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ABSTRACT 

* FERMION QUANTUM NUMBERS IN KALUZA-KLElN THEORY 

Edward Witten 

Joseph Henry Laboratories 

Princeton University 

Princeton, New Jersey 08544 

October 1983 

The problem of obtaining left-right aaymmetry of fermion quantum 

numbers in Kaluza-Klein theory is discuased. In the absence of elementary 

gauge fields, a theorem by Atiyah and Hirzebruch states that the Dirac equa­

tion in 4+n dimensions always leads to vector-like fermion quantum numbers in 

four dimensions. The proof of this theorem is sketched. It is shown that 

the same holds for the Rarita-Schwinger operator on homogeneous spaces but a 

general impossibility theorem for the Rarita-Schwinger field is not proved. 

(However, in view of the apparent restriction of aupergravity to d < 11 this 

line of approach is severely constrained,) Also discussed are eome Kaluza-

Klein theories with elementary gauge fields, some difficulties in obtaining 

maealeas charged scalars, and some speculations about the cosmological con-

at ant. 

* Research supported i.n part by the National Science Foundation under grant 

No. PHYS0-19754. 
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I. INTRODUCTION 

Kaluza-Klein theory 1 has recently attracted increasing interest as a 

program for unifying gauge interactions with gravity. This theory can be 

viewed 2 in terms of spontaneous SymQetry breaking, the compact and non-

compact dimensions being on an equal footing as far as the laws of nature are 

concerned, just as the photon and the massive vector $eSona are treated sym-

metrically in the standard weak interaction models. This simple observation 

is one of the chief reasons for the revived interest 3 in. Kaluza-Klein theory. 

One may start with a general relativistic theory in 4+n dimensions, and 

assume the grand state to be K~KB, where M~ ia four dimensional Minkowaki 

space and B is a compact apace. Continuous symmetries of a* will always be 

observed~ as gauge symmetries in the effective four dimensional world. The 

gauge fielda (which in general can be more numerous than the extra dimen-

sions) originate in the normd mode expansion of the flu'ctuationa in the 4+n 

dimensional metric tensor. For instance, starting in eleven or more dimen-

aione, one can ~.s obtain gauge fields of SU(3)l<SU(2)KU(l). Huch of thie 

paper will be devoted to the consequences of assuming that all observed gauge 

forces originate in this way, as part of the metric tensor, from a theory 

which originally had no elementary gauge fields. However, thia is not necea-

aarily the only attractive possibility. It might be equally attractive to 

start with a unified theory (perhapa a aupergravity 6 or auperatring 7 theory) 

that determines the original gauge group. (For instance, one of the n•2 

supergravity theories in ten dimensions requires the existence of a U(l) 

gauge field.) Our remarks in section VI will be relevant to such theories. 

* I.e., transformations that leave fixed both the geometry of Band the 

expectation values of any matter fields that may be present. 
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As soon as one begins to think about Kaluza-Klein theory, one faces a 

bewildering variety of choices. There are many assumptions one might make, 

and many facts about elementary particle physics one might try to explain, 

It appears unlikely that at the present time we can guess correctly the whole 

detailed form of the 4+n dimensional lava and all the key points of the 

dynamics. For these reasons, it seems important to isolate problems that can 

be addressed without claiming to understand all the details of a theory. As 

will become apparent, the problem of trying to predict the quark and lepton 

quantum numbers is such a problem, and it will be our main interest in this 

paper. However, ve shall also make some remarks on certain other qualitative 

problems: the gauge hierarchy problem and the problem of the cosmological 

constant, 

Since we will deal mainly with the problem of the fermion quantum num-

bers, it is worth while to briefly recall some aspects of that problem as it 

presently appears. 

One of the most striking aspects ~f particle physics is that left 

handed fermiona transform under S(3)XSU(2)xU(l) differently from the way the 

right handed fermions transform. (The quantum numbers are not "vector-

like".) 

For instance, left handed quarks are SU{2) doublets but right handed 

quarks are SU(2) singlets. Equivalently, one may say that the fermions of 

given helicity form a complex representation of SU(3)xSU(2)xU(l). The fer­

miens of one generation transform under SU{3)xSU(2)xU(l) as {3,2)113 ~ 

(),1)-413 (I (),1)213 &- 0,1)2 8 (1,2)-1 which is a eo-called complex repre-

sentation (in other words, i.t is not equivalent to ita complex conjugate, 

which is (3,2)- 113 @ (3,1)" 13 It (3,1)- 213 II (l,l)-2 e (1,2)1; by CPT, this is 
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the representation furnished by the right-handed fermions). This fact is of 

utmost importance, because it means that bare masses of the quarks and lep-

tons are forbidden by gauge invariance. The quarks and leptons can acquire 

111ass only when SU(2) l'tl(l) is spontaneously broken. This, in turn, meanS that 

the quarks and leptons cannot be much heavier than the mass scale at which 

SU(2)~(1) is broken; they cannot have masses of order, say, the Planck mass. 

The relative "lightness" of the fermions would therefore be explained if the 

"smallness" of the SU(2) 1(1(1) breaking scale were undeutood; it is not an 

independent problem. In this paper we will assume, in accord with the 

"survival hypothesis" a that the only light fermion& are fermions that are 

required to be light by gauge invariance; this assumption will not always be 

explicitly stated, 

The fact that the quantum numbers are not vector-like means that the 

• spectrum of light fermions depends only on the "universality class" of an 

SU(3) l6U(2) ~(1) itivariant theory. The lightness of the light fermions and 

their quantum numbers cannot be modified by any SU())xSU(2)xU(l) invariant 

perturbations. We do not know at what length scale the spectrum of light 

fermions is determined, but it may be that this reflects physics at the 

smallest length scales. 

Of course, there is no experimental proof that mirror fermions with V+A 

couplings to the usual W mesons will not be found, restoring the vector-like 

nature of the fermion spectrum. But there are many reasons to doubt that 

this will occur. If mirror fermions are discovered, we will lose our 

*By the "spectrum of 1 ight fermions" we means the quantum numbers of the 

light fermions. We will usually speak of the quarks and leptons as if they 

were massless, ignoring the SU(2)xU(l) breaking. 
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theoretical understanding of why the quarks and leptons are ,S Mw in mass. 

(Of course, in any case we don't understand why some of the fermions are so 

much lighter than ·HW.) If mirror fermions do exist they fail to a remarkable 

extent to ~~tix with the usual fermions; the first generation fer111ions are very 

light and have almost pure V-A weak interactions. If ~irrors do exist it is 

odd that none of the fourteen SU(3)xSU(2)xU{l) multiplet& observed so far 

appear to be mirrors. This is all the more remarkable in that the mirrors 

cannot weigh more than at most a few hundred GeV (since they do not mix with 

usual fermions, their bare masses are forbidden by SU(2)XU(l)). Finally, and 

perhaps most convincingly, the triangle anomalies cancel among the observed 

quarks and leptons. This cancellation appears to be a rather striking con-

firmation of current ideas, but if mirrors exiat it is juat an elaborate and 

unnecesaary charade, since the mirrors would automatically cancel the anoma-

liea of the known fermion&, whatever those anomalies might be. 

What is more, the fermion representation is complicated (each family 

consiets of five irreducible representations of SU(J)xSU(2)xU(l)) and redun­

dant (there are three families). On the firet point, no doubt the SU(S) and 

0(10) grand unified theories are the .Cit 1ucceasful efforts to date (a 

family is SL+lOL in SU{5), or 16L in 0(10)). On the 1econd point-- which is 

an updated version of Rabi' s question 11who ordered the muon?" -- there is no 

equally convincing answer. It is natural to try to embed the three families 

as one irreducible representation of a bigger group. Perhaps the moat 

attractive such idea is to use the spinor repreaentation 9 of O(N) for N~l8. 

The spinor representation of O(N) is the representation space of N gamma 

matrices, which automatically furnishes 'a representation of any subset of the 

gamms matrices; so the O(N) spinor transforms as a sum of spinor represents-

tiona of any minimally embedded O(k) subgroup. For instance, the irreducible 

-·-
spinor of 0(18) transforms under 0(10) as four families plus (unfortunately) 

four anti families. This beautifully achieves the desired multiplicity, but 

it is not easy to eliminate the antifamilies. One may invoke a "hypercolor" 

force which becomes strong at -1 Tev, breaking SU(2)XU(l) and confining"the 

antifamilies. This elegant idea to has innumerable d-ifficulties in detail. 

In this paper, difficulties will be much more conspicuous than phenomenolog-

ical successes, but we will note, in section VI, that Kaluza-Klein theory 

gives an alternative way to avoid antifamilies in the O(N) approach to the 

family problem. 

A discussion of zero modes of non-trivial Dirac operators in Kaluza-

Klein theory was apparently first given in a special situation by Palla.11 

In (4), in connection with a discussion of some pseudo-realistic models, the 

detailed proposal was made that the quark and lepton quantum n~bers are 

determined by the topology of a manifold with SU(3)xSU(2)xU(l) symmetry. The 

importance and difficulty of obtaining a complex representation were pointed 

out. Chapline and Slaneky and Hantoni 2 diecue~ed the problem of obtaining a 

complex spectrum in Kaluza-Klein theory; they anticipated the kinematical 

analyeis of section 11 and some of the ideas of section VI. The kinematical 

analysis has been recently developed in much more detail by Wetterich,1 3 who 

worked out all of the kinematical consequences of the mod 8 periodicity of 

the 1pinor represenation of O(N). He al•o introduced in a different language 

the mathematical concept of the character valued index, which as we will see 

plays a very important role. Models exhibiting many of the ideas of section 

VI have been analy~ed by Randjbar-Daemi, Salam, and Strathdee.1~* As regards 

* I understand, in addition, that these authors have considered {unpublished) 

some of the detailed models in section VI. 
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fermion quantum numbers, the novelty in the present paper is primarily the 

restrictions disussed in sections IV and V and the more realistic models in 

section VI. 

Our conclusions will be as follows. If all gauge fields are part of 

the metric tensor, then a theorem of Atiyah and Hirzebruch 15 states that the 

Dirac operator in 4+n dimensions always leads to vector-like quantum numbers 

in four dimensions. (The relevance of this theorem to Kaluza-Klein theory 

was first noted in reference (16).) For the Rarita-Schwinger operator the 

situation is more complicated, We will show that if the hidden dimensions 

form a homogeneous space the Rarita-Schwinger operator likewise always leads 

to vector-like quantum numbers. What happens in general for the Rarita-

Schwinger operator on spaces that are not homogeneous I do not know. How-

ever, the fact that supergravity is apparently restrictd to d < 11,' 7 and 

certain other facts discussed in section V, indicate that this avenue is not 

promising, If one is less ambitious and introduces elementary gauge fields 

in 41-n dimensions, it is possible but still subtle to get complex representa-

tiona. Indeed, as we will see in section VI, one can naturally get very big, 

complicated, duplicated representations. In section VII, we discuss some 

other ways that the assumptions might be modified. 

We will encounter considerable difficulties in our attempts to inter-

pret the fermion quantum oumbers as the solution of an index problem. Never-

theless, this seems to be a quite attractive idea. 

.. 
!., 

" 

-·-
II. PRELIMINARIES 

Let us first recall how -- in a Kaluza-Klein theory with ground state 

H~~s -- massless particles originate as zero modes of appropriate wave 

operators on B. A massless Dirac particle in 4•n dimensions obeys 

4>o 

o • /Jv • 1 r" o • 
i•I IJ 

(I) 

where rll, i•l ••• 4+n, are the ga111111a matrices. Notice that we may as well use 

the minimal Dirac equation. Even if non-minimal terms (couplings to matter 

fields or non-minimal couplings to gravity) are present, they cannot change 

the quantum numbers of maasleas fermions in a complex representation of the 

symmetry group. Thia is an illustration of the fact that the problem of fer-

mion quantum numbers depends only on the "universality class" of a theory. 

We do not have to believe we know which Dirac operator is physically rele-

vant. If we define the four dimensional Dirac operator j(4 ) • 

the internal Dirac 
( -) 4+n . 

operator jJ n • L rJD .• then 
j•5 J 

0 -,s<•> • + ,..,-<•> • 

(l) becomes 

4 

1 ,., r" o 
" 

aod 

(2) 

We see that/") is the !llass operator, in effect. Its eigenvalues are 

observed in four dimensions as the particle masses. Its zero eigenvalues are 

the massless fermions. 

