

Precise Branching Ratio of ^{24m}Al Beta Decay

K. Matsuta¹, D. Nishimura¹, M. Fukuda¹, Y. Fujita¹, M. Mihara¹,
E. Ganioglu², G. Susoy², Y. Ichikawa³, S. Momota⁴, A. Kitagawa⁵,
M. Kanazawa⁵, M. Torikoshi⁵, S. Sato⁵, and B. Rubio⁶

¹Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

²Physics Department, Istanbul University, Istanbul 34134, Turkey

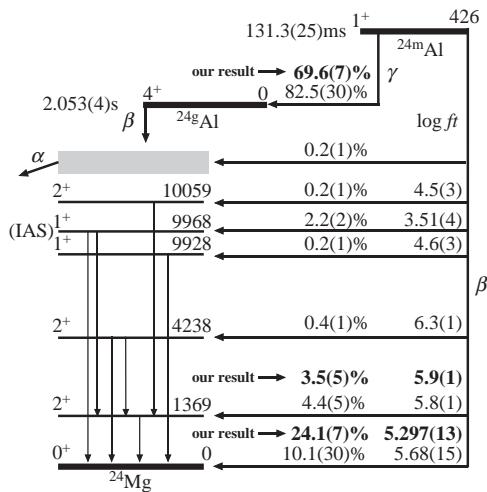
³RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

⁴Kochi University of Technology, Kami, Kochi 782-8502, Japan

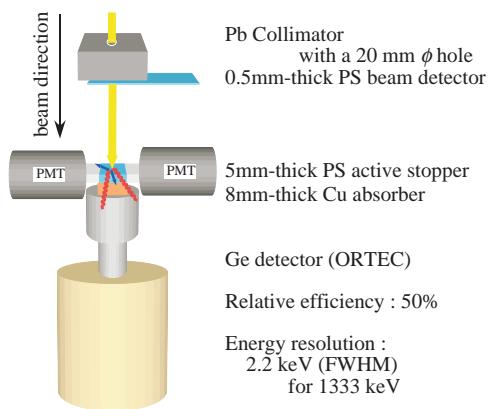
⁵National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan

⁶Instituto de Fisica Corpuscular, CSIC-University de Valencia, E-46071 Valencia, Spain

E-mail: daiki@vg.phys.sci.osaka-u.ac.jp


Abstract. The branching ratio of the isomeric γ decay of ^{24m}Al has been measured to be 69.6(7)% which is much smaller than the previously accepted value of 82.5(30)%. As a result, the branching ratio to the ^{24}Mg ground state increases up to 24.1(7)% assuming that the other β -decay branching ratios are the previously accepted values. The half-life of ^{24m}Al was also precisely determined to be 130.9(13) ms. The $B(\text{GT})$ value from the ground state of ^{24}Mg to the ^{24m}Al of 0.0577(16) deduced from the β decay is now in good agreement with that deduced from charge-exchange reactions.

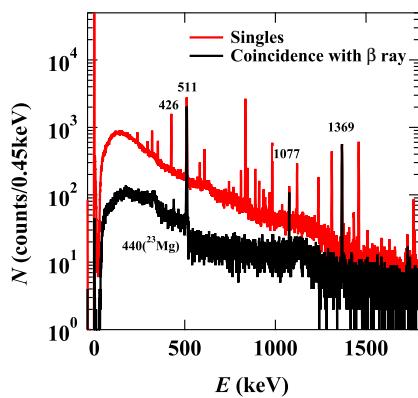
1. Introduction


A β decay measurement provides important information on the structure of mother and daughter nuclei such as ft values, energy levels, and spin-parity. The β -decay ft values enables us to deduce the Gamow-Teller(GT) transition strength $B(\text{GT})$ when the transition has $\Delta L = 0$ and $\Delta S = 1$. The $B(\text{GT})$ can be deduced not only from β -decay ft values but also from charge-exchange reactions [1]. The $B(\text{GT})$ values obtained in these two methods are usually in good agreement. However, the $B(\text{GT})$ value from $^{24}\text{Mg}(0^+, \text{g.s.})$ to $^{24m}\text{Al}(1^+, 426 \text{ keV})$ of 0.024(8) deduced from the β -decay ft value [2] is about half of the value of 0.050(1) from (p, n) reaction [3] and 0.054(1) from $(^3\text{He}, t)$ reaction [4] for the same transition. In Ref. [2], they adopted previous value of 2.3(6) as the ratio between the branching ratio to the ground state and to the first excited state [5], since β branching to the ^{24}Mg ground state could not be measured. In order to clarify this disagreement, we studied the decay of ^{24m}Al using a β - and γ -ray spectrometer at a modern fragment-separator facility. Figure 1 shows the decay scheme for the ^{24m}Al with the branching ratios and log ft values give in Ref [2, 6]. We measured the absolute branching ratio of the isomeric γ decay with the total β branch obtained by counting the number of β rays.

