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Abstract

The ability to control the spatial mode of light is extended across photonics from fundamental

tests of quantum mechanics to telecommunications. Recently, a device known as ‘Multi-plane

light converter’ (MPLC) has been introduced as a platform for the implementation of general

spatial transformations of light. The main result of this thesis is the demonstration of an

MPLC as a dynamically reconfigurable device. We do this using a system of parallel optical

beams (the free space counterpart of a set of wave guides in integrated optics). We call a

‘two-beam array’ to the system composed of two of such parallel beams. We test the full space

of unitary transformations for a two-beam array obtaining an average transformation fidelity

of 0.85 ± 0.03. This high fidelity suggests MPLCs are a useful tool for quantum and classical

information processing.

We also report two different results where the underlying degree of freedom is the spatial

mode of light. The laser beam quality, also known as M2 parameter, is the figure of merit that

compares the beam size in the near and far fields to the ones of a diffraction limited beam.

We develop a method to determine M2 using the complex electric field at a single plane. This

method avoids the standard procedure to get M2 which uses multiple intensity measurements,

fitting and an inherent pre-characterization. Our method is particularly useful in optical design

and simulations where the complex electric field is known.

In the context of quantum measurement and state characterization, we theoretically propose

and experimentally demonstrate a method to perform a ‘joint weak-measurement’ optimizing

the measurement resources. Typical joint weak-measurements use one read-out system per

measured observable, while our method allows to measure correlations between pairs of observ-

ables using a single internal degree of freedom of a particle as read-out. We experimentally

implement our scheme to directly measure the density matrix of photon polarization states

using the photon’s transverse spatial mode as read-out system.



iii

Acknowledgements

I would like to thank my supervisor Jeff Lundeen for the continuous supervision of the projects

presented in this thesis. I also thank my supervisor for creating an engaging and supportive

work environment, which became invaluable for me during my doctoral studies.

I would like to thank each of the examiners in my committee, Robert Boyd, Ebrahim Karimi,

Joel Carpenter, and Daniel Stolarski. Thanks for reading my thesis, and providing feedback

on it.
Thanks to my co-authors whose hard work has been important for the completion of the

projects in this thesis. I had the opportunity to work with two posdoctoral fellows, Lambert

Giner and Raphael Abrahao, whose time, knowledge, teachings and discussions have been very

helpful. I was fortunate to also work with Gabriel Bussiéres, Jordán Pagé, Li Liu, Siwei Luo,
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Chapter 1

Fundamentals

Introduction

The fields of quantum information and computing have attracted attention in science and

technology. The problem of factorization of an integer number is particularly relevant in this

context. Modern cryptography relies on the difficulty of such a problem; as solving it is pro-

hibitively impractical with a computer based on classical physics. This is not the case when

quantum resources are used for computing, as theoretically proved by Peter Shor [2] in 1994.

Since those years the scientific community has worked towards realizing a quantum computer

and quantum algorithms for information processing. Different platforms have been used such

as trapped ions, superconductors, and photons.

Photonics has been used as a platform to demonstrate proof of principle experiments, for

the implementation of quantum gates, creation of entangled states, and the realization of

quantum information protocols. Photonics is also a technologically active area, with multiple

research groups in academia and private companies developing photonic hardware for quantum

computing.

A universal quantum computer based on photonics needs the ability to implement trans-

formations on the state of two photons (‘two-photon gates’), which typically rely on non-linear

optics. Such transformations are challenging to implement at the single photon level. A mile-

stone came with the demonstration that linear optics, with single photon sources, and single

photon detectors, is universal for quantum computing. Since then, multiple groups have worked

towards a linear optics based computer/information processing.

This thesis is framed within such an effort with recent developments in the field. Partic-

ularly, we work with Multi-Plane Light Converters (MPLCs), and demonstrate its dynamical

reconfigurability to implement arbitrary unitary transformations on a given system. The degree

of freedom we are working with is the transverse spatial mode of a photon.

This thesis is organized as follows. In Chapter 1, we provide the fundamentals of spatial

modes of light. Chapter 2 uses the quantum nature of light, defines a unitary transformation,

and discusses a few applications of linear optics. We also review the concept of a ‘weak mea-

surement’ used later in the thesis. In Chapter 3, we describe the experimental demonstration

of the reconfigurable feature of an MPLC system. The rest of the thesis covers two different
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projects whose underlying degree of freedom is the spatial mode of a photon. In Chapter 4, we

theoretically propose and numerically demonstrate a method to obtain the laser beam quality

or M2 using the electric field of the light at a single plane. In Chapter 5, we report a method to

perform a joint weak-measurement using a single read-out system. This optimizes the resources

in order to make a weak measurement, and facilitate the use of joint weak measurement. We

close this thesis with conclusions in Chapter 6.

1.1 Light: an electromagnetic wave

Light is an electromagnetic wave with its electric and magnetic vector fields described by

Maxwell’s equations. In many applications, the vectorial nature of light is not essential and

light can be described by a single component of the electric field E, i.e., the light polarization

can be decoupled in two independent transverse directions. This case will suffice for most of

the work presented in this thesis. The description we now provide is based on [3, 4], where

derivations and further details can be found.

The electric field E (x, y, z, t) of a light wave at position (x, y, z) and time t satisfies the

wave equation (a derivation of which can be found in Appendix A),

(
∇2 − 1

c2
∂2

∂t2

)
E (x, y, z, t) = 0, (1.1)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is the Laplacian operator and c is the speed of the light wave, which

we assume to be travelling in a homogeneous medium of refractive index n so that c = c0/n

with c0 being the speed of light in vacuum. For a monochromatic wave, the time-dependence

of E (x, y, z, t) is described by a sinusoidal oscillation at angular frequency ω, which leads to a

factorization of spatial and temporal components for E (x, y, z, t),

E (x, y, z, t) = E (x, y, z) eiωt. (1.2)

Substituting this monochromatic wave into Eq. 1.1 we obtain a time-independent equation for

E (x, y, z) known as the Helmholtz equation.

(
∇2 + k2

)
E (x, y, z) = 0, (1.3)

with k being the wavevector, which is given by k = ω/c = 2π/λ with λ being the light

wavelength.

Monochromatic and paraxial (defined below) optical beams is an assumption we will use

through this thesis. Let’s consider a monochromatic light beam propagating along the z di-

rection forming divergence angles θ respect to z. In the paraxial wave approximation, such

angles satisfy the following condition θ ≪ 1. The time-independent electric field E(x, y, z) can

be expressed as follows

E(x, y, z) = A(x, y, z)e−ikz, (1.4)
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i.e., the electric field propagates along z as a plane wave and its transverse profile is modulated

by the function A(x, y, z). This function and its derivative along z, ∂A/∂z, vary slowly within

a distance of λ, this approximation is called the ‘slowly varying approximation’. More formally,

the first mentioned condition is stated as follows: ∆A = A(x, y, z + λ) − A(x, y, z) ≪ A. The

difference ∆A can be expressed as ∆A ≈ ∂A/∂zλ≪ A, which leads to the usual expression of

this approximation

∂A

∂z
≪ kA. (1.5)

We now apply the same reasoning to the condition that ∂A/∂z should vary slowly: ∆∂A/∂z =

∂A/∂z(x, y, z + λ) − ∂A/∂z(x, y, z) ≪ ∂A/∂z. We approximate ∆∂A/∂z as ∂2A/∂z2λ. Com-

bining the last two equations, we obtain the following condition

∂2A

∂z2
≪ k2A. (1.6)

The paraxial approximation applied to Eq. 1.3 leads to an equation for the complex amplitude

A (x, y, z) from Eq. (1.4). Such an equation is known as the paraxial Helmholtz equation:(
∆⊥ − 2ik

∂

∂z

)
A(x, y, z) = 0, (1.7)

where ∆⊥ = ∂2

∂x2 + ∂2

∂y2 is the transverse Laplacian.

1.2 Transverse spatial modes

The solution of Eq. (1.7) in different coordinate systems correspond to different sets of spatial

modes. Each of those sets has an infinite number of modes, which can be labelled by the

combination of two integer indices. Examples of such modes are the Hermite-Gauss (HG) and

Laguerre-Gauss (LG) modes. We now discuss a Gaussian beam, then describe the HG and LG

modes.

The Gaussian beam

The electric field of a Gaussian beam is given by the following equation

E (x, y, z) = A0
w0

w (z)
e
− x2+y2

w2(z) e−ikz−ik
x2+y2

2R(z)
+iζ(z), (1.8)

we have used the standard beam parameters that we now define. The Rayleigh range z0 is

the distance from the center at which the beam doubles its area, or the beam size increase to
√

2w0.

The beam size w(z) is the width at which the beam intensity drops to 1/e2. It is a function

of the propagation distance z

w (z) = w0

√
1 +

(
z

z0

)2

. (1.9)
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The minimum beam width is called the beam waist, and we denote it by w0. The beam waist

is determined by the Rayleigh range and the wavelength as stated in the following equation

w0 =

√
λz0
π
. (1.10)

The radius of curvature R(z) of the wave-fronts is given by

R (z) = z

(
1 +

(z0
z

)2)
. (1.11)

The phase of the Gaussian beam at the axis is given by ϕ(z) = kz− ζ(z). The term kz is same

as the phase from a plane wave upon propagation. The other term ζ(z) is known as the Gouy

phase and it is given by the following equation

ζ(z) = tan−1

(
z

z0

)
. (1.12)

The Gouy phase is an excess delay compared to the plane wave caused by the spatial confine-

ment of the beam.
The intensity of a Gaussian beam is given next

I (x, y, z) = I0

(
w0

w (z)

)2

e−2(x2+y2)/w2(z). (1.13)

In the transverse plane, this is a Gaussian distribution centered at x = y = 0, with a standard

deviation σ(z) equal to σ(z) = 2w(z). Along the z direction, the Gaussian profile is maintained.

The minimum beam size occurs at z = 0.

The power of a Gaussian beam is obtained by integrating Eq. (1.13) along the transverse

plane. A circle of radius w(z) contains 86% of the total power, and 99% of the beam is inside

a circle of radius 1.5w(z).

To fully characterize a Gaussian beam, the wavelength λ and two independent parameters

are needed. Such parameters can be the the Rayleigh range z0 and the location of the waist

(typically chosen to be the origin of propagation coordinate z = 0). We now summarize the

properties of HG and LG spatial modes.

Hermite-Gauss modes

A Hermite-Gauss (HG) mode is obtained by solving Eq. (1.7) in rectangular coordinates x, y, z.

An HG mode is a product of modes in x and y, and can be labeled by two non-negative integers

m and n:

Em,n (x, y, z) = Am,n
ω0

ω (z)
HGm

(√
2x

ω (z)

)
HGn

(√
2y

ω (z)

)
e−ikz−ik

x2+y2

2R(z)
+i(m+n+1)ζ(z), (1.14)
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where the beam size ω (z), wave-front curvature R (z) and Gouy phase ζ (z) are defined as

above in Eqs. (1.11)-(1.12). The Hermite-Gauss function HGm (u) is defined as follows

HGm (u) = Hm (u) e−iu
2/2, (1.15)

where Hm is the Hermite polynomial of order m. Fig. 1.1 shows a plot of the first HG modes.

Figure 1.1: Hermite-Gauss modes (HGmn (x, y)) for m,n from zero to five. Each mode is
plotted in an amplitude-phase plot. The field amplitude is encoded in the saturation and the
field phase in the hue of the plot. Notice the π phase jumps surrounded by zero-intensity
regions.

Laguerre-Gauss modes

Laguerre-Gauss (LG) modes are obtained by solving Eq. (1.7) in cylindrical coordinates ρ, ϕ, z.

Here ρ is the radial component with values in [0,∞), ϕ is an azimuthal angle with values in

[−π, π), and z takes values in (−∞,∞).
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The electric field of each LG mode can be labelled by two non-negative integers p and l as

LGl,p. It is given by

LGl,p (ρ, ϕ, z) = Al,p
w0

w (z)

(
ρ

w (z)

)l
Llp

(
2ρ2

w2 (z)

)
e
− ρ2

w2(z) e−ikz−ik
ρ2

2R(z)
±ilϕ+i(l+2p+1)ζ(z), (1.16)

where Llp represents the generalized Laguerre polynomial of orders l and p. From Eq. (1.16)

we can calculate the intensity of an LG mode by taking the absolute square of the field. Such

intensity remains invariant upon propagation along z, except by a magnification factor of w(z).

Fig. 1.2 shows a plot of the first LG modes.

Figure 1.2: Laguerre-Gauss modes (LGlρ (ρ, ϕ)) for l, p from zero to five. Each mode is plotted
in an amplitude-phase plot where the amplitude is encoded in the saturation and the phase in
the hue of the plot. Notice the number p indicates there are p+1 regions of zero-intensity. The
l number indicates the azimuthal phase that is wrapping l times within a ring of the LG mode.
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Field fidelity

We define the field fidelity F of two spatial fields Eψ1(x, y) and Eψ2(x, y) as the following

integral:

F (Eψ1 , Eψ2) =

∣∣∣∣∣
∫ ∫

Eψ1 .(x, y)E∗
ψ2

(x, y)dxdy

∣∣∣∣∣
2

. (1.17)

A field Eψ is normalized if F (Eψ, Eψ) = 1. This condition can be ensured by multiplying the

field according to the following equation

Eψ/
√
F (Eψ, Eψ). (1.18)

For normalized fields, the fidelity takes values between 0 and 1. Two fields are orthogonal if

their fidelity equals zero.

The HG modes form an orthonormal set of modes. This means that they are normalized,

and any two different HG modes HGm,n(x, y) and HGm′,n′(x, y) are orthogonal between each

other. The LG modes also form an orthonormal set of modes.

Basis for the spatial mode of light

HG beams form basis for the spatial mode of light. This means that any other beam Eψ(x, y)

can be written as a superposition of HG modes as follows

Eψ(x, y) =
∑
n,m

cn.mHGn,m(x, y), (1.19)

where cn,m =
∫ ∫

Eψ(x, y)HG∗
n,m(x, y)dxdy are the coefficients of the superposition. LG modes

also form an orthonormal basis for spatial modes.

An optical beam array

In integrated optics it is common to encode information in optical paths in which a photon can

exist. Such optical paths are often different waveguides. The free space analogue is an optical

beam array.

An optical beam array is a set of co-propagating Gaussian beams E(x, y) = G(x)G(y),

where each G is given by Eq. (1.8). In Chapter 3, we focus on the case where all modes are

located at a line parallel to the y axis, and two adjacent beams are separated in y by a distance

∆y. If ∆y > 3w0, two adjacent beams are nearly orthogonal to each other. Thus, if there are

M beams with a separation larger than 3w0, we can label each beam state by an index m, and

write it in Dirac notation as |m⟩. We call this an M-beam array. A general state |ψ⟩ in the

beam array can be written as a superposition of each of the |m⟩ beams as

|ψ⟩ =
M∑
m=1

cm |m⟩ , (1.20)



8

where cm = ⟨m|ψ⟩ =
∫ ∫

ψ(x, y)E∗
m(x, y)dxdy. Besides the transverse spatial profile, another

degree of freedom of a photon is the polarization that we now describe.

1.3 Polarization

Light’s polarization is a degree of freedom that refers to the oscillation direction of the electric

field. It is a vectorial property of light and it can have variations across the three dimen-

sional space. In the paraxial approximation, the electric field can be expressed vectorially as

E(x, y, z, t) = Ex(x, z, t)x̂+Ey(y, z, t)ŷ, where x̂, and ŷ are unit vectors along x and y respec-

tively. We have selected rectangular coordinates, but a similar expression can be written for

other coordinates. For a plane wave, such components are given by the following equations:

Ex(x, z, t) = uxRe[e
iω(t−z/c)+δx ],

Ey(y, z, t) = uyRe[e
iω(t−z/c)+δy ], (1.21)

with ux and uy real field amplitudes. The fields Ex and Ey can be visualized as the components

of an ellipse in the transverse plane:

E2
x

u2x
+
E2
y

u2y
− 2 cos (δx − δy)

ExEy
uxuy

= sin2 (δx − δy). (1.22)

At each propagation plane z the electric field traces this ellipse. The polarization state of the

light is determined by the field amplitudes ux, uy and the phase difference δ = δx − δy. There

are important polarization states that we now define.

Polarization states

Linear polarization. The first case is the one in which the ellipse collapses in a straight line.

