Communications in Mathematical Physics (2011)
DOI 10.1007/300220-008-0542-1

Louise Dolan, Peter Goddard

Current Algebra on the Torus

Received: 2 November 2007 / Accepted: 31 January 2008
(© Springer-Verlag 2008

Abstract We derive the N-point one-loop correlation functions for the currents
of an arbitrary affine Kac-Moody algebra. The one-loop amplitudes, which are
elliptic functions defined on the torus Riemann surface, are specified by group
invariant tensors and certain constant tau-dependent functions. We compute the
elliptic functions via a generating function, and explicitly construct the invariant
tensor functions recursively in terms of Young tableaux. The lowest tensors are
related to the character formula of the representation of the affine algebra. These
general current algebra loop amplitudes provide a building block for open twistor
string theory, among other applications.

1 Introduction

Current algebra conformal field theory is often an important ingredient to supply
gauge symmetry in string theory. The tree level N-point correlation functions of
the currents (1)) of an affine Kac-Moody Lie algebra (2), §,

[Jr?u‘]rﬂ = fabc‘lc

m+n

+ Km8, (1.1)

associated with a finite-dimensional algebra, g, are especially simple, and ex-
pressed as a sum over products of differences, with the group tensors given by
the level and structure constants of the affine algebra.

The current correlators on the torus have more structure, but turn out to be
computable in terms of elliptic functions, and specified by constant but tau-dependent
group invariant tensors. Recursion relations for these correlation functions (3) be-
come tedious to evaluate for large numbers of currents. In this paper we calculate
the one-loop N-point current correlation functions explicitly for an arbitrary Lie

University of North Carolina, Chapel Hill, NC 27599, USA. 1dolan@physics.unc.edu - Institute
for Advanced Study, Princeton, NJ 08540, USA



2 L. Dolan, P. Goddard

group, and describe their dependence on rather neat combinations of Weierstrass
functions and on group tensors given in terms of the character of the representa-
tion.

Loop calculations were considered for vertex operator algebras in (4 15)), for
particular constructions and levels of current algebras in (6; 7)), and for particular
Lie groups (8). Our general treatment of the affine current correlators is possible
due to the simple holomorphic operator products of the currents. Loop correlation
functions for other fields related to current algebras tend to be less completely
accessible, although widely studied (95 105 1115 1125 [135 [145 [155 [165 1175 [18).

Our interest in the current algebra torus correlator was initially motivated by its
appearance in the gluon loop amplitude (3)) for open twistor string theory (195 20).
The N-point torus current correlator should be helpful to pursue perturbation the-
ory there. The twistor string (215 (19), and efforts to formulate it as a heterotic the-
ory (22)), although mixing conformal supergravity with Yang-Mills, also provides
an enticing framework for a QCD string. Our analysis of current algebra on the
torus provides a fundamental building block that will have general applications.

The plan of this paper is as follows. In Sect. we first use the representation
of a current algebra as bilinear expressions in (Neveu-Schwarz) fermions to eval-
uate current algebra tree amplitudes. The expressions obtained involve the tensors
formed from the traces of products of the real matrices representing g and can be
described by a set of graphical rules that will be extended later in the paper to yield
loop amplitudes. Although the tensors depend on the representation chosen, this
dependence cancels out in the expressions for the tree amplitudes because these
are determined by k“*. For a compact simple algebra, we can take k* = k8’ and
we can obtain the general tree amplitude by scaling terms in the result obtained
for any given representation by appropriate powers of k.

Notwithstanding this, in Sect. [2.2] we find it useful to give a more generally
phrased version of the construction, due to Frenkel and Zhu (FZ) (1). This gener-
alizes the traces of representation matrices to invariant m'M order tensors k,, satis-
fying conditions (2.13)) and (2.16)), which determine k;, in terms of K, uniquely
up to an arbitrary symmetric invariant tensor @,,. The successive freedoms, repre-
sented by the w,, have no effect on the tree amplitudes constructed using the ;.
We isolate a “connected” part of the tree amplitude, which possesses only simple
poles and show that, like the full amplitude, this just depends on k; = K, and so
not on the @,,. In Sect. [2.3|we give a proof that, given a suitable k;,_1, there exists
a K, satisfying (2.15) and (2.16), and we give explicit formulae for the general
k3 and k4. Our proof of the existence of k, does not itself provide a convenient
algorithmic construction and we give this in Appendix [A] using Young tableaux
and the representation theory of the permutation group.

In Sect. 3.1} we begin by computing the n-point one loop amplitude using
the representation of the current algebra as bilinears in Neveu-Schwarz fermions.
The result is given by a modification of the graphical rules used in Sect. to
describe tree amplitudes. Similar rules describe two other versions of the loop:
one in which we use Neveu-Schwarz fermions but also incorporate a factor of
(— I)N”, where N}, is the fermion number operator, into the trace defining the loop;
and one where we use Ramond rather than Neveu-Schwarz fermions. These rules
involve the tensors constructed from traces of representation matices, used in the
fermionic construction of tree amplitudes. There nearly all the structure resulting
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from varying the representation, reflected in the ‘arbitrary’ symmetric tensors @y,
coming into the FZ construction, was irrelevant, but this is not so for the loops.

To approach the construction of the general one loop current algebra ampli-
tude, we isolate a connected part of the amplitude in Sect. which has only
single poles, as we did for the tree amplitudes. The residues of this connected part
for the n-point loop are specified in terms of the (n— 1)-point loop and this means
that the n point loop is determined in this way up to a symmetric invariant n"
order tensor, @, (7), depending only on the torus modulus, 7. In Sect. we first
obtain general forms for the two- and three-point loops in terms of symmetric in-
variant tensors @, (7) and @3(7) and Weierstrass & and { functions. The general
form for the n-point loop is given by an adaptation of the rules for tree amplitudes,
expressed in terms of Weierstrass ¢ functions through

oo

—n & G(“J + V7 T) m—n
vIH, =] TNy gy, (12)
050 2etw0 ~ &,

which is elliptic as a function of v and U, ... u,, provided that Z;*: 1 i; =0, and
in terms of n™ order invariant tensor functions of T, Knm(T), with n > m > 2,

defined inductively by (3.39) and (3.56) (which are similar to (2.13)) and 2.16)),
starting from invariant symmetric tensors &,0(7) = ®,(). In Appendix [B| we
discuss properties of the functions H,, and in Appendix |C| we show how the
general results of this section relate to those previously obtained in (3)) for two-,
three- and four-point loops.

The symmetric tensors @, irrelevant in the construction of tree amplitudes in
Sect. [2| provide the extra structure necessary for the construction of the one-loop
amplitudes. They are not arbitrary but can be determined in terms of traces of zero

modes of the currents, tr (Jgi' Jgiz .. .Jg[” wLO) , symmetrized over the indices a;. In

we establish recurrence relations relating the traces over symmetrized prod-
ucts of currents, in terms of which the @, (7) are initially defined, to symmetrized
traces of their zero modes, showing how this works out in detail for n = 2,3 and
4. More precisely, @,(7) are defined in terms of the connected parts of the sym-
metrized traces of currents and, in}4.2] we use the recurrence relations to determine
@, (7) in terms of the connected part of the symmetrized trace of zero modes.

Then, in Sect. [4.3] we show how the symmetrized traces of zero modes of the
currents can be determined in terms of

x(0,7)=tr (eiH'ng‘)) , (1.3)

the character of the representation of § provided by the space of states of the
theory. While the analysis up to this point has not made any assumptions about
the Lie algebra g, in this section we assume that it is compact and, for ease of
exposition, take it to be simple. The method depends on using the Harish-Chandra
isomorphism of the center of the enveloping algebra of g, that is the ring of Casimir
operators of g, onto the polynomials in H invariant under the action of the Weyl
group, W of g.
Section 5| provides a summary of our results.
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2 Current Algebra Trees
2.1 Current algebra and the Fermionic tree construction

We consider a conformal field theory containing the affine algebra, §, given by
(1.1), where m,n are integers and f“bc are the structure constants of g and x®
is a symmetric tensor invariant with respect to g. [If the generators of the algebra
satisfy the hermiticity condition JT = J¢ | f% is pure imaginary and k" is real.]
For a general introductory review see (23)).

We consider evaluating the vacuum expectation value

Do (21,22, 20) = (O (21)T 2 (22) . T (2)]0), 2.1)
where
F =Y s Jg0y=0, n>0, (OH'=J. (2
n
The currents J%(z) satisfy the operator product expansion
K.ab ab J¢
T (21)J(z2) ~ 5+ S (@) (2.3)
(z1—22) -2
and the tree amplitudes satisfy the asymptotic condition
M (21,20, 020) = O(2;7) as zj— o, (2.4)

because in this limit (0[J(z) ~ (0J¢z 2.
Because of the locality of the currents J%(z) relative to one another, the tree
amplitude (2.1 is symmetric under simultaneous permutations of the z; and a;,
Ay (1)l (2)---d
e (2 (1)52p(2)s -2 Tp() = T > (21,22, 120); (25)
where p € G,, the group of permutations on n objects
The condition (2.3)) gives all the singularities of the n-point function in terms of
(n—1)- and (n — 2)-point functions. Thus, given (2.4)), using Cauchy’s Theorem,
we can inductively calculate the n-point function for any n starting from the two-
point function,

K.ah

(O (21)J°(22)]0) = CESE

(2.6)

i.e. the n-point function is determined by the invariant symmetric tensor k. A
general prescription for doing this has been given by Frenkel and Zhu (1)), which
we shall discuss in Sect. but first we shall note the explicit calculation when
J?(z) is given as a bilinear in fermionic oscillators.

Given a representation Jj — ¢t = iM“ of g, where the M are N-dimensional
real antisymmetric matrices satisfying

(M MP) = —if® Mm¢, (2.7)
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we can represent J%(z) as a bilinear in Neveu-Schwarz fermionic fields,
o i : .
J()=Y Jiz" ' = EMi“jb’(z)b’(z), (2.8)
nez
where
V()= Y bz 73, {blbi}=8, 8, bi0)=0, r>0, 1<i,j<@9)
rGZJr%
Then J; satisfies (1.1) with
K = —1tr(M*MP) = Ltr(r°c%). (2.10)
Note
5
-2’

b (z1)b (z2) =: b'(21)b (z2) : + .11)
with the usual definition of normal ordering.

Using Wick’s theorem, we can evaluate the tree amplitude (2.I) and describe
the result as follows. The n-point function can be written as a sum over permuta-
tions
p € G, with no fixed point. Each such permutation can be written as a product
of cycles, p =&, ... &, and we associate to p a product Fp = (—1)"f¢, f, - - fe,»
where the function f is associated with the cycle & = (i1, .. .in), defined by

(e . pm)
. ! , 2.12)
§ (Zil — Z[Z)(Ziz - Zi3) ce (Zim - Zil)

The n-point tree amplitude is then constructed as the sum of these products over
the permutations p € &/, the subset of &,, with no fixed points,

"(ytraeleazman(zlvzb”'?zn): Z F;lazman(zlvzb"'7Zn)‘ (2.13)
pPESG,

2.2 The Frenkel-Zhu construction

Frenkel and Zhu have shown how the fermionic construction of the last section can
be modified to give the general construction for the tree amplitude (2.1). Again
the n-point function (2.1)) is written as a sum over permutations with no fixed
point, p = &&,...&,, written as a product of cycles, with which is associated

Fy = (=1)"fg, fe, - - fe,» Where now
a,-la,-z...aim

= =~ , (2.14)
ik (ziy, — 2i)(2iy — Zi3) - - (Zi, — Ziy)

and the m-order tensors k;, are defined inductively by the conditions

bas...
Krz;llazaj;..ﬂm _ K';,?ala}mam = falasz- ajl am, (215)
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and
a1a203...Qy __ 10203 ...0; ]
K, " =K, meL, (2.16)

The n-point tree amplitude is then constructed as in (2.13).