A similar discussion can be made for the Rarita-Schwinger operator. 

There are many, equivalent ways 6 to write the 4+n dimensional Rarita-

Schwinger equation. One way is 

o • r" (o • - o v ) 
lJ v \1 lJ 

(3) 

where VlJo. is the Rarita-Schwinger field ( lJ • l. .. 4+n is a vector index; a is 
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a spinor index), In the gauge rll 1/' "' 0, (3) reduces to 

' 
o - rll o 1/' 

' v 

= .P'4 ' '4'" + ;l"> t\1 (4) 

Again zero roodes of Jl(n) are observed as massless particles in four diraen-

aions. The general zero mode is a sum of modes of two special kinds. For 

v • 1. .. 4,)1(n) is the ordinary spin 1i2 Dirac operator, and the zero modes 

are spin 3/2 fermions in four diMensions. For v • 5 ••• 4+n, the zero modes 

have spin 1/2 as seen in four dimensions, while their dependence on the 

compact dimensions is determined by the gauge condition and the Dirac-like 

equation: 

4•n 
0 - ! 

~s r" '"' 

••• o•!r"nv 
IJ'"5 II \1 

(5) 

These conditions, taken together, are equiyalent to the gauge invariant 

internal Rarita-Schwinger equation 

••• l r' (D V - D V ) • 0 
I.FS II V u II 

v- 5 ••• (6) 

in a particular gauge. (We temporarily introduced a gauge fixing condition 

only to decouple the Minkowski dimensions from the co111pact ones.) We see 

that zero 111odes of the internal Rarita-Schwinger operator become massless 

spin 1/2 fermions in four dimensions. 

Now, can either of these operators have zero eigenvalues? And can the 

zero eigenvalues form complex representations of a s~metry group? 
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The crudest problem, _.hich was pointed out in (4), arises in an odd 

number of dimensions. For odd n, the group O(n) only has one· spinor repre-

sentation, Likewise, the group O(l, 3+n) has only one spinor representation, 

which transforms under 0(1,3) "O(n) as the product of the four compone'nt 

spinor of 0(1,3) with the unique spinor of O(n). This being so, fermions 

that are left or right handed in four dimensions transform the sa~e way under 

transformations of the internal space. They obey the sa~e Dirac equation in 

the internal space (modulo non~inimal terms which cannot affect the quantum 

numbers) so they have the same quantum numbers and furnish a real repesenta­

tion of any relevant ermmetry group. 

In an even number of di111ensions the situation is more subtle. For even n 

the operator ~ • r 1 ••• I" antico111111utes with all ri, so it is a c-number in 

any representation of the Clifford algebra. Since ~2 • %1 (depending on n) 

the representation apace of the Clifford algebra deco111poses into two 

> > 
eigenapaces of r, the eigenvalues being :!:1 or :!:i. Since f COIIIIIIUtes with the 

O(n) group generators 1/4 {rl, ri), the group has two inequivalent spinor 

representations, labeled by the eigenvalue of r.· 
In a world of 4+n dimensions we define 

r - r1r2 ••• f"+n 

r<4> • rtr2 r' 

riot • rsr6 r4+n (7) 

*For odd n, r commutes with the ri and is a c-number in an irreducible repre­

sentation of the Clifford algebra. the Cliffor1 algebra thus has two inequi­

valent representations, labeled by the sign of r. they are related to each 

other by ri + -ri (which for odd n yields r + -~), and they are equivalent as 

representations of O(n) since under ri + -ri the group generators l/4[ri,rjJ 

are unchanged. 
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These operators have simple interpretations, r labels the spinor representa­

tions of O(l, J+n). r(
4

) measures the helicity of four dimensional fermions. 

And rlnt tables the spinor representations of O(n);. it measures what might 

be called the internal helicity. These operators obey the simple relation 

r • r(4) .rlnt 
(8) 

This equation has an important consequence. For fixed f, the four dimension-

al and internal chiral ities are correlated. If we start with a fermion field 

restricted to (say) r.-1 in 4+n dimensions, it breaks down under o(l,J)xO(n) 

to components with* 

nr(4) • n-l rlnt • +l 

or 

nr(4) • .,-1 rint • -1 (9) 

Fermions of left or right handed physical helicity are left or right handed 

in the internal space. They obey different Dirac equations, whose zero modes 

might have different quantum numbers. 

This idea quickly runs into trouble if the number of dimensions is 

divisible by four. In 4k dimensions, f is odd under CPT. This may be seen 

readily in a Hajorana basis, with real ga~a matrices. In such a basis CPT 

acts on spinors just by complex conjugation, r (as defined in (7)) is real 

in a Hajorana basis, but in 4k dimensions it may be readily seen to obey 

(f'> 2 • -1. The eigenvalues of 1' are ±i. Being complex conjugates, the 

eigenvalues of 1' are related to each other by CPT, and CPT requires that 

there be equal numbers of fields with r- +i and f- -i. Hence there is no 

* Here n is a phase factor that will be determined momentarily. It can be 
ignored for the time being . 

r~ , 
' 
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net correlation between four dimensional chirality and internal chirality. 

Fields of 1 • +i give one correlation and fields of f • -i give the oppOsite 

correlation. Thus, i.n 4k dimensions, CPT requires that the gravitational 

interactions be vector-like. Naturally, therefore, if the weak interactions 

are part of the gravitational force in 4+n dimensions, the weak interactions 

are also vector-like. Alternatively, one may saytl•18 that in 4k dimensions, 

bare masses are possible for any fermions coupled to gravity only. Such a 

theory will, of course, always reduce to an appropriate four di~enaional 

theory in which bare masses are still possible. 

In 4k+2 di~enaiona, the situation is very different. In this case f2 

+I so 1' has eigenvalues ±I. CPT leaves f unchanged, and we can consider a 

theory with fermions of (say) 1' • +I only, (This option is forced on us in 

certain situations, for instance in certain ten dimensional supersymmetric 

field theories and string theories.) This corresponds roughly to a theory 

with V-A gravitational interactions that forbid fer~ion bare masses; the 

question is whether V-A gravity can reduce to V-A weak interactions in four 

dimensions. 

The special role of 4k+2 dimensions in multi-dimensional field theory 

was first raised in constructing aupersymmetric Yang-Hills theories. 19 In 

the context of analyzing fermion quantum numbers this point was made and 

developed in references (13} and (14). Similar observations are iJIIpOrtant in 

grand unified !llodel-building. g In the mathematical literature the periodici-

ty of the spinor representation is an old observation. 20 

Let us now work out the phase factor n of equation (9). We note that 

as defined r( 4 ) is (in a Hajorana basis) a real matrix whose square is -1, so 

the eigenvalues of r( 4 ) are ±i, In 4k+2 dimensions rlnt likewise has square 
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-1 and eigenvalues :!:.i. (ln 4k dimensions (r1"t)2 • +1.) A fermi. fi.eld that 

obeys r = r( 4 ). rlnt = +l therefore has 

(A) r(4) • -rlnt • +i 

o< 00) 

(B) r(4) • -rint • -i 

A CPT transformation will complex conjugate the eigenvalues, so eigenvalues 

of type (A) and (B) are exchanged by CPT. This is as it should be • A zero 

mode of the internal Dirac or R.a~ita-Schwinger operator with rlnt • -i cor-

responds to a left handed massless fermion in four dimensions. Its complex 

conjugate will hav£ rlnt • +i and corresponds to a right handed massless 

fermion in four dimensions. Massless fermions in four dimensions will trans-

form in a complex representation of some s,._etry group G if the zero modes 

of the internal Dirac operator with riot • -i form a complex representation 

of G, or equivalently, if the zero modes of rlnt • +i transform differently 

from those of riot- -i. 

Since the remainder of this section and the next one will deal with 

"chiral theories of gravity" with elementary fermi fields of a definite value 

of r, it should be mentioned at the outset that these theories suffer from a 

major problem. The fermion one loop diagrams in an external gravitational 

field are anomalous. 18 (The anomaly first appears in a diagram with 4k+2 

external gravitons.) In a few special theories in six or ten dimensions the 

anomalies cancel between fields of different spin; b·eyond ten dimensions this 

is impossible. We will not limit ourselves to the anomaly free theories but 

will investigate the fermion quantum numbers that e111erge (at the tree level) 

in the whole class of chiral gravity theories. There are several justifica-
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tions for ignoring the anomalies. First, gene·ul methods for treating the 

whole class of chiral gravity theories are as simple as any special methods 

for analyzing the particular anomaly free theories. And the general methods 

are likely to be important for other attempts to calculate fermion quahtum 

numbers in Kaluza-Klein theory; for instance, we sh8ll apply them from a 

different standpoint in section VI. Second, it may happen that in the future 

a massless field of some exotic spin might be successfully coupled to 

gravity. This could expand the room for cancellation of anomalies without 

affecting our tree level considerations for spin 1/2 and spin 3/2 fields. 

Third, though it seems unlikely, perhaps there is some way to make sense of 

anomalous field theories or of other theories whose low energy limit is an 

anomalous field theory. 

A rather simple argument due essentially to Lichnerowicz21 severely 

limits the possibility of obtaining zero modes of the Dirac operator in com-

plex represenations of a symmetry group. If one squares the internal Dirac 

operator (which will simply be denoted iP; we henceforth suppress the four 

Hinkowskian dimensio~s) we find 

(i,ll)' • -m/- {- h' ,,J ][o,,D;J 
i 1 i . k t - -m,o -n [y .r'][r ,Y I •,;., 
, I 

-m
1
D1 + 4 R (11) 

Since -ID.Di is a non-negative operator, this shows that if R > 0 everywhere 

' 
the Dirac operator has no zero eigenvalues. Of course, in (11) we have con-

sidered a minimally coupled Dirac operator. If non-minimal couplings are 

present, the Dirac operator may have zero eigenvalues. But the fact that the 
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minimally coupled operator has no %ero eigenvalues at all, and leads to no 

massless fermions in four dimensions, means that even in the presence· of 

minimal couplings, the zero eigenvalueS form real representations of whatever 

• symmetry group may be present. A particularly important case of this is the 

following. Suppose the compact space B has a symmetry group G. In general 

there will be many G-invariant metrics on B. If even one of them has R) 0, 

then for..!!!!!_ G-invariant metric on B, the zero modu of the Dirac operator, 

if any, form a real representation of G. (Of course, under these circum-

stances the Dirac operator will generically have no zero eigenvalues.) 

Much of the literature on Kaluza-Klein theory has concerned homogeneous 

spaces B • G/H, G and H being compact non-abelian groups. these spaces all 

admit a canonical G-invariant metric of positive scalar curvature, ao (even 

if non-minimal terms are added or a different G-invariant •etric is used) 

they give real representations for zero eigenvalues. Hore generally, a 

theorem by Lawson and Yau 22 shows that on any compact space B (not necessari-

ly a homogeneous space) with a non-abelian symmetry G, there is a G-invariant 

metric of positive scalar curvature R. For non-abelian &roupa such as SU(3) 

XSU(2)XU(l), this rules out the possibility of getting &ero modes of the 

Dirac operator in complex representations. 

This simple line of argument does not address the question (of concep-

tual but probably not of practical interest) of whether zero modes of the 

Dirac operator can form a complex representation of an abelian symmetry 

group. (Manifolds with a continuous abelian symmetry group in general do not 

admit an invariant metric of positive scalar curvature.) Much more important, 

• This should be obvious "physically" from the connection with fermion quantum 

numbers in four dimensions. The precise mathematical argument will be given 
shortly. 
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this line of reasoning does not extend to the Rarita-Schwinger operator 

whose square is more complicated than (11) and is not manifestly positive 

even if R > 0. For this reason, the Rarita-Schwinger operator can have zero 

eigenvalues more readily than the Dirac operator. For instance, in·fo~r 

dimensions there is one compact manifold that is not. flat but obeys Rpv • 0. 

It is the K3 surface, and for topological reasons it has two zero eigenvalues 

of the Dirac operator and 42 zero eigenvalues of the Rarita-Schwinger 

operator. 

