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Abstract We derive the N-point one-loop correlation functions for the currents
of an arbitrary affine Kac-Moody algebra. The one-loop amplitudes, which are
elliptic functions defined on the torus Riemann surface, are specified by group
invariant tensors and certain constant tau-dependent functions. We compute the
elliptic functions via a generating function, and explicitly construct the invariant
tensor functions recursively in terms of Young tableaux. The lowest tensors are
related to the character formula of the representation of the affine algebra. These
general current algebra loop amplitudes provide a building block for open twistor
string theory, among other applications.

1 Introduction

Current algebra conformal field theory is often an important ingredient to supply
gauge symmetry in string theory. The tree level N-point correlation functions of
the currents (1) of an affine Kac-Moody Lie algebra (2), ĝ,

[Ja
m,Ja

n ] = f ab
cJc

m+n +κ
abmδm,−n, (1.1)

associated with a finite-dimensional algebra, g, are especially simple, and ex-
pressed as a sum over products of differences, with the group tensors given by
the level and structure constants of the affine algebra.

The current correlators on the torus have more structure, but turn out to be
computable in terms of elliptic functions, and specified by constant but tau-dependent
group invariant tensors. Recursion relations for these correlation functions (3) be-
come tedious to evaluate for large numbers of currents. In this paper we calculate
the one-loop N-point current correlation functions explicitly for an arbitrary Lie
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group, and describe their dependence on rather neat combinations of Weierstrass
functions and on group tensors given in terms of the character of the representa-
tion.

Loop calculations were considered for vertex operator algebras in (4; 5), for
particular constructions and levels of current algebras in (6; 7), and for particular
Lie groups (8). Our general treatment of the affine current correlators is possible
due to the simple holomorphic operator products of the currents. Loop correlation
functions for other fields related to current algebras tend to be less completely
accessible, although widely studied (9; 10; 11; 12; 13; 14; 15; 16; 17; 18).

Our interest in the current algebra torus correlator was initially motivated by its
appearance in the gluon loop amplitude (3) for open twistor string theory (19; 20).
The N-point torus current correlator should be helpful to pursue perturbation the-
ory there. The twistor string (21; 19), and efforts to formulate it as a heterotic the-
ory (22), although mixing conformal supergravity with Yang-Mills, also provides
an enticing framework for a QCD string. Our analysis of current algebra on the
torus provides a fundamental building block that will have general applications.

The plan of this paper is as follows. In Sect. 2.1, we first use the representation
of a current algebra as bilinear expressions in (Neveu-Schwarz) fermions to eval-
uate current algebra tree amplitudes. The expressions obtained involve the tensors
formed from the traces of products of the real matrices representing g and can be
described by a set of graphical rules that will be extended later in the paper to yield
loop amplitudes. Although the tensors depend on the representation chosen, this
dependence cancels out in the expressions for the tree amplitudes because these
are determined by κab. For a compact simple algebra, we can take κab = kδ ab and
we can obtain the general tree amplitude by scaling terms in the result obtained
for any given representation by appropriate powers of k.

Notwithstanding this, in Sect. 2.2, we find it useful to give a more generally
phrased version of the construction, due to Frenkel and Zhu (FZ) (1). This gener-
alizes the traces of representation matrices to invariant mth order tensors κm, satis-
fying conditions (2.15) and (2.16), which determine κm in terms of κm−1 uniquely
up to an arbitrary symmetric invariant tensor ωm. The successive freedoms, repre-
sented by the ωn, have no effect on the tree amplitudes constructed using the κm.
We isolate a “connected” part of the tree amplitude, which possesses only simple
poles and show that, like the full amplitude, this just depends on κ2 = κ , and so
not on the ωm. In Sect. 2.3 we give a proof that, given a suitable κm−1, there exists
a κm satisfying (2.15) and (2.16), and we give explicit formulae for the general
κ3 and κ4. Our proof of the existence of κn does not itself provide a convenient
algorithmic construction and we give this in Appendix A using Young tableaux
and the representation theory of the permutation group.

In Sect. 3.1, we begin by computing the n-point one loop amplitude using
the representation of the current algebra as bilinears in Neveu-Schwarz fermions.
The result is given by a modification of the graphical rules used in Sect. 2.1 to
describe tree amplitudes. Similar rules describe two other versions of the loop:
one in which we use Neveu-Schwarz fermions but also incorporate a factor of
(−1)Nb , where Nb is the fermion number operator, into the trace defining the loop;
and one where we use Ramond rather than Neveu-Schwarz fermions. These rules
involve the tensors constructed from traces of representation matices, used in the
fermionic construction of tree amplitudes. There nearly all the structure resulting
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from varying the representation, reflected in the ‘arbitrary’ symmetric tensors ωm
coming into the FZ construction, was irrelevant, but this is not so for the loops.

To approach the construction of the general one loop current algebra ampli-
tude, we isolate a connected part of the amplitude in Sect. 3.2, which has only
single poles, as we did for the tree amplitudes. The residues of this connected part
for the n-point loop are specified in terms of the (n−1)-point loop and this means
that the n point loop is determined in this way up to a symmetric invariant nth

order tensor, ωn(τ), depending only on the torus modulus, τ . In Sect. 3.3, we first
obtain general forms for the two- and three-point loops in terms of symmetric in-
variant tensors ω2(τ) and ω3(τ) and Weierstrass P and ζ functions. The general
form for the n-point loop is given by an adaptation of the rules for tree amplitudes,
expressed in terms of Weierstrass σ functions through

ν
−nHn =

n

∏
j=1

σ(µ j +ν ,τ)
σ(ν ,τ)σ(µ j,τ)

=
∞

∑
m=0

Hn,mν
m−n, (1.2)

which is elliptic as a function of ν and µ1, . . .µn, provided that ∑
n
j=1 µ j = 0, and

in terms of nth order invariant tensor functions of τ , κn,m(τ), with n ≥ m ≥ 2,
defined inductively by (3.55) and (3.56) (which are similar to (2.15) and (2.16)),
starting from invariant symmetric tensors κn,0(τ) = ωn(τ). In Appendix B we
discuss properties of the functions Hn,m and in Appendix C we show how the
general results of this section relate to those previously obtained in (3) for two-,
three- and four-point loops.

The symmetric tensors ωn, irrelevant in the construction of tree amplitudes in
Sect. 2, provide the extra structure necessary for the construction of the one-loop
amplitudes. They are not arbitrary but can be determined in terms of traces of zero
modes of the currents, tr

(
J

ai1
0 J

ai2
0 . . .Jain

0 wL0
)

, symmetrized over the indices a j. In
4.1, we establish recurrence relations relating the traces over symmetrized prod-
ucts of currents, in terms of which the ωn(τ) are initially defined, to symmetrized
traces of their zero modes, showing how this works out in detail for n = 2,3 and
4. More precisely, ωn(τ) are defined in terms of the connected parts of the sym-
metrized traces of currents and, in 4.2, we use the recurrence relations to determine
ωn(τ) in terms of the connected part of the symmetrized trace of zero modes.

Then, in Sect. 4.3, we show how the symmetrized traces of zero modes of the
currents can be determined in terms of

χ(θ ,τ) = tr
(

eiH·θ wL0
)

, (1.3)

the character of the representation of ĝ provided by the space of states of the
theory. While the analysis up to this point has not made any assumptions about
the Lie algebra g, in this section we assume that it is compact and, for ease of
exposition, take it to be simple. The method depends on using the Harish-Chandra
isomorphism of the center of the enveloping algebra of g, that is the ring of Casimir
operators of g, onto the polynomials in H invariant under the action of the Weyl
group, Wg of g.

Section 5 provides a summary of our results.
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2 Current Algebra Trees

2.1 Current algebra and the Fermionic tree construction

We consider a conformal field theory containing the affine algebra, ĝ, given by
(1.1), where m,n are integers and f ab

c are the structure constants of g and κab

is a symmetric tensor invariant with respect to g. [If the generators of the algebra
satisfy the hermiticity condition Ja

n
† = Ja

−n, f ab
c is pure imaginary and κab is real.]

For a general introductory review see (23).
We consider evaluating the vacuum expectation value

A a1a2...an
tree (z1,z2, . . . ,zn) = 〈0|Ja1(z1)Ja2(z2) . . .Jan(zn)|0〉, (2.1)

where

Ja(z) = ∑
n

Ja
n z−n−1, Ja

n |0〉= 0, n ≥ 0, (Ja
n )† = Ja

−n. (2.2)

The currents Ja(z) satisfy the operator product expansion

Ja(z1)Jb(z2)∼
κab

(z1− z2)2 +
f ab

cJc(z2)
z1− z2

(2.3)

and the tree amplitudes satisfy the asymptotic condition

A a1a2...an
tree (z1,z2, . . . ,zn) = O(z−2

j ) as z j → ∞, (2.4)

because in this limit 〈0|Ja(z)∼ 〈0|Ja
1 z−2.

Because of the locality of the currents Ja(z) relative to one another, the tree
amplitude (2.1) is symmetric under simultaneous permutations of the zi and ai,

A
aρ(1)aρ(2)...aρ(n)

tree (zρ(1),zρ(2), . . . ,zρ(n)) = A a1a2...an
tree (z1,z2, . . . ,zn), (2.5)

where ρ ∈Sn, the group of permutations on n objects
The condition (2.3) gives all the singularities of the n-point function in terms of

(n−1)- and (n−2)-point functions. Thus, given (2.4), using Cauchy’s Theorem,
we can inductively calculate the n-point function for any n starting from the two-
point function,

〈0|Ja(z1)Jb(z2)|0〉=
κab

(z1− z2)2 , (2.6)

i.e. the n-point function is determined by the invariant symmetric tensor κab. A
general prescription for doing this has been given by Frenkel and Zhu (1), which
we shall discuss in Sect. 2.2, but first we shall note the explicit calculation when
Ja(z) is given as a bilinear in fermionic oscillators.

Given a representation Ja
0 7→ ta = iMa of g, where the Ma are N-dimensional

real antisymmetric matrices satisfying

[Ma,Mb] =−i f ab
cMc, (2.7)
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we can represent Ja(z) as a bilinear in Neveu-Schwarz fermionic fields,

Ja(z) = ∑
n∈Z

Ja
n z−n−1 =

i
2

Ma
i jb

i(z)b j(z), (2.8)

where

bi(z)= ∑
r∈Z+ 1

2

bi
rz
−r− 1

2 , {bi
r,b

j
s}=δr,−sδ

i j, bi
r|0〉=0, r > 0, 1≤ i, j≤N.(2.9)

Then Ja
n satisfies (1.1) with

κ
ab =− 1

2 tr(MaMb) = 1
2 tr(tatb). (2.10)

Note

bi(z1)b j(z2) =: bi(z1)b j(z2) : +
δ i j

z1− z2
, (2.11)

with the usual definition of normal ordering.
Using Wick’s theorem, we can evaluate the tree amplitude (2.1) and describe

the result as follows. The n-point function can be written as a sum over permuta-
tions
ρ ∈ Sn with no fixed point. Each such permutation can be written as a product
of cycles, ρ = ξ1ξ2 . . .ξr and we associate to ρ a product Fρ = (−1)r fξ1

fξ2
. . . fξr ,

where the function fξ is associated with the cycle ξ = (i1, i2 . . . im), defined by

fξ =
1
2 tr(ta1ta2 . . . tam)

(zi1 − zi2)(zi2 − zi3) . . .(zim − zi1)
. (2.12)

The n-point tree amplitude is then constructed as the sum of these products over
the permutations ρ ∈S′

n, the subset of Sn with no fixed points,

A a1a2...an
tree (z1,z2, . . . ,zn) = ∑

ρ∈S′
n

Fa1a2...an
ρ (z1,z2, . . . ,zn). (2.13)

2.2 The Frenkel-Zhu construction

Frenkel and Zhu have shown how the fermionic construction of the last section can
be modified to give the general construction for the tree amplitude (2.1). Again
the n-point function (2.1) is written as a sum over permutations with no fixed
point, ρ = ξ1ξ2 . . .ξr, written as a product of cycles, with which is associated
Fρ = (−1)r fξ1

fξ2
. . . fξr , where now

fξ =
κ

ai1 ai2 ...aim
m

(zi1 − zi2)(zi2 − zi3) . . .(zim − zi1)
, (2.14)

and the m-order tensors κm are defined inductively by the conditions

κ
a1a2a3...am
m −κ

a2a1a3...am
m = f a1a2

bκ
ba3...am
m−1 , (2.15)



6 L. Dolan, P. Goddard

and

κ
a1a2a3...am
m = κ

a2a3...ama1
m . (2.16)

The n-point tree amplitude is then constructed as in (2.13).
A graphical way of describing the Frenkel-Zhu construction (or the fermionic

construction) is to say that the n-point tree amplitude is given by summing over
all graphs with n vertices where the vertices carry the labels 1,2, . . . ,n, and each
vertex is connected by directed lines to other vertices, one of the lines at each
vertex pointing towards it and one away from it. Then each graph consists of a
number of directed “loops” or cycles, ξ = (i1, i2 . . . im), with which we associate
the expression (2.14) and the expression associated with the whole graph is the
product of the expressions for the various cycles multiplied by a factor of −1 for
each cycle.

As is implied by comparing (2.12) and (2.14), a solution to the conditions
(2.15) and (2.16) can be constructed by setting κ

a1a2a3...am
m = tr(ta1ta2 . . . tam) or,

more generally,

κ
a1a2...am
m = tr(Kta1ta2 . . . tam), (2.17)

where ta is any finite-dimensional representation of g, i.e.

[ta, tb] = f ab
ct

c, (2.18)

and K is any matrix commuting with all the ta, i.e. invariant under the action of g.
K is to be chosen so that κab

2 = tr(Ktatb) = κab as in (1.1), which can be done for
any invariant tensor κab if g is compact and ta a faithful representation.

It is straightforward to verify that (2.13) has the singularity structure implied
by the operator product expansion (2.3), provided that κm satisfies (2.15) and
(2.16), and satisfies the asymptotic condition (2.4), and thus is inductively de-
termined by Cauchy’s Theorem, given the two-point function (2.6). Thus, it does
not depend on the choice of κm satisfying (2.15) and (2.16), apart from through
κ2 = κ . (In particular, although different choices of representation ta result in dif-
ferent tensors κm, as defined through (2.17), these differences cancel out in (2.14),
apart from dependence on κ2.) In fact, the stronger statement holds that the con-
nected parts, that is the sums of (2.14) over permutations of (i1, i2 . . . im), only
depend on the κ’s through κ2. This is expressed in the following proposition:

Proposition 1 If g is a Lie algebra and the tensors κ
a1a2...am
m , where 1 ≤ a j ≤

dimg, are defined for m ≤ N, and satisfy

κ
a1a2a3...am
m −κ

a2a1a3...am
m = f a1a2

bκ
ba3...am
m−1 , (2.19)

and

κ
a1a2a3...am
m = κ

a2a3...ama1
m , (2.20)

where f ab
c are the structure constants of g, then the tensor functions
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A a1a2...am
tree,C (z1,z2, . . . ,zm) =

1
m ∑

ρ∈Sm

f(ρ(1),ρ(2),...,ρ(m)) (2.21)

=
1
m ∑

ρ∈Sm

κ
aρ(1)aρ(2)...aρ(m)
m

(zρ(1)− zρ(2))(zρ(2)− zρ(3)) . . .(zρ(m)− zρ(1))

= ∑
ρ∈Sm−1

κ
aρ(1)aρ(2)...aρ(m−1)am
m

(zρ(1)− zρ(2))(zρ(2)− zρ(3)) . . .(zρ(m−1)− zm)(zm− zρ(1))

(2.22)

depend on the κm only through κ2.