A graphical way of describing the Frenkel-Zhu construction (or the fermionic
construction) is to say that the n-point tree amplitude is given by summing over
all graphs with n vertices where the vertices carry the labels 1,2,...,n, and each
vertex is connected by directed lines to other vertices, one of the lines at each
vertex pointing towards it and one away from it. Then each graph consists of a
number of directed “loops” or cycles, & = (ij,i2...iy), with which we associate
the expression (2.14) and the expression associated with the whole graph is the
product of the expressions for the various cycles multiplied by a factor of —1 for
each cycle.

As is implied by comparing (2.12)) and (2.14)), a solution to the conditions
and can be constructed by setting K, > " = tr(t9119 .. .t%m) or,
more generally,

KpLazedm — tr( K92 g, (2.17)
where ¢ is any finite-dimensional representation of g, i.e.
[14,e%] = £ 1°, (2.18)

and K is any matrix commuting with all the ¢, i.e. invariant under the action of g.
K is to be chosen so that k5 = tr(Kt%t?) = k“ as in (T.I), which can be done for
any invariant tensor k® if g is compact and ¢ a faithful representation.

It is straightforward to verify that (2.13)) has the singularity structure implied
by the operator product expansion (2.3), provided that k;, satisfies (2.13) and
(2.16), and satisfies the asymptotic condition (2.4)), and thus is inductively de-
termined by Cauchy’s Theorem, given the two-point function (2.6). Thus, it does
not depend on the choice of k;, satisfying (2.15) and (2.16), apart from through
Ky = K. (In particular, although different choices of representation ¢ result in dif-
ferent tensors K, as defined through ([2.17), these differences cancel out in (2.14),
apart from dependence on k».) In fact, the stronger statement holds that the con-
nected parts, that is the sums of (2.14) over permutations of (iy,iz...iy), only
depend on the k’s through k. This is expressed in the following proposition:

Proposition 1 If g is a Lie algebra and the tensors Ky ", where 1 < a i <
dimg, are defined for m < N, and satisfy

ajaas...q apas...q a)a bas...q,
1("123 Wl_Ka’213 m leK- 1 m7 (219)
and
a1aas...q, ara3...amad 2.2
K123 m_K23 ml7 (0)

where f% ¢ are the structure constants of g, then the tensor functions



Current Algebra on the Torus 7
ayax...am 1
ﬂ’ftrele?c (21,225 2m) = m Z Fo(1).p(2).np(m)) 2.21)
PESH
1 K";p(l)“p(z)""‘p(m)
- m L& o) = 22) (3p@) —2p(3) -+ (Zpm) — 2p(1))
B ’(:1 1)4p(2)+@p (m—1)dm
e @) =)0 ~2@) - (Zpm-1) = 2n) (@ = 2p())
(2.22)

depend on the K, only through K.

Proof of the Proposition The result follows from Cauchy’s Theorem because the

functions F defined by (2.22)) satisfy

Jzitfele?é“um(zlvzz?“wzﬂl) = ﬁ(zl_z)’ as 73 — >

and

faa, bas...am (Zz z ) as
Ko7 ey Zm
-2 tree,C ’ ’

apazas...q
JZ{tree,C m<21722,...,zm) ~

and so can be calculated inductively from

Kb

,Q{ab 0,2)= ———.
lree,C( ) ) (Zl _Z2)2

2.3 The tensors K,
The conditions
bajs...a
1a24a3...an __ hayaz...ay __ paijdy 3 n
Ky " K "=

and

Ka1a2a3...an _ K.aza3..,ana1
n — n

21 — 22,

(2.23)

(2.24)

are sufficient to ensure that the amplitudes defined by €.13) with F = (—1)"f¢, f, - -
fe,» where f is given by (2.14), depend on the k;, only through k,. However, K,
does not uniquely determine k;, through (2.23) and (2.24). In this section, we shall
discuss the existence and uniqueness of solutions to these equations. Although the
arbitrariness in k;,, given K», is not relevant for tree amplitudes, we shall see inE|
that this freedom is very relevant for the construction of the one-loop amplitudes.

The conditions (2.23)) and (2:24) have some immediate consequences. First, if
K,—1 satisfies (2.23) for some k;, which also satisfies (2.24)), then &, is invariant

because

J

n
= J

fbajck.al...aj,lcajﬂ...a,, —
1 .

n
aj..aj_1bajajyy...a aj..aj_i1ajbajy...an\ __
(K‘ J JAj+L - g j—14j54j+ n)_()7
=1
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using (2.23) and then (2.24). Thus for (2.23)) and (2.24) to have a solution for a

given K, then this tensor must be invariant.
Second, if k;,'“2*3“" and ;' “>“*“" both satisfy (2.23) with the same k">~
and both satisfy the cyclic property (2.24), then the difference

ajazas...dy __ za4pazasz...dp __ 1aas...ay
@, =K Kn

is cyclically symmetric and satisfies

ajanas...a, arapas...d,
@F19293 -+ — y@2143---n

These two symmetries generate the whole of G,, so that @, must be a symmetric
tensor. Conversely, if @, is symmetric, it follows that &, = K, + ®, satisfies (2.23)

and (2.24) if K, does. So &, defines K, through (2.23) and (2:24), assuming a
solution exists, up to a symmetric tensor ®,. We establish the existence of the
solution in the following proposition:

Proposition 2 [f g is a Lie algebra, define inductively the spaces %, to consist of

the invariant n'™ order tensors K192 where 1 < a < dimg, such that

aas...a ajaz...an _ pajay Lbaz..a
Kgl 203 "—Kﬁz 143...an _fl szn—l " (2.25)
for some K,_| € Hy,_1, where f_ are the structure constants of g, and
K;lllazag...an — K-;l12113~~~an‘117 (226)

with #y = {0}. Then, for each K,_| € J,_1, there exists a &, satisfying [2.23)
and (2.20)) that is unique up to the addition of a symmetric invariant tensor @,.
The solution can be uniquely specified by requiring that it be orthogonal to all
symmetric n'"* order tensors.

Proof of the Proposition We define the action of p € &, on n™ order tensors T,
by

a1 a1 a1 n
(p,rn>a1a2...a,,:rnp (D72 p™ (n)

so that this provides a representation of &, on n'" order tensors: (p6)7, = p(07,).
For any n'" order tensor 7, write

NP, %) = T — Pt (2.27)
then we can write
1
T=— ) N, %)+ o, (2.28)
PEG),
where
1
=~ ) P, (2.29)

T peG,
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is the symmetrization of the tensor 1,. If 7, is invariant, n(p, 7,) is also invariant.
Then, if ;,, € %,

1
n!

Y n(p.x) (2.30)

PES,

is also in %, and satisfies (2.25]) for the same k;,,_| € J%;,_1; further, it is orthogonal
to any symmetric tensor. It is clear from (2.28) that, taking 7, = K, € J#, K, is
orthogonal to all symmetric tensors only if @,, defined as in (2.29), vanishes.

Thus, (2.30) is the unique solution to (2.25) and (2.26) for the given x,_1, with
this property.
We now proceed to use the expression (2.30) to show there exists a solution to

(2:25) and (2.26) for a given x,,_; € #,—;. From (2.27),
N(P1P2, Kn) = Kn = P1P2Kn =N (P1, Kn) + P17 (P2-Kn) (2.3

and, so,

=

NP1 .. P, %) = Z o Pj—1M (P ) (2.32)

We can use this to give a formula for a given k;,, in terms of k,_; € J%,_1, by
expressing each p € &, as a product of transpositions of adjacent indices and
then using (2.23)) and (2.26). However, such expressions are not unique, so we
need to address this by first working in the free group, G,,, generated by these
transpositions, defining a function ¢ : &, — .7, the space of n'" order invariant
tensors, for each k;,—1 € J#,_1, and then checking that we can impose the appro-
priate relations to obtain a definition for p € &,,. In this way, we will obtain an

t order tensor ¢ (p, K, 1), p € Gy, Ky_1 € #,_1, which will provide the desired
element ¢ (k;,_1) € J#, on averaging over p € &,,. To show this, we finally show

that ¢ (x;,—1 ) satisfies (2.23)) and (2.26).

G, is generated by transpositions {o; : 1 <i <n}, where
oii)=i+1, oili+1)=i, oj)=j, j#ii+], (2.33)
which satisfy the relations
of=1, (cioi1)’=1, (0o =1,]i—jl>1 (2.34)

Let &, be the free group on the generators {G, 1 <i<n-—1} and 20, the small-
est normal subgroup of &, containing {67, 1 <i<n—1; (6;6111)%1<i<
n—2; (6;6;)*]i—j| > 1}. Then @,,/QB,, ~ G, with 6; — 0; defining an homo-
morphism S, — S, which we shall denote by p — p. (See (24), p. 63.) Each
p € &, can be written p = G, Gi, .- Gj,, where 1 < |ij| <n—1and o '=o0.
We can define a function ¢ : &, — %, in terms of ¢(&;), 1 <i < n— 1, with

¢(6; ') = (&) and (1) =0, by

k
9(6i,...63) = Z% .Gi,_, $(6)). (2.35)
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Then

#(p1p2) = p19(p2) + ¢ (p1)- (2.36)

We now show that Ker ¢ N2, is a normal subgroup of S,.. Suppose p €
Ker ¢ N20,, so thatp =1 € &, and ¢(p) = 0. Then

0(P1ppr ") =p1p(Br ) +p18(P) +8(p1) =p1d(pr ') +6(p1) = 9(1) =0,
so that [)1;5[)1_1 € Ker ¢ N2, and this is a normal subgroup of &,.. So if we can
show that

{67, 1<i<n—1;(6:6111)%,1<i<n—2;(6:6;)%, |i— j| > 1} C Ker ¢(2.37)

we must have Ker ¢ 120, = 20, i.e. 20, C Ker (E because 27, is the smallest
normal subgroup containing these elements. Then ¢ induces a map ¢ : &, — 7,

with ¢(p) = §(p). because ¢ (pW) = ¢(p) +p¢ (W) = ¢(p) if W € W,
Next we show that holds if we define

§ (51, K1) = foGn gty i Pt ¢ g7 (2.38)

n—

for K,_1 € J,_1. We will write out the argument for 612, (6162)3,(6163)% and

the arguments for other values of i, j follow by similar arguments. First, writing
K= anh

(67, k) = $(61,x) + 1(61, k),
implying
(5(612, K)a1a2a3...ocn — fOt[OCzﬁK.ﬁOtj;...Otn +fa2alﬁK[3a3...ocn =0.

