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ABSTRACT

As a long-baseline neutrino oscillation experiment, the NuMI O↵-axis ⌫e Ap-

pearance (NOvA) experiment aims at studying neutrino physics by measuring neu-

trino oscillation parameters using the neutrino flux from the Main Injector (NuMI)

beam. It has two functionally identical detectors. The near detector is onsite at

Fermi National Accelerator Laboratory. The far detector is 810 km away from the

source of neutrinos and antineutrinos, at Ash River, Minnesota. At the near detec-

tor, muon neutrinos or antineutrinos, before significant oscillations take place, are

used to correct the Monte Carlo simulation. At the far detector, the neutrino and

antineutrino fluxes after significant oscillations have happened are measured and an-

alyzed to study neutrino oscillation. The NOvA experiment is sensitive to the values

of sin2 ✓23, �m2

32
, and �CP . The latest values from the NOvA 2020 analysis are as

follows: sin2 ✓23 = 0.57+0.03

�0.04
, �m2

32
= (2.41 ± 0.07) ⇥ 10�3 eV2/c4, and �CP = 0.82⇡

with a wide 1� interval of uncertainty. My study is focused on the neutrino oscilla-

tion analysis with NOvA, including detector light model tuning, particle classification

with convolutional neural network, electron neutrino and antineutrino energy recon-

struction, and oscillation background estimation. Most of my studies have been used

in the latest NOvA publication and the NOvA 2020 analysis.
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CHAPTER 1

INTRODUCTION

In 1930, the neutrino, a neutral particle, was introduced by W. Pauli to con-

serve energy and momentum in beta decay, in which a neutron transforms into a

proton while emitting an electron. At that time, the energy spectrum of the outgoing

electron had been observed to be continuous, which conflicted with energy conserva-

tion. The neutrino was proposed to be emitted together with the electron and to have

an intrinsic angular momentum, so-called spin, of ~
2
, where ~ = h

2⇡
(h is Planck’s con-

stant). The neutrino interacted so weakly with matter that no one was able to detect

it until 1956, when Clyde Cowan and Fred Reines performed an experiment using a

nuclear reactor at Savannah River in South Carolina, USA [1]. In their experiment,

antineutrinos that were produced by nuclear fission interacted in the detector through

inverse beta decay (⌫̄+p ! e++n), releasing a positron and a neutron. The positron

quickly annihilated with an electron producing a photon pair. The neutron could

be captured by a nucleus releasing gamma rays. The coincidence of detecting both

positron annihilation and neutron capture was the signal of antineutrino interactions.

Two years after the Cowan and Reines experiment, Maurice Goldhaber and his

co-workers, at the Brookhaven National Laboratory, in the US, demonstrated the left-

handedness of neutrinos by studying the decay products of a europium-152 source [2].

Left-handedness means the spin of the particle always points in the opposite direction

as its momentum, so that when you curl the four fingers of your left hand towards

the direction of spin of the particle, your thumb points along its direction of motion.

When a europium-152 nucleus captures an electron, a samarium-152 nucleus along

with a neutrino are produced. Then the samarium-152 may de-excite and emit a

gamma ray. When the gamma ray and the neutrino are emitted back-to-back, their

spin directions have to be opposite to conserve angular momentum. By measuring the
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handedness of the gamma ray with a polarizing filter, they showed that the neutrinos

are always left-handed. This conclusion implies that neutrinos have to be massless

particles. Otherwise, according to special relativity, it would be possible to observe

massive neutrinos moving in the opposite direction with the same spin direction,

which would be right-handed. Since no right-handed neutrinos had been observed,

scientists concluded that neutrinos were massless, which was assumed in the Standard

Model.

The Standard Model includes all the known constituents of matter, six leptons

and six quarks. These quarks and leptons are grouped into three generations. The

lightest generation includes up and down quarks, which make up protons and neu-

trons, and the electron and electron neutrino. The two heavier generations of quarks

are charm and strange, and top and bottom. The heavier generations of leptons are

the muon and tau and the corresponding neutrinos, the muon and tau neutrinos.

These quarks and leptons are all fermions. A fermion is a particle with odd half-

integer spin while a boson is a particle with integer spin, such as the photon and

Higgs boson as discussed below.

The Standard Model also includes the force carriers between the fundamental

particles, such as photons carrying the electromagnetic force; gluons mediating the

strong force; and Z and W bosons mediating the weak force. The Higgs boson is

assumed to have zero spin and to manifest itself everywhere, even in vacuum. When

an elementary particle collides with a Higgs boson, the particle acquires mass and

changes handedness. If a left-handed neutrino interacted with Higgs bosons, it would

acquire mass and change to right-handed. Since no right-handed neutrino is observed,

the Standard Model states that the neutrinos are massless.

As described above, in the Standard Model, neutrinos have three flavors: elec-

tron neutrino, muon neutrino and tau neutrino. They are very abundant particles in
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the universe, but they cannot be easily detected because they interact only through

the weak interaction. It was long thought that neutrinos were massless. However,

many neutrino experiments, such as Homestake, Super-K, SNO, and KamLAND,

have demonstrated that neutrinos mix, and therefore must have nonzero masses.

In the 1960s, Ray Davis’s Homestake experiment found that the observed solar

neutrino rate was only one-third of the predicted rate [3]. This result was known as

the solar neutrino problem. To explain the discrepancy between the observed and

predicted rates of solar neutrinos, neutrino masses and mixing were introduced. The

Homestake experiment was designed to detect only electron neutrinos. If neutrinos

have mass, they may be observed in a di↵erent flavor from what they were produced

as. The discrepancy between the measured and predicted neutrino rates may then be

explained by the transformation in flight of the electron neutrinos into other flavors.

This phenomenon is known as neutrino oscillation.

The Super-Kamiokande experiment (Super-K) is a neutrino experiment in

Japan. The Super-K Collaboration announced the first evidence of atmospheric muon

neutrino disappearance in 1998 [4]. It provided strong experimental evidence support-

ing the theory of neutrino mixing and nonzero masses.

The Sudbury Neutrino Observatory (SNO) is a neutrino observatory sited

2100 m underground in a mine in Canada to study solar neutrinos. The SNO de-

tector was a large tank of heavy water. Before the SNO experiment, solar neutrino

detectors had been designed to be sensitive primarily to electron neutrinos. The

SNO detector was able to observe the charged current interactions of solar ⌫e and

also the neutral current interactions of all three neutrino types. Charged (neutral)

current interaction are those in which neutrinos interact with matter by exchanging

W bosons (a Z boson). SNO thus measured the total flux of solar neutrinos on the

Earth. The total measured flux, including all neutrino types, was consistent with the
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predicted flux of ⌫e emitted by the Sun. Therefore, SNO’s results demonstrated that

the solar neutrinos changed flavors. In 2001, the first scientific results of SNO [5]

were published, bringing the first clear evidence that solar neutrinos oscillate. SNO’s

results supported the nonzero neutrino masses and mixing models. Since then, neu-

trino experiments have focused on confirming neutrino oscillations and improving

the precision of oscillation parameter measurements. In 2002, the Kamioka Liquid-

scintillator Anti-Neutrino Detector Experiment (KamLAND) found the first evidence

of electron antineutrino disappearance, using nuclear reactors in Japan [6]. In 2008,

the KamLAND collaboration published precise results combining their data with the

SNO data assuming a two-neutrino framework [7].

There have been many other experiments studying the behavior of neutrinos,

such as the Double Chooz, Daya Bay and RENO reactor neutrino experiments. Also,

the accelerator-based Main Injector Neutrino Oscillation Search (MINOS) and KEK

to Kamioka (K2K) experiments provided the first precise measurements of muon

neutrino disappearance. After decades of e↵ort, neutrino oscillation has been broadly

accepted as an explanation for neutrino flavor transformations. The mechanism of

neutrino oscillation is discussed next.

The neutrinos are created through weak interactions in their flavor eigenstates,

which are superpositions of the mass eigenstates. The mass eigenstates propagate as

plane waves (in natural units c = 1, ~ = 1): |⌫i(t)i = e�i(Eit�~pi·~x) |⌫i(0)i, where t is

the time of travel from the starting point, Ei is the energy of the mass eigenstate i,

xi is the position of the neutrino and ~pi is its three momentum. Since the neutrino

has a tiny mass, it travels relatively fast, close to the speed of light. With mi ⌧ |~p|,

the neutrino energy can be approximated as Ei =
p
p2
i
+m2

i
' p + m

2
i

2p
. Here, we

assume the neutrino is produced with a momentum p, which is the same for all its

mass eigenstates. The distance of travel, L, is used instead of the time, t. Then,
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the wave function can be rewritten as |⌫i(L)i = e�i
m2

i L

2E |⌫i(0)i, where E ⇡ p is the

average energy of all the mass eigenstates. There are three mass eigenstates and they

propagate with di↵erent frequencies. The heavier the mass term mi is, the faster the

mass eigenstate oscillates. As the superposition of the mass eigenstates, the flavor

eigenstate is then a↵ected by the mass eigenstates. Thus, a neutrino initially created

as a muon neutrino might be observed as an electron neutrino after some distance of

travel. This is what we call neutrino oscillation.

The eigenstates of neutrino flavor are related to the eigenstates of neutrino

mass by a unitary matrix, the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix

(UPMNS):

2

66666664

⌫e

⌫µ

⌫⌧

3

77777775

= UPMNS

2

66666664

⌫1

⌫2

⌫3

3

77777775

(1.1)

=

2

66666664

c12c13 s12s13 s13e�i�CP

�s12c23 � c12s23s13ei�CP c12c23 � s12s23s13ei�CP s23c13

s12s23 � c12c23s13ei�CP �c12s23 � s12c23s13ei�CP c23c13

3

77777775

2

66666664

⌫1

⌫2

⌫3

3

77777775

, (1.2)

where cij stands for cos ✓ij, sij means sin ✓ij, and ✓ij is the mixing angle between

mass eigenstates i and j (i, j = 1, 2, 3). The vector on the left side represents the

neutrino flavor eigenstates and the vector on the right side represents the neutrino

mass eigenstates. There are three neutrino mixing angles (✓12, ✓13, ✓23) and one phase

(�CP ) in the PMNS matrix.

Using the elements of the PMNS matrix, the probability of observing the
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change of neutrino flavors is described as:

P↵!� = |h⌫�(L)| ⌫↵i|2 =

�����
X

j

U⇤
↵j
U�je

�i
m2

jL

2E

�����

2

= �↵� � 4
X

i>j

Re
�
U⇤
↵i
U�iU↵jU

⇤
�j

�
sin2

✓
�m2

ij
L

4E

◆

+ 2
X

i>j

Im
�
U⇤
↵i
U�iU↵jU

⇤
�j

�
sin

✓
�m2

ij
L

2E

◆
,

(1.3)

where �m2

ij
⌘ m2

i
�m2

j
is the squared-mass di↵erence. ✓12 and �m2

21
are measured

by solar neutrino experiments such as SNO, using the neutrino flux produced by the

Sun, and also by KamLAND, using electron antineutrinos from nuclear reactors. ✓23

and �m2

32
are measured by the experiments studying atmospheric neutrinos, such as

the Super-K experiment. Short-baseline reactor experiments, such as the Daya Bay

experiment, measure ✓13 and �m2

31
with electron antineutrinos from reactors. There

is also another type of experiment, which uses ⌫µ and ⌫̄µ from a particle accelerator

beam. The experiments of this type aim to measure values of the ✓23, �m2

32
and �CP

parameters—for example, the NOvA and Tokai to Kamioka (T2K) experiments.

My thesis is focused on measurements of neutrino oscillation parameters with

the NOvA experiment.
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CHAPTER 2

THE NOVA EXPERIMENT

NOvA is a long-baseline neutrino oscillation experiment with two functionally

identical detectors. The energy spectrum of the neutrinos is measured by the near

detector (ND) located 1 km from the NuMI target. The neutrinos are subsequently

detected 810 km away in the far detector (FD) near Ash River, MN. Both detectors are

located o↵ the central beam-axis by 14 milliradians to get a narrow neutrino energy

spectrum with an energy peak around 1.8 GeV, which is optimized to measure the

electron neutrino appearance channel [8]. Figure 2.1 shows the locations of the NOvA

detectors on Google Maps.

Figure 2.1. Locations of detectors

NOvA employs the Neutrinos at the Main Injector (NuMI) beam at Fermi

National Accelerator Laboratory. As shown in Figure 2.2, the NuMI beam facility

produces neutrinos and antineutrinos by steering a 120 GeV proton beam onto a
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Figure 2.2. Neutrinos at NuMI neutrino beamline

narrow graphite target approximately 1 m in length. The produced hadrons are then

focused by the two magnetic horns. As shown in Figure 2.3, forward horn current

(FHC) mode provides mostly neutrino flux, and reversed horn current (RHC) mode

provides mostly antineutrino flux. In both modes, most of the hadrons coming out

from the target subsequently decay into (anti)neutrinos, among other particles, in a

long decay pipe.

Figure 2.3. Forward (reversed) horn-current mode shown at the top (bottom) pro-
viding (anti)neutrino flux
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Three major contributions to the neutrino beam originate from the following

decays:

⇡+ ! ⌫µ + µ+; (2.1)

µ+ ! ⌫̄µ + ⌫e + e+; (2.2)

K+ ! ⌫µ + µ+. (2.3)

In the FHC mode, most of the muon neutrinos with the desired energy at the ND are

results of ⇡+ decay. There are also a big fraction of the muon neutrinos with higher

energy from the decay of K+. There are also some other hadron products coming

o↵ the target such as ⇡�, K� and K0

L
. These hadrons contribute the majority of

background in the oscillation analysis. The focusing horns aim to focus most of the

⇡� flux while the remaining flux components are not well focused, or unfocused.

A similar story takes place in the RHC mode with the sign of the charge

flipping everywhere. Three major contributions originate from:

⇡� ! ⌫̄µ + µ�; (2.4)

µ� ! ⌫µ + ⌫̄e + e�; (2.5)

K� ! ⌫̄µ + µ�. (2.6)

The contributions of di↵erent hadron products are shown in Figure 2.4 [9] for both

neutrino and antineutrino beams. The ND is positioned to maximize the similarity

between the neutrino energy spectra observed at the two detectors. This helps reduce

some types of systematic uncertainties in the oscillation analysis. The data collected

at the ND are also being used to make precise measurements of various neutrino cross

sections.
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Figure 2.4. Flux compositions of ⌫µ (top) and ⌫̄µ (bottom) charged current interac-
tions at ND

The NOvA detectors use liquid scintillator tracking so that they can image

final-state electrons in ⌫e charged current interactions. The detectors are finely seg-

mented and use low-Z materials, which have a low atomic number (Z) of protons

in the nucleus. The NOvA detectors are made of alternating layers, as shown in
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Figure 2.5. Cartoon of NOvA detectors with a human figure shown for scale and view
of PVC structure

Figure 2.5 [10]. Each layer is constructed from aligned polyvinyl chloride (PVC) cells

with cross sectional size 6 cm by 3.87 cm. One layer of horizontal PVC cells is followed

by one layer of vertical PVC cells. The ND and the FD are di↵erent in both numbers

and lengths of cells. The FD has 928 layers, each of which has 384 cells, while the ND

has 206 layers, each with 96 cells. The length of the cells is the same as the detector’s

width and height, which is 15.6 m in the FD and 4.1 m in the ND. The FD is 59.8 m

in length and the ND is 12.67 m in length. At the downstream end of the ND (not

shown in the figure), a 2.9 m tall by 4.1 m wide by 3.23 m long muon range stack

(muon-catcher) is used to stop and measure outgoing muons generated by neutrino

interactions. The muon-catcher is made of standard detector layers interleaved with

4-inch steel plates. The FD is on the surface of the Earth, which receives a very

high rate of cosmic rays. The ND is approximately 100 m underground, receiving a

negligible rate of cosmic rays during the beam spills.
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Each detector cell contains a wavelength-shifting (WLS) fiber which is twice

the length of the cell and looped at the end of the cell. Both ends of the fiber are

connected to one pixel of the 32-pixel avalanche photodiode (APD) photodetectors.

The APD can read out light signals from 32 cells at the same time from its 32

individual pixels and convert them into electrical signals. The 32 cells connecting to

the same APD are called one module of the detectors.

The APD is connected to a front-end board (FEB). The FEB has some custom

chips to handle the electrical signals from the APDs. For example, the electrical

signals are shaped into pulses by an application-specific integrated circuit. Then,

an analog-to-digital converter (ADC) is used to convert the shaped analog signals

to digital signals. There are also some other chips to suppress the zero readouts or

to filter the noise. The FEB also discriminates the electrical signals by giving them

time stamps and then sends them to a data concentrator module (DCM), which

is a custom built single board computer. Each DCM collects the data streaming

from 64 FEBs in a localized region of the detector and sorts the data by the time

stamps into 50 µs timing intervals (microslices). Then an event-building algorithm is

executed to further pack the microslices into a larger 5 ms “millislice.” Once the data

streams are packed, the data packets from a specific timing window are transmitted

to a computing cluster, called the farm of bu↵er nodes, which is located at the FD

site [11]. The FD is used as an example to illustrate how the components described

above work, as shown in Figure 2.6.

