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Abstract: The equations of general relativity are recast in the form of a wave equation for the Weyl

tensor. This allows reformulation of gravitational wave theory in terms of curvature waves, rather

than metric waves. The existence of two transverse polarization states for curvature waves is proven

and in the linearized approximation the quadrupole formula is rederived. A perturbative scheme to

extend the linearized result to the non-linear regime is outlined.
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1. Introduction

The essential content of general relativity (GR) resides in the identification of gravity
with the geometric property of a space–time curvature [1]. All observer frames in free fall
can be identified with local inertial frames in which gravity is absent, as the local space–time
geometry is flat. However, the relative acceleration between local inertial frames at different
points in space at different times is encoded in the space–time curvature and cannot be
eliminated by any choice of reference frame.

Therefore, an essential description of gravitation is to be cast in terms of the dynamics
of curvature. It is the aim of this paper to provide such a description and to show how
some familiar results of GR describing observed gravitational phenomena can be rederived
in such a framework.

2. Space–Time Curvature

In this section, we summarize the properties of space–time curvature and establish
our notation.

In geometry, curvature is measured by the extent to which parallel displacements of
vectors and higher rank tensors in two independent directions commute. In differential
form, this is expressed by the Ricci identity, which when implemented on a covariant vector
field Vµ(x) takes the form

[

∇µ,∇ν

]

Vκ = −R λ
µνκ Vλ, (1)

where the coefficients R κ
µνλ are the components of the Riemann curvature tensor. This

identity relates the Riemann curvature tensor to the covariant derivative ∇µ and the

associated connection with components Γ
λ

µν :

R λ
µνκ = (∂µΓν − ∂νΓµ −

[

Γµ, Γν

]

) λ
κ . (2)

The standard choice of connection is the one which transports the metric parallel to itself:

∇λgµν = 0. (3)

This condition is sometimes known as the metric postulate; it results in the Riemann–
Chistoffel connection

Γ
λ

µν =
1

2
gλκ

(

∂µgκν + ∂νgµκ − ∂κ gµν

)

. (4)
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By Definition (1) and applying the Ricci identity to the metric postulate, one establishes the
symmetry properties of the Riemann tensor in the fully covariant representation

Rµνκλ = −Rνµκλ = −Rµνλκ = Rκλµν, (5)

and the cyclic property
Rµνκλ + Rνκµλ + Rκµνλ = 0. (6)

In addition to these algebraic identities, the cyclic Jacobi identity for three covariant deriva-
tives guarantees the Bianchi identity for the Riemann tensor:

∇σRµνκλ +∇µRνσκλ +∇νRσµκλ = 0. (7)

By contraction with the inverse metric gσλ, this identity implies another one for the diver-
gence of the Riemann tensor:

∇λRλκµν = ∇µRνκ −∇νRµκ . (8)

In view of its symmetry properties, the Riemann tensor in four space–time dimensions has
20 independent components. Of these, 10 are contained in the trace of the Riemann tensor,
the symmetric Ricci tensor

Rµν = Rνµ = R λ
µλν . (9)

The trace of the Ricci tensor is the Riemann curvature scalar R = R
µ

µ . The other 10
components of the Riemann tensor are contained in its traceless part, known as the Weyl
tensor [2], with components

Wµνκλ = Rµνκλ − 1

2

(

gµκ Rνλ − gµλRνκ − gνκ Rµλ + gνλRµκ

)

+
1

6

(

gµκ gνλ − gµλgνκ

)

R. (10)

It is straightforward to check that the Weyl tensor has the same algebraic symmetry proper-
ties (5), (6) as the Riemann tensor, and that, in addition, its trace vanishes:

W ν
µνκ = 0. (11)

Indeed, this condition eliminates 10 of the original 20 components of the Riemann tensor,
leaving 10 other components as claimed.