Second

¢((6163)2, K) = (]3(61,1(’) + 61(5(63, K') + 6163(5(61, K) —1-61(7361(5(63, K’)

(2.39)
implying
q}(<615-3)27K)alaza3a4~--an _ falazﬁKﬁa3a4~--an + fo2m KPoaos...on
+fa3a4yk.a2a1y...an +f0£40£3yk.061052’y...06n
= f™ azﬁfa3a4y,(ﬁ7’a5~-~an
o0 foa ePTOSan — , (2.40)
Third,
$((6162)°, k) = $(61,K) +016(82, k) + 61620 (81, k) + 6162619 (62, )

+6261(]§((~Fl , K) + qu;(éz, K')
— falO‘ZBK-ﬁa3a4man +fa1a3l31<a2ﬁa4"'a"

+fa2a3ﬁ KBonoy...on +f0!2051ﬁ K3B0g...on
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+fa3a1 5 K.ﬁozzoq.“an + foz3oc2[3 Ka1Ba4...ozn

= fo (Xzﬁfﬁasy,(yom-»-an + f® a3ﬁfa2ﬁyk‘m4'"a"
ot g phon et — (2.41)

by the Jacobi identity. This establishes (2.37). 5
Thus, for each K, € %1, we can define ¢ (p, k,—1) = ¢ (P, k,—1 ) and define
O : Ay — Hn by

1
(k1) = — Y olp ki) (242)
T peG,
We shall now show that ¢ (k) satisfies (2.25) and (2.26). From (2.36),
P(P1p2; Kn—1) = P1 (P2, K1) + O (P1, Kn1)- (2.43)

Then, for any 6 € G,,

1 1
(K1) = 0P (K1) = Y 9(p. K1) = — Y oo(p. ki)
'pGG,, ‘T peEG,
1 1
= Y. (P, K1) o Y. ¢(op,Ku1)
pGGn PGGn
+— ) ¢(0. K1)
pES,
=¢(0,K—1)- (2.44)

Taking o = oy in (2.44), we have
¢(Kn71)a|ocza3...an _ ¢(Kn71)062061063...0¢n — fa|a2ﬁKrl?_(Xl3...(Xn
so that (2.23) holds.

Ifo=010y...04-1,theno(j)=j+ 1,1 <j<n—1and 6(n) =1, ie o is
cyclic permutation of (1,2,...,n) so that

(0,Kn—1) Zo_l .0j— 19( Oj, Kn— 1)
_ i ) lfajaj+ll3K(Z].]..(Xj_lﬁaj+2...(x,l
_ i
j=1
] 0...0; B0 s...0
=) g, TR =0 (2.45)

~.
I

as Ky,_1 € JHp_1 is invariant. Thus putting 6 = 6,0, ...0,_; in (2.44) gives
o1 00...04 00 ...0,
¢(Kn71) 162 ":‘P(anl) n (] n 17

so that (2.26) holds.
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By averaging (2.44) over o € G,,, we see that
Y oo(ki-1) =0,

ceq,

so that it is orthogonal to all symmetric tensors and so the unique solution to (2.25))
and with this property. This completes the proof of Proposition

Note that Proposition implies that %, /., = J,_1, where ., C %, is the
space of symmetric invariant tensors. As particular instances, we have that if k% is
an invariant symmetric tensor, the general solution for and forn=3
is

K.é)bc — %fabe K¢ + wabcj (2.46)

where @€ is symmetric, and invariant for k3 to be invariant. In this case, the

general solution to (2.25)) and (2.26) for n =4 is
bicd — éfabefcdgk.eg + %fdae bch.eg + %fabewecd + %fbcewead
_i_%facewebd + wabcd’ (2.47)
where ®?“¢ is symmetric.
While Proposition 2] proves the existence of a solution to (2.25)) and (2.26) for
a given K, € J#,_1, it does not provide an explicit expression for such a solution
unless we have a method of specifying expressions for each element p € G, as
a product o;, 0;, ... 0;, of transpositions. In Appendix [E], we derive an explicit

expression for k;, in terms of ;1 using the representation theory of &, and Young
tableaux.

3 Current Algebra on the Torus
3.1 Fermionic loop constructions

We consider the loop amplitude

e (VI Vo Vi, T) =t (I (1) (p2) - S (pn)W™) (27i)" T ] ;s
J=1
(3.1)

where

pj= eZTCiVj’ w= 627'51"[7 (32)
and begin by reviewing the explicit expressions for this amplitude when J¢(p) is
given as a bilinear in fermionic fields. First, we take J%(p) to be given in terms of

Neveu-Schwarz fields by (2.8). Defining the partition function

o

ans(t) = [T +w)Y, 3.3)

_1
r=s3
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we can write

. : 1 .
tr(b(p1)b (p2)w™) = ———— ans(Vi — V2, T) s (1) 87, (34
21i(p1p2)?
where
0 efzm'rv +Wre2nirv 9/(0 1)93(\/ T) 1
i B R RSP 3.5
ans(vT) mr; 1+w" 6:(0,7)01(v,7) Vv as v—U33)

2

With J4(p) given by (2.8), the two-point function is

b
a b Lo\ — _ 2
tr (J (p1)J°(p2)w ) 4n2p1p2XNS(V1 V2,7)" Xns(7)
Kah
= Pys(vi—w,7 1), 3.6
o Ns(Vi— V2, T) xns(T) (3.6)
where k% = —Ltr(M*M?) = Ltr(t%¢*), and
6,(0,7)%65(v,7)> 1
D =50, 0% (v,rr v S VT
00,1 (6(v.D)\
93(0,T) 91(V,’L')
67(0,7)
2 . .
85(0.7) +2n(t)+ Z(v,1) (3.7)
Here the Weierstrass &2 function,
B 8/ (v,7)\’
v = (gD ~ance), 68)

with
1 6/"(0,7)

n(t) = 5 00.7) (3.9)

(See (25), p. 361.)

The general prescription for the n-point loop amplitude (3.1)), with J?(p) given
by (2.8), is given by a modification of the Frenkel-Zhu construction of [2.2] by writ-
ing (3:1)) as a sum over permutations p € &,, with no fixed point. If p = £, &, ... &,
a product of disjoint cycles, we associate to p a product

EYS = (=1 125125 2 aws (1), (3.10)
where the function fév $ associated with the cycle & = (iy,is...i,) is defined by

févs = k% im (Vi) — Vip, T) NS (Viy — Vig, T) - XNs (Vi — Viy, T),  (3.11)
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KN = (12 ) = L (MO M M), (3.12)

The n-point loop amplitude is then constructed as the sum of these products over
the permutations p € &/, the subset of &,, with no fixed points,

NSayas...
gflg;gz MV, Vo, ey Vi, T) = Z Fp 22ty vy v, 1), (3.13)
pEG,

Again this construction can be described graphically by summing over all graphs
with n vertices where the vertices carry the labels 1,2,...,n, and each vertex is
connected by directed lines to other vertices, one of the lines at each vertex point-
ing towards it and one away from it. An expression (3.T1) is associated with each
cycle, together with factor of —1, and the product of these cycle expressions is
associated with the whole graph.

For example, this gives as the expression for the three-point loop

tr (J“(Pl)Jb(Pz)JC(PS)WLO) = mfabC%NS(f)%NS(VI —V2,7)
X xns(Va — V3, T) xns(V3 — Vi, T) (3.14)

if tr(M“Mb) = —2k6%, so that k* = k6%, and 8% is used to raise and lower
indices.

We can modify the above to give a second fermionic construction by defining
the partition function

xvs(T) = [T(1=wH). (3.15)
-
We can write
) ) 1 .
tr (b (01)b’ (p2)wWHo (= 1)) = ————— x5 (Vi = v2,7) 2y5(7) 87, (3.16)
27i(p1p2)?
where
o 67271:irv_wr627rirv 9/(0 T)94(V T) 1

v =2mi =1 = ;(3.17
XNS(V’T) nlrg 1 —wr 94(077)91<V7T) v . VHO’ (3 )

2

and, if we replace yns(V,7) by xys(v,7) in (3.11), with x, () replacing xys(7)
in (3.10), the above construction for the loop amplitudes gives

tr (JU(p1)J2(p2) ... T (pa)W™ (—1)M) | (3.18)

where Ny = Y~ b_;b,. In particular, the two-point function is

a Kb _ B

tr <J (pl)Jb(P2)Wlﬂ(71)Nb) — ot Vo, 1)
Kb B B

- 747?27131132%\“(‘/1 —V2,T)xys(7),  (3.19)
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where

] 6/(0,1°63(v,7)°
Pys(v,1) = 04(0,7)%26,(v,7)?
_807) 9i<v’f>>’
©604(0,7) O1(v,7)
6, (0,7)
64(0,7) +2n(e) + 2 (v, 7). 20

A third fermionic construction is given by using the Ramond operators,

= Y dip ", {dd]} = 887,

meZ

di0)y=0, m>0, 1<i,j<N. (3.21)

Defining the Ramond partition function

=)

=[] +w" (3.22)
n=1
we can write
. ) 1 y
tr (dl(pl)dj(pz)w ) 7cth(V1 — V2, )){R(’L’)sl],
27i(p1p2)?

where

oo e_zmmv _|_Wm627rimv o’ (0 T) 92(\/ f)
\% =Tmi+2mi =L :
XR( 77'-) i+ ﬂlmgl 1+wm 02<0,T)91(V,T)

~

as v—0. (3.23)

<|m

If we now replace xns(V,7) by xzg(v,7) in (3.11)), with yz(7) replacing xys(7) in
(3.10), the construction for the loop amplitudes gives

tr (J(p1)J2(p2) ... T (pu)W™) (3.24)
where now, instead of (2.8),
J(p) = M5 (p)d/(p). (3.25)

The two-point function is now

K.ah

4n2p Pz
K.ah

TP PR(Vi = v2,7)xr(T) (3.26)

tr (J“(pl)Jb(pg)wLO) = Ar(Vi — V2, 7)* xr(T)
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where

9’(0, 7)%0(v, 1)2

Pr(v,1) = 5076, (v.27
040, (6(v.7
6:(0,7) ( 61(v, ))
92((0:z))+2”() Z(v,7). (3.27)

3.2 General torus amplitudes and connected parts

The loop amplitude
g2 (V1 Vo, Ve, T) =t (T (1) (p2) - T ()W)

x (2mi)" f[ Pj, (3.28)
j=1

is invariant under v; — v;+1 and v; — v; + 7 for each j individually, so that
it is defined on the torus obtained by identifying v € C with v+ 1 and v + 7.
Because of the locality of the currents J%/(p;), the amplitude is also symmetric
under simultaneous permutations of the p; and the a;.

From (2.3) we have that

k4P 1 ¢ (p2)
JYp I (p2) ~ —— + L ¢ as Vi — va. (3.29
(p1> (p2) (2717l)2P1P2(V1 — V2)2 Zﬂlp] (V] — V2) 1= W2 ( )

Thus the singularities of the n-point loop amplitude on the torus are determined
in terms of the (n— 1)-point and (n — 2)-point loop amplitudes. This means that
knowledge of the (n — 1)-point and (rn — 2)-point loop amplitudes determines the
n-point loop amplitude up to a constant on the torus, that is a function of 7. (See,
e.g., (26), p. 29.) Because of the permutation symmetry of the amplitude (3.28]),
this leaves the n-point loop determined up to a symmetric invariant tensor function
of 7, given the (n— 1)-point and (n — 2)-point loops.