When a neutrino strikes an atom in the detector, it releases a burst of charged

particles. Scintillation light is produced when charged particles traverse the liquid

scintillator and the light bounces in the cell until it is captured by the WLS fiber

or absorbed by the scintillator or PVC. As these charged particles slow down in

the detector, their energy is estimated from the amount of scintillation light collected
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Figure 2.6. Signal-processing chain of NOvA FD

using WLS fiber and read out by APDs. Using the pattern of light seen by the APDs,

we can determine what kind of neutrino caused the interaction and approximately

what its energy was.
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CHAPTER 3

NOVA LIGHT MODEL

NOvA uses a blended scintillator of which 95.8% by mass is mineral oil and

4.1% is primary scintillant (pseudocumene). The primary scintillant is excited by inci-

dent charged particles and then decays by emitting photons in the 270–320 nm wave-

length range. These short-wavelength photons excite the main wavelength shifters

(PPO and MSB), which de-excite by emitting photons of longer wavelengths. PPO

de-excites by emitting photons in the 340–380 nm range, with a tail extending to

460 nm. MSB shifts the photons’ wavelengths through the same mechanism to 390–

440 nm, with a tail extending to 480 nm. Therefore, most of the photons’ wavelengths

fall into a range that the WLS fiber can capture, which is 400–450 nm. The wave-

length shifters in the WLS fiber further shift the captured photons into the range

490–550 nm, which is the preferred wavelength range for APDs to convert into photo-

electrons. The e�ciency of the APDs for converting incident photons to photoelectron

signals is 85% when the photons have wavelengths within 500–550 nm [8].

The NOvA detector simulation employs a specially designed optical model to

describe the light transport outlined above, including photon absorption and emission,

and APD conversion. The scintillation light produced by charged particles shows

characteristics that depend on the incident particle type, the energy of the particle

and the properties of the scintillator. Two major e↵ects in the NOvA detector light

simulation are molecular scintillation light production, with its quenching e↵ect, and

Cherenkov light production. These light components are tuned in Monte Carlo (MC)

simulation with the use of cosmic muon data and ND data coming from the NuMI

beam.

The light model has a significant impact on the subsequent calibration and

reconstruction. An accurate light model is a prerequisite for precise charged parti-
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cle energy estimation in the detector. Particle energy is needed for accurate event

reconstruction and classification, and is also critical to extraction of neutrino oscilla-

tion parameters. The tune of the light model has been one of the larger systematic

uncertainties in the NOvA oscillation analysis.

3.1 Scintillation and Cherenkov Models

NOvA employs Birks’ law to describe the scintillator light yield. The fluores-

cence intensity of a given substance is described by the light yield per path length,

dS

dr
=

AdE

dr

1 + kB
dE

dr

, (3.1)

where S represents the scintillation response; r represents residual track length (the

distance from the current position to the end of the particle trajectory); A is the

scintillator e�ciency; kB is the Birks’ constant, which depends on the scintillator

composition and density; and dE

dr
is the energy loss rate. For small values of dE

dr
,

Birks’ law is close to linear. For example, the typical dE

dr
value for muon tracks in the

NOvA detectors is approximately 2 MeV/cm. When dE

dr
gets larger, Birks’ law quickly

becomes nonlinear and the light yield saturates. The Birks’ constant for the NOvA

scintillator is kB = (1.155 ± 0.065) ⇥ 10�2 g/(MeV cm2), which has most recently

been evaluated by the NOvA collaboration [12].

Cherenkov light is emitted when a charged particle passes through the scin-

tillator at a speed greater than the speed of light in the medium. The NOvA light

model includes scintillation light, which is described by the Birks’ law (Equation 3.1),

and Cherenkov photon production. When the light model is applied in the MC sim-

ulation, it is expected that the MC simulation accurately describes the data. The

proportions of photons contributed by the Birks’ model and Cherenkov photon pro-

duction are adjusted so that the total number of photons (N�) in the MC simulation
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matches that observed in data, as

N� = Fview(YsEBirks + ✏CC�) , (3.2)

where Ys is the scintillator brightness per unit energy deposition, also known as

scintillation light yield; EBirks represents the energy deposition simulated by the Birks’

model; ✏C is the scintillator e�ciency for Cherenkov photons; C� is the number of

Cherenkov photons produced by the charged particle in MC simulation; and Fview

represents four normalization factors, corresponding to the xz and yz views of the

two detectors. The normalization factors absorb the di↵erences among detector views

in the light model tuning so that photon production in both detectors shares the same

set of physics constants described above.

In the ND, the ratio of Cherenkov and scintillation photons is approximately

1:20 for muon tracks produced by ⌫µ charged-current quasi-elastic (CCQE) interac-

tions. Approximately 5% (0.5%) of photons produced by a muon (proton) from a

⌫µ CC interaction are Cherenkov photons. Since muon and proton tracks have dif-

ferent behaviors in producing Cherenkov photons, they both are used for tuning the

Cherenkov photon proportion in the NOvA light model. Cosmic ray events at both

detectors are also used in the light model tuning. A least-squares fit1 between the

selected data and MC samples is performed to extract the light model parameters

Fview, Ys, and ✏C .

3.2 MC Simulations

To extract parameters of the light model, four di↵erent sets of data and MC

samples are used. These are: ND cosmic rays (ND CRY); FD cosmic rays (FD CRY);

and ND muon and proton tracks from ⌫µ CCQE-like interactions provided by the

1Fit is performed by using a data analysis framework called ROOT [13].
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NuMI beam flux.

To generate the MC samples, the NOvA-ART framework is used.2 For the

cosmic simulation, a Cosmic-Ray Shower Library [14] is used to produce cosmic rays

at sea level. All simulated cosmic rays are input to the Geometry and Tracking

Software [15] (Geant4), which is used to describe the detector geometry and to simu-

late the physics processes inside the detectors. A NOvA-ART module, called photon

transport, is applied after Geant4, which parameterizes a template to convert the

deposited energy to scintillation light. It manages photon transport in the detectors

starting from the light emitted by the scintillator all the way to the APD response.

With this template, we can adjust the proportions of scintillation light and Cherenkov

photons by tuning the light model. Running photon transport is also faster than run-

ning Geant4 for each detector cell to simulate all the photons produced and captured.

Another NOvA-ART module, called daq, is used to simulate the electronic readout.

The NuMI beam simulation for the NOvA detectors is done using g4numi, which

is a Geant4-based simulation tool with a detailed description of the NuMI beamline

geometry and fields. It simulates particle interaction and propagation in the NuMI

target and beamline [16].

For ND cosmic samples, 3000 files were simulated, each containing 22,000

events. FD cosmic samples consist of 1000 files, each comprising 200 simulated events.

There are 3000 ND NuMI beam MC files, with 22,000 events in each. Since the FD

is on the surface and the ND is underground, the FD is more sensitive to cosmic

rays. Additionally, the ND has a much smaller size than the FD does, so that the

ND receives very few cosmic rays. Due to the above reasons, more cosmic events

are simulated at the ND in the first place so that the selected ND cosmic samples

2Descriptions of the NOvA-ART framework and access to the code repository
can be found at https://cdcvs.fnal.gov/redmine/projects/novaart/wiki.
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have comparable sizes to the FD cosmic samples. All the MC files have time stamps

matching to period 3 (12 October, 2015 – 2 May, 2016) of the NOvA run.

3.3 Selections

Every 1.3 seconds, the NuMI beam creates a spill of neutrinos. Each spill lasts

for 10 µs, which is known as the beam spill window. Every time the protons from

the NuMI beam strike the target, the trigger records a timestamp. The timestamp

marks the start of a beam spill window. Both detectors are synchronized to the

trigger, so that we know if the data are taken within beam spill windows. For the

cosmic samples, a NOvA-ART cosmic filter, called removebeam, is applied to keep

only cosmic events that are out of the beam spill widows. Besides the cosmic filter,

some selections are applied to both detectors to get data and MC samples for the

light model tuning.

The cosmic selection is based on detector geometry which is di↵erent between

the ND and FD. However, the rules for selecting qualified particle tracks are similar.

All cosmic tracks start outside the detector. We require them to end inside the

detector. The distance of any ending points to all the walls of the detectors should

be at least 50 cm. In addition, for the ND, any events involving the muon-catcher

are not used.

The beam selections are applied to the ND data and MC files for collecting

muon and proton tracks from muon neutrino interactions. The ⌫µ CCQE-like inter-

actions in the ND are selected. Then, the high-quality muon and proton tracks are

picked out from the selected ⌫µ CCQE-like interactions. The details of the selections

are as follows:

1. Containment selections are applied to make sure the events and tracks are fully

contained within the ND detector. The distance of the starting or ending point
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of any track to the ND front, back, top, and side walls is no less than 50 cm;

2. Events in the muon-catcher are not used;

3. All ND DCMs were working during the time of data-taking;

4. Track quality selections are based on the topology and energy of ⌫µ interactions:

(a) Any selected ⌫µ interaction event satisfies the following requirements: event

has at least 8 hits; any hits of the event is at least 1 cell away from any

ND walls; event was taken within NuMI beam spill window;

(b) Besides the above, some selections are applied to the substructure of the

⌫µ interaction to ensure track quality: the event must contain two 3D

outgoing particle tracks; each track has energy deposited in at least 4

cells; two outgoing tracks start within a distance of 0 cm < |�x|, |�y| <

12 cm and 0 cm < |�z| < 20 cm, where |�x|, |�y|, and |�z| are the

absolute di↵erences of the coordinates of the two track starting points; the

longer track is at least 300 cm in length;

(c) The longer (shorter) track in event is a muon (proton) track candidate.

3.4 Sample Validations

After applying the various selections to both data and MC files separately, data

and MC comparison is performed to make sure that the selections behave consistently

between data and MC. This procedure is called sample validation. The distributions

of residual track length (see Figure 3.1) and path length (see Figure 3.2), which is

the position of the hit along the track, are compared between data and MC samples

for the sample validation. There is an overall good data and MC agreement after

applying the selections at the ND. Hence, these samples are validated to be used for

extracting the light model parameters.
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(c) ND beam muon sample
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(d) ND beam proton sample

Figure 3.1. Data and MC comparison of residual track length

In NOvA, the detector light model is tuned first, followed by the detector

energy calibration. Figure 3.3 shows the distribution of pre-calibrated energy (PE) of

hits, which is the energy before the detector calibration techniques are applied. The

samples that are used for the current light model tuning are calibrated using the old

light model and calibration techniques from the previous analysis. The light model

tuning is thus performed iteratively. Light model tuning adjusts the ratio of photons

from scintillation and Cherenkov mechanisms, so that a better data and MC overall

agreement on PE distributions is achieved after light model tuning.

Aside from data and MC comparison, MC validation is performed as well. The

variables of interest are the MC information used in the tuning, i.e., the variables in

Equation 3.2. With beam samples, particle identification (PID) and track quality
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(c) ND beam muon sample
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Figure 3.2. Data and MC comparison of path length

Table 3.1. Composition of Selected ND Beam MC Samples

muon proton others

ND muon sample 0.9535 0.0252 0.0213

ND proton sample 0.0593 0.5472 0.3935

selections are applied to get greater purity in selecting muon and proton tracks.

Ideally, the majority of the muon (proton) sample should consist of high-purity muon

(proton) tracks. The MC composition of the muon and proton samples is shown in

Figure 3.4 and Figure 3.5. The composition of beam muon and proton MC samples is

summarized in Table 3.1. The muon track sample has a higher purity than the proton

track sample. For each selected ND interaction, the longer track is used as the muon

track candidate, and the shorter one is used as the proton track candidate. Since the
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(a) ND cosmic sample
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(b) FD cosmic sample
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(c) ND beam muon sample
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(d) ND beam proton sample

Figure 3.3. Data and MC comparison of pre-calibrated energy of hits
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(a) ND muon Sample
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(b) ND proton Sample

Figure 3.4. MC composition of number of Cherenkov photons distributions for se-
lected ND beam samples

primary outgoing muon in most ⌫µ interactions is longer than the hadronic tracks,

the beam selection performs well in selecting a high purity muon track sample. The
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(a) ND muon sample
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(b) ND proton sample

Figure 3.5. MC composition of Birks suppressed energy deposition distributions for
selected ND beam samples

proton sample contains a big fraction of pions, which is a result of non-QE interactions.

There are also some muon tracks mis-selected into the proton sample, which could be

a result of two outgoing particles being similar in length. The beam selection could be

improved in future by including particle identity selection to provide purer samples

for light model tuning studies.

3.5 Fitting Technique

Two dimensional data and MC spectra are used for fitting. The energy deposi-

tion of a particle varies along its residual track length. Hence, residual track length is

used as the x-axis and pre-calibrated energy per unit path length is used as the y-axis

of the spectrum to make sure that the fit learns about the energy deposition variation

along the residual track length. Since the distribution of residual track length rapidly

falls for large values, the statistics of the hits in the spectra can be low for large values

of residual track length. Therefore, we use wider bins for larger residual track length

in order to have adequate statistics in each bin. Hence, all the 2D spectra of the MC

and data samples that are used as input to the fit are binned with non-constant bin

width.
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As already mentioned, the NOvA detectors have alternating horizontal and

vertical layers. The tuning naturally has the view factors Fview tuned separately by

splitting the samples into xz view and yz view. The 2D spectra of data samples, as

shown in Figure 3.6, are used in both rounds of fitting.

Before fitting MC to data samples, the number of hits in each residual track

length bin is normalized to 1 for all the samples. A fit is then performed by minimizing

the log-likelihood ratio of data over MC for all the normalized bins in all the samples.

The contribution to the log-likelihood in each bin is defined as

L = �2Ndata log(NMC) , (3.3)

where NMC represents normalized bin content of the MC sample, and Ndata represents

normalized bin content of the data sample. A normal log-likelihood (logNdata �

logNMC may end up having tiny L in most bins. Defining the log-likelihood function

in this way emphasizes the bin contents of the data samples and gives the fitter a

larger log-likelihood value to minimize. Comparing the 2D spectra of MC samples

before (Figure 3.7) and after (Figure 3.8) performing the fit to the data distributions

(Figure 3.6), we can see that the MC distributions after fitting look more like the

data distributions than before.

The light model parameters resulting from the first iteration of fitting are listed

in Table 3.2. These new parameter values are incorporated into the corresponding

MC simulation NOvA-ART module, i.e., photon transport. With the new simulation

Table 3.2. First Round Fitting Results

Ys = 3317.0 / MeV ✏C = 0.471

ND View Factor Fx = 0.55 Fy = 0.57

FD View Factor Fx = 0.65 Fy = 0.56
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(a) ND cosmic xz view (b) ND cosmic yz view

(c) FD cosmic xz view (d) FD cosmic yz view

(e) Muon xz view (f) Muon yz view

(g) Proton xz view (h) Proton yz view

Figure 3.6. Spectra of selected data samples that are used as input to the fit in both
rounds of light model tuning
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(a) ND cosmic xz view (b) ND cosmic yz view

(c) FD cosmic xz view (d) FD cosmic yz view

(e) Muon xz view (f) Muon yz view

(g) Proton xz view (h) Proton yz view

Figure 3.7. Spectra of selected MC samples that are used as input to the fit in the
first round of light model tuning
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(a) ND cosmic xz view (b) ND cosmic yz view

(c) FD cosmic xz view (d) FD cosmic yz view

(e) Muon xz view (f) Muon yz view

(g) Proton xz view (h) Proton yz view

Figure 3.8. Spectra of selected MC samples after fitting in the first round of light
model tuning
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setup, based on the updated light model parameters, new MC samples are processed.

An identical fitting procedure is then repeated with the new MC files, to confirm

that the derived parameters from the first round of tuning have improved the MC

and data agreement. The selected data samples used in the second round of tuning

remain the same as have been used in the first round of tuning (see Figure 3.6). The

spectra of the new MC samples after performing the fit are shown in Figure 3.9.

The MC samples are compared to the data samples in each round of tuning by

looking at the projections on the y-axis, i.e., PE per unit path length. The data and

MC distributions agree better with each other and become stable after the first round

of tuning in both xz and yz views, as shown in Figure 3.10. The resulting parameters

from the second round of fitting are used as the final light model parameters, as listed

in Table 3.3.