In multi-dimensional supergravity and superstring theories -- which are 

the only known theories in which fermions are really unified with gravity 

we inevitably are dealing with Rarita-Schwinger fields. It therefore ia 

important to learn to analyze the tero modes of these fields. 

There is another no-go theorem, due to Atiyah and Hirtebruch,15 which 

for our particular problem is much more restrictive than the reasoning 

sketched above. They proved precisely that for~ continuous symmetry 

group, abelian or non-abelian, the Dirac zero modes form a real represent a-

tion. As we will see, their argument has important implications for the 

Rarita-Schwinger case; for instance, we will use it to prove that if the 

compact spac.e is a homogeneous .manifold, the Rarita-Schvinger operator always 

leads to a real representation. We will present in section IV an elementary 

proof of the Atiyah-Hirtebruch theorem that is closely related to the origin-

al argument. 

Why would a wave operator have zero eigenvalues? And why would these 

zero eigenvalues form complex representations? We will illustrate the rele-

vant concepts in terms of the Dirac operator. ln the rest of this paper, we 

suppress the four Minkowskian dimensions and concentrate on properties of the 



,-
' 

-17-

n dimensional Kaluza-Klein space B. To streamline notation, gamma 111atrices 

are henceforth gamma matrices r1, r2, r" of B, and we define an operator 

f: • ifint • ift ... r" with eigenvalues ±1. Indices i, j. k refer to the 

internal space; indices p, v, a. refer to all 4+n dimensions. 

Let us define a "Hamiltonian" H • (ij)2. Since [~. H}• 0, H eigen­

state& can be chosen to be at the same time ~ eigenstates. If HV • Eojl, then 

H•i'jt • E•i.Ji'V. So io and i'V are degenerate in energy, unless i.tft • 0. But 
A A A 

since ~f • -r"p, V and q5; have opposite eigenvalues. of r. Consequently 

(figure (1)), the H eigenvalues of non-zero energy are paired. For every 
A A 

state of r • 1 there is a state of r • ·1. The zero eigenvalues 

need not be paired in this way. The OUIIIber of zero eigenvalues of I ;,ith "? • 
A . 

with r • -1 is called the ~ of j. minus the number 

The index is invariant under arbitrary deformation& of I that preaerve 

w_ A 
the property •r • -'/Jr, since no smooth dhtortion of figure (1) which pre-

serves the pairing at non-zero energy can disturb whatever chirality imbal­

ance may exist at E • 0. In particular the index of~ ia a topological 

invariant, depending on the topology of B but not on its metric tensor. 

Generically, in the absence of some aymmetry principle& (which can, however, 

change the situation, as we will see), uro eigenvalues of '/all have positive 

chirality or all have negative chirality. This ia so because zero eigen­

values of equal and opposite chirality would gain non-zero energy under a 

generical perturbation. 

Although the index is the simplest deformation invariant of the Dirac 

operator that is relevant to the occurrence of zero modes, for our purposes 

we need a slightly different concept. In 4k+2 dlmensiona the index of the 

Dirac operator always vanishes, for the simple reason that the poaitive and 
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negative chirality zero modes of the Dirac operator are complex conjugates of 

each other (as we have seen earlier) and therefore equal in number. The 

concept of interest to us is what mathematicians call the G-index or the 

character-valued index of the Dirac operator. 

Let the manifold B have a symqetry group G. the eigenvalues of H or ~ 

will then form representations of G. Pick a representation Q, and draw the 

same picture as before (figure (2)), but only counting multiplet& in the Q 

representation. We define indexQ(j) to be the nUIIIber of zero mode multiplets 

in the Q representation of positive chirality minus the number of zero mode 

multiplets in the Q representation of negative chirality. For reasons simi· 

lar to those given earlier, indexQ(~) is invariant under arbitrary perturba-

A ~ 
tiona that respect G symmetry and preserve the fact that j;r • ··r· 

Of course, we can &till complex cOnjugate our eigenstate& of H. This 

still reverses the eigenvalue of ~. but now it exchanges Q with its complex 

conjugate representation Q. By complex conjugation (part (b) of figure (2)), 

this implies that indexQ(i~) • -indexq(ij). Upon reduction to four dimen­

sions, this implies the perfectly valid statement that the number of left 

handed masaless fermion• in the Q representation equals the number of right 

handed masslesa fermions in the Q representation. 

An equivalent way to define the character-valued index is aa followa. 

The positive and negative chirality zero modes of iP form representations A+ 

and A- of G. For g&G we define 

index( g) • tr 
11
.<s> - tr 11_(g) 

Or equally well we define 

index(g) • L indexQ(i,r{) ~(g) 
Q 

(12) 

(13) 
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* where ~(g) is the trace of g in the Q representation. 

If the character-valued index is nonzero, i.Jl must h8ve zero 1110des. 

Generically, the number of zero modes will be the minimu. required to yield 

the right value of indexQ(ij) for each Q, The spectrum of zero modes 

required by the character-valued index we will call the "stable spectrum" of 

zero modes. We will usually assume that the actual a~ectrum of zero modea 

coincides with the stable spectrum and can be computed by evaluating the 

character-valued index. From the fact that SU(3)XSU(2)~(1) forbids bare 

masses for all the known quarks and leptons, it appears that this assumption 

is valid in nature. A successful model would be one in which the character-

valued index consists of three families minus three anti-families. 

Unfortunately, as we will see in section IV, the Atiyah-Hirzebruch 

theorem ensures that the character-valued index always vanishea for the Dirac 

operator in theories without elementary gauge fields. At least on homo-

geneous spaces, this is also true for the Rarita-Schwinger field. It is not 

true (even on homogeneous spaces) for fielda of spin 5/2 or larger; we will 

discuss a counter example in section V (but there does not seem to be any way 

to use massless fields of spin )'j/2 in physics 23), The character-valued 

index also need not vanish in the presence of elementary gauge fields, and we 

vill construct some pseudo-realistic models in section VI on the basis of 

this fact. 

As we will see, there are very powerful methods for calculating the 

charac-ter-valued index of arbitrary operators. It ia never necessary to 

write dovn and solve an explicit differential equation. 

* This definition of index(g) makes sense in 4k as well as 4k+2 dimensions, 

though it is then not related to our physical problem, and we lose the 
identity index(g) • (index(g-J))*that follows from complex conjugation in 

4k~2 dimensions . 
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III. OPERATORS ON HOMOGENEOUS SPACES 

For our first experience in calculating the character-valued index of 

various operators, we will consider the simple case in which the manifold S 

is a homogeneous space G/H. In that cue, there is a particularly ele111entary 

way 2 .. to corapute the stable apectrWII of zero modes ·of the Dirac operator {or 

any other G-invariant operator), One simply expands the spinor fields on B 

in harmonica (irreducible representations) of the group G. For any represen-

tation Q of G, let n+(Q) be the number of times the Q representation appears 

in the harmonic expansion of positive chirality spinors, and let n_(Q) be the 

number of times the Q representation appears in the expansion of negative 

chirality apinora. By standard theorems about homogeneous spaces and ellip­

tic operators, n+(Q) and n_(Q) are always finite, and n+(Q) • n_(Q) for all 

but finitely many Q. Horeover, indexQ(i1) • n+(Q) - n_(Q). After all, the 

index ia the difference between the number of positive and negative chirality 

multipleta. This difference normally must be regularized since there are 

infinitely many statea in Hilbert apace, and the regularization usually 

involves pairing off the atates of equal, non-zero energy. In a homogeneous 

apace, working in a subspace of Hilbert apace defined by a definite represen-

tation Q reduces the problem to a finite dimensional problem. No regulariza-

tion is needed; indeXq(ifl) ia just the difference n+(Q) - n_(Q) between the 

number of poaitive chirality and negative chirality Q multiplets. 

Let us illuatrate these ideas with some simple examples. Consider first 

a particle of spin 1/2 moving on the ordinary two dimensional sphere s2. Let 

j be the angular momentum operator, and define the "helicity" of a particle 

at ; to be the component of angular momentum about the ; axis. It equals 

fl/2; it is +1/2 for states of positive chirality, -1/2 for states of 

negative chirality. 
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It is well known that a particle of helicity h can be in a state of 

total angular momentum J"'lhJ, jhj+l, jhj+2, ••• with each allowed value of J 

appearing exactly once in the harmonic expansion. This is why J•l is the 

lowest possible value for photons, and J•2 is the lowest possible value for 

gravitons, 

Whether the chirality is positive or negative, the absolute value of 

the helicity of a spin 1/2 particle is 1/2. So the allowed values of angular 

momentum are the same for each chiralty: 

' r .. +1 

? - -I 

I 3 5 
J- 2' 2• 2• 

J - 1 3 5 
2· 2· 2· (14) 

Now we can see that the Dirac operator on the sphere baa no stable spectrum 

of ~ero modes. Since the Dirac operator commutes with J but reverses chiral-

ity, acting on (say) the multiplet of given J and chirality ±1, the Dirac 

operator gives either zero or else the multiplet of the aame J and chiralit.y 

+1 (see figure (3)). Since the Dirac operator ill hen~itian, it either ex-

changes these two multiplets or annihilates both of them. Therefore the 

positive chirality zero modes have the sa~ eigenvalues of J as the negative 

chirality zero modes, and the character valued index vani~hea, 

This result could be obtained in various other ways. It follows from 

the fact that the rotation group SU(2) has no complex representations, or 

from the fact that a reflection of the two sphere reverses parity and ex-

changes the two chiralities, or from the fact that the two sphere with its 

usual metric has positive scalar curvature so that (by Lichnerowic&'s 

theorem) the Dirac operator has no zero modes at all. Now,however, we will 

consider a slightly modified problem in which the character-valued index is 

non-~ero. 
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Place at the center of the sphere a magnetic monopole of strength ega 

n/2, for some integer n. The angular momentum operator now acquires an extra 

piece 25 eg~ related to the quantization of magnetic charge. this adds eg to 

the fermion helidty, so that a fennion of chirality +1 has effective trelid-

ty eg+l/2 and a fermion of chirality -1 has effective helic::ity eg-1/2. If, 

say, eg)O, the allowed values of angular momentum are now 

1\ 1 3 5 
r • +1 J • eg + 2, eg + 2• eg + 2• ... 

1 1 3 5 
J • eg - 2• eg + 2' eg + 2• eg + z· ' r • -1 (15) 

The crucial point is now that states of J • eg - t exist for chirality -1 but 

not for chirality +1. The Dirac operator must annihilate these states, 

because acting on states of ~ • -1, J • eg -f. the Dirac operator would give 

states of ~ • +1 and J • eg - t. and such states do not exist. Other multip­

let& cancel out as before (figure (4)), so the stable spectrum of ~ero modes 

is a single multiplet of 'f,. -1 and J • eg - -}. 

We will obtain this answer in a different way in section IV as an 

illustration of a much more general and powerful method of calculating the 

character-valued index of an operator. The technique for harmonic expansions 

for G-invariant operators on a homogeneous apace G/H does not seem to be well 

known among physicists. It is explained, for instance, in Appendix IV of 

Salam and Strathdee, reference (3). In later sections we will occasionally 

state without detailed derivation results obtainable form harmonic expan-

sions. 
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IV. THE ATIYAH-HIRZEBRUCH THEOREM 

We now turn to the proof of the Atiyah-Rir~ebruch theorem, which states 

that the character-valued of the Dirac operator vanishes on any manifold with 

a continuous symmetry group (in any even numb~er of dimensions, though our 

main interest is d"' 4k+2). The presentation will parallel a recent treat-

ment of Morse theory, 16 and is essentially a more concrete version of the 

odgi.nal proof. 

Let B be a compact Riemannian manifold of even dimension n, Suppose B 

admits the action of a symmetry group C. We wish to prove that index(g) • 0 

for every gtG. Since every element of G can be approximated arbitrarily well 

by elements of suitably chosen U(l) eubgroups of G, it eufficee to prove that 

index(h) • 0 whenever h is an element of any U(l) subgroup R of G, We there-

fore specialize to the case of a U(l) symmetry group R. Since the representa­

* tiona of R !!: U(l) are labeled by an integer or half-integer n, it suffices 

to show that indexn ( ij) • 0 for all n. 