The sum over permutations in the expression (3.13) for the loop in the fermionic
construction cases can be divided into terms which collect together the same p; in
each cycle. Such terms are labeled by the division of the variables {p|,p2,...,pn}
into subsets, each consisting of at least two elements (corresponding to the restric-
tion to permutations with no fixed points). The full loop amplitude is then the sum
over these terms. Such terms are products of “connected parts”, each of which
involves one of the subsets of {p1,p2,...,pPx}, say {pi,,Pi,,-- -+ Pi, }» given by an

expression like (2.21)),

J2{1(?(1)1?72C.‘”am(vl7‘/23"'7vl7’la = Z fNS 1),0(2),....p(m ))%NS(T)r (330)
PG m
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in the NS case. The amplitudes @, c have a simpler structure than the full am-
plitudes %7y0p in that they have only single poles for m > 2, rather than both single
and double poles. For m > 2, the connected amplitudes satisfy the conditions

/
famaj alag...aj,lajajﬂ...am,l
/
a; loop,C

ayap...q
Doopc (V1 V2, Vin, T) ~
Vi — Vj

X(V17v27~"7vm—177)7 (3.31)
which are sufficient to specify the m-point connected amplitude oo c in terms of
the (m — 1)-point connected amplitude, again up to a symmetric invariant tensor

function of 7.
Motivated by the fermionic constructions, we can give a general definition of

the connected part of the loop amplitude in a familiar way. If A = {i},i2,...,i,} is
a set of distinct positive integers, define
dt = %ngaizmain (Viys Vigs -+ s Vi, T) = tr (J9 (pi )2 () - .. T (py, )W)
n
x(2mi)" [ ] pi;- (3.32)
j=1

Let P = (A1,A;,...,A,) be a division of the integers A = {iy,iz,...,i,} =AU
ApU...UA, into a number of disjoint subsets; let 34 denote the collections of
such divisions; and denote the partition function by

x(t) = tr (wh). (3.33)
Then we can define the connected amplitude MCA inductively by
=Y ()P (3.34)
PGmA AjGP

where |P| = r, the number of subsets contained in the division P, together with the
vanishing of the one point function szc{'} =0, and, consequently,

A = I =t (J9 (p,)J (pj)wh) (27ti) 2 pip;. (3.35)
Equation (3.34) is of the form given for the NS case by (3.13) together with
(3:10), where

szc{"“"’”} =— Z ﬂ:fl),,,,-p(m)l, x(7) = xns(7).
peSn
Equation (3.34) defines an inductive procedure because we can write it as
A== Y (o) T (3.36)

PER, Ajep

where 3/, denotes the same collection of divisions of A into disjoint subsets but
omitting the division of A into the single set consisting of itself. If we single out a
point i € A, we can rewrite the inductive definition of .7, A

g =apt+ Y dEaPy, (3.37)
BeR],
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where 9%1"4 denotes the proper subsets of .27 which contain i.
The point of this definition of

a,-l uiz.“ain

A = . (Viys Vigs vy Vips T) (3.38)

is that, for m > 2, the double poles at v; = v; present in /4 have been removed

and only single poles remain. A double pole remains in sz'éi’j } defined by (3.33),

Kdid)

7)2)((17) as v; ~ vj,

(i}
%C (V,‘ —Vj

and this is its only singularity. To demonstrate the absence of the double pole at
Vi =V;in ,Q{CA, m > 2, we use induction and (3.37). We note that the residue of

the double pole on the left hand side is k%< c7A~1:/} and in the sum on the right
hand side, assuming inductively that the result is true for smaller amplitudes, the
double pole occurs only in the term involving MCB for B = {i,j} and the residue
for this term is §%“ky multiplied by <74~/ i.e. the same as on the left hand
side, so that these residues cancel and ﬂé“ has no double pole at v; = v;. A similar
argument shows that ,@75‘ satisfies the same relations for the residues at single
poles as .74, so that (3.31) holds.

3.3 Structure of torus amplitudes

In general write

ssz’;‘)gfc'““”(vl,vz,...,vn,r) = —FH2 (v vy, v, T)X(T),  (3.39)

so that, forn > 2,
1 . ajay...a ',1u’-a j+1---0p—1
tgzalaz...an(vl V2 vn T) ~ famaj ,9* J J
n ) IR ’

Vn_vj a; n—1

X(Vi,V2,. .y Vi1, T) (3.40)

as v, ~ Vv, which specifies .7, on the torus in terms of .%,_; up to a function of
T’

e (), (3.41)

which, because of the properties of .%,, must be an invariant symmetric tensor.
Inductively, this determines .%, in terms of .%;, and these invariant tensors, @,
2 < m < n. The 2-point function, .%;, has only a double pole,

Kab

«%”’(W,VM)N—W

as vy — w. (3.42)

In general (3.42) implies that the general form of the two-point function is

F(vi,vy,7) = kPP (vi —Vv2,T) + 05° (1), (3.43)
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where a)gb (1) is a symmetric invariant tensor. In the NS, NS~ and R cases,

6;(0,7)

a)ﬁ‘b(r) = k% {05(0,1) +2n(r)} (3.44)

with s = 3,4,2, respectively.
We can construct the general three-point loop, #3, as follows; we start by

rewriting (3.43) as
F5b(vi,vy,T) = =K Pys(vi — v, T) + @50 (7). (3.45)

We then have that .Z%¢(vy, v,,vs, ) differs from what it is in the NS case,

k£ xns (Vi — va, T) xvs (Va — V3, T) xvs (Vs — Vi, T), (3.46)

by a function defined on torus, whose residues at Vi = v», Vo = V3, V3 = V| are
all if® @5 (7). To construct such a function, consider the Weierstrass ¢ function
(see (27), p. 445),

61(v,7)

SV =8 vo)

+2n(t)v (3.47)

£ (v, 7) has the properties:

Cv+1,7)=¢(v,7)+2n(7), S(v+1,7)=C(v,7)+2n(1)T —274B.48)

C/(V7T) = —@(V,T), C(—V,T) = _C(Var)a
C(v,f):%+ﬁ(v3), as v —0. (3.49)

It follows that

Cvi—vy, 7)) +E(va—Vv3,7) + & (v3—vi,7) (3.50)

is defined on the torus and has residue 1 at vi{ = V», v, = v3 and v3 = v;. Thus the
general form for
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T (v1,v2,v3,7) = kf* gvs (Vi — v, T) s (V2 — V3, T) gvs (V3 — V1, T)
+ @5 (T) [E(vi — v2,T) + § (V2 — 3, T)
+C(vs—vi,7)] 4+ 2057 (7), (3.51)

where s is a symmetric invariant tensor, because this has the residues speci-
fied by (3.40). We could proceed to express the n-point connected loop amplitude
as the expression in the NS case (3.11) with additional terms, but, instead, we
adopt an approach that is more symmetric between all the terms. To this end, we
define functions, Hy, (U1, .. ., s, T), symmetric under the permutations of the p;,
initially for 0 < m < 4, by

H,o(u,7) =1,
nl.uT ZC/?
2Hp2(H,7) = (Z ) +i€

j=1

n n n
6H,3(U,T) = (Z > +3ZC/ZC;+ZC
=1 j=1 ]:1
n n n n n
!
24Hy 4, 7) = ZC, +6 Z | ZC}+4ZQZ§/
Jj=1 Jj=1 Jj=1 =1 j=l
n n
+3( Y ¢ +2cj”+k4, (3.52)
j=1 j=1
where = (U1, ..., 1), §j = {(1;,7), and ky = k4(7T) is a constant on the torus to
be determined. Then the singularities in the p; of Hy, »(ti,. .., Uy, T) are simple

poles at u; = 0 for n > 2, and the residue

Ee_s Hnm(ula 7,un>T) :Hn—l,m—l(,ul,'-~7/~Ln—177)7 (353)

for 1 <m <4 and n > 2. This can be verified case by case but we shall give a
general argument below.

The H, (1, 7) are not single valued for u; on the torus but, if we impose the
constraint that p; + ...+, = 0, they are. So H, (Vi2,..., Va1, T), Where v;; =
V; — Vv, is defined on the torus and, for n > 2, just has poles at v; = v; |, 1 <i<n,
with v,y = v|. Forn =2,

Hy 1(Vi2,V21,7) =0, Hy5(Vi2,Va1,T) = —P(Vi2, 7). (3.54)

By Propositionof Sect. we can define n™ order tensors Kn,m(f), n>m>
0, n > 2, by the conditions

R (T) — K (T) = fU, Kk (1), (3.55)



Current Algebra on the Torus 21

Ko™ (T) = K5 1 (7), (3.56)

together with the requirement that &;, ,, be orthogonal to all symmetric tensors for
m > 0 and n > 2, and the initial condition that k>, = &,k ; = 0 and &,0(7) =
@, (7), a symmetric invariant tensor. Then, setting

1 ay(q)---d
Z p(1)-“p(n)
<Kn,mHn,m>ala2 an (V17V27 ceey Vnaf) = ; K'rl,m> u
PES,

XHn,m(vp(l)p(Z)v <5 Vp(n)p(1) 1)7 (3.57)

Fn = (Knn—mHnn—m), n > m, provides a solution to (3.40) for each m. By the
linearity of those equations, we obtain the solution,
n
ﬁn = Z <Kn,mHn,m>> n>2. (3.58)
m=0
Because so far we only have H,, ,, for 0 <m < 4, (@]) is only valid for 2 <n < 4.
Explicitly,

Fr = (0Hr2) + (K20),
F3 = (kaH33) + (k3,1 H3,1) + (K3,0),
Fy = (KaHya) + (Ka2Ha o) + (K4.1Ha 1) + (ka0), (3.59)

where we have written &, = K, ..
To demonstrate that H, ,, has the desired properties, 0 < m < 4, and to extend
its definition to higher values of m, we note we can write

m
n

Hn,m(u,r)zr;[Z(ajJrg) 1, for1 <m<3, (3.60)

J=1

where d; = d/du;. (Here, and in what follows, n > 2.) The { function can be
written in terms of the Weierstrass ¢ function (see (27), p. 447)

_ G/(“vf) _ o n(t)u? 91<u77)
C([.L,T) - O'([J,‘L’) ) G(/,L,T) =e 91/(071_) I (361)

with 6(—u,7) = —o(u, 1), and

o

o(uw,t)=Y fi(ou* " =p+fH(r)u’+...,  because fi =0. (3.62)
s=0

Then, defining H,,,,(i, 7) by the right hand side of (3.60) for all m > 0, we have
as 4, — 0,

n—1 m
I:Inm yT) = V= an+ di+ O (Un, T
W19 = iy [ L0 6| o
1 n—1 m
= —|ht+ Y (9 +)| X fmrT o)
My =1 5=0
1 [%m—%]

=— F(OHy 1 s (1, 7)+0(1), (3.63)
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where ' = (Wy,...,4,—1) and [Im — 1] is the greatest integer less than or equal
to im — 1. Thus
[2’"_ ]
5675 Hnm u, T Z fs n 1,m—2s— 1(.u T) (3~64)

In particular,

Egsoﬂn,m(ﬂvf) :[:\Infl,mfl(ﬂ/7r)7 1 §m§47
so that (3.53) holds for 1 <m <4 and n > 2, but

f}gs s, T) = Hy_14(1,7) + ol (1, 7).

To see how to modify H,,, to give an H,,, that satisfies (3.53) for all m > 1,
write

A, (1, 7:v) =Y V"H, (1, 7), (3.65)
m=0

we have from (3.64),

Res, H,(u,7;v) =0 (v,0)H, 1 (1,T;v). (3.66)
So, if we define
vt ad
H,(u,7;v) =Hu(U,T,v) = Hym(U, ", .