Table 3.3. Second Round Fitting Results

Ys = 3151.0 / MeV ✏C = 0.471

ND view factors Fx = 0.58 Fy = 0.57

FD view factors Fx = 0.53 Fy = 0.56

3.6 Result and Systematic Studies

The light model parameters in Table 3.3 are applied to generate MC files for

the NOvA oscillation analysis. Muon neutrino CCQE-like interactions are selected

to provide muon and proton tracks for use in validating the new light model. Track

quality is ensured by performing the following selections:

• Any event has exactly two reconstructed 3D Kalman tracks [17];

• Both tracks are contained in the detector volume;

• Both tracks have reconstructed muon ID [18] (ReMId) scores. A track is proton-
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(a) ND cosmic xz view (b) ND cosmic yz view

(c) FD cosmic xz view (d) FD cosmic yz view

(e) Muon xz view (f) Muon yz view

(g) Proton xz view (h) Proton yz view

Figure 3.9. Spectra of selected new MC samples after fitting in the second round of
light model tuning
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(b) ND cosmic yz view
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(c) FD cosmic xz view
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(d) FD cosmic yz view
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(e) Muon xz view
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(f) Muon yz view
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(g) Proton xz view
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Figure 3.10. Distributions of PE per unit path length before (dashed) and after (solid)
fitting in first (blue) and second (red) rounds of light model tuning
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like if its ReMId is less than 0.15;

• The starting points of the two tracks are within a distance of 0 cm< |�x|, |�y| <

6 cm and 0 cm < |�z| < 10 cm, where |�x|, |�y|, and |�z| are the absolute

di↵erences of the coordinates of the two track starting points;

• No more than 3 hits in the event are o↵ the tracks.

• No more than 0.1 GeV of energy in the event is o↵ the tracks.

With these selections applied to both data and MC samples, muon and proton tracks

are selected. As shown in Figure 3.11, energy loss per unit track length (dE
dx
) vs.

residual track length is compared between data and MC to validate the light model.

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 1000
Residual track length (cm)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

dE
 / 

dx
 (G

eV
 / 

cm
)

(a) Muon MC

0 100 200 300 400 500 600 700 800 900 1000
Residual track length (cm)

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

dE
 / 

dx
 (G

eV
 / 

cm
)

0
20
40
60
80
100
120
140
160
180
200

(b) Muon data

0 10 20 30 40 50 60 70 80 90 100
Residual track length (cm)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

 d
E 

/ d
x 

(G
eV

 / 
cm

)

0

10

20

30

40

50

60

(c) Proton MC

0 10 20 30 40 50 60 70 80 90 100
Residual track length (cm)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

 d
E 

/ d
x 

(G
eV

 / 
cm

)

0

20

40

60

80

100

120

(d) Proton data

Figure 3.11. Energy loss per unit track length vs. residual track length distributions
with red (black) histogram representing peak profile of MC (data) sample
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(b) Proton tracks

Figure 3.12. Peak profiles of the dE

dx
vs. residual track length distributions from

Figure 3.11 with ratio of data to MC shown at the bottom of each plot

The peak profiles of these 2D spectra and the data to MC ratios of the profiles

are plotted in Figure 3.12. To quantify the normalization di↵erences between data and

MC energy profiles, �2 values are calculated over a range of normalization constant

“Scale” to get the minimal �2 value defined as

�2 =
NX

i=1

(data(i)� Scale⇥MC(i))2

Error2
data

(i) + Error2
MC

(i)
, (3.4)

where i is the bin index from 1 to N ; data(i) is the value of dE

dx
in bin i of the data peak

profile; MC(i) is the value of dE

dx
in bin i of the MC peak profile; Errordata(i) represents

the statistical error of data in bin i; and ErrorMC(i) represents the statistical error of

MC in bin i. The normalization constants (Scale) corresponding to the minimal �2

values of fitting MC to data samples are extracted from separate muon and proton

track samples, and are listed in Table 3.4.

By using Equation 3.2, we can estimate the proportions of Cherenkov photons

(✏CC�/N�) for the muon and proton track MC samples separately. Approximately

5% of photons produced in the muon sample are Cherenkov photons, and for the
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Table 3.4. Normalization Constants for Minimal �2 Values

muon proton

Scale 0.9899 0.9577

proton sample the fraction of Cherenkov photons is 0.5%. The majority of light pro-

duction in the NOvA detectors is thus contributed by scintillation light. Based on

the normalization constants in Table 3.4, the muon tracks have a smaller discrepancy

(1%) between MC and data, and the proton tracks have a larger discrepancy (4.3%).

The muon tracks have an overall better data/MC agreement, since the majority of

the samples used for light model tuning are muon tracks either from cosmic rays

or the NuMI beam. Compared to the previous analysis, the discrepancy for muons

(protons) was 3% (4.3%). Since the lepton energy contributes roughly 80% of the

neutrino energy, this improvement helps to reduce the uncertainty of neutrino energy

reconstruction. In future analyses, an improved beam selection, using particle identi-

fication, may give us a purer proton track sample, which may lead to an improvement

in the data/MC agreement of the proton tracks as well.

A proper evaluation of the systematic uncertainty of the Cherenkov photon

proportion, called Cherenkov systematic uncertainty [19], was designed to cover the

uncertainties of splitting detector light response into scintillation and Cherenkov pho-

tons. There are two other systematic uncertainties, called “light level up” and “light

level down.” The “light level up” (“light level down”) systematic uncertainty scales up

(down) the total number of simulated photons to account for the possible data/MC

overall discrepancy caused by the detector light model [19].

NOvA uses cosmic muons to further calibrate the detectors. Two types of

calibrations are performed: attenuation calibration and absolute calibration [19]. At-

tenuation calibration aims at calibrating the e↵ects of detector geometry. Since the
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detector cells are very long, the scintillation light captured by the WLS fiber and

passed through the cell to the APD is naturally attenuated along the distance. The

attenuation calibration is performed to correct the photoelectron signals based on

the positions of the interactions within the detectors. Then, during the absolute

calibration, the photoelectron signals are used to estimate the energy deposited in

the detector cell by the interacting particle. After calibrating the energy depositions,

with the subsequent reconstruction techniques (see Chapter 4), neutrino energy can

be well reconstructed (see Chapter 5). The neutrino energy is used as an important

physics scale in the measurement of the oscillation parameters (see Chapter 6).
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CHAPTER 4

NOVA RECONSTRUCTION

As discussed in the previous chapter, the NOvA detectors are made of oriented

orthogonal layers, allowing 3D reconstruction by combining the readouts from the xz

planes and the yz planes. There are various reconstruction techniques employed in

the NOvA experiment. They not only reconstruct di↵erent objects, such as a neu-

trino event, event interaction point, and outgoing particles of a neutrino interaction,

but also reconstruct the corresponding physics variables, such as the energy of a neu-

trino event, position of the interaction point, and directions of outgoing particles.

There are also some reconstruction algorithms aiming at identifying the identities of

the reconstructed particles and events. NOvA oscillation analyses make use of these

reconstructed variables as well as event classification and particle identification tech-

niques. In this chapter, the main reconstruction techniques are discussed, starting

with the neutrino interaction event reconstruction, followed by the reconstruction

of the sub-structures, such as the interaction point, the outgoing particles, and the

particle identifications.

4.1 Basic Reconstruction Techniques

A neutrino interaction event is also called a slice. It is an object that is

reconstructed based on the time and space correlation of a group of hits using the

information from the two views of each event. The algorithm that reconstructs slices

is called Slicer. Slicer groups together all the hits that come from the same neutrino

interaction or cosmic event. Since all the hits in a neutrino interaction event come

from the same origin in space, the Hough Transformation algorithm [20] and the

Elastic Arms algorithm [21] are used to search for the origin of the event, which

is also called the global 3D vertex. Using the vertex, the FuzzyK algorithm [22] is

applied to reconstruct final-state particles into objects called 3D prongs. A 3D prong
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contains all the information about a final-state particle.

4.2 Final-state Particle Reconstruction

The FuzzyK algorithm has two parts, a clustering algorithm and a matching

algorithm. The clustering algorithm groups hits into 2D clusters, called 2D prongs,

in each detector view so that the total distance from the hits to the associated prongs

is minimum. In the electron neutrino analyses, the primary outgoing leptons are elec-

trons, which create showers, i.e., “fuzzy” tracks. The clustering result of a simulated

electron neutrino interaction in the FD with two 2D prongs in each view is shown in

Figure 4.1.

From the MC truth, we know that the xz prong 1 (2) and yz prong 1 (2)

are produced by the outgoing proton (electron). However, with real data events, we

never know the truth about the final-state particle identities. To match the two 2D

prongs (one from each view) that come from the same outgoing particle, the matching

algorithm compares the energy deposition patterns of the candidate 2D prongs from

both views. The energy deposition pattern is represented as the energy fraction profile

vs. the prong length. It reveals how the energy is deposited in the detector cells along

a 2D prong. At the starting point of the 2D prong, the energy fraction is zero; at the

ending point, the energy fraction is 1. The matching algorithm compares the energy

deposition pattern of each 2D prong in one view to all the energy deposition patterns

of the 2D prongs in the other detector view. Two similar patterns indicate that the

two 2D prongs (xz view, yz view) are projected from the same final-state particle.

These two 2D prongs are then matched and defined as a 3D prong object which

describes a final-state particle. Figure 4.2 shows the energy deposition patterns of

the 2D prongs from the event in Figure 4.1, which is used as an example to illustrate

the matching algorithm.



37

F
ig
u
re

4.
1.

E
ve
nt

d
is
p
la
y
of

a
si
m
u
la
te
d
el
ec
tr
on

n
eu
tr
in
o
in
te
ra
ct
io
n
in

th
e
F
D

w
it
h
tw

o
2D

p
ro
n
gs

in
ea
ch

vi
ew

[2
3]



38

Figure 4.2. Energy deposition patterns of 2D prongs with scales of x-axis varied by
2D prong length [23]

When two 2D prongs are distinguishable by length, they have quite di↵erent

patterns: the shorter prong approaches and remains 1 first, followed by the longer

prong. The xz prong 1 and yz prong 2 in the top right plot of Figure 4.2 are examples

of two 2D prongs with di↵erent lengths; because xz prong 1 is 90 cm in length while

yz prong 2 is 300 cm in length, they are unmatched. The steps in the graphs of

xz prong 1 and yz prong 1 are caused by the 2D alternating layer design of the

detectors. A 3D particle is projected into the two detector views. When the particle

passes through a detector cell in one view and deposits some energy, the energy
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fraction increases in that view. Meanwhile, the energy fraction profile in the other

view remains unchanged.

Even if two particles are similar in path length, the pattern of energy deposition

can be still useful in the matching algorithm. Di↵erent types of particle have di↵erent

patterns of energy deposition. For example, a final-state proton and electron are

similar in length. The proton tends to have a linear relationship between energy loss

and track length until the end of track, where the peak energy deposition occurs. So

at the end of the proton energy pattern there may appear a larger step. The electron

has a fuzzier trajectory. The hits generated by an electron are more spread over space

instead of remaining in the initial direction of the electron. In this case, the energy

fraction accumulates faster in the beginning of the electron path, then increases more

slowly, which is not a linear pattern.

Once the final-state particles are reconstructed as 3D prongs by FuzzyK, a

convolutional neural network (CNN) is applied to identify the particle types (IDs) of

the 3D prongs. With the particle IDs reconstructed by the CNN, the 3D prong infor-

mation can then be used for neutrino energy reconstruction as described in Chapter 5.

The 3D prong particle IDs are also used to categorize the neutrino interaction types,

which is important in NOvA neutrino cross section measurements.

However, it is not always the case that all the 2D prongs can be matched

into 3D prongs. If the two views have unequal numbers of 2D prongs, there are

unmatched 2D prongs in the event. Figure 4.3 shows an example of a simulated ⌫e

having unequal numbers of 2D prongs in the two views. From the MC truth we know

that the neutrino interaction is a ⌫e CCQE interaction (⌫e+n ! p+e�) and the true

energy of the ⌫e is 2.30 GeV, which is within the typical energy range of the NOvA

analysis.
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Figure 4.4. Multiplicity distributions of unmatched 2D prongs

In the xz view of this event, the proton and the electron overlap and are hard

for the FuzzyK clustering algorithm to separate. In the yz view, the proton track and

the electron track are well separated. The track in purple is due to the proton moving

to the lower right. The red track moving to the top right is made by the electron.

Since there is one 2D prong in the xz view and two 2D prongs in the yz view, only

one of the 2D prongs from the yz view is matched with the xz 2D prong. From the

MC truth of the matched 3D prong, we know that the yz electron prong is matched

with an xz 2D prong and the yz proton prong remains unmatched.

Unmatched 2D prongs have not previously been used in NOvA analyses. Fig-

ure 4.4 shows the multiplicity distributions of unmatched 2D prongs. There are 92.2%

of reconstructed events in the FD containing at least one unmatched 2D prong, and

the proportion at the ND is 92.9%. Hence, it would be beneficial to include the 2D

prong information in future analyses.

I developed the use of the 2D prong CNN, which is di↵erent from the 3D

prong CNN, for identifying unmatched 2D prong particle IDs, which has not been

done in the past. Besides identifying unmatched 2D prongs, the 2D prong CNN can

also identify the particle IDs of the 2D views of a 3D prong. In most cases, the 2D



42

views of a 3D prong should have the same particle type as the 3D prong. However, an

unmatched 2D prong indicates that the reconstruction of the final-state particles in

the event is not perfect. In this case, applying the 2D prong CNN on the two views of

the matched 3D prong may provide additional information on the 3D prong particle

ID to the NOvA analyses. With the additional information provide by the 2D prong

CNN, the statistics will be increased for the NOvA analyses.

The 2D prong CNN is discussed later in this chapter, after first using the 3D

prong CNN as an example to illustrate the CNN technique.

4.3 Convolutional Neural Network

The convolutional neural network is a well-known machine learning algorithm.

It is widely used in many fields as a tool for image identification. Many physics

experiments employ the CNN technique to identify particles or events captured by

detectors, such as MicroBooNE [31] and ATLAS [32]. The CNN employed by a

physics experiment is usually trained on MC files.

In general, a CNN consists of an input layer, hidden layers, and an output layer.

The input layer feeds the input images to the CNN. The hidden layers are a group

of layers with various functions. Each hidden layer takes the output image, called a

feature map, from the previous layer, and performs some operations to produce its

own feature map, which is fed to the next layer. The hidden layers are designed to

learn the features of the input images by extracting abstract features, such as track-

like, point-like, and shower-like structures. Di↵erent types of particles or events have

di↵erent features of topology or energy response which can be used by the CNN for

identification purposes. For example, in the NOvA detectors, most electron showers

look fuzzier than muon tracks, as shown in Figure 4.5. These features are extracted

by the hidden layers and used to identify the input images. The output layer assigns
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Figure 4.5. Event displays of simulated ⌫µ (top), ⌫e (middle), and neutral-current
(bottom) events with outgoing particles labeled by MC truth
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Figure 4.6. Graphical representation of a generic CNN taking a simulated electron as
input to hidden layers in gray box

probabilities to the possible types of particles, where the sum of the probabilities must

equal one. Figure 4.6 shows an example of a generic CNN diagram. The hidden layers

are in the gray box. Three di↵erent hidden layers apply three di↵erent operations

to their input feature maps. The blue, yellow, and red squares represent the output

feature maps of the three hidden layers. The output layer in black delivers a vector

of probabilities of the possible particle types.

The goal of a CNN is to approximate a function f : Rn ! Rm, where n is

the dimensionality of the input image, and m is the length of the output vector. In

the following subsections, the 3D prong CNN is used as an example to illustrate the

details of di↵erent CNN layers.

4.3.1 Input Layer. One 3D prong CNN input object contains four images.

Along with the images, an MC truth value, called a label, is also input to the input

layer. The label provides the 3D prong MC true particle ID to the CNN for training

purposes. When the trained CNN is applied to the real data to evaluate the particle

IDs of the 3D prongs, the trained CNN needs only the images of the 3D prongs to

identify particle types. In this subsection, the input images are discussed first, then

the input labels.
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The input images consist of pixel maps. Since the detectors have di↵erent

responses to di↵erent types of particles, energy deposition along with event or particle

topology is used by the CNN for identification purposes. The size of the pixel map

is 80 cells in width (y-axis) and 100 cells in length (x-axis). Each pixel corresponds

to one cell of the detector. When the particles pass through the detector cells, some

energy is deposited in the cell, which is typically between 0 GeV and 2 GeV. The

color, which is considered as the third dimension of the pixel map and is called depth,

represents the amount of energy deposited in the cell. In general, if the image size is

bigger, the processing time of the CNN is longer. Since the complete images of the

NOvA detectors are too big for the CNN to process in reasonable computer time,

a smaller pixel map with a size of 80 ⇥ 100 is selected in each view such that the

vertex and prongs are fully contained in the image. The pixel maps of the simulated

⌫e CCQE interaction in Figure 4.3 are shown in Figure 4.7.

If a prong is longer than 5 m or generates fewer than three hits, the prong is

not used by the CNN. Because most tracks longer than 5 m are muons, and processing

a large pixel map is computationally expensive, it is neither e�cient nor necessary to

(a) xz view (b) yz view

Figure 4.7. Pixel maps of event view of the ⌫e CCQE interaction in Figure 4.3
showing proton (bottom) and electron (top) trajectories well separated in yz view
but overlapped in xz view
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apply the CNN to these super-long prongs. And for a prong with fewer than three

hits, the information contained in the pixel map is not enough for the CNN to make

a reliable identification on the prong particle type.

