suitable back-
grounds, different fields may wix; mixed wodes may be considered under {i} or
(iii) below.)

In general terms, we do not want scalars that are massless for reasons
of symmetry. The only scalars kept massiess by any symmetry argument of the
usual sort are Goldstone bosons, which are always neutral under any unbroken
gauge symmetries and hence are no help in solving the hierarchy problem,
Moreover, for a Goldstone boson any potential ;t gll is forbidden; there is
no reason for a Goldstone boson field to acquire tiny but non-zero vacyum
expecration values., We wish a more subtle argument for bosonic zero wodes,
perhaps a topological arguvent, which will forbid mass terms but allow quar-
tic self-couplings.

Let us consider in turn the case of gravitational, antisymmetric

tengsor, and Yang-Mills zero modes.
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(i} It seems that very little is known about che conditions under which
some oscillations in the geometry of a compact space B will correspond to
massless scatars, IE B is Ricci Elat, va = Q, a "breathing mode” in which
the geometry of B is uniformly dilated corresponds to a massless scalar;
because the equation Ruv = 0 has a scaling symmetry a#d does not determine
the radius of B. Thiz mode is always neutral under continucus syometries, so
is mot helpful in solving the hirarchy problem. The scaling symecrry of the

classical equation Ru = @ is not a symwetry of quantum Kaluza-Klein

v
theories, and therefore3? (unless there is an unbroken supersypmetry) these
modes get non~zero mass at the one loop level.

In models with an unbroken supersymmetry at the tree level, there are
some known cases in which some oscillations in the metric of B correspond to
charged massless scalare at the tree level.* Little is known about the
possibility of eventual supersymmetry breaking in these models.

(ii) Many supergravity theories contain antisymmetric tensor fields,

for instance the third rank antisymmetric tensor field Aijk of eleven dimen-

sional supergravity. The Lagrangian is constructed from the curl of A, F.

ijkt
- 3i Ajkl % cyclic permutations. This curl is invariant under the gauge
transformation Aijk + Aijk + [ai %k + cyclic permutltlnns]. The Lagrangian
for a k:h rank antisymmetric tensor gauge field is
- 1 n, 2 ]
£ = T M (Fil...im] G

The field equations derived from this Lagrangian may readily have zero modes

for topological reasons.

*
I thank M. Duff for a discussion of this point.
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The physical interpretation ¢f these modes depends on how many indices

of Ai ;. are tangent to B and how many are tangent to the space-time
JRELLI%

directions. If all indices are tangent to B, we get a maszsless scalar in
four dimensions. 1If all indices but one are tangent to B, we get a massless
spin one particle in four dimensions. If all indices but two are tangent teo
B, we get a massless antisymmetric tensor in four dimensions which again
describes & massless scalar. Other cases do not give rise to propagating
modes in four dimensions.

In general, the number of zero modes (modulq gauge transformations) of

i with q indices tangent to B is equal to a topological invariamt
cerdy

A
1
known as the qth Betti number of B. As &n exauple, one may consider in
eleven dimensions the spaces MPY with SU{3)x§U(2)xU{1l) symmetry.* For most
of these spaces, the first and third Betti numbers vanish, so one does not
get massless ecalars. {(The exceptions are cpixs? and Cszs3lzk, for which
the third Betti number ie one and one gets ocue massless scalar in four dimen-
sions; and CP2x62:81, for which the first and third Betti numbers are one and
one gets two masaless scalars,) However, for the 4PI% ¢he second Berti
number is one {except for CPZx52xs!, where it is two}, so one would get one
(or two) massless spin one pacrticles in four dimensions (in addition to the
gauge fielda of SU(3)»xsU{2)0(1) coming from the metric tensor). These
maseless apin one particles do not have minimal couplings to any matter
fields. They interact through‘derivative-couplings, such as magnetic moment
couplings to fermi fields, They would give rise to long range spin-spin

forces of roughly gravitational strength; presumably this is far too weak to

be detectable.
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There is, however, an old theorem that zero modes of antisymmetric
tensor fields are always neutral under any continuous symmetries. Essential-
ly, this is true because, by the deRham-Hodge theory, zero modes of the qth
antisymmetric tensor field on B correspond to topological classes ef closed g
dimensional submanifolds of B. A continuous symmetry ;annot change the topo-
logical class of a subwanifeld, se it leaves invariant all of the zero wodes
of antisymmetric tensor fields.