Sl g BT =) = Y Hun OV, G6)

the definition of H,,, in (3.52) is unchanged for 1 < m < 4 (except that the con-
stant, k4 /24, in the defintion of H,, 4 is determined to be —nf>), and

Reso Hn(“’a T;V) = VHn—l(:u'/v T;V), nz 17 (368)
Hn=

ie. ;l}(zs’o Hy (W, T) = Hy—t 1 (1, 7). n>m>1. (3.69)
From (3.60)

mmmzifrwﬁm
y;

) ) Al ARALY (3.70)
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and so
vt e o(pi+v,T)
,TyV) = . 3.71)
) =5z ot
Note that
oo(uj+v,T)
VT H, (1, T3 V) il AL R (3.72)
=) = 1156 Tot

is elliptic as a function of the t; and of v provided that we impose the constraint
that uy + tp + ...+ w, = 0. From (3.71)) we see directly that

vi o(v,T) Yy o(uj+v,1)
H, \% y
Resy il V) = 55 T3 o700y L oy m)
= VH, 1 (1, T;V). (3.73)

Properties of H,(L, T; V) are discussed in Appendix In particular, it is shown
that

Hn,n—l(V127~--;Vn—l,navn,laf) =0. (3.74)

The relation (3.69) shows that (3.58) provides the general form of the n-point
connected loop amplitude, with H,, ,, defined as the moments of (3.71). It specifies
Fn in terms of the invariant symmetric tensors k» 2 = k and k;, 0 = @y,

1 g 1)--a
9ﬁ1“2"-“"(v1,vz,...,vn,r) — Z Z Kn,%) p(n)
n e, m=0

Hym(Vp(1)p(2)s+++5 Vomp(1), 7). (3.75)

Since the symmetrization of ky'y> " is zero for m > 0 and n > 3, we can

evaluate K, o in terms of connected parts of traces of the J*(p) by symmetrizing
(3.79) over the group indices only, yielding

gialazman(vlv‘@a"'7vnaT)S: (l’l—l)' ”10 “"(,-L-)’ 1’123, (376)

where we define

1 )
ﬁalaz"'a"(vl,Vz,...,Vn,T)s= E Z ynp( ) p(n>(vl’v2,...,v,,,r). (3.77)
peS,

Equation can be written

n

“ a a...an (2mi)"
ol (1) = Kih (1) = — D alJ]tr

j=1
X (JU(p1)I 2 (pa) ... T (m)wL“)C’S, (3.78)
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for n > 3; w; is determined by (3.43). Note that this implies that the symmetrized
connected part of the trace

al] r (S (P2 (p2) - T (Pa)WH) ¢ (3.79)

is independent of the v;. (This follows directly from symmetrizing (3.40) because
this shows that all the residues of this elliptic function vanish, implying that it is a
constant on the torus.) We will relate this to the trace of zero modes of the currents
in Sect. 4l In Appendix [C] we show that the formulae given for two-, three- and
four-point loops in (3) are equivalent to forn <4.

4 Zero Modes
4.1 Recurrence relations and traces of zero modes

The symmetric tensor @), is given in terms of the symmetrized connected part
of the trace of currents by (3.78). We seek to express this in terms of traces of
symmetrized products of zero modes, J§. To this end consider

tr (J (p1)J2(p2) ... T (p) g . Ty who) T ] o) 4.1)
j=1

These functions are not elliptic as functions of the v;, 1 < j <r, if r < n; to see
this move J¥! (p ) around the trace, through wk0, to calculate the effect of sending
vi — Vi + 7, and we find that it is not invariant because terms, proportional to
f14i, are generated on commuting J%! (p;) with Jgj , j > r. However, these terms
clearly disappear on symmetrizing over all the indices (a1, az,...,a,), so that

tr (J(p1)J2(p2) ... T (P )y - Ty whe) s T T Py 4.2)
j=1

is elliptic in v;, 1 < j < r and so a suitable function to consider.
Symmetrizing the recurrence relation (3)

tr (J (P12 (ps) ... T (p)WH) = py tr (JE T2 (py) ... T (P )W)

1! A] (Vj — Vi, ’L') .
+i) ————f "y

xte (J2(p2) ... I (pj 1) (P (pj11) - (pa)w )

iy, 2T s
j=2 plpj

xtr (J2(pa) ... J9 (pj1) I (Pj1) - I (Pa)WO) (4.3)
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where
i 0l(v,t) 1 1 /6/(v,7)\
A = 1B~ A S s S
1(v,7) 2w 6 (v,7) 2’ 2(v.7) 472 <91(v,1)
1 1
= —m@(v»f)— ﬁn(‘f% 4.4)
we obtain

(S ()T (p2) - T (Pa)W)

1 aj ya a,
— p—tr (JoH2(p2) - .. T ()W)
— Vi, )
+k
; Plpj
x [t (J%(pa) ... JU (P 1) T (Pjt) - I ()W) | g (4.5)

This generalizes to

tr (J(p1)J2(p2) ... T (P )y . TG who)

1 r A R
= —tr (J2(pa) .. S (P )T i) 1k Y M
p1 =2 p1p;

X [0t (J2(pa) ... (1) () - (P g W) ] .
(4.6)

Applying this for r =n =2,

tr (J9 (p1)J " (pg)wLO) p1p2 =tr (ngJ“2 (p2) L") P2+ kA (Vo — v, 7)8U1 2 x(7)
= tr (J§ ' J2wh0) + kAo (va — vi,7) 82 g (7);
.7

using (3.43)) and {@.4), we have

47
ab __ a b, Lo ) ab ) 4.
8 X(T)tr(JOJow ) 5 kn (1) 4.8)
Taking r =n =3,
tr (J(p1)J?2(p2) T (p3)WH0) ¢ p1p2p3 = tr (T T (p2)J % (p3 )W) ¢ P23

= tr (Jg I3 (p3)w™) ¢ 3
= tr (Jg'Jg2 I wh) (4.9)
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because tr(J% (p3)wh) = tr(Jg?wh) = 0, so that

47T3i
abc a b yc., L A
%(’L’) I‘( 0/o oW )S ( )

Forr=n=4,

tr (JU (p1)J2(p2)% (p3)T% (pa)W™) ¢ P1P2P3 P4
= tr (Jg' 2 (p2)I ™ (p3)J (p4)w') s p2p3P4
+ ko (Vo — vi) [t (J (p3)T™ (pa)w™) | s p3pa
+kAy(v3 = 1) [§15r (I (p2)J* (pa)w™) ] s p2pa
+ kg (va — Vi) [§U%tr (J92(p2)J* (p3)wH) | ¢ p2p3
= tr (Jg"Jg2 (p3)% (pa)W™) s p3pa
k(M (va— Vi) + (V3 — Vi) + Mo (va — vi)) [§9tr (Jg2Tg who) |

+ &2 (A2 (va — V1) A (V3 — va) + Az (V3 — Vi) Aa (V2 — Va)
+2(Va — Vi) Aa (V2 — v3)) [6“192 6% g x (1)
kAo (vs — va) [t (J21 % (pa)wo) ] s
+ kAz(V4 — Vz) [5“2“4& (]al.]m pP3 WLO)]SP3
= tr (Jg I T T who)
+k [89%2tr (JP T w0) | o Y Ax (i
i<j
+k2 (Az(\/z — V1)A2(V3 — V4) +A2(V3 — Vl)Az(Vz — V4)
+M(Va — Vi) Ma(v2 — v3)) [§U192 8% ] x (7). (4.11)

Then, since

tr (U (01)J 2 (p2)T (03)J“ (pa)W™) - = tr (J (p1)J ™ (p2) (p3)T ™ (p4) W)
— [tr (S (P)I ™ (p2) W) tr (J® (p3)J (pa) W)
+r (J (p1)J (p3)w) r (J2 (p2)J“ (pa)w')
Hr (J (p1)I ™ (pa)w) tr (J2(p2)J (p3)w™) | /2(1), (4.12)

4
tr (17 (1) (p2)% (p3)J™ (') s T T
=1
= tr (Jg I J g who) ¢ — 3 [tr (Jg 1 Jg2who) tr (2 gt who) ] ¢ /% (7). (4.13)
From (3.78), this shows that @y is given as a “connected part” of a trace of

zero modes. In the next section we define such connected parts and show that @,
is given in terms of them for all n > 2.
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4.2 Connected parts of zero mode amplitudes

Because of the locality of the currents, /4, defined as in (3.32)), and so @4,
defined inductively by (3.36)), is symmetric under simultaneous permutations of
the indices a; and the variables v;. We define the symmetrization JZfSA of o74 by
symmetrizing on the a; alone:

a;j, Aj,...d;
szsll 2 l"(Vil,Viz,...,Vin,’L')
1 a; a; Lag
= Y, PO e o0 (v vy, Vi, T (4.14)
T pEG,

equivalently we could symmetrize on the variables v; alone. We define %CAS, the
symmetrization of .24, similarly.
We consider the trace of zero modes of the currents,

A = 9 i (1) — (Jg"l I g WLO) Qmi)", (4.15)

and, more particularly, its symmetrization, 2%, defined as in (#.14). We can define
a “connected part”, Z¢g, inductively for 24, following (3.36)),

2h=2 - Y x(0)' ] 24, (4.16)

Pemg AjeP
(where again 93/, denotes the same collection of divisions of A into disjoint subsets
but omitting the division of A into the single set consisting of itself) together with

the vanishing of the one point function ffc{sl} = 0, and with the two-point function
given by

2 = 2 — e (g5 w0 ) 22, 4.17)
For A = {iy,iz,...,i2m}, define

A _ K" (2mi)?

m
a; . a; R
2 Z H6 Pl p(zj)Az(vip(2j—l)_vip(2j))’ (4.18)

PEGy, j=1

e

and define 24 = 0 if A has an odd number of elements. Then

A = T plidty, (4.19)
and the recurrence relation (#.6)) leads to
df =28+ Y (PP, (4.20)
BeRy

where 934 denotes the subsets of A, excluding the empty set but including A itself.
Now, symmetrizing (3.36)),

_ A
df =i+ Yy [| | MCSJ] . 4.21)
Pep), AjeP s
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If we assume, as the inductive hypothesis, that 5 = 2%, for 2 < |B| < |A[, and

that (4.19) holds when |B| = 2, we have, on substituting for MCAS’ and symmetriz-
ing, that

R [H 2

PG‘BA A_/'EP

CE | E e et
g BeRy REPa~p Djer S
+ ), [P

BeRy

e g o[

PER, AjepP

S
4.22)

by @.16)). Then using (4.20),

2=+ Y 2 [H 5?4 7 (4.23)
S

PE‘I?f4 Aj;eP

so that JZ/CAS satisfies the recurrence relation (.16 for ffCAS and we can conclude
inductively that &% = ZZ, for |A| > 2.
It follows from (3.78)),
2mi)"
(1) = K54 (1) = _ ) (Jg Jg? .. Jgrwho)

D0 n>3, (4.24)

c.s>

with @, given by @.8).

4.3 Traces of zero modes and characters

In this section we will relate the symmetrized traces of the zero modes

Qi

2 () = (I Ty (i), (4.25)

to the character of the representation of the affine algebra, §, defined by (1.1), in
the space of states,

2(6,7) =tr (e"H"’wLO) . (4.26)

Here H denotes the generators of a Cartan subalgebra, b, of the finite-dimensional
algebra g formed by the zero modes,

6, 5] = £ . (4.27)

For convenience of exposition, we shall take g to be simple in what follows.