For training purposes, the label of the object is input to the CNN along with its

images. A label is the true identity of an object, which depends on the identification

goal of the CNN. Taking the 3D prong CNN as an example, it has eight labels

corresponding to the eight types of particles. They are muon, electron, proton, ⇡±,

neutron, ⇡0, �, and other. Since we use MC files to train the 3D prong CNN, the

true particle IDs of the input objects are known from the MC truth and each object

always belongs to one of the eight categories.3

4.3.2 Hidden Layers. A hidden layer studies and extracts the features of a pixel

map by applying a function, which is also called a kernel matrix or feature filter,

to the image. The output of a hidden layer is called a feature map and is input to

the next layer. Each hidden layer does some operations or calculations on its input

feature maps. There are various types of hidden layers, such as a pooling layer, a

convolutional layer, or a normalization layer. In Figure 4.8, I fill the input feature

map (Figure 4.8(a)) with some arbitrary values and use a 2 ⇥ 2 max pooling layer

(Figure 4.8(b)), which covers four pixels at a time, to demonstrate how a max pooling

layer picks up the local maximum values from the selected 2⇥ 2 regions and fills the

output feature map (Figure 4.8(c)).

4.3.3 Output Layer. An output layer delivers a vector of probabilities (~p) for

each individual input object. Each element of ~p represents the probability of the

input object being identified as the corresponding label. For the 3D prong CNN, the

length of the output vector is eight, and the eight probabilities add up to one. All the

3The other label includes all the other types of particles that do not belong to
the first seven types.
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(a) Input feature map (b) Max pooling layer kernel

(c) Kernel sliding across the input feature map

Figure 4.8. 2⇥ 2 max pooling layer kernel sliding across input feature map to extract
local maximum values and fill output feature map
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eight probabilities are useful in the analyses, and the one with the highest probability

is assigned to the 3D prong as the reconstructed particle ID.

4.4 Prong CNNs

There are several CNNs employed in NOvA, two of which are the 3D particle

identifier (3D prong CNN) and 2D particle identifier (2D prong CNN). The reason

that two di↵erent identifiers are employed separately for 3D prongs and unmatched

2D prongs is that they have di↵erent input image requirements.

4.4.1 Input Layer. Figure 4.9 shows the pixel maps of the matched 3D prong,

which comes from the ⌫e event in Figure 4.7. Figure 4.10 shows the pixel maps of the

unmatched proton prong, which comes from the yz view of the same event.

The input layer of the 3D prong CNN takes four pixel maps as one object,

including the two (xz and yz) pixel maps of a 3D prong and the two pixel maps of

the event. With these four pixel maps, the 3D prong CNN assigns the reconstructed

particle ID to the 3D prong. But the 3D prong CNN is not able to identify the un-

matched 2D prongs for the following reasons. As shown in Figure 4.10, an unmatched

(a) xz view (b) yz view

Figure 4.9. Pixel maps of a matched 3D prong
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(a) xz view (b) yz view

Figure 4.10. Pixel maps of an unmatched 2D prong with no 2D prong in xz view and
one 2D proton prong in yz view

2D prong has only one view that contains a cluster of hits, either the xz view or the yz

view, while the other view is empty. The empty view has no information for the CNN

to use, hence is not e↵ective as input to the CNN. Therefore, for each unmatched 2D

prong, there are at most three pixel maps that can be used as e↵ective inputs, which

does not meet the input requirements of the 3D prong CNN.

I invented and trained the 2D prong CNN to identify the 2D prong particle

IDs. The structure of the 2D prong CNN is illustrated in Figure 4.11. It has a similar

structure as the 3D prong CNN but adjusted for the 2D prong input requirements.

Both CNNs are based on MobileNetV2 [24], which was developed by Google.

4.4.2 Structure of 2D Prong CNN. In Figure 4.11, the bottleneck structure

consists of a group of hidden layers, which increase the depth of the network by

adding more layers. At the same time, the bottleneck structure maintains the size

of the output feature map the same as that of the input feature map to avoid an

increase in processing time for the following layers. It also feeds the feature map from

the previous layer to the downstream layer by skipping some layers in between to make

sure the previous features are not ignored [24]. A short muon track with a Michel
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Figure 4.11. Structure of 2D prong CNN

electron at the end is used as an example to illustrate why the additional residual

information can be helpful in particle identification. Because the muon’s track-like

feature is more pronounced than some tiny features close to the end of the track,

without the additional information from the upstream feature map, the in-between

layers may extract the track-like feature and ignore the tiny Michel electron shower

structure, which only consists of a couple of low energy hits close to the end of the

muon track. In this case, the CNN may not be able to distinguish well among short

muon tracks with Michel electrons and other short-track particles, such as proton and

pion tracks.

4.4.3 Training and Test Data Sets. The CNN is trained on the FD MC files in

HDF5 [25] format. Both FHC and RHC datasets, including ⌫µ, ⌫̄µ, ⌫e, and ⌫̄e events,
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are used to ensure that the di↵erent types of particles and events are su�ciently

represented in the training datasets. Because the component composition of the

training sample a↵ects the outcome of the training, extra care is taken to make sure

that there are similar numbers of all particle types in the training data samples. If

one type of particle is more prevalent than the other types, the training can be biased

so that the trained CNN is not able to identify the rare particle types and tends to

identify all of the input as the majority type. For example, in the FD selected ⌫µ or ⌫e

samples, there are more muons or electrons than charged pions. To avoid this possible

problem, we randomly delete some particles of the majority types so that the numbers

of the di↵erent types are balanced. This procedure is called sample balancing. After

the sample balancing, we have similar numbers of each type of particle in the datasets

prepared for training and testing.

The files from the FHC and RHC datasets are randomly shu✏ed and then

split into two parts. One part, containing 80% of the dataset, is used for training

(the training dataset). The other part is the test dataset, containing the remaining

20%. Randomly shu✏ing and splitting are generic sample preparation techniques in

machine learning and ensure that di↵erent types of particles and events have equal

opportunities to be used in the training. Because the purity of the unmatched 2D

prongs is too poor to be used for training, the 2D views of the 3D prongs are used to

train the 2D prong CNN.

The series of selections is as follows. The containment selection is applied

to ensure events, 3D prongs, and 2D prongs are fully contained within the detector

volume: keeping at least 12 cm away from the bottom and sidewalls of the FD;

and keeping 63 cm away from the top of the FD to avoid possible overlaps with

cosmic backgrounds incident from the top. The number-of-hits selection requires

each input pixel map to contain at least three hits. There is also purity selection,
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which is based on the purity of the 3D prongs. The purity of a 3D prong is defined

in the following way. The outgoing particles in a neutrino interaction event may have

trajectories overlapping each other. Hence, one reconstructed 3D prong can contain

hits from more than one particle. Based on the MC truth, the 3D prong’s particle

ID is assigned as that of the particle with the biggest contribution in energy. The

purity of the 3D prong is defined as the ratio of the total energy of the hits from the

dominating particle to the 3D prong total energy. The required values of 3D prong

purity are listed in Table 4.1.

Table 4.1. Values of 3D Prong Purity Selections

muon electron proton � ⇡±

0.5 0.4 0.35 0.5 0.35

Ideally, at least 50% of the prong energy should be contributed from the same

particle. But this is not always true for all types of particle. Since the NOvA detectors

are segmented in 6 ⇥ 3.87 cm2 cells, they are better at reconstructing particles with

longer tracks. For a long track, such as a muon track, even if the beginning overlaps

some other particles, it can still be well reconstructed and have a high purity. When

all the outgoing particles are short tracks and close to each other, Fuzzyk can easily

cluster hits from di↵erent particles into the same prong, thus the proportion of energy

contributed by each particle can easily drop below 50%.

To get a balanced sample for CNN training, the last “selection” is to randomly

delete some entries in all labels except for ⇡±, which already has the lowest statistics

in most of the files. Before applying these selections, the proportions of particle types

of 3D prongs are as listed in Table 4.2. The other particle types are so rare in the

files that they are neglected in the sample balancing and in the table. After applying

the selections, the training sample contains 818,700 entries with equal numbers of

each label. The training was performed on Cooley, a visualization cluster at Argonne
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Table 4.2. Composition of Training Sample Before Selections Applied

muon electron proton � ⇡±

0.307 0.510 0.063 0.094 0.026

National Laboratory for scientific data analysis and visualization, and it took 36 hours

to converge and become stable.4

4.4.4 Training and Test Metrics. The loss metric is used in training and is

discussed first, followed by the accuracy metric, which is used in testing.

The loss metric measures the error between the output of the CNN and the MC

truth. Its gradient as a function of the parameters in the matrices of the CNN model is

calculated using the back-propagation algorithm [28]. Following the Mini-Batch [29]

training strategy,5 in the case of 2D prong CNN training, a batch consists of 128

input 2D prongs, which means 128 input 2D prongs are simultaneously evaluated in a

batch; this constitutes one iteration of the training. The parameters in the matrices

of the CNN model are revised at the end of each iteration so that the training moves

in the direction of reducing the average loss value of the batch.

A loss value is calculated for each 2D prong based on the output probability

vector by using the multinomial logistic loss [30] function:

loss = �
X

i={labels}

ti ln pi , (4.1)

where the output vector (~p) contains eight predicted probabilities corresponding to

4The training was performed using Keras, an open-source neural-network li-
brary written in Python [26]. The scripts are available online [27].

5Batches are used because it is ine�cient and computationally impractical to
input the entire training dataset to the CNN at once.
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the eight labels; pi, an element of ~p, is the predicted probability of label i; and ti is

the binary indicator of label i. For an input 2D prong with true label l, the binary

indicator is defined as:

ti =

8
>><

>>:

1 i = l

0 otherwise .

(4.2)

Summing over all the labels, only if i is the same as the true label (l) of the 2D

prong does the binary indicator equal one, and the corresponding pi, which is the

probability of the correct identification, contributes to the loss value in Equation 4.1.

If the probability of the true label is close to one, then the loss value is close to zero,

which means the correct identification made by the CNN has tiny error. But if the

probability predicted by the CNN is tiny on the true label, then the loss value is huge,

which means the error of the probability of the correct identification is huge. The

loss value can even go to infinity if the predicted probability of the true label is zero.

The accuracy metric quantifies how frequently the trained CNN makes the

correct prediction by using the test data set. It is defined as

accuracy =
Number of correct predictions

Total number of predictions
, (4.3)

where the denominator is the batch size of testing (128), and the numerator is the

number of correct identifications in a batch, where a correct identification means that

the label with the highest probability assigned by the CNN agrees with the true label.

There are 2,500 iterations in one epoch. For each iteration, the loss value per

iteration is averaged over 128 2D prongs. After one epoch, the CNN has approxi-

mately processed and evaluated the entire training dataset once. However, one epoch
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(seeing the entire training dataset once) is not enough to ensure the average loss

value has been minimized. More than one epoch are used in the training to ensure

that the average loss value is truly minimized and stable before the training is ended.

Figure 4.12 shows the accuracy and loss curves versus iteration count. The training

loss is a rolling average of 128 training data samples. The test loss (accuracy) is the

rolling average loss (accuracy) over 128 test data samples. The similar training and

test loss indicates that the network has similar performance on training and test data

sets, and is not badly over trained. At the end of training, the test accuracy rises to

0.76 while the loss curves drop to 0.6, and all three curves become stable.

The 0.76 test accuracy means 76% of time, the CNN makes correct predictions

Figure 4.12. Loss calculated on the training data set (blue) and test data set (green),
and accuracy calculated on test data set (red) as functions of iteration count
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about the particle IDs of 2D prongs. It could be due to the di�culty of distinguishing

outgoing electrons from photons, which are both usually in the form of an electro-

magnetic shower: high-energy photons interact with matter via pair production; and

high-energy electrons and positrons emit photons when they decelerate. In the bal-

anced data set, the proportions of electrons and �s are each 20% of the total.

The loss value of 0.6 qualifies the error of the prediction made by the CNN.

Using Equation 4.1, the probability pi of the correct prediction (i = l, where l is

the true label) is determined by � ln pi = 0.6, which gives pi = 0.55. Taking the

same example of electron, this means when the CNN predicts the 2D prong particle

type as electron, the probability of this prediction is 0.55. The averaged loss is 0.6,

which means the probabilities of the CNN to distinguish the particles is more than

50%. Since there are eight labels, the probability of randomly picking one label is 1

8
.

Compared to this value, a probability of 0.55 is way better, and the loss value of 0.6

is thus reasonably low.

4.4.5 Result. Once the CNN model is trained, we run it with the test data set to

evaluate the performance of the CNN. Some generic techniques are used, such as the

classification matrix and particle ID distributions.

A classification matrix is shown in Figure 4.13. The elements having their

predicted label (x-axis) the same as their true labels (y-axis) represent the correct

identifications made by the CNN. They are much darker in color compared to the

remaining elements, which indicates that the CNN model has good performance in

identifying 2D prong particle IDs. To get a better sense of the performance, we need

to normalize the matrix in a special way. The normalization can be applied either

by column or by row. Either way tells a similar story about the CNN performance.

The column normalized matrix (Figure 4.14) is used as an example. After normal-

ization, the sum of each column in the matrix equals one. The elements in a column
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Figure 4.13. Unnormalized classification matrix of true labels (row) vs. predicted
labels (column) with color representing number of 2D prongs in each entry

Figure 4.14. Column normalized matrix of true labels (row) vs. predicted labels
(column) with color representing fraction of 2D prongs
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indicate the proportions of all the true labels. The diagonal of the matrix indicates

the proportions of the correct identifications. That means, looking at a column (for

example, electron), among all the 2D prongs that are predicted to be electron 2D

prongs, the fraction of the 2D prongs that are truly formed by electrons is 0.84. In

the same column, 15% of the 2D prongs that are predicted to be electron 2D prongs

are formed by a true �. The proportion of true �s has the second largest value among

the predicted electron 2D prongs. This is because electrons and �s are di�cult to

distinguish from each other in the detector, as described above. For a similar rea-

son, muons (track-like) and electrons (shower-like) are easy to distinguish, and the

proportion of true muons is thus 0, meaning that none of the predicted electron 2D

prongs is formed by a true muon. The proportion, i.e., column normalized matrix

element, is defined as:

Mi,j =
Ci,jP

i=labels
Ci,j

, (4.4)

where i and j are row and column indexes, Ci,j is the classification matrix element at

row i, column j, and Mi,j are the normalized matrix elements.

Figure 4.15 shows the CNN-identified particle ID distributions of the 2D

prongs. Most true particles are correctly identified, having their probabilities close

to one, while the background events in each plot have small probabilities, meaning

that these events are identified to be background to the corresponding particle type.

These particle ID plots show that the performance of the trained CNN is good enough

to separate the true particles from the backgrounds for each presenting particle type.

Hence, the trained CNN is good enough for identifying the 2D prong particles.6

6There are barely any particles in the “other” category for the CNN to train
on or to evaluate, so its particle ID distribution is di↵erent from those of the other
categories due to lack of statistics.
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Figure 4.15. Distributions of 2D prong CNN predicted particle ID with red histograms
representing true particles and gray histograms representing all the other types of
particles (background)

The 2D prong CNN provides additional information for unmatched 2D prongs,

which have not previously been used in NOvA analyses. With this information,

we can improve both the event identification and energy estimation. These two
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improvements may lead to improving the sensitivity of NOvA results by reducing

systematic and statistical uncertainties. The 2D prong CNN is used in ongoing cross

section measurement studies to identify unmatched 2D prongs and further identify

the events. It is also used in the electron (anti)neutrino reconstruction [33] studies,

providing an alternative method to that used in the NOvA 2020 analysis. The 2D

prong CNN has been added to the o�cial production chain of NOvA and its results

will be used in future analyses.
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CHAPTER 5

ELECTRON (ANTI)NEUTRINO ENERGY
RECONSTRUCTION

The approach to the energy reconstruction of the ⌫e signal events is based on

the assumption that the energy response of the detectors is inherently di↵erent for

leptonic and hadronic components, which are both present in our signal events. The

energy reconstruction of electron (anti)neutrino events makes use of the 3D prong

information, including the 3D prong CNN classified particle IDs. The reconstructed

⌫e (⌫̄e) energy is defined as a function of the leptonic and hadronic components.

In the study of electron (anti)neutrino energy reconstruction, two energy es-

timators are trained. One is trained on the FHC MC files for the neutrino signal

events (⌫µ ! ⌫e) and the other on the RHC MC files for the antineutrino signal

events (⌫̄µ ! ⌫̄e). The methodology and procedures of energy reconstruction for ⌫e

and ⌫̄e are similar. In this chapter, the FHC energy estimator is used to demonstrate

how to reconstruct the energy of ⌫e signal events. Then, the results of both ⌫e and ⌫̄e

energy estimators are shown and discussed.