Taking traces of the Bianchi identity (7) and its divergence (8), it follows that the Ricci
tensor has a divergence-free extension, the Einstein tensor:

Gµν = Rµν −
1

2
gµνR, ∇µGµν = 0. (12)

The Riemann tensor can now be decomposed into the Weyl tensor, the Einstein tensor and
the Riemann scalar, by inverting (10):

Rµνκλ = Wµνκλ +
1

2

(

gµκGνλ − gµλGνκ − gνκGµλ + gνλGµκ

)

+
1

3

(

gµκ gνλ − gµλgνκ

)

R. (13)

The part of curvature dynamics determined by the physical content of the universe formed
by matter and radiation is described by the Einstein equations

Gµν = −8πGTµν, (14)

with Tµν the energy-momentum tensor of matter and radiation and G the gravitational
constant; note that we use units in which the speed of light c = 1. The condition (12) of
vanishing divergence of the Einstein tensor thereby becomes a consistency requirement for
the local conservation of energy and momentum.
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Taking the trace of the Einstein tensor, it follows that

G
µ

µ = −R = −8πGT, (15)

using the notation T = T
µ

µ for the trace. The general expression for the Riemann curvature
in regions with energy-momentum density Tµν, therefore, is

Rµνκλ =

Wµνκλ − 8πG
(

1
2

(

gµκTνλ − gµλTνκ − gνκTµλ + gνλTµκ

)

− 1
3

(

gµκ gνλ − gµλgνκ

)

T
)

,
(16)

which in the vacuum (empty space-time regions where Tµν = 0) reduces to the Weyl tensor.
The Bianchi identity (7) can be rewritten as an identity for the Weyl tensor; it then takes the form

∇[σ Wµν]κλ = −gκ[µ ∇σG ν]λ + gλ[µ ∇σG ν]κ −
2

3
gκ[µ ∇σR g ν]λ, (17)

where the square brackets denote complete anti-symmetrization of the enclosed indices
[µσν] with total weight equal to one. By the same substitution (14), (15), it follows that the
right-hand side vanishes in the vacuum. Finally, by contraction with gσλ, we find a result
analogous to (8) for the divergence of the Weyl tensor [3,4]:

∇λWλκµν =
1

2

(

∇µGνκ −∇νGµκ

)

+
1

6

(

gκν∇µR − gκµ∇νR
)

. (18)

3. Curvature Dynamics

In the previous section, we established results for the mathematical and physical prop-
erties of space–time curvature, with the Riemann tensor expressing the overall curvature
in the presence of energy densities due to matter and radiation, whilst the Weyl tensor
expresses the purely gravitational contribution to the curvature as it exists in a vacuum.
In this section, we discuss the dynamics of these curvature tensors themselves, as follow
from these properties.

In the case of gravity, it is simpler to derive the equation for the overall curvature in
the presence of energy densities (the Riemann curvature) than for pure gravity (the Weyl
curvature). The derivation starts from the Bianchi identity (7), taking a divergence:

∇2Rµνκλ −∇σ∇µRσνκλ +∇σ∇νRσµκλ = 0, (19)

and using the Ricci identity and the result (8) for the divergence of the Riemann tensor,
to end up with

∇2Rµνκλ − 2R
ρ

µσκ R σ
λρν + 2R

ρ
µσλ R σ

κρν + R σ
µνρ R

ρ
κλσ =

= −1

2

(

RµνκρR
ρ
λ − RµνλρR

ρ
κ + RκλµρR

ρ
ν − RκλνρR

ρ
µ

)

+
1

2

({

∇µ,∇κ

}

Rνλ −
{

∇µ,∇λ

}

Rνκ − {∇ν,∇κ}Rµλ + {∇ν,∇λ}Rµκ

)

,

(20)

where the curly braces denote the symmetric anti-commutator of the covariant derivatives
enclosed. Note that the right-hand side vanishes in a vacuum environment, in which case
the Riemann tensor can be replaced by the Weyl tensor. Indeed, written in terms of the
Weyl tensor, the full equation becomes
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∇2Wµνκλ − 2W
ρ

µσκ W σ
λρν + 2W

ρ
µσλ W σ

κρν − W σ
µνρ W

ρ
κλσ =

= −1

2

(

WµνκρG
ρ
λ − WµνλρG

ρ
κ + WκλµρG

ρ
ν − WκλνρG

ρ
µ

)

− RWµνκλ

+
(

gµκWνρλσ − gµλWνρκσ − gνκWµρλσ + gνλWµρκσ

)

Gρσ

−
(

gµκ [G
2]νλ − gµλ[G

2]νκ − gνκ [G
2]µλ + gνλ[G

2]µκ

)