Proof of the Proposition The result follows from Cauchy’s Theorem because the
functions F defined by (2.22) satisfy

A a1a2...am
tree,C (z1,z2, . . . ,zm) = O(z−2

1 ), as z1 → ∞

and

A a1a2a3...am
tree,C (z1,z2, . . . ,zm)∼ f a1a2

b

z1− z2
A ba3...am

tree,C (z2, . . . ,zm) as z1 → z2,

and so can be calculated inductively from

A ab
tree,C(z1,z2) =

κab

(z1− z2)2 .

2.3 The tensors κn

The conditions

κ
a1a2a3...an
n −κ

a2a1a3...an
n = f a1a2

bκ
ba3...an
n−1 , (2.23)

and

κ
a1a2a3...an
n = κ

a2a3...ana1
n (2.24)

are sufficient to ensure that the amplitudes defined by (2.13) with Fρ =(−1)r fξ1
fξ2

. . .
fξr , where fξ is given by (2.14), depend on the κm only through κ2. However, κ2
does not uniquely determine κm through (2.23) and (2.24). In this section, we shall
discuss the existence and uniqueness of solutions to these equations. Although the
arbitrariness in κm, given κ2, is not relevant for tree amplitudes, we shall see in 3
that this freedom is very relevant for the construction of the one-loop amplitudes.

The conditions (2.23) and (2.24) have some immediate consequences. First, if
κn−1 satisfies (2.23) for some κn which also satisfies (2.24), then κn−1 is invariant
because

n

∑
j=1

f ba j
cκ

a1...a j−1ca j+1...an =
n

∑
j=1

(κa1...a j−1ba ja j+1...an −κ
a1...a j−1a jba j+1...an) = 0,
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using (2.23) and then (2.24). Thus for (2.23) and (2.24) to have a solution for a
given κn−1 then this tensor must be invariant.

Second, if κ
a1a2a3...an
n and κ̃

a1a2a3...an
n both satisfy (2.23) with the same κ

a1a2a3...an−1
n−1

and both satisfy the cyclic property (2.24), then the difference

ω
a1a2a3...an
n = κ̃

a1a2a3...an
n −κ

a1a2a3...an
n

is cyclically symmetric and satisfies

ω
a1a2a3...an
n = ω

a2a1a3...an
n .

These two symmetries generate the whole of Sn so that ωn must be a symmetric
tensor. Conversely, if ωn is symmetric, it follows that κ̃n = κn +ωn satisfies (2.23)
and (2.24) if κn does. So κn−1 defines κn through (2.23) and (2.24), assuming a
solution exists, up to a symmetric tensor ωn. We establish the existence of the
solution in the following proposition:

Proposition 2 If g is a Lie algebra, define inductively the spaces Kn to consist of
the invariant nth order tensors κ

a1a2...an
n , where 1 ≤ a j ≤ dimg, such that

κ
a1a2a3...an
n −κ

a2a1a3...an
n = f a1a2

bκ
ba3...an
n−1 , (2.25)

for some κn−1 ∈Kn−1, where f ab
c are the structure constants of g, and

κ
a1a2a3...an
n = κ

a2a3...ana1
n , (2.26)

with K0 = {0}. Then, for each κn−1 ∈ Kn−1, there exists a κn satisfying (2.25)
and (2.26) that is unique up to the addition of a symmetric invariant tensor ωn.
The solution can be uniquely specified by requiring that it be orthogonal to all
symmetric nth order tensors.

Proof of the Proposition We define the action of ρ ∈ Sn on nth order tensors τn
by

(ρτn)a1a2...an = τ
a

ρ−1(1)a
ρ−1(2)...aρ−1(n)

n

so that this provides a representation of Sn on nth order tensors: (ρσ)τn = ρ(στn).
For any nth order tensor τn write

η(ρ,τn) = τn−ρτn; (2.27)

then we can write

τn =
1
n! ∑

ρ∈Sn

η(ρ,τn)+ωn, (2.28)

where

ωn =
1
n! ∑

ρ∈Sn

ρτn, (2.29)
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is the symmetrization of the tensor τn. If τn is invariant, η(ρ,τn) is also invariant.
Then, if κn ∈Kn,

1
n! ∑

ρ∈Sn

η(ρ,κn) (2.30)

is also in Kn and satisfies (2.25) for the same κn−1 ∈Kn−1; further, it is orthogonal
to any symmetric tensor. It is clear from (2.28) that, taking τn = κn ∈ Kn, κn is
orthogonal to all symmetric tensors only if ωn, defined as in (2.29), vanishes.
Thus, (2.30) is the unique solution to (2.25) and (2.26) for the given κn−1, with
this property.

We now proceed to use the expression (2.30) to show there exists a solution to
(2.25) and (2.26) for a given κn−1 ∈Kn−1. From (2.27),

η(ρ1ρ2,κn) = κn−ρ1ρ2κn = η(ρ1,κn)+ρ1η(ρ2.κn) (2.31)

and, so,

η(ρ1 . . .ρk,κn) =
k

∑
j=1

ρ1 . . .ρ j−1η(ρ j,κn). (2.32)

We can use this to give a formula for a given κn, in terms of κn−1 ∈ Kn−1, by
expressing each ρ ∈ Sn as a product of transpositions of adjacent indices and
then using (2.25) and (2.26). However, such expressions are not unique, so we
need to address this by first working in the free group, S̃n, generated by these
transpositions, defining a function φ̃ : S̃n → Tn, the space of nth order invariant
tensors, for each κn−1 ∈Kn−1, and then checking that we can impose the appro-
priate relations to obtain a definition for ρ ∈ Sn. In this way, we will obtain an
nth order tensor φ(ρ,κn−1), ρ ∈Sn,κn−1 ∈Kn−1, which will provide the desired
element φ(κn−1) ∈Kn on averaging over ρ ∈Sn. To show this, we finally show
that φ(κn−1) satisfies (2.25) and (2.26).

Sn is generated by transpositions {σi : 1 ≤ i ≤ n}, where

σi(i) = i+1, σi(i+1) = i, σi( j) = j, j 6= i, i+1, (2.33)

which satisfy the relations

σ
2
i = 1, (σiσi+1)3 = 1, (σiσ j)2 = 1, |i− j|> 1. (2.34)

Let S̃n be the free group on the generators {σ̃i : 1≤ i≤ n−1} and Wn the small-
est normal subgroup of S̃n containing {σ̃2

i , 1 ≤ i ≤ n− 1; (σ̃iσ̃i+1)3, 1 ≤ i ≤
n−2; (σ̃iσ̃ j)2 |i− j|> 1}. Then S̃n/Wn ∼= Sn with σ̃i 7→ σi defining an homo-
morphism S̃n → Sn, which we shall denote by ρ̃ 7→ ρ . (See (24), p. 63.) Each
ρ̃ ∈ S̃n can be written ρ = σ̃i1 σ̃i2 . . . σ̃ik , where 1 ≤ |i j| ≤ n− 1 and σ

−1
i = σ−i.

We can define a function φ̃ : S̃n → Kn in terms of φ̃(σ̃i), 1 ≤ i ≤ n− 1, with
φ̃(σ̃−1

i ) = φ̃(σ̃i) and φ̃(1) = 0, by

φ̃(σ̃i1 . . . σ̃ik) =
k

∑
j=1

σi1 . . .σi j−1 φ̃(σ̃i j). (2.35)



10 L. Dolan, P. Goddard

Then

φ̃(ρ̃1ρ̃2) = ρ1φ̃(ρ̃2)+ φ̃(ρ̃1). (2.36)

We now show that Ker φ̃ ∩Wn is a normal subgroup of S̃n. Suppose ρ̃ ∈
Ker φ̃ ∩Wn, so that ρ = 1 ∈Sn and φ̃(ρ̃) = 0. Then

φ̃(ρ̃1ρ̃ρ
−1
1 ) = ρ1ρφ̃(ρ̃−1

1 )+ρ1φ̃(ρ̃)+ φ̃(ρ̃1) = ρ1φ̃(ρ̃−1
1 )+ φ̃(ρ̃1) = φ̃(1) = 0,

so that ρ̃1ρ̃ ρ̃
−1
1 ∈ Ker φ̃ ∩Wn and this is a normal subgroup of S̃n. So if we can

show that

{σ̃
2
i , 1≤ i≤n−1; (σ̃iσ̃i+1)3, 1≤ i≤n−2; (σ̃iσ̃ j)2, |i− j|> 1} ⊂ Ker φ̃ ,(2.37)

we must have Ker φ̃ ∩Wn = Wn, i.e. Wn ⊂ Ker φ̃ , because Wn is the smallest
normal subgroup containing these elements. Then φ̃ induces a map φ : Sn →Kn
with φ(ρ) = φ̃(ρ̃), because φ(ρ̃w̃) = φ(ρ̃)+ρφ(w̃) = φ(ρ̃) if w̃ ∈Wn.

Next we show that (2.37) holds if we define

φ̃(σ̃i,κn−1) = f αiαi+1
β κ

α1...αi−1βαi+2...αn
n−1 ∈Tn, (2.38)

for κn−1 ∈ Kn−1. We will write out the argument for σ̃2
1 ,(σ̃1σ̃2)3,(σ̃1σ̃3)2 and

the arguments for other values of i, j follow by similar arguments. First, writing
κ = κn−1,

φ̃(σ̃2
1 ,κ) = φ̃(σ̃1,κ)+σ1φ̃(σ̃1,κ),

implying

φ̃(σ̃2
1 ,κ)α1α2α3...αn = f α1α2

β κ
βα3...αn + f α2α1

β κ
βα3...αn = 0.

Second

φ̃((σ̃1σ̃3)2,κ) = φ̃(σ̃1,κ)+σ1φ̃(σ̃3,κ)+σ1σ3φ̃(σ̃1,κ)+σ1σ3σ1φ̃(σ̃3,κ)

= φ̃(σ̃1,κ)+σ1σ3φ̃(σ̃1,κ)+σ1φ̃(σ̃3,κ)+σ3φ̃(σ̃3,κ)
(2.39)

implying

φ̃((σ̃1σ̃3)2,κ)α1α2α3α4...αn = f α1α2
β κ

βα3α4...αn + f α2α1
β κ

βα4α3...αn

+ f α3α4
γ κ

α2α1γ...αn + f α4α3
γ κ

α1α2γ...αn

= f α1α2
β f α3α4

γ κ
βγα5...αn

+ f α2α1
β f α3α4

γ κ
βγα5...αn = 0. (2.40)

Third,

φ̃((σ̃1σ̃2)3,κ) = φ̃(σ̃1,κ)+σ1φ̃(σ̃2,κ)+σ1σ2φ̃(σ̃1,κ)+σ1σ2σ1φ̃(σ̃2,κ)
+σ2σ1φ̃(σ̃1,κ)+σ2φ̃(σ̃2,κ)

= f α1α2
β κ

βα3α4...αn + f α1α3
β κ

α2βα4...αn

+ f α2α3
β κ

βα1α4...αn + f α2α1
β κ

α3βα4...αn
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+ f α3α1
β κ

βα2α4...αn + f α3α2
β κ

α1βα4...αn

= f α1α2
β f βα3

γ κ
γα4...αn + f α1α3

β f α2β
γ κ

γα4...αn

+ f α2α3
β f βα1

γ κ
γα4...αn = 0 (2.41)

by the Jacobi identity. This establishes (2.37).
Thus, for each κn−1 ∈Kn−1, we can define φ(ρ,κn−1)= φ̃(ρ̃,κn−1) and define

φ : Kn−1 →Kn by

φ(κn−1) =
1
n! ∑

ρ∈Sn

φ(ρ,κn−1). (2.42)

We shall now show that φ(κn−1) satisfies (2.25) and (2.26). From (2.36),

φ(ρ1ρ2,κn−1) = ρ1φ(ρ2,κn−1)+φ(ρ1,κn−1). (2.43)

Then, for any σ ∈Sn,

φ(κn−1)−σφ(κn−1) =
1
n! ∑

ρ∈Sn

φ(ρ,κn−1)−
1
n! ∑

ρ∈Sn

σφ(ρ,κn−1)

=
1
n! ∑

ρ∈Sn

φ(ρ,κn−1)−
1
n! ∑

ρ∈Sn

φ(σρ,κn−1)

+
1
n! ∑

ρ∈Sn

φ(σ ,κn−1)

= φ(σ ,κn−1). (2.44)

Taking σ = σ1 in (2.44), we have

φ(κn−1)α1α2α3...αn −φ(κn−1)α2α1α3...αn = f α1α2
β κ

βα3...αn
n−1

so that (2.25) holds.
If σ = σ1σ2 . . .σn−1, then σ( j) = j +1, 1 ≤ j ≤ n−1 and σ(n) = 1, i.e. σ is

cyclic permutation of (1,2, . . . ,n) so that

φ(σ ,κn−1) =
n−1

∑
j=1

σ1 . . .σ j−1φ(σ j,κn−1)

=
n−1

∑
j=1

σ1 . . .σ j−1 f α jα j+1
β κ

α1...α j−1βα j+2...αn
n−1

=
n−1

∑
j=1

f α1α j+1
β κ

α2...α jβα j+2...αn
n−1 = 0 (2.45)

as κn−1 ∈Kn−1 is invariant. Thus putting σ = σ1σ2 . . .σn−1 in (2.44) gives

φ(κn−1)α1α2...αn = φ(κn−1)αnα1...αn−1 ,

so that (2.26) holds.
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By averaging (2.44) over σ ∈Sn, we see that

∑
σ∈Sn

σφ(κn−1) = 0,

so that it is orthogonal to all symmetric tensors and so the unique solution to (2.25)
and (2.26) with this property. This completes the proof of Proposition 2.