5.1 Selection

In this section, I describe the selections that are applied to the FD MC files to

remove background events and to ensure the quality of the ⌫e signal events. The selec-

tions, which are based on the ⌫e appearance analysis (Chapter 6) selections, consist

of basic quality selection, detector containment selection, loose event identification

(ID) selection, loose analysis selection, and MC truth selection. The basic quality

selection and the detector containment selection are the same as the ones applied

in the ⌫e appearance analysis. The loose event ID and loose analysis selections are

based on the corresponding ⌫e analysis selections. The details of the selections are as

follows:
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1. The basic quality selection makes sure that events are well reconstructed with

all the necessary reconstruction objects: one slice, one vertex, and at least one

3D prong. It also makes sure that events are in the beam time window, i.e.,

detected while there is a beam pulse delivered by the NuMI beam.

2. The containment selection requires the minimum distance of all the 3D prongs

in an event to be at least 12 cm from the sidewalls and the bottom wall of the

FD; at least 18 cm from the front and back walls of the FD; at least 63 cm from

the top of the FD. With the containment selection applied, the majority of ⌫e

signal candidates are kept for analysis while incident cosmic rays and partially

contained events are removed.

3. The loose event ID selection requires the probability of the event CNN to classify

an event as a ⌫e interaction candidate to be at least 0.75.

4. The loose analysis selection requires that the length of the longest 3D prong in

an event is between 1 and 5 m; an event consists of 30–150 hits; and true energy

of any ⌫e event is in the range 0.5–4.5 GeV.

5. The MC truth selection ensures all the events are truly ⌫µ ! ⌫e events.

The MC samples used in the energy reconstruction studies consist of the full

MC dataset, generated by the NOvA production group within the production-5 cam-

paign for the 2020 analysis. The MC files are evenly split into two parts. Half of

the MC files are used to fit for the estimator, the other half are used to validate the

performance. The number of events for fitting (validating) after all the necessary se-

lections is 1,145,610. Flux weights, which are generated by the PPFX generator [16],

are applied to the MC events. These weights account for beam-dependent corrections

which include the beam focusing and the hadron production of the NuMI beam.
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Given that electromagnetic (EM) and hadronic (HAD) depositions have dif-

ferent response in the detector, a fit to true neutrino energy as a function of the

reconstructed EM and HAD energy components is performed to reconstruct the en-

ergy of ⌫e signal events. All the 3D prongs are first classified as either EM-like or

HAD-like. This is done by using the output predictions of the 3D prong CNN. The

score to classify prongs as EM-like is given by:

CNNEM ID = CNNelectron ID + CNN� ID . (5.1)

If a prong satisfies CNNEM ID > 0.5, then it is classified as an EM-like prong, also

called an EM shower. Otherwise, it is a HAD-like prong. The electron neutrino

energy estimator (Ereco) is defined based on the 3D prong information. EM shower

energy (EEM) is calculated by summing over all the EM-like prong energies in an

event. Then, the corresponding HAD energy is defined as the energy of the event hits

minus the EM shower energy.

5.2 Philosophy of Energy Estimator

A function is needed to map the two observable variables (EEM and EHAD)

to an estimator (Ereco) of the true energy. The function is in the form of Ereco =

aEEM + bEHAD+ cE2

EM
+dE2

HAD
, where a, b, c, and d are the parameters. To get the

fitted parameters, a chi-square fit is performed on the reweighted MC sample, which is

reweighted by the “flattening weight” (described below.) With the flattening weight

applied, the reweighted MC sample has a flat distribution in true energy. Thus, the

chi-square fitting result is not biased anymore by the high statistics at the energy

peak, as it was in the previous analyses. In this section, the details of the flattening

weight and chi-square fit for the energy estimator are discussed.

Based on the original true energy distribution (Figure 5.1), which has a peak
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Figure 5.1. True neutrino energy distribution of selected FD MC events

around 2 GeV and small tails with very few events in the high and low energy ranges,

the flattening weight is defined as wi =
1

ni
, where ni represents the number of events

in bin i; wi represents the flattening weight for events in the energy range of bin i.

There are 25 bins evenly distributed in the range 0–5 GeV. The bin width is 0.2 GeV.

The energy range of the ith bin is (0.2(i� 1), 0.2i) GeV. All the events in the energy

range of bin i share the same weight wi.

The chi-square fit is performed based on a 2D plot as shown in Figure 5.2.

Each bin of the 2D plot is filled by the weighted average true energy value, which is

defined by

Ētrue(x, y) =
nX

i=1

wiE
i

true
, (5.2)

where n represents the number of events whose EM energy (x) and HAD energy (y)

are within the energy range of bin (x, y); wi is the flattening weight of event i; Ei

true

is the true neutrino energy of event i. The empty bins in the 2D plot are excluded
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Figure 5.2. Hadronic energy vs. reconstructed electromagnetic energy distribution
with color representing weighted average true neutrino energy in GeV

from the fit.7 The chi-square (�2) is defined by

�2 =
binsX

(x,y)

(Ētrue(x, y)� Ereco(x, y|a, b, c, d))2

�2(x, y)
, (5.3)

where the summation acts on all the bins that are used in the fit; Ētrue(x, y) is the

weighted average true energy of bin (x, y); Ereco is the fitting function of the energy

estimator (Ereco = aEEM + bEHAD + cE2

EM
+ dE2

HAD
) where a, b, c, and d are

fitting parameters optimized by minimizing the total chi-square value; and �2(x, y)

represents the error of bin (x, y), which is defined as

�2(x, y) =

P
n

j=1
(wjE

j

true(x, y))
2

P
n

j=1
wj

. (5.4)

The summation acts on all the n events whose EM energy and HAD energy fall into

bin (x, y) of the 2D plot. The Ej

true(x, y) is the true neutrino energy of event j, and

7Some bins with abnormal color compared to the adjacent bins are also excluded
in the fit. Only the area with smooth gradient color along both x and y directions is
used for the fit: x 2 (0.4, 2.4) GeV and y 2 (0, 1.4) GeV.
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wj is the corresponding flattening weight.

Without the flattening weight applied, the default error used by ROOT in a

chi-square fit is defined by

�2(x, y) =
1

n

nX

j=1

(Ej

true(x, y))
2 , (5.5)

which is very small for large n at the energy peak. A small �2(x, y) value in the

denominator of Equation 5.3 leads to a large weight in the chi-square fit, which means

the energy bins with higher statistics are more influential in the fitting. Ideally, the

energy estimator should not be biased towards the expected beam energy peak. Before

I invented this correction using the flattening weight, the estimator was able to get

only the events at the peak estimated correctly. Now, the MC sample is reweighted

and the bias and energy dependence from the spectral shape of the true energy are

removed.

5.3 Result and Discussion

In the ⌫̄e analysis, a similar technique is used to reconstruct the electron an-

tineutrino energy for the ⌫̄µ ! ⌫̄e signal events in the FD. Both ⌫e and ⌫̄e energy

estimators have the form: Ereco = s(aEEM + bEHAD + cE2

EM
+ dE2

HAD
), where s is

the scaling factor. The scaling factor makes sure that the fractional energy recon-

struction error, which is defined by

Frac. Error =
Ereco � Etrue

Etrue

, (5.6)

has a distribution with a mean of zero, as shown in Figure 5.3. The root mean

square (RMS) value represents the standard deviation (�) and is used as the energy

resolution of the energy estimator. The result parameters (a, b, c, d, and s) and the
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Figure 5.3. Distributions of fractional energy reconstruction error with mean value
of 0 and RMS value of 0.103 (0.091) for FHC (RHC) energy estimator

Table 5.1. Chi-square Fit Results

a b c d s

FHC 1.02(±3.24) 1.11(±3.79) 1.44⇥10�3(±1.90) 1.10⇥10�1(±2.63) 1

1.036

RHC 0.99(±0.22) 1.20(±0.40) 1.93⇥10�7(±7.64) 1.21⇥10�7(±7.33) 1

1.011

corresponding uncertainties for the ⌫e and ⌫̄e energy estimators are listed in Table 5.1.

The fractional energy reconstruction error vs. true neutrino energy distribution

is used to demonstrate the performance of the energy estimators. To better under-

stand the bias, independent from the spectral shape of the true neutrino energy, the

flattening weight is applied. An even, straight, and smooth distribution without pro-

nounced deviations along the x-axis is preferred. In Figure 5.4, our energy estimators

mostly have uniformly distributed biases along true energy as expected. There is

some bias, especially at low energy. Taking the FHC energy estimator as an example,

the bias in the low energy range is positive, which means the reconstructed neutrino

energy is overestimated. To understand where the biases come from, studies of the

energy estimator in the di↵erent neutrino interaction modes are performed.
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Figure 5.4. Fractional energy reconstruction error along true neutrino energy distri-
butions with flattening weight applied and pink dashes showing the bias along true
energy

5.4 Interaction Modes

There are five major neutrino interaction modes considered in the NOvA neu-

trino cross-section model: quasi-elastic (QE), resonant (RES), deep inelastic scatter-

ing (DIS), coherent (COH), and meson-exchange current (MEC). The outgoing parti-

cles in these interaction modes are di↵erent, and the reconstructed variables, such as

prong particle IDs and prong energies, are a↵ected by the interaction modes. These

di↵erences in reconstruction lead to di↵erences in the reconstructed electromagnetic

shower and hadronic energies, which are the input variables of neutrino energy. To

have a better understanding of how the neutrino energy is a↵ected, the MC sample

is broken down by interaction mode. The proportions of each type of interaction are

listed in Table 5.2, and the corresponding fractional energy reconstruction error dis-

tributions are plotted in Figure 5.5. The ⌫e energy estimator is used to illustrate the

correlation between the bias and the interaction modes in the following discussion.

In Figure 5.5, it is obvious that the QE and MEC components have positive

mean values, which mean overall overestimates. The DIS component is centered

at zero, but it still a↵ects the fit. The remaining components have negative mean
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Table 5.2. Composition of FD ⌫e Signal Sample by Interaction Mode

QE RES DIS MEC COH

FHC 30.1% 45.2% 15.4% 8.6% 0.71%

RHC 40.6% 35.4% 11.1% 11.3% 1.54%
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Figure 5.5. Fractional energy reconstruction error distributions broken down by in-
teraction mode

values, corresponding to overall underestimates. The fit is made with the energy-

reconstruction plot with the flattening weight applied (Figure 5.2), where the color

represents the weighted average true energy in each bin. Figure 5.6 shows the 2D

event distributions of EM shower energy vs. hadronic energy by interaction mode.

These plots also have the flattening weight applied. The color represents the number

of events. Comparing these 2D event distribution plots for di↵erent interaction modes

can give us a hint to the reason for the over- and underestimates.

In Figure 5.2, the lower left corner corresponds to a low weighted average

true neutrino energy. Comparing to the 2D plots in Figure 5.6, we see that the

lower left corner is dominated by QE and MEC interactions while RES and DIS

interactions dominate the region with high weighted average true neutrino energy.

The contribution of COH interaction is small due to the low statistics, even if it is

in the high energy region. In Table 5.2, we see that the top two components of the
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(a) Quasi-elastic scattering
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(c) Deep inelastic scattering
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(d) Meson-exchange current interaction
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(e) Coherent scattering

Figure 5.6. Distributions of hadronic energy vs. EM shower energy broken down by
interaction mode with flattening weight applied and color representing number of
events

selected FD signal sample are the QE and RES interactions. Based on the results

in Figure 5.5, the mean energy of QE events is overestimated. In contrast, the RES

events have an underestimated mean energy. Hence, there is a tension between these
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two components in energy reconstruction. When the fit is performed, the regions

dominated by QE and RES interactions impose di↵erent e↵ects on the coe�cients of

the fitting function. In a QE scattering process, a neutrino interacts with a nucleon via

a QE collision with total kinetic energy conserved. The outgoing particles usually can

be well reconstructed and classified as EM showers or hadronic particles. However, in

a RES interaction, the situation is more complicated. The target nucleon is struck by

the neutrino, producing a baryonic resonance whose identity depends on the incident

neutrino’s energy. The baryonic resonance decays back to a nucleon accompanied by

some other particles—most often a single-pion. The detector cell is 6 cm by 3.87 cm,

only great for long track measurement. A typical pion in the NOvA detectors has a

track approximately 5 cells in length and may decay into a muon and a neutrino, or

interact in the detectors. So it is hard to reconstruct pions and their decay products

as final-state particles in the first place. The more numerous the final-state particles

are, the harder it is to reconstruct them. One possible reason for the underestimate

of the neutrino energy in inelastic scattering events is that some particles with very

short track lengths are not successfully reconstructed. In this case, the total energy

of the outgoing particles is underestimated.

As shown in Figure 5.6, resonance and deep inelastic interactions dominate

the high energy regions. When performing the fit over all the events, the fitting pa-

rameters are more a↵ected by the dominating events in the high true-neutrino-energy

region, where, as just explained, the outgoing particle energy is underestimated. To

compensate for the underestimated input variables, the fit prefers large parameter

values. Consequently, in the low true-neutrino-energy region, the energy of the QE

and MEC events are overestimated when the same set of parameters is applied. In

Figure 5.7, the fractional energy reconstruction error vs. true neutrino energy distri-

bution of the ⌫e estimator is broken down by interaction mode. The flattening weight

is applied in each plot. The over- and underestimates are clear in these plots, and we
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(b) Resonance interaction.
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(c) Deep inelastic scattering.
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(d) Meson exchange current interaction.
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(e) Coherent scattering.

Figure 5.7. Fractional energy reconstruction error along true neutrino energy distri-
butions broken down by interaction mode with flattening weight applied and pink
dashes showing the bias along true energy

see an almost flat bias along true neutrino energy in each interaction mode.

The energy estimators for both ⌫e and ⌫̄e analyses are improved by removing

the dependence on the true energy spectral shape. The final-state particle classifica-
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tion CNN is here employed in the energy reconstruction, which has never been done

before. With these improvements, the electron (anti)neutrino energy is better recon-

structed so that the systematic uncertainties are reduced in the oscillation analysis,

which is discussed in the next chapter.
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CHAPTER 6

OSCILLATION ANALYSIS

The primary goal of the NOvA experiment is to measure the oscillation prob-

abilities. The oscillation analysis makes use of most studies described in the previous

chapters to investigate neutrino oscillations via four channels: the ⌫µ disappearance

(⌫µ ! ⌫µ) and ⌫e appearance (⌫µ ! ⌫e) channels, and their corresponding antineu-

trino oscillation channels. The antineutrino oscillation analyses are based on analysis

techniques similar to those developed in the neutrino analyses. Hence, the neutrino

analyses are used as examples to illustrate the techniques.

Selection methods and binning rules applied in the ⌫µ and ⌫e analyses are

di↵erent from each other. Both binning methods are optimized to separate the better-

reconstructed signal events from the rest and let them occupy more bins, which

correspond to more weight in the final bin-by-bin likelihood oscillation fit. Both

the ND and FD data samples are used to extract information on neutrino properties

and neutrino fluxes. In the ⌫µ analysis, the ND data are used to study the ⌫µ flux

before significant oscillation, and the FD data are used to study the ⌫µ disappearance

signal, which is dominated by ⌫µ events and has negligible background events. In

the ⌫e analysis, the FD data are used to study the ⌫e appearance signal, and the

ND data are used for two purposes. One is to study the ⌫µ flux before significant

oscillation, which is the same as that of the ⌫µ analysis. The other is to study the

background to the ⌫e appearance signal. Since ⌫e appearance is less likely to occur

than ⌫µ disappearance, the ⌫e appearance samples are low-statistics compared to

the ⌫µ disappearance samples. With a well-understood oscillation background, we

can be more confident in the oscillation signal measurement. Hence, the oscillation

background estimation is critical to the ⌫e analysis.

The background is due to the ine�ciency of selection and imperfection of
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the MC simulation, and can be constrained by using the two functionally identical

detectors. Similarly to what is done at the FD, ⌫e selections and binning methods

are applied at the ND to study the discrepancy between data and MC. If we are

able to understand the discrepancy and correct the MC at the ND, then we can

apply the same correction to the FD MC. Decomposition, a data-driven technique,

is applied for a better agreement between the selected MC and data samples. It

adjusts the proportions of the MC components (⌫µ CC, ⌫e CC, and NC interactions)

in the selected ND ⌫e background sample. It also corrects the selected ND ⌫µ MC

sample. The corrections applied to reweight the ND MC samples are also applied to

the FD selected MC samples. The correction of each MC component is propagated

independently from the ND to the FD. The propagation is handled by a technique

called near-to-far extrapolation. The near-to-far extrapolation cancels out some types

of systematic uncertainties by taking advantage of the functionally identical detector

designs.

All these techniques contribute to the oscillation parameter extraction and

analysis systematic uncertainty estimation. The decomposition techniques, near-to-

far extrapolation, oscillation parameter extraction and systematic uncertainty esti-

mation are discussed in detail later in this chapter. The ⌫µ and ⌫̄µ disappearance

analyses are introduced first, followed by the ⌫e and ⌫̄e appearance analyses. At the

end of the chapter, the joint analysis of the oscillation parameters, ✓23, �m2

32
, and

�CP , combining all four channels, is discussed.