+
1

2

(

gµκ gνλ − gµλgνκ

)

Tr G2

−2

3
R
(

gµκGνλ − gµλGνκ − gνκGµλ + gνλGµκ

)

− 1

3
R2

(

gµκ gνλ − gµλgνκ

)

+
1

2

(

{

∇µ,∇κ
}

Gνλ −
{

∇µ,∇λ

}

Gνκ − {∇ν,∇κ}Gµλ + {∇ν,∇λ}Gµκ

)

− 1

2

(

gµκ∇2Gνλ − gµλ∇2Gνκ − gνκ∇2Gµλ + gνλ∇2Gµκ

)

+
1

2

(

gνµ∇κ∇λR − gνλ∇κ∇µR − gκµ∇ν∇λR + gκλ∇ν∇µR
)

− 1

3

(

gµκ gνλ − gµλgνκ

)

∇2R.

(21)

As the wave equations for the curvature tensors are derived from the Ricci and Bianchi
identities, their general solution is given by Equations (2) and (4). Specific expressions
for the metric and connection are implied by imposing the Einstein Equation (14) as a
constraint on Gµν. Therefore, Equations (20) and (21) are automatically satisfied by all
solutions of the Einstein equations.

Equation (21) is a non-linear wave equation for the Weyl curvature tensor. Given
a particular vacuum metric—making the right-hand side of this equation to vanish—it
defines an extremum, under free variations in the tensor Wµνκλ, of the action functional

S[W; g] =
∫

d4x
√

−g

[

−1

2
∇ρWµνκλ∇ρWµνκλ − 1

3
W κλ

µν W
ρσ

κλ W
µν

ρσ

− 4

3
W

µ κ
ν λW

σ ρ
µ κ W ν λ

σ ρ

]

.

(22)

A brief discussion and generalization of this action is presented in Appendix A.

4. Curvature Polarization Modes

In a vacuum, the dynamical solutions of the curvature equations

∇2Wµνκλ − 2W
ρ

µσκ W σ
λρν + 2W

ρ
µσλ W σ

κρν − W σ
µνρ W

ρ
κλσ = 0, (23)

describe gravitational waves as waves of curvature. These equations follow from the
Bianchi and Ricci identities, in particular (17) and (18), which in vacuum reduce to

∇σWµνκλ +∇µWνσκλ +∇νWσµκλ = 0, ∇λWλκµν = 0. (24)

Recalling also the cyclic property of the curvature tensor

Wµνκλ + Wνκµλ + Wκµνλ = 0,
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we can now establish that curvature waves have precisely two polarization modes. To
show this it is convenient to make a 3 + 1 space–time split, and define

Eij = W0i0j, B
j

i =
1

2
√−g

ε0jmnW0imn, Pij = − 1

4g
ε0imnε0jklWmnkl , (25)

where the latin indices k, l, m, n = (1, 2, 3) denote components of three spatial tensors. All
three spatial tensors are traceless:

E
j

j = gijW0i0j = gµνW0µ0ν = 0, B
j

j =
1

2
√−g

ε0µνλW0µνλ = 0,

P
j

j = − 1

4g
gρσε0ρµνε0σκλWµνκλ = 0,

(26)

as a result of the four-dimensional tracelessness and cyclic property of the Weyl tensor.
Next, in empty space–time, the three divergence of these tensors vanishes:

∇iEij = ∇µW0µ0j = 0, ∇iB
j

i =
1

2
√−g

ε0jκλ∇µW0µκλ = 0,

∇iP
ij = − 1

4g
ε0jµνε0σκλ∇σWκλµν = 0.