This case occurs if δ = 0 or π. The direction of oscillation of the electric field is given by the

ratio ±uy/ux. Thus, we have horizontal, vertical, diagonal and anti-diagonal polarization if

uy = 0, ux = 0, uy/ux = 1 or uy/ux = −1 respectively.

Circular polarization. If the phase difference δ is ±π/2 and both field amplitudes are

equal ux = uy, the light is circularly polarized as the electric field traces a circumference. It

is a convention to call right circular polarization the state with δ = +π/2, and left circular

polarization when δ = −π/2.

Poincaré sphere.

Light polarization is a two-level system. Any polarization state can be expressed with any two

mutually exclusive polarization states, this is a basis for polarization. Such a basis can be the

one of horizontal and vertical polarization states {|H⟩ , |V ⟩}, or the one formed by diagonal

and anti-diagonal polarizations {|D⟩ = (|H⟩ + |V ⟩) /
√

2, |A⟩ = (|H⟩ − |V ⟩) /
√

2}. A third
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one is composed by right and left circular polarization states {|R⟩ = (|H⟩ + i |V ⟩) /
√

2, |L⟩ =

(|H⟩ − i |V ⟩) /
√

2}.

Taking the |H⟩ , |V ⟩ basis, an arbitrary polarization state |ψ⟩ can be written as the following

superposition:

|ψ⟩ = cH |H⟩ + cV |V ⟩ , (1.23)

with |cH |2 + |cv|2 = 1. Thus, we can parametrize the coefficients as cH = eiϕH cos (θ/2) and

cV = eiϕV sin (θ/2). Eq. (1.23) is rewritten as :

|ψ⟩ = cos (θ/2) |H⟩ + eϕ sin (θ/2) |V ⟩ , (1.24)

where ϕ = ϕV −ϕH . Notice we omitted the phase eiϕH , which does not make a difference in the

physical predictions in standard quantum mechanics. Thus, any quantum state is parametrized

by θ ∈ [0, 2π) and ϕ ∈ [−π, π). These are interpreted as a polar and an azimuthal angles in

a three-dimensional space. These angles define a point on the surface of a sphere of radius

one. This is known as the Poincaré sphere, and it is shown in Fig. 1.3. In this representation,

orthogonal states are diametrically opposite with respect to the center of the sphere.

So far we have described pure polarization states. The most general polarization state is

described by a density matrix ρ that incorporates information of classical statistical mixtures

of polarization states:

ρ =
∑
j

pj |ψj⟩ ⟨ψj | , (1.25)

where pj is the probability amplitude of measuring the polarization state |ψj⟩. These mixed

states can also be represented as points in the interior of the Poincaré sphere.

1.4 Propagation of light in free space

In this section we describe the propagation of light in free space, and discuss its numerical

implementation. This problem refers to solving Eq. (1.7) which is a linear equation. Also free

space is a shift invariant system. Thus, free space propagation is characterized by its impulse

function h(x, y), or equivalently by its transfer function H(kx, ky), which is now determined.

Consider a plane wave U(x, y, z′) at z = z′. We want to propagate it to the output plane

z = z′ + d. Using a plane wave U(x, y, z) = e−i(kxx+kyy+kzz) such a transfer function is easy to

obtain. The planes wave at the input and output planes are related by H(kx, ky) as follows:

U (x, y, z′ + d) = H (kx, ky)U (x, y, z′) ,

e−i(kxx+kyy+kz(z
′+d)) = H (kx, ky) e−i(kxx+kyy+kzz

′). (1.26)

Thus the transfer function is given by the following expression:

H (kx, ky, d) = e−ikzd (1.27)

= e−id
√
k2−k2x−k2y . (1.28)
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Figure 1.3: Poincaré sphere for representing polarization states. Three great circles can be
defined, each of them passing through the standard basis states: horizontal and vertical states

|H⟩ , |V ⟩, diagonal and anti-diagonal polarizations |D⟩ = |H⟩+|V ⟩√
2

, |A⟩ = |H⟩−|V ⟩√
2

, and right and

left circilar polarizations |R⟩ = |H⟩−i|V ⟩√
2

, |L⟩ = |H⟩+i|V ⟩√
2

. Any pure polarization state can be

represented on the surface of the Poincaré sphere. Mixed states lie in the interior of the sphere.

Notice that when the spatial frequencies satisfy k2x + k2y > k2, the exponent in Eq. (1.28)

becomes negative and the wave decays with distance z. This is an evanescent wave.

Fresnel approximation

The transfer function in Eq. (1.28) can be simplified when the spatial frequencies are much

smaller that the cutoff frequency, k2x+k2y ≪ k2. In this case, we use the following approximation

√
k2 − k2x − k2y = k

√
1 − (k2x + k2y)/k2

≈ k
(
1 −

(
k2x + k2y

)
/
(
2k2
))
. (1.29)

Substituting this approximation in the transfer function from Eq. (1.28), we obtain the transfer

function in the Fresnel approximation

H(kx, ky) = H0e
i d
2k (k2x+k

2
y), (1.30)
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where H0 = e−ikd, d being the propagated distance. The Fresnel approximation is valid if the

following condition is satisfied

NF θ
2
max/4 ≪ 1, (1.31)

where NF = a2

λd is the Fresnel number, θ2max =
(
k2xmax + k2y,max

)
/k2 is the sum of the squares

of the maximum spatial frequencies in x and y (which are denoted by kxmax and kymax respec-

tively), and a ≈ θmaxd is the maximum transverse shift between propagation planes.

The transfer function in Eq. (1.28) ( or Eq. (1.30) in the Fresnel approximation) is used

to describe the free space propagation of a beam. Such a method is described in Section 1.4.

There is an equivalent method that only uses position coordinates (i.e., x and y) rather than

spatial frequencies (kx and ky). Such a method uses the impulse response function of free

space h(x, y), which is the inverse Fourier transform of Eq. (1.30). For a derivation, we refer

the reader to Ref. [3]. The impulse response function is

h(x, y) = h0e
−i k

2z (x2+y2), (1.32)

with h0 = i
λz e

−ikz. The field U(x, y, z) = g(x, y) at a plane z is given as a convolution of the

field at the input plane U(x, y, z = 0) = f(x, y), and the impulse response function

g(x, y) =

∫ ∫
f (x′, y′)h (x− x′, y − y′) dx′dy′. (1.33)

The idea behind this equation is that each point at plane z = 0 produces a new paraboloidal

wave, which is transmitted to the plane z by multiplying it by the factor h (x− x′, y − y′).

Eq. (1.33) integrates over all such point sources to obtain the resulting wave profile.

Fraunhofer approximation

The far field is a common setup in optics that exploits diffraction over large distances, which

naturally separates the spatial Fourier components of an input wave. If the observation plane

is a distance z sufficiently large from the input plane, then the output field gives the Fourier

transform of the input wave U(x, y, z = 0) just scaled by a factor 1/λz. Explicitly

U(x, y, z) =
i

λz
e−ikzU

(
kx
λz
,
ky
λz
, z = 0

)
. (1.34)

This is known as Fraunhofer or far field approximation and it is valid if

NF ≪ 1, andN ′
F ≪ 1, (1.35)

where N ′
F = b2

λd , and b is the minimum radius that contains the spatial profile at the input

plane.
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Recipe for propagating light in free space

The transfer function in Eq. (1.28) can be used to propagate an input wave U (x, y, z = 0) a

distance z after free space propagation U (x, y, z). We now describe such a procedure.

The input wave can be expressed in momentum space by its angular spectrum U
(
kx
2π ,

ky
2π

)
.

The angular spectrum is a superposition of plane waves as follows

U
(
kx
2π
,
ky
2π

)
=

∫ ∫
U (x, y, z = 0) ei(xkx+yky)dxdy. (1.36)

Now that we have the plane wave components of the input wave, we can transmit each

component by a propagation distance z according to the transfer function Eq. (1.28) by tak-

ing the product H (kx, ky, z)U (kx, ky). This is the expression in plane waves of the out-

put wave U (x, y, z). To obtain U (x, y, z) we need to apply the inverse Fourier transform of

H (kx, ky, z)U (kx, ky). Mathematically, this is written as follows

U (x, y, z) =
1

4π2

∫ ∫
H (kx, ky, z)U (kx, ky) e−i(xkx+yky)dkxdky

=
1

4π2

∫ ∫
e−i2πz

√
λ−2−k2x−k2yU (kx, ky) e−i(xkx+yky)dkxdky. (1.37)

The free space propagation of a wave given by Eq. (1.37) can be easily implemented numerically.

It helps to rewrite Eq. (1.37) in terms of Fourier transforms FT as follows

E (x, y, z) = FT−1
[
eikzzFT [E (x, y, 0)]

]
, (1.38)

where kz =
√
k2 − k2x − k2y. This method is accurate for all angles for a scalar field. That

is, it is valid beyond the paraxial approximation from Eq. (1.6). For the implementation, one

can use the native Fast Fourier Transform (FFT) common in numerical software. This general

transfer function method is used through this thesis.

Fourier transform property of a lens

We now discuss a key transformation in optics, namely the realization of a Fourier transform

by a lens and free space propagation. The schematic is shown in Fig. 1.4. An input wave

is incident at plane z = −d with an spatial profile U(x, y, z = −d). A thin lens1 of focal

length f is located at z = 0, such a lens imparts a quadratic phase according to the following

transmittance function t(x, y) (the center of the transverse coordinates being at the center of

the lens):

tlens(x, y) = ei
k
2f (x2+y2). (1.39)

Light is then transmitted to a distance f after the lens.

1 A lens is thin if its thickness approximates zero. In practice, the thin lens approximation applies when the
radii of curvature of a lens is large (thus the focal length) and the lens diameter is small [5].
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Figure 1.4: Schematic used in the derivation of the Fourier transform implementation by a
lens.

In order to obtain the spatial distribution at z = f , we need to propagate the input field

by the optical system in Fig. 1.4. The propagation from z = −d to z = 0 can be done using

the transfer function Eq. (1.30). The spatial profile before the lens is g1(x, y) = U(x, y, z = 0).

Then, we apply the lens phase mask from Eq. (1.39), and propagate the field to z = f . We

start by propagating the field before the lens, apply the lens phase and propagate to the plane

z = f . According to the convolution approach given by Eq. (1.33), we obtain the following

g (x, y) = h0e
−i k

2f (x2+y2)
∫ ∫

tlens (x, y) g1 (x′, y′) ei
k
2f (x′2+y′2)ei

k
f (xx′+yy′)dx′dy′

= h0e
−i k

2f (x2+y2)
∫ ∫

U (x′, y′, z = 0) ei
k
f (xx′+yy′)dx′dy′

= h0e
−i k

2f (x2+y2)U
(
kx

2πf
,
ky

2πf
, z = 0

)
= h0e

−i k
2f (x2+y2)U

(
x

λf
,
y

λf
, z = 0

)
, (1.40)

where U
(
x
λf ,

y
λf , z = 0

)
is the angular spectrum of the field at z = 0 evaluated at the frequen-

cies x/(λf) and y/(λf). This angular spectrum can be obtained from the angular spectrum at

z = −d as follows:

U
(
x

λf
,
y

λf
, z = 0

)
= H

(
x

λf
,
y

λf

)
U
(
x

λf
,
y

λf
, z = −d

)
= H0e

i d
2k (k2x2+k2y2)/f2

U
(
x

λf
,
y

λf
, z = −d

)
= H0e

i kd
2f2 (x2+y2)U

(
x

λf
,
y

λf
, z = −d

)
. (1.41)
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Substituting this equation into Eq. (1.40),

g (x, y) = h0H0e
−i k

2f (x2+y2)e
i kd
2f2 (x2+y2)U

(
x

λf
,
y

λf
, z = −d

)
= h0H0e

i k
2f (x2+y2)(d/f−1)U

(
x

λf
,
y

λf
, z = −d

)
. (1.42)

Thus,

U (x, y, z = f) = h0H0e
i k
2f (x2+y2)(d/f−1)U

(
x

λf
,
y

λf
, z = −d

)
. (1.43)

The Fourier transform of the initial wave’s spatial distribution is obtained at the plane z = f ,

up to a quadratic phase factor. Such a phase can be suppressed if the initial distance is chosen

to be d = f . This configuration would be symmetric in the input and observation planes

respect to the lens. What happens in such symmetric configuration if the distance is different

from z = f? Then a Fractional Fourier Transform is achieved. This is further explained in the

following section and will be used in Chapter 5.

Fractional Fourier Transform

In this section we give an overview of the Fractional Fourier Transform (FrFT). Since its

inception, the FrFT has been framed in different contexts: Condon described the FrFT mathe-

matically in [6], while Namias framed it in quantum mechanical terms [7]. This versatility has

allowed a broad range of applications ranging from differential equations to quantum optics [8],

passing by signal processing, [9, 10] and telecommunications [11]. Further details of the FrFT,

and code for its numerical implementation can be found in Ref. [9].

The FrFT of order R of a function f(x) is denoted by fR(u) ≡ FrFT(f,R), and it is defined

as the following transform:

fR(u) =

∫ ∞

−∞
KR(u, u

′
)f(u

′
)du

′
, (1.44)

where

KR(u, u
′
) =

√
1 − i cotRπ/2eiπ

(
u2 cotRπ/2−2uu

′
cscRπ/2+u

′2
cotRπ/2

)
, (1.45)

for all real values of R, except for even integers. For R = 4j, with j an integer, KR(u, u
′
) =

δ(u− u
′
), and for R = 4j + 2, KR(u, u

′
) = δ(u+ u

′
).

Particularly important are the R = 0 and R = 1 cases of the FrFT. These correspond,

respectively, to the identity and the standard Fourier Transform (FT) operators: f0 = f(x),

and f1 = FT(f)(p). A useful property of the FrFT is that it is additive in R, i.e.,

FrFT (FrFT (f,R2) , R1) = FrFT (f,R1 +R2) . (1.46)

For example, FrFT (FrFT (f, 1) , 1) = FrFT (f, 2) = f (−x) is the parity operator. Therefore,

the FrFT is a transformation that interpolates the identity and a normal FT operators.
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a b

Figure 1.5: The Fractional Fourier Transform (FrFT) allows a continuous transformation
of a spatial function to its Fourier transform, passing through other FrFT domains. The
spatial function f (x) in this figure is a rectangular function. In frame (a), we are plotting
|FrFT (f,R) |2, for different FrFT orders R. Some of them are highlighted in orange, each plot
is renormalized for better visualization. In frame (b), we highlight the cases of R = 0, 0.5 and
1, which correspond to a transformation to the x, d and p domains respectively. In the x-axis,
we have a square function, while on the p-axis we observe a sinc function as we expect to be the
standard Fourier Transform of the square function, in our case FrFT for R = 1 corresponding
to a π/2 rotation. The d domain is characterized by an equal weight of x and p, and it shows
an intensity profile between a square and a sinc functions.

The FrFT is strongly rooted in position-momentum phase-space. Associated with every

FrFT order R, there is a different quadrature u that corresponds to a different superposition

of position x and momentum p. For dimensionless variables, such domain can be written as

u = x cos (
¯
Rπ/2)

¯
+ p sin (

¯
Rπ/2)

¯
. The connection to phase-space is made through the Wigner

distribution of a function. The action of a FrFT of order R is a clockwise rotation in phase-

space of the Wigner distribution by an angle Rπ/2. A relevant result states that a projection

of the Wigner distribution (a marginal of the Wigner distribution) on a domain at an angle

Rπ/2, corresponds to the absolute squared of the FrFT of order R. In other words, performing

a FrFT on a function allows one to obtain the function representation in a different FrFT

domain. Fig. 1.5 illustrates an example. In the x-axis we have a square function, while on the

p-axis we observe a sinc function as we expect to be the standard Fourier Transform of the

square function, in our case FrFT for R = 1 corresponding to a π/2 rotation.

It is widely known that a FT can be performed optically by allowing free space propagation

to the far field. The FrFT completes this picture of wave propagation. Diffraction is a continu-

ous process of FrFTs as demonstrated in [12]. Optical implementations of the FrFT have been

proposed utilizing lenses, graded-index media, and waveguide arrays [13–16]. Now we describe

the setup to perform a FrFT utilized in our implementation.