Note that Proposition 2 implies that Kn/Sn ∼= Kn−1, where Sn ⊂ Kn is the
space of symmetric invariant tensors. As particular instances, we have that if κab is
an invariant symmetric tensor, the general solution for (2.25) and (2.26) for n = 3
is

κ
abc
3 = 1

2 f ab
eκ

ec +ω
abc, (2.46)

where ωabc is symmetric, and invariant for κ3 to be invariant. In this case, the
general solution to (2.25) and (2.26) for n = 4 is

κ
abcd
4 = 1

6 f ab
e f cd

gκ
eg + 1

6 f da
e f bc

gκ
eg + 1

2 f ab
eω

ecd + 1
2 f bc

eω
ead

+ 1
2 f ac

eω
ebd +ω

abcd , (2.47)

where ωabcd is symmetric.
While Proposition 2 proves the existence of a solution to (2.25) and (2.26) for

a given κn−1 ∈Kn−1, it does not provide an explicit expression for such a solution
unless we have a method of specifying expressions for each element ρ ∈ Sn as
a product σi1σi2 . . .σik of transpositions. In Appendix A, we derive an explicit
expression for κn in terms of κn−1 using the representation theory of Sn and Young
tableaux.

3 Current Algebra on the Torus

3.1 Fermionic loop constructions

We consider the loop amplitude

A a1a2...an
loop (ν1,ν2, . . . ,νn,τ)= tr

(
Ja1(ρ1)Ja2(ρ2) . . .Jan(ρn)wL0

)
(2πi)n

n

∏
j=1

ρ j,

(3.1)

where

ρ j = e2πiν j , w = e2πiτ , (3.2)

and begin by reviewing the explicit expressions for this amplitude when Ja(ρ) is
given as a bilinear in fermionic fields. First, we take Ja(ρ) to be given in terms of
Neveu-Schwarz fields by (2.8). Defining the partition function

χNS(τ) =
∞

∏
r= 1

2

(1+wr)N , (3.3)
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we can write

tr(bi(ρ1)b j(ρ2)wL0) =
1

2πi(ρ1ρ2)
1
2

χNS(ν1−ν2,τ)χNS(τ)δ i j, (3.4)

where

χNS(ν ,τ)=2πi
∞

∑
r= 1

2

e−2πirν +wre2πirν

1+wr =
θ ′1(0,τ)θ3(ν ,τ)
θ3(0,τ)θ1(ν ,τ)

∼ 1
ν

as ν → 0.(3.5)

With Ja(ρ) given by (2.8), the two-point function is

tr
(

Ja(ρ1)Jb(ρ2)wL0
)

=− κab

4π2ρ1ρ2
χNS(ν1−ν2,τ)2

χNS(τ)

=− κab

4π2ρ1ρ2
PNS(ν1−ν2,τ)χNS(τ), (3.6)

where κab =− 1
2 tr(MaMb) = 1

2 tr(tatb), and

PNS(ν ,τ) =
θ ′1(0,τ)2θ3(ν ,τ)2

θ3(0,τ)2θ1(ν ,τ)2 ∼
1

ν2 , as ν → 0

=
θ ′′3 (0,τ)
θ3(0,τ)

−
(

θ ′1(ν ,τ)
θ1(ν ,τ)

)′
=

θ ′′3 (0,τ)
θ3(0,τ)

+2η(τ)+P(ν ,τ). (3.7)

Here the Weierstrass P function,

P(ν ,τ) =−
(

θ ′1(ν ,τ)
θ1(ν ,τ)

)′
−2η(τ), (3.8)

with

η(τ) =−1
6

θ ′′′1 (0,τ)
θ ′1(0,τ)

. (3.9)

(See (25), p. 361.)
The general prescription for the n-point loop amplitude (3.1), with Ja(ρ) given

by (2.8), is given by a modification of the Frenkel-Zhu construction of 2.2, by writ-
ing (3.1) as a sum over permutations ρ ∈Sn with no fixed point. If ρ = ξ1ξ2 . . .ξr,
a product of disjoint cycles, we associate to ρ a product

FNS
ρ = (−1)r f NS

ξ1
f NS
ξ2

. . . f NS
ξr

χNS(τ), (3.10)

where the function f NS
ξ

associated with the cycle ξ = (i1, i2 . . . im) is defined by

f NS
ξ

= κ
ai1 ai2 ...aim χNS(νi1 −νi2 ,τ)χNS(νi2 −νi3 ,τ) . . .χNS(νim −νi1 ,τ), (3.11)



14 L. Dolan, P. Goddard

κ
a1a2...an = 1

2 tr(ta1ta2 . . . tan) = 1
2 intr(Ma1Ma2 . . .Man). (3.12)

The n-point loop amplitude is then constructed as the sum of these products over
the permutations ρ ∈S′

n, the subset of Sn with no fixed points,

A a1a2...an
loop (ν1,ν2, . . . ,νn,τ) = ∑

ρ∈S′
n

FNS a1a2...an
ρ (ν1,ν2, . . . ,νn,τ). (3.13)

Again this construction can be described graphically by summing over all graphs
with n vertices where the vertices carry the labels 1,2, . . . ,n, and each vertex is
connected by directed lines to other vertices, one of the lines at each vertex point-
ing towards it and one away from it. An expression (3.11) is associated with each
cycle, together with factor of −1, and the product of these cycle expressions is
associated with the whole graph.

For example, this gives as the expression for the three-point loop

tr
(

Ja(ρ1)Jb(ρ2)Jc(ρ3)wL0
)

=
−ik

8π3ρ1ρ2ρ3
f abc

χNS(τ)χNS(ν1−ν2,τ)

×χNS(ν2−ν3,τ)χNS(ν3−ν1,τ) (3.14)

if tr(MaMb) = −2kδ ab, so that κab = kδ ab, and δ ab is used to raise and lower
indices.

We can modify the above to give a second fermionic construction by defining
the partition function

χ
−
NS(τ) =

∞

∏
r= 1

2

(1−wr)N . (3.15)

We can write

tr
(
bi(ρ1)b j(ρ2)wL0(−1)Nb

)
=

1

2πi(ρ1ρ2)
1
2

χ
−
NS(ν1−ν2,τ)χ

−
NS(τ)δ i j, (3.16)

where

χ
−
NS(ν ,τ)=2πi

∞

∑
r= 1

2

e−2πirν −wre2πirν

1−wr =
θ ′1(0,τ)θ4(ν ,τ)
θ4(0,τ)θ1(ν ,τ)

∼ 1
ν

as ν → 0; (3.17)

and, if we replace χNS(ν ,τ) by χ
−
NS(ν ,τ) in (3.11), with χ

−
NS(τ) replacing χNS(τ)

in (3.10), the above construction for the loop amplitudes gives

tr
(
Ja1(ρ1)Ja2(ρ2) . . .Jan(ρn)wL0(−1)Nb

)
, (3.18)

where Nb = ∑r>0 b−rbr. In particular, the two-point function is

tr
(

Ja(ρ1)Jb(ρ2)wL0(−1)Nb
)

=− κab

4π2ρ1ρ2
χ
−
NS(ν1−ν2,τ)2

χ
−
NS(τ)

=− κab

4π2ρ1ρ2
P−

NS(ν1−ν2,τ)χ
−
NS(τ), (3.19)
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where

P−
NS(ν ,τ) =

θ ′1(0,τ)2θ4(ν ,τ)2

θ4(0,τ)2θ1(ν ,τ)2

=
θ ′′4 (0,τ)
θ4(0,τ)

−
(

θ ′1(ν ,τ)
θ1(ν ,τ)

)′
=

θ ′′4 (0,τ)
θ4(0,τ)

+2η(τ)+P(ν ,τ). (3.20)

A third fermionic construction is given by using the Ramond operators,

di(ρ) = ∑
m∈Z

di
mρ

−m+ 1
2 , {di

m,d j
n}= δm,−nδ

i j,

di
m|0〉= 0, m > 0, 1 ≤ i, j,≤ N. (3.21)

Defining the Ramond partition function

χR(τ) =
∞

∏
n=1

(1+wn)N , (3.22)

we can write

tr
(
di(ρ1)d j(ρ2)wL0

)
=

1

2πi(ρ1ρ2)
1
2

chiR(ν1−ν2,τ)χR(τ)δ i j,

where

χR(ν ,τ) = πi+2πi
∞

∑
m=1

e−2πimν +wme2πimν

1+wm =
θ ′1(0,τ)θ2(ν ,τ)
θ2(0,τ)θ1(ν ,τ)

∼ 1
ν

as ν → 0. (3.23)

If we now replace χNS(ν ,τ) by χR(ν ,τ) in (3.11), with χR(τ) replacing χNS(τ) in
(3.10), the construction for the loop amplitudes gives

tr
(
Ja1(ρ1)Ja2(ρ2) . . .Jan(ρn)wL0

)
, (3.24)

where now, instead of (2.8),

Ja(ρ) =
i
2

Ma
i jd

i(ρ)d j(ρ). (3.25)

The two-point function is now

tr
(

Ja(ρ1)Jb(ρ2)wL0
)

=− κab

4π2ρ1ρ2
χR(ν1−ν2,τ)2

χR(τ)

=− κab

4π2ρ1ρ2
PR(ν1−ν2,τ)χR(τ) (3.26)
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where

PR(ν ,τ) =
θ ′1(0,τ)2θ2(ν ,τ)2

θ2(0,τ)θ1(ν ,τ)2

=
θ ′′2 (0,τ)
θ2(0,τ)

−
(

θ ′1(ν ,τ)
θ1(ν ,τ)

)′
=

θ ′′2 (0,τ)
θ2(0,τ)

+2η(τ)+P(ν ,τ). (3.27)

3.2 General torus amplitudes and connected parts

The loop amplitude

A a1a2...an
loop (ν1,ν2, . . . ,νn,τ) = tr

(
Ja1(ρ1)Ja2(ρ2) . . .Jan(ρn)wL0

)
×(2πi)n

n

∏
j=1

ρ j, (3.28)

is invariant under ν j → ν j + 1 and ν j → ν j + τ for each j individually, so that
it is defined on the torus obtained by identifying ν ∈ C with ν + 1 and ν + τ .
Because of the locality of the currents Ja j(ρ j), the amplitude is also symmetric
under simultaneous permutations of the ρ j and the a j.

From (2.3) we have that

Ja(ρ1)Jb(ρ2)∼
κab

(2πi)2ρ1ρ2(ν1−ν2)2 +
f ab

cJc(ρ2)
2πiρ1(ν1−ν2)

as ν1 → ν2. (3.29)

Thus the singularities of the n-point loop amplitude on the torus are determined
in terms of the (n− 1)-point and (n− 2)-point loop amplitudes. This means that
knowledge of the (n−1)-point and (n−2)-point loop amplitudes determines the
n-point loop amplitude up to a constant on the torus, that is a function of τ . (See,
e.g., (26), p. 29.) Because of the permutation symmetry of the amplitude (3.28),
this leaves the n-point loop determined up to a symmetric invariant tensor function
of τ , given the (n−1)-point and (n−2)-point loops.

The sum over permutations in the expression (3.13) for the loop in the fermionic
construction cases can be divided into terms which collect together the same ρi in
each cycle. Such terms are labeled by the division of the variables {ρ1,ρ2, . . . ,ρn}
into subsets, each consisting of at least two elements (corresponding to the restric-
tion to permutations with no fixed points). The full loop amplitude is then the sum
over these terms. Such terms are products of “connected parts”, each of which
involves one of the subsets of {ρ1,ρ2, . . . ,ρn}, say {ρi1 ,ρi2 , . . . ,ρim}, given by an
expression like (2.21),

A a1a2...am
loop,C (ν1,ν2, . . . ,νm,τ) =− 1

m ∑
ρ∈Sm

f NS
(ρ(1),ρ(2),...,ρ(m))χNS(τ), (3.30)
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in the NS case. The amplitudes Aloop,C have a simpler structure than the full am-
plitudes Aloop in that they have only single poles for m > 2, rather than both single
and double poles. For m > 2, the connected amplitudes satisfy the conditions

A a1a2...am
loop,C (ν1,ν2, . . . ,νm,τ) ∼ 1

νm−ν j
f ama j

a′j
A

a1a2...a j−1a′ja j+1...am−1
loop,C

×(ν1,ν2, . . . ,νm−1,τ), (3.31)

which are sufficient to specify the m-point connected amplitude Aloop,C in terms of
the (m− 1)-point connected amplitude, again up to a symmetric invariant tensor
function of τ .

Motivated by the fermionic constructions, we can give a general definition of
the connected part of the loop amplitude in a familiar way. If A = {i1, i2, . . . , in} is
a set of distinct positive integers, define

A A ≡A
ai1 ai2 ...ain

loop (νi1 ,νi2 , . . . ,νin ,τ) = tr
(
Jai1 (ρi1)J

ai2 (ρi2) . . .J
ain (ρin)w

L0
)

×(2πi)n
n

∏
j=1

ρi j . (3.32)

Let P = (A1,A2, . . . ,Ar) be a division of the integers A = {i1, i2, . . . , in} = A1 ∪
A2 ∪ . . .∪Ar into a number of disjoint subsets; let PA denote the collections of
such divisions; and denote the partition function by

χ(τ) = tr
(
wL0
)
. (3.33)

Then we can define the connected amplitude A A
C inductively by

A A = ∑
P∈PA

χ(τ)1−|P|
∏

A j∈P
A

A j
C , (3.34)

where |P|= r, the number of subsets contained in the division P, together with the
vanishing of the one point function A

{i}
C = 0, and, consequently,

A
{i, j}

C = A {i, j} = tr
(
Jai(ρi)Ja j(ρ j)wL0

)
(2πi)2

ρiρ j. (3.35)

Equation (3.34) is of the form given for the NS case by (3.13) together with
(3.10), where

A
{i1...im}

C =− ∑
ρ∈Sm

f NS
iρ(1)...iρ(m)

χ, χ(τ) = χNS(τ).

Equation (3.34) defines an inductive procedure because we can write it as

A A
C = A A− ∑

P∈P′
A

χ(τ)1−|P|
∏

A j∈P
A

A j
C , (3.36)

where P′
A denotes the same collection of divisions of A into disjoint subsets but

omitting the division of A into the single set consisting of itself. If we single out a
point i ∈ A, we can rewrite the inductive definition of A A

C ,

A A = A A
C + ∑

B∈Ri
A

A B
C A A∼B/χ, (3.37)
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where Ri
A denotes the proper subsets of A which contain i.

The point of this definition of

A A
C ≡A

ai1 ai2 ...ain
C (νi1 ,νi2 , . . . ,νin ,τ) (3.38)

is that, for m > 2, the double poles at νi = ν j present in A A have been removed
and only single poles remain. A double pole remains in A

{i, j}
C defined by (3.35),

A
{i, j}

C ∼ κaia j

(νi−ν j)2 χ(τ) as νi ∼ ν j,

and this is its only singularity. To demonstrate the absence of the double pole at
νi = ν j in A A

C , m > 2, we use induction and (3.37). We note that the residue of
the double pole on the left hand side is kδ aia jA A∼{i, j}, and in the sum on the right
hand side, assuming inductively that the result is true for smaller amplitudes, the
double pole occurs only in the term involving A B

C for B = {i, j} and the residue
for this term is δ aia j kχ multiplied by A A∼B/χ , i.e. the same as on the left hand
side, so that these residues cancel and A A

C has no double pole at νi = ν j. A similar
argument shows that A A

C satisfies the same relations for the residues at single
poles as A A, so that (3.31) holds.