(27)

Therefore, the three tensors Eij and Pij are symmetric, traceless and divergence-free, im-
plying that they have only two independent components. Finally, these three tensors are
related in terms of time derivatives

∇0Pij = − 1

4g
ε0imnε0jkl∇0Wmnkl = − 1

2g
ε0imnε0jkl∇mWn0kl =

1√−g
ε0imn∇mB

j
n , (28)

and

∇0B
j

i =
1

2
√−g

ε0jmn∇0W0imn = − 1

2
√−g

ε0jmn∇kWkimn =
√

−g ε0ikl∇kPl j. (29)

Similarly

∇0B
j

i =
1

2
√−g

ε0jµν∇0Wµν0i =
1√−g

ε0jµν∇νW0µ0i =
1√−g

ε0jkl∇lEki, (30)

and finally

∇0Eij = ∇0W0i0j = −∇kWki0j =
1

2
ε0lkiε

0lmn∇kW0jmn =
√

−g ε0lki∇kB l
j . (31)

Thus, B
j

i and Eij describe magnetic and electric components of the curvature, encoding the

time evolution of the two physical degrees of freedom contained in Pij. These two degrees
of freedom in Pij represent the independent physical spatial polarization components of
the Weyl tensor.

5. Weak Gravity: The Linear Approximation

The curvature dynamics in general relativity simplifies considerably in the weak
gravity limit, in which metric and curvature fluctuations can be treated in linearized
approximation on a flat background space–time. The starting point of this linear theory is
to split the metric gµν into a constant flat Minkowski background plus metric fluctuations:

gµν(x) = ηµν + 2hµν(x). (32)
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It is possible that such a single split can be made only in a restricted part of space–time, because
the local co-ordinates xµ cannot be extended to all of space–time. If in a neighboring part of
space–time, overlapping only partly with the previous one, a different local set of co-ordinates
x′ µ is necessary, such that in the domain of the overlap of the co-ordinate systems

x′ µ − xµ = −2ξµ(x), (33)

then to first order in ξ the split of the corresponding new metric g′µν(x′) in the domain of
overlap is

g′µν(x) = ηµν + 2h′µν(x), h′µν = hµν +∇µξν +∇νξµ. (34)

The linear approximation restricts all expressions for geometric quantities to the part linear
in the fluctuations hµν; thus, for the inverse metric

gµν = ηµν − 2hµν +O[h2], hµν ≡ ηµκhκληλν, (35)

for the connection

Γ
λ

µν = ηλκ
(

∂µhνκ + ∂νhµκ − ∂κhµν

)

+O[h2], (36)

and for Riemann curvature

Rµνκλ = ∂ν∂λhµκ − ∂ν∂κhµλ − ∂µ∂λhνκ + ∂µ∂κhνλ +O[h2]. (37)

Note that in this approximation the co- and contravariant components of vectors and
tensors are always related by contraction with the Minkowski metric ηµν and its inverse ηµν.
Furthermore, the co-ordinate transformations (33) now reduce to gauge transformations

h′µν = hµν + ∂µξν + ∂νξµ, Γ
′ λ
µν = Γ

λ
µν + 2∂µ∂νξλ, (38)

which leave the Riemann tensor invariant: R′
µνκλ = Rµνκλ.

The expressions for the Ricci tensor and Riemann scalar reduce in the linear approxi-
mation to

Rµν = �hµν − ∂µ∂λhλν − ∂ν∂λhλµ + ∂µ∂νh λ
λ ,

R = 2
(

�h
µ

µ − ∂µ∂νhµν

)

,

(39)

where � is the d’Alembertian in Minkowski space. Therefore, the Einstein equation becomes

Gµν = �hµν − ∂µ∂λhλν − ∂ν∂λhλµ + ∂µ∂νh λ
λ − ηµν

(

�h λ
λ − ∂κ∂λhκλ

)

= −8πGTµν, (40)

where the linearized Einstein tensor satisfies the conservation law

∂µGµν = −8πG ∂µTµν = 0. (41)

The differential identities (7) and (8) satisfied by the Riemann tensor simplify to

∂σRµνκλ + ∂µRνσκλ + ∂νRσµκλ = 0, ∂µRµνκλ = −8πG
(

∂κ T̂νλ − ∂λTνκ

)

, (42)

where

T̂µν = Tµν −
1

2
ηµνT. (43)

These equations now imply the inhomogeneous linear wave equation1

�Rµνκλ = −8πG
(

∂µ∂κ T̂νλ − ∂µ∂λT̂νκ − ∂ν∂κ T̂µλ + ∂ν∂κ T̂µλ

)

, (44)
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Following the decomposition of the Weyl tensor in Section 4, we introduce a 3 + 1 decom-
position of the linearized Riemann tensor:

Eij = R0i0j, Bij = −1

2
ε jmnR0imn, Pij =

1

4
εiklε jmnRklmn, (45)

By the Bianchi identity, the cyclic property of the Riemann tensor and the Einstein equations,
it follows that

Ejj = −8πG T̂00 = −4πG
(

Tjj + T00

)

, Bjj = 0,

Pjj = −4πG
(

T̂jj + T̂00

)

= −8πG T00.