Lohman [13] proposed a setup based on a lens that performs a FrFT of order R. Fig. 1.6

reproduces such setup. The transverse initial position x of an optical mode is fractional

Fourier transformed by a lens of focal length f , and free space propagation by a distance

z = f tan
(
Rπ
4

)
sin
(
Rπ
2

)
before and after the lens f .
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u= 𝒙cos 𝑅
𝜋

2
+ 𝒑sin 𝑅

𝜋

2
𝒙

𝑧 = 𝑓 tan 𝑅
𝜋

4
sin 𝑅

𝜋

2

𝑓

𝑧 𝑧

Figure 1.6: The transverse position distribution of a light mode is mapped to a different FrFT
domain by means of a lens and free space propagation.
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Chapter 2

Unitary transformations

In this chapter we discuss the concept of a unitary transformation in the context of spatial

modes of light. At the end of the chapter, we mention a couple of example applications where

it is desired to use a device to implement such transformations.

Photon states

In Section 1.2 we described the transverse spatial mode of light and the Hermite-Gauss and

Laguerre-Gauss modes as basis for any state. This statement holds at the fundamental level

of a single photon.

The quantization of the electromagnetic field (EM) leads us to the conclusion that a photon

is an excitation of the electromagnetic field in a certain mode (e.g., a plane wave mode charac-

terized by its wave vector k) [17]. The quantized EM field is described as a set of independent

quantum harmonic oscillators. States of such field can be described by creation a† and annihi-

lation a operators of a mode. The action of such operators on a state |n⟩ of n photons is given

as follows:

a |n⟩ =
√
n |n− 1⟩ , (2.1)

a† |n⟩ =
√
n+ 1 |n+ 1⟩ . (2.2)

Such operators obey the bosonic commutation relations [a,a] = [a†,a†] = 0 and [a,a†] = 1.

The state with zero photons in it (n = 0) is called the vacuum state |0⟩. Number states

are orthogonal to each other ⟨n|m⟩ = δn,m, and they form a basis for the Hilbert space of n

photons. Thus, any n photon state |ψn⟩ can be written as a superposition of |n⟩ states as

follows:

|ψn⟩ =
∑
n

cn |n⟩ , (2.3)

where cn = ⟨ψ|n⟩ are complex coefficients. They satisfy the normalization condition
∑
n |cn|2 =

1.
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2.1 Unitary transformations in quantum mechanics

In this section we give a description of a unitary transformation in quantum mechanics. Math-

ematically, a unitary transformation U is defined by the following equation

U †U = UU † = 1, (2.4)

where U † is the Hermitian conjugate1 of U , and 1 is the identity operator. A unitary trans-

formation preserves the inner product between any two states ψ1 and ψ2:

⟨Uψ1|Uψ2⟩ =
〈(

U †)† ψ1

∣∣∣Uψ2

〉
(2.5)

=
〈
ψ1

∣∣U †Uψ2

〉
= ⟨ψ1|ψ2⟩ .

In the second step we used the definition of a Hermitian conjugate operator given in footnote 1.

In the last step we used the unitary property of U . We can apply this result to sets of states.

In particular, an orthonormal basis of states is mapped into a different basis of states, which

is also orthonormal.

A general unitary of dimension N has N2 free parameters as we show now. Now we count

the number of dependent parameters for a unitary matrix, we look at the entries of the matrix

product UU † = 1, which gives us an algebraic N dimensional system. There are N parameters

from the diagonal entries, plus 2
∑N−1
n=0 n from the upper elements (the lower elements give

identical equations up to complex conjugation), the factor of two corresponds to the fact that

the system of equations is complex. Thus, the total number of free parameters in a unitary is

2N2 − (N + 2
∑N−1
n=0 n) = 2N2 − (N + (N − 1)N) = N2.

We can understand the action of a unitary in two different ways [18, 19]. It can represent

a change of basis where only the representation of the states is changed, i.e., using different

basis to represent the same state. The other use of a unitary is the description of a dynamical

evolution of a quantum state. Such an evolution has to be unitary to preserve the probability

distribution associated with a quantum state. The action of a beam splitter, which is described

in Section 2.3, is an example of the later use of an unitary. We now describe a change of basis

on a photon’s spatial mode.

2.2 Unitary transformations of a photon’s spatial mode

We have described a photon’s state in a certain spatial mode. In general, there is a set of

different modes, each of them with a creation operator a†
m for m = 0, ...,M , where M is the

maximum number of modes of the system. Examples of such mode sets are plane waves, HG

or LG modes. Here it is shown how a unitary transformation can be used to express a state in

a different modal basis.

1 Given an operator T , its Hermitian conjugate T † is defined as the operator which fulfills
〈
T †ψ1

∣∣ψ2

〉
=

⟨ψ1|Tψ2⟩ for any states ψ1 and ψ2.
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A change of basis is done by a unitary transformation U between the modes a†
m and the

new modes b†m. The new modes are given using the matrix form of U :

b†n =
M∑
m=0

Un,ma†
m, (2.6)

for every mode m = 0, ...,M . As expected, the election of the mode basis is arbitrary.

There are some states that are invariant under any change of basis. One of such states is

the vacuum state |0⟩. This is useful as any state of n photons in mode m, which is denoted as

|n⟩m, can be generated applying b†m to the vacuum state:

|n⟩m =
1√
n!

(
b†m
)n |0⟩ ,

=
1√
n!

(
M∑
l=0

Um,la
†
l

)n
|0⟩ . (2.7)

A change of basis is useful for simplifying the description of a state. For example, a single

photon in the HG00 mode would be expressed by a single creation operator of such a mode. The

same state can also be expressed in terms of plane waves, which would require a superposition

of many of them to describe the same mode. This is a specific case of the fact that any single

photon state |ψ⟩ can always be expressed as a single mode. Suppose |ψ⟩ is written as follows

|ψ⟩ =
∑
n

cn |1⟩n . (2.8)

We need to find the unitary that transforms the a† into new b† modes according to Eq. (2.6).

This has to be done in such a way that |ψ⟩ can be expressed as b†1 |0⟩. We can achieve this if

we choose the entries of the unitary U1,n as the coefficients cn in Eq. (2.8). The rest of the

rows Um,n, for m > 1, can be chosen as the coefficients of other normalized states, which are

orthogonal to |ψ⟩ and to each other. This ensures the transformation is unitary. Let’s now

calculate b†1 |0⟩,

b†1 |0⟩ =
∑
n

U1,na
†
n |0⟩

=
∑
n

cna
†
n |0⟩

= |ψ⟩ . (2.9)

This shows a single photon state is single mode, and shows how to theoretically find such a

mode using a unitary transformation. We now discuss how a unitary transformation can be

experimentally realized.
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2.3 Implementation of an N dimensional unitary

The pioneering work by Reck [20] showed a constructive algorithm to implement any unitary

of dimension N . This work was framed in the context of optical paths. The dimension N of

the unitary is the number of optical paths in which a photon can exist. Mathematically, such

a photon state |ψ⟩ is written as follows

|ψ⟩ =
∑
m

cm |m⟩ , (2.10)

where |m⟩ is the state of the mth optical path and cm = ⟨ψ|m⟩ are complex amplitudes

satisfying
∑
m |cm|2 = 1. Such a single photon state is transformed by the unitary U , which

gives a different state |ψ′⟩. The spatial distribution of |ψ′⟩ can be measured by placing detectors

at the output of each optical path. We now describe the elements appearing in Reck’s scheme:

phase shifters and beam splitters.

Phase shifter

A phase shifter is a device that adds a phase ϕ to the input photon. This can be propagation by

a distance d through a slab of a material of refractive index n, in which case the imparted phase

is ϕ = n 2π
λ d. In terms of creation operators, a phase shifter performs the following operation:

a†
out = eiϕa†

in.

Beam splitter

A beam splitter (BS) is depicted in Fig. 2.1. A BS has two input ports with creation operators

a†, b† and two output ports with creation operators c†,d†. A BS is characterized by a coupling

parameter θ and the phase ϕ it imparts between the output ports. A photon entering a single

input port will exit as a superposition of the two output ports. In terms of the creation

operators the BS transformation is written as:

d† = cos θa† + i sin θe−iϕb†, (2.11)

c† = i sin θeiϕa† + cos θb†. (2.12)

Two-dimensional unitary transformations

The building block in Reck’s scheme is a two-level transformation that we now describe. The

general unitary U of dimension two is given by

U(θ, ϕ) =

(
cos θ ie−iϕ sin θ

ieiϕ sin θ cos θ

)
, (2.13)

where θ ∈ [0, π/2] is the coupling parameter, and ϕ ∈ [−π, π] is a phase. Eq. (2.13) for U(θ, ϕ)

is a two-mode beam splitter transformation. In this context, θ is related to the reflectivity R of
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Figure 2.1: Schematic of a beam splitter (BS) with input ports a and b, and output ports c
and d.

the beam splitter as |R| = sin2 θ. The case θ = π/4 corresponds to a 50/50 beam splitter. The

case θ = π/4 and ϕ = −π/2 corresponds to the Hadamard transformation (with the modes

swapped) widely used in quantum information [21]. Pauli gates can also be obtained for some

values of θ and ϕ.

Reck’s scheme used such two-dimensional transformations from Eq. (2.13) as buiding blocks

to implement any unitary of dimension N . Fig. 2.2 shows the general concept of such a decom-

position. A detailed description of the algorithm can be found in Refs. [20,21]. Reck’s decom-

position is not unique. There exist at least another design reported in [22]. The experimental

realization of Reck’s scheme requires stabilizing a large interferometer, which is challenging in

bulk optics. The work from Ref. [23] implemented the Reck scheme in integrated optics (basen

on silicon photonics) with six optical modes and the ability to input different photon number

states. This device uses thermal phase shifters to achieve different unitary transformations in

time, i.e., it is reconfigurable. Recently, a free-space approach has emerged as a Multi-Plane

Light Converter (MPLC). This is the system we report in this thesis, and it will be further

explained in Chapter 3.

2.4 Example applications of unitary transformations

The realization of arbitrary unitary transformations on spatial modes has a wide range of

applications in classical and quantum information processing. In this section we mention some

of them.
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Figure 2.2: Schematic of Reck’s scheme for realizing an N dimensional unitary using beam
splitters and phase shifters. Image credits Ref. [20].

Quantum computing with photons

Quantum computing promises to speed up computations that are practically prohibited in

classical computing. There exist multiple hardware platforms for quantum computing such

as trapped ions, superconducting qubits, and linear optics. Independently of the platform, a

device capable of implementing arbitrary unitary transformations in the spatial mode of light

would be an asset towards quantum computing.

One of the requirements for a quantum computing platform is the ability to implement

universal gates [24]. This is related to Reck’s scheme and to the present work as well. Therefore,

we will dedicate this subsection to describing what we mean by a universal gate set for quantum

computing.

Quantum information is typically encoded in two-level (|0⟩ and |1⟩) quantum systems called

qubits. Unitary transformations act on a qubit or a group of qubits. In this context, a

transformation is called a gate. A universal gate set is a set of transformations that can

implement any other gate on the space of N qubits.

Gates acting on a single qubit can be decomposed in terms of the Pauli gates σx, σy and

σz. The gate σx maps |0⟩ to |1⟩, and the other way around. In matrix form,

σX =

(
0 1
1 0

)
. (2.14)

The gate σz applies a π phase shift to |1⟩. In matrix form,

σZ =

(
1 0
0 −1

)
. (2.15)

The gate σy can be obtained as the product of the other two Pauli gates as σy = iσXσZ . In
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matrix form,

σY =

(
0 −i
i 0

)
. (2.16)

Another gate frequently used is the Hadamard gate H, which maps each state |0⟩ or |1⟩ into

an equal superposition of both states. In matrix form

H =
1√
2

(
1 1
1 −1

)
. (2.17)

Any single qubit transformation U can be expressed in terms of the Pauli gates.

Two-qubit gates act on two different qubits, taking one qubit as a control. These gates act

conditionally on such a control qubit, e.g. if control qubit is in state |1⟩, then apply a π phase

shift to the other qubit. Examples of two-qubit gates are the CNOT and CSIGN gates.

The CNOT gate flips the state of the second qubit (from |0⟩ to |1⟩, and the other way

around) if the control qubit is in state |1⟩. Otherwise, it acts as the identity. This can be

described by the following definition:

|p⟩ |q⟩ CNOT−−−−→ |p⟩ |p⊕ q⟩ , (2.18)

where ⊕ means addition modulo 2.

Another two-qubit gate is the CSIGN gate which applies a π phase shift only if the control

qubit is in state |1⟩. Mathematically,

|p⟩ |q⟩ CSIGN−−−−−→ (−1)
pq |p⟩ |q⟩ . (2.19)

The case of an N qubit gate is based on above gates. It was demonstrated that an N qubit

gate can be implemented in a circuit containing single qubit gates and one two-qubit gate, the

CNOT gate. This construction is presented in [21]. Furthermore, Ref. [25] showed that almost

any two-qubit gate with single qubit gates is sufficient for a universal gate set. The election

of such a two-qubit gate is arbitrary. For photons, these two-qubit gates pose the challenge

of making two photons interact. This can be done using nonlinear optics. We briefly mention

such an approach as well as the KLM scheme, which is entirely based on linear optics.

The Kerr effect is the change of refractive index of a medium due to the intensity of a light

beam:

n = n0 + χ(3)I, (2.20)

where n0 is the linear refractive index, χ(3) is the third-order susceptibility of the medium and

I the intensity of the light beam. Such an intensity could be due to the beam itself or from a

second ‘probe’ beam. The last one is often referred to as the cross-Kerr effect which is the one

we will refer to.
Kerr effect and optical non-linearities in general are weak. In a highly non-linear medium,

χ(3) is in the order of 10−22 m2V−2. Assuming a single photon focused in a non-linear medium

with χ(3) = 2 × 10−22 m2V−2, and a volume of 0.1 × 1 cm3, the phase shift is in the order of

10−18 [26]. The quest of larger non-linearities is an ongoing research topic.
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A milestone work for optical quantum computing was the one by KLM [27], where it was

shown that linear optics with single photon sources, photon detection and feed forward of clas-

sical information are universal. Photon detection is an important element in KLM’s protocol.

The result of such a measurement indicates the rest of the N qubits are in some known state.

The preparation of the N qubits can be chosen such that a target state can be induced by

measurement and feed forward of classical information. This leads to the implementation of

probabilistic and heralded gates.

The use of probabilistic gates for quantum information and computing leads to a reduction

in the probability of implementing a protocol. Let’s assume all gates can be implemented with

probability p, a protocol with n gates will succeed with probability pn. KLM addresses this

issue by using quantum teleportation to implement the gate ‘offline’. The gate is performed

independently using ancillary qubits, and teleported to the main quantum circuit when it is

successfully achieved. However, teleportation requires the realization of measurements in the

Bell (entangled) basis, which is probabilistic in linear optics [28, 29]. The main breakthrough

of KLM is to construct a near-deterministic linear optics scheme that uses n ancillary qubits

to increase the probability of teleportation to n2/(n+ 1)2 which gives a probability of 1 in the

limiting case of n→ ∞ [30].

A crucial gate in the KLM scheme is the non-linear sign gate (NS) defined by the following

transformation

α |0⟩ + β |1⟩ + γ |2⟩ NS−−→ α |0⟩ + β |1⟩ − γ |2⟩ . (2.21)

This gate can be achieved by heralding, i.e., post-selecting upon the result of a measurement.

With NS gates it is possible to implement a heralded CNOT gate. This was implemented

in [23].

KLM scheme is challenging to implement in a practical scenario because of the overhead in

the number of ancillary qubits needed. Improvements to KLM’s protocol have been proposed.

Another approach to quantum computing is the cluster state one, which also uses linear optics

as well as large entangled states as resources. We refer the interested reader to Ref. [30] for

further details.

Ultimately, the quest of a quantum computer promises quantum advantage, i.e., an expo-

nential speed up for the solution of certain problems gained by using quantum resources. We

now discuss another approach for quantum advantage. This one does not contain non-linear

elements, neither classical feed forward of information.

Boson sampling

Boson sampling consists on n bosonic particles passing through a network of m modes, with

m≫ n i.e., the number of modes is much larger than the number of photons injected into the

network. Calculating the output probability distribution of the network is a hard problem, in

the sense that it is practically prohibited using classical resources only. However, such a system

can be physically simulated e.g., with photons in a linear optical network where the output

photon distribution can be sampled by placing detectors at the output of the network.
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The root of the complexity of boson sampling is the calculation of a large bosonic state. It

involves the calculation of a matrix permanent, which ensures the obtained state is symmetric

under the permutation of any two particles of the system. A matrix permanent is calculated

similarly to the matrix determinant, with the only difference of having positive signs in every

term. The permanent and the determinant contain n! terms which need to be calculated.