3.3 Structure of torus amplitudes

In general write

A a1a2...an
loop,C (ν1,ν2, . . . ,νn,τ)≡−F a1a2...an

n (ν1,ν2, . . . ,νn,τ)χ(τ), (3.39)

so that, for n > 2,

F a1a2...an
n (ν1,ν2, . . . ,νn,τ) ∼ 1

νn−ν j
f ama j

a′j
F

a1a2...a j−1a′ja j+1...an−1
n−1

×(ν1,ν2, . . . ,νn−1,τ) (3.40)

as νn ∼ ν j, which specifies Fn on the torus in terms of Fn−1 up to a function of
τ ,

ω
a1a2...an
n (τ), (3.41)

which, because of the properties of Fn, must be an invariant symmetric tensor.
Inductively, this determines Fn in terms of F2 and these invariant tensors, ωm,
2 < m ≤ n. The 2-point function, F2, has only a double pole,

F ab
2 (ν1,ν2,τ)∼− κab

(ν1−ν2)2 as ν1 → ν2. (3.42)

In general (3.42) implies that the general form of the two-point function is

F ab(ν1,ν2,τ) =−κ
abP(ν1−ν2,τ)+ω

ab
2 (τ), (3.43)
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where ωab
2 (τ) is a symmetric invariant tensor. In the NS, NS− and R cases,

ω
ab
2 (τ) =−κ

ab
[

θ ′′s (0,τ)
θs(0,τ)

+2η(τ)
]

(3.44)

with s = 3,4,2, respectively.
We can construct the general three-point loop, F3, as follows; we start by

rewriting (3.43) as

F ab
2 (ν1,ν2,τ) =−κ

abPNS(ν1−ν2,τ)+ ω̃
ab
2 (τ). (3.45)

We then have that F abc(ν1,ν2,ν3,τ) differs from what it is in the NS case,

k f abc
χNS(ν1−ν2,τ)χNS(ν2−ν3,τ)χNS(ν3−ν1,τ), (3.46)

by a function defined on torus, whose residues at ν1 = ν2, ν2 = ν3, ν3 = ν1 are
all i f ab

eω̃ec
2 (τ). To construct such a function, consider the Weierstrass ζ function

(see (27), p. 445),

ζ (ν ,τ) =
θ ′1(ν ,τ)
θ1(ν ,τ)

+2η(τ)ν (3.47)

ζ (ν ,τ) has the properties:

ζ (ν +1,τ) = ζ (ν ,τ)+2η(τ), ζ (ν + τ,τ) = ζ (ν ,τ)+2η(τ)τ −2πi,(3.48)

ζ
′(ν ,τ) =−P(ν ,τ), ζ (−ν ,τ) =−ζ (ν ,τ),

ζ (ν ,τ) =
1
ν

+O(ν3), as ν → 0. (3.49)

It follows that

ζ (ν1−ν2,τ)+ζ (ν2−ν3,τ)+ζ (ν3−ν1,τ) (3.50)

is defined on the torus and has residue 1 at ν1 = ν2, ν2 = ν3 and ν3 = ν1. Thus the
general form for
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F abc
3 (ν1,ν2,ν3,τ) = k f abc

χNS(ν1−ν2,τ)χNS(ν2−ν3,τ)χNS(ν3−ν1,τ)

+ f abe
ω̃

ec
2 (τ) [ζ (ν1−ν2,τ)+ζ (ν2−ν3,τ)

+ζ (ν3−ν1,τ)]+2ω
abc
3 (τ), (3.51)

where ω3 is a symmetric invariant tensor, because this has the residues speci-
fied by (3.40). We could proceed to express the n-point connected loop amplitude
as the expression in the NS case (3.11) with additional terms, but, instead, we
adopt an approach that is more symmetric between all the terms. To this end, we
define functions, Hn,m(µ1, . . . ,µn,τ), symmetric under the permutations of the µi,
initially for 0 ≤ m ≤ 4, by

Hn,0(µ,τ) = 1,

Hn,1(µ,τ) =
n

∑
j=1

ζ j,

2Hn,2(µ,τ) =

(
n

∑
j=1

ζ j

)2

+
n

∑
j=1

ζ
′
j,

6Hn,3(µ,τ) =

(
n

∑
j=1

ζ j

)3

+3
n

∑
j=1

ζ j

n

∑
j=1

ζ
′
j +

n

∑
j=1

ζ
′′
j ,

24Hn,4(µ,τ) =

(
n

∑
j=1

ζ j

)4

+6

(
n

∑
j=1

ζ j

)2 n

∑
j=1

ζ
′
j +4

n

∑
j=1

ζ j

n

∑
j=1

ζ
′′
j

+3

(
n

∑
j=1

ζ
′
j

)2

+
n

∑
j=1

ζ
′′′
j + k4, (3.52)

where µ = (µ1, . . . ,µn), ζ j = ζ (µ j,τ), and k4 = k4(τ) is a constant on the torus to
be determined. Then the singularities in the µ j of Hn,m(µ1, . . . ,µn,τ) are simple
poles at µ j = 0 for n > 2, and the residue

Res
µn=0

Hn,m(µ1, . . . ,µn,τ) = Hn−1,m−1(µ1, . . . ,µn−1,τ), (3.53)

for 1 ≤ m ≤ 4 and n > 2. This can be verified case by case but we shall give a
general argument below.

The Hn,m(µ,τ) are not single valued for µ j on the torus but, if we impose the
constraint that µ1 + . . .+ µn = 0, they are. So Hn,m(ν12, . . . ,νn1,τ), where νi j =
νi−ν j is defined on the torus and, for n > 2, just has poles at νi = νi+1, 1≤ i≤ n,
with νn+1 ≡ ν1. For n = 2,

H2,1(ν12,ν21,τ) = 0, H2,2(ν12,ν21,τ) =−P(ν12,τ). (3.54)

By Proposition 2 of Sect. 2.3, we can define nth order tensors κn,m(τ), n≥m≥
0, n ≥ 2, by the conditions

κ
a1a2...an
n,m (τ)−κ

a2a1...an
n,m (τ) = f a1a2

bκ
ba3...an
n−1,m−1(τ), (3.55)
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κ
a1a2...an
n,m (τ) = κ

a2...ana1
n,m (τ), (3.56)

together with the requirement that κn,m be orthogonal to all symmetric tensors for
m > 0 and n > 2, and the initial condition that κ2,2 = κ,κ2,1 = 0 and κn,0(τ) =
ωn(τ), a symmetric invariant tensor. Then, setting

〈κn,mHn,m〉a1a2...an(ν1,ν2, . . . ,νn,τ) =
1
n ∑

ρ∈Sn

κ
aρ(1)...aρ(n)
n,m

×Hn,m(νρ(1)ρ(2), . . . ,νρ(n)ρ(1),τ), (3.57)

Fn = 〈κn,n−mHn,n−m〉, n≥ m, provides a solution to (3.40) for each m. By the
linearity of those equations, we obtain the solution,

Fn =
n

∑
m=0

〈κn,mHn,m〉, n ≥ 2. (3.58)

Because so far we only have Hn,m for 0≤m≤ 4, (3.58) is only valid for 2≤ n≤ 4.
Explicitly,

F2 = 〈κ2H2,2〉+ 〈κ2,0〉,
F3 = 〈κ3H3,3〉+ 〈κ3,1H3,1〉+ 〈κ3,0〉,
F4 = 〈κ4H4,4〉+ 〈κ4,2H4,2〉+ 〈κ4,1H4,1〉+ 〈κ4,0〉, (3.59)

where we have written κn ≡ κn,n.
To demonstrate that Hn,m has the desired properties, 0 ≤ m ≤ 4, and to extend

its definition to higher values of m, we note we can write

Hn,m(µ,τ) =
1

m!

[
n

∑
j=1

(∂ j +ζ j)

]m

1, for 1 ≤ m ≤ 3, (3.60)

where ∂ j = ∂/∂ µ j. (Here, and in what follows, n ≥ 2.) The ζ function can be
written in terms of the Weierstrass σ function (see (27), p. 447)

ζ (µ,τ) =
σ ′(µ,τ)
σ(µ,τ)

, σ(µ,τ) = eη(τ)µ2 θ1(µ,τ)
θ ′1(0,τ)

, (3.61)

with σ(−µ,τ) =−σ(µ,τ), and

σ(µ,τ) =
∞

∑
s=0

fs(τ)µ
2s+1 = µ + f2(τ)µ

5 + . . . , because f1 = 0. (3.62)

Then, defining Ĥn,m(µ,τ) by the right hand side of (3.60) for all m ≥ 0, we have
as µn → 0,

Ĥn,m(µ,τ) =
1

m!σ(µn,τ)

[
∂n +

n−1

∑
j=1

(∂ j +ζ j)

]m

σ(µn,τ)

=
1

µnm!

[
∂n +

n−1

∑
j=1

(∂ j +ζ j)

]m
∞

∑
s=0

fsµ
2s+1
n +O(1)

=
1
µn

[ 1
2 m− 1

2 ]

∑
s=0

fs(τ)Ĥn−1,m−2s−1(µ
′,τ)+O(1), (3.63)
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where µ ′ = (µ1, . . . ,µn−1) and [ 1
2 m− 1

2 ] is the greatest integer less than or equal
to 1

2 m− 1
2 . Thus

Res
µn=0

Ĥn,m(µ,τ) =
[ 1

2 m− 1
2 ]

∑
s=0

fs(τ)Ĥn−1,m−2s−1(µ,τ); (3.64)

In particular,

Res
µn=0

Ĥn,m(µ,τ) = Ĥn−1,m−1(µ
′,τ), 1 ≤ m ≤ 4,

so that (3.53) holds for 1 ≤ m ≤ 4 and n > 2, but

Res
µn=0

Ĥn,5(µ,τ) = Ĥn−1,4(µ,τ)+ f2Ĥn−1,0(µ
′,τ).

To see how to modify Ĥn,m to give an Hn,m that satisfies (3.53) for all m ≥ 1,
write

Ĥn(µ,τ;ν) =
∞

∑
m=0

ν
mĤn,m(µ,τ), (3.65)

we have from (3.64),

Res
µn=0

Ĥn(µ,τ;ν) = σ(ν ,τ)Ĥn−1(µ
′,τ;ν). (3.66)

So, if we define

νn

σ(ν ,τ)n Ĥn(µ,τ;ν) = Hn(µ,τ;ν) =
∞

∑
m=0

Hn,m(µ,τ)νm, (3.67)

the definition of Hn,m in (3.52) is unchanged for 1 ≤ m ≤ 4 (except that the con-
stant, k4/24, in the defintion of Hn,4 is determined to be −n f2), and

Res
µn=0

Hn(µ,τ;ν) = νHn−1(µ
′,τ;ν), n ≥ 1, (3.68)

i.e. Res
µn=0

Hn,m(µ,τ) = Hn−1,m−1(µ
′,τ). n ≥ m ≥ 1. (3.69)

From (3.60)

Ĥn(µ,τ;ν) =
∞

∑
m=0

νm

m!

[
n

∑
j=1

(∂ j +ζ j)

]m

1

=

[
n

∏
j=1

1
σ(µ j,τ)

]
∞

∑
m=0

νm

m!

[
n

∑
j=1

∂ j

]m n

∏
j=1

σ(µ j,τ)

=
n

∏
j=1

σ(µ j +ν ,τ)
σ(µ j,τ)

(3.70)
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and so

Hn(µ,τ;ν) =
νn

σ(ν ,τ)n

n

∏
j=1

σ(µ j +ν ,τ)
σ(µ j,τ)

. (3.71)

Note that

ν
−nHn(µ,τ;ν) =

n

∏
j=1

σ(µ j +ν ,τ)
σ(ν ,τ)σ(µ j,τ)

(3.72)

is elliptic as a function of the µ j and of ν provided that we impose the constraint
that µ1 + µ2 + . . .+ µn = 0. From (3.71) we see directly that

Res
µn=0

Hn(µ,τ;ν) =
νn

σ(ν ,τ)n
σ(ν ,τ)
σ ′(0,τ)

n

∏
j=2

σ(µ j +ν ,τ)
σ(µ j,τ)

= νHn−1(µ
′,τ;ν). (3.73)

Properties of Hn(µ,τ;ν) are discussed in Appendix B. In particular, it is shown
that

Hn,n−1(ν12, . . . ,νn−1,n,νn,1,τ) = 0. (3.74)

The relation (3.69) shows that (3.58) provides the general form of the n-point
connected loop amplitude, with Hn,m defined as the moments of (3.71). It specifies
Fn in terms of the invariant symmetric tensors κ2,2 = κ and κn,0 = ωn,

F a1a2...an
n (ν1,ν2, . . . ,νn,τ) =

1
n ∑

ρ∈Sn

n

∑
m=0

κ
aρ(1)...aρ(n)
n,m

Hn,m(νρ(1)ρ(2), . . . ,νρ(n)ρ(1),τ). (3.75)

Since the symmetrization of κ
a1a2...an
n,m is zero for m > 0 and n ≥ 3, we can

evaluate κn,0 in terms of connected parts of traces of the Ja(ρ) by symmetrizing
(3.75) over the group indices only, yielding

F a1a2...an(ν1,ν2, . . . ,νn,τ)S = (n−1)!κa1...an
n,0 (τ), n ≥ 3, (3.76)

where we define

F a1a2...an(ν1,ν2, . . . ,νn,τ)S =
1
n! ∑

ρ∈Sn

F
aρ(1)...aρ(n)
n (ν1,ν2, . . . ,νn,τ). (3.77)

Equation (3.76) can be written

ω
a1...an
n (τ) ≡ κ

a1...an
n,0 (τ) =− (2πi)n

(n−1)!χ(τ)

[
n

∏
j=1

ρ j

]
tr

×
(
Ja1(ρ1)Ja2(ρ2) . . .Jan(ρn)wL0

)
C,S , (3.78)
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for n≥ 3; ω2 is determined by (3.43). Note that this implies that the symmetrized
connected part of the trace[

n

∏
j=1

ρ j

]
tr
(
Ja1(ρ1)Ja2(ρ2) . . .Jan(ρn)wL0

)
C,S (3.79)

is independent of the ν j. (This follows directly from symmetrizing (3.40) because
this shows that all the residues of this elliptic function vanish, implying that it is a
constant on the torus.) We will relate this to the trace of zero modes of the currents
in Sect. 4. In Appendix C we show that the formulae given for two-, three- and
four-point loops in (3) are equivalent to (3.75) for n ≤ 4.