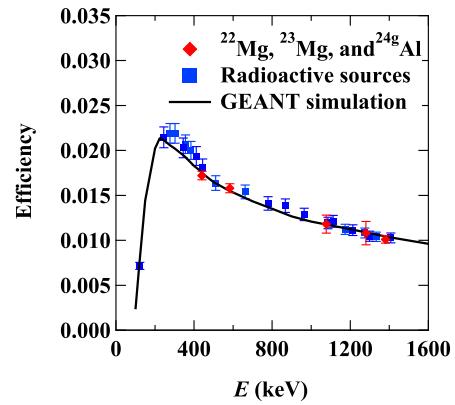
2. Experiment

The experiment was carried out at HIMAC synchrotron and fragment-separator facility [7]. A ^{24m}Al beam was produced through the charge-exchange reaction of a 100A MeV ^{24}Mg primary

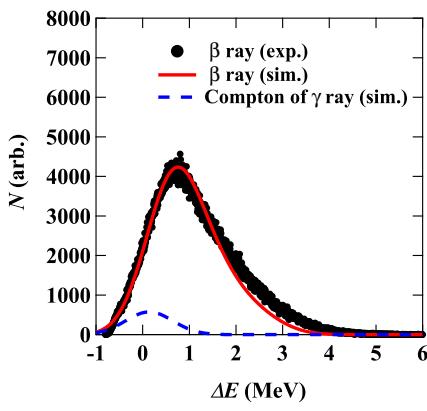
Figure 1. Decay scheme with branching ratios (BR) and $\log ft$ values given in Ref. [2, 6]. Our results are shown by bold letters.


Figure 2. Experimental setup of the β - and γ -ray spectrometer.

beam impinging on a 4.5mm-thick polyethylene (CH_2) target. The charge-exchange reaction on a proton is expected to provide a larger isomeric ratio and a larger production cross section than that on a Be target due to the pure inverse (p, n) reaction. The beam duration was about 100 ms. We got the beam every 6 or 10 seconds. The ^{24m}Al beam was separated by the fragment separator with two dipole magnets and a 1.2mm-thick wedge-shape Al degrader. The intensity and purity of the ^{24m}Al beam was about 1000 particles per pulse and 75%, with contaminants of 23% ^{23}Mg and 2% ^{22}Na .


The experimental setup of the β - and γ -ray spectrometer is shown in Fig. 2. The secondary beam was defined by a Pb collimator with a hole of 20 mm ϕ . A 0.5mm-thick plastic scintillator (PS) placed after the Pb collimator enables us to count the number of incident heavy ions. The beam was implanted into an active stopper made of a 5mm-thick plastic scintillator with an area of 35 mm \times 37 mm for β rays. The scintillator signals were read out by two photomultiplier tubes. Because a coincidence of two signals reduced noises caused by dark current, we could set the detection threshold low. A HPGe detector with an efficiency of 50% relative to the standard NaI crystal and an energy resolution of 2.2 keV (FWHM) at 1333 keV of ^{60}Co was installed behind the active stopper. A 8mm-thick Cu absorber was placed between the active stopper and the Ge detector to prevent β rays from entering the Ge detector.

We measured the number of 426-keV γ rays and the β rays to determine the branching ratio of the isomeric γ transition. Figure 3 shows the γ -ray energy spectra of the Ge detector. The upper line shows the singles spectrum and the lower line shows the spectrum in coincidence with β rays. As shown in Fig. 4, the detection efficiency for the 426-keV γ ray was determined to be 0.0175(4) using the known β -delayed γ rays of ^{22}Mg and ^{23}Mg . These beams with the same range in the active stopper as the ^{24}Al beam were used for the calibration. To determine the energy dependence, radioactive sources such as ^{22}Na , ^{60}Co , ^{133}Ba , ^{137}Cs , and ^{152}Eu were also used. The result of GEANT simulation shown by the solid line is in good agreement with these data. A high β -ray detection efficiency for the active stopper of 99(1)% was obtained by comparing between the number of single γ rays and the number of γ rays gated by the signal of β rays in the stopper. One reason for so high efficiency is that the β -ray energy deposit ΔE is large enough by implanting the ^{24m}Al beam in the center of the 5mm-thick active stopper