However, there are efficient algorithms for the calculation of a determinant using a polynomial

number of operations [31,32]. There is no such an algorithm for a permanent.

Early experimental implementations of boson sampling were performed with a few photons

e.g., up to four in Refs. [33–36]. Subsequent experiments [23, 37, 38] increased the number of

photons and modes, and implemented verification tests to certify the experimental samples

indeed corresponded to multiphoton interference. Ref. [39] implemented boson sampling ex-

periments using n = 20 photons in m = 60 modes. boson sampling is a very active research

field. For further details on the subject we refer the reader to the review articles [40,41].

We have mentioned a couple of applications of an optical network to highlight its relevance

in science and technology. Chapter 5 describes a method to perform a ‘joint weak-measurement’

and an experimental implementation of such method. We now provide the fundamentals of a

weak measurement.

2.5 Weak measurement

In this section, we introduce a theoretical model for quantum measurement, von Neumann’s

model, that is typically used to describe weak measurement. The model involves a measured

quantum system S and a pointer system P [42]. The latter indicates the measured value, the

read-out, on a meter. A key aspect of the model is that the pointer is also quantum mechanical.

Before the measurement, S and P are in an initial product state, |I⟩S ⊗ |ϕ⟩P , here ⊗ indicates

a tensor product between different Hilbert spaces and the subscript is a label of the system.

Both of these symbols will be omitted in the rest of the chapter. As usual, we assume that the

pointer’s initial spatial wave function ϕ(x) is a Gaussian centered at zero [42]:

ϕ(x) ≡ ⟨x|ϕ⟩ (2.22)

=
1

(2πσ2
x)

1
4

e
− x2

4σ2
x ,

where σx is the standard deviation of the position probability-distribution.

The pointer’s initial state happens to be same as the ground state of a harmonic oscillator.

Thus, following Ref. [43], we define a lowering operator a as the operator that annihilates

this pointer state, a |ϕ⟩ = 0. By this logic, from here on we label the pointer’s initial state

as |0⟩ = |ϕ⟩. As a standard lowering operator, a can be written in terms of the position x

and momentum p of the pointer as follows a = x/(2σx) + ipσx/h̄. (Note, we use the natural

length-scale σx of the system in place of the mass m and angular frequency ω that usually

appear in the harmonic oscillator: σx =
√
h̄/(2mω).) Associated with a, there is a raising

operator a† that fulfills [a,a†] = 1. Similarly we can define number states |n⟩ = (a†)n√
n!

|0⟩.
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Formulating the model in terms of lowering, raising operators and number states has proven

fruitful in the past [43–45] and will be important for what follows.

Suppose we want to measure observable A of S. Then, in the von Neumann model, one

couples S to P by the following Hamiltonian,

H ≡ gAp (2.23)

= i
gh̄

2σx
A(a† − a),

here g is a real parameter that indicates the interaction strength and we have used the usual

decomposition of p in terms of a and a†. We stress that there is no physical harmonic potential

in the system and thus no quantum harmonic oscillator. We are following Ref. [43] and simply

using the formalism of raising and lowering operators to analyze the effect of the interaction

on the pointer state.

We now consider the state of the total system after the unitary evolution induced by H:

UA |I⟩ |0⟩ = e−i
tH
h̄ |I⟩ |0⟩ =

∑∞
n=0

γn

n! A
n(a†−a)n |I⟩ |0⟩. Here, γ ≡ gt

2σx
is a unitless parameter

that quantifies the measurement strength. In general, the evolved system is in an entangled

state between S and P. For a strong interaction (γ ≫ 1), in each trial, a measurement of the

position of the pointer will unambiguously indicate the value of A (though it is not particularly

obvious in this harmonic oscillator formulation).

So far the model is general and independent of the measurement strength. Now we consider

the weak measurement regime. A weak measurement is characterized by γ ≪ 1, which allows

one to approximate the evolved state as UA |I⟩ |0⟩ = |I⟩ |0⟩+γA |I⟩ |1⟩ to first order in γ. In the

weak regime, the entanglement between the pointer and measured system is reduced, and the

initial state |I⟩ of the particle is largely preserved. Following the work in [46], a post-selection

on a final system state |F ⟩ is performed. Mathematically, this amounts to projecting onto

⟨F | and renormalizing, after which the pointer’s final state is |ϕ′⟩ = |0⟩ + γ ⟨F |A|I⟩
⟨F |I⟩ |1⟩. Thus

the pointer’s final state is largely left unchanged. That is, it is mostly left in |0⟩, but a small

component proportional to γ, is transferred to |1⟩ due to the interaction with S.

Our goal is to identify in what manner the pointer is shifted by the interaction. To this end,

we find the expectations of the position and momentum of the final pointer. These respectively

appear as the real and imaginary parts of ⟨a⟩ ≡ ⟨ϕ′|a|ϕ′⟩ = 1
2σx

⟨x⟩+ iσx

h̄ ⟨p⟩. Thus, using |ϕ′⟩
from just above, one finds

⟨a⟩ = γ
⟨F |A|I⟩
⟨F |I⟩

(2.24)

≡ γ ⟨A⟩w .

Consequently, the pointer is shifted from having ⟨x⟩ = ⟨p⟩ = 0 to indicating an average outcome

⟨A⟩w = 1
2σxγ

⟨x⟩+iσx

h̄γ ⟨p⟩. This average pointer shift was introduced by Aharonov, Albert, and

Vaidman in Ref. [46] and is called the ‘weak value’. Unlike in the standard expectation value,
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|F ⟩ ̸= |I⟩ and, thus, the weak value is a potentially complex quantity. In summary, the real

and imaginary parts of the weak value are the average shifts of the position and momentum of

the pointer, which, in turn, are given by the expectation value of the lowering operator.

Now that we have framed the context of this thesis, we move on to describe the three

research projects that compose this thesis.
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Chapter 3

Reconfigurable unitary
transformations of optical beam
arrays

3.1 Introduction

The transformation of optical spatial modes in a reconfigurable and reliable way would have

a wide range of applications, ranging from fundamental studies in optics to applications in

telecommunications, classical computing, and quantum information processing. Most passive

optical information processing tasks are unitary transformations U (i.e., UU† = U†U = 1)

since they preserve information in the field. A device that creates a reconfigurable unitary could

implement matrix multiplication [47], optical quantum gates [48, 49] and quantum random

walks [50–52]. Furthermore, adding a non-linear optical element to such a device would allow

one to obtain an optical neural network [53–57]. In this work, we experimentally implement

arbitrary unitary transformations in the space of two parallel beams (a ‘two-beam array’) using

a platform known as multi-plane light converter (MPLC).

In Section 2.2, we showed an N-dimensional unitary U possess N2 independent real pa-

rameters that need to be specified to fully determine U . To physically implement a unitary on

spatial modes such as optical beams, one typically needs two elements: a mode coupler and

the ability to impart phases to each mode. Two approaches can be distinguished, one that uses

two-mode beam splitters as mode couplers, and another that uses an optical Fourier Transform

or diffraction to couple modes. The first approach was discussed in Section 2.3.

We now discuss the diffraction approach. An MPLC is composed of layers alternating

between a phase-mask plane and a diffraction layer. The latter is either created by free space

propagation or an optical Fourier Transform. The MPLC was conceived and demonstrated in

Refs. [58–60]. Fig. 3.1 contains the concept of an MPLC. Initially, Refs. [58,59] focused on the

use of MPLCs to perform mode multiplexing, and the phase-mask profiles were obtained by

numerical optimization. In Ref. [1] a particular numerical optimization, wavefront matching,

was adapted to MPLCs. They converted each beam in a two-dimensional grid to a different

Laguerre-Gauss optical mode; achieving the impressive result of converting 210 optical modes
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Figure 3.1: Initial concept of a multi-plane light converter (MPLC) as introduced in Refs. [58–
60]. The photon’s spatial state ψ(x) is transformed by a sequence of alternating phases in
x and kx spaces. The transformation between x and kx is achieved by a Fourier Transform
(FT). Such a system composed of a number of layers of these phases, implements a unitary
transformation U . The final photon state is given by this unitary as ψ′(x) = Uψ(x).

using seven phase planes. In the recent years, there has been an increasing number of works that

use MPLCs to perform different tasks such as diffractive networks [61] and high dimensional

quantum gates using orbital angular momentum [48]. Other works are looking at different

platforms like dielectric slabs [62]. The MPLC has drawn much interest for both applications

and fundamental science.

An MPLC presents a series of advantages over the beam splitter approach. To mention a

few: (i) in an MPLC one has more phase control channels, as there are of the order of 106 pixels

on a single SLM. In the beam splitter approach, the number of phase controls is, in practice,

limited to the order of magnitude 102 [63]; (ii) An MPLC can be fully implemented in free

space, thus it does not suffer from insertion losses to chip and wave guides; (iii) An MPLC is

composed of common optical elements, thus it is an easier system to be widely implemented

and generalized to higher dimensions.

One of the main drawbacks of the MPLC, compared to the beam splitter mesh, is the lack

of a deterministic analytical algorithm for finding the phase masks. Consequently, in an MPLC

system, the minimum number of phase planes needed to create a given unitary of dimension

N is unknown. The said, if there are N pixels in each phase mask, there must be at least

N planes so that one can set all N2 free parameters of the unitary. This sets a bound for

the minimum for number of required phase planes. The seminal work in Ref. [64] provided an

existence proof that an MPLC could implement a general unitary transformation. More recent

work [65] gave an analytical method to implement any unitary but it requires 6N phase planes,

far from the minimum, albeit all but N were fixed phase distributions. Compounding this
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drawback is the fact that, unlike the discrete space theory mentioned above, a real MPLC acts

in a continuous position space to perform transformations. Moreover, in practice, diffraction

replaces the Fourier transform used in the above mentioned theory. In short, our analytical

understanding of the MPLC is far-removed from how it is used in practice. The lack of an

analytical algorithm means that the optimal transformation fidelity and its dependence on the

MPLC system parameters are unknown. With so much unknown about MPLC design and

performance it is important to characterize it for a wide range of tasks.

Most previous implementations of MPLC systems have created a single transformation.

Moreover, usually that transformation was special in some way, e.g., Laguerre Gauss modes

are propagation eigenstates. It was unclear how well an MPLC would perform for an arbitrary

target unitary. In this work, we experimentally demonstrate an MPLC’s versatility and re-

configurability by implementing a set of transformations that densely samples and fully covers

the space of possible unitary transformations. In this way, we show that an MPLC can be a

universal unitary.

Like the original Reck scheme, we aim to create unitary transformations of a linear array

of parallel beams. We consider a beam array because it is a common information encoding in

photonics for classical and quantum information processing. Moreover, a linear array matches

the square grid of pixels in an SLM. Specifically, a linear beam array can be aligned with the

top row of the grid so that subsequent phase planes use lower rows, as shown in Fig. 3.1. Or,

more abstractly, if the SLM has N2 pixels, that would be sufficient, in principle, to implement

an N -mode unitary. In short, using a beam array on a line nominally makes an effective use

of the active area of the SLM, which could be helpful to scaling an MPLC to higher dimension

unitary transformations.

We continue in the next section by introducing the MPLC in more detail, and describing the

wavefront matching algorithm that we use to find our phase planes for each unitary in our full

set. We then proceed to describe our experimental setup and to characterize its performance

using the designed phase planes, thereby creating a map of the transformation fidelity over

all unitary transformations. Finally, we summarize the work of this Chapter and point future

research directions.

3.2 Multi-plane light converter

A phase mask can be applied with a spatial light modulator (SLM). An SLM is composed of an

array of liquid crystal pixels, each square with side-length s, that can be individually addressed

to apply a chosen phase, see Fig. 3.2. Thus the imparted phase P (x, y) is a sum of rectangular

functions times the phase ϕ at each pixel P (x, y) =
∑
k,l ϕ(xk, yl)rect(x−xk

s )rect( y−yls ). Our

SLM size is 792 × 600 pixels, see Section 3.3 for further details of our SLM. However a more

common SLM size is 1920 × 1080 pixels, which gives of the order of 106 addressable channels,

three orders of magnitude higher than current beam splitter meshes.

A single phase mask, e.g., a single phase applied on an SLM, is insufficient to create a

general spatial unitary. To see this, consider a general two-mode unitary transformation. Any

thin phase-grating will couple more than just these two modes [66], see Fig. 3.3. For example,
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Figure 3.2: Schematic of a spatial light modulator (SLM). The SLM is composed of liquid
crystals on a substrate e.g., silicon. A CMOS interface drives the liquid crystals cells to impart
a spatially varying phase to light reflected off the SLM. An SLM is typically controlled from a
computer, in this figure via a DVI signal. Image credits of Hamamatsu.

a sinusoidal or blazed diffraction grating will diffract light into new orders upon successive

applications. This is Raman-Nath diffraction. On the other hand, thick gratings are able to

limit coupling to two and only two modes through e.g., Bragg diffraction [66], as required by a

two-mode unitary. A thick grating can be pictured as a series of different phase distributions

(each of them contained in a plane) interleaved with spatial propagation, i.e., diffraction. This

arrangement, the MPLC, is exactly what is needed to create a general spatial unitary.

Figure 3.3: Diffraction regimes. A medium with a sinusoidal refractive index acts as a diffrac-
tion grating. Two regimes can be distinguished depending on the thickness of the medium:
Raman-Nath and Bragg diffraction. In the Raman-Nath regime, the grating is thin. An incom-
ing beam is transformed into multiple diffraction orders. In the Bragg regime, the grating is
thick and the input beam is transformed into two diffraction orders only. Varying the thickness
of the grating changes the splitting ratio between such orders.

Applying a phase distribution and diffraction are unitary transformations that we denote

by P and D, respectively. An MPLC effectively performs a unitary transformation U by

concatenating DP blocks (assuming the numerical aperture of the system is large enough):
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U = DmPm . . .D1P1.

A schematic of an MPLC is shown in Fig. 3.4. A flat mirror and an SLM parallel to each

other and L distance apart form the MPLC system. That is, instead of using a separate SLM

for each phase, we reflect the light back to the same SLM. The light is inserted to the MPLC

at angle τ so that each incidence on the SLM is at a different y position, utilizing a different

area on the SLM. In this figure, we also show a linear beam array along x (red circles) as the

set of input modes on which the transformation is being performed.

Figure 3.4: Schematic of a multi-plane light converter (MPLC), composed by a spatial light
modulator (SLM) and a flat mirror. These optical components are separated by a distance L.
In an MPLC, a set of P phase planes (PP) (color indicates phase, red = 0 and green = π) and
diffraction implement a unitary transformation of dimension N . A beam array (circles at PP1)
is at the input of the MPLC with insertion angle τ . At the detection plane after the SLM, we
show U |m⟩, i.e., the output state after the MPLC when the input is beam |m⟩ of the beam
array.
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Unitary transformations in a beam array

A beam array was formally defined in Section 1.2. The case of a general unitary U transfor-

mation on a two-beam array is given by eq. (2.13), and it is repeated here for convenience

U(θ, ϕ) =

(
cos θ ie−iϕ sin θ

ieiϕ sin θ cos θ

)
, (3.1)

where θ ∈ [0, π/2] is the coupling parameter, and ϕ ∈ [−π, π] is a phase. The case θ = π/4 and

ϕ = −π/2 transforms a single beam into an equal superposition of the two beams in the array,

i.e., a Hadamard transformation (with the beams swapped), which is widely used in quantum

information [21].

Optimization procedure

Now we describe the general idea behind the optimization procedure to find the required

phase planes for achieving a given unitary. We follow Ref. [1] and use a wavefront matching

algorithm [67, 68] to obtain the phase distribution at each phase plane in our system. In

a general MPLC (as the one shown in Fig. 3.4), there are P phase planes (plus one more

additional output plane) equally separated by a distance ∆z = 2 × L. The phase distribution

at plane p is Φp (x, y). At the first plane, we have the N input beam modes |m⟩, where m inside

the ket is used as an index to label each beam m = 1, . . . , N . The target beam array states

|ψtm⟩ at the last phase plane are determined by the target unitary Ut i.e., |ψtm⟩ = Ut |m⟩. The

design states |ψdm⟩ are the theoretical output states of a given MPLC design (i.e., a specific

set of designed phase planes), thus |ψdm⟩ = Ud |m⟩, where Ud = DPPP . . .D1P1.