(46)

Also
∂iEij = −8πG

(

∂jT̂00 − ∂0T̂0j

)

, ∂jBij = 0,

∂iBij = −8πG ε jkl∂kT̂l0, ∂iPij = 0,

(47)

and
εikl∂kEl j = −∂tBij, εikl∂kBl j = ∂tEij + 8πG

(

∂jT̂i0 − ∂0T̂ij

)

,

ε jkl∂kBil = −∂tPij, εikl∂kPl j = ∂tBij + 8πG ε jkl∂kT̂li.

(48)

Thus, in a vacuum, all three-tensor fields F = (E, B, P) are traceless and transverse, and they
satisfy the homogeneous wave equation �F = 0.

6. Static Curvature Geometries

As is well-known, the gauge transformations (38) can be used to fix hµν(x0) =

Γ
µ

λν (x0) = 0 at a given point with co-ordinates x
µ
0 ; this is achieved by taking

ξµ =
1

2
hµν(x0)(xν − xν

0)−
1

4
Γλνµ(x0)

(

xλ − xλ
0

)

(xν − xν
0) +O[(x − x0)

3]. (49)

In this way, a locally flat co-ordinate system in the neighborhood of x0 is contructed. Of
course, the curvature as encoded by the Riemann tensor cannot be transformed away, as
the Riemann tensor is gauge invariant. In a locally flat co-ordinate system with x0 as the
origin, such a geometry with constant Riemann tensor in the neighborhood of the origin is
described by the tensor field

hµν(x) =
1

6
Rµκνλxκxλ, ∂σRµκνλ = 0. (50)

The corresponding Riemann–Christoffel connection is

Γλνµ = −1

3

(

Rλµνκ + Rνµλκ

)

xκ , (51)

and, indeed, hµν(0) = Γλνµ(0) = 0. In a vacuum, such a geometry is possible if Rµνκλ =
Wµνκλ, i.e., if Rµν = 0. In the presence of matter, it obviously requires a constant energy-
momentum density: ∂λTµν = 0. Clearly, a constant curvature automatically satisfies the
Bianchi identity and the wave equatio, in agreement with Equations (42) and (44).

A less trivial example is the asymptotic curvature of a spherically symmetric point-
like test mass. In the linear approximation, such a mass may be modeled by a δ-function
localizing the test mass on a world line Xµ(τ); the corresponding energy-momentum tensor
takes the form

Tµν(x) = m
∫

dτ uµuν δ4[x − X(τ)], (52)
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with uµ = dXµ/dτ the four velocity of the test mass. For a test mass at rest in the origin
uµ = (1, 0, 0, 0), the energy-momentum tensor reduces to a single component

T00(x) = m δ3(x), ∂0T00 = 0; Tij = Ti0 = 0. (53)

Equivalently

T̂ij = δijT̂00 =
1

2
δijT00, T̂i0 = 0. (54)

Using the linearized Einstein equations, it follows that

Rij = δijR00, R00 = −4πG T00 = −4πGm δ3(x). (55)

The full Riemann curvature tensor can be constructed by integrating Equation (44); using
the retarded Green’s function, the solution of this equation for arbitrary T̂µν localized inside
some finite volume S becomes (37):

Rµνκλ = ∂µ∂κ ĥνλ − ∂µ∂λ ĥνκ − ∂ν∂κ ĥµλ + ∂ν∂λ ĥµκ ,

where ĥµν is defined by

ĥµν(x, t) = 2G
∫

S
d3x′

T̂µν(x′, tret)

|x − x′| , (56)

with the integrand being evaluated at the retarded time tret = t − |x − x′|. Notice that in
view of Equation (37), ĥµν can be identified with a gauge-fixed expression for the metric
fluctuation hµν; however, as no gauge transformation applied to hµν will affect the curvature,

it also will not affect the result (56) for ĥµν, for that matter.
As the partial derivatives commute with �

−1 in Minkowski space, it follows that it is
possible to replace the terms in the expression for the Riemann curvature by the equivalent

∂µ∂κ ĥνλ(x, t) = 2G
∫

S
d3x′

[

∂′µ∂′κ T̂νλ

]

(x′, tret)

|x − x′| . (57)

Substitution of (53) and (54) into (56) or (57) now gives a direct expression for the curvature
components, without requiring to fix a gauge for the tensor field hµν.