*
Here is an analytical proof, Let d be the curl operator, so the curl

_of the antisymmetric tensor field A will be denoted as F = daA, (Thus,

(dA)i R = {3. a, * cyclic permutations).) The change in 4

1 ket i ‘2"'.k+1

under a gauge transformation is A + A + dA, where A is an antisymmetric
tensor fieid with one less index than A. What is a massless mode of the A
field? Setting the momentum in the Minkowski directions to zero, we calcu-
late the energy (per unit volume} of an antisymmetric tensor field A by
integrating over the compact dimensions. From (57), the integral is

IBdO {dA) 2, so a wassless mode is an santisymmetric tensor field defined om B
such that dA ~ 0, Actually, we want zero modes thta cannot be gauged away,
s0 we want solutions of dA = 0 modulo gauge transformations A * A+dA. (Since
d¢? = 0, any pure gauge A = dh obeys dA = 0.)

Now let Ki(Qj) be an arbitrary Killing vector field, generating the
infinitessimal syometry transformation Oi * Qi + :xi (¢j). To show that the
zero modes of A are neutral under srbitrary continuous symmetries, wemust
show that the transformaton generated by Ki leaves A unchanged, or more

exactly that it leaves A uachanged up to a gauge transformation.

* 3 13 -
See, for instance, reference (38) for further material on antisymmetric

tensor fields.
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What these examples have in common is that in all examples I am aware
of, there is no reascn for the massless modes to remain massless when loop
corrections are considered. Indeed, in the first example considered (the
masslese mode being a constant on the circle}, a one loop calculation has
been carried out f{n the abelian case.37 showing that a nonzeroc mass does

arise unless there is a bose-fermi cancellatiom.
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IX. THE COSMOLOGICAL CONSTANT

Until now we have considered exclusively the zero wodes of wave operat—
ors. However, the spirit of this paper ie to study qualitative pr;blems that
wight be solved without full understanding of the details of a Kaluza-Klein
theory. 1In that spirit, we will here consider another qualitative problem of

outstanding significance: the apparent vanishing in four dimensions of the

coswological constant,
39

There has been much interest in recent years®” in the possibility of a
dynamical explanation of the vanishing of the cosaological constant — the
possibility of a theory in which regardless of the value of the bare para-
meters, the cosmological constant spontaneously relaxes to zero. We want, in
other words, a mechanism analogous to the axion mechanism for avoiding strong
CP violation, Some ideas in this section have been introduced independently
in work cited in reference {(39).

We would like to find a theory in which the classical equaiions do not
determine the effective cosmological constant -- the actual, macroscopic
curvatyre of four dimensional space. The classical equations should admit
for any values of the bare parameters a one parameter family of solutions,
depending on an integration constant. The effective cosmological constant
should depend on thi; integration constant. We will look for 4 mechanism by
which the integration constant spontanecusly velaxes to the value at which
space-time is macroscopically flat.

of course; it is easy to find a theory in which there is an undeter-
mined integration constant at the classical level, Consider a theory of

scalar fields *i' If the potential energy V(¢i) is independent of one of

these fields ¢, the vacuum expectation value of that field will be undeter-
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mined at the classical level. However, precisely because V(QL) is indepen-
dent of ¢, the effective cosmological constant will be independent of ¢.
To find a theory with an undetermined integration constant upon which

the cosmological constant depends requires a different approach. The only

way [ know to do this in 3+} dimensions is to introduce a third rank antisym—

metric tensor gauge field Avar s in section (B8), the Lagrangian is
~ L g 2
K - - dg o () (o)

vhere Fuqu is the gauge invariant curl, F (3 % cyclic permuta-

1 Avag
(VP being the four

wvad
1 uvaep F

tions), If we define the scalar F = 55 € wvaB
dimensional Levi;civita symbol), then the equation of motion from (60) is auF
= 0. Thus, F is a constant —- but the constant is a constant of integration,
not determined by the classical equations. And the cosmological constant
definitely depends on F, Lt equala ite value at F=0, plus F2/8,

However, this example is too trivial, The equation of motion 3uF =0
-~ which is an exact statement, even gquantum mechanically — appears to rell
us that the integration constant F cannot possibly relax to the value at
which the effective cosmological constant would vanish,