The phase distributions are obtained through an inverse design optimization. The goal of

which is to minimize the phase difference between input and target states at every propagation

plane by using a few phase distributions Φp located at different propagation planes. The phase

mismatch of corresponding input-target states at plane p is given by∫ ∫
arg
(
m (x, y, z = plane p)ψ∗

tm (x, y, z = plane p)
)
dxdy. (3.2)

A superposition of these phase errors is formed each of them being weighted by the overlap of

the corresponding input-target states of the MPLC system. The updated phase at plane p is

given as the phase of such a superposition, this is mathematically written in Eq. 3.3. We now

give an example of how to update the first phase Φ1. We need to back propagate the target

states |m′⟩ to the first phase plane. The phase at plane one is updated as

∆Φ1 (x, y) = − arg

(∑
m

m (x, y,∆z)ψ∗
tm (x, y,∆z)

e−i
∫ ∫

arg(m(x,y,∆z)ψ∗
tm

(x,y,∆z))dxdy

)
. (3.3)
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A similar procedure is used to update the other phase planes by propagating the input and

target states to the proper phase plane. For example, to update the pth phase plane, one needs

to propagate the input beams to this plane as DpPp . . .D1P1 |m⟩. A single iteration of the

algorithm is conducted by repeating this phase update for all P planes. This iteration is then

repeated until the figure of merit is reduced below a threshold value or a number of iterations is

achieved. As mentioned in Subsection 3.2, in some cases the optimal value of the optimization

is not the last iteration. Thus, when reaching the maximum number of iterations we selected

the optimal value and the corresponding design. The figure of merit is the gate fidelity FG
between the target unitary Ut and the one implemented by the designed MPLC Ud,

FG(Ut,Ud) =
1

M

M∑
m=1

∣∣∣ ⟨m|U†
t Ud |m⟩

∣∣∣2. (3.4)

The gate fidelity can be obtained from the electric field of the target and output design states
as

FG(Ut,Ud) =
1

M

M∑
m=1

∣∣∣ ⟨ψtm |ψdm⟩
∣∣∣2 (3.5)

=
1

M

M∑
m=1

∣∣∣ ∫ ∫ ψdm(x, y)ψ
∗

tm(x, y)dxdy
∣∣∣2.

For further details of the algorithm we refer the reader to Ref. [68].

We point out that we are not using the SLM in its most common mode of operation, which

we now describe. Typically, when creating or manipulating optical modes with SLMs, the

transformation is encoded on top of a modulation of a regular saw-tooth phase pattern, a

blazed grating [69, 70]. This is a unitary process with each diffraction order carrying different

information. Particularly, the light diffracted into the first-order contains the desired mode.

Selecting a single diffraction order makes the process inherently non-unitary. This mode of

operation of the SLM is used to achieve amplitude and phase modulation with a single hologram

[69,70]. It is also used as a selection mechanism due to the fact that SLM’s diffraction efficiencies

are lower than 100%. In contrast, in the mode of operation we utilize, each phase the SLM

imparts is directly given by the wavefront matching algorithm. There is no underlying grating.

While there may be technical sources of loss (e.g., fill-factor), our mode of operation can be

fundamentally unitary.

Choice of parameters

In this subsection we describe how we selected the parameters of the beam array and the MPLC

system. As mentioned in the Introduction, the realization of an N-dimensional unitary requires

at least N phase planes. We estimated the number of possible reflections on an MPLC system,

details are given below in Subsection 3.2. For our SLM’s dimensions, we found there are up to

ten reflections that can be achieved with realistic parameters. In general, the insertion angle τ
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and plane-to-plane distance L limit the number of reflections one can achieve. Larger values of

L achieve less number of reflections as there is overlap between reflections leading to unwanted

interference. As L decreases more reflections can be obtained, but it also decreases the amount

of diffraction between phase planes. Thus, in order to achieve general unitary transformations,

it is not possible to decrease L arbitrarily. From the experimental point of view, decreasing L

is better in the implementation of an MPLC as a small value of L avoids the need of angles

τ smaller than 1◦. These numbers give an idea of the order of magnitude of the τ and L

parameters. We now describe the details of estimating the number of reflections in an MPLC

system.

(a) (b)

Figure 3.5: Intensity of a beam on the SLM of an MPLC system with a plane-to-plane spacing
of L = 10 cm. The beam has an insertion angle τ = 0.7 deg and the beam waist equals 200 µm
and 600 µm in a) and b) respectively. A value of ω0 as small as 200 µm leads to overlap between
two reflections at the fifth and sixth phase-mask plane. Instead, a value of ω0 = 600 µm achieves
six reflection on the SLM without overlap. Increasing the value of ω0, for example ω0 = 800 µm,
gives overlap between reflections one and two.

Number of reflections in an MPLC system

The geometry of a general MPLC is shown in Fig. 3.4. The distance between SLM and mirror

is L and the reflection angle of the input beam at the SLM is τ . The distance between two

consecutive reflections on the SLM is 2L tan τ . The optical path length between two reflections

is 2L sec τ. We assume a Gaussian beam with beam waist w0 at the first plane. The beam

waist is w(z) = w0(1 + (z/z0)2)1/2 where z is the propagation distance. Thus, the beam waist

at reflection N on the SLM is given by w0

(
1 + (2LN sec τ/z0)

2
)1/2

. Now we count how many

reflections on the SLM are possible. One limitation is the SLM physical dimensions. The

other condition to count the number of reflections is avoiding overlap of reflections. Given

that 99% of the beam power lies within a circle of radius 1.5w(z), we use such radius as the

size of one reflection. To avoid overlap we require two beams to be separated by at least

a couple of pixels on the SLM. We search the number of reflections under these conditions
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in MATLAB. An example of this task is shown in Fig. 3.5. This task is repeated for other

values of the parameters τ , ω0 and L. The results are shown in Fig. 3.6, where we plot the

number of reflections as a function of w0 and τ for different distances L. Fig. 3.7 shows an

early implementation of an MPLC system with a flat mirror instead of the SLM, this image

is displayed for showing multiple reflections between two reflecting surfaces as in an MPLC

system. Such a figure shows ten reflections on the mirror and it corresponds to L = 10 cm.

Reflections on SLM (L = 1 cm) Reflections on SLM (L = 10 cm)

Figure 3.6: Number of reflections on an SLM in an MPLC system as a function of the insertion
angle τ and the beam waist ω0 at the first reflection plane. We show two cases of SLM-mirror
distance L, the values are 10 cm and 1 cm. The regions with negative values indicate overlap
between reflections at that particular reflection. For L = 10 cm the angle τ is restricted to be
larger than 0.7

◦
to achieve multiple reflections. As L decreases, the beam size is constrained

to a few hundreds of microns.

Figure 3.7: Image showing multiple reflections between two reflecting surfaces as in an MPLC
system. This image was captured in the summer of 2016 when I did a research internship in
the Lundeen group. The mirror-mirror separation is 10 cm and ten reflections are achieved on
a mirror of diameter 2.54 cm. I used a webcam for taking this image, the webcam introduced
visual distortion probably due to an ultra wide-angle lens. Mirror appears ellipsoidal rather
than circular, and spots appear circular when they were produced to be elliptical by using
cylindrical lenses. Reflections do not lie on a straight line due to the use of a cylindrical mirror
for implementing this MPLC. Notice that subsequent results used a new implementation of the
MPLC as described in Section 3.3.

We proceed to perform an optimization of the system using the wavefront matching algo-
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Figure 3.8: Gate fidelity for the designed unitary U(θ = 3π/20, ϕ = π/2) using different
MPLC systems. The difference is given by the following parameters: distance between phase
distributions, beam width, and beam spacing. Each set of parameters is labeled by an integer
index displayed in the x axis. For each set of parameters, the wave front matching algorithm
was used to find the phase distributions to achieve the target unitary. Gate fidelity is shown
in black markers. Each of the parameters of the MPLC was scaled to be shown in the same
plot with its maximum and minimum sampled values.

rithm as we explain next. We used the wavefront matching algorithm to sample the space of the

design parameters. We implemented the unitary transformation given by U(θ = 3π/20, ϕ =

π/2) for different design parameters. We found the MPLC achieves a gate fidelity > 90% for

a wide range of parameters, as shown in Fig. 3.8. An spacing between phases smaller than

5 cm leads to small amount of diffraction and a gate fidelity smaller than 60%. For a spacing

of 10 cm, the MPLC achieves a gate fidelity of 0.9 with variations of 5%, which suggests the

system is robust to experimental imperfections. We selected a spacing between phase distribu-

tions equal to 10 cm, and experimentally achievable values of beam spacing and beam width for

our experimental implementation. With the chosen parameters, we verified the MPLC system

achieved a similar performance when changing the target unitary. This is shown for a couple

of other transformation in Fig. 3.9.

We then proceed to experimentally implement the MPLC system with the chosen param-

eters and characterized the beams and MPLC (see details in the section below). This charac-

terization was used to update the parameters of the design in order to match the experimental

ones. We now list the final design parameters. The wavelength is 637 nm and the SLM’s pixel

size is 20 µm. We are using P = 5 phase planes and a plane spacing of 2L = 10 cm. Adjacent

input beams have a center-to-center separation of ∆y = 704 µm. Each beam has a waist (half
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(a)

(b)

Figure 3.9: Gate fidelity for a couple of different designed unitary transformations using differ-
ent MPLC systems. This figure is similar to Fig. 3.8. The difference is the target transforma-
tions, which are U(θ = π/4, ϕ = π/2) for a) and U(θ = π/3, ϕ = π/2) for b).

width at 1/e2 intensity) of 161.5 µm located 2.08 cm before the first phase plane. We apply

a linear phase eiyπ/(18∗Pixel) on one of the beams to account for the beam tilt experimentally

observed in our setup. The output beam array is the same as the input one, with the beam size

and beam separation demagnified by a factor of 4. This demagnification helps the optimization

algorithm to compensate for the natural diffraction and reduces losses due to diffraction out of
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the light path.

Phase distributions for U(θ = π/12, ϕ = 0)

Phase distributions for U(θ = π/6, ϕ = 0)

Phase distributions for U(θ = π/4, ϕ = 0)

Phase distributions for U(θ = π/3, ϕ = 0)

Figure 3.10: Phase distributions with the wave front matching optimization algorithm for
different unitary transformations U(θ, ϕ = 0) using the optimization parameters listed in Sec-
tion 3.2. The MPLC system uses five phase-mask planes (which experimentally correspond to
five reflections on the SLM) and the output of the MPLC is recorded at phase-plane number
six (the plane to be imaged experimentally).

Optimization results

The goal of the optimization is to design the MPLC that will be experimentally implemented

and reach the target fidelity performance for the given target unitary, Ut. We matched the

parameters of the designed and the experimental beam array. This was done after the beam

array characterization (see details in the section below). We now list the design parameters.

The wavelength is 637 nm and the SLM’s pixel size is 20 µm. We are using P = 5 phase planes

and a plane spacing of 2L = 10 cm. Adjacent input beams have a center-to-center separation

of ∆y = 352 µm. Each beam has a waist (half width at 1/e2 intensity) of 161.5 µm located

2.08 cm before the first phase plane. We apply a linear phase eiyπ/(18∗Pixel) on one of the beams

to account for the beam tilt experimentally observed in our setup. The output beam array is



40

Phase distributions for U(θ = π/12, ϕ = π/2)

Phase distributions for U(θ = π/6, ϕ = π/2)

Phase distributions for U(θ = π/4, ϕ = π/2)

Phase distributions for U(θ = π/3, ϕ = π/2)

Figure 3.11: Phase distributions with the wave front matching optimization algorithm for
different unitary transformations U(θ, ϕ = π/2) using the optimization parameters listed in
Section 3.2

Intensity of top beam at planes of MPLC

Intensity of bottom beam at planes of MPLC

Figure 3.12: Intensity of input beams when passing by the MPLC system with a target unitary
U(θ = π/4, ϕ = π/2) using the optimization parameters listed in Section 3.2.

the same as the input one with the beam size and beam separation demagnified by a factor

of 4. This demagnification helps the optimization algorithm to compensate for the natural
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diffraction and reduces losses due to diffraction out of the light path.

We used the optimization algorithm to sample the whole U(θ, ϕ) space with the following

grid: θ ∈ [0, π/2] in steps of π/120, and ϕ ∈ [−π, π] in steps of π/60. Figs. 3.10-3.11 show some

phase distributions obtained after the optimization procedure. Each design unitary the result

of an optimization with 100 iterations. Each optimization takes 53.806 s to run in a desktop

computer with an 8 core Intel i7-10700 processor at 2.9 GHz with 16 GB of RAM (this same

computer was used in the other data processing tasks). Fig. 3.12 shows the intensity of the input

beams at each plane of the MPLC when the system performs the unitary U(θ = π/4, ϕ = π/2).

Figure 3.13: Predicted performance of the designed MPLC system. We plot the gate fidelity
FG (U (θ, ϕ) ,Ud) between the target unitary transformation U(θ, ϕ), and the design one Ud

obtained with the wavefront matching algorithm. The plot samples the full space of two
dimensional unitary transformations.

The optimization results are shown in Fig. 3.13. Averaging FG over the U(θ, ϕ) space, we

found the average gate fidelity to be F̄G = 0.90 ± 0.04, where the uncertainty is the standard

deviation. However, regions with significantly higher and lower fidelity values than average

can be distinguished. In particular, there is a strip region in θ ≈ 0 which gives the lowest

fidelity, which is surprising since those unitary transformations are close to the identity. The

low fidelity regions are mostly due to phase mismatch in the output states, which the wave

front matching algorithm was not able to correct even after increasing the number of iterations.

In this regard we now dedicate a subsection to some observations of the performance of the

wavefront matching algorithm.
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Observations of performance of wave front matching algorithm

The drop in the gate fidelity shown in Fig. 3.13 is due to phase mismatch mostly. The field

amplitude of the design output states is same as the target ones. This can be seen by plotting

an intensity gate fidelity FGI
defined similarly to Eq. 3.5 with the difference being the use of

intensities rather than fields:

FGI
(Ut,Ud) =

1

M

M∑
m=1

∫ ∫
Idm(x, y)Itm(x, y)dxdy, (3.6)

where Idm and Itm are the intensities (renormalized so that FGI
takes values between zero

and one) of the design and target output states when the input state is the beam |m⟩. Such

intensities are renormalized according to the following equation

I(x, y) = |ψ(x, y)|2/
(∫ ∫

|ψ(x, y)|2dxdy
)1/2

. (3.7)

The intensity gate fidelity for our design MPLC system is shown in Fig. 3.14. Averaging over

the unitary space we obtain FGI
= 0.983 ± 0.005.

The wavefront matching algorithm is an optimization which can suffer from not reaching the

optimal phase masks to achieve a target unitary (a global minima for the problem) but finding

a set of phase distributions and not being able to further optimize them (a local minima). This

behaviour is also present in a few cases of our implementation and it is shown in Fig. 3.15. We

also note that the final design (the one reported in this thesis) was taken with the phase masks

that optimized the performance of the system.

In Section 3.4, we show how the phase-mismatch in Fig. 3.13 can be corrected by a single

phase plane at the detection plane. We now describe the experimental implementation of

unitary transformations in a two-beam array. Here we exploit the reconfigurability of the

MPLC.

3.3 Experimental unitary transformation in a two-beam
array

The experimental setup is shown in Fig. 3.16. Our light source is a laser diode with a wavelength

of 637.7 nm with a FWHM bandwidth of 1.3 nm coupled to a single-mode fibre. We can describe

the setup in three stages: beam array preparation, MPLC and output state reconstruction.

The two-beam array is created with a birefringent beam displacer and polarization optics (see

caption of Fig. 3.16 for details). We characterized the input beam array by measuring ω(z) at

several propagation planes z. The measured beam characteristics were given in Subsection 3.2.

In the beam array preparation, we have the ability to choose the input mode (|1⟩ or |2⟩), to

the MPLC.
Our MPLC uses five reflections on the SLM as the P = 5 phase planes, see Fig. 3.17 for

an image of the experimental MPLC system. The output of the MPLC is located at a sixth
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Figure 3.14: Predicted performance of the design MPLC system. We plot the intensity gate
fidelity FGI

(U (θ, ϕ) ,Ud) (Eq. 3.6) between the target unitary transformation U(θ, ϕ), and
the design one Ud obtained with the wavefront matching algorithm. The plot samples the full
space of two dimensional unitary transformations.