6.1 Disappearance Analysis

The
(�)

⌫ µ disappearance analysis provides strong constraints on the atmospheric

parameters sin2 ✓23 and �m2

32
. Figure 6.1 [9] shows an example of a selected ⌫µ

candidate in the FD. The analysis techniques are shared between the ⌫µ and ⌫̄µ

analyses. The ⌫µ analysis is used to illustrate the analysis techniques. Where the ⌫̄µ
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analysis employs some di↵erent techniques, the di↵erences are pointed out.

6.1.1 Analysis Selection. The ⌫µ analysis selection includes three major compo-

nents: basic quality, detector containment, and incident particle identification (PID).

The basic quality selection ensures that the basic reconstructed objects are

present so that the reconstructed variables can be used in the analysis. The basic

quality selection has the following requirements: an interaction vertex is reconstructed

in the event; at least 20 hits are observed in the event; at least one 3D Kalman track,

along with the ReMId value, is found in the event; and activity is present in four

contiguous detector planes so that the event is not fully vertical.

The containment selection requires that neutrinos interact and have their ener-

gies deposited entirely within the detector. Events that pass the containment selection

always maintain a distance from the detector walls: at least 60 cm to the top; 12 cm

to the bottom or west wall; 16 cm to the east wall; and 18 cm to the front or back

wall. An event is rejected if any of its track end points is too close (fewer than 6 cells)

to the detector walls or if any of its hits is too close to the walls: fewer than 2 cells

from the front wall or 3 cells from the back wall.

The PID selection is based on two components: the event CNN, which is

designed for neutrino interaction classification [36], and the ReMId score. The event

CNN predicts three probabilities, which add up to 1, for an incident particle to be

⌫e, ⌫µ, or ⌫⌧ . The ⌫µ PID selection requires the predicted probability of an event

being a ⌫µ interaction to be greater than 0.8 (CNN ⌫µ ID > 0.8). It also requires the

highest ReMId score among those of all the tracks in the event to be greater than 0.3

to ensure a clear muon track is present.

In addition to the selections listed above, a cosmic rejecting selection is trained

and applied to the FD samples. It employs the cosmic-rejection Boosted Decision Tree
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(BDT) technique [37] to classify events. The result of the cosmic-rejection BDT is the

probability of an event being oscillation signal-like. The ⌫µ and ⌫̄µ analyses have their

cosmic-rejection BDTs trained separately and they both require a cosmic-rejection

BDT score greater than 0.53.

At the ND, the basic quality selection and the PID selection are identical to

the ones applied at the FD. The ND containment selection is slightly di↵erent because

of the volume and geometry di↵erences of the detectors. Other than requiring the

events to be fully contained in the ND, it also requires: any showers in the ND to have

the x and y coordinates of their starting and ending points within �180–+180 cm,

and the z coordinates within 40–1525 cm. Only the primary muon track in an event

is allowed to extend into the muon-catcher (z > 1275 cm). All vertices of the events

must be located within the ND excluding the muon-catcher (z < 1100 cm).

6.1.2 Energy Reconstruction and Binning Methods. The oscillation parame-

ter extraction, so-called oscillation fit, is performed based on the binned distributions

of the FD selected samples. The binning methods directly a↵ect the measurement

sensitivity of the oscillation parameters. The ⌫µ analysis binning method consists of

two parts, which are both based on the reconstructed ⌫µ energy.

The ⌫µ samples are binned in reconstructed ⌫µ energy with non-constant bin

width, and divided into four subsamples, each having di↵erent energy resolution.

With these two methods, the high energy resolution events occupy more bins, and

thus have more weight in the oscillation fit, which is a bin-by-bin fit. The resolution

of the ⌫µ energy estimator is critical to the sensitivity of the oscillation analysis and

is discussed first, followed by the two binning methods.

In the NOvA detectors, a typical ⌫µ CC interaction consists of a long clear

muon track and a hadronic shower (see, for example, Figure 6.1). The ⌫µ energy
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Figure 6.2. Hadronic fraction vs. reconstructed neutrino energy spectrum of unoscil-
lated FD selected ⌫µ MC sample divided by blue curves into four quartiles with
color representing number of events

is reconstructed as the sum of the outgoing muon energy and the hadronic shower

energy [38]. The muon energy is estimated from the muon track length. In a ⌫µ CC

event, most of the energy goes to the muon. The hadronic showers may consist of

various types of low energy hadrons and are more di�cult to reconstruct compared

to the long clear muon track. The ability to reconstruct the hadronic showers of

⌫µ candidates limits the performance of the ⌫µ energy estimator. Hence, we bin the

⌫µ candidates by their energy resolutions. In this way, the events are divided into

four subsamples, called quartiles, by hadronic energy fraction, which is the ratio of

hadronic energy to ⌫µ energy. Each quartile consists of 25% of the events in the

sample. The energy resolution bins are based on a 2D spectrum, as in Figure 6.2 [9].

The mean and resolution values of the reconstructed energy for the four quartiles are
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Table 6.1. Fractional Mean and Resolution Values

Quartile Mean Resolution

1 0.016 0.078

2 -0.004 0.092

3 -0.014 0.104

4 -0.054 0.115

listed in Table 6.1 [19], and the sample in the fourth quartile has the worst energy

resolution.

In addition to energy resolution quartiles, non-constant bin widths are em-

ployed for the reconstructed energy spectra. So the energy bins around the oscillation

maximum (around 1.8 GeV) are narrower, while the bins in the vicinity of the low

and high energy tails are wider. There are 19 bins in each quartile, with their edges

located at: 0, 0.75, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.25, 2.5, 2.75, 3, 3.5,

4, and 5 GeV. The energy bins are optimized for the sensitivity of the oscillation pa-

rameter extraction [39]. Figure 6.3 [9] shows the ND selected data and MC samples

in ⌫µ analysis bins.

6.1.3 Corrections with ND Data. In the NOvA cross section tuning studies [40],

the neutrino interaction rates are adjusted such that the reweighted MC simulation

better matches the data. However, the MC simulation is still not perfect in describing

the observed data. In addition, the ⌫µ PID selection, which aims to select ⌫µ CC-like

events, is trained and optimized using simulated samples. Its performance on real

data is also not perfect and unknown, since there is no way to know the truth about

real data. We assume that the discrepancy between the selected data and MC samples

is because of the imperfections of the simulation and selection. Decomposition and

extrapolation techniques are employed to improve the predicted MC sample at the

FD. We use the ND selected data and MC samples to correct the ND MC components
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Figure 6.3. Distributions of the ND selected ⌫µ data and MC samples in ⌫µ analysis
bins with MC normalized to the areas of data distributions to show their shapes

(decomposition). The correction is made by reweighting the MC components in

the ND selected MC samples to match the data samples. Then, the weights are

propagated component-by-component to the corresponding FD MC components in

the FD predicted MC sample (extrapolation). There is a di↵erent weight in each

neutrino energy bin.

In both ⌫µ and ⌫̄µ analyses, only the ⌫µ and ⌫̄µ components are corrected

by decomposition and extrapolation. The reasons for not correcting the remaining

MC components in the selected ⌫µ MC samples are as follows: the proportions of

⌫µ CC-like ⌫e and NC background events, that are misidentified by the PID as ⌫µ

signal candidates, are tiny in the selected ⌫µ samples at both detectors; and the ⌫µ
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disappearance oscillation fit counts the di↵erence of the ⌫µ signal between the FD and

ND, where the background events misidentified by the same PID have similar features,

thus cancel and do not contribute to the fit. The reasons that we do not ignore the

⌫̄µ background component, but do correct it along with the ⌫µ signal to match the

data, are as follows: the wrong-sign component (⌫̄µ) is the largest background, as

shown in Figure 6.3; and it also “disappears,” so we cannot ignore it as we do the

other backgrounds. Besides, to the PID classifiers, ⌫̄µ is more ⌫µ-like than the other

backgrounds.

6.1.3.1 Decomposition. In the decomposition stage, the corrections are calculated

using the ND selected data and MC samples, where the applied PID selection is the

same as that at the FD. The bin-by-bin corrections are based on the ⌫µ analysis bins,

including four quartiles and reconstructed ⌫µ energy non-constant bin widths. By

assuming that any data/MC discrepancy is due to the ⌫µ and ⌫̄µ components, in each

quartile, the discrepancy is split according to the ratio of the ⌫µ and ⌫̄µ components

in the selected ND MC sample to correct the number of ⌫ MC events by

MCcorr.

⌫
(i) = (data(i)�MCothers(i))⇥

MC⌫(i)

MC⌫̄µ(i) +MC⌫µ(i)
, (6.1)

where ⌫ = {⌫µ, ⌫̄µ}; MCcorr.

⌫
(i) represents the number of corrected

(�)

⌫ µ MC events in

bin i; data(i) is the number of selected data candidates in bin i; MC⌫(i) represents

the number of original selected
(�)

⌫ µ MC events in bin i; and MCothers(i) is the number

of original selected MC events in bin i, including all the MC components except for ⌫µ

and ⌫̄µ. With Equation 6.1, we get the corrected ND MC components in ⌫µ analysis

bins. The decomposition weights are 1D ratios in bins of ⌫µ energy, where the ratios

of corrected and original ⌫̄µ number of events are defined by

w⌫(i) =
MCcorr.

⌫
(i)

MC⌫(i)
, (6.2)
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where ⌫ = {⌫µ, ⌫̄µ}, and w⌫(i) represents the ratio of corrected (MCcorr.

⌫
(i)) and

uncorrected (MC⌫(i)) ⌫ MC event numbers in bin i.

6.1.3.2 Extrapolation. The corrections are then propagated to the FD ⌫µ and

⌫̄µ components. This propagation is called near-to-far extrapolation. There are two

ways to extrapolate. One way is to save and propagate the decomposition weights

as a function of true neutrino energy. This is called true-extrapolation. Another

way, called reco-extrapolation, is to save and propagate the correction weights as a

function of the reconstructed neutrino energy. When the ND and FD MC oscillation

signal events are di↵erent in flavor, energy reconstruction, or binning method, we

have to use the true-extrapolation, such as for ⌫e and ⌫̄e appearance signal events. In

addition, the true-extrapolation is used when the oscillation parameters are sensitive

to the resolution of reconstructed neutrino energy and bins, such as for ⌫µ and ⌫̄µ

disappearance signal events. The reco-extrapolation is used only in the ⌫e analysis to

extrapolate the oscillation backgrounds, which is discussed below in Section 6.2.

The cartoon in Figure 6.4 shows the fourth quartile of the ND selected ⌫µ

samples. It is used as an example to illustrate how the decomposition weights of the

MC ⌫µ components are propagated to the FD. The ⌫µ ! ⌫µ events are used in the

cartoon, and the oscillation probability,8 which is a function of the true ⌫µ energy, is

applied to the FD MC to predict the oscillated ⌫µ signal.

In Figure 6.4, the top left plot shows the original reconstructed ⌫µ energy

distributions of the ND selected data and MC samples. The ND reco-to-true and

FD true-to-reco matrices are both 2D spectra of reconstructed (x-axis) vs. true (y-

axis) ⌫µ energy, and the di↵erent names reveal the di↵erent usages. At the ND,

the decomposition weights calculated from Equation 6.2 are used to reweight the

8The oscillation parameters are from the NOvA 2018 analysis results [35].
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⌫µ events by their reconstructed energy values in the ND reco-to-true matrix. The

reweighted and original ND reco-to-true matrices are projected onto the y-axis for

the 1D true ⌫µ energy distributions (bottom second plot in Figure 6.4). The 1D ratio

of the reweighted and original true ⌫µ energy distributions, in true ⌫µ energy bins,

is then used to reweight the true ⌫µ events in the FD true-to-reco matrix by using

their true ⌫µ energy values. Until this point, the near-to-far true-extrapolation is

applied. In the FD true-to-reco matrix, the oscillation probabilities are calculated

using the true ⌫µ energies of the events and applied to reweight the events. Finally,

the y-projection of the reweighted FD true-to-reco matrix gives us the predicted ⌫µ

disappearance distribution in bins of reconstructed ⌫µ energy.

Another extrapolation technique is employed to correct for the selection ef-

ficiency and acceptance di↵erences of the two detectors. The ND is closer to the

target, while the FD is farther away. Both detectors are o↵-axis. Hence, the neutrino

beam source (the target) is point-like to the FD but not to the ND. The FD sees

a narrower flux, and the ND sees a wider and more spread neutrino flux, in energy,

due to its being closer to the target. The neutrinos detected in the two detectors

are thus di↵erent in kinematics in the first place. Besides, the PID selections applied

at both detectors are trained on the FD MC files, which makes them tend to select

events that look more FD-like in their kinematics. These kinematic di↵erences lead

to sensitivities to systematic uncertainties in the oscillation analysis.

An additional binning method in the near-to-far extrapolation is employed,

called pt extrapolation [41]. To correct for the kinematic di↵erences of neutrinos

at the two detectors, additional quantiles (~pt-quantiles) in each energy resolution

quartile are used based on a kinematic variable: the transverse momentum (|~pt|)

of the outgoing lepton in the selected neutrino interactions, which is sensitive to

the kinematic di↵erences between the two detectors due to selection e�ciency and
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Figure 6.5. MC sample distributions of reconstructed transverse momentum vs. re-
constructed ⌫µ energy of outgoing lepton in four quartiles with each divided into
three pt-quantiles by red curves

acceptance. Binning the existing near-to-far extrapolation by ~pt-quantiles helps to

cancel the kinematic di↵erences between the ND and FD selected samples and thus

reduce the systematic uncertainties.

Figure 6.5 [9] shows the boundaries of the pt-quantiles in all four quartiles

at the ND. Each quartile is extrapolated in three pt-quantiles. At the FD after the

extrapolation, the three pt-quantiles are summed and merged back into one energy

resolution quartile so that the pt-quantiles are not “visible” to the final oscillation fit.

6.1.4 Predictions at FD. With the corrections applied to the FD MC, the pre-
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Figure 6.6. Predicted FD ⌫µ MC samples in four quartiles with background (gray)
consisting of predicted cosmic ray background and MC background components

dicted FD ⌫µ MC samples in the four quartiles, with the oscillation parameters from

the NOvA 2020 analysis results applied, are shown in Figure 6.6 [9].

6.2 Appearance Analysis

In the
(�)

⌫ e appearance analysis, the primary oscillation channel is ⌫µ ! ⌫e

(⌫̄µ ! ⌫̄e). The ND ⌫µ (⌫̄µ) and FD ⌫e (⌫̄e) selected data and MC samples are

selected and binned for the ⌫e (⌫̄e) analysis. The ⌫e analysis is used to illustrate the

appearance analysis techniques, and the di↵erences in analysis techniques of the ⌫̄e

analysis are pointed out.
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When we apply the PID selection to the FD to select the ⌫µ ! ⌫e signal

candidates, intrinsic ⌫e events, called beam ⌫e, coming from the NuMI flux instead

of oscillated from ⌫µ can be misidentified as ⌫e signal candidates, since beam ⌫e and

⌫e signal in the FD make no di↵erence to the event CNN classifier. The other two

major background components are ⌫e-like ⌫µ CC and NC. These oscillation back-

ground components need to be estimated and corrected properly. We apply the FD

⌫e PID selection to the ND data and MC files, and use some data-driven techniques

to estimate and correct for the oscillation background misidentified by the PID se-

lection. The corrections are then applied to reweight the FD selected MC samples to

constrain the oscillation background. The analysis techniques, similarly to those that

are employed in the ⌫µ analysis, such as binning, decomposition, and extrapolation

techniques, are discussed in this subsection.

6.2.1 Analysis Selection and Binning Methods. We apply the ⌫µ ND selection,

which is described in the previous section, to get the ND ⌫µ candidates. At the FD,

the ⌫e selection is applied to get the ⌫e appearance signal-like candidates. A binning

method that combines the ⌫e PID and energy bins, called PID/energy, is employed

in the ⌫e analyses. The selections and bins are optimized using MC samples for

maximum figure of merit, which is defined as
P

N

i=1

S
2
i

Si+Bi
[19], where Si represents

the number of ⌫e signal events in bin i, Bi represents number of background events

in bin i, and N is the number of bins. The selections are described first, followed by

the binning method.

The ⌫e selection includes the basic quality and containment selections which

are already described in Section 5.1. The ⌫e appearance samples are smaller in size

compared to the disappearance ⌫µ samples. Hence, besides the regular sample (core

sample), an additional sample, called the peripheral sample, is used to increase the

statistics of the appearance analysis. The core sample, which is larger in size, consists
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Table 6.2. Cosmic-rejection BDT and PID Selections for Core Samples

Cosmic-rejection BDT PID

⌫e analysis [0.49,1] [0.84,1]

⌫̄e analysis [0.47,1] [0.85,1]

of the events passing the “core preselection,” ⌫e PID selection, and cosmic-rejection

core selection, where the ⌫e PID selection is based on the event CNN ⌫e ID. The

peripheral sample, which is smaller in size and used only at the FD, brings more

statistics into the analysis by picking out and making use of some events rejected by

the core selections.