and another reason is that the detection threshold of the active stopper was set low enough. The β -ray energy spectrum for the active stopper is shown in Fig. 5. Similar efficiencies were also obtained using the ^{22}Mg and the ^{23}Mg beams. The GEANT simulation estimates that the 7(1)% of the 426-keV γ rays emit additional photons in the active stopper by the Compton scattering process, and they pretend as if they are from the β -decay. This effect was taken into account in the determination of the β -decay counts.

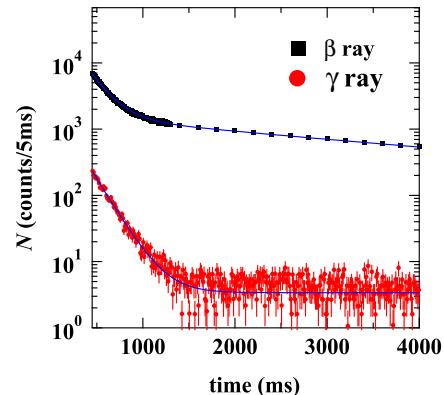

Figure 3. The γ -ray energy spectra. Upper line shows the singles spectrum and lower line shows the spectrum in coincidence with β rays.

Figure 4. The γ -ray detection efficiency determined by using standard γ sources and the ^{22}Mg and ^{23}Mg radioactive ion beam.

Figure 5. The β -ray energy spectrum from active stopper made of 5mm-thick plastic scintillator. Solid circles show the experimental result. Solid and Dashed lines show the GEANT simulated energy deposit of β ray and 426-keV γ ray by Compton scattering, respectively.

Figure 6. The β - and γ -ray time spectra. Solid squares are time spectrum of β ray. Solid circles are time spectrum of 426-keV γ ray.

3. Analysis and Discussion

The decay time spectra for the β rays of the active stopper and the 426-keV γ ray of the Ge detector are shown in Fig. 6. The decay-time analysis of the β decay including the isomeric γ transition is different from that of a simple β decay. Let us consider a cocktail beam with the number of ^{24m}Al N_m and the number of ^{24g}Al N_g is implanted in the stopper at $t = 0$. The count rate of the isomeric γ ray $N^\gamma(t)$ and that of all the β rays $N^\beta(t)$ are given by

$$N^\gamma(t) = \epsilon_m^\gamma R \lambda_m N_m e^{-\lambda_m t} \quad (1)$$

$$N^\beta(t) = \epsilon_m^\beta (1 - R) \lambda_m N_m e^{-\lambda_m t} + \epsilon_g^\beta R \lambda_g N_m \frac{\lambda_m}{\lambda_m - \lambda_g} (e^{-\lambda_g t} - e^{-\lambda_m t}) + \epsilon_g^\beta \lambda_g N_g e^{-\lambda_g t}, \quad (2)$$

where R , λ_m , λ_g , ϵ_m^γ , ϵ_m^β , and ϵ_g^β are the branching ratio of the isomeric γ transition, the decay constant of ^{24m}Al ($\ln(2)/131$ ms), that of ^{24g}Al ($\ln(2)/2.053$ s), the detection efficiency of the γ ray, that of the β ray of ^{24m}Al , and that of the β ray of ^{24g}Al , respectively. In Eq. (2), the first term is for the β decay of the ^{24m}Al , the second term is for the β decay of the ^{24g}Al derived from the isomeric γ decay of ^{24m}Al , and the third term is for the β decay of the ^{24g}Al derived from the beam. In order to fit Eq. (1) and Eq. (2) to the experimental data, it is useful to replace them by

$$N^\gamma(t) = A_m^\gamma e^{-\lambda_m t} \quad (3)$$

$$N^\beta(t) = A_m^\beta e^{-\lambda_m t} + A_g^\beta e^{-\lambda_g t} \quad (4)$$

where A_m^γ , A_m^β , and A_g^β are defined as

$$A_m^\gamma = \epsilon_m^\gamma R \lambda_m N_m \quad (5)$$

$$A_m^\beta = \epsilon_m^\beta (1 - R) \lambda_m N_m - \epsilon_g^\beta \left(\frac{\lambda_g}{\lambda_m - \lambda_g} \right) R \lambda_m N_m \quad (6)$$

$$A_g^\beta = \epsilon_g^\beta \lambda_g N_g + \epsilon_g^\beta \left(\frac{\lambda_g}{\lambda_m - \lambda_g} \right) R \lambda_m N_m. \quad (7)$$