For fixed 7, tr (Jgi‘ Jgiz gi" wLO)S is an invariant symmetric tensor for g,
The space of symmetric tensors, . (g) is isomorphic (as a vector space) to % (g),
the universal enveloping algebra of g,

u,-]

e A AL AR A (4.28)
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The invariant tensors . (g)? C .#(g) correspond to the center Z(% (g)) of % (g),
i.e. the elements of % (g) that commute with g. This is a ring generated by rank
g elements (e.g. (28), p. 337), the basic Casimir operators, or primitive invariant
tensors. These can be taken to be orthogonal,
oM e o =0, (4.29)
where @, @' are primitive invariant symmetric tensors of orders n,m, m < n.
We can use a Cartan-Weyl basis for g, using @ to denote the set of roots of g,

[Hi7Hf] =0, 1 <i,j <rankg;
[H' E*] = o'E®, ac®, 1<i<rankg;
[E% EP] = ¢e(a, B)E™TP, o, B,o+p € P;
= %a-H, p=—-acd
=0, otherwise. (4.30)

(We omit the suffix 0 on H,E®.) With this choice of basis, the quadratic
Casimir operator

2
o
JOJ = H? + Z 5 (E_qEq+EqE_q)
o>0
1
=H>+26 -H+O§Oa2E,aEa, 5= Eagoa’
=(H+68)?>-5"+ Y o’E_oEq. 4.31)
a>0

The value of J? in a representation with highest weight A can be obtained by
evaluating this on the highest weight state |A), which has E%|1) = 0 for a > 0.
Thus the value of J? in this representation is

A-(A+28)=(A+8)*—5% (4.32)
If £4142--4n jg any invariant tensor for g,
Ce = g ol Jin € Z(U (3)). (4.33)

and we can evaluate its value in the representation with highest weight |1) by
expressing it in the Cartan-Weyl basis and moving the Eq, @ > 0, to the right.
Because [H',Cg| = 0, we can write

Ce=¢:(H)+ Y FrqEq,  forsuitable Fy o € % (g), (4.34)
>0
where ¢z (H) is a polynomial of degree n in the H'. Then CelA) = 0¢(A)|A), so
that C¢ takes the value ¢¢ (1) in the representation with highest weight 4. Given
two such invariant tensors &;,&;,
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Ce,Ce, = (% (H) +£0F51,aEa> (‘Péz Z F, ﬁEﬁ>

= ¢, (H)9e, (H) + Z Fy, o0, (H—a Ea+ Y. ¢z, (H)Fg, gEp
B>0

+ Z Fr, o9z, (H)Eq Y, 0¢, (H)Fz, gEg, (4.35)
B>0
so that
Oe e, (H) = ¢, (H) e, (H). (4.36)

If ¢¢, = @¢,, then C¢, = Cg, acting in each highest weight representation of g. It
follows from this that C¢, = C¢, as elements of  (g) (see, e.g., 29), p. 251). Thus
Ce — @¢ defines a map Z(% (g)) — -/ (h), which is an algebra homomorphism
and is one-to-one.

The elements ¢z € .’(h) obtained in this way have an invariance under the
Weyl group, W, of g as we shall now show (see (30)), p. 130, or (29), p. 246). Con-
sider the action of ¢¢ in the infinite-dimensional representation, Vy,, with high-
est weight A, where A € Ag, the weight lattice of g, with a- 4 > 0 for a > 0,
whose states are generated by the action of Eq, o > 0, on a state |A). The finite-
dimensional representation, V,, is the quotient of V, by its largest invariant sub-
space. Taking a basis of simple roots, &, 0, ..., 0, r =rank g, m; =204 7L/Oci2 €
Z and o - A > 0, consider ET@ZI |1). Now

0i HE® o, |A) = Yo (m; —25)E* 4 |.)

SO

m;

EqE"y ' A) = Y (mi = 25)E™, |A) =
s=0

andEa/.ETf;lM) =0fori# jbecause [Eq;, Eq,] =0,i# j. It follows that Eq E m’HM) =

0 for a > 0 and so E™"'|1) = 0 generate an invariant subspace of ¥; (which is
divided out in the constructlon of V). Then

CeE"y ) = G (E"G N A) = 9¢ (A —mioy — o) EZ5 1 [2). (4.37)
But, on the other hand
C:E"TA) = EM|Ced) = e (ME™T|A). (4.38)
Thus, for each simple root, o,
P (L) = 0g (A —m;o4 — o). (4.39)

If o; denotes the element of the Wy corresponding to reflection in the hyperplane
orthogonal to o,

Gi(l) :/l—mioz,-, and oi(S) :5*061',
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because 26 - o/ ociz = 1 for each simple root ¢;. Thus (4.39) can be rewritten
0 (L) = 9z(0i(A +6) - 9), (4.40)

and, if we define
9z (A) = 9 (A — 8) = ¢z (Gi(A) — 8) = d(du(R)). (4.41)

Because the reflections in the simple roots, o;, generate the Weyl group Wy, (]35 (A)=
¢ (A — &) defines a function invariant under the whole Weyl group. Thus C¢ + (135

defines a homomorphism of Z(% (g)) — ()", the polynomials in H invariant

under the Weyl group. In fact, this map is an isomorphism, called the Harish-

Chandra isomorphism. That C¢ — (55 is onto follows from the fact that . ()"

spanned by ¢ for EMan — tr(p1®2 | %), where the ¢ are the representations

of J§ in the finite-dimensional representation V, ,A € A4 (see, e.g., (29), p 253).
Now, writing

tr (e"H"’wLO) —20,1)= ¥ by(w)x*(6), (4.42)

reAF
WhereAg"’:{l €Ag:0a-A>0foroa >0},

tr(Cew™) = Y b(w)@(A+8)dimVy, (4.43)
reAF

and the character for the finite-dimensional representation V; of g, x* (0) is given
by the Weyl character formula,

(g — 1 £(g)el3 )6 4.44
x"(6) Ag(e)ggvg (0)e (4.44)

with €(0) = +1 being the determinant of o, and the Weyl denominator being
given by

20(6) =TT (e%a-e _e—%w) , (4.45)

a>0
where the product is over the positive roots of g. (See (30), p. 139.) The dimension
dimV;, = x*(0), but to evaluate this from @44}, we need to take a limit on the

right-hand side. In fact Ag(6) = 0(6""), as 6 — 0, where n™ is the number of
positive roots of g. Now

Ha 89 Z ) io(6+A)0 _ H Z iE(G) ic(6+2)-0 (3_’_)“)

oa>0 oWy a>00eW,

=[] ¥ ie(0)(8+2)-07(a),

a>00eW,

when 6 = 0. (4.46)
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As « runs over the positive roots of g, o(a) will range over a set obtained
from the positive roots by reversing some of their signs. The product of these sign
changes equals £(c) = £(c~"). Hence the sign changes cancel the effect of £(o)

in (4.46)) and we have

Ha 86 Z )tGS—HL)

=" W [T(8+A)-a. (447

o>0 oWy 9—0 o>0
Since x°(6) = 1,
Ag(0)= Y ()P0, (4.48)
oWy
and, hence,
[T 9 =" W, ] 8- 0, (4.49)
a>0 0=0 a>0
and
A (64+1)
dimVy = x*(0) = Ogo 5o (4.50)
Applying
(B-9)" [ -9 4.51)
o>0
to the equation
11(0)44(0) = Y £(0)e @M, (4.52)
oWy

we obtain

(B-09)" <r10(x 89> )Ag(0) :i”++"H(6+)L)-oc Z (c(6+7)-B)"

0=0 a>0 oWy
=" [8-a Y (6(8+A4)-B) dimV;,

a>0 oWy

(4.53)
and so
(H — > (6,7)44(6)

>0 0=0

Z (w) Z o(8+2)-B)"dimV,, (4.54)

€Wy

where pg = —idy.



Current Algebra on the Torus 33

If
d(A)="Y (B-d'(n)"'= Y (d'(B)-1)", (4.55)

! !
o'eWy o' eWg

0=0 c o"EWg

|W9‘Zb/l 5+l)d1mV,1
(4.56)

The functions (#.53)) span the polynomial functions ¢(A) invariant under the
Weyl group and so (4.56) holds for any such function. From (.43, it follows that

(4.57)

tr (Cewho) = ng|<§§(l’9) (H w> 2(0,7)Aq(6)

The symmetrized products of the primitive symmetric invariant tensors form
a basis for all symmetric invariant tensors. Suppose qulaz"'“”, 1 < j <N forms an
orthonormal basis for the symmetric invariant tensors of order n, so that

0=0

a)quaz...an wglaz...a,, — 6]]( (458)
Then we can write
N
(A T ) = X fina (4.59)
j=1
where
filw)=tr (ijwLO) (4.60)
and
(]a’l ] '2 J”ln )S
1;#@%%%)H“”x@mw>
|Wg| ! aso & 6 =0
z iz Y ¢(0) do,(pa+0(5))
|Wg| oWy
; (H a<p+o<6>>> 269
a>0 a- 5 0=0
1 N ajay...ay - 6+Gp
— LY o Y g (o(p0) (H (6(9”> 1(6.7)
| g| j=1 oWy a>0 @ 0=0

Zbl Y (o(6+A)-6'(B))"dimV,
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5 Summary and Conclusions

In this paper, we have constructed a general formula for the loop amplitude

tr (JU(p1)J2(p2) ... T (Pn)W™) (5.1)

where the currents J%(p) satisfy the operator product expansion

K-ab fachC(ZZ)

(@) (z) ~ (z1 —22) U —22

(5.2)

which is equivalent to the affine algebra §, defined by (I.I). This formula extends
the Frenkel-Zhu construction for tree amplitudes (1), described in Sect. 2.2] and
generalizes the results obtained when the currents are given as bilinear expressions
in fermionic fields, which are reviewed in

The general formula is described graphically by summing over all graphs with
n vertices where the vertices carry the labels ay,a»,...,a, and each vertex is con-
nected by directed lines to other vertices, one of the lines at each vertex pointing
towards it and one away from it. Each graph consists of a number, r, of directed
“loops” or cycles, § = (i1, i2...ig) with which we associate an expression f¢. The
expression associated with the whole graph consists of a factor of 1/2mip; for
each current J% (p;) and — fe;,1 <i <r, for each cycle,

n 1 r
: T /e (5.3)
Ll:Il 27rle] dgz’( ) gf{:l
For & = (iy,i2...ip),

l
ai, di, ...dj,
fé = Z Ké,nl1 2 éH[,m(Vilizw-~>Vig,1i¢avigi177)- (5.4)

m=0
The functions Hy ,, are defined in terms of the Weierstrass ¢ function by

oo

G(“j+v77) m
= Hyp s 2y U, T)V, (55)
=50 m;O o (M1, M2, - - Mg, T)

vﬁ !
G(V7 T)é j=

and the invariant tensors Ky, are defined inductively by the equations

R () = K (2) = U (1), 66

ajay...a a...dapa
K(;nz ‘(1) = K'Zin (1), (5.7)
together with the requirement that x ,, be orthogonal to all symmetric tensors for
m > 0 and ¢ > 2, and the initial condition that k> = K, k>1 = 0 and kyo(7) =
@y (T), where the symmetric invariant tensor,

wa1az...a;<,’:) _ 7(2#1.)(& (J‘”J“z - 'JazWLo) >3 (5.8)
(4 (571)!%(7) 0vo 0 (o =
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ab __ 4 a rb Lﬂ) ab
off =t (JOJOW 28%kn (7). (5.9)
A proof that xy,, exists and is defined uniquely by (.6) and is given in
Sect.[2.3]and an algorithmic method for constructing them inductively using Young
tableaux is given in Appendix [A]

The results described so far in this section apply to the affine algebra, §, asso-
ciated with any finite-dimensional Lie algebra, g. In Sect. we gave a method
for calculating the traces of zero modes, necessary to determine the symmetric
tensors m, in terms of the character

2(6,7) =tr (eiH'Gwl“) (5.10)

of the representation provided by the space of states of the theory. The method
would apply to any compact g but we took it to be simple for ease of exposition.