Figure 3.15: Gate fidelity FGI
(U (θ, ϕ) ,Ud) (Eq. (3.6)) between the target unitary transfor-

mation U(θ, ϕ), and the design one for a couple of transformations showing the last iteration
of the optimization does not necessarily lead to the optimal performance of the MPLC.

phase-mask plane after the SLM, this is the plane to be imaged for measuring the performance

of the MPLC. The SLM is a phase-only liquid crystal SLM (Hamamatsu X10468-07) with an

effective area of 15.8 × 12 mm and a fill factor of 98%. The SLM size is 792 × 600 pixels, with

a pixel pitch of 20 µm. The SLM has high throughput efficiency from 620 to 1100 nm. Each

pixel can be set to a value ranging from 0 to 256. We use the calibration provided by the
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SLM

Flat Mirror

BS                 BS

SMF       PBS     Beam Displacer   PBS

Laser at 637 nm

BS        Camera

𝑓1
 
            
𝑓2

HWP        Mirror     Aspheric lens

Beam array preparation MPLC

Output state reconstruction

y
           x

y

x

Figure 3.16: Experimental setup for the realization of an arbitrary two-dimensional unitary
transformation using a multi-plane light converter (MPLC). Beam array preparation. A
polarizing beam splitter (PBS) and a half wave plate (HWP) produce light linearly polarized
at 45

◦
. A beam displacer shifts the spatial mode of photons with vertical polarization, and

transmits spatially unshifted photons with horizontal polarization. The beam displacer creates
the two-beam array. After the beam displacer, a HWP and a PBS select the input state. The
transmitted light at the PBS is horizontally polarized, which is the working polarization of
the spatial light modulator (SLM). MPLC. The MPLC is created with an SLM and a flat
mirror. The beam array is inserted to the MPLC by a non-polarizing 50:50 beam splitter.
Five reflections are achieved in the SLM. After which, a second 50:50 beam splitter is used to
extract the output states from the MPLC. A sixth phase-mask plane after the beam splitter
corresponds to the output plane of the MPLC. The efficiency of the five reflections on the
MPLC (without considering the two beam splitters) is 10%. Output state reconstruction.
A reference beam is created at the first PBS. The reference beam propagates through a delay
line which compensates the optical path difference of the MPLC. A HWP at 45

◦
sets the

reference beams’s polarization to be horizontal. The output plane of the MPLC is imaged on a
CMOS image sensor (camera) by a 4f-lens pair (magnification 1.25). The imaged output states
and the reference beam interfere after a beam splitter and the interference pattern is recorded
the camera. Output state reconstruction is performed computationally from the interference
pattern.

manufacturer, which gives a pixel value-phase linear response and a pixel value of 118 for a

2π modulation at 637 nm. We do not use the phase to correct aberrations provided by the

manufacturer. The phase ΦSLM on the SLM is obtained as follows

ΦSLM =
118

2π
mod (Φ, 2π), (3.8)

where Φ is the phase at the five phase planes, directly obtained from the wavefront matching

algorithm.
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Figure 3.17: Images of the experimental MPLC. The SLM can be appreciated with the five
reflections on it as well as the beam splitter used to insert the beams into the MPLC.

We now describe the steps for characterizing the beam array. The beam size of every mode

of the beam array is measured at several z planes to characterize it. Each of the modes has a

beam waist of w(z = 0) = 161.5 µm and it is located 2 cm before the first plane. At this stage

one can detect experimental imperfections as we found with the tilt between the two beams.

From this characterization, we know the beam size of the beam array at every phase plane.

This information is used for setting the parameters of the optimization algorithm and as a

diagnosis tool of the MPLC alignment.

Centring each of the phase distributions

Locating the centers of the reflections on the SLM is performed through random phase dis-

tributions as described next. The method is based on the razor method for Gaussian beam
characterization [71]. A razor is moved along the y direction across the beam. The transmitted

intensity is used to obtain the center of the beam, and the beam waist [71] at the plane of

the knife edge. The location of the second beam in the beam array can be obtained from the

location of the first beam and the knowledge of the beam separation. This technique can be

emulated with an SLM. A random phase distribution diffracts light in all directions, thus, in

the far field, it creates loss. A random phase that gradually moves in the y direction effectively

acts as a razor. A power meter at the far field can detect the power as a function of the random

phase distribution position in y. This data is used for obtaining the center and beam waist of

the beams at each reflection. The drawback of this method is that it requires post-processing.

A more practical modification of the razor technique can be used instead. Create a random

phase mask, and move it through the SLM. Place a power meter after the SLM. Initially, the

total power of a beam is measured. As the random phase is moved on the SLM, the beam

disappears when the random mask is on one of the beam reflections. The random phase mask

can be cropped to a rectangle to match the size of the beam. This provides an estimate of the

beam center and beam size. This technique is less accurate than the full razor one, but it is

simpler and faster to implement.
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Figure 3.18: Maximum number of reflections on an MPLC system as a function of the mirror-
SLM separation L. Small values of L provide the most reflections in an MPLC system. As L
decreases, the diffraction also decreases possibly affecting the coupling between the transformed
modes. Thus, L can not be arbitrarily small. The maximum number of reflections is around
ten (depending on the beam array parameters).

Fine tuning

The centers of the phase distribution need to be further tuned. We now describe such a

method. A U(θ, ϕ) transformation is the target unitary. We start by the first plane, the

position of the first phase distribution (x1, y1) is moved in the y direction in steps of one pixel.

The experimental intensity Ie(x, y) is measured on the camera. We compare Ie(x, y) with the

design intensity Id(x, y), which corresponds to the same experimental configuration i.e., with

only the first phase applied. The figure of merit in this comparison is the ‘Intensity fidelity’

FI(Id, Ie) between Id and Ie, FI(Id, Ie), defined as follows

FI (Id, Ie) =

∫
Id (y) × Ie (y) dy, (3.9)

where Id (y) =
∫
Id (x, y) dx/

(∫ (∫
Id(x, y)dx

)2
dy
)1/2

is the design intensity along y. The

normalization of such intensity ensures that FI (Id (y) , Id (y)) = 1. The experimental intensity

Ie (y) is calculated in an similar way. We move the phase distribution, pixel by pixel along y,

maximizing FI (Id, Ie). We repeat the same procedure for the x direction. We noticed that the

y direction is more sensitive than the x direction.

Having optimized the first phase, we apply the first two phase distributions and repeat the

fine tuning procedure for the second phase. We repeat this procedure with the other phase

distributions. Ideally, these positions are fixed and should work for any U(θ, ϕ). Our data
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U (θ, ϕ = π/2) FG five PPs FG two PPs
θ = π/2 0.91 ± 0.01 0.914 ± 0.009
θ = π/3 0.859 ± 0.008 0.85 ± 0.05
θ = π/4 0.69 ± 0.06 0.86 ± 0.06
θ = π/5 0.83 ± 0.02 0.85 ± 0.06
θ = π/6 0.83 ± 0.02 0.82 ± 0.01

Table 3.1: Gate fidelity FG(U (θ, ϕ = π/2) ,Ue), calculated using eq. (3.5), between target
unitary transformations U(θ, ϕ = π/2) and the experimentally obtained ones Ue using five and
two phase planes (PP). The positions of the PPs were not changed when reducing the number
of planes. We found using two PPs give same or better performance as five PPs.

acquisition was performed with fixed positions for the phases, even when changing the target

unitary. However, we noted that some transformations experimentally provided higher values

of the intensity fidelity after small changes (shifting one or two phase masks a few pixels) in

the phase’s centers.

Once the centring of the five phases is done, the designed phases for different unitary

transformations can be applied. The field of each output state is reconstructed by off-axis

holography ( for a more detailed description of the method, see for example [72,73]). Then the

gate fidelity can be calculated using eq. (3.5). We exploit the reconfigurability of the SLM by

experimentally sampling the two-dimensional unitary space U(θ, ϕ). The sampling used the

following grid: θ ∈ [0, π/2] in steps of π/120 and ϕ ∈ [−π, π) in steps of π/60.

The data acquisition used solely the last two, of the five design phase distributions, for real-

izing each unitary. We now explain the reason of this. While doing the experiment, we noticed

the last two design phase planes are the most important ones to realize the unitary transforma-

tions U(θ, ϕ). To that point, Table 3.1 shows the gate fidelity between target transformations

U(θ, ϕ = π/2) and the experimentally obtained ones. The performance is same or better using

only the last two phases, while setting the first three to zero. When using all five design phases

for different unitary transformations, the MPLC produced a complicated scattered intensity

distribution. Such an intensity was qualitatively different than the expected one. The physical

mechanism for this behavior is unknown and a subject for future investigation. All results

presented in this Chapter were taken with the last two phase distributions for each unitary.

As for data acquisition, we set the phase planes on the SLM to perform a unitary U(θ, ϕ).

For every input state |ψ⟩ = |m⟩ (m = 1, 2), we record five images of the interference pattern.

Each image is used to numerically reconstruct the optical field of the output state by off-

axis holography. Acquiring this set of ten images takes 25 s. The off-axis holography routine

takes 44.12 s using MATLAB (most of the time is taken by geometric transformations such as

magnifying and flipping that account for the last 4f system in our experimental setup). The

alignment procedure, and data acquisition are performed in LABVIEW.
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3.4 Performance assessment of the implemented unitary

We first present the results of the method as described so far. We will then describe how the

use of one additional phase plane improved the average fidelity considerably.

Figure 3.19: Field of experimentally obtained output states for different transformations
U(θ, ϕ). The blue grid separates different states corresponding to a different U(θ, ϕ). The
values of θ and ϕ are indicated on the axes. In this sample the input state is the beam |1⟩ of
the beam array. The last column shows the target phase for the fields on the same row. The
field amplitude of each state was normalized to have the same maximum amplitude, this was
done for image visibility.

Results - Part I: No correcting mask

Fig. 3.19 shows a sample of experimentally obtained output states for different unitary trans-

formations U(θ, ϕ) (values of θ and ϕ are indicated in the axes creating a grid shown in blue

color) when the input state is the beam |1⟩. The amplitude and phase of the field’s states are

shown in the brightness and hue of the plot respectively. This figure explicitly demonstrates

the ability of an MPLC to implement the full gamut of unitary transformations. The obtained

output states cover the full range of amplitude and phase a beam array state can have. As

a result, we are also able to generate any state in the two-beam array. Different degrees of

amplitude and phase mismatch can be appreciated in Fig. 3.19.

The results for Part I–No correcting mask are shown in Fig. 3.20. We show the gate fidelity
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FG(Ut,Ue) (obtained by using eq. (3.5)), between target unitary Ut and the experimentally

implemented by the MPLC Ue. Averaging over all the unitary space, we got an averaged gate

fidelity F̄G = 0.67 ± 0.17. This plot shows our experiment is able to implement a large set of

transformations with a large gate fidelity (larger than 80%). However, there are regions with

a gate fidelity smaller than 0.5 in the center of the plot. We next investigated how to improve

the performance of the MPLC over the unitary space.

Figure 3.20: Experimental gate fidelity FG (U(θ, ϕ),Ue) (calculated using eq. (3.5) ) between
target unitary U (θ, ϕ) and the unitary Ue experimentally implemented by the MPLC system.
These results correspond to Part I: No correcting mask. We sample the full space of the unitary
transformations in a two-beam array given by eq. (2.13). This plot is the experimental analogue
of Fig. 3.13.

A possible method to improve the gate fidelity is to move the location of each phase distri-

bution for every transformation. The field distribution in the actual MPLC might be slightly

offset from the nominal field used in the optimization. To account for that, one might consider

‘re-centring’, shifting each phase distribution on the SLM by a few pixels with the goal of

improving the output states. To be clear, we did not do this for the data in Fig. 3.20. The

problem of performing such a re-centring optimization is that it is not theoretically needed as

the designed MPLC has fixed input beams. Thus, re-centring does not guarantee improving

the gate fidelity. Additionally, the centring procedure is time-consuming which challenges the

reconfigurability feature of our experiment.

Instead, we followed a different approach for improving the averaged gate fidelity of our
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experiment. In Fig. 3.20 there is a region around ϕ = π/2 where the fidelity is higher than 0.8

independent of θ. Such a strip of transformations accounts for the value of θ of the transfor-

mation U (θ, ϕ). We use an additional phase to adjust the phase ϕ to create any target unitary

U (θ, ϕ). This is the method experimentally used and reported in the next subsection.

Figure 3.21: Performance of the design MPLC system plus a correcting phase plane, as ex-
plained in Results - Part II: With correcting mask. We plot the gate fidelity F (U(θ, ϕ),Ud)
(eq. (3.5)) between the target unitary U(θ, ϕ), and the one implemented by the MPLC Ud.
Gate fidelity is calculated for every unitary of dimension two. This figure uses the set of trans-
formations U (θ, ϕ = π/2) from Fig. 3.13 and an additional phase plane to generate the unitary
space.

Results - Part II: With correcting mask

Our experimental results presented in Fig. 3.20 show a non-ideal performance of our MPLC over

the two dimensional unitary space. In other words, there are regions with contrasting fidelities.

To improve the performance of the MPLC, we use the line of designs along U (θ, ϕ = π/2) and

an additional phase located at the detector plane to achieve any other transformation U (θ, ϕ).

Such a phase plane applies a phase difference ∆ϕ = (ϕ− π/2) /2 to the top beam and −∆ϕ to

the bottom one. The design gate fidelity with this approach is shown in Fig. 3.21. It has an

averaged gate fidelity F̄G = 0.92±0.04, which has a percentage difference of 2.2% higher respect

to the one of Fig. 3.13. Thus, our correcting mask approach preserves the performance of the
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original design MPLC Ud. The lower performance of transformations with θ = 0 − 6π/120 is

due to a phase gradient of π across each beam, which is not fixed by the wave front matching

algorithm.

Figure 3.22: Experimental gate fidelity FG(U(θ, ϕ),Ue) (Eq. (3.5)) between target unitary
U(θ, ϕ) and the unitary Ue experimentally implemented. These results correspond to Part II:
With correcting mask..

For the experimental implementation of the correcting mask approach, we used an additional

SLM located at the output plane of the MPLC system from Fig. 3.16. This SLM is a Pluto-2

phase only SLM with a dielectric mirror at its back plane to enhance reflectivity in the range of

730 − 950 nm. It achieves a maximum modulation of 2.4π with a pixel value of 255 at 637 nm.

Implementing the correcting mask approach yielded the results shown in Fig. 3.22. we obtained

an experimental averaged gate fidelity of F̄G = 0.85 ± 0.03. This is a much improved result

when compared to Fig. 3.20 (note the change in scale).

3.5 Experimental vs designed performance

We found a mismatch in the performance of the designed MPLC (Fig. 3.13) and the experi-

mentally obtained one (Fig. 3.20). The reason of this mismatch may be due to experimental

imperfections that effectively produce additional phases not taken into account in the design.

Examples of such imperfections include light scattering, misalignment of the system, mismatch

between design and experimentally available beams, positioning of phase planes, SLM’s surface
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curvature, inherent grid in pixel structure of an SLM, etc. Modelling these imperfections is

challenging and it gets harder as more phase distributions are used. By using a non unrealistic

phase distortion, we calculated the effect of a phase perturbation in an MPLC. Such a phase

perturbation has an average (averaged over the five locations of the reflections on the SLM)

gradient equal to 0.058± 0.02 rad(SLM pixel)−1. This perturbation causes a 20% drop in gate

fidelity. The details of this calculation are now given.

The procedure is as follows. Use the designed phase planes from the wave front matching

algorithm to implement a unitary U (θ, ϕ), add a perturbation phase αΦpert, with α being

an amplification factor, and Φpert the additional phase. Thus the final phase imparted by the

perturbed MPLC system is the sum of the phase obtained by the wave front matching algorithm

and αΦpert. We propagated the input beams by such a perturbed MPLC system and calculated

the gate fidelity FG (U(θ, ϕ),Upert) between the target unitary and the perturbed MPLC. We

took Φpert to be the one provided by the manufacturer to correct for non-flatness of the SLM,

i.e., the SLM applies an spatially varying phase even when no phase is being displayed on it,

the correction pattern Φpert is supposed to cancel such an effect. Fig. 3.23 shows the gate

fidelity of a perturbed MPLC with a target unitary U (θ = π/4, ϕ = π/2). The perturbation

phase αΦpert was applied with different values of α. The trend of Fig. 3.23 also appears for

other values of θ. We found the gate fidelity decreases even for values of α < 1. The phase

masks obtained from this example are shown in Fig. 3.24. For α = 1, such a phase perturbation

has an average gradient equal to 0.058 ± 0.02rad(SLM pixel)−1. The average was taken over

the five reflections on the SLM.
This example shows that simple phase patterns can alter the performance of the MPLC. The

effects of misalignment, parameter mismatch due to experimental imperfections, positioning of

phase planes, spatial variations across the SLM, etc. overall contribute to a phase pattern (in

general different from the correction pattern Φpert) that causes the mismatch between the design

MPLC and the experimentally obtained one. This phase perturbation is harder to correct as

more planes are used. We did not use the correction pattern Φpert experimentally, because it

strongly distorted the beams even when no other phase was applied. The perturbation phase is

given by αΦpert, it is added to the design phase planes of the design MPLC system. Figs. 3.24

and 3.25 show the design phase planes, the correction pattern with different values of α and

the sum of both phases. This final phase is the one used by the perturbed MPLC system.