The final result for the curvature field of the test mass m now is the quadrupole field

Eij = −Pij =
3Gm

r5

(

riri −
1

3
δijr

2

)

, Bij = 0, (58)

where r = x − x′ → x if the test mass is located in the origin. Equivalently,

Rikjl =
3Gm

r5

[

δijrkrl − δilrkrj − δjkrirl + δklrirj −
2

3
r2
(

δijδkl − δilδkj

)

]

. (59)

This is in full agreement with the asymptotic form for large r of the Schwarzschild geometry.

7. Gravitational Radiation

We now turn to the more general asymptotic dynamical curvature solution of localized

sources, the most important example of which is gravitational radiation2. The general ex-
pression for the curvature in the weak-gravity limit is again (37) for general time-dependent
energy-momentum distributions T̂µν localized inside a finite volume S, which may for
practical purposes be taken to be a sphere surrounding the source region; for non-relativistic
sources, it is convenient to take the center of mass of the source as the center of this sphere.

As the linearized expression for Eij = R0i0j reads

Eij = 2G
(

∂2
0hij − ∂0∂ih0j − ∂0∂jh0i + ∂i∂jh00

)

, (60)



Universe 2023, 9, 110 9 of 12

in the long-range limit |x − x′| ≃ |x| = r, the leading terms in 1/r are

Eij(x, t) ≃ 2G

r
∂2

0

∫

S
d3x′

(

T̂ij + r̂iT̂0j + r̂jT̂0i + r̂i r̂jT̂00

)

(x′, tret)

=
2G

r
∂2

0

∫

S
d3x′

[

Tij −
1

2

(

δij − r̂i r̂j

)

Tkk + r̂iT0j + r̂jT0i

+
1

2

(

δij + r̂i r̂j

)

T00

]

(x′, tret).

(61)

where r̂i = xi/r are the components of the unit vector in the direction of x. Using a
well-known identity for localized sources, this can be written alternatively as

Eij(x, t) =
2G

r

[

1

2
∂4

0

∫

S
d3x′ x′i x

′
jT00(x

′, tret)−
1

4

(

δij − r̂i r̂j

)

∂4
0

∫

S
d3x′ x′ 2T00(x

′, tret)

+ r̂i ∂3
0

∫

S
d3x′ x′j T00(x

′, tret) + r̂j ∂3
0

∫

S
d3x′ x′i T00(x

′, tret)

+
1

2

(

δij + r̂i r̂j

)

∂2
0

∫

S
d3x′T00(x

′, tret)

]

.

(62)

Now in the non-relativistic limit all terms except the first two can be discarded, as they
represent the time changes in the mass dipole and the mass monopole moment, which
vanish in the CM frame. Thus, we are left with

Eij(x, t) =
G

r
∂4

0

∫

d3x′
[(

x′i x
′
j −

1

3
x′ 2δij

)

− 1

2

(

r̂i r̂j −
1

3
δij

)

x′ 2

]

T00(x
′, tret). (63)

Note that the integral in the second term is equivalent to

∂4
0

∫

S
d3x′ x′ 2T00 = 2 ∂2

0

∫

S
d3x′ Tkk,

which for non-relativistic sources is generally very small compared to the first term repre-
senting the mass quadrupole. Therefore, in most practical situations, the spatial trace term
can be ignored.

Although the expression (63) is manifestly traceless, as a result of the truncations made
it is not manifestly transverse. This can be repared by considering the transverse projection
of Eij, which leads to the result:

R0i0j(x, t) ≃ ETT
ij = (δik − r̂i r̂k)

(

δjl − r̂j r̂l

)

(

Ekl +
1

2
δkl r̂ · E · r̂

)

. (64)

Note that the TT label here is not the result of gauge fixing; it is simply a manifestly
transverse and traceless set of components of the linearized Riemann—or, equivalently, a
linearized Weyl– curvature tensor.