To gain statistical power in the oscillation fit, the binning method divides the

core sample candidates into two bins based on their PIDs. The high (low) PID bin

consists of more (less) ⌫e signal-like candidates, which comprise a purer (less pure)

⌫e appearance signal sample. In each PID bin, the core sample is further binned by

the ⌫e reconstructed energy. The selection flow is illustrated by the chart shown in

Figure 6.7.

The core preselection requires reconstructed ⌫e energy between 1 and 4 GeV;

number of hits within 30–150; and the longest 3D prong between 1 and 5 m. There are

four cosmic-rejection BDTs, each of which is trained independently for the
(�)

⌫ e core

(peripheral) samples [19], to distinguish
(�)

⌫ e signal events from cosmic ray background

events. The core FHC (RHC) sample requires a minimum value of 0.49 (0.47) on the

cosmic-rejection core BDT and a minimum value of 0.84 (0.85) on the PID. The

selection intervals are listed in Table 6.2.

To pick out ⌫e signal-like candidates among the events rejected by the three

core selections (core preselection, cosmic-rejection core BDT selection, and PID selec-

tion), the peripheral preselection loosens the required ⌫e energy range to 0–4.5 GeV.
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Figure 6.7. Flow chart of ⌫e selection.

The PID and cosmic-rejection peripheral BDT are combined such that, as long as one

of them decides that the candidate is highly ⌫e signal-like, we keep the event in the

peripheral sample. The combined selection is defined as a union of two 2D intervals,

which are listed in Table 6.3 for both ⌫e and ⌫̄e samples. “Interval 1” prefers a higher

BDT score; “interval 2” prefers a higher PID score; and the interval boundaries for

the ⌫e and ⌫̄e analyses are slightly di↵erent. As long as a candidate falls into one of

the intervals, it qualifies as a peripheral candidate.



91

Table 6.3. Cosmic-rejection BDT and PID Selections for ⌫e (⌫̄e) Peripheral Sample

Cosmic-rejection BDT PID

Interval 1 (0.61(0.6),1] [0.97, 0.995)

Interval 2 (0.57(0.56),1] [0.995, 1]

Table 6.4. PID Bin Intervals of Core Samples

Low PID High PID

⌫e analysis [0.84,0.97) [0.97,1]

⌫̄e analysis [0.85,0.97) [0.97,1]

The ⌫e (⌫̄e) core samples are divided into low and high PID bins by the candi-

date PID values. In each PID bin, the core samples are further binned by the ⌫e (⌫̄e)

reconstructed energy. The bin intervals are listed in Table 6.4. The ⌫e selected data

and MC samples are used to illustrate what the core and peripheral samples look like,

with all the cut and PID bin boundaries plotted, in the 2D spectra of cosmic-rejection

BDT vs. PID values shown in Figure 6.8 [9]. The peripheral sample is low in statistics,

so it occupies only one of the analysis bins: the peripheral bin. The peripheral sample

is not further binned by energy. Both ⌫e and ⌫̄e FD predicted sample distributions in

bins of PID/energy are plotted in Figure 6.9 [9] with the oscillation parameters from

the NOvA 2020 analysis results applied. The wrong-sign MC component in the ⌫e

(⌫̄e) sample is ⌫̄e (⌫e) appearance.

6.2.2 Background Estimation. In the ⌫e appearance analysis we apply a ⌫e

PID selection at the FD to select ⌫e signal candidates. The major background comes

from intrinsic beam ⌫e events. To get a more precise beam ⌫e background estimate

at the FD, we make use of our ND data and MC samples. There are two data-

driven techniques applied in the ⌫e analysis for background estimation: one corrects

the beam ⌫e background (BEN-Decomp); the other adjusts the ratio of ⌫µ CC and
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(a) Core Samples

(b) Peripheral Samples

Figure 6.8. Distributions of cosmic-rejection BDT vs. PID values for FD ⌫e selected
data (pink circles) and MC signal (blue) samples with boxes representing cosmic
ray background and red lines indicating the cut boundaries
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(a) ⌫e FD MC

(b) ⌫̄e FD MC

Figure 6.9. Distributions of predicted ⌫e and ⌫̄e samples in bins of PID/energy with
signal (unfilled purple), cosmic ray background (light blue), and MC simulated
beam background components stacked
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NC events (Michel-Decomp). The ⌫̄e analysis has only one data-driven technique,

called proportional decomposition, which corrects the overall MC to match data.

The background estimation techniques in the ⌫e analysis are discussed first, followed

by the proportional decomposition in the ⌫̄e analysis.

6.2.2.1 Introduction to BEN-Decomp. Beam electron neutrino decomposition

(BEN-Decomp) is a technique for estimating the ⌫e component of the background. As

described in Chapter 2, the NuMI beamline directs the protons onto the target, and

outgoing particles, such as pions, kaons, and muons, are focused or defocused by the

magnetic horns, then decay to provide neutrino fluxes. These outgoing particles are

the ancestors of the neutrinos. At the ND, without significant ⌫e appearance, most

of the beam ⌫e events around 2 GeV come from the ancestor ⇡+ flux, which decays

via

⇡+ ! ⌫µ + µ+ , (6.3)

followed by subsequent decay

µ+ ! ⌫̄µ + e+ + ⌫e . (6.4)

Details of these decays are well understood [42]. BEN-Decomp estimates the pro-

portion of ⇡+ ! ⌫µ in the ND selected ⌫µ data and MC samples9 and reweights the

beam ⌫e MC events from the subsequent decay of µ+ ! ⌫e in the ND ⌫e selected

sample. The reweighting information is stored in and applied via the ancestor ⇡+

true momentum space, which is shared by the child ⌫µ and descendent beam ⌫e. Af-

ter correcting the beam ⌫e from ancestor ⇡+ flux, BEN-Decomp incorporates the ⌫e

9The ancestor ⇡+s decaying via other channels are negligible in our selected ⌫µ
samples.
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events decayed from K+ and K0

L
, and corrects them by an overall normalization. The

normalizing factor is calculated using the ND ⌫µ data and MC samples dominated by

kaon flux. There are a couple of reasons that we reweight the kaon flux by an overall

normalization instead of a bin-by-bin correction as we do to the pion flux. Firstly,

the major kaon flux does not have a decay chain as the pion flux does. Secondly,

the kaon flux dominated samples are too low in statistics to support a bin-by-bin

correction. In addition, the kaon flux dominates the high energy range in the se-

lected samples, while the neutrino energy estimators are designed for the low energy

(0–5 GeV) analysis samples and have poor performance in the high energy range.

Therefore, they are not useful for energy based corrections. To the remaining beam

⌫e backgrounds that come from the remaining flux, we do not make any corrections

due to their low statistics. As a short summary, the BEN-Decomp technique adjusts

the ratio of beam ⌫e events from ⇡+ and kaon flux by using the high statistics ND

⌫µ samples to reweight the flux components. In the plot of ⌫µ (⌫e) CC flux shown

in Figure 6.10 (6.11) [9], the ⇡+, K+, and K0

L
fluxes are defined as above. The

Figure 6.10. Stacked true neutrino energy distributions of ND ⌫µ CC flux broken
down by ancestor flux type
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Figure 6.11. Stacked true neutrino energy distributions of ND beam ⌫e flux broken
down by ancestor flux type

remaining minor decays not listed in the legend but leading to ⌫µ (⌫e) interactions

are categorized as “Other.” The “Background” category consists of antineutrino, ⌫e

(⌫µ), and ⌫⌧ interactions. As shown in the ⌫µ CC plot, the low energy region has

large statistics and is dominated by the ancestor ⇡+ flux. The high energy region,

which is lower in statistics, is essentially from ancestor kaon flux. The majority of

low energy beam ⌫e are from ancestor pion flux. In the high energy range (above

5 GeV), most ⌫e events originate from charged and neutral kaons. The ND selected

⌫µ contained (Figure 6.12) and uncontained (Figure 6.13) data and MC samples are

used to constrain first the ancestor pion flux, then the kaon flux.

Two di↵erent selections are applied to get the two sets of samples for the de-

composition corrections. The ND ⌫µ oscillation selection, which has been described

earlier in Subsection 6.1.1, is applied to get the low energy data and MC samples,

called the contained samples, for constraining the pion flux. The high energy ⌫µ

events, rejected by the ND ⌫µ selection, but selected by the enhanced kaon selec-

tion [43], have a wider energy range and are dominated by the kaon flux. The 0–5 GeV
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Figure 6.12. Reconstructed ⌫µ energy distributions of ND selected ⌫µ contained data
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Figure 6.13. Reconstructed ⌫µ energy distributions of ND selected ⌫µ uncontained
data (black circles) and MC (color-filled and stacked) samples

contained events are used to constrain the pion flux. The 4.5–10 GeV uncontained

events are used to constrain the kaon flux. The uncontained selection includes the ⌫µ

basic quality selection (see Subsection 6.1.1) and also requires: the interaction vertex

coordinates to satisfy x, y 2 (�170,+170) cm, z 2 (30, 1150) cm; the longest Kalman

track to start within x, y 2 (�170,+170) cm, z 2 (30, 1150) cm and end outside the
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volume of x, y 2 (�185,+185) cm, z 2 (19, 1275) cm; and the largest ReMID value

among all the Kalman tracks in the event to be greater than 0.75.

6.2.2.2 Constraining the ⇡+ Flux.

The ⌫µ contained sample (Figure 6.12) shows relatively good data and MC

agreement. To constrain the pion flux, we split the discrepancy between data and

MC between ⇡+ and kaon flux according to the ratio of their descendent ⌫µ MC events.

However, the kaon component in the contained samples is negligible, so the e↵ect on

⇡+ flux correction from kaon is considered to be negligible. The ⌫µ contained samples

constrain the ancestor pion flux by reweighting the pion true momentum space, which

is shared by the descendent ⌫µ and beam ⌫e events.

The ⌫µ weights (w⌫µ) calculated using the ⌫µ contained sample are defined, in

each ⌫µ reconstructed energy bin i, as

w⌫µ(i) =
data(i)�MCBackground(i)�MCOther(i)

MC⇡+
(i) + MCkaons(i)

, (6.5)

where data(i) is the number of data events in bin i, and MCcomponent(i)s with various

superscripts (component={⇡+, kaons, Background, Other}) represent the true ⌫µ CC

number of events in bin i of the various MC components in the contained ⌫µ sample.

Once we have the ⌫µ weights, we propagate them to the pion true momentum

space, which is represented by forward momentum (pz) and transverse momentum

(pt). This is done by reweighting a 3D spectrum of (pz, pt) as a function of re-

constructed ⌫µ energy (z-axis), of which the 2D projection on (pz, pt) is shown in

Figure 6.14. Each (pz, pt) bin has a di↵erent reconstructed ⌫µ energy distribution.

The ⌫µ weights w⌫µ are applied to the z-axis. Looping over all the (pz, pt) bins in the

⌫µ 3D spectrum, we calculate and save the ⇡+ weights (w(pz, pt)) in (pz, pt) bins.
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Figure 6.14. Original 2D spectrum of ancestor ⇡+ true momentum space (pz, pt) for
selected contained ⌫µ CC MC events from ancestor ⇡+ flux

The details of how to reweight via ⇡+ true momentum space are described as

follows. In each (pz, pt) bin, the ⌫µ weight (w⌫µ(i)) is applied to reweight the number

of ⌫µ MC events in the reconstructed ⌫µ energy bin (i). After reweighting all the (pz,

pt) bins, the ⇡+ weight in bin (pz, pt) is defined as the ratio of the bin contents before

and after the reweighting:

w(pz, pt) =

P
N

i=1
w⌫µ(i))⇥ n⌫µ(i|(pz, pt))P

N

i=1
n⌫µ(i|(pz, pt))

, (6.6)

where w(pz, pt) represents the calculated ⇡+ weight in bin (pz, pt); N is the number

of reconstructed ⌫µ energy (z-axis) bins, which is the same as that of the contained

sample (Figure 6.12); and n⌫µ(i|(pz, pt)) is the number of ⌫µ CC events in bin i. The

⇡+ weights are then applied to reweight the true momentum bins in the 3D spectrum

(pz, pt, PID/energy) to constrain the beam ⌫e samples from the pion flux. The original

beam ⌫e (pz, pt) projected distribution before reweighting is shown in Figure 6.15.

The z-projection of the reweighted 3D beam ⌫e spectrum is thus the beam ⌫e MC
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Figure 6.15. Original 2D spectrum of ancestor ⇡+ true momentum space (pz, pt) for
beam ⌫e MC events from ancestor ⇡+ flux

spectrum constrained by the contained ⌫µ samples.

6.2.2.3 Constraining the Kaon Flux.

In the second part of the BEN-Decomp technique, we use the high energy ⌫µ

selected uncontained samples, dominated by ancestor kaon flux, to rescale beam ⌫e

MC events from kaon ancestors; the overall scaling factor is called the kaon scale.

BEN-Decomp uses the high energy (4.5–10 GeV) ⌫µ uncontained sample, which

is dominated by kaon flux but still has some ⌫µ events from pion flux, to calculate the

kaon scale iteratively. We do not use the pion weights extracted from the contained

⌫µ samples directly, such that the constraint on kaon flux does not fully depend on

the result of the pion flux constraints. Hence, it is necessary to have an additional

sample to constrain the small portion of uncontained ⌫µ events from pion flux and

also to make sure the final kaon scale performs well on both samples. A subsample

(0.75–3 GeV) from the contained ⌫µ is used to constrain the scaling factor of ⇡+ flux
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in the iterations of calculating the kaon scale.

The scaling factor of the ⇡+ flux (scale(i+1)

⇡+ ) on iteration i+1 is defined based

on that of the kaon flux (scalei
kaons

) from iteration i:

scale(i+1)

⇡+ =
data� scale(i)

kaons
⇥MCkaons �MCBackground �MCOther

MC⇡+
, (6.7)

which is calculated on the 0.75–3 GeV contained ⌫µ sample (Figure 6.12); and the

kaon scale on iteration i+ 1 is defined by:

scale(i+1)

kaons
=

data� scale(i+1)

⇡
MC⇡+ �MCBackground �MCOther

MCkaons

, (6.8)

which is calculated on the 4.5–10 GeV ⌫µ uncontained samples (Figure 6.13). In

both equations, data and MCcomponent (component={⇡+, kaons, Background, Other})

represent the number of events in the range 4.5–10 GeV of the data and corresponding

MC components in the uncontained samples. To start iterating, the scale0
kaons

is

initialized as 1 and used to calculate the scale1
⇡+ using Equation 6.7. Then, the

scale1
⇡+ updates the scale1

kaons
by using Equation 6.8. After a couple of iterations,

when the change of scalekaons drops below 10�4%, the iteration stops and the last

scalekaons is used as the overall normalization constant. It is used to rescale the ⌫e

MC component from kaon flux in the ND ⌫e selected MC sample.

6.2.2.4 Results of BEN-Decomp.

Figure 6.16 shows the beam ⌫e events in the ND ⌫e selected MC sample after

BEN-Decomp. The results are listed in Table 6.5.

6.2.2.5 Michel-Decomp and Proportional Decomposition.

After the beam ⌫e MC component in the ND ⌫e selected sample is corrected by

the BEN-Decomp technique, the ratio of the remaining ⌫µ CC and NC background
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Figure 6.16. Distributions of ND selected beam ⌫e MC events in bins of PID/energy
broken down by ancestor flux type (colored histograms), before (dash) and after
(solid) BEN-Decomp

Table 6.5. Changes of Beam ⌫e from Ancestor Fluxes in PID Bins

0–4.5 GeV Low PID High PID Total

⌫e from ⇡+ 0.007% 0.011% 0.010%

⌫e from kaons 5.751% 5.751% 5.751%

components is adjusted by another data-driven technique called Michel-Decomp [19].

With both decomposition techniques applied, the ND ⌫e selected data and MC sam-

ples agree well with each other as plotted in Figure 6.17 [9]. The changes of the

three MC components in the ND ⌫e selected MC sample caused by the decomposition

techniques are listed in Table 6.6.

The background estimation for the ⌫̄e analysis is simpler than the ⌫e decom-
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Figure 6.17. Distributions of ND ⌫e selected data and MC (stacked) samples in bins
of PID/energy before (dashed) and after (solid) decomposition corrections applied
with ratio of data to MC shown at bottom

Table 6.6. Changes of MC Components

0–4.5 GeV ⌫e CC ⌫µ CC NC

FHC +2.2% +32.6% +16.4%

position techniques. It is called proportional decomposition. It scales all the MC

components by the same factor in each bin of the MC distribution. In the end, the

total MC sample distribution matches the selected data sample distribution. Using

the ND ⌫e selected data and MC samples in bins of PID/energy, the scaling factor f(i)

at bin i is defined by data(i)

MC(i)
, where data(i) is the number of observed data candidates

in bin i, and MC(i) is the number of MC events in bin i. This is the simplest way to

handle the data/MC discrepancy, and it is e�cient when the statistics of the samples

are insu�cient to employ more complicated analysis techniques. NOvA employed
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Figure 6.18. Distributions of ND ⌫̄e selected data and MC (stacked) samples in bins
of PID/energy before (dashed) and after (solid) decomposition corrections applied
with ratio of data to MC shown at bottom

the proportional decomposition technique for its first published results [45]. The ND

selected ⌫̄e data and MC samples are plotted in Figure 6.18 [9].