The “connected” symmetrized trace is defined in Sect. [d.2]in terms of
the “full” symmetrized traces, which themselves can be expanded in terms of an
orthonormal basis of symmetric invariant tensors of order ¢,

N . . N
e (449" ...ngwbo)s = Y £, (5.11)
=1

where N is the number of independent symmetric invariant tensors of order ¢,
fi(w) = tr (Cy;w™) and the Casimir operator Co; = @] “Ji'Jg?...J5". In
Sect. we reviewed how a normal ordering of the Jg in Cg;, by writing Co, =
¢, (H) +N;, where H denotes the elements of a Cartan subalgebra and N; annihi-
lates highest weight states, so that C, — @0, (H) defines the Harish-Chandra iso-
morphism of the center of the enveloping algebra of g (that is the ring of Casimir
operators) onto the polynomials in A invariant under the action of the Weyl group,
Wy of g. This leads to the expression

N .
|ng| Z w;lltlz...an Z ¢a)j(6(p9)) (H OW) 26,0 (5.12)
=

GEWH a>0 0=0

for the symmetrized trace (3.11)), where pg = —idy, o denotes a root of g and
0 denotes half the sum of positive roots. With this we have assembled all the
elements of an explicit expression for the loop amplitude (5.1I). In Appendix C,
this is compared with expressions given previously (3) for n = 2,3,4.
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A Explicit Construction of the Tensor «;, in Terms of «;,,_;

As a preparation for giving an explicit construction of the tensor k;, in terms of x,_;, we review
some salient features of the representation theory of &,, (see e.g. (31), p. 44).
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The number of inequivalent irreducible representations of G, the group of permutations of
n objects, is p(n), the number of partitions of z. Each partition, p = (p', ..., p™), with p' > p/, if
i<jand ¥, p' = n, determines a Young diagram, consisting of n boxes arranged into m rows
and p! columns, with p’ boxes in the i row and the number of boxes in the j column equal

to the number of p¥ > j. We can identify the partition p with the corresponding Young diagram.
The Young diagrams label the inequivalent irreducible representations.

Given a Young diagram p, a Young tableau, A, is defined by an assignment of the integers
1,...,nto the n boxes of p. This gives n! Young tableaux associated with a given Young diagram.
A standard Young tableau is one for which the numbers assigned to the boxes decrease along
each row (from left to right) and down each column. The number of standard Young tableau
associated with the Young diagram p,

n! ) .
dp:mg(&*@/), where ¢ = p/ +m — j, (A1)

and this is also the dimension of the irreducible representation associated with p. The regular
representation of &,, V, which consists of linear combinations },cs, X8, of elements of &,

contains d,, representations of the type labeled by p, so that |&,| =Y, dlz,, which we can regard

as being labeled by the standard Young tableaux associated with p. We label these A7, 1 <i < d,,.

Given a Young tableau, A, we define 2, of &, to be the subgroup of G,, consisting those
permutations which map each row of A into itself and define B, of &, to be the the subgroup
of &, consisting those permutations which map each column of 2 into itself. Let

a=Y p, bi=Y epp, (A2)

pe,; pPEB)
where £(p) denotes the sign of the permutation p. Then
pa=ap=ay, peAp;  pby=byrp=¢(p)br, pEB,.

Define the Young symmetrizer

C)p = albl. (A3)
Then
5 n!
¢j, =Npycy, where N, = a, (A.4)
and
cyep =0, (A.5)

if A, u have different shapes, i.e. are associated with different Young diagrams (partitions).
If the distinct Young tableaux A, 1 are associated with the same Young diagram, p, we can
find a permutation 6y, € &,, which takes y into A; then

ay = 0yuau0yy, by :Glubuo'p/lv €)= OAuCuOyy, Oy :Gl_ul' (A.6)
Further (see (32), p. 393, or (33), p. 75), either there exists a pair (j,k) contained in a single
column of A and a single column of u, in which case, if # € &, is the transposition interchanging
jandk,t € B3 NAy, 1> =1, so that

bpay = hltza“ = —bjpay, implying cycy =0, (A.7)
or the elements of each given column of A are in different rows in u, in which case

Oau = Bruay, forsome oy, €Ay, By € B, (A.8)
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so that
b,lau = EA#b;Lﬁlu(X;wau = slublo-lua,uv where 8,1“ = S(ﬁ)w)7 (A9)
implying
cpcu =Np€pOppcu = Np€yy€)Oay-

If the normalized Young tableau é; = c3 /N,, and d; = al/\/ﬁp,f)l =b; /VN,,and A, it have
the same shape,

bl&u :&‘)Lpbkclu&yv LA‘lfu:SMlé;LGA” :&‘)L/,LO-)L/JEM> (A.10)

where €, = 1, &, = £(By,,) if the elements of each given column of A are in different rows in
U, and &, = 0 otherwise.

Writing, 4; = A/, 1 <i < d,, for the d, standard Young tableaux of type p, in lexicographical
order, that is if i < j and we compare the entries of integers in the boxes of 4; and A; reading
along each row from left to right starting with the first row and proceeding to the second, and so
on, then for the first discrepancy the integer in the relevant box in A; is greater than the one in
the corresponding box in A;; in this case we write A; < kj if i < j. Then, writing a; = ay,,b; =
bl,-vgij = GA,A/-v b,-aj =0ifi> j,

bia; = &bicija;, (A.11)

where &; is defined as in (A-T0), for i < j.
For each Young tableau A of type p,

vy =Vey, (A.12)

defines an irreducible representation subspace of the regular representation V of type p, dimen-
sion d,,. The spaces V,, 1 <i < d,, provide d,, irreducible representations of type p in V. In
fact,

dp
v=PpPvi- (A.13)

p i=1

Corresponding to this decomposition into irreducible components, a basis for V' is provided by
{Guraréyr =y Oyoarbyr 11 <i,j<dp;p € P(n)}, (A.14)
i) J 4 L J

where P(n) denotes the set of partitions of n. To establish that this is a basis, it is enough to show
that the states

4;0ijbj = 0jj¢;, 1 <i,j<dp,
using the notation of (A.11), are linearly independent. If

Z x,-jcijéj =0, then Z xijézd,-j@jék =0,
1<i,j<dp 1<i,j<dp

implying

Z x,-jégcijé_,»ék =0. (A.15)
(<i j<k
Suppose some x;; # 0; choose £ so that is the largest value of i for which this is true and then k
so that it is the smallest value of j for which x;; # 0. Then all the terms on the left hand side of
(AT3) are zero except for one leaving

X OpCrlr = X0y = 0,
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which implies x;; = 0, a contradiction. Thus, we conclude that x;; = 0 for all i, j and so that the

states (A-I4) form a basis.
Now we seek to determine x;;,1 <i < j <d,, so that
P=Y &+ )Y xjoyé (A.16)
1<i<d, 1<i<j<d,

is the projection onto the spaces corresponding to the standard Young tableaux of shape p,

dp
V,= @vlip. (A.17)
i=1

(See (33), p. 76.) A necessary and sufficient condition for this is P,0;;¢; = 0;;¢; for 1 <i, j < d,.
If this holds we will have }, P, = 1, because Py 0;;¢; = 0 if p’ is another shape of Young
tableaux:

Powér= Y CGiéOu+ Y Xij0ijé;ék0u
1<i<d, 1<i<j<d,

A2 A8 A2 AA
= Cx Ot + Z CiCr O + Z Xik Ok Cy Okt + Z XijOjjCjCiOke
1<i<k 1<i<k 1<i<j<k

N 2 R 2
= OpCr + Z €k OjeCy + Z XikOjeCo + Z Xij€jkOitCy
1<i<k 1<i<k 1<i<j<k
= Oplo+ Z & +xix + Z Xij€jk | CieCy- (A.18)
1<i<k i<j<k

Because the o;/¢ are linearly independent, the condition that P,0y¢Cp = Oy¢Cy is

Xik = —&ix + Z Xij€jk, for1 <i<k. (A.19)

i<j<k

‘We can solve this equation iteratively for increasing k — i, starting with k —i = 1:

Xk—1k = —E—1k>
Xk—2k = —Ek—2 k T Ek—2k—1Ek—1 k5

i
Xk =—€k+ Y, €j€k— Y, Ej€ieeu+t..+ (=1 e 12 81k

i<j<k i<j<t<k

(A.20)
for i < k. Then
d
Pp = ;7 Z gjcjv where éj =1+ Z .xile'j (A21)
1<j<d), 1<i<j
and
1
= Y d, Z Exrear. (A22)
4 1<i<d),

In fact §; = 1 for all j when n < 4.
Every B, # 1 unless A corresponds to the Young diagram p; with only one row; this
corresponds to the identity representation and has 2; = &,,. So

1 1
I=- Yoot Y d ) Gep (A.23)

T pEG, tp#Epr 1<i<dy
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So, for given &,_| € #,_1, if &, is the solution to (Z:23) and (2:26) orthogonal to all symmetric
invariant tensors,
_lyy £ A24
Kp = E Z 94 Z )L,.”CA[/’ Ky« (A.24)
p#p1 1<isdp

For each Young tableau A not corresponding to the identity representation, choose a trans-
position 7, € 98, . Then c; ) = —c;, so that

ke =4 (1 =)k = tcad(ta, k1) (A.25)

and

1
K= 2 dp Y Gpeardli, ki) (A.26)

p#p1  1<i<d,

We can express each of the transpositions 7, as a product of the generating transpositions o,
defined as in 2.33); if #; is the transposition interchanging j and k, with j < &,

1) =0k—1...0j4+100j41...0k—1-
We can then evaluate ¢ (1), k,—1) for A = A7, usi i lici ion fi
1, Ka—1) for = A7, using 2:43), to give an explicit expression for k;
in terms of K, 1.
B Properties of H,

In this Appendix we establish some properties of the generating function H,, defined by (3:71).
We noted that

1 1 "oo(uj+v,T)
—H,(V12,..., Va1, T;V) = -
n " o0

v o(v,7) 1)

is an elliptic function of v and v;, 1 < j < n. Viewed as function of v, it has a pole of order n at
the origin but it is otherwise regular,

1 1 1 1 1
7Hn =T + ﬁHn,l +- 1+ *2Hn,n72 + *Hn,nfl +Hn,n
\% 1% A% v v
+0(v) asv—D0. (B.2)

Writing the Weierstrass elliptic function

P(v,7)=v I+ Y cm(t)v", (B.3)
m=1
we note that its derivatives
—D)"(n+1)!
20 (v 1) = ()‘}#—kn!cn(r)—&—ﬁ(v), (B.4)

as v — 0, where ¢, = 0 if £ is odd. So

1 (—1)"

vt (n—1)!

is an elliptic function of v whose only potential singularity is a simple pole at the origin. This
implies that it is constant as a function of v (see (26), Prop. 4.11, p. 48) and the residue of the
pole must vanish:

Hpp 1(Vi2,-..,Va1,7) =0, forn>2. (B.6)
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For n = 3, this gives

3 2 3 3
|:;C(“r):| :ggz(“r)a if;“r:(); (B.7)

and, forn =4,

4 3 4 4 4
{ZIC(M)} =3 {Zlg(lir)} [Zl (W) | + 219/(%)} ;
ity 0. (B.)
r=1

(see (27), p. 446 and 459, respectively).
We can equate (B23) to its value at v = 0, giving

T Gt O e s DR Gt O P
yth = oo ? W G P T W
[%n]fl
+-+ W(V)Hn,n72 + Hnin - Z 266‘2(]‘1,,),,,25,2. (B9)
(=1

By direct calculation for n = 2, we have that

o(v+vp)o(v+vy)

VZHy(Vig, Va1, T;V) = =P(v)— P(v12), B.10
>(Vi2, V21,73 V) (V)20 (V2o (va1) (v) (v12) (B.10)
so that
Hyo(vi2,T) =15 Hap(Viz,7) = —P(vi2,7); (B.11)
H2,2m(V127T) :C2m72(r)7 mZZ (BIZ)

In particular, from the expression given for H, 4 given by (3.52)), we can deduce the differential
equation for &,

P — 6P+ 1g:(1) =0,
where
&(7) = 27* (6:(0,7)% + 65(0,7)* + 64(0,7)%) = 20c (7).