4 Zero Modes

4.1 Recurrence relations and traces of zero modes

The symmetric tensor ωn is given in terms of the symmetrized connected part
of the trace of currents by (3.78). We seek to express this in terms of traces of
symmetrized products of zero modes, Ja

0 . To this end consider

tr
(
Ja1(ρ1)Ja2(ρ2) . . .Jar(ρr)J

ar+1
0 . . .Jan

0 wL0
) r

∏
j=1

ρ j. (4.1)

These functions are not elliptic as functions of the ν j, 1 ≤ j ≤ r, if r < n; to see
this move Ja1(ρ1) around the trace, through wL0 , to calculate the effect of sending
ν1 → ν1 + τ , and we find that it is not invariant because terms, proportional to
f a1a j

e are generated on commuting Ja1(ρ1) with J
a j
0 , j > r. However, these terms

clearly disappear on symmetrizing over all the indices (a1,a2, . . . ,an), so that

tr
(
Ja1(ρ1)Ja2(ρ2) . . .Jar(ρr)J

ar+1
0 . . .Jan

0 wL0
)

S

r

∏
j=1

ρ j, (4.2)

is elliptic in ν j, 1 ≤ j ≤ r and so a suitable function to consider.
Symmetrizing the recurrence relation (3)

tr
(
Ja1(ρ1)Ja2(ρ2) . . .Jan(ρn)wL0

)
= ρ

−1
1 tr

(
Ja1

0 Ja2(ρ2) . . .Jan(ρn)wL0
)

+i
n

∑
j=2

∆1(ν j −ν1,τ)
ρ1

f a1a j
a′j

×tr
(

Ja2(ρ2) . . .Ja j−1(ρ j−1)J
a′j(ρ j)Ja j+1(ρ j+1) . . .Jan(ρn)wL0

)
+ k

n

∑
j=2

∆2(ν j −ν1,τ)
ρ1ρ j

δ
a1a j

×tr
(
Ja2(ρ2) . . .Ja j−1(ρ j−1)Ja j+1(ρ j+1) . . .Jan(ρn)wL0

)
, (4.3)
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where

∆1(ν ,τ) =
i

2π

θ ′1(ν ,τ)
θ1(ν ,τ)

− 1
2
, ∆2(ν ,τ) =

1
4π2

(
θ ′1(ν ,τ)
θ1(ν ,τ)

)′
= − 1

4π2 P(ν ,τ)− 1
2π2 η(τ), (4.4)

we obtain

tr
(
Ja1(ρ1)Ja2(ρ2) . . .Jan(ρn)wL0

)
S

=
1
ρ1

tr
(
Ja1

0 Ja2(ρ2) . . .Jan(ρn)wL0
)

S

+ k
n

∑
j=2

∆2(ν j −ν1,τ)
ρ1ρ j

×
[
δ

a1a j tr
(
Ja2(ρ2) . . .Ja j−1(ρ j−1)Ja j+1(ρ j+1) . . .Jan(ρn)wL0

)]
S . (4.5)

This generalizes to

tr
(
Ja1(ρ1)Ja2(ρ2) . . .Jar(ρr)J

ar+1
0 . . .Jan

0 wL0
)

S

=
1
ρ1

tr
(
Ja2(ρ2) . . .Jar(ρr)J

a1
0 Jar+1

0 . . .Jan
0 wL0

)
S + k

r

∑
j=2

∆2(ν j −ν1,τ)
ρ1ρ j

×
[
δ

a1a j tr
(
Ja2(ρ2) . . .Ja j−1(ρ j−1)Ja j+1(ρ j+1) . . .Jar(ρr)J

ar+1
0 . . .Jan

0 wL0
)]

S .

(4.6)

Applying this for r = n = 2,

tr
(
Ja1(ρ1)Ja2(ρ2)wL0

)
ρ1ρ2 = tr

(
Ja1

0 Ja2(ρ2)wL0
)

ρ2 + k∆2(ν2−ν1,τ)δ a1a2 χ(τ)

= tr
(
Ja1

0 Ja2
0 wL0

)
+ k∆2(ν2−ν1,τ)δ a1a2 χ(τ);

(4.7)

using (3.43) and (4.4), we have

ω
ab
2 =

4π2

χ(τ)
tr
(

Ja
0 Jb

0 wL0
)
−2δ

abkη(τ). (4.8)

Taking r = n = 3,

tr
(
Ja1(ρ1)Ja2(ρ2)Ja3(ρ3)wL0

)
S ρ1ρ2ρ3 = tr

(
Ja1

0 Ja2(ρ2)Ja3(ρ3)wL0
)

S ρ2ρ3

= tr
(
Ja1

0 Ja2
0 Ja3(ρ3)wL0

)
S ρ3

= tr
(
Ja1

0 Ja2
0 Ja3

0 wL0
)

S (4.9)
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because tr(Ja3(ρ3)wL0) = tr(Ja3
0 wL0) = 0, so that

ω
abc
3 =

4π3i
χ(τ)

tr
(

Ja
0 Jb

0 Jc
0wL0

)
S
. (4.10)

For r = n = 4,

tr
(
Ja1(ρ1)Ja2(ρ2)Ja3(ρ3)Ja4(ρ4)wL0

)
S ρ1ρ2ρ3ρ4

= tr
(
Ja1

0 Ja2(ρ2)Ja3(ρ3)Ja4(ρ4)wL0
)

S ρ2ρ3ρ4

+ k∆2(ν2−ν1)
[
δ

a1a2 tr
(
Ja3(ρ3)Ja4(ρ4)wL0

)]
S ρ3ρ4

+ k∆2(ν3−ν1)
[
δ

a1a3 tr
(
Ja2(ρ2)Ja4(ρ4)wL0

)]
S ρ2ρ4

+ k∆2(ν4−ν1)
[
δ

a1a4 tr
(
Ja2(ρ2)Ja3(ρ3)wL0

)]
S ρ2ρ3

= tr
(
Ja1

0 Ja2
0 Ja3(ρ3)Ja4(ρ4)wL0

)
S ρ3ρ4

+ k (∆2(ν2−ν1)+∆2(ν3−ν1)+∆2(ν4−ν1))
[
δ

a1a2 tr
(
Ja3

0 Ja4
0 wL0

)]
S

+ k2 (∆2(ν2−ν1)∆2(ν3−ν4)+∆2(ν3−ν1)∆2(ν2−ν4)
+∆2(ν4−ν1)∆2(ν2−ν3)) [δ a1a2δ

a3a4 ]S χ(τ)

+ k∆2(ν3−ν2)
[
δ

a2a3 tr
(
Ja1

0 Ja4(ρ4)wL0
)]

S ρ4

+ k∆2(ν4−ν2)
[
δ

a2a4 tr
(
Ja1

0 Ja3(ρ3)wL0
)]

S ρ3

= tr
(
Ja1

0 Ja2
0 Ja3

0 Ja4
0 wL0

)
S

+ k
[
δ

a1a2 tr
(
Ja3

0 Ja4
0 wL0

)]
S ∑

i< j
∆2(νi−ν j)

+ k2 (∆2(ν2−ν1)∆2(ν3−ν4)+∆2(ν3−ν1)∆2(ν2−ν4)
+∆2(ν4−ν1)∆2(ν2−ν3)) [δ a1a2δ

a3a4 ]S χ(τ). (4.11)

Then, since

tr
(
Ja1(ρ1)Ja2(ρ2)Ja3(ρ3)Ja4(ρ4)wL0

)
C = tr

(
Ja1(ρ1)Ja2(ρ2)Ja3(ρ3)Ja4(ρ4)wL0

)
−
[
tr
(
Ja1(ρ1)Ja2(ρ2)wL0

)
tr
(
Ja3(ρ3)Ja4(ρ4)wL0

)
+tr
(
Ja1(ρ1)Ja3(ρ3)wL0

)
tr
(
Ja2(ρ2)Ja4(ρ4)wL0

)
+tr
(
Ja1(ρ1)Ja4(ρ4)wL0

)
tr
(
Ja2(ρ2)Ja3(ρ3)wL0

)]
/χ(τ), (4.12)

tr
(
Ja1(ρ1)Ja2(ρ2)Ja3(ρ3)Ja4(ρ4)wL0

)
CS

4

∏
j=1

ρ j

= tr
(
Ja1

0 Ja2
0 Ja3

0 Ja4
0 wL0

)
S−3

[
tr
(
Ja1

0 Ja2
0 wL0

)
tr
(
Ja3

0 Ja4
0 wL0

)]
S /χ(τ). (4.13)

From (3.78), this shows that ω4 is given as a “connected part” of a trace of
zero modes. In the next section we define such connected parts and show that ωn
is given in terms of them for all n ≥ 2.
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4.2 Connected parts of zero mode amplitudes

Because of the locality of the currents, A A, defined as in (3.32), and so A A
C ,

defined inductively by (3.36), is symmetric under simultaneous permutations of
the indices a j and the variables ν j. We define the symmetrization A A

S of A A by
symmetrizing on the a j alone:

A
ai1 ai2 ...ain

S (νi1 ,νi2 , . . . ,νin ,τ)

=
1
n! ∑

ρ∈Sn

A
ai

ρ(1)
ai

ρ(2)
...ai

ρ(n) (νi1 ,νi2 , . . . ,νin ,τ); (4.14)

equivalently we could symmetrize on the variables ν j alone. We define A A
CS, the

symmetrization of A A
C , similarly.

We consider the trace of zero modes of the currents,

Z A ≡Z ai1 ai2 ...ain (τ) = tr
(

J
ai1
0 J

ai2
0 . . .Jain

0 wL0
)

(2πi)n, (4.15)

and, more particularly, its symmetrization, Z A
S , defined as in (4.14). We can define

a “connected part”, ZCS, inductively for Z A
S , following (3.36),

Z A
CS = Z A

S − ∑
P∈P′

A

χ(τ)1−|P|
∏

A j∈P
Z

A j
CS , (4.16)

(where again P′
A denotes the same collection of divisions of A into disjoint subsets

but omitting the division of A into the single set consisting of itself) together with
the vanishing of the one point function Z

{i}
CS = 0, and with the two-point function

given by

Z
{i, j}

CS = Z
{i, j}

S = tr
(

Jai
0 J

a j
0 wL0

)
(2πi)2. (4.17)

For A = {i1, i2, . . . , i2m}, define

PA =
km(2πi)2

2mm! ∑
ρ∈S2m

m

∏
j=1

δ
ai

ρ(2 j−1)
ai

ρ(2 j) ∆2(νiρ(2 j−1) −νiρ(2 j)), (4.18)

and define PA = 0 if A has an odd number of elements. Then

A
{i, j}

CS = Z
{i, j}

CS +P{i, j}
χ, (4.19)

and the recurrence relation (4.6) leads to

A A
S = Z A

S + ∑
B∈RA

[PBZ A∼B
S ]S, (4.20)

where RA denotes the subsets of A, excluding the empty set but including A itself.
Now, symmetrizing (3.36),

A A
S = A A

CS + ∑
P∈P′

A

χ
1−|P|

[
∏

A j∈P
A

A j
CS

]
S

. (4.21)
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If we assume, as the inductive hypothesis, that A B
CS = Z B

CS, for 2 < |B|< |A|, and

that (4.19) holds when |B|= 2, we have, on substituting for A
A j

CS and symmetriz-
ing, that

A A
S = A A

CS + ∑
P∈P′

A

χ
1−|P|

[
∏

A j∈P
Z

A j
CS

]
S

+ ∑
B∈RA

[
PB

∑
R∈PA∼B

χ
1−|R|

∏
D j∈R

Z
D j

CS

]
S

= A A
CS + ∑

P∈P′
A

χ
1−|P|

[
∏

A j∈P
Z

A j
CS

]
S

+ ∑
B∈RA

[
PBZ A∼B]

S

(4.22)

by (4.16). Then using (4.20),

Z A
S = A A

CS + ∑
P∈P′

A

χ
1−|P|

[
∏

A j∈P
Z

A j
CS

]
S

, (4.23)

so that A A
CS satisfies the recurrence relation (4.16) for Z A

CS and we can conclude
inductively that A A

CS = Z A
CS, for |A|> 2.

It follows from (3.78),

ωn(τ) = κ
a1...an
n,0 (τ) =− (2πi)n

(n−1)!χ(τ)
tr
(
Ja1

0 Ja2
0 . . .Jan

0 wL0
)

C,S , n ≥ 3, (4.24)

with ω2 given by (4.8).

4.3 Traces of zero modes and characters

In this section we will relate the symmetrized traces of the zero modes

Z
ai1 ai2 ...ain

S (τ) = tr
(

J
ai1
0 J

ai2
0 . . .Jain

0 wL0
)

S
(2πi)n, (4.25)

to the character of the representation of the affine algebra, ĝ, defined by (1.1), in
the space of states,

χ(θ ,τ) = tr
(

eiH·θ wL0
)

. (4.26)

Here H denotes the generators of a Cartan subalgebra, h, of the finite-dimensional
algebra g formed by the zero modes,

[Ja
0 ,Ja

0 ] = f ab
cJc

0. (4.27)

For convenience of exposition, we shall take g to be simple in what follows.
For fixed τ , tr

(
J

ai1
0 J

ai2
0 . . .Jain

0 wL0
)

S
is an invariant symmetric tensor for g,

The space of symmetric tensors, S (g) is isomorphic (as a vector space) to U (g),
the universal enveloping algebra of g,

ω
a1a2...an → ω

a1a2...anJ
ai1
0 J

ai2
0 . . .Jain

0 . (4.28)
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The invariant tensors S (g)g ⊂S (g) correspond to the center Z(U (g)) of U (g),
i.e. the elements of U (g) that commute with g. This is a ring generated by rank
g elements (e.g. (28), p. 337), the basic Casimir operators, or primitive invariant
tensors. These can be taken to be orthogonal,

ω
a1a2...anω

′
a1a2...am = 0, (4.29)

where ω,ω ′ are primitive invariant symmetric tensors of orders n,m, m < n.
We can use a Cartan-Weyl basis for g, using Φ to denote the set of roots of g,

[H i,H j] = 0, 1 ≤ i, j ≤ rankg;

[H i,Eα ] = α iEα , α ∈ Φ , 1 ≤ i ≤ rank g;

[Eα ,Eβ ] = ε(α,β )Eα+β , α,β ,α +β ∈ Φ ;

=
2

α2 α ·H, β =−α ∈ Φ

= 0, otherwise. (4.30)

(We omit the suffix 0 on H,Eα .) With this choice of basis, the quadratic
Casimir operator

JaJa = H2 + ∑
α>0

α2

2
(E−α Eα +Eα E−α)

= H2 +2δ ·H + ∑
α>0

α
2E−α Eα , δ =

1
2 ∑

α>0
α,

= (H +δ )2−δ
2 + ∑

α>0
α

2E−α Eα . (4.31)

The value of J2 in a representation with highest weight λ can be obtained by
evaluating this on the highest weight state |λ 〉, which has Eα |λ 〉 = 0 for α > 0.
Thus the value of J2 in this representation is

λ · (λ +2δ ) = (λ +δ )2−δ
2. (4.32)

If ξ a1a2...an is any invariant tensor for g,

Cξ = ξ
a1a2...anJa1

0 Ja2
0 . . .Jan

0 ∈ Z(U (g)), (4.33)

and we can evaluate its value in the representation with highest weight |λ 〉 by
expressing it in the Cartan-Weyl basis and moving the Eα ,α > 0, to the right.
Because [H i,Cβ ] = 0, we can write

Cξ = φξ (H)+ ∑
α>0

Fξ ,α Eα , for suitable Fξ ,α ∈U (g), (4.34)

where φξ (H) is a polynomial of degree n in the H i. Then Cξ |λ 〉 = φξ (λ )|λ 〉, so
that Cξ takes the value φξ (λ ) in the representation with highest weight λ . Given
two such invariant tensors ξ1,ξ2,
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Cξ1
Cξ2

=

(
φξ1

(H)+ ∑
α>0

Fξ1,α Eα

)(
φξ2

(H)+ ∑
β>0

Fξ2,β Eβ

)
= φξ1

(H)φξ2
(H)+ ∑

α>0
Fξ1,α φξ2

(H−α)Eα + ∑
β>0

φξ1
(H)Fξ2,β Eβ

+ ∑
α>0

Fξ1,α φξ2
(H)Eα ∑

β>0
φξ1

(H)Fξ2,β Eβ , (4.35)

so that

φξ1ξ2
(H) = φξ1

(H)φξ2
(H). (4.36)

If φξ1
= φξ2

, then Cξ1
= Cξ2

acting in each highest weight representation of g. It
follows from this that Cξ1

=Cξ2
as elements of U (g) (see, e.g., (29), p. 251). Thus

Cξ 7→ φξ defines a map Z(U (g)) → S (h), which is an algebra homomorphism
and is one-to-one.