Potential future directions

An MPLC could be used as an auxiliary device in a quantum computer e.g., for state prepara-

tion or in the implementation of gates. For such an application an SLM with higher efficiency

is needed. Nowadays, there are SLMs with > 97% light utilization efficiency, which is achieved

by using a dielectric mirror at the end of the SLM.

The realization of reconfigurable unitary transformations in a high dimensional beam array

is the ultimate goal of an MPLC system. Such a device would allow one to use linear optics

in free space for implementing and studying boson sampling experiments, the implementation

of quantum gates and random walks which have many applications, see for example [74]. We
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Figure 3.23: Gate fidelity FG (Ut,Ud = Upert) between target unitary Ut(θ = π/4, ϕ = π/2)
and the unitary Upert implemented by a perturbed MPLC system. The perturbation phase is
given by αΦpert with Φpert being the correction phase pattern provided by the manufacturer
of the SLM. This perturbation phase was used as an example of a realistic phase perturbation
that can appear in an MPLC system.

think it would be interesting to use an MPLC for specific ‘meta-optics’ transformations. For

example the conception of a ‘spaceplate’ [75] has similarities with an MPLC system. Thus

combining both systems could lead to an improvement of the performance of these devices.

3.6 Conclusions

As suggested by the experimentally obtained results, an MPLC system is a challenging system

to characterize. It is sensitive to experimental errors which are hard to eliminate. On the

other hand, the reconfigurability feature of an MPLC allows experimentalists to adjust input

states and phase distributions of the MPLC system, and to measure the output states after

such changes. Such experimental information can potentially be used to optimize the phase

distributions of the MPLC, and account for experimental imperfections that were not taken

into account in the design of the MPLC. There are different approaches to this experimentally

optimized version of an MPLC system. For example, the phase distributions could be optimized

by machine learning techniques, genetic algorithms, stochastic methods or by the optimization

of an analytical model for the phases. This is undergoing work in our lab and we leave details
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Figure 3.24: Phase planes for the design and perturbed MPLC systems. First column shows
the design phase planes at each of the p = 1, ..., 5 phase planes for the unitary U(θ = π/4, ϕ =
π/2). Second column shows the perturbation phase αΦpert with α = 0.25. The third column
shows the phase addition of the columns one and two.

for future work.

In summary, we experimentally demonstrated a reconfigurable MPLC capable of imple-

menting arbitrary unitary transformations in a two-beam array. Using an additional phase

distribution, we achieved an averaged gate fidelity of F̄G = 0.85 ± 0.03 which demonstrates

the benefits of our method. This work demonstrates the usefulness of MPLC systems and how
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Figure 3.25: Phase planes for the design and perturbed MPLC systems. First column shows
the design phase planes at each of the p = 1, ..., 5 phase planes for the unitary U(θ = π/4, ϕ =
π/2). Second column shows the perturbation phase αΦpert with α = 1.25. The third column
shows the phase addition of the columns one and two.

to use them in a reconfigurable way, leading to a novel photonics tools that can benefit both

classical and quantum optics.
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Chapter 4

A method to determine the M2
beam quality from the electric
field in a single plane

This chapter is based on M. H. Griessmann, A. C. Martinez-Becerril, and J. S. Lundeen,

‘A method to determine the M2 beam quality from the electric field in a single plane’, Opt.

Continuum 2, 1833-1848 (2023).

4.1 The problem of a laser beam’s characterization

Upon its invention in 1960, the laser immediately distinguished itself from other light sources

by its high quality spatial coherence, which allowed it to propagate long distances in a pencil-

like beam. Though this beam quality is just one of the laser’s many exemplary properties, it

has proven particularly useful to science and technology, for example in distance measurements

e.g., to the moon; high-resolution imaging, cutting, machining, welding, and 3D printing; the

characterization of surface profiles such as the cornea; the construction of interferometric sensors

e.g., for gravitational waves; and long-distance power delivery and communication. Nonetheless,

it took another 30 years for the field to settle on a standard performance metric for laser beam

quality. To this end, in 1990, Siegman drew attention to the M2 parameter [76–78], the ratio

of the product of the beam size in the near and far fields to the same product for a diffraction

limited beam [77]. It is common to write M2 in titles instead of M2 to make articles searchable

in databases, we do this in the title of this chapter for highlighting this point. A reliable way to

measure M2 was codified in 1999 by the ISO standard 11146 [79], which called for transverse

spatial intensity-profiles to be recorded at ten distances along the propagation axis. The M2

parameter is now routinely measured and reported in scientific research and included in the

advertised specifications of commercial lasers.

Since 1999, beam measurement tools and optical modelling have continued to advance

beyond intensity spatial-profiles. There are now established methods and even commercial

devices for experimentally measuring the electric field spatial-profile of a beam. These include

newer methods such as off-axis holography [80,81] and direct measurement [82], as well as time-
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tested devices such as Shack-Hartmann sensors [83–86] and shear plates [87, 88]. In addition,

with advances in computation, researchers and engineers, can now perform accurate electric

field modeling of a proposed device design using finite-difference time-domain, transfer-matrix,

or finite element analysis methods. With such commercial or custom optical simulation software

one can predict the electric field profile produced by a nano-antenna, or transmitted by a

multilayer thin-film stack, or reflected by a metalens, to give some examples. The M2 parameter

is often the goal of such simulations, particularly of devices in which new optical modes are

excited e.g., large area optical fibers [89–91], materials with a non-linear optical response [92],

and laser cavities [93, 94]. In light of these advancements, intensity spatial-profiles may not

always be the ideal choice for determining M2.

Unlike an intensity profile, all the information about a laser beam’s quality is contained in its

electric field spatial-profile in any single transverse plane. This makes the numerous intensity

profiles and subsequent fitting of the ISO 11146 inconveniently circuitous, particularly for

optical simulations. Moreover, these numerous measurements in the ISO standard are included,

in a large part, to make the procedure robust to measurement errors (e.g., background) and

uncertainties, which numerical modelling does not have. On top of this, for both simulations

and experiment, the ISO procedure is additionally problematic since intensity profiles must be

acquired at prescribed distances from the beam waist. This requires a pre-characterization of

the beam before the numerous profiles are obtained, i.e., to find the approximate location of the

beam waist and the Rayleigh range. The complexity of the ISO standard has motivated work

over the last decades to simplify the experimental procedure to obtain M2; for an overview

see [95,96].

Early papers on M2 [97–102] focused on characterizing M2 through intensity measurements.

Some papers [90, 99, 100, 103] have developed theory based on the electric field distribution to

derive formulae for M2 for specific beam shapes with analytic forms. Recently, other works

have developed experimental methods to obtain M2 from the electric field, albeit indirectly.

For example, [85] demonstrated a method to determine M2 using a Shack-Hartmann sensor

along with near and far field intensity profiles, and [104] measured the modal decomposition of

a beam in order to calculate M2. Other works numerically replicated one of the experimental

methods to obtain M2. For example, [105–107] numerically propagated the electric field to

different planes to replicate the ISO standard method, and [108] also performed numerical

propagation of the electric field to three different planes and added numerical propagation

through a cylindrical lens to simulate the experimental procedure from [101, 109]. Such a

cylindrical lens has to be carefully selected every time that a different beam is used to ensure

a fair sampling of the beam. In this work, using a position-angle phase-space picture, we

motivate the fundamental meaning of M2 and use that to introduce a method to find M2 that

only requires the electric field at one plane. This eliminates the need for numerical propagation

or numerical projection onto a modal basis. We numerically validate such a method for two

nontrivial test beams. Our method is particularly useful in optical simulations where the

complex electric field profile is known.

The rest of this chapter is organized as follows. In Section 4.2, we start by defining M2



58

and outline the method in ISO 11146 [79] (which we call the “ISO standard” from hereon).

We then introduce an angle-position phase-space for a beam’s state and relate M2 to the

state’s area, which we show is conserved under paraxial propagation (i.e., the range of angles

<< 1 rad). We give explicit formulas to calculate M2, the beam waist w0 and its location z0,

the beam’s angular width ∆θ, and the Rayleigh range zR from the electric field profile at one

plane. We call this the covariance method. In Section 4.5, we validate our covariance method

by numerically comparing its predictions for M2 to the ISO method for two non-trivial beam

shapes. In Section 4.7, we discuss the advantages and drawbacks of our covariance method and

the prospects for generalizing it to more complicated beams. While many of the concepts in

this work have been introduced elsewhere, they have not been connected in a simple way to

allow for easy use. For those solely interested in applying our covariance method, in Section 4.4

we summarize our results and provide a detailed straightforward recipe for determining M2

from a single electric field profile of the beam anywhere.

4.2 Theoretical description of laser beams

Definitions and conventions

For simplicity we will consider beam profiles in one transverse dimension only, Section 4.6 con-

tains a discussion towards the generalization to two dimensions. The z axis is the propagation

direction while the x-axis is the transverse direction, along the beam’s spatial profile. As a

beam propagates along z, generally its width in position w (z) will change while its angular

width ∆θ will be constant. We use the standard width conventions w (z) = ∆x (z) = 2 σx (z)

and ∆θ = 2 σθ, where the σ are the standard deviation of corresponding intensity distribution

(i.e., in x or θ). We take z = 0 as the position of the beam waist w0, the beam’s minimum

w (z) over all z. It is important to note that, except for Gaussians, the w0 width here differs

from the definition of the beam waist width common in Gaussian optics, the 1/e2 intensity

half-width. The Rayleigh range zR is defined as the distance from the waist (taken as z = 0)

at which the beam has increased in width to w (zR) =
√

2w0.

4.3 Definition of the M 2 parameter

The beam or mode quality M2, also known as the beam propagation factor, is defined in terms

of the beam waist w0 and angular width ∆θ. The product of these two widths divided by the

same product for a Gaussian beam is the definition of M2. Since for any Gaussian this product

equals λ/π [78] we have,

M2 =
π

λ
w0∆θ. (4.1)

Whereas the product w (z) ∆θ will change as the beam propagates, since w0 and ∆θ are inde-

pendent of z their product will not change. They are characteristics of the beam as a whole,

as is the beam quality M2.
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(a) (b)

(c) (d)

Figure 4.1: The evolution of paraxial beams under propagation. (a) Sketch showing the beam
width along z for a Gaussian beam (red, M2 = 1) and combination of first four Hermite-Gauss
modes (blue, M2 = 1.5) with w0 = 500 µm, λ = 400 nm. The z-values are in units of the
Gaussian’s Rayleigh distance zR = 1.96 m. (b) Normalized intensity profiles of the same beams
as in (a) at three z-positions. (c) The phase-space ellipse representing the beam state at a
general z-position. (d) The x-shear resulting from paraxial propagation of the beam. Blue
cross indicates origin.

As we will show, the value of M2 is bounded by the Heisenberg uncertainty principle. As can

be seen in Fig. 4.1(a), the relation between the widths in angle (∆θ) and transverse wavevector

(∆kx) can be used to express the transverse momentum (∆px) of a photon as follows

∆px = h̄∆kx = h̄k sin ∆θ ≈ h̄k∆θ, (4.2)

where k = 2π/λ is the total wavevector magnitude, λ is the wavelength, and the small angle

approximation was applied. Using Eq. (4.2), one can rewrite M2 as

M2 =
1

2h̄
∆x∆px ≥ 1, (4.3)

where the inequality comes from the Heisenberg uncertainty principle: σxσpx ≥ h̄/2 or, equiv-

alently, ∆x∆px ≥ 2h̄. Gaussian beams are minimum uncertainty states and thus saturate

inequality (4.3), M2 = 1, while all other beams give strict inequality.

Although Eq. (4.1) for M2 seems quite simple, determining its value is deceptively difficult.

The angular width ∆θ can be found from the beam width far from the waist, i.e., in the far
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field. In contrast, to measure the beam waist w0 requires that one knows its z-location. This is

typically not known a priori, and it is seldomly known with good accuracy. The ISO standard

avoids this accuracy issue by recommending measuring the beam width w (z) in five different

z-planes on each side of the beam waist, half of which should lie within one Rayleigh range zR
and the rest at least two Rayleigh ranges away from it. While one is free to choose the precise

locations of the planes, to do so one still must approximately know zR and the location of the

beam waist. A rough pre-characterization can take the place of this a priori information, but

this adds complexity to the procedure. The basic definition (Eq. (4.1)) is hardly applicable in

either experiment or simulation.

The connection between phase-space and the electric field

We now introduce a phase-space picture of the beam in order to justify a simpler method

to determine M2. Appropriately, the 2D phase-space is made up of position x on one axis

and angle θ on the perpendicular axis (though the latter could equally well be kx or px, as

explained in the last section). In this phase-space, the beam profile at any z-position can be

used to define a tilted ellipse (see Fig. 4.1(c)) which contains information about the extent of

the beam’s state in phase-space. The length of the projection of the ellipse on the x-axis is the

full-width intensity standard deviation, w (z) = ∆x. Similarly, the projection on the θ-axis is

the angular beam width, ∆θ.

When the beam has reached its waist (taken as z = 0), the ellipse is aligned with the

phase-space axes and its full-width in x is minimized, equalling w0. The area A of the ellipse

is proportional to its width times its height, A = 1
4πw0∆θ. In turn, using Eq. (4.1), we find

that the beam quality is proportional to the ellipse area,

M2 =
4A
λ
. (4.4)

As the beam propagates away from the waist location, correlations between position and

angle form and the ellipse becomes tilted and its axes change in size. These correlations follow

from simple geometry; waves traveling at angle θ will increase in position as x = θz in the small

angle approximation, creating a correlation between x and θ. This shears the ellipse along the x-

direction in phase-space [110] as illustrated in Fig. 4.1(d). (Conversely, momentum conservation

in free space ensures that each constituent wave’s angle θ is constant.) Equivalently, free space

propagation is given by the following transfer matrix

P =

[
1 z′

0 1

]
, (4.5)

which describes a shear transformation of a beam in phase-space along the x-direction. How-

ever, since the ellipse is now tilted, the ellipse projections (divided by two) on the x and θ

axes are distinct from the width and height of the ellipse itself i.e., along its semi-minor and

semi-major axes. Crucially, in geometry, a shear transformation always preserves area [111,112]
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and, thus, M2. This implies that Eq. (4.4) is true for all z, not just at the waist. In other

words P has unit determinant ensures that the ellipse area is conserved under paraxial prop-

agation, which justifies Eq. (4.9) for all z-planes. This finding has been obtained by other

means in [113–115]. Thus, the problem of determining M2 from information in a single z-plane

reduces to finding the area of the corresponding tilted ellipse.

The covariance matrix

We gather the parameters of a tilted ellipse centered at the origin (i.e., the ellipse equation,

ax2 − 2bxθ + cθ2 = ac − b2) into a symmetric matrix [116], a method from geometry known

as the matrix of quadratic form. This matrix sets the ellipse aspect ratio, orientation of its

axis, and its size. In the context of beam widths, the matrix of quadratic form is the following

covariance matrix,

Q (z) =

[ 〈
x2
〉

1
2 ⟨xθ + θx⟩

1
2 ⟨xθ + θx⟩

〈
θ2
〉 ]

≡
[
a b
b c

]
, (4.6)

where ⟨⟩ is analogous to an average or expectation value but evaluated using the complex

distribution E (x; z), the transverse profile of the beam’s electric field at a plane z. We give

further detail on calculating ⟨⟩ at the end of this subsection and explicit expressions for Q

will be given in Section 4.4. For now, we point out that the diagonals of Q are the variances,〈
x2
〉

= σ2
x = w2/4 and

〈
θ2
〉

= σ2
θ = (∆θ)

2
/4 for a beam with ⟨x⟩ = ⟨θ⟩ = 0. When the

beam has reached its waist z = 0, the ellipse is aligned with the phase-space axes and Q is

diagonal. As explained in the previous subsection, at other z, correlations exist between angle

and position. These are the off-diagonal covariance terms in Q. Explicitly the covariance

matrix can be propagated via the propagation law

Q (z + z′) = P Q (z) PT , (4.7)

where T indicates transpose. This simple formula is valid in both the Fresnel and Frauhnhofer

diffraction regimes. We use Eq. (4.7) to propagate an arbitrary Q (z) by a distance z′,

Q (z + z′) ≡ Q′ =

[
a′ b′

b′ c′

]
=

[
a+ bz′ + (cz′ + b) z′ b+ cz′

b+ cz′ c

]
. (4.8)

The Q matrix is closely related to the beam matrices defined in terms of the Wigner function;

namely, it is the Weyl transform of the matrices in [101, 117] and Part 3 of the ISO standard

[118]. Unlike those matrices, Q is directly computed from the electric field distribution E (x; z)

in a single z-plane.