Let ~i be a local coordinate system of B. Let J:.i(~j) be the Killing 

. vector field that generates R. (This ~~~eans that, infinitessimally, the R 

transformation is ,.i + +i + dC 1(.-i).) Acting on spinora, the generator of R 

is the "Lie derivative" operator: 

J . 1 .. 
0\. K • i (K

1
Di + 7; r

1
J (DiKj )) (16) 

where rij • -
2
1 (r1 , rj]. Using the Killing vector equation D.K. + DJK. • 0 

' J ' 
and standard identities, it is not difficult to verify that fK and y! 
commute -- as should be the case since -/.K generates a symmetry. Therefore 

we ma)' study simultaneous solutions of the equations 

• The eigenvalues on spinor states are half integers in certain cases • 

-24-

oi' •• • "" 
ipt ... (17) 

Our problem is to show that the Dirac index indexn( iP) vanishes for each 

sector of Hilbert space labeled by the integer (or half-integer) n. 

The basic property of this index is that it is invariant under arbit­

rary deformations of the operator if that are U(l) invariant and preserve the 

A 'J property ifr • -rif• Let us therefore perturb the Dirac operator in a way 

that preserves these properties and simplifies the analysis of its spectrum. 

Instead of ij we will study 

ij,·ij•t r1K. 
' 

(18) 

where t is a conveniently chosen real number. The character valued index of 

i~t IDUit be ind"ependent oft. We will prove that indexn(i/) vanishes for n)O 

by studying the behavior as t + +•; and we will prove that indexn ( yf> 
vanishu for n<o by studying the behavior as t + -•. 

We define a "Hamiltonian" 

H • (ill )2 • (i-.1:)2 + t2tc.2 + 2it KjD. + itrij D.K. 
t rt r J 1 J 

(19) 

If we could show that for sufficiently large t, Ht has no zero eigenvalues, 

this would establish the vanishing of the character valued index. The 

general reason this might be true is that the t 2K2 terro is positive definte 

and becomes very large for large t. However, the analysis is made subtle by 

the term 2it KjD., which is not positive definite and can have large matrix 
J 

elements. 

A crucial observation is that in the sector ~ljo • n"4o, Ht reduces to 

H (n) • {ioi)2 + tlt<2 + 2tn + -
2
1 it rij O.K. 

t r 1 J 
(20) 
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Since t is freely at our disposal, we choose t>O if n3£1 and t<O if n<O. '" 
this way the term .2tn, as well as the t2K2 term, is positive, 

Now, if the .Killing vector field Ki has no :c.eros, then all eigenvalues 

are of order t 2 as t + ""· In this case, the character valued index certainly 

vanishes. In general, however, Ki vanishes at certain points, and our 

analysis is more difficult. 

For large It I, the spectrum of Ht(n) can be calculated in an asymptotic 

expansion in powers of 1/ltl by expanding near the minima of the potential. 

The relevant minima (which might give states that do not diverge in energy as 

It I + •) are zeros of K. For simplicity, we will treat the case of an 

isolated zero of K, but the general case is not much different. 

We may take our isolated zero of K to be at ti•O. Near ti•O we can 

choose the locally Euclidean coordinates ti to be such that K. • ~ .. fj + ' ,, 
0( t 2), with ~ij a constant matrix 

0 ' . 
-q 0 

... ,, 
0 ,, 

-r2 0 

0 

-rd/2 

rd/2 

0 

(21) 

(Here d is the dimension of our manifold; the ri are integers since K gener­

ates a U(l) group.) For large It I, keeping only term• that contribute an 

amount of order t to the energy, Ht (n) simplifies to 

H (n) 

' 
d 

I 
i•l 

d/2 

- ' I .... , 

,, 
a~i 2 

• 
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d/2 
L t 2 r 2 

.t=l t 

i r 
1 

-,- [rH-1' r"] 

2 

(•21-I 
2 

+ <fla) + 2tn 

(22) 

The ground state energy of (22) is easily calcualted. The first two terms 

are a sum of commuting harmonic oscillator Hamiltonians. The matrices 

t {r21_1• r21 ] commute with each other and with the rest of the Hamiltonian, 

d/2 
and have eigenvalues ±t. The ground state energy of (22) is It I L lr.l + 

i•l 1 

2tn.* This is a good approximation for large It I. Considering t + +• if 

n )(), and t + -• if n<O, we see that Ht (n) has no zero eigenvalues and 

consequently that the character-valued index of ij vanishes. 

If the zeros of K are not isolated points, the discussion must be 

changed only slightly. Let F be any connected component of the submanifold 

on which K vanishes. The potential t2K2 vanishes on F, so our spin 1/2 par-

ticle moves freely along F, but the motion orthogonal to F is restricted to a 

distance of order 1/lt. The orthogonal motion is governed by an operator 

similar to (20), and the zero point energy of the orthogonal motion is 

strictly positive if It I+ • with tn>O, again showing that the character 

valued index vanishes. (The discussion of degenerate Morse theory in refer-

ence (16) is eimitar.) This co111pletes the proof of the Atiyah-Hirzebruch 

theorem. 

* If we restrict ourselves to 
state energy of (22) is even 
conclusion. 

states of ;/ k"' • n"' (as we should) the ground 
larger. This of course does not change the 
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Let us, however, now look at the preceding formulas from a different 

viewpoint, the goal being to obtain the fixed point formula associated with 

the Atiyah-Singer index theorem. 26 As we will see, this formula is a p?wer­

ful tool for computing the character valued index when it is not zero. 

Let us now study Ht for t + +•, Low-lying eigenvalues of Ht are con­

centrated near zeros of K, which for simplicity we will take to be isolated 

points. Moat of these states have energy of order t, but &Ollie have energy 

that vanishes as • ~. (This has been obscured in the presentation until 

now.) Let a(i~ be the nuDJber of state t concentrated near the ith zero vhoae ··-
energy does not diverge as t + •• and vhich obey ~t'" .tt and /..,_t'" nt. (We 

have proved 

operator at 

(i) 
an,.t • 0 for to--o.) 

the i th zero as 

f. (e) 

' 

Define the "local index" of the Dirac 

L eine (a(i) _ a(i)) 
n n,+ n,-

(23) 

The character-valued index I(8) is obtained as the SUD of the local indexes 

I( e) L f.< e> 
i • 

(24) 

since thia sum includes the contribution of all states vhoae energy is not of 

order It I, and only such states can .contribute to I( e). Of course, we have 

proved that the Dirac case has 1(6) • 0, so (24) is a set of restrictions on 

the a(i~. However, we will obtain a formula like (24) for other problems in ··-
which I( e) '~ 0. 

To compute the a(i~, we could simply diagonalize the harmonic oscillat­n,-

or Hamiltonian (22). A more efficient method is as follows. Zero energy 

states must obey i/Jt ~ • 0. Here t.i • irj (D.- itK.) has a very simple 
l't J J 

interpretation; it corresponds to a particle interacting with the abelian 
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vector potential Aj .. tKj as well as the metric of the curved manifold under 

study, For large t, we know the low-lying states are concentrated near zeros 

of K. If near a zero at (say) ¢"'0, Ki • wijf. with wij a constant matrix, 
J 

then the "magnetic field" Fij • 3iAj- a/i is just the constant matrix 

twij' So as t • •, our proble111 reduces to the study of the Dirac equation in 

a constant IDagnetic field. As in the usual three dimensional case, the 

ground state energy is zero (but states of zero energy have n<O if t • +• or 

n>O if t • _.,). 

With wij in the canonical form (21), the analysis is very simple. 

Define 

i" (I) 
Pt • 

iD(2)•i 
t 

iD (n/2) 
t -

r 
i•l ,2 

r
1 

(Di + itKi) 

L r' (D. • i<K.) 
i•J ,4 1 1 

L tl (D .• itK.) 
i•n-l,n 1 1 

(25) 

Then (ijSt )2 • n!
2 

lyf (j) )2 so a solution of if t • 0 obeys simultaneously 
j•l t t 

·• (l) ,, _ _ ,,/ (n/2) ,, _ 
0 lf't T •'' lf't T • Thus, we need only the well known solution of 

the problem of a con~nt magnetic field in~ dimensions. 

Choose a bash of gamma matrices rt • (~ ~).r'-(o 
' 

-i) 
0 • If the 

"rotation angle" is r, so K 1 • r+2, K2 • -r+1, then the two dimensional Dirac 

operator is 

0 ;, -((a,. tr+d • i (a2 • trh) 

With • • (" ), i p 0 if v r, 

(a,- «+t): t(az- t<+z)) 
(26) 
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u(>., ;,) 
k 2 2 

(h + ih) exp- tr (+t + •h ) 

k 2 2 
v(+t• +2) • (+t- ih) exp + tr (+t + f2 ) 

k 0, 1, 2, ... (21) 

The chirality operator is 'r • (~ -~). For t + +•, if tr>O only positive 

chirality zero modes are normalizable. If tr(O only negative chirality zero 

modes are no~alizable. 

The symmetry generator is 

hK • i(foi + ~ fj DiKj) 

• -idh a2- h atl +I (~ 

We see that on the states (27), ,eK • rr (k + 1/2). 

"l -1 

The local index in the two dimensional problem would be h(e) • 

(28) 

t einB (a + - a _) where a .. are the number of zero energy states t with n n, n, n, ... 

~K; • ntjl, ?v • :t~. Using (27) and (28), ve see that if r>O 

If r<O we get 

h( e) • 

.r8 
'r • + 

. 3re 
'T • + 

eir8/2 

1- eu8 

·i 1 
~ 
si"Ir8 

i}e 
• + 

h( 8) • -e-ire/2 
_ e·-i~8 _ e -i{re 

_ e-ir8/2 

l-e-ir6 
.1. 

2 
1 

si{re 

(29) 

(30) 
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It is one of the wonders of analytic functions that these expressions are 

equal, so we need not worry about the sign of r. 

In view of the separation of variables (zero eigenvalues of -,ft are zero 

eigenvalues of each of the ,Pt (n) ), we can now easily compute the local 'index 

fi(e) at the ith zero. It is just 

f-m-::J 
sinzr

4 
e 

f i ( 6) -
a•1 

n/2 . • (1 (31) 

where r
4 
(i) is the ath rotation angle at the ith zero of k. The character 

valued index of the Dirac operator is therefore 

I( 8) • (t )n/2 r • 
i • sin~ 2 • 8 

(32) 

which is the fixed point formula. Although we obtained it by taking t + +•, 

an analysis for t + -• leads to the same formula. 

Since we know that t(e) 0, (32) is a set of very restrictive condi-

tiona on the r (i). Actually the Atiyah-Hirzebruch theorem is an easy con-• 
sequence of (32). the ri.ght hand side of 02) defines a rational function of 

w • e i9/t which vanishes at W'*O and .,.... This function has no poles. 

(Individual terms in (32) have poles at lwl•l. these poles must cancel after 

s~ing over fixed points, for the following reason. An elliptic operator 

always has only finitely many zero modes, so t(e) has an expansion t(e) • 

t a e 1n 8with only finitely many non-zero a ; therefore t(e) is always non-
n n n 

singular for real e.) A rational function without poles that vanishes at 

infinity is zero, so I( 8) • 0. 

For our purposes the virtue of (32) is that it generalizes easily to 

other problems. Suppose we wish to study a field VaA with a spinor index a 

and some other index A. For instance, A may be a vector index if we wish to 
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study the spin 3/2 field; Ot" A may be a Yang-Hills index. We wish to cal­

culate the character valued index of an operator acting on WaA· The physic­

ally relevant operator may not actually be the Dirac operator ifjO., but we 
J 

will assume it differs from the Dirac operator only by irrelevant non-minimal 

ter111s. 

As before, the character valued index may be computed from the large 

jtj lilllit of i'j;t • ifj (Dj + itKj). The index A only enters in the connec­

tion used to define D., but the connection is irrelevant ss jtj + •, as shown 
J 

by the reduction to a flat space harlllonic oscillator proble111. So our pre-

vious determination of the spectrum is still valid. 

What is different is the determination of the quantum numbers of the 

low-lying states. The symmetry generator is nov ,.., 
-I.,. 1.,. Q(+k) (3)) 

with an extra term Q (without derivatives) that acta on the A index, (It is 

a generalization of the extra angular momentua term for a charge interacting 

with a magnetic monopole.) Let q(i) be the value of Qat the ith zero of K. 