The elements φξ ∈ S (h) obtained in this way have an invariance under the
Weyl group, W , of g as we shall now show (see (30), p. 130, or (29), p. 246). Con-
sider the action of φξ in the infinite-dimensional representation, Ṽλ , with high-
est weight λ , where λ ∈ Λg, the weight lattice of g, with α · λ ≥ 0 for α > 0,
whose states are generated by the action of Eα ,α > 0, on a state |λ 〉. The finite-
dimensional representation, Vλ , is the quotient of Ṽλ by its largest invariant sub-
space. Taking a basis of simple roots, α1,α2, . . . ,αr, r = rank g, mi = 2αi ·λ/α2

i ∈
Z and αi ·λ ≥ 0, consider Emi+1

−αi
|λ 〉. Now

αi ·HEs
−αi

|λ 〉= 1
2 α

2
i (mi−2s)Es

−αi
|λ 〉

so

EαiE
mi+1
−αi

|λ 〉=
mi

∑
s=0

(mi−2s)Emi
−αi

|λ 〉= 0

and Eα j E
mi+1
−αi

|λ 〉= 0 for i 6= j because [Eαi ,Eα j ] = 0, i 6= j. It follows that Eα Emi+1
−αi

|λ 〉=
0 for α > 0 and so Emi+1

−αi
|λ 〉 = 0 generate an invariant subspace of Ṽλ (which is

divided out in the construction of Vλ ). Then

Cξ Emi+1
−αi

|λ 〉= φξ (H)Emi+1
−αi

|λ 〉= φξ (λ −miαi−αi)E
mi+1
−αi

|λ 〉. (4.37)

But, on the other hand

Cξ Emi+1
−αi

|λ 〉= Emi+1
−αi

|Cξ λ 〉= φξ (λ )Emi+1
−αi

|λ 〉. (4.38)

Thus, for each simple root, αi,

φξ (λ ) = φξ (λ −miαi−αi). (4.39)

If σi denotes the element of the Wg corresponding to reflection in the hyperplane
orthogonal to αi,

σi(λ ) = λ −miαi, and σi(δ ) = δ −αi,



Current Algebra on the Torus 31

because 2δ ·αi/α2
i = 1 for each simple root αi. Thus (4.39) can be rewritten

φξ (λ ) = φξ (σi(λ +δ )−δ ), (4.40)

and, if we define

φ̃ξ (λ ) = φξ (λ −δ ) = φξ (σi(λ )−δ ) = φ̃(σi(λ )). (4.41)

Because the reflections in the simple roots, σi, generate the Weyl group Wg, φ̃ξ (λ )=
φξ (λ −δ ) defines a function invariant under the whole Weyl group. Thus Cξ 7→ φ̃ξ

defines a homomorphism of Z(U (g))→S (h)W , the polynomials in H invariant
under the Weyl group. In fact, this map is an isomorphism, called the Harish-
Chandra isomorphism. That Cξ 7→ φ̃ξ is onto follows from the fact that S (h)W is
spanned by φξ for ξ a1a2...an = tr(ta1ta2 . . . tan), where the ta are the representations
of Ja

0 in the finite-dimensional representation Vλ ,λ ∈Λg (see, e.g., (29), p 253).
Now, writing

tr
(

eiH·θ wL0
)

= χ(θ ,τ) = ∑
λ∈Λ

+
g

bλ (w)χ
λ (θ), (4.42)

where Λ+
g = {λ ∈Λg : α ·λ ≥ 0 for α > 0},

tr
(
Cξ wL0

)
= ∑

λ∈Λ
+
g

bλ (w)φ̃(λ +δ )dimVλ , (4.43)

and the character for the finite-dimensional representation Vλ of g, χλ (θ) is given
by the Weyl character formula,

χ
λ (θ) =

1
∆g(θ) ∑

σ∈Wg

ε(σ)eiσ(δ+λ )·θ , (4.44)

with ε(σ) = ±1 being the determinant of σ , and the Weyl denominator being
given by

∆g(θ) = ∏
α>0

(
e

i
2 α·θ − e−

i
2 α·θ

)
, (4.45)

where the product is over the positive roots of g. (See (30), p. 139.) The dimension
dimVλ = χλ (0), but to evaluate this from (4.44), we need to take a limit on the
right-hand side. In fact ∆g(θ) = O(θ n+

), as θ → 0, where n+ is the number of
positive roots of g. Now

∏
α>0

α ·∂θ ∑
σ∈Wg

ε(σ)eiσ(δ+λ )·θ = ∏
α>0

∑
σ∈Wg

iε(σ)eiσ(δ+λ )·θ
σ(δ +λ ) ·α

= ∏
α>0

∑
σ∈Wg

iε(σ)(δ +λ ) ·σ−1(α),

when θ = 0. (4.46)
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As α runs over the positive roots of g, σ(α) will range over a set obtained
from the positive roots by reversing some of their signs. The product of these sign
changes equals ε(σ) = ε(σ−1). Hence the sign changes cancel the effect of ε(σ)
in (4.46) and we have

∏
α>0

α ·∂θ ∑
σ∈Wg

ε(σ)eiσ(δ+λ )·θ

∣∣∣∣∣
θ=0

= in
+ |Wg| ∏

α>0
(δ +λ ) ·α. (4.47)

Since χ0(θ) = 1,

∆g(θ) = ∑
σ∈Wg

ε(σ)eiσ(δ )·θ , (4.48)

and, hence,

∏
α>0

α ·∂θ ∆g(θ)

∣∣∣∣∣
θ=0

= in
+ |Wg| ∏

α>0
δ ·α, (4.49)

and

dimVλ = χ
λ (0) = ∏

α>0

(δ +λ ) ·α
δ ·α

. (4.50)

Applying

(β ·∂θ )n
∏
α>0

α ·∂θ (4.51)

to the equation

χ
λ (θ)∆g(θ) = ∑

σ∈Wg

ε(σ)eiσ(δ+λ )·θ , (4.52)

we obtain

(β ·∂θ )n

(
∏
α>0

α ·∂θ

)
χ

λ (θ)∆g(θ)

∣∣∣∣∣
θ=0

= in
++n

∏
α>0

(δ +λ ) ·α ∑
σ∈Wg

(σ(δ +λ ) ·β )n

= in
++n

∏
α>0

δ ·α ∑
σ∈Wg

(σ(δ +λ ) ·β )n dimVλ ,

(4.53)

and so

(β · pθ )n

(
∏
α>0

α · pθ

α ·δ

)
χ(θ ,τ)∆g(θ)

∣∣∣∣∣
θ=0

= ∑
λ

bλ (w) ∑
σ∈Wg

(σ(δ +λ ) ·β )n dimVλ , (4.54)

where pθ =−i∂θ .
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If

φ̃(λ ) = ∑
σ ′∈Wg

(
β ·σ ′(λ )

)n = ∑
σ ′∈Wg

(
σ
′(β ) ·λ

)n
, (4.55)

φ̃(pθ )

(
∏
α>0

α · pθ

α ·δ

)
χ(θ ,τ)∆g(θ)

∣∣∣∣∣
θ=0

=∑
λ

bλ (w) ∑
σ ,σ ′∈Wg

(
σ(δ +λ ) ·σ ′(β )

)n dimVλ

= |Wg|∑
λ

bλ (w)φ̃(δ +λ )dimVλ .

(4.56)

The functions (4.55) span the polynomial functions φ̃(λ ) invariant under the
Weyl group and so (4.56) holds for any such function. From (4.43), it follows that

tr
(
Cξ wL0

)
=

1
|Wg|

φ̃ξ (pθ )

(
∏
α>0

α · pθ

α ·δ

)
χ(θ ,τ)∆g(θ)

∣∣∣∣∣
θ=0

. (4.57)

The symmetrized products of the primitive symmetric invariant tensors form
a basis for all symmetric invariant tensors. Suppose ω

a1a2...an
j ,1≤ j ≤ N forms an

orthonormal basis for the symmetric invariant tensors of order n, so that

ω
a1a2...an
j ω

a1a2...an
k = δ jk. (4.58)

Then we can write

tr
(

J
ai1
0 J

ai2
0 . . .Jain

0 wL0
)

S
=

N

∑
j=1

f j(w)ωa1a2...an
j , (4.59)

where

f j(w) = tr
(
Cω j w

L0
)

(4.60)

and

tr
(

J
ai1
0 J

ai2
0 . . .Jain

0 wL0
)

S

=
1

|Wg|

N

∑
j=1

ω
a1a2...an
j φ̃ω j(pθ )

(
∏
α>0

α · pθ

α ·δ

)
χ(θ ,τ)∆g(θ)

∣∣∣∣∣
θ=0

=
1

|Wg|

N

∑
j=1

ω
a1a2...an
j ∑

σ∈Wg

ε(σ) φ̃ω j(pθ +σ(δ ))

×

(
∏
α>0

α · (pθ +σ(δ ))
α ·δ

)
χ(θ ,τ)

∣∣∣∣∣
θ=0

=
1

|Wg|

N

∑
j=1

ω
a1a2...an
j ∑

σ∈Wg

φω j(σ(pθ ))

(
∏
α>0

α · (δ +σ(pθ ))
α ·δ

)
χ(θ ,τ)

∣∣∣∣∣
θ=0

.

(4.61)



34 L. Dolan, P. Goddard

5 Summary and Conclusions

In this paper, we have constructed a general formula for the loop amplitude

tr
(
Ja1(ρ1)Ja2(ρ2) . . .Jan(ρn)wL0

)
, (5.1)

where the currents Ja(ρ) satisfy the operator product expansion

Ja(z1)Jb(z2)∼
κab

(z1− z2)2 +
f ab

cJc(z2)
z1− z2

, (5.2)

which is equivalent to the affine algebra ĝ, defined by (1.1). This formula extends
the Frenkel-Zhu construction for tree amplitudes (1), described in Sect. 2.2, and
generalizes the results obtained when the currents are given as bilinear expressions
in fermionic fields, which are reviewed in 3.1.

The general formula is described graphically by summing over all graphs with
n vertices where the vertices carry the labels a1,a2, . . . ,an and each vertex is con-
nected by directed lines to other vertices, one of the lines at each vertex pointing
towards it and one away from it. Each graph consists of a number, r, of directed
“loops” or cycles, ξ = (i1, i2 . . . i`) with which we associate an expression fξ . The
expression associated with the whole graph consists of a factor of 1/2πiρ j for
each current Ja j(ρ j) and − fξi ,1 ≤ i ≤ r, for each cycle,[

n

∏
j=1

1
2πiρ j

]
∑

diagrams

(−1)r
r

∏
i=1

fξi . (5.3)

For ξ = (i1, i2 . . . i`),

fξ =
`

∑
m=0

κ
ai1 ai2 ...ai`
`,m H`,m(νi1i2 , . . . ,νi`−1i` ,νi`i1 ,τ). (5.4)

The functions H`,m are defined in terms of the Weierstrass σ function by

ν`

σ(ν ,τ)`
`

∏
j=1

σ(µ j +ν ,τ)
σ(µ j,τ)

=
∞

∑
m=0

H`,m(µ1,µ2, . . . ,µ`,τ)νm, (5.5)

and the invariant tensors κ`,m are defined inductively by the equations

κ
a1a2...a`
`,m (τ)−κ

a2a1...a`
`,m (τ) = f a1a2

bκ
ba3...a`
`−1,m−1(τ), (5.6)

κ
a1a2...a`
`,m (τ) = κ

a2...a`a1
`,m (τ), (5.7)

together with the requirement that κ`,m be orthogonal to all symmetric tensors for
m > 0 and ` > 2, and the initial condition that κ2,2 = κ,κ2,1 = 0 and κ`,0(τ) =
ω`(τ), where the symmetric invariant tensor,

ω
a1a2...a`
` (τ) =− (2πi)`

(`−1)!χ(τ)
tr
(
Ja1

0 Ja2
0 . . .Ja`

0 wL0
)

C,S , `≥ 3; (5.8)
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ω
ab
2 =

4π2

χ(τ)
tr
(

Ja
0 Jb

0 wL0
)
−2δ

abkη(τ). (5.9)

A proof that κ`,m exists and is defined uniquely by (5.6) and (5.7) is given in
Sect. 2.3 and an algorithmic method for constructing them inductively using Young
tableaux is given in Appendix A.

The results described so far in this section apply to the affine algebra, ĝ, asso-
ciated with any finite-dimensional Lie algebra, g. In Sect. 4.3 we gave a method
for calculating the traces of zero modes, necessary to determine the symmetric
tensors ω , in terms of the character

χ(θ ,τ) = tr
(

eiH·θ wL0
)

(5.10)

of the representation provided by the space of states of the theory. The method
would apply to any compact g but we took it to be simple for ease of exposition.