This expression (64) is all that is needed to interpret the data of gravitational-wave
detectors; in general, these monitor the space–time intervals between several test masses. If
the space–time interval between two test masses moving on geodesics is nµ, the change in

the interval due to space–time curvature is given by the geodesic deviation equation3

D2
τnµ = R

µ
κνλ uκuλnν. (65)

where Dτ is a covariant proper-time derivative along the geodesic world line of one of the
masses, uµ is its four-velocity and nµ measures the space–time interval of a second mass
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with respect to the first one. In the frame in which the first test mass is originally at rest in a
local Minkowski frame: uµ = (1, 0, 0, 0), the equations simplify to

d2ni

dτ2
= ETT

ij nj,
d2n0

dτ2
= 0. (66)

Thus, the relative motion of the test masses, determined by the curvature components Eij,
give direct access to the variations in the mass quadrupole moment of the source.

8. Beyond Leading Order

In the previous sections, we derived expressions for the curvature induced by gravi-
tational fields at leading order. However, the expressions obtained there can be used as
the starting point for an improved treatment of gravitational-wave propagation including
terms beyond leading order. The general procedure consists of expanding the Weyl tensor
into the first-order contribution (37) plus the next-order term:

Wµνκλ = W
(1)
µνκλ + W

(2)
µνκλ, (67)

with W
(1)
µνκλ given by the linear approximation:

W
(1)
µνκλ = R

(1)
µνκλ = ∂µ∂κh

(1)
νλ − ∂µ∂λh

(1)
νκ − ∂ν∂κh

(1)
µλ + ∂ν∂λh

(1)
µκ ,

while at the same time expanding the metric and the connection according to (32):

gµν = ηµν + 2h
(1)
µν , Γ

(1)
λνµ = Γ

(1) ρ
λν ηρµ = ∂λh

(1)
νµ + ∂νh

(1)
λµ − ∂µh

(1)
λν ,

where h
(1)
µν = ĥµν, as given by Equation (56).

Armed with these results, one now expands Equation (21) as

�W
(2)
µνκλ = ∇2

(1)W
(1)
µνκλ + ηρηηστ

(

2W
(1)
µσκρW

(1)
ληντ − W

(1)
µσλρW

(1)
κηντ + W

(1)
µνρσW

(1)
κλητ

)

+ (source terms),

(68)

where, obviously, the source terms are absent in the source-free far region. The first term
on the right-hand side becomes, in this approximation,

∇2
(1)W

(1)
µνκλ = �W

(1)
µνκλ + ηρηηστ

[

−2h
(1)
ρσ ∂η∂τW

(1)
µνκλ − Γ

(1)
τσρ ∂ηW

(1)
µνκλ

+ 2
(

Γ
(1)
µσρ ∂τW

(1)
ηνκλ + Γ

(1)
νσρ ∂τW

(1)
µηκλ + Γ

(1)
κσρ ∂τW

(1)
µνηνλ + Γ

(1)
λσρ ∂τW

(1)
µνκη

)

+ (∂τΓ
(1)
µσρ)W

(1)
ηνκλ + (∂τΓ

(1)
νσρ)W

(1)
µηκλ + (∂τΓ

(1)
κσρ)W

(1)
µνηλ + (∂τΓ

(1)
λσρ)W

(1)
µνκη

]

.

(69)

Of course the first term on the right-hand side here vanishes outside the source region,
as by construction

�W
(1)
µνκλ = 0

there. Clearly, this perturbative scheme can be extended to still higher orders.

9. Discussion

General relativity is presently the best theory of gravity available, in agreement with
almost all observations and experiments [8,9], with the possible exception of those phe-
nomena which are usually interpreted as evidence for dark matter. Although all available
tests are in the classical regime and we still do not have a complete workable quantum
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theory of gravity, the observation of gravitational waves shows without a doubt that in GR,
space–time is a genuine dynamical system. These waves in the space–time geometry are
observed to propagate at the speed of light and have two transverse polarization modes.
In view of the geometry of space–time being encoded in an observer-independent way by
the curvature, it was the aim of this investigation to recast GR in such a way as to obtain a
direct description of curvature dynamics.