The 1tates near the ith zero that have approximatley zero energy are still 

"' 1\ 
the ith zero, /.kt. rf (k + -}) + Q(i), The effect is given by (27), but near 

very simple. 
.GQ(i) 

In the sums (29) and (30) 1 one has an extra factor Tr e1 

(the trace being over the A index) so nov 

f. ( 6) 

' 
• (i_ )n/2 i EIQ ( i) n/2 

2 Tr e H 

and the fixed point formula is 

I( 6) .. (t t/2 

a• I 

L Tr eit'Q(i) n/2 
i • ••• 

sin! r (i)e 
2 a 

sin t r
8
(i)e 

(34) 

(35) 
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We will not write down here the more general formula which holds if the zeros 

of K are not isolated. This formula involves weighting the factors of 

1/(si.n ~e) by the number of zero modes of a certain Dirac operator on the 

fixed point set. 

One may wonder "why" a fixed point formula exiSts. The character 

~ i~k 
valued index is formally Trf e (since states of non-zero energy are 

paired and cancel out of the trace). The trace of a matrix is the sum of the 

diagonal matrix elements. In the coordinate basis, the diagonal matrix 

elements 
i~K 

of e vanish except near the zeros of K. The fixed point formula 

is similar to the method of Landau and Lifshchitz 27 for computing the charac-

ter of a molecular symmetry group furnished by the molecular vibrations in 

terms of fixed points of the symmetry group action. 

To gain some practice with (15), let us use these methods to retrieve 

the results of section III. We consider a spin 1/2 particle 111oving on the 

two sphere, We take K to be (figure (5)) the generator of a rotation about 

the z axis. There are two fixed points, the north pole N and the south pole 

S. A rotation which is counter-clockwise •• seen by an observer looking down 

at N is clockwise to an observer looking down at s. So the rotation angles 

are r•l at N and r•-1 at S, The fixed point formula gives 

I( 8) 
i 1 i 1 ·---+- -0 2 

sin!e 
2 

sin(- j-e) 
(36) 

as expected. Now, as in 1ection III, we assume our spin 1/2 particle to be 

charged, and we place at the center of the sphere a magnetic monopole with eg 

• "¥-> n£1. It is well known 25 that the angular momentum operator is shifted: 

j .,. j + egi. In our case £k is J ; the operator Q is the extra piece in J 

' ' 
or egz. At N, z•l; at S, t•-1. Note that the Q(i) are numbers, ±eg, not 
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matrices, since in the U(l) case the charge index A has only one value. The 

fixed point formula is now 

I( B) .. i.. eieg6 
2 

_1_ + ~ e -ieg8 

s i-18 
2 

e -i 6/2 

sin(- -}e) 

(eiege _ e -iege) 
1 - e -i e 

l 
eg- 2 

1 l 
n•-(eg- -,J 

in8 • (37) 

This agrees with our result from section III, since the sum in (37) is the 

(~ 

trace of e z in the represent ion of J • eg - }. 

The proof of the Atiyah-Hirzebruch theorem that we have given is close-

ly related to the original argument. It has the virtue of yielding the fixed 

point formula, which has many other applications, as we will see, If one is 

only interested in the vanishing of the character-valued index of the Dirac 

operator, the following alternative argument •ay be sketched, For a space B 

that admits action of a non-abelian group G, the Lawson-Yau theorem22 states 

that B admits a G-invariant metric of positive scalar curvature. (The basic 

idea of the proof is as follows. ~ G-invariant metric g can be decomposed 

as g • g 1+g 2, where g 1 is the metric transveue to the directions of the 

group action and g 2 is the metric along the group action. Lawson and Yau 

show that the metric g£ • g 1+£g 2 has positive scalar curvature if E is suit-

ably small and positive and g 1 obeys some mild conditions at the fixed points 

of G.) Combined with the Lichnerowicz theorem (no zero modes of the Dirac 

operator if the scalar curvature is positive), this implies the vanishing of 

the character valued Dirac index for manifolds with non-abelian symmetry 

-)4-

groups. For manifolds with only an abelian symmetry group, one may reason as 

follow·s. Let B be a manifold with U(l) symmetry that violates the Atiyah-

Hir~ebruch theorem in n dimensions, Let i be a manifold of dimension n+2 

defined to be a non-trivial fiber bundle over s 2 with fiber B. (To construct 

this bundle, consider the space s3 of pairs of complex n~bers (zt) with ,, 
lz: 112 + lz 212 "' 1. In the product s3xs, make the identification ((Zt). ; 1) ,, 

z: eiet in~ i _ 
(( 1 iCI}, e t) for suitable n.) The space B has SU(2)xU(l) symmetry, 

' ' e 
and has a non-trivial character-valued index of the Dirac operator if B does. 

(To see this, choose on i a Kaluza-Klein Metric with large radius in the s2 

directions and tiny radius in the B directions; and solve the Dirac equation 

on B i" a Bor ... -oppenheimer-Kaluza-Klein approximation.) Since the Lawson-Yau 

and Lichnerowicz theorems imply that the character-valued index must vanish 

on B, it must also vanish on B. 
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V. RARITA-SCHWINGER FIELDS 

In this section we will study the character valued index of the Rarita-

Schwinger field. We will not be able to reach a comprehensive result similar 

to the Atiyah-Hirzebruch theorem for the Dirac case. We will prove that the 

zero modes of the Rarita-Schwinger operator on any homogeneous apace G/H form 

a real representation of G. In other words, we wil show that on any homo-

geneous space of dimension 4k+2, the character valued index vanishes. For 

homogeneous spaces of dimension 4k, the same argument shows that the charac-

ter valued index vanishes except for the trivial character (the topological 

index). Unfortunately, I do not know a general result for the Rarita-

Schwinger field on spaces that are not homogeneous spaces. (I also have been 

unable, despite many attempts, to find a case in Which the character valued 

index is non-trivial, and I believe that if such manifolds exist, they are 

rather complicated manifolds with rather small symmetry groups in relation to 

the number of dimensions.) Because our results will not be entirely conclu-

sive, we will return after discus1ing the theorem on homogeneous spaces to a 

discussion of various proble•s in the uae of the Rarita-Schwinger ope~ator. 

Our balic tool will be the fixed point formula dilcussed in the .pre­

vious section. In particular, ve will ~ot use the local supersymmetry of the 

Rarits-Schwinger field; it may be possible to find a stronger result by using 

this property. 

In an appropriate gauge, the Rarita-Schwinger field is simply a vector 

spinor field ~pa (pis a vector index, a a spinor index) which obeys, up to 

irrelevant non-minimal terms, a Dirac equation J!;P • 0. Of course, we wish 

to discard zero modes of "flu tht can be gauged away or which violate gauge 

conditions. Physically, in quantizing a theory, zero modes which are gauge 

j 
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artifacts are canceled by ~;ero modes of the spin 1/2 ghost fields. There-

fore, we must subtract from the character valued index of the Rarita-Schwin-

ger field the corresponding index of the spin 1/2 ghosts. (This is the gene­

ral logic, but actually the ghost index vanishes, by the Atiyah-Hir~;ebr'uch 

theroem.) 

Let us work out the fixed point formula for the spin 3/2 field. Con-

aider an isolated zero of the Killing vector field K. Suppose that near the 

zero (which we assume to be at ti•Ol K. • w •• +j where w is a constant anti-
J 1 lJ 

symmetric matrix 

0 'I 

-r 1 0 

•• 

,.J 

0 ,, 

-r z 0 

0 

-rn/2 

The symmetry generator d(K for a spin 3/2 field is 

rn/2 

0 

rJ 

o('Ktj • i(KiDitj + t ffal (D1Km) tj)- i(Dj Ki) ;i 

•fKvj- i(Dj K
1

) t' 

(38) 

(39) 

where o(K is the generator for a spin 1/2 field and the extra piece acting on 

"' the vector index is -i(DjKi). 
; 

At t •0, Dli • wij, so i._K acts on the vector 

index of "fli by multiplication by the matrix i111. 
.9Q(i) 

The factor of Tr e 1 in 

formula (34) for the local index is here to be replaced by 

i 8(illl) 
Tr e • 2 "'' ! 

a• I 
cos 8r 

a 

The fixed point formula for the character valued index of the Rarita-

(40) 



< 

,. 

Schwinger fteld is then 

I( e) .. {~ )n/2 

[ 

n/2 

I {a~l 
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1 n/2 

' 1 (,) ) ( ! 
unzr. 6 b"l 

(') 
2cos rb l e 1)] (41) 

Here i runs over the fixed points or zeros of K; r (i), a • 1 • , , n/2 at"e the 
a 

rotation angles at the ith zero; and the minus one in the last factor in (41) 

is chosen to subtract the index of the ghost fields, as diecuaaed earlier. 

(Minus one equals minus two plus one; for the quantization of t
1

, there areG 

two ghosts with the same chirality as ti and one of opposite chirality.) 

(41) baa a generalization when the fixed points are not isolated, 

(41) places very. severe restrictions on the possibility of obtaining a 

complex representation of Rarita-Schwinger zero modes. (41) shows that t(e) 

is a rational function of w • eie/2 with-poles only for lwl• or at w-0 or 

lh•, The poles at lwl • 1 muat ca':lcel upon summing over fixed pointa, as in 

the spin 1/2 case. (Note the discussion following (32).) The rational 

function I(~) must be a constant unless there really 

If the largest rotation angle at the ith fixed point 

are poles at w-0 or w-•. 

i• rb (i) then the 

contribution of thia fixed point to l(w) behaves for w + • or w + 0 as 

fi (w) 
(,(i) - ! ,(i)) 

- w b a ... 
There are poles at w-0 and w-• if and only if the largest rotation angle 

rb (i) is bigger than the sum of the others 

( i) > ! 
rb a#b 

r a (i) 

(42) 

(43) 

If (43) is not obeyed for any i, I(w) has no singularities. Even if (43) is 

obeyed, the poles may vanish in summing over i. It is difficult to satisfy 

(43) in a multidimensional space with many rotation angles at each fixed 

point. 

If for each i and each b 

(i) 

'• 
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! 
a1b '• 

(i) 

then I(w) is a rational function without poles and bounded for w + ~. s~ is a 

constant. The constant is an integer-- the ordinary. or topological index of 

the Rarita-Schwinger field. If (44) is always a strict inequality, 

'b(i) < L r (i) for all i and b, then l(w) vanhhes as w + •, so I(w) • 0 
a1b a 

and the topological index vanishes, 

We will u1e these con1ideration• to prove that the character-valued 

index of the Rarita-Schwinger field on a homogeneous space alway• vanishes 

except possibly for the trivial character (which may appear in the case of 4k 

dimensions). 

The homogeneous space G/H is defined u follows. It is the space of 

all gE:G with g and gh con1idered equivalent for any h£8. Becauae of the 

equivalence relation, the dimension of G/H equals the dimension of G minus 

the dimension of H. The space G/H is invariant under g-+ug for any ut:G. A 

fixed point of this transformation is an element g of G such that ug • gh for 

some h£8; in other words ,-1ug£H. If u is not equivalent up to similarity to 

an element of H, then the symmetry transformation g + ug has no fixed points • 

If the rank of H is leas than the rank of G, then the generical gener-

ator A of the Cartan subalgebra of G i1 not equivalent (up to similarity) to 

any generator of H. then eiM act• on G/H without fixed points, so the 

character valued index vanishes. Hence we need only consider the case rank H 

rank G. 

Let us now make a brief detour. In general, given two spaces M,N the 

character--valued Dirac and Rarita-Schwinger indexes of H,N and the product 



~ 
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Hl<N are related by 

indexDirac (H><N) • indexDirsc (H) • indexDirac (N) 

indexR.S, (H><N) "' indexR.S. (H) • indexDirac (N) 

+ indexDirac (H) i.ndexR.S, (N) 

+ index . (H) 
Dtrac indexDirac (N) (45) 

These equations hold because the Dirac and Rarita-Schwinger equations on H>~N 

can be solved by separation of variables. The second equation in (45) (which 

is our real interest) arises because the vector index of ~i must be tangent 

to either H or N, so a Rarita-Schwinger solution on HxN obeys the Dirac equs-

tion on Hand the Rarita-Schwinger equation on N or vice-versa (the last term 

in the second equation in (45), which is not intuitively obvious, arises in 

subtracting the ghost contributions from the Rarita-Schwinger indexes), In 

particular, (45) implies that if H and N have vanishing Dirac index, then HxN 

has vanishing Rarita-Schwinger index. Since a hoi.ogeneous space has vanish­

ing Dirac index (by the Lic:hnerowicz or Atiyah-Hirzebruch theorems), a pro-

duct of two homogeneous spaces has vanishing Rarits-Schvinger index. 