The “connected” symmetrized trace (5.8) is defined in Sect. 4.2 in terms of
the “full” symmetrized traces, which themselves can be expanded in terms of an
orthonormal basis of symmetric invariant tensors of order `,

tr
(

J
ai1
0 J

ai2
0 . . .J

ai`
0 wL0

)
S
=

N

∑
j=1

f j(w)ωa1a2...a`
j , (5.11)

where N is the number of independent symmetric invariant tensors of order `,
f j(w) = tr

(
Cω j w

L0
)

and the Casimir operator Cω j = ω
a1a2...a`
j Ja1

0 Ja2
0 . . .Ja`

0 . In
Sect. 4.3, we reviewed how a normal ordering of the Ja

0 in Cω j , by writing Cω j =
φω j(H)+N j, where H denotes the elements of a Cartan subalgebra and N j annihi-
lates highest weight states, so that Cω j 7→ φω j(H) defines the Harish-Chandra iso-
morphism of the center of the enveloping algebra of g (that is the ring of Casimir
operators) onto the polynomials in H invariant under the action of the Weyl group,
Wg of g. This leads to the expression

1
|Wg|

N

∑
j=1

ω
a1a2...an
j ∑

σ∈Wg

φω j(σ(pθ ))

(
∏
α>0

α · (δ +σ(pθ ))
α ·δ

)
χ(θ ,τ)

∣∣∣∣∣
θ=0

(5.12)

for the symmetrized trace (5.11), where pθ = −i∂θ , α denotes a root of g and
δ denotes half the sum of positive roots. With this we have assembled all the
elements of an explicit expression for the loop amplitude (5.1). In Appendix C,
this is compared with expressions given previously (3) for n = 2,3,4.
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A Explicit Construction of the Tensor κn in Terms of κn−1

As a preparation for giving an explicit construction of the tensor κn in terms of κn−1, we review
some salient features of the representation theory of Sn (see e.g. (31), p. 44).
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The number of inequivalent irreducible representations of Sn, the group of permutations of
n objects, is p(n), the number of partitions of n. Each partition, p = (p1, . . . , pm), with pi ≥ p j , if
i ≤ j and ∑

m
i=1 pi = n, determines a Young diagram, consisting of n boxes arranged into m rows

and p1 columns, with pi boxes in the ith row and the number of boxes in the jth column equal
to the number of pk ≥ j. We can identify the partition p with the corresponding Young diagram.
The Young diagrams label the inequivalent irreducible representations.

Given a Young diagram p, a Young tableau, λ , is defined by an assignment of the integers
1, . . . ,n to the n boxes of p. This gives n! Young tableaux associated with a given Young diagram.
A standard Young tableau is one for which the numbers assigned to the boxes decrease along
each row (from left to right) and down each column. The number of standard Young tableau
associated with the Young diagram p,

dp =
n!

`1! . . . `m! ∏
i< j

(`i− ` j), where ` j = p j +m− j, (A.1)

and this is also the dimension of the irreducible representation associated with p. The regular
representation of Sn, V , which consists of linear combinations ∑g∈Sn xgg, of elements of Sn,
contains dp representations of the type labeled by p, so that |Sn|= ∑p d2

p, which we can regard
as being labeled by the standard Young tableaux associated with p. We label these λ

p
i ,1≤ i≤ dp.

Given a Young tableau, λ , we define Aλ of Sn to be the subgroup of Sn consisting those
permutations which map each row of λ into itself and define Bλ of Sn to be the the subgroup
of Sn consisting those permutations which map each column of λ into itself. Let

aλ = ∑
ρ∈Aλ

ρ, bλ = ∑
ρ∈Bλ

ε(ρ)ρ, (A.2)

where ε(ρ) denotes the sign of the permutation ρ . Then

ρaλ = aλ ρ = aλ , ρ ∈ Aλ ; ρbλ = bλ ρ = ε(ρ)bλ , ρ ∈Bλ .

Define the Young symmetrizer

cλ = aλ bλ . (A.3)

Then

c2
λ

= Npcλ , where Np =
n!
dλ

, (A.4)

and

cλ cµ = 0, (A.5)

if λ ,µ have different shapes, i.e. are associated with different Young diagrams (partitions).
If the distinct Young tableaux λ ,µ are associated with the same Young diagram, p, we can

find a permutation σλ µ ∈Sn, which takes µ into λ ; then

aλ = σλ µ aµ σµλ , bλ = σλ µ bµ σµλ , cλ = σλ µ cµ σµλ , σµλ = σ
−1
λ µ

. (A.6)

Further (see (32), p. 393, or (33), p. 75), either there exists a pair ( j,k) contained in a single
column of λ and a single column of µ , in which case, if t ∈Sn is the transposition interchanging
j and k, t ∈Bλ ∩Aµ , t2 = 1, so that

bλ aµ = bλ t2aµ =−bλ aµ , implying cλ cµ = 0, (A.7)

or the elements of each given column of λ are in different rows in µ , in which case

σλ µ = βλ µ αλ µ , for some αλ µ ∈ Aµ ,βλ µ ∈Bλ , (A.8)
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so that

bλ aµ = ελ µ bλ βλ µ αλ µ aµ = ελ µ bλ σλ µ aµ , where ελ µ = ε(βλ µ ), (A.9)

implying

cλ cµ = Npελ µ σλ µ cµ = Npελ µ cλ σλ µ .

If the normalized Young tableau ĉλ = cλ /Np, and âλ = aλ /
√

N p, b̂λ = bλ /
√

N p, and λ ,µ have
the same shape,

b̂λ âµ = ελ µ b̂λ σλ µ âµ , ĉλ ĉµ = ελ µ ĉλ σλ µ = ελ µ σλ µ ĉµ , (A.10)

where ελλ = 1, ελ µ = ε(βλ µ ) if the elements of each given column of λ are in different rows in
µ , and ελ µ = 0 otherwise.

Writing, λi ≡ λ
p
i ,1≤ i≤ dp for the dp standard Young tableaux of type p, in lexicographical

order, that is if i < j and we compare the entries of integers in the boxes of λi and λ j reading
along each row from left to right starting with the first row and proceeding to the second, and so
on, then for the first discrepancy the integer in the relevant box in λ j is greater than the one in
the corresponding box in λi; in this case we write λi < λ j if i < j. Then, writing ai = aλi ,bi =
bλi ,σi j = σλiλ j , bia j = 0 if i > j,

b̂iâ j = εi j b̂iσi j â j, (A.11)

where εi j is defined as in (A.10), for i ≤ j.
For each Young tableau λ of type p,

Vλ = V cλ , (A.12)

defines an irreducible representation subspace of the regular representation V of type p, dimen-
sion dp. The spaces Vλi , 1 ≤ i ≤ dp, provide dp irreducible representations of type p in V . In
fact,

V ∼=
⊕

p

dp⊕
i=1

V
λ

p
i
. (A.13)

Corresponding to this decomposition into irreducible components, a basis for V is provided by

{σ
λ

p
i λ

p
j
ĉ

λ
p
j

= â
λ

p
i

σ
λ

p
i λ

p
j
b̂

λ
p
j

: 1 ≤ i, j ≤ dp; p ∈ P(n)}, (A.14)

where P(n) denotes the set of partitions of n. To establish that this is a basis, it is enough to show
that the states

âiσi j b̂ j = σi j ĉ j, 1 ≤ i, j ≤ dp,

using the notation of (A.11), are linearly independent. If

∑
1≤i, j≤dp

xi jσi j ĉ j = 0, then ∑
1≤i, j≤dp

xi j ĉ`σi j ĉ j ĉk = 0,

implying

∑
`≤i, j≤k

xi j ĉ`σi j ĉ j ĉk = 0. (A.15)

Suppose some xi j 6= 0; choose ` so that is the largest value of i for which this is true and then k
so that it is the smallest value of j for which x` j 6= 0. Then all the terms on the left hand side of
(A.15) are zero except for one leaving

x`k ĉ`σ`k ĉk ĉk = x`k ĉ`σ`k = 0,
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which implies x`,k = 0, a contradiction. Thus, we conclude that xi j = 0 for all i, j and so that the
states (A.14) form a basis.

Now we seek to determine xi j,1 ≤ i < j < dp, so that

Pp = ∑
1≤i≤dp

ĉi + ∑
1≤i< j≤dp

xi jσi j ĉ j (A.16)

is the projection onto the spaces corresponding to the standard Young tableaux of shape p,

Vp =
dp⊕

i=1

V
λ

p
i
. (A.17)

(See (33), p. 76.) A necessary and sufficient condition for this is Ppσi j ĉ j = σi j ĉ j for 1≤ i, j≤ dp.
If this holds we will have ∑p Pp = 1, because Pp′σi j ĉ j = 0 if p′ is another shape of Young
tableaux:

Ppσk`ĉ` = ∑
1≤i≤dp

ĉiĉkσk` + ∑
1≤i< j≤dp

xi jσi j ĉ j ĉkσk`

= ĉ2
kσk` + ∑

1≤i<k
ĉiĉkσk` + ∑

1≤i<k
xikσik ĉ2

kσk` + ∑
1≤i< j<k

xi jσi j ĉ j ĉkσk`

= σk`ĉ` + ∑
1≤i<k

εikσi`ĉ2
` + ∑

1≤i<k
xikσi`ĉ` + ∑

1≤i< j<k
xi jε jkσi`ĉ2

`

= σk`ĉ` + ∑
1≤i<k

(
εik + xik + ∑

i< j<k
xi jε jk

)
σi`ĉ`. (A.18)

Because the σi`ĉ` are linearly independent, the condition that Ppσk`ĉ` = σk`ĉ` is

xik =−εik + ∑
i< j<k

xi jε jk, for 1 ≤ i < k. (A.19)

We can solve this equation iteratively for increasing k− i, starting with k− i = 1:

xk−1,k =−εk−1,k;
xk−2,k =−εk−2,k + εk−2,k−1εk−1,k;

. . . . . .

xik =−εik + ∑
i< j<k

εi jε jk − ∑
i< j<`<k

εi jε j`ε`k + . . .+(−1)k−i
εi,i+1εi+1,i+2 . . .εk−1,k,

(A.20)

for i < k. Then

Pp =
dp

n! ∑
1≤ j≤dp

ξ jc j, where ξ j = 1+ ∑
1≤i< j

xi jσi j (A.21)

and

1 =
1
n! ∑

p
dp ∑

1≤i≤dp

ξ
λ

p
i

c
λ

p
i
. (A.22)

In fact ξ j = 1 for all j when n ≤ 4.
Every Bλ 6= 1 unless λ corresponds to the Young diagram p1 with only one row; this

corresponds to the identity representation and has Aλ = Sn. So

1 =
1
n! ∑

ρ∈Sn

ρ +
1
n! ∑

p6=p1

dp ∑
1≤i≤dp

ξ
λ

p
i

c
λ

p
i
. (A.23)
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So, for given κn−1 ∈Kn−1, if κn is the solution to (2.25) and (2.26) orthogonal to all symmetric
invariant tensors,

κn =
1
n! ∑

p6=p1

dp ∑
1≤i≤dp

ξ
λ

p
i

c
λ

p
i

κn. (A.24)

For each Young tableau λ not corresponding to the identity representation, choose a trans-
position tλ ∈Bλ . Then cλ tλ =−cλ so that

cλ κn = 1
2 cλ (1− tλ )κn = 1

2 cλ φ(tλ ,κn−1) (A.25)

and

κn =
1

2n! ∑
p6=p1

dp ∑
1≤i≤dp

ξ
λ

p
i

c
λ

p
i

φ(t
λ

p
i
,κn−1). (A.26)

We can express each of the transpositions tλ as a product of the generating transpositions σi,
defined as in (2.33); if tλ is the transposition interchanging j and k, with j < k,

tλ = σk−1 . . .σ j+1σ jσ j+1 . . .σk−1.

We can then evaluate φ(tλ ,κn−1) for λ = λ
p
i , using (2.43), to give an explicit expression for κn

in terms of κn−1.

B Properties of Hn

In this Appendix we establish some properties of the generating function Hn, defined by (3.71).
We noted that

1
νn Hn(ν12, . . . ,νn1,τ;ν) =

1
σ(ν ,τ)n

n

∏
j=1

σ(µ j +ν ,τ)
σ(µ j,τ)

(B.1)

is an elliptic function of ν and ν j , 1≤ j ≤ n. Viewed as function of ν , it has a pole of order n at
the origin but it is otherwise regular,

1
νn Hn =

1
νn +

1
νn−1 Hn,1 + · · ·+ 1

ν2 Hn,n−2 +
1
ν

Hn,n−1 +Hn,n

+O(ν) as ν → 0. (B.2)

Writing the Weierstrass elliptic function

P(ν ,τ) = ν
−2 +

∞

∑
m=1

c2m(τ)ν2m, (B.3)

we note that its derivatives

P(n)(ν ,τ) =
(−1)n(n+1)!

νn+2 +n!cn(τ)+O(ν), (B.4)

as ν → 0, where c` = 0 if ` is odd. So

1
νn Hn−

(−1)n

(n−1)!
P(n−2)(ν)+

(−1)n

(n−2)!
P(n−3)(ν)Hn,1 + · · ·−P(ν)Hn,n−2 (B.5)

is an elliptic function of ν whose only potential singularity is a simple pole at the origin. This
implies that it is constant as a function of ν (see (26), Prop. 4.11, p. 48) and the residue of the
pole must vanish:

Hn,n−1(ν12, . . . ,νn1,τ) = 0, for n ≥ 2. (B.6)
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For n = 3, this gives [
3

∑
r=1

ζ (µr)

]2

=
3

∑
r=1

P(µr), if
3

∑
r=1

µr = 0; (B.7)

and, for n = 4, [
4

∑
r=1

ζ (µr)

]3

= 3

[
4

∑
r=1

ζ (µr)

][
4

∑
r=1

P(µr)

]
+

[
4

∑
r=1

P ′(µr)

]
,

if
4

∑
r=1

µr = 0; (B.8)

(see (27), p. 446 and 459, respectively).
We can equate (B.5) to its value at ν = 0, giving

1
νn Hn =

(−1)n

(n−1)!
P(n−2)(ν)− (−1)n

(n−2)!
P(n−3)(ν)Hn,1

+ · · ·+P(ν)Hn,n−2 +Hn,n−
[ 1

2 n]−1

∑
`=1

2`c2`Hn,n−2`−2. (B.9)

By direct calculation for n = 2, we have that

ν
−2H2(ν12,ν21,τ;ν) =

σ(ν +ν12)σ(ν +ν21)
σ(ν)2σ(ν12)σ(ν21)

= P(ν)−P(ν12), (B.10)

so that

H2,0(ν12,τ) = 1; H2,2(ν12,τ) =−P(ν12,τ); (B.11)

H2,2m(ν12,τ) = c2m−2(τ), m ≥ 2. (B.12)

In particular, from the expression given for H2,4 given by (3.52), we can deduce the differential
equation for P ,

P ′′−6P2 + 1
2 g2(τ) = 0,

where

g2(τ) = 2
3 π

4 (
θ2(0,τ)8 +θ3(0,τ)8 +θ4(0,τ)8)= 20c2(τ).