Utilizing the relation of Eq. (5) and Eq. (6), the branching ratio R is given by

$$R = \frac{(A_m^\gamma / \epsilon_m^\gamma)}{(1 + \alpha)(A_m^\gamma / \epsilon_m^\gamma) + (A_m^\beta / \epsilon_m^\beta)}, \quad (8)$$

where the correction factor α is described as

$$\alpha = \frac{\epsilon_g^\beta}{\epsilon_m^\beta} \left(\frac{\lambda_g}{\lambda_m - \lambda_g} \right). \quad (9)$$

If λ_g was much smaller than λ_m , the correction factor α could be zero. However, the fact that α is 0.068 in this case is not negligibly small compared with our desired precision of R .

By fitting Eq. (3) to the γ -decay time spectrum and by fitting Eq. (4) to the β -ray spectrum, we obtained A_m^γ , A_m^β , and A_g^β . Here, the background of the other gamma rays which are derived from natural backgrounds and the β decay of ^{23}Mg were took into account properly. The dead-time effect of the data taking system was corrected properly by using the artificial 100-Hz trigger clock. Pile-up effect was negligibly small. Substituting obtained values into Eq. (8), the branching ratio R has been determined to be 69.6(7)% as shown in Table 1. The uncertainty mainly comes from the uncertainty of γ -ray detection efficiency and that of the estimation of

Compton scattering probability in the active stopper. The internal conversion coefficient for this transition is negligibly small. The present value is a factor four more precise than previous values of 82.5(30)% [2] and 78(3)% [8]. Our value differs from them over the error bars. The precise half-life $T_{1/2}$ of ^{24m}Al is also determined to be 130.9(13) ms by analyzing the γ -decay time spectrum. The present value is similar to the previous values [6] within the error bars, and is twice more precise than the weighted average of them. The isomeric ratio of the beam was found to be 84.4(18)% by comparing between A^γ and A_2^β . The branching ratio to the 1369-keV, 2^+ state in ^{24}Mg was also obtained to be 3.5(5)%, which indicates that the ratio of the γ -ray intensity of 1369 keV to that of 426 keV is in good agreement with the previous value given in Ref. [2]. The other intensities of γ rays with high energies could not be determined due to their small detection efficiencies and small branching ratios.

Table 1. Branching ratio of ^{24m}Al decay in units of %.

	$^{24}\text{Al}(1^+, \text{g.s.})$	$^{24}\text{Mg}(0^+, \text{g.s.})$	$^{24}\text{Mg}(2^+, 1369\text{keV})$
Present	69.6(7)	24.1(7)*	3.5(5)*
J. Honkenen et al.[2]	82.5(30)**	10(3)**	4.4(5)**
T. Shibata et al.[8]	78(3)	—	—
A. J. Armini et al.[5]	93(2)	4.4(12)	1.9(5)

*These values were used relative γ -ray intensities given in Ref. [2]. **These values were used relative branching ratio of $^{24}\text{Mg}(0^+, \text{g.s.})$ to $^{24}\text{Mg}(2^+, 1369 \text{ keV})$ given in Ref. [5].

The branching ratio from the $^{24m}\text{Al}(1^+, 426\text{keV})$ to the $^{24}\text{Mg}(0^+, \text{g.s.})$ was determined to be 24.1(7)%, by assuming that the other β -ray intensities feeding to the excited states of ^{24}Mg is 8.9(3)% of the isomeric γ decay (see Ref. [2]). The obtained branching ratio is 2.4 times larger than the previous one of 10.1(28)%. The log ft value of 5.297(13) is now smaller than the previous value of 5.68(15). The $B(\text{GT})$ value can be derived by the relationship

$$B(\text{GT}) = (2J_f + 1) \frac{K}{(g_A/g_V)^2 ft} \quad (10)$$

where J_f is the spin of final state, a constant $K = 6143.6(17)$ second [9], and a coupling constant ratio $g_A/g_V = -1.270(3)$ of the axial vector current to the vector current of weak interaction [10]. The $B(\text{GT})$ value of 0.0577(16) have been calculated from our β -decay study as shown in Table 2. The difference between the $B(\text{GT})$ value deduced from the β decay and that deduced from the charge-changing reactions is now comparable to the differences for other transitions in the light mass region.