From these facts it follows that the Rarita-Schwinger index of G/H 

vanishes unless G is simple. For suppose G • c1xc2 with non-trivial G1xc2• 

A subgroup of G of maximal rank is then necessarily H • H11fl 2 where H1 and H2 

are maximal rank subgroups of G1 and Gz respectively. Then G/H • (G1/H1) >e 

(G 2/H 2) is a product of homogenous spaces, and baa vanishing character valued 

Rarita-Schwinger index, 

We still must study G/H with G simple and H a subgroup of maximal rank. 

Let us first calculate the rotation angles at the fixed points for a typical 

infinitessimal transformation g + (1 + i£A)g, A being a generator of G. 

. ' 
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Since H is maximal, A is equivalent (by conjugation) to a generator of H, so 

we may sssume A is actulllly such a generator, A typical fixed point is then 

g • I; because of the equivalence under right multiplication by an element 

of h, the transformation g +(I + i£A)g is equivalent to 

g + (l + i£A.) g (I - iEA) (46) 

This again makes it clear that g • is a fixed point. The fixed point is 

isolated if A is chosen generically. The rotation angles at g • 1 may be 

computed aa follows. The Lie algebra 1J. of G can be decomposed as the Lie 

algebra?:-~- of H plus an orthogonal complement?< :iJ-• 'Jt a'?<. Near g • 1, 

the generic element of G/H is l +ik, with k£1(. The transformation (46) acts 

on k by k + k + i£ [A,k), The rotation angles at g • 1 are therefore just 

the eigenvalues of A acting on 1\ by conjugation, 

The other fixed points are at points g. such that g. -tA g. E'lL. The 
1 1 1 Pf 

rotation angles are the eigenvalues of gi-tA gi acting by conjugation on?< 

Now we are ready to prove that the Rarita-Schwinger index vanishes on 

homogeneous spaces, except for the trivial character. Before stating the 

argument in a general way let us firslconsider the case that G is SU(N). Let 

Y0 be the SU(N) generator 

0 J (47) y -0 

0 

l/2 
-1/2 

It generates an SU(2) subgroup of SU(N), so its eigenvalues in any represen-

tation are integers or half integers. Let Y • Y0 + EQ where Q is a generic 

SU(N) generator that commutes with Yo and £ is a suitably small real number. 
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Consider the Rarita-Schwinger equation on some space homogeneous under 

an SU(N) action. Let A+ and ,.,-be the SU(N) representations of positive and 

negative chirality ~era modes. Define r(e} • Trll.+ eiBY- trA_ eieY In any 

non-trivial SU(N) representation the biggest eigenvalue of Y
0 

is at least 

1/2. Hence, if A+ differs from A_ by a non-trivial SU(N) representation, the 

most positive power of e 18 appearing will be at least eiea where a • 1/2 + 

0( &). (For suitable Q and sufficiently small &, there is no accidental can-

cellation of the highest power. This is the only role of Q and E in the 

discussion.) This means that with w • ei&/l, I(w) ~- if not a constant--

diverges for w + ... at least as wl+O(£) Reference to equation (42) shows the 

necessary condition to achieve this; we need at one of the fixed points of 

the fixed points P of the transformation generated by Y 

rb - l r ) 1 
a#b a 

(48) 

where rb is the largest rotation angle at P and r
8 

are the other rotation 

angles at P. 

What are the rotation angles of the transformation Y that are not of 

order d They are one, corresponding to the SU(N) generator 

(f 
1 0 0 0 

f) 
0 0 

A • (49) 

and its adjoint, and 1/2 corresponding to the generators 

(~ 
0 ., ... :•) 0 . , ... 

X . •• a 0 0 ... 
0 0 ... 0 

(50) 

and their adjoints, Of course, in general we do not count A and all the X
0

; 
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we only count those that are in'}< (the complement in G of the H Li.e algeb-

ra). The only way to obey (48) is to include A but none of the X0 . This 

means H must be a subgroup of SU(N) that includes all the X0 and their ad­

joints and all the diagonal generators (since H has ma~imal rank) but not A. 

There is no such subgroup of SU(N), So lr..+ and h_ differ at most only by the 

trivial character, 

The same argument goes through with SU(N) replaced by any simple Lie 

group G, One simply replaces Y 0 by the generator of the Cartan sub-algebra 

parallel to a root E of maximum length, E plays the role of A; the roots not 

orthogonal to E play the role of the X0• The rest of the argument is 

unchanged. 

Thus, we have shown that on any homogeneous space G/H (of dimension 4k 

or 4k+2) the character valued index of the Rarita-Sehwinger field is a con-

stant, a multiple of the trivial character. It is equal simply to the ordin­

ary index, the difference between the total number of right-handed and left-

handed zero modes. The ordinary Rarita-Schwinger index certainly vanishes in 

4k+2 dimensions but (unlike the ordinary Dirac index) it need ~vanish on 

homogeneous spaces of dimension 4k. It equals one on SU(4)/(SU(2)xSU(2)~ 

u(l)), HP 2, and G2/0(4). This may be seen by the methods of 8ections ]II and 

Ir, or from facts in reference (28), where properties of these spaces are 

described. 

Interestingly, for spin greater than 3/2, it is possible to obtain 

complex representations of zero modes on homogeneous spaces. Consider a spin 

5/2 field, which we may represent as a tensor spinor Wija' and j being 

vector indices and a a spinor index (we suppose Vij • i'ji' fii • 0}, The 

wave equation .to/ .. • 0 can have zero modes in complex representations on I' ,, --
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homogeneous spaces, For instance, on the six dimensional manifold cpl this 

operator has the following stable spectrum of zero modes: one multiplet of 

left handed zero modes in the symmetric tensor representation Sij, and one 

multiplet of right handed zero modes in the complex conjugate representation 

* s ij This may be seen with the methods of sections III and IV. 

Of course, physically sensible couplings of a massless spin 5/2 field 

to gravity do not seem to exist. 23 However. this arises only because the 

timelike components ~oi of the tensor-spinor field have the wrong metric; 

because of the apparent non-existence of spin 5/2 gauge invariance there is 

no way to cancel or remove them, Purely as a Euclidean equation, with i and 

j tangent to the positive signature Kaluza-Klein space, the equation W;., • 0 r., 
makes perfect sense and has the properties just stated, 

Our result about the Rarita Schwinger operator is much less sweeping 

than the Atiysh-Hirzebruch theorem of the spin 1/2 case. I do not know 

whether on some spaces that are not homogeneou1 the Rarita Schwinger operator 

may have zero modes in complex representations. (I am convinced, from many 

unsuccessful attempts to find them, that if such spaces exist they are rather 

complicated. It is difficult to satisfy equation (42)). 

There is actually a strategy which might very plausibly lead eventually 

to a general proof that the character valued index of the Rarita-Schwinger 

field always vanishes .except for the trivial character. The topological 

index of an operator is a cobordism invariant; this means that it vanishes 

for any manifold H of dimension n that is the boundary of a manifold of 

dimension n+l, The character valued index is likewiae invariant under equi-

varisnt cobordism; this means that if M admits the action of a group G and is 

the boundary of a manifold of dimension n+l to which the G sction on H can be 

-44-

extended, then the character valued index vanishes for any operator on H. If 

a set of generators of the U(l) spin bordism ring (the ring of spin manifolds 

with U(l) symmetry modulo those which are boundaries) were found, our conjec­

ture about the Rarita-Schwinger field could be proved by showing it to 'hold 

for all the generators. The mathematical problem of determining a set of 

generators for the (oriented) U(l) spin bordism ring has not been solved. 

However, the analogous problem has been solved for the unoriented~~ and unit­

ary~5 U(l) bordism rings, These rings are generated by very simple spaces 

(essentially, homogeneous spaces and fiber bundles in which the fiber is a 

homogeneous space). If the U(l) spin bordism ring is found to be generated 

by equally simple spaces, it will be possible to use the methods described 

above to prove (or disprove) the conjecture that the character-valued Rarita­

Schwinger index is always a constant. 

Because the situation for spin 3/2 fields is not completely clear, some 

general remarks on the •ubject may be u1eful. It is believed that massless 

spin 3/2 fields can be consistently coupled to gravity only in locally super­

symmetric theories. This apparently meansi7 that we are limited to eleven 

dimensions or less, In addition, beyond ten dimensions the chiral Rarita­

Schwinger field has one loop anomalies 18 that spoil general covariance and 

cannot be canceled by the anomalies of any known fields that can be consis­

tently coupled to gravity. For both of these reasons, it appears that six 

and ten dimensions are the relevant cases for chiral Rarita-Schwinger fields. 

This corresponds to two or six compact dimensions respectively. 

With two compact dimensions, the only manifolds with continuous symmet-

ry are the sphere, torus, and Klein bottle; the first two are homogeneous 

spaces, and on the last two the continuous symmetries have no fixed points, 
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so on all of them the character-valued Rarita-Schwinger index vanishes. We 

turn then to the case of six compact dimensions. 

Six compact dimensions are unfortunately too few to admit SU(3)MSU(2)x 

U(l) symmetry. If One may be willing to postulate an elementary U(l) gauge 

field and to try to obtain only SU(3}xSU(2) as the symmetry group of a six 

manifold.* The unique six manifold with SU(J)xSU(2) symmetry is cp2xs2. 

This is a homogeneous space to which our theorem applies; the character­

valued index could not be non-zero. EVen worse, this space does not admit 

spinors, so the Rarita-Schwinger equation on cP11<52 cannot be defined.2 9 

However, if the U(l) gauge field has a magnetic monopole expectation 

value on CP 2, spinors can be introduced (this is the so-called spine struc­

ture); all fermi fields
1 

including the Rarita-Schwinger field, must have non­

zero (half-integral) U(l) charges. The non-zero U(l) charge of the spin 3/2 

field introduces new anomalies (the mixed gauge-gravity anomalies of refer­

ence (18)) which cannot cancel among themselves unless there are many more 

than two Weyl gravitinos (two is the maximum of any known or conjectured ten 

dimensional supergravity theory) and which cannot be canceled by anomalies of 

spin 1/2 fields (because of a different tensor structure), If we ignore this 

and proceed, we can calculate the spectrum of the Rarita-Schwinger operator 

on CP 2>0S 2• The su(3)xSU(2) invariant expectation value of the U(l) field 

strength on cp2xS2 depends on two "monopole numbers" - a half integer p on 

cp2 (half integer so as to get a spine structure), and an &rbitrary integer q 

on g2, The resulting zero mode spectrum can be computed by the methods of 

sections III and IV. One obtains non-trivial complex representations, depen­

ding on p and q, but these representations have little resemblance to physics 

• This suggestion was made independently by H. Gell-Hann, 
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and are anomaly-ridden (because the ten dimensional theory with U(l) coupling 

to the Rarita-Schwinger field is anomalous). 

These accumulated difficulties may encourage us to give up on accommo­

dating SU(3)xSU(2) symmetry in six compact diJDensions. We may si111ply try for 

SU(3) SJIIIIII•Hry. The six·manifolds with SU(J) symmetry are quite restricted 

and can be seen from the fixed point formula to have vanishing Rarita­

Schwinger character valued index. It may be possible to accommodate 

SU(2)MU(l) in ten dimensions and to obtain leptons but not quarks as Rarita­

Schwinger zero modes. 

Evidently, whatever is the behavior of the Rarita-Schwinger operator on 

spaces that are not homogeneous, to obtain physics in this way would not be 

easy. 
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equal.* The fermion representation of the 0(2p+6) model in 2p dimensions is 

irreducible in the sense that a combined parity and internal parity operation 

exchanges the left and right handed fermions, This is the simplest theory 

with non-trivial anomaly cancellation that 1 can find in d > 4. 