Consider the symmetrizations of Hn,m and Hn,

HS
n,m(ν12, . . . ,νn1,τ) =

1
n! ∑

ρ∈Sn

Hn,m(νρ(1)ρ(2), . . . ,νρ(n)ρ(1),τ), (B.13)

HS
n (ν12, . . . ,νn1,τ;ν) =

1
n! ∑

ρ∈Sn

Hn(νρ(1)ρ(2), . . . ,νρ(n)ρ(1),τ;ν). (B.14)

Since Hn(ν12, . . . ,νn1,τ;ν) = Hn(−ν1n, . . . ,−ν21,τ;ν), HS
n is an even function of ν and so

HS
n,m(ν12, . . . ,νn1,τ) = 0, m odd. (B.15)

For n > 2,

Res
ν12=0

HS
n,m(ν12, . . . ,νn1,τ) = 0; Res

ν12=0
HS

n (ν12, . . . ,νn1,τ;ν) = 0. (B.16)
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Because ν−nHS
n,m(ν12, . . . ,νn1,τ) and ν−nHS

n (ν12, . . . ,νn1,τ;ν) are elliptic as functions of νi j ,
but have no poles in these variables, it follows that they are independent of them, i.e.

HS
n,m(ν12, . . . ,νn1,τ) = HS

n,m(τ), independent of νi j; (B.17)

HS
n (ν12, . . . ,νn1,τ;ν) = HS

n (τ;ν) =
∞

∑
m=0

HS
n,m(τ)νm, n > 2. (B.18)

For n = 2, we have that

HS
2 (ν12,ν21,τ;ν) = H2(ν12,ν21,τ;ν) = ν

2[P(ν)−P(ν12)]. (B.19)

So,

HS
2,0(ν12,τ) = 1; HS

2,2(ν12,τ) =−P(ν12,τ); (B.20)

HS
2,2m(ν12,τ) = c2m−2(τ), m ≥ 2. (B.21)

By direct calculation for n = 3, we have that

HS
3 (ν12,ν23,ν31,τ;ν)

=
ν3σ(ν +ν12)σ(ν +ν23)σ(ν +ν31)

2σ(ν)3σ(ν12)σ(ν23)σ(ν31)
+

ν3σ(ν +ν21)σ(ν +ν13)σ(ν +ν32)
2σ(ν)3σ(ν21)σ(ν13)σ(ν32)

=− 1
2 ν

3P ′(ν) = 1
2 ν

3
ζ
′′(ν). (B.22)

We also have, by direct calculation, that

HS
n (τ;ν) =

(−1)n

(n−1)!
ν

nP(n−2)(ν) =
(−1)n+1

(n−1)!
ν

n
ζ

(n−3)(ν)

holds for 3 ≤ n ≤ 6. (B.23)

and conjecture that it holds for all n ≥ 3. When (B.23) holds, we have that

HS
n,0(τ) = 1; HS

n,2m(τ) = 0, 1 ≤ m < 1
2 n; (B.24)

HS
n,2m(τ) =

(−1)n(2m−2)!
(n−1)!(2m−n)!

c2m−2(τ), m ≥ 1
2 n. (B.25)

C Explicit Formulae for Two-, Three- and Four-Point Loops

In this Appendix we show how the formulae we have given previously (3) for two-, three- and
four-point current algebra loops relate to the general result (5.3). For two- and three-point loops
there is no distinction between the connected part and the whole loop amplitude.
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C.1 Two-point current algebra loop

tr
(

Ja(ρ1)Jb(ρ2)wL0
)

=− χ(τ)
4π2ρ1ρ2

δ
abkχ(τ)

[(
χ

12
NS
)2−4π

2 f (τ)
]

=
χ(τ)

4π2ρ1ρ2

(
κ

ab
2 H2,2 +κ

ab
2,0

)
, (C.1)

where

H2,2 =−P12 =−
(
χ

12
NS
)2− π2

3
[
θ

4
2 (0,τ)−θ

4
4 (0,τ)

]
, (C.2)

κ
ab
2 = kδ

ab, for κ
ab = kδ

ab, (C.3)

κ
ab
2,0 =

4π2

χ(τ)
tr(Ja

0 Jb
0 wL0) + kδ

ab 1
3

θ ′′′1 (0,τ)
θ ′1(0,τ)

= 4π
2kδ

ab [ f (τ)+ 1
12 (θ

4
2 (0,τ)−θ

4
4 (0,τ)

]
(C.4)

and

f (τ) =
χ(2)(τ)
kχ(τ)

+
1

4π2
θ ′′3 (0,τ)
θ3(0,τ)

, tr(Ja
0 Jb

0 wL0) = δ
ab

χ
(2)(τ), (C.5)

χ
i j
NS = χNS(νi−ν j,τ), χ(τ) = tr

(
wL0
)
. (C.6)

C.2 Three-point current algebra loop

tr
(

Ja(ρ1)Jb(ρ2)Jc(ρ3)wL0
)

=− iχ(τ)
8π3ρ1ρ2ρ3

[
κ

abc
3 H3,3 +κ

abc
3,1 H3,1 +κ

abc
3,0

]
S

=
ik f abcχ(τ)
8π3ρ1ρ2ρ3

[
χ

21
NSχ

32
NSχ

13
NS−4π

2(ζ 21 +ζ
32 +ζ

13) f (τ)
]

+
dabcχ(3)(τ)

2ρ1ρ2ρ3
, (C.7)

where ζ i j = ζ (ν j −νi,τ) and ΦS denotes the symmetrization

Φ
ai1 ai2 ...ain
S (νi1 ,νi2 , . . . ,νin ,τ) =

1
n ∑

ρ∈Sn

A
ai

ρ(1)
ai

ρ(2)
...ai

ρ(n)

×(νiρ(1) ,νiρ(2) , . . . ,νiρ(n) ,τ); (C.8)
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and

H3,3 =
1
6
[
(ζ 21 +ζ

32 +ζ
13)2−3(ζ 21 +ζ

32 +ζ
13)(P21 +P32 +P13)

−(P ′21 +P ′32 +P ′13)
]
,

=
1
6
[
−2(ζ 21 +ζ

32 +ζ
13)(P21 +P32 +P13)

−(P ′21 +P ′32 +P ′13)
]
, sinceH3,2 = 0

=−χ
21
NSχ

32
NSχ

13
NS −

π2

3
(θ 4

2 (0,τ)−θ
4
4 (0,τ))(ζ 21 +ζ

32 +ζ
13), (C.9)

H3,1 = ζ
21 +ζ

32 +ζ
13, (C.10)

κ
abc
3 = 1

2 k f abc, (C.11)

κ
abc
3,1 = 2π

2k f abc [ f (τ)+ 1
12

(
θ

4
2 (0,τ)−θ

4
4 (0,τ)

)]
, (C.12)

κ
abc
3,0 = 2π

3idabc χ(3)(τ)
χ(τ)

=
4π3i
χ(τ)

tr
(

Ja
0 Jb

0 Jc
0wL0

)
S
, (C.13)

tr(Ja
0 Jb

0 Jc
0wL0) = 1

2 f abc
χ

(2)(τ)+ 1
2 dabc

χ
(3)(τ), (C.14)

and we also use κabc
3,m −κbac

3,m = f ab
eκec

2,m−1, κabc
3,m = κcab

3,m , where κn,n = κn.

C.3 Four-point current algebra loop

In (3), we gave the general form of the four-point loop in the symmetric form

tr(Ja(ρ1)Jb(ρ2)Jc(ρ3)Jd(ρ4)wL0)ρ1ρ2ρ3ρ4

= δ
ab

δ
cd
(

k2
χ(τ) [(χ

12
NS)

2/4π
2− f (τ)][(χ

34
NS)

2/4π
2− f (τ)]−χ

(2)(τ)2/χ(τ)
)

+δ
ac

δ
bd
(

k2
χ(τ) [(χ

13
NS)

2/4π
2− f (τ)][(χ

24
NS)

2/4π
2− f (τ)]−χ

(2)(τ)2/χ(τ)
)

+δ
ad

δ
bc
(

k2
χ(τ) [(χ

14
NS)

2/4π
2− f (τ)][(χ

23
NS)

2/4π
2− f (τ)]−χ

(2)(τ)2/χ(τ)
)

+ tr(Ja
0 Jb

0 Jc
0Jd

0 wL0)S

− 1
96

(
σ

abcd +σ
adcb +σ

acdb +σ
abdc +σ

adbc +σ
acbd
)

χ(τ)θ 4
2 (0,τ)θ 4

4 (0,τ)

−
(

σ
abcd +σ

adcb
) 1

32π4 χ(τ)
{

χ
12
NSχ

23
NSχ

34
NSχ

41
NS

−π
2 f (τ)

(
P ′

24−P ′
32

P24−P32

)(
P ′

24−P ′
41

P24−P41

)
+4π

2 f (τ)P24

}
−
(

σ
acdb +σ

abdc
) 1

32π4 χ(τ)
{

χ
13
NSχ

34
NSχ

42
NSχ

21
NS

−π
2 f (τ)

(
P ′

24−P32

P24−P32

)(
P ′

21−P ′
32

P21−P32

)
+4π

2 f (τ)P32

}
−
(

σ
adbc +σ

acbd
) 1

32π4 χ(τ)
{

χ
14
NSχ

42
NSχ

23
NSχ

31
NS

−π
2 f (τ)

(
P ′

24−P ′
32

P24−P32

)(
P ′

14−P ′
31

P14−P31

)
+4π

2 f (τ)P34

}
− i

4π
χ

(3)(τ)
[
σ

abcd (
ζ

21 +ζ
32 +ζ

43 +ζ
14)+σ

adcb (
ζ

41 +ζ
34 +ζ

23 +ζ
12)

+σ
acdb (

ζ
31 +ζ

43 +ζ
24 +ζ

12)+σ
abdc (

ζ
21 +ζ

42 +ζ
34 +ζ

13)
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+ σ
adbc (

ζ
41 +ζ

24 +ζ
32 +ζ

13)+σ
acbd (

ζ
31 +ζ

23 +ζ
42 +ζ

14)] , (C.15)

where Pi j = P(ν j−νi,τ), P ′
i j = P ′(ν j−νi,τ), and σabcd = tr(tatbtctd), where ta provides a

representation of g with σab = tr(tatb) = 2κab = 2kδ ab and σabc = tr(tatbtc) = f ab
eκec +dabc;

then

σ
abcd =

k
3

(
f ab

e f cde + f da
e f bce

)
+

1
4

(
f ab

edecd + f ac
ededb + f bc

edeab
)

+ ω̄
abcd , (C.16)

where ω̄abcd is a totally symmetric tensor, independent of τ . Now, using

1
2

(
P ′

24−P32

P24−P32

)(
P ′

24−P ′
41

P24−P41

)
−2P24

=
(
ζ

13 +ζ
32 +ζ

21)(
ζ

13 +ζ
34 +ζ

41)+ (ζ 24 +ζ
41 +ζ

12)
×
(
ζ

24 +ζ
43 +ζ

32)−P13−P24

= P12 +P23 +P34 +P41− (ζ 12 +ζ
23 +ζ

34 +ζ
41)2, (C.17)

we have that

tr(Ja(ρ1)Jb(ρ2)Jc(ρ3)Jd(ρ4)wL0)C

= tr(Ja(ρ1)Jb(ρ2)Jc(ρ3)Jd(ρ4)wL0)− tr(Ja(ρ1)Jb(ρ2)wL0)tr(Jc(ρ3)Jd(ρ4)wL0)
− tr(Ja(ρ1)Jc(ρ3)wL0) tr(Jb(ρ2)Jd(ρ4)wL0)

− tr(Ja(ρ1)Jd(ρ4)wL0) tr(Jc(ρ3)Jb(ρ2)wL0)

=− χ(τ)
16π4ρ1ρ2ρ3ρ4

[
κ

abcd
4 H4,4 +κ

abcd
4,2 H4,2 +κ

abcd
4,1 H4,1 +κ

abcd
4,0

]
S

(C.18)
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with S denoting symmetrization as defined in (C.8), and

24H4,4 = (ζ 21 +ζ
32 +ζ

43 +ζ
14)4−6(ζ 21 +ζ

32 +ζ
43 +ζ

14)2(P21 +P32+P43+P14)

−4(ζ 21 +ζ
32 +ζ

43 +ζ
14)(P ′

21 +P ′
32 +P ′

43 +P ′
14)

+3(P21 +P32 +P43 +P14)2

− (P ′′
21 +P ′′

32 +P ′′
43 +P ′′

14)

=−3(ζ 21 +ζ
32 +ζ

43 +ζ
14)2(P21 +P32 +P43 +P14)

−3(ζ 21 +ζ
32 +ζ

43 +ζ
14)(P ′

21 +P ′
32 +P ′

43 +P ′
14)

+3(P21 +P32 +P43 +P14)2− (P ′′
21 +P ′′

32 +P ′′
43 +P ′′

14),
sinceH4,3 = 0,

=−π2

3
(θ 4

2 (0,τ)−θ
4
4 (0,τ))H4,2 + χ

21
NSχ

32
NSχ

43
NSχ

14
NS +

π4

3
θ

4
2 (0,τ)θ 4

4 (0,τ);

2H4,2 = (ζ 21 +ζ
32 +ζ

43 +ζ
14)2− (P21 +P32 +P43 +P14)

H4,1 = ζ
21 +ζ

32 +ζ
43 +ζ

14

κ
abcd
4 = 1

2 σ
abcd = 1

6 k
(

f ab
e f cde + f da

e f bce
)

+ κ̊
abcd
4,4

κ
abcd
4,2 = 2π

2
[

f (τ)+
1
12

(θ 4
2 (0,τ)−θ

4
4 (0,τ))

]
σ

abcd

= 2
3 π

2k
(

f ab
e f cde + f da

e f bce
)[

f (τ)+ 1
12 (θ

4
2 (0,τ)−θ

4
4 (0,τ))

]
+ κ̊

abcd
4,2

κ
abcd
4,1 = iπ3 χ(3)(τ)

χ(τ)

(
f ab

edecd + f ac
ededb + f bc

edeab
)

+ κ̊
abcd
4,1

κ
abcd
4,0 =−8π4

3

[
1

χ(τ)
tr(Ja

0 Jb
0 Jc

0Jd
0 wL0)− 1

χ(τ)2 tr(Ja
0 Jb

0 wL0) tr(Jc
0Jd

0 wL0)
]

S

=−8π4

3

[
1

χ(τ)
tr(Ja

0 Jb
0 Jc

0Jd
0 wL0)S−

χ(2)(τ)2

χ(τ)2 (δ ab
δ

cd +δ
ac

δ
bd +δ

ad
δ

bc)

]

=− 8π4

3χ(τ)
tr(Ja

0 Jb
0 Jc

0Jd
0 wL0)CS,

(C.19)

where
[
κ̊abcd

4,m H4,m

]
S

= 0, and we have also used HS
4,2 = HS

4,1 = 0 (which follows from (B.15)
and (B.24)), and

χ
12
NSχ

23
NSχ

34
NSχ

41
NS + χ

13
NSχ

34
NSχ

42
NSχ

21
NS + χ

14
NSχ

42
NSχ

23
NSχ

31
NS

=−π
4
θ2(0,τ)4

θ4(0,τ)4. (C.20)
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