6.2.3
(�)

⌫ e Extrapolation. Using the decomposition techniques, we use the ND

selected data samples to correct the MC components such that the corrected MC

sample better describes the observed ND data. The near-to-far extrapolation then

propagates the corrections as weights to reweight the MC components individually

in the FD selected MC samples. Both true- and reco-extrapolation methods are

used in the ⌫e analysis. The true-extrapolation is used in the ⌫e and ⌫̄e appearance

channels. It is similar to that of the ⌫µ analysis, where the ND decomposition cor-

rection weights are propagated via the two 2D matrices (ND reco-to-true and FD

true-to-reco). The other channels follow reco-extrapolation, which reweights the FD
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MC in bins of PID/energy. The FD true-to-reco matrix is used to apply oscillation

probabilities, if any, as weights to the oscillated MC components.

6.2.4 Prediction at FD. After extrapolation, the cosmic ray background compo-

nent needs to be added to the FD predicted MC samples. The cosmic data sets are

collected during the time between NuMI spills. The predicted MC samples at the FD

with the oscillation probabilities, using the NOvA 2020 analysis results [19], applied

are already shown in Figure 6.9.

6.3 Oscillation Result of Joint Analysis

The final oscillation analysis combines the four analyses: ⌫µ, ⌫̄µ, ⌫e, and ⌫̄e.

The FD predicted MC samples from these four analyses are fit to the data samples

simultaneously for oscillation parameter extraction. There are several neutrino os-

cillation experiments which have set constraints on the oscillation parameters, such

as MINOS, T2K, IceCube, and Super-K, which have constrained sin2 ✓23 and �m2

32
,

and T2K has further constrained �CP . Since NOvA has the longest baseline of any

accelerator neutrino experiment to date, NOvA’s ⌫µ and ⌫̄µ analyses provide a pow-

erful constraint on the sin2 ✓23 and �m2

32
values, and the ⌫e and ⌫̄e samples give us

a chance to further measure the value of �CP . The results from these experiments

are compared and discussed later in the section after we discuss the fitting method,

results, and the analysis systematic uncertainties.

6.3.1 Oscillation Fitting Method. In the oscillation fit, we seek a point in

oscillation parameter space at which the combination of sin2 ✓23, �m2

32
, and �CP

values predicts MC samples that best describe the data; we call this the best-fit

point. Frequentist statistical inference [42] is employed to search for the best-fit point
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by minimizing a Poisson log-likelihood function defined by

�2 ln�(~✓) = 2
NX

i=1

"
pi(~✓)� oi + oi ln

oi

pi(~✓)

#
, (6.9)

where N is the number of analysis bins of all the samples, including ⌫e and ⌫̄e in

bins of PID/energy, and ⌫µ and ⌫̄µ in bins of quartile and energy; pi(~✓) represents

the number of predicted MC events in bin i, using the oscillation parameters ~✓ =

(✓23,�m2

32
, �CP ); and oi represents the number of observed data candidates in bin i

of the data samples. The distribution of the values calculated from the log-likelihood

function (Equation 6.9) is asymptotic to a �2 distribution, given some regularity

conditions [42]:

�2 = �2 ln�(~✓) . (6.10)

The �2 values tell us the deviation of the observed data from the predicted MC

samples. At the best-fit point (✓̂ ⌘ ~✓best), the log-likelihood function in Equation 6.9

is minimized as

�2

best
⌘ min

~✓

(�2(~✓)) . (6.11)

Using �2

best
, we can define a non-negative test statistic as

��2(~✓) = �2(~✓)� �2(✓̂) . (6.12)

With the ��2(~✓) test, we can compare two sets of oscillation parameters. A smaller

��2(~✓) value means that the parameter point describes the observed data better. We

assume large samples such that the �2 distribution is approximated by a Gaussian

distribution [42]. In this way, we estimate the central values of the parameters and the
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corresponding sensitivities. Then the unified approach of Feldman and Cousins (FC

method) [47] is employed to construct confidence intervals for the fitted parameters.

6.3.2 Systematic Uncertainties. The systematic uncertainties are assumed as

independent Gaussian distributions and added to the likelihood function as nuisance

parameters, which are free during the fit. At each point of the oscillation parameter

space, the updated �2(~✓) is then minimized with respect to the systematic nuisance

parameters using penalty terms.

We do not expect the nominal MC samples to be perfect descriptions of the

data samples. We estimate the systematic uncertainties, and add them to correct

the predicted MC samples. To account for the systematic uncertainty e↵ects in the

oscillation fit, we update the Poisson log-likelihood function (Equation 6.9) as

�2 ln�(~✓,~s) = 2
NX

i=1

"
pi(~✓,~s)� oi + oi ln

oi

pi(~✓,~s)

#
, (6.13)

where pi(~✓,~s) is the updated number of predicted MC events in bin i, which is a↵ected

by both oscillation parameters (~✓) and systematic uncertainties (~s). All the remaining

terms are the same as those in Equation 6.9. Since the likelihood is now a function

of the systematic nuisance parameters ~s as well as of ~✓, then so is the �2 function,

which we now write as follows:

�2(~✓,~s) = min
~s

 
�2 ln�(~✓,~s) +

Syst.X

i=1

s2
i

�2

i

!
, (6.14)

where i runs through all the systematic uncertainties (Syst.), si is the nuisance pa-

rameter of systematic i, and �2

i
represents the number of MC events in a 1� range

of the predicted MC sample when systematic i is applied. A large value of �2

i
cor-

responds to a small weight of the systematic i during the fit. s
2
i

�
2
i
is thus used as a

penalty term, which tends to keep the systematic e↵ects in the oscillation parame-
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ter fit within their 1� ranges. Using the updated �2(~✓,~s) function, the oscillation fit

gives us the best estimate of not only the oscillation parameters, but also the nuisance

parameters.

6.3.3 Fitting Details. The oscillation probability depends on several physics

quantities, such as baseline and average matter density (to account for the matter

e↵ect). To have a powerful constraint on the parameters of interest, ✓23, �m2

32
, and

�CP , we constrain the remaining oscillation parameters by using the results measured

previously by several experiments [42]. The input quantities and parameters are as

follows:

L = 810 km, (6.15)

⇢ = 2.84 g/cm3, (6.16)

�m2

21
= 7.53⇥ 10�5 eV2/c4, (6.17)

sin2(2✓12) = 0.851, (6.18)

where L is the NOvA baseline, and ⇢ is the average density of the earth, estimated

using the average depth of the two detectors [48]. The parameter ✓13 is constrained

by the world average sin2(2✓13) = 0.085± 0.003 [42].

6.3.4 Joint Fit result. The results of the joint fit for the central values of the

oscillation parameters before applying the FC method are: sin2 ✓23 = 0.57, �m2

32
=

2.41 ⇥ 10�3 eV2/c4, and �CP = 0.82⇡. The 2D plots shown in Figures 6.19 and 6.20

are filled by the �2 values of points in the oscillation parameter space before the FC

method is applied. The contours indicate the boundaries of the 1, 2, and 3� regions,

corresponding to 68%, 95%, and 99.7% confidence level (C.L.). The o�cial results are

corrected using the FC method, as shown in Figures 6.21 and 6.22, and the best-fit
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Figure 6.19. Two dimensional spectra of �m2

32
vs. sin2 ✓23 by assuming normal (left)

or inverted (right) mass ordering with colors representing significance levels before
FC method is applied
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Figure 6.20. Two dimensional spectra of sin2 ✓23 vs. �CP by assuming normal (left)
or inverted (right) mass ordering with colors representing significance levels before
FC method is applied

Table 6.7. Best-fit Oscillation Parameters of NOvA 2020 Analysis10

sin2 ✓23 �m2

32
(10�3 eV2/c4) �CP

0.57+0.03

�0.04
2.41+0.07

�0.07
0.82⇡

oscillation parameters with their 1� intervals [19] are listed in Table 6.7.10

In Figure 6.23 [9], the 90% C.L. contours in sin2 ✓23 and �m2

32
space assuming

normal neutrino mass ordering from di↵erent experiments are plotted and compared

with each other. NOvA’s 90% C.L. region is compatible with those of the other ex-

10�CP has a wide 1� interval, [0,1.06] [ [1.82,2], which is not listed in the table.
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Figure 6.21. Two dimensional spectra of �m2

32
vs. sin2 ✓23 by assuming normal (left)

or inverted (right) mass ordering with colors representing significance levels after
FC method is applied

Figure 6.22. Two dimensional spectra of sin2 ✓23 vs. �CP by assuming normal (left)
or inverted (right) mass ordering with colors representing significance levels after
FC method is applied

periments and much narrower in �m2

32
. MINOS and NOvA share the same beam, the

NuMI beam, and both are long-baseline neutrino oscillation experiments with similar

baselines using two detectors, which may lead to similarly shaped confidence regions.

The value of �m2

32
is highly constrained by the ⌫µ and ⌫̄µ disappearance analyses.

The NuMI beam facility provides a well understood ⌫µ flux for both MINOS and

NOvA, which has been optimized to measure ⌫µ disappearance. Hence, MINOS and

NOvA are more sensitive to �m2

32
compared to the atmospheric neutrino experiments

shown, i.e., Super-K and IceCube. T2K also has a well-studied beam flux, but it has a
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Figure 6.23. Contours of 90% C.L. for sin2 ✓23 and�m2

32
space with colors representing

di↵erent experiments

shorter baseline and incurs less matter e↵ect from the Earth. So it is less constrained

by the antineutrinos and slightly wider in the range of �m2

32
. Another possible reason

for the shape di↵erences of the T2K and NOvA (and MINOS) contours is di↵erences

in the detector designs. The near detector of T2K is quite di↵erent from the far de-

tector, which is the Super-K detector, while NOvA and MINOS each have a near and

a far detector that are functionally identical, and their FD predicted MC simulations

are corrected by using the ND data. MINOS and NOvA also share similar analysis

techniques, which could be another reason that their contours have similar shapes.

The NOvA best-fit point sits in the common area of all the regions. All the contours

are compatible with each other, and with the maximal mixing point (sin2 ✓23 = 0.5).

The significance values of sin2 ✓32, �m2

32
, and �CP after applying the FC method are

plotted as 1D curves in Figure 6.24 [9].

The categorized systematic uncertainties are plotted in Figure 6.25 [9] as bar
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Figure 6.24. Significance vs. oscillation parameter values by assuming normal (blue)
or inverted (red) mass ordering, or assuming sin2 ✓23 > 0.5 (solid) or sin2 ✓23 < 0.5
(dashed) after FC method is applied

charts to show their e↵ects on the numbers of events for each analysis; the statisti-

cal uncertainties are also shown, and in all cases exceed the systematic ones. The

systematic uncertainties are calculated as the di↵erences of the number of predicted

MC candidates with and without the systematics applied, divided by the number of

predicted MC events without systematic uncertainties applied. As already described,

the
(�)

⌫ µ samples have higher statistics than the
(�)

⌫ e samples. As shown in Figure 6.25,

the 1� statistical uncertainty on the number of events in the selected ⌫µ (⌫̄µ) sample is

approximately ±6.7% (±10%). For the ⌫e (⌫̄e) analysis, this number is 10.5% (17%).

The categorized systematic uncertainty e↵ects on the oscillation parameters

are shown as the bar charts in Figure 6.26 [9]; the statistical uncertainties are also
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(a) ⌫e analysis (b) ⌫̄e analysis

(c) ⌫µ analysis (d) ⌫̄µ analysis

Figure 6.25. Categorized systematic (blue) and statistical (red) uncertainties in num-
bers of events for predicted FD MC samples

shown, and in all cases exceed the systematic ones. These plots show that the uncer-

tainties of all the parameters are still statistics dominated, and especially so for the

�CP parameter. This is because �CP is mainly constrained by the ⌫e and ⌫̄e appear-

ance analyses, which have lower statistics than the ⌫µ and ⌫̄µ disappearance analyses.

For all of the parameters, the largest systematic uncertainty is contributed by the

detector calibration. Both sin2 ✓23 and �m2

32
are mainly constrained by the ⌫µ and ⌫̄µ

disappearance samples and are sensitive to the neutrino energy reconstruction, which

heavily relies on the detector calibration. Thus, the calibration systematic uncertainty

becomes the largest uncertainty in measuring these parameters compared to the re-

maining systematics, but the results are still statistics dominated. The functionally
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Figure 6.26. Categorized systematic (blue) and statistical (red) uncertainties in os-
cillation parameters for predicted FD MC samples

identical detector design, the background estimation techniques, and the extrapola-

tion methods play an important role in reducing the systematic uncertainties in the

oscillation analysis.
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CHAPTER 7

CONCLUSION

The NOvA experiment has set new constraints on the oscillation parameters,

✓23, �m2

32
, and �CP , by studying the four oscillation channels:

(�)

⌫ µ disappearance

and
(�)

⌫ e appearance. In this joint analysis, the NOvA detectors have been exposed

to 13.61 ⇥ 1020 (12.54 ⇥ 1020) protons on target (POT) when the NuMI facility was

in the mode of running ⌫µ (⌫̄µ) beam. The neutrino dataset was collected during

2012–2020. The antineutrino dataset was collected during 2016–2018.

The ⌫µ and ⌫̄µ disappearance and ⌫e and ⌫̄e appearance analyses set a pow-

erful constraint on the values of ✓23 and �m2

32
, and the appearance analyses provide

additional constraints on the value of �CP , to which the disappearance analyses are

insensitive. The best-fit point is sin2 ✓23 = 0.57+0.03

�0.04
, �m2

32
= 2.41+0.07

�0.07
⇥ 10�3 eV2/c4,

and �CP = 0.82⇡, where the 1� interval of the �CP parameter is [0,1.06] [ [1.82,2].

Using the oscillation parameter values at the best-fit point, the FD predicted MC

samples for
(�)

⌫ e and
(�)

⌫ µ analyses are plotted in Figures 7.1 and 7.2 [9].

The oscillation dip region around E = 1.8GeV corresponds to a maximal point

of ⌫µ disappearance probability, which is defined by

P (⌫µ disappearance) ⇡ sin2(2✓23) sin
2

✓
1.27�m2

32
L

E

◆
, (7.1)

where L and E are the travel distance and energy of the neutrinos. A large sin2(2✓23)

value corresponds to a bigger probability of ⌫µ disappearing. The fine bins in the

oscillation dip region give strong constraints on the values of �m2

32
and sin2(2✓23).

Compared to the unoscillated MC spectra, if more events disappear from the oscilla-

tion dip region, we will see a larger value of sin2(2✓23). The location of the oscillation

dip determines the value of �m2

32
, which determines the frequency of the disappear-
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Figure 7.1. Distributions of ⌫µ (top) and ⌫̄µ (bottom) data and predicted MC samples
at FD
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Figure 7.2. Distributions of ⌫e (top) and ⌫̄e (bottom) data and predicted MC samples
at FD

ance probability.

The
(�)

⌫ e appearance probability functions are more complicated and cannot

directly show the values of the oscillation parameters as the disappearance probability

functions do. Therefore, we use a probability plot with combined ⌫e and ⌫̄e analyses

as shown in Figure 7.3 to illustrate how the
(�)

⌫ e appearance analyses constrain the

values of the oscillation parameters. The ⌫̄e and ⌫e combined appearance probability

curves traces out an ellipse as the value of �CP varies from 0 to 2⇡, and the position
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Figure 7.3. Electron antineutrino and neutrino combined appearance probability
curves with normal (blue) and inverted (red) mass orderings, preferred values of
the remaining oscillation parameters, observed data samples (black cross), and
best-fit point (purple star) of NOvA 2020 analysis

of the ellipse on the plot depends on the mass ordering and the value of sin2 ✓23. The

ellipses partially overlap in the region where the data point sits. The bars of the data

point correspond to the statistical uncertainties of the data samples. The combined

⌫e and ⌫̄e data samples disfavor regions of parameter space that are far from the data

point. For example, in the inverted mass ordering, �CP = ⇡/2 is excluded by > 3�;

in the normal mass ordering, �CP = 3⇡/2 is disfavored by approximately 2� [19].

However, the current analysis is not su�cient to determine value of �CP .

The NOvA experiment will continue running through 2025, and anticipates

achieving > 3� sensitivity to the mass ordering for 30–50% of the �CP range. The

anticipated exposure of NOvA is 31.5 ⇥ 1020 for each of the neutrino and antineu-
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trino datasets. The NOvA Test Beam program will improve the detector calibration

systematic uncertainties. The joint analysis with T2K will further improve the sensi-

tivity. In the longer term future, the DUNE and Hyper-K experiments will be able to

observe CP-violation in some favored ranges of �CP values at up to the 5� confidence

level.
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