Despite starting with a non-vectorlike theory, we are not assured of 

keeping this property after dimensional reduction. The familiar relation 

rl ... r4+n - rl •.• r4 • rs r4+n (52) 

shows that the 4+n dimensional chirality operator rl ••• r4+n differs from the 

four dimensional operator rl ... r4 by a factor r5 •• r4+n that may be plus 

or minus one. The non-vector like nature is wa&hed out after naive dimension-

al reduction, 

Indeed, if the gauge fields have zero expectation value, they are of no 

help whatsoever in avoiding the problegcdiaeussed in previous sections. They 

simply do not play any role. But vacuum expectation values of gauge fields 

that can be smoothly turned on or off are likewise irrelevant, for the usual 

reasons, We therefore must consider gauge field expectation values that can-

not be smoothly turned on or off. The prototype of such a thing is the Dirac 

magnetic monopole, which because it carrie• topological information and obeys 

a Dirac quantization condition cannot be smoothly turned on or off. We must 

place a generalized monopole "inside" the Kaluza-Klein space. Models of this· 

general type have been considered before by Randjbar-Daemi, Salam, and 

Strathdel!:. Lit 

. - -
This is so because '[r a . . a ' •.• a . .• r-o fork ( p+2, if ria the pro-

1'1J1 1 2Jz lkJk 

duct of all 2p+6 gamma matrice' of 0(2p+6) and alj • {yi.Yjl are the group 

generators. 
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For illustrative purposes we set p•5 and consider an 0(16) theory in 10 

dimensions, As explained earlier, the left (o.r right) handed o(l,9) spinors 

will be chosen as left (or right} handed spinors of o(l6). We will consider 

three models. 

In the first two models we take the six compact dimensions to be cpl 

the unique six dimensional &pace with SU(4) symmetry. We will assume that 

only a single (abelian) component of the 0(16) gauge field has an expects-

tion value. 

On cp3 there i& a topologically non-trivial U(l) gauge field. Ut is a 

U(l) connection on the basic non-trivial line bundle over CP 3.) This U(l} 

gauge field can be chosen to be SU(4) invariant in a unique way. Its 

strength, like the Dirac monopole charge, must be an integer n in certain 

units. 

Our first two models correspond to two ways of embedding U(l) in 0(16). 

(i) the embedding 

-· -I 

(53) 

_, 

breaks 006) to SU(8) 1(1(1), The four dimensional gauge group is therefore 

SU(4)xSU(8)~(1), where SU(4) originates from gravity and SU(S)xU(l) from 

o(l6). 

The quantum numbers of fermion zero modes can be computed using the 

methods of section III or lV. One finds rather complicated anomaly free 

representations. We will here consider only the minimal case of monopole 



• 
• .,....._ ... 

-51-

number n•l. The representation of SU(4)XSU(8)xU(l) that emerges is u fol­

lows, Let Vi and Wj be the funda111ental four and eight dimensional represent­

ations of SU(4) and SU(S), respectively. Let Sij be the symmetric product of 

two Vi, and S .. its complex conjugate; and let Ajk be the antisymmetric pro-
'l 

duct of two Wj and Ajk its complex conjugate. Then the left handed zero 

modes transform as ( i ;), .. ( )-2 (- )-·· .. V , W l, Aij ~ Sij' 1 ; the auperscnpt 11 

the U(l) charge, The right handed masaleu ferwiou transfol"'ll of course in 

the conjugate representation {Vi' WjJ-3• (1, Aij)Ze {sij, 1)'+, Despite its 

complexity, this representation is anomaly free. For reasons that are not at 

all clear, this representation is closely related to the supergroup 50(418).3° 

(ii) We can instead embed·U(l) in 0(16) at 

·-) 
4 

0 

0 
(54) 

breaking 0(16) to O(lO)XSU(3)~(1). In this case the monopole number must be 

even 1 for topological reasons (to ensure proper Dirac quantization for par-

ticles in the spinor as well .n ~ represe$tions of 0(10)). So we take 

the minimal case n•2, 

The zero modes can be shown in this case to consist of eight 0(10) 

families (left handed 16 and right handed~) and no antifamilies. Under 

SU(4) (fro~ gravity) 1t SU(3) 1t U(l) (fr0111 0(16)) they trandor111 as follows: 

they are neut;al under SU(3) and transfon. as 43 a 4-3 under SU(4)KU(l). 

(iii) For our last model, we consider a case in which a non-abelian 

subgroup of 0(16) has a vacuum expectation value. On any six di~ensional 

Riemannian manifold there is a natural 0(6) gauge field. One simply takes 

... 
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the spin connection wvij and regards it as a gauge field A,_/j. We embed 0(6) 

in 0(16) in the obvious way 

U-1~) J55) 

This breaks 0(16) down to 0(10}. 

We will~ assume the six co111pact dimension; to be cpl, The Dirac 

equation for this system can be analyzed in general. The zero modes are 

always ordinary fa~ilies, never antifamilies and never other representations 

of 0(10). The families are neutral under any continuous symmetries of the six 

dimensional space B, 

The number of families always equals the Euler characteristic of B. 

Here are some examples: 

s• 2 families 

s2 xs 4 4 families 

5 z~CSzxsz 8 families (56) 

c•' 4 famil iea 

s 31C$ 3 0 families 

In ten dimensions, the number of families is always even. A similar model in 

eight or twelve di~ensions can give an odd number of families. 

Why is the number of families equal to the Euler characteristic of B? 

With A,/j - w/j, the 0(16) spinor index behaves sa an extra Lorentz spinor 

index of B. The fermi field is therefore a spinor-spinor, a field with two 

independent six di~ensional spinor indices. Such a field is equivalent to 

the de Rham complex of antisymmetric tensor fields. The Dirac operator 

becomes the d and d* operators on differential forms, and the number of zero 

modes (weighted by chirality) is the Euler characteristic • 
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VI L OTHER CONTEXTS 

The preceding discussion has made clear that in RieJDannian geometry it 

will be very difficult to obtain realistic fermion quantum numbers as ~era 

modes of physically acceptable wave operatora. One vay out, considered in 

the last section, is to introduce elementary gauge fields. In the context of 

Kaluza-Klein theory, this is a rather diaappointing possibility. !.'hat other 

alternatives might there be! 

We must modify Riemannian geometry in some way. One possibility is 

that the tangent space group in 4+n dimension• iB not 0(1, 3+n) but a smaller 

group G, (This possibility has been considered by Davidson 30 and in much 

detail by Weinberg. 3t) The smaller group will have ~ore representations, in 

general; some of the new representations may correspond to new options for 

the spins of massless particles. 

For instance, G may be 0(1,3) x O(n). This group has a representation 

with spin 1/2 under 0(1,3) and (say) spin 5/2 under O(n), Since the "true11 

epin is 1/2, there are no timelike modes with wrong ~etric and no difficulty 

in writing a sensible wave operator, In fact, in the ground state the spin 

(1/2,5/2) field may be regarded as a teneor spinor 'tija with i and j con­

strained to be tangent to the Kaluza-Klein dimenBions; a satisfactory wave 

equation is Jf~ij • 0. (Once one considers fluctuations away from the ground 

state these formulas do not have a simple generalization, but ~ generaliz­

ation would emerge in any theory with restricted tangent apace group.) Since 

the spin 5/2 and higher spin operators in the internal spae can readily have 

complex zero modes (note the discussion of cp3 in section (5)), this would 

enable us to obtain non-vector-like theories after compactification. 

If n is even, n•2k, one could consider a theory with tangent space 

group 0(1,3) x U(k). The U(k) group of the internal apace is the tangent 
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space group in Ka~ler geometry. In Kahler geometry, one may write many vari­

ants of the Dirac equation (corresponding to the many representations of U(k) 

"'SU(k) >~ U(l) which do not extend to representations of 0(2k)) which lack 

analogues in Riemannian geometry. This is the subject of a cohomology, a 

major subject in Kahler geometry. The modified Dirac equations of Kahler 

geometry can readily have complex zero modes. For instance, the equations 

for a charged spin 1/2 field interacting with a magnetic monopole on s2 or 

CP 3 can be regarded aB equations in Kahler geometry; therefore, the model of 

section three and the first two models of section six can be viewed in this 

light. 

Of course, it is disappointing to consider tangent space groups like 

0(1,3) x O(n) or o(l,J) x U(k) that are product groups. One would much 

prefer a unified group, even if smaller than O(l, 3+n). However, Weinberg31 

has shown that if one desires Lorentz invadance in four dimensions producct 

groups are the only possibilities. 

If one is willing to envisage a product group G, one must still find a 

aensible equation -- replacing the Einatein equation -- for the time depend~ 

ence of the G connection. And presumably one must face at some point the 

unrenormalizability of quantum field theory in 4+n dimensins, which is likely 

to persist in this context. 

A more drastic modification of Riemannian geometry would be to assume 

that the underlying theory ia not a field theory of the usual kind but a 

theory of some other type. For instance, at present the supersymmetric 

string theories in ten di~ensions 7 would appear to be very attractive candi-

dates -- especially the n•2 theory which is chirally asymmetric and anomaly 

free. This theory naively reduces at low energies to ten dimensional super-
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gravity, but unlike that theory, 7• 32 it is likely to be a finite theory to 

all orders, 

Naive compactification of the string theory proceeds via ten dimension­

al field theory and suffers from the problema of ten dimensional field theory 

in describing fermion quantum numbere. However, there may be "inherently 

stringy" ways to compactify the string theory directly to four dimensions, 

without ten dimensional field theory as an intermediate stage. The rules and 

problema of Riemannian geometry might not apply in such a case -- though I 

hope some of the concepts of this paper would be relevant. I would coneider 

this the most attractive possibility, but unfortunately with the present 

incomplete understanding of the string theory, it is difficult to pursue this 

possibility. 

1 will, however, discuss one a1pect of the problem, The string theory 

baa a single dimenaionle1s coupling constant A. (It ia essentially Newton'• 

constant written in units of the Regge slope.) It is generally believed that 

A is an arbitrarily adjustable constant. If so, the fermion quantum numbers 

cannot depend on A. I believe that instead, when the string theory is more 

fully under1tood, it will be seen that (with proper normalization of A) the 

mathematical consistency of the theory will require that 1/A be an integer, 

The action of the string field theory which baa been partly constructed 33 is 

rather analogous to the effective Action of the large N expansion in QCD. We 

nov know 3~ that the large N effective action is multi-valued, defined only 

modulo 2wN. This means that, internally to the 1/N expansion, N must be an 

integer; this is analogous to the quantization of coupling constants in some 

2+1 dimensional field theoriea. 35 The cloee analogy between A and 1/N 

strongly suggests that the string field theory action is likewise multi-

·~ 
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valued, defined only PIOdulo 2w/A. This would mean that 1/J. would have to be 

an integer n; the proper quark and lepton quantum numbers might emerge only 

for a definite value of n. 
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VIII. MASSLESS SCALARS 

The ~ain focus of this paper is the question of obtaining massless 

fermions as zero modes in Kaluza-Klein theory. However, massless bosons are 

also important. Massless spin one and spin two bosons have a well-known 

origin in Kaluza-Klein theory, and arise for a simple reason, as reflections 

of unbroken local symmetries. Massless ,calara do not have such a simple 

rationale. Yet a good explanation of the existence of maasleaa charged 

scalars would be of utmost importance: it would offer a aolution3G to the 

problem of the existence of widely disparate mass scales in physics. 

Any bose field of a Kaluza-Klein theory might have .odes that would be 

aeen as charged scalars in four dimensions. We muat consider, then the 

gravitational field; the antiaymmetric tensor fielda of certain supergravity 

and other theories; and gauge fields. (More generally, in auitable back-

grounds, different fields may mix; mixed medea may be conaidered under (i) or 

(iii) below.) 

In general terms, we do not want scalara that are maaeleee for reaeone 

of symmetry. The only scalars kept massless by any a~etry argument of the 

usual sort are Goldstone bosons, which are always neutral under any unbroken 

gauge symmetries and hence are no help in aolving the hierarchy problem. 

Moreover, for a Goldstone boson any potential at all is forbidden; there ia 

no reason for a Goldstone boson field to acquire tiny but non-zero vacuum 

expectation values. We wish a 111ore subtle argument for bosonic zero 1110des, 

perhaps a topological argument, which will forbid mass ter111s but allow quar-

tic self-couplings. 

Let us consider in turn the case of gravitational, antisymmetric 

tensor, and Yang-Hills zero modes. 