As the Ricci tensor and Riemann scalar are directly given in terms of the local energy-
momentum distribution, the actual problem to be solved was to derive a wave equation
for the purely gravitational degrees of freedom contained in the Weyl tensor. This was
achieved in Equation (21). It was also shown that in vacuum, the propagating degrees of
freedom of the Weyl tensor correspond to two independent transverse polarization modes,
as was to be expected, and that in the non-relativistic linear approximation the curvature
waves are sourced by the quadrupole modes of the energy-momentum distribution.

Corrections to these results are of two kinds. First, the self-interaction of the gravi-
tational field corrects the propagation of gravitational waves even on a flat background.
As discussed in sect. 8, the linearized curvature creates a non-flat background affecting the
propagation of the non-linear second-order contributions to the gravitational waves. This
will change the dispersion relation for the waves beyond first order.

Another type of correction occurs if the gravitational fluctuations propagate in a non-
vacuum environment. In the context of Equation (21), this means not only that there are
non-vanishing source terms on the right-hand side, but also that the 4-D laplacean ∇2

is modified. This may manifest itself in additional propagating degrees of freedom, as

∇iEij and ∇iB
j

i receive contributions from the right-hand side of Equation (18). These
corrections require additional study; they could show up, e.g., in gravitational memory
effects in non-flat background geometries [5,10].
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Appendix A

This appendix addresses action principles for the Riemann and Weyl tensors. First,
observe that Equation (20) can be rewritten using the Einstein tensor in the form

∇2Rµνκλ − 2R
ρ

µσκ R σ
λρν + 2R

ρ
µσλ R σ

κρν + R σ
µνρ R

ρ
κλσ

+
1

2

(

G
ρ

λ Rµνκρ − G
ρ

κ Rµνλρ + G
ρ

ν Rκλµρ − R
ρ

µ Rκλνρ

)

− 2 R RµνκλRµνκλ

=
1

2

({

∇µ,∇κ

}

Gνλ −
{

∇µ,∇λ

}

Gνκ − {∇ν,∇κ}Gµλ + {∇ν,∇λ}Gµκ

)

(A1)

For a fixed metric and connection, taking the tensor Rµνκλ as an independent set of variables,
this equation defines an extremal point of the action functional

S[R; g, H] =
∫

d4x
√

−g

[

−1

2
∇σRµνκλ∇σRµνκλ − 1

3
R κλ

µν R
ρσ

κλ R
µν

ρσ

+
4

3
R κλ

µν R
µσ

κρ R
ν ρ
σ λ − 2 G

ρ
λRµνκλRµνκρ − R RµνκλRµνκλ − HµνκλRµνκλ

]

,

(A2)

where, using the Einstein equations, the source term can be replaced by

Hµνκλ = −4πG
({

∇µ,∇κ

}

Tνλ −
{

∇µ,∇λ

}

Tνκ − {∇ν,∇κ}Tµλ + {∇ν,∇λ}Tµκ

)

. (A3)
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For the case of vacuum solutions with Gµν = R = Hµνκλ = 0, the action S[R; g, h] straight-
forwardly reduces to the action S[W; g] in Equation (22) for the corresponding traceless
part Wµνκλ of the tensor Rµνκλ. Obviously, the given metric and connection solutions of
(A1) for the tensor Rµνκλ are given by Equation (2). However, as the example of deriving
curvature fluctuations directly in the linearized theory shows, the alternative approach
presented here is feasible for certain applications, which could, e.g., include the related
problem in non-vacuum space–times with additional matter fields.

The observation that this equation defines an extremum of the functional (A2) can be
useful in such cases; for example, to derive WKB-type approximations. More generally,
for given background (G

µ
ν, R), as defined by the energy-momentum tensor, Equations (A1)

and (A2) relate fluctuations in the curved-space d’Alembertian ∇2 to curvature fluctuations,
thereby connecting two different approaches—spectral analysis and differential geometry—
to the description and analysis of gravitational fluctuations.

Notes

1 This linear form of the equation was derived before in ref. [5]
2 For a detailed and thorough introduction with references see [6].
3 For a derivation and discussion with references see [7].
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