Consider the symmetrizations of H, ,, and H,,

1
Hy (Vi oo,V T) = o Y, Hun(Vo)p)s- - Vomp(1): ) (B.13)
T pEG,
1
Hrf(vlz,...,an,T;V) = ; Z Hn(Vp<])p<2)7...,Vp<n)p<]),T;V). (B.14)
. pEGH
Since H,(V12,..., Va1, T;V) = Hy(=Vin,...,—Va1,T; V), HS is an even function of v and so
H; (Vi .y Vo, T) = 0, m odd. (B.15)

Forn > 2,

esoHim(vlz,...,vnl,r) =0 Res Hy (Vig, ..o, Va1, T3V) = 0. (B.16)
1

12= 2=
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Because v’”H,fm(vlg, ey Va1,T) and V"HS (Via,. .., Va1, T; V) are elliptic as functions of Vij,
but have no poles in these variables, it follows that they are independent of them, i.e.

H,im(vlz,...,vnl,r) :Hf’m(r)7 independent of v;j; (B.17)
HS(Via,...,Vm, T:V) = Hy (1;v) = ¥ Hy,(T)V", n>2. (B.18)
m=0

For n = 2, we have that

I‘IQS‘(VQ7 V21,’L';V) = HQ(V12,V21,T;V) = VZ[BZ(V) — gz(Vu)]. (B.19)

So,
Hio(Vn,T): 1; Hiz(V12,T):—<@(V12,T); (B.ZO)
H35,,(V12,T) = com—2(T), m > 2. (B.21)

By direct calculation for n = 3, we have that

H3 (Vi2,V23, V31, T3 V)
_ Vo(v+vi)o(v+vu)o(v+vs) | Vio(V+va)o(v+vi)o(v+ve)
~ 20(v)30(vi2)o(va3)a(var) 26(vP3o(va)o(via)o(va)
=13 Z'(v) = L (v). (B.22)

‘We also have, by direct calculation, that

HS(T'V) _ (_l)n vn@(VHZ)(v) _ (_l)n+l vnc(n—3)(v)
T (1)1 T (n—1)!
holds for 3 <n <6. (B.23)

and conjecture that it holds for all n > 3. When (B-23) holds, we have that

Hig(1) =1 Hi,(1)=0,1<m< in; (B.24)
(—1)"(2m—2)!
Hy (1) = mczm_z(m m> in. (B.25)

C Explicit Formulae for Two-, Three- and Four-Point Loops

In this Appendix we show how the formulae we have given previously (3) for two-, three- and
four-point current algebra loops relate to the general result (5.3). For two- and three-point loops
there is no distinction between the connected part and the whole loop amplitude.
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C.1 Two-point current algebra loop

a b L) _ 2(%)  cap 12\2 _ 42
(70 (pawe) = = B8k () [ (ulh)” — 47 (o)
_ x(n) b b
- 2 (ks %) .1
where
2\2 Ty 4
H2‘2:_<@12:_(%NS) —? [92(0,’[)—94 (O,T)} s (C.2)
5P = k8P, for k% = k6, (C.3)
b AT a1 601"(0,7)
K0 = ) TR RS o0 1)
=4m%k8 [f(7) + 5 (65 (0,7) — 64(0,7)] (C.4)
and

@ y
xP(x) 1 6{(0,7) Lo sabo(2)
=@ i a0, TUow) =81 (), (C5)

Xns = xvs(Vi— v, 1), x(7) =t (wh). (C.6)

C.2 Three-point current algebra loop

tr (74(p1 )" (p2)J (p3)w™ )

lx ( T) abc abc abc
__ A\ i u
873p1p203 [K3 33+ K31 H3 1+ K3 ]S
ikfPx(T) o313 ol om i
= 873010203 —4r + + ’L'
87‘53p]p2p3 [XNSXNSXNS (C g C )f( )]
a9 (x) -
2p1P2p3

where {¥/ = {(v;— v;,T) and s denotes the symmetrization

aj, iy ...y,

1 ; T
Dy (VigsVig ooy Vi T) = = Y o) o) Yip(n)

" pes,
X (Vip(1)» Vipgay 1+ Vip(ry s €3
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and
1_13.’3 — é [(§2I +€32 + CI3)2 _3(§21 + C3Z+C13)(‘@21 4 @32+@13)
*(=@/21 +<@/32+<@/13):| .
1 )
_ 6 [72(C2] +§32+C]3)(‘@2] +932+=@]3)
—(32/21 + Py 9'13)] , since H3 » =0
2
T
= —XRsAsINs — 5 (03(0,7) = 6/(0,7)) (8 + 67+ ¢, (C9)
Hyp =0+ 00, (C.10)
Kgbc _ %kfab6'7 (Cll)
K =22k [£(7) + 45 (6/(0,7) — 6£(0,7))] (C.12)
Cl(r)  4ndi
Kb — o igabe X = (gagbaewto) (C.13)
0 20 x(7) (18587507,
tr(JGIEIGWE) = 1 e @) (1) 4+ 1a% x ) (z), (C.14)

and we also use K%IZ; — Ké"j; = f“belcff;nfl, Kgbr; = K§‘jﬁ where K, , = K.

C.3 Four-point current algebra loop

In (3), we gave the general form of the four-point loop in the symmetric form

(7 (p1)J7 (p2)J (p3)J¢ (Pa) W) p1 p2p3ps

= 530 (R () [(143)2 /47 — FONORE) /47 — (0)] - 2D (02 (7))

88 (R () [ f4n* — (OGRS /47 = £ ()] = 2@ (02 2(0))
887 (R () [0k)? f4n* — F(ONGR? f4m = £ ()] = 22 (02 2(9))

+tr(JEIEISTEWH)
1 abcd adch
% ( +

(o ) (o) { it

(
2 Pou—Pn\ (PP 2
_ﬂf(r)(L@m*«@n) (3”24 Py )+4ﬂ fe )@24}

(o o) Ly {xm;éxx%xﬁg
Po— 2P0\ (%
2 f(r ( 24 32)( 21 )+47T2 Es }
f( ) 9247932 2 f( ) 2
- adbc acbd _
( to > 327t

) 9&4—9’52)( ) 2 }
ﬂ. 1@ (924 — P ) \Pu— «@31 AT P

2(7) {xmxéxﬁzng

—ﬁla)(f) {Gabcd(gﬂ +C32+§43+C14)+6ud¢‘b (541 +C34+€23+C|2)

+o.acdh (§31+C43+C24+€12)+6abzlc (€21+C42+€34+§13)

+ c;acdb abdc + Gadbc + o.acbd) X(T) 0;1 (07 T)Gf (07 T)



44 L. Dolan, P. Goddard

+o.adhc (§41+524+C32+€13)+6a0hd (C31+C23+€42+§14)}, (C15)

where Z;j = P (v; = Vi, 1), P}, = P'(v; — Vi, 1), and 6! = ur(1°s°14), where t* provides a
representation of g with 6% = tr(t%") = 2k = 2k6% and 6™¢ = tr(t°tb1¢) = £ K + e,

then

abefcde +fddgfbtg)

<fabedecd _'_facededb _'_fb(;,deab) + (Dabcd7 (C.16)

where @*“? is a totally symmetric tensor, independent of 7. Now, using

P — P ) \ Pu— Py
— (C13+C32+C21) (C13+C34+C41)+(C24+C41+€12)
% (C24+ §43+ C32) _ '@13 _ Wy
=P+ Py+ P+ Py — (P + P+ 00+ 042, (C.17)

1 (P — P P — Py
— —29
2 ( P

we have that

a4 (p1 )P (p2)J (P3)T (pa) W)
— tr(J%(p1)J? () (p3)I% (Pa)wH) — tr(J%(p1)J? (2 )W )er(T° (p3) (pa) W)

)
)
— (4 (p)J (p3 )W) tr(J” (p2)J% (pa)w™)
—tr(J“(PE ){"(PUWL“) (I (p3)J" (p2)w')
_ X7 bed abcd abcd bed
= 7]67[4[)1;)2;)3[)4 K H4,4 + L) H4,2 + K'471 H471 + KZO < (C.18)
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with S denoting symmetrization as defined in (C.8), and

24[_14,4 — (CZI + C32 + C43 T Cl4)4 76(4421 T C32 + C43 + CM)Z(‘@ZI + 932+!@43+'@l4)
74(4‘21 +C32+C43+C14)(<@,21 +9/32+9/43+'@114)
+3(Pa1 + P3p+ Paz + ,@14)2
—(P"n+ P2+ P" i3+ P"14)
=38+ P H P+ P+ P+ Pas+ Pua)
_3(421 +€32+€43+C14)(gg/21 —5—9/32—}{@,43—&9/14)

+3(Po1 + P+ Paz+ P1a)? — (P + P 3o+ P sz + P14),
since Hy3 =0,

a4

——(63(0,0)— 8}(0.9)) Hn + bt +
2Hyp = (€21 +¢7 P+ CM)Z — (P + P+ Pz + Pa)
Hig =04 024 g8 o1
gbed — 1 gabed — 1 ( fab pede 4 pda fbce> i Rgﬁcd

65 (0,7)63(0,7):

C 1 abc
=27 [ 1(5)+ 15 (6100.5) - 30,9 o

[E——"

= 32k (L ) [(7) 4 5(631(0.7) — 00, 7))] + ke5

bed _ ;3 x%(7)

ab jecd ac jedb b jeab o.abed
K 200 (f dC 4 f9d°7 + . d >+K471
wibed — R tr(JEILISJEwho) — S tr(J§Jgw) (6 Ig WL"):|
’ 3 Lx(7) x(7) s
8t | 1 @ (1)?
__°2* tr ]anJCJdWLO s— Sabscd + 6a€5bd + Badébc
3 |:X(T) ( 07070Y0 ) X(T)2 ( )
=- itr(lgjgjglg wh)cs,
3x(7)

(C.19)

where [Ir’cz‘ff:de4,m] - 0, and we have also used H; , = H; ; = 0 (which follows from (B.13)

and (B.24)), and

12,23 .34 . 41 13,34 42 .21 14,42 23 .31
XNSXNSANSXNS + XNSANSXNSXNS T ANSXNSXNSXNs

= —7*6,(0,7)*64(0,7)*. (C.20)
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