I 
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(i) It seems that very li.ttle is knovn about the conditions under which 

some oscillations in the geometry of a compact space B will correspond to 

massless scalars. If B is Ricci flat, RJ.IV • 0, a "breathing mode" in which 

the geometry of B is uniformly dilated corresponds to a massless scalar, 

because the equation RJ.IV • 0 has a scaling symmetry and does not determine 

the radius of B. This mode is always neutral under continuous symmetries, so 

is not helpful in solving the hirarchy problem. The scaling symmetry of the 

classical equation RJ.IV • 0 is not a a~etry of quantum Kaluza-Klein 

theories, and therefore3 7 (unless there ia an unbroken aupersywmetry) theae 

1110des get non-zero mass at the one loop level. 

In models with an unbroken superaymmetry at the tree level, there are 

some known cases in which aome oscillations in the metric of B correspond to 

* charged massless scalara at the tree level, Little is known about the 

possibility of eventual supersymmetry breaking in theae modela. 

(ii) Many supergravity theoriea contain antisymmetric tensor fields, 

for instance the third rank antisymmetric tensor field Aijk of eleven dimen­

sional supergravity. The Lagrangian is constructed from the curl of A, Fijk! 

• 3i Ajkt :t: cyclic permutations. This curl is invariant under the gauge 

transformation A. "k +A ••• + (a. A.k +cyclic permutations). The Lagrangian 
lJ lJ 1 J 

for a kth rank antisywmetric tensor gauge field is 

<f. 1 
Tik+TTT Jdnx (F. . )2 

11""" 1 k+l 
(57) 

The field equations derived from this Lagrangian may readily have zero modes 

for topological reasons. 

•I thank H. Duff for a discussion of thia point. 
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The physical interpretation of these modes depends on how many indices 

of A. • are tangent to B and how many are tangent to the space-time 
1 1 ••• lk 

directions. If all indices are tangent to B, we get a massless scalar in 

four dimensions. If all indices but one are tangent to B, we get a massless 

spin one particle in four dimensions. If all indices but two are tangent to 

B, we get a massless antia~etric tenaor in four dimensions which again 

describes a massless scalar. Other cases do not give rise to propagating 

modes in four dimensions. 

In general, the number of zero modes (modulo gauge tranafo~ationa) of 

A. • with q indices tangent to B is equal to a topological invariant 
11 ... lk 

known as the qth Betti number of B. As an example, one may consider in 

eleven dimensions the spaces Hpqr with SU(3))($U(2)xU(l) ayaoetry.lt For moat 

of these spaces, the first and third Betti numbers vanish, so one does not 

get massless scalars. (the exceptions are cp2xS3 and CP2)($3/zk, for which 

the third Betti nurober is one and one gets one massless scalar in four dimen-

siona; and CP21C52xS 1, for which the first and third Betti nUIIIben are one and 

one geU two massless scalars,) However, for the Hpqr the second Betti. 

number is one (except for GP 2 ~CS 2 l<Sl, where it ia two), so one would get one 

(or two) massless spin one particles in four dimensions (in addition to the 

gauge fields of SU(3)l<SU(2)xU(l) coming from the metric tensor). These 

massless spin one particles do not have minimal coupling• to any matter 

field•. They interact through'derivative·couplinge, such as magnetic moment 

couplings to fermi fields. They would give riee to long range spin-spin 

forces of roughly gravitational strength; presumably thie is far too weak to 

be detectable. 

... 
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There is, however, an old theorem that zero modes of antis~etric 

tensor fields are always neutral under any continuous symmetries. Essential-

ly, this is true because, by the deRham-Hodge theory, zero modes of the qth 

antisymmetric tensor field on B correspond to topological classes of cloSed q 

dimensional submanifolds of B. A continuous symmetry cannot change the topo-

logical class of a submanifold, so it leaves invariant all of the zero modes 

of anti1ymmetric ten1or fields. 

• Here is an analytical proof. Let d be the curl operator, so the curl 

of the antisymmetric ten1or field A will be denoted as F • dA. (Thus, 

(dA). . • {a. A. . ~cyclic per!llutations).) The change in A 
11'""1k+} 1 1 12"'. 1k+l 

under a gauge transformation is A +A + dA, where A ia an antis}'lllllletric 

tensor field with one less index than A. What is a 111assless mode of the A 

field? Setting the .omentum in the Minkowski directions to zero, we calcu-

late the energy (per unit volume) of an antisymmetric tensor field A by 

integrating over the co111pact dimensions. From (57), the integral is 

/ 8d + (dA) 2, so a mauless mode is an antieymmetric tensor field defined on B 

such that dA • 0. Actually, ve want zero modes thta cannot be gauged away, 

so we want solutions of dA • 0 modulo gauge transformations A + A+dA. (Since 

d_2 • 0, any pure gauge A • dA obeys dA • 0.) 

How let Ki(~) be an arbitrary Killing vector field, generating the 

infinitessimal 1ymmetry transfomation +i + +i + d<i <+j). To show that the 

zero model of A are neutral under arbitrary continuous symmetries, vemust 

• i 
show that the transformaqon generated by K leaves A unchanged, or more 

exactly that it leaves A unchanged up to a gauge transforiDation. 

• See, for instance, reference (38) for further material on antisymmetric 

tensor fields • 
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What these examples have in common is that in all examples I am aware 

of, there is no ~eason for the massless 111odes to remain massless when loop 

corrections are considered. Indeed, in the first example considered (the 

massless mode being a constant on the circle), a one loop calculation has 

been carried out in the abelian case, 37 showing that a nonzero mass does 

arise unless there is a bose-fermi cancellation. 
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IX. THE COSMOLOGICAL CONSTANT 

Until now we have considered exclusively the zero modes of wave operat­

ors. However, the spirit of this paper is to study qualitative problems that 

might be solved without full understanding of the details of a Kaluza-Klein 

theory. In that spirit, we will here consider another qualitative problem of 

outstanding significance: the apparent vanishing in four dimensions of the 

cosmological constant. 

There has been much interest in recent years 39 in the possibility of a 

dynamical e•planation of the vanishing of the cosmological constant -- the 

possibility of a theory in which regardless of the value of the bare para­

meters, the cosmological constant spontaneously relaxes to zero. We want, in 

other words, a mechanism analogous to the axion mechanism for avoiding strong 

CP violation. Some ideas in this section have been introduced independently 

in work cited in reference (39). 

We would like to find a theory in which the classical equations do not 

determine the effective cosmological constant -- the actual, macroscopic 

curvature of four dimensional space. The classical equations should admit 

for any values of the bare parameters a one parameter family of •olutions, 

depending on an integration constant. The effective cosmological constant 

should depend on this integration constant. We will look for a mechanism by 

which the integration constant spontaneously relaxes ~o the value at which 

space-time is macroscopically flat. 

Of course, it is easy to find a theory in which there is an undeter­

mined integration constant at the classical level. Consider a theory of 

scalar fields +i. If the potential energy V( +i) is independent of one of 

these fields +. the vacuum expectation value of that field will be undeter-
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mined at the classical level. However, precisely because V(~i) is indepen-

dent of 4>, the effective cosmological constant will be independent of 4>. 

To find a theory with an undetermined integration constant upon which 

the cosmological constant depends requires a different approach. The only 

way I know to do this in 3+1 dimensions ia to introduce a third rank antiaytQ-

metric tensor gauge field A~va· As in section (8), the Lagrangian is 

R· - 1 48 I•'• (• )' pvaB (60) 

where Fpvatl is the gauge invariant curl, Fpvatl • (3\1 Avaa :t: cyclic permuta­

tions). If we define the scalar F • h tpvaa Fpvo:t\ (tll\latl being the four 

dimensional Levi-Civita symbol), then the equation of motion from (60) is 3
11
F 

• 0. Thus, F is a constant -- but the constant ia a constant of integration, 

not determined by the classical equations. And the cosmological constant 

definitely depends on F. It equals its value at F-0, plus F2/8, 

However, this example is too trivial, The equation of motion 3~F • 0 

which is an exact statewent, even quantum mechanically -- appears to tell 

us that the integration constant F cannot possibly relax to the value at 

which the effective coswological constant would vanish. 

A less trivial exawple of the same kind arises if the third rank anti-

symmetric tensor field is considered in 4+n dimensions. We consider the 

Lagrangian 

--/__ "' fd 4
+nx lg (llwc R - h (F pva8)2 - Ao) (61) 

For n•7, this differs from the bosonic· part of 11 dimensional supergravity by 

the omission of an FFA term (its inclusion would not affect our discussion) 

and the inclusion of a non-zero bare coa~logical constant 110 (forbidden by 
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supersymmetry in eleven dimensions but needed in our discussion to get a 

solution in which four dimensions are flat). The solution we will discuss is 

the Freund-Rubio solution, 40 generalized to A0"#0. 

We look for a solution of the classical equstions derived from (&1) in 

which space-time takes the form D4{).))($ 7(R), where o"(A) is a four diwensinal 

de Sitter apace of positive, negative, or zero curvature A, and s 7(R) is a 

seven sph~re of radius R. 

In looking for such a solution, we encounter-- as Freund and Rubin did 

the possibility of a non-zero value of F • r 0123• As in the four dimen­

sional case, the equations determine only the derivatives ofF, not F itself. 

One may assume an arbitrary value ofF, and use the classical equa~ions to 

solve for A and R in terms of F. For a whole continuous range of the bare 

parameters in (61), there is a value ofF at which A-- the curvature of 

ordinary space vanishes. 

The gain in going from four to 4+n dimensions is that in 4+n dimensions 

Fpvatl has a non-trivial dynamics with propagating modes as well as an integ­

ration constant, One can at leaat imagine that there way be a quantum 

wechanical mechaniaw by which the integration constant F spontaneously 

relaxes to aowe special value -- hopefully the value at which A•O. But 

what might this mechanism be? 

In condensed matter physics there are some fascinating systems with the 

following properties. (For recent theoretical discussions and references to 

previous work see reference(4q.) The macroscopic equations have a one para-

meter family of solutions depending on an integration constant x. There ia a 

critical value of x, say x•x 0, such that the classical solution is stable 

against small oscillations for x > x0 and unstable for x < x0 . 
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What value of x would be observed physically1 One would hardly expect 

to observe the unstable solutlona of x < x0, but one might expect that, 

depending on initial conditions, any stable solution with x > x 0 would be 

accessible. 

The surprise is that it is claimedltl that a whole claaa of systems 

spontaneously relaxes -- by means that are not well understood -- to the 

threshold of stability, x • x 0, The fact that the mechanism is so little 

understood in the condensed matter context invites the speculation that a 

similar phenomenon could occur in the case of the coamological constant. 

Although }.ooO (flat apace) ia not exactly a threshold of stability in any 

obvious sense, it ia certainly the dividing point between two qualitatively 

different regimes, de Sitter apace and anti de Sitter apace. Anti -de Sitter 

space has a positive energy theorem, which de Sitter apace doea not;lt2 but de 

Sitter space has a global initial value hyperaurface, which anti de Sitter 

apace does not.ltl They are certainly very different. Perhaps the little­

understood mechanism by which the condenaed •atter ayatems relax baa a 

"cosmological" analogue -- though it ·ia not yet clear whether it ia de Sitter 

or anti de Siter apace that should correapond in the analogy to x > x 0, 

1 would like to thank R. Stong for useful dicusaions and for drawing my 

attention to references (44) and (45), and to thank W. Browder and especially 

W. Hsiang for explaining various aspects of cobordiam theory. 
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Figure Captions 

(l) Zero modes of the Dirac operator of positive or negative chirality are 

denoted by x oro respectively. The number of x's ~inus o's at zero 

energy is invariant under perturbations. 

(2) An x or o now indicates a positive or negative chirality multiplet in the 

Q or Q representation ((a) and (b) respectively). In passing from (a) to 

(b) the x's and o's are exchanged. 

(3) The angular momentum and chirality spectrum of the Dirac operator on a 

sphere. The Dirac operator permutes the atatel in the way indicated by 

the arrows, 

(4) The quantum numbers of a charged Dirac particle on a sphere in the 

presence of a magnetic monopole field. 

(5) K is taken to generate the rotation of a sphere. 

(6) The anomalous diagrams in (say) ten dimen1ion1. 
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