A less trivial example of the same kind arises if the third rank anti-

sywmetric tensor field is considered in 4+n dimensions. We consider the

Lagrangian
o faltn 1 _ 1 2 _
Low 1 G (kg -y () - M) (61)
For n=7, this differs from the bosonic part of !l dimensional supergravicy by

the omission of an FFA term (its inclusion would not affect our discussion)

and the inclusion of 2 non-zero bare cosmological constant A (forbidden by

supersymmetry in eleven dimensions but needed in our discussion to get a
solution in which four dimensions are flac)}, The solution we will discuss is
the Freund-Rubin solution,"? generalized to Ag*0.

We look for a solution of the classical equations derived from (§1) in
which space-time takes the Form D*{A)xs7(R}, where D“{1} is a four dimensinal
de Sitter space of positive, negative, or zero curvature A, and §7(R) is &
seven sphere of radius R.

In looking for such a splution, we encounter =- as Freund and Rubin did
-~ the possibility of a non-zero value of F = Fy,,3. As in the four dimen-
sional case, the equations deterwine only the derivatives of F, not F itself.
One may assume an arbitrary value of F, and use the clagsical equations to
solve for A and R in terms of F, For a whole continuous range of the bare
parameters in (61), there is 8 value of F at which A —— the cufva:ure of
ordinary space -~ vanishes.

The gain in going from four to 4+n dimensions is that in 4+n dimensions

F has a non-trivial dynamice with propagating wodes az well as an integ-

uvap
ration constant, One can at least imagine that there may be a quantum
mechanical mechanism by which the integration constant F spontaneously
relaxes to some special value — hopefully the value at which A=0. But

what might this wechanism be?

In condensed matter physics there are some fascinating systems with the
following properties, (For recent theoretical discussions and references te
previous work see reference(bﬂ.) The macroscopic equations have a one para-
meter family of solutions depending on an integration constant x, There is a

critical value of x, say x=Kg, such that the classical solution is stable

against small oscillations for x ? x; and unstable for x < x,.
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What value of x would be observed phyasically? One would hardly expect References
bee th table solutio f { %, but o ight expect that . .
to observe the une oluttions of x g+ Dut one mig pe at, : L. Th, Kaluza, Sitzungsber. Preuss, Akad. Wiss. Beriin, Math. Phys. Kl

depending on initial conditions, any stable soclution with x 2 x would be

accessible.

The surprise is that it is claimed*! that a whole class of systems
gpontanecusly relaxes -- by means that are not well understood -~ to the
threshold of stability, x = x;. The fact that the mechanism is so little
understood in the condensed matter coatext invites the speculation that a
similar phenomenon could occur in the case of the cosmological constant.
Although »0 (flat space) is not exactly = threshold of stability in any
obvious sense, it is certainly the dividing point between two qualitatively
different regimes, de Sitter space and anti de Sitter space. Anti de Sitter
space has & positive energy theorem, which de Sitter space does not;*? but de . 2,
Sitter space has a global initial value hypersurfsce, which aoti de Sitter
space does not."? They are certainly very different, Perhaps the little- . 3.
understood mechanism by which the condensed matter systems telax has a

“cosmological" analogue -- though it -is not yet clear whether it is de Sitter

or anti de Siter space that should correspond in the analogy to x > xge

1 would like to thank R. Stong for useful dicussiouns and for drawing my
attention to references (44) and (45), and to thank W. Browder and especially

W. Hsiang for explaining various aspects of cobordism theory.
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Figure Captions
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Zero modes of the Dirac operator of positive or negative chiraliry are
denoted by x or o Tespectively. The number of x's minus o's at zero
energy is invariant under perturbations.

An x or o now indicates a positive or negative chirality multiplet in the
@ or O representation ({a) and (b} respectively). Tn passing from (a) to
{b) the x's 2nd o's are exchanged.

The angular momentum and chirality spectrum of the Dirac operator om &
sphere. The Dirac operator permutes the states in the way indicated by
the arrows.

The quantum numbers of a charged Dirac particle on a sphere in the
presence of a magnetic monopole field.

K is taken to generate the rotation of a sphere.

The anomalous diagrams in (say) ten dimensions.
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