Table 2. $B(\text{GT})$ values from $^{24}\text{Mg}(0^+, \text{g.s.})$ to $^{24m}\text{Al}(1^+, 426 \text{ keV})$.

β decay (present)	β decay (previous)	(p, n) reaction [3]	$(^3\text{He}, t)$ reaction [4]
0.0577(16)	0.024(8)	0.050(1)	0.054(1)

The observation of $M3$ transition in light nuclei is very rare. Especially, a pair of mirror nuclei ^{24m}Al and ^{24m}Na is unique in that they both decay with the isomeric $M3$ transition. Therefore, the data of the mirror nuclei are valuable for theoretical test of the magnetic octupole matrix elements. The $M3$ transition strength $B(M3)$ for ^{24m}Na [6] has been already determined precisely. The $B(M3)$ value for ^{24m}Al changes over 10% as shown in Table 3. The experimental ratio of $B(M3)$ for ^{24m}Na to $B(M3)$ for ^{24m}Al becomes consistent with the theoretical ratio by a shell-model calculation [11], although the theoretical prediction of the absolute values still overestimates the experimental values by 50%.

Table 3. Comparison of $B(M3)$ values in ^{24m}Al and ^{24m}Na (in units of $\mu_N^2 \text{ fm}^4$).

	^{24m}Al	^{24m}Na	$\frac{^{24m}\text{Na}}{^{24m}\text{Al}}$
Experiment (compilation)[6]	269(13)	1038(5)	3.9(2)
Experiment (present)	231(3)		4.50(7)
Shell-model calculation [11]	344	1538	4.47

4. Summary

The β - γ spectroscopy of ^{24m}Al has been carried out by using a secondary ^{24m}Al beam with high purity and high isomeric ratio at HIMAC synchrotron and fragment-separator facility. The branching ratio of ^{24m}Al isomeric γ decay was precisely determined to be 69.6(7)%. As a result, the branching ratio of the β decay to the ^{24}Mg ground state was obtained to be 24.1(7)%, where relative γ -ray intensities of previous values were assumed. By using this branching ratio, the $B(\text{GT})$ value from the $^{24}\text{Mg}(0^+, \text{g.s.})$ to the $^{24m}\text{Al}(0^+, 426 \text{ keV})$ of 0.0577(16) was deduced, which is in good agreement with the $B(\text{GT})$ values deduced from (p, n) and $(^3\text{He}, t)$ charge-exchange reactions. The half-life $T_{1/2}$ of ^{24m}Al was determined to be 130.9(13) ms precisely. The newly obtained $B(M3)$ value of the ^{24m}Al isomeric γ decay made the ratio of the experimental $B(M3)$ values between ^{24m}Na and ^{24m}Al isomeric γ transition consistent with the theoretical prediction by a shell-model calculation.

Acknowledgments

The present work was performed at NIRS (National Institute of Radiological Sciences)-HIMAC under the research project with heavy ions. The authors are grateful to the staffs of HIMAC.

References

- [1] Taddeucci T N *et al.* 1987 *Nucl. Phys. A* **469** 125.
- [2] Honkanen J *et al.* 1979 *Physica Scripta* **19** 239.
- [3] Anderson B D *et al.* 1991 *Phys. Rev. C* **43** 1630.
- [4] Zegers R G T *et al.* 2008 *Phys. Rev. C* **78** 014314.
- [5] Armini A J *et al.* 1966 *Phys. Lett.* **21** 335.
- [6] Firestone R B 2007 *Nucl. Data Sheets* **108** 2319, and references therein.
- [7] Kanazawa M *et al.* 2004 *Nucl. Phys. A* **746** 393c.
- [8] Shibata T *et al.* 1979 *Phys. Soc. Jpn.* **47** 33.
- [9] Hardy J C and Towner S 2009 *Phys. Rev. C* **79** 055502.
- [10] Hardy J C and Towner S 2009 *Nucl. Phys. News* **16**, No.4 11.
- [11] Brown B A *et al.* 1980 *Phys. Rev. C* **22** 842.