The advantage of this matrix formulation is that the determinant of the matrix Q is pro-

portional to the ellipse area, regardless of any tilt. The ellipse area is now simple to find by

A = π
√

detQ. Combining this with Eq. (4.4) we arrive at our central idea, the determinant of

the covariance matrix is directly related to M2 via

M2 =
4π

λ

√
detQ =

4π

λ

√
ac− b2. (4.9)
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This relation is valid at arbitrary z-planes as long as the (paraxial) beam propagates only

through first-order optical systems (e.g., spherical mirrors and lenses) or freely in space [117].

In summary, one can evaluate M2 using the elements of the covariance matrix Eq. (4.6).

These expectation values use the complex field E (x; z) (in analogous way to the quantum

wavefunction). That is, the expectation value of a general operator v acting on E is defined

by ⟨v⟩ = 1
n

∫
E∗vEdx, where E∗ is the complex conjugate of the electric field, and n =∫

|E (x; z) |2dx is a normalization factor. The angle operator is θ = − i
k
∂
∂x , while x is simply

a multiplication by x. Note, the action of these two operators changes if their order changes,

which may motivate why each off-diagonal in the covariance matrix incorporates both orderings.

In general, the phase-space ellipse might not be centered at the origin, i.e., ⟨x⟩ ̸= 0 and/or

⟨θ⟩ ̸= 0. We can account for this by substituting x and θ in the covariance matrix (Eq. (4.6))

with x − ⟨x⟩ and θ − ⟨θ⟩, respectively. We give explicit formulae for elements a, b, and c for

such offset beams in Section 4.6. For example, the beam width can be evaluated as

(
w (z)

)2
=

4

n

∫
|E (x; z) |2

(
x− ⟨x⟩

)2
dx. (4.10)

From Eq. (4.8) we can retrieve the common beam parameters. First, we note that c is unchanged

so, trivially,

∆θ = 2
√
c. (4.11)

Next, we find the distance to the waist from z, the plane Q was determined at, by setting

Q′ to be diagonal, b′ = 0 = b + cz′. Taking the position of the waist (Q′) to be z0 so that

z′ = z − z0 ≡ −∆z, we then find

∆z =
b

c
=

⟨xθ + θx⟩
2 ⟨θ2⟩

, (4.12)

where a positive ∆z means the waist is further along the beam propagation direction from the

plane that E (x; z) (and Q) was determined in. With z′ = −b/c substituted in Q′ (Eq. (4.8)),

we find the beam waist,

w0 = 2
√
a′ = 2

√
a− b2/c. (4.13)

We now instead set Q (z0) to be the waist and, thus, diagonal (b = 0), and using M2 from

Eq. (4.1), the a′ element of Q′ gives the beam width:

4a′ = w (z) = w2
0 +

[
M2λ

πw0

]2
(z − z0)

2
, (4.14)

where z′ = z − z0. This gives the Rayleigh range,

zR =
πw2

0

M2λ
=

λ

4πc
. (4.15)
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In other words, the propagation of an arbitrary paraxial beam is same as the one of a Gaussian

beam magnified by M2.

Equation (4.14) above is precisely the relation that the ISO standard uses to model the

evolution of the beam width under spatial propagation. One first finds the intensity distribu-

tions in ten planes, then finds their widths, and then fits them to the hyperbolic function in

Eq. (4.14). This fit yields values for M2, the beam waist w0 and its location z0 [79]. A big

disadvantage of this approach is that we already need to have rough values for the position of

the beam waist as well as the M2 parameter in order to compute the effective Rayleigh distance

zR and be able to follow the steps given in the protocol.

4.4 Recipe to compute M 2 and other beam parameters
from the electric field

The goal of this section is to be self-contained and provide a straightforward set of steps to

calculate M2 and other key beam parameters directly from the transverse profile of the beam’s

scalar electric field E ≡ E (x; z) that one has obtained in any plane z along the propagation

direction. To do so, we use Eq. (4.9) and the covariance matrix Eq. (4.6), which was found

under the assumption that ⟨x⟩ = ⟨θ⟩ = 0. This assumption is valid for most optical simulations

since the incoming beam is ideal and usually travelling centered on the x-axis and because the

optical device (largely composed of spherical lenses and mirrors) usually is symmetric about

x = 0. We give explicit formulae for elements a, b, and c for the more general case, offset beams,

in Section 4.6. Reviewing, the beam must be paraxial with angles to z-axis much less than 1

rad; as usual, the width convention for the beam waist w0 and angular spread ∆θ is twice the

intensity standard-deviation (e.g., w0 = 2σx); and the beam quality is

M2 ≡ π

λ
w0∆θ =

4π

λ

√
ac− b2. (4.16)

To evaluate Eq. (4.16), one uses the covariance matrix elements, all of which are real-valued:

a =
1

n

∫
x2|E|2dx, (4.17)

b = − iλ

4π

(
1 +

2

n

∫
xE∗ ∂E

∂x
dx

)
,

c = −
(
λ

2π

)2
1

n

∫
E∗ ∂

2E

∂x2
dx,

n =

∫
|E|2dx,

where we have used ∂/∂x (xE) = x∂E/∂x+ E to simplify b.

From the a, b, and c matrix elements, given above we can also find other key beam param-

eters, such as the beam’s angular width ∆θ, Rayleigh range zR, beam waist w0, and waist’s
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location relative to the plane of the measured field, ∆z. In Eqs. (4.11, 4.15), we show that

∆z =
b

c
, w0 = 2

√
a− b2/c, ∆θ = 2

√
c, zR =

λ

4πc
. (4.18)

Thus, like the beam quality, these parameters can be determined from the electric field profile

at one plane.

The formulas in this section are the main results of this work. The next section numerically

verifies that they are correct, and also provides further details for the numerical evaluation of

the electric field integrals in the a, b, and c parameters.

4.5 Numerical implementation and test of our covariance
method

In this section, we compare the M2 found from our covariance method to the ISO standard via

a numerical simulation of propagation of two beams with nontrivial electric field profiles. We

calculate E (x) at an initial plane (z = 0) using the analytic form of the test beam E (x) and

then numerically propagate it to find E (x; z) and the corresponding intensity profile I (x; z) =

|E (x; z)|2 at the ten requisite planes described below. This propagation is given by Eq. (1.38),

which is accurate for all angles for a scalar field. That is, it is valid beyond the paraxial

approximation. For the implementation, we used the native Fast Fourier Transform (FFT) in

Python.

For the implementation of the ISO protocol, we calculate the standard deviation of the

transverse intensity profile I (x; z) to find the beam width w (z) using Eq. (4.10). We do so at

five planes within half a Rayleigh distance on either side of the beam waist and at five planes

in the range of four to five Rayleigh distances. These widths are fit to Eq. (4.14) to find M2.

At each of these planes, we calculate the entries, a, b, and c of the covariance matrix Q

from E (x; z) by Eq. (4.17) and use them to calculate M2 using Eq. (4.9). We compare these

ten values of M2 from our covariance method, which should all be identical, to the single value

from the ISO protocol.

We now briefly discuss some details of the numerical implementation for our covariance

method. We use Python to evaluate Eq. (4.17). Derivatives were calculated with the Numpy

gradient function, which uses the central difference method. Scipy integrate (Simpson’s rule)

was used for integrals. Code is provided in the Ref. [119].

The accuracy of our covariance method is mainly set by the x-position grid of the electric

field profile E (x). This directly sets the range and grid density in x and indirectly sets them

in θ. In particular, since the two directions are related by a Fourier transform, the grid spacing

δθ in the θ-direction is set by the range L in the x-direction, δθ ∝ 1/ (kL). Additionally, the

range Θ in the θ-direction is set by the grid spacing δx in the x-direction, Θ ∝ 1/ (kδx).

The two goals are to have sufficient grid density to resolve the state and sufficient range to

span the state in phase-space. That is, in both the x and θ directions, we aim for r points across

the minimum width of the state and a range of s times the maximum width of the state. The
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minimum and maximum widths in x are w0 and w (z), which set δx < w0/r and L > w (z) s.

The beam width is always ∆θ in θ, so δθ = ∆θ/r and Θ = s∆θ. By the Fourier relations from

above, these set L > ∆θ/ (rk) and δx < (s∆θ) /k, respectively. These four inequalities ensure

sufficient resolution and range.

The inequalities determine the grid for a given beam state based on the chosen range and

resolution parameters. For the latter, we suggest, s = r = 10. Since w0 and ∆θ are not known

a priori, one should start with a trial grid L > 10 w (z) and then calculate w0 and ∆θ from

Eqs. (4.17, 4.18). At this point, one would potentially need to revise the grid. Alternately,

if E (x) is from an optical simulation and computational power is not a constraint, setting

δx < λ/10 will certainly be sufficient since it is five times better than the Nyquist limit.

Satisfying the above conditions will ensure an accurate value of M2.

Numerical comparison of the ISO and covariance methods

For the following test beams, λ = 400 nm, we use position range of length L = 200 mm and a

position grid density δx = λ/2. The ten planes range from z = −7 to 7 m.

For our first test beam, we use a linear combination of the first four Hermite-Gauss (HG)

modes with complex coefficients. The electric field distribution at the initial plane for the m-th

HG mode is taken to be

Em (x) = nm Hm

(√
2x

w0,m

)
e
−
(

x
w0,m

)2

, (4.19)

nm =

(
2

π

)1/4

(2mm!w0,m)
−1/2

,

where w0,m is the beam waist of the mode and Hm the m-th order Hermite polynomial. The set

of all HG modes form an orthonormal basis, meaning that any other beam can be expressed

as a superposition of HG modes. Thus, a superposition of HG modes can lead to intensity

distributions that are not symmetric around x = 0 (as the ones shown in Figs. 4.1 and 4.2).

Although each HG mode is centered the total beam will generally be offset from the x = 0

axis, so Eqs. (4.21, 4.22) in Section 4.6 must be used. In addition, the z location of the

waist of a superposition will not generally be at the waist location of the individual HG modes.

Furthermore, the intensity distribution of a general superposition will vary with the propagation

distance z as each HG mode acquires a different phase upon free space propagation according

to Eq. (1.14). Accommodating these possibilities, we derive a completely general theoretical

value of M2 for a superposition of HG modes with complex coefficients cn in Appendix A, with

Eq. (B.4) as the final result.

The test beam’s electric field is given by

E (x) = (0.8 + 0.2i)E0(x) + 0.3E1 (x) + (−0.099 − 0.01i)E2 (x) + 0.469E3 (x) , (4.20)

with w0,m = 642 µm for m = 0, 1, 2, 3. This particular superposition happens to have little

wavefront curvature and, thus, Eq. (85) for M2 from [120] is approximately correct. Both the
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(a) (b)

(c)

Figure 4.2: Analytic and numerical propagation of test beams. For a beam that is the superpo-
sition of the first four Hermite-Gauss modes given in the main text (w0 = 642 µm, λ = 400 nm
M2 = 2.466 given by Eq. (B.4)): (a) points are the scaled entries of the covariance matrix
for the beam numerically propagated (by Eq. (1.38)) to each z distance and curves are the
analytically propagated elements (by Eq. (4.8)) and (b) is the corresponding intensity profiles
at three z-locations. For a paraxial supergaussian beam (w0 = 56 µm, order = 50, λ = 400 nm,
nominal M2 = 4.0466): (c) points are the beam widths w0 calculated from the numerically
propagated beam and the curve is the analytical width from Eq. (4.14).

latter equation and our general formula, Eq. (B.4), predict a value of M2 = 2.466 for the above

superposition.

For this first test beam we plot the elements of the offset Q in Fig. 4.2(a). The element

a = w2 (z) /4 (blue points) lies on the theoretical beam waist curve (Eq. (4.14), blue curve) and

the other elements (yellow and black points) lie on the curves given by the matrix elements of

the propagated Q matrix (Eq. (4.8), yellow and black curves). This agreement confirms that

our numerical propagation of E (x) is accurate and our calculation of the covariance matrix Q

is correct.

With the correctness of our numerical calculations established, we now compare the ISO

standard method to our covariance method for an offset beam to find M2. The M2 values
found from our covariance method (Eqs. (4.16, 4.22)) at the ten planes have average value

M2 = 2.470 with a standard deviation of 0.006. Thus, as expected, our covariance method

results in the same value of M2 and it is independent of the plane z of the E (x; z) used to

calculate it. Moreover, it is in good agreement with the theoretical prediction of M2 = 2.466.
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A fit to the waists in the ten planes, the ISO method, gives M2 = 2.467 with a fit error of

2.6 × 10−10, again in good agreement. This suggests that using solely a single plane and the

covariance method will agree with the ISO method up to the second decimal place of M2.

Our second test beam is meant to approximate the top hat intensity-distribution that would

be transmitted by a slit. In this way, it differs greatly from a basic Gaussian beam or even

combinations of low-order HG modes. Moreover, an exact top hat has an angular intensity

distribution that follows a sinc-squared function and thus has a ∆θ that diverges and is not well-

defined, which makes it a particularly challenging test case. A one-dimensional supergaussian,

E (x) = exp
[
− (|x|/ws)N

]
, of high order N approximates a top hat function of full-width 2ws.

Using Eqs. (4.9, 4.17) we theoretically found M2 = N
√

Γ (3/N) Γ (2 − 1/N)/Γ (1/N) ≈
√
N/3,

where the approximation is valid for large N and Γ is the usual gamma function. (Note, this

formula differs from formulae in the literature, which are for the “cylindrical M2”, e.g., [121].)

The test beam is a supergaussian of order N = 50 with equivalent slit width of 2ws = 0.1 mm

and a theoretical M2 = 4.0466. Diffraction from such a slit has zero-to-zero angular width of

1.6 × 10−2 rad, putting it well within the paraxial regime.

For this second test beam, we repeat the comparison of methods that was conducted on the

first beam. The beam widths in the ten planes for the supergaussian are plotted in Fig. 4.2(c).

The ten planes of our covariance method give an average value of M2= 4.0462 with a standard

deviation of 7.0×10−5. The ISO method (based on a fit to the beam waists in multiple planes)

gives M2 = 4.0506 with a fit error of 1.4×10−9. The ISO method’s value only agrees with theory

and covariance method up to two decimal places after rounding. In contrast, our covariance

method agrees with the analytical theoretical value to four decimal places, suggesting it is a

more reliable method for this particularly challenging test case.

The success of our covariance method for finding M2 with these two paraxial test beams

validates its correctness and demonstrates that it stands in good agreement with the ISO

protocol even for the extreme case of highly non-Gaussian beams.

4.6 The covariance method for general beams

Until now we have focused on the simplest case, a paraxial coherent one-dimensional profile.

Both the ISO protocol and our covariance method rely on the paraxial approximation. More

problematically, the derivation of the M2 from the uncertainty principle relies on the small-

angle approximation, so it is not clear that the definition is completely general. We briefly

examine the validity of both the ISO and covariance methods in the non-paraxial regime. For

the following, λ = 400 nm and we use position range of length L = 200 mm and a position grid

density δx = λ/2.

To examine the non-paraxial regime, we decrease the effective slit full-width of the order

N = 50 supergaussian to 0.5 µm, which increases the zero-to-zero angular spread to 1.6 rad

putting it outside the paraxial approximation. Fig. 4.3(b) should give an impression of the

non-paraxiality of the supergaussian beam. The beam quality factor for a supergaussian is



68

Numerical and analytic propagation of a non-paraxial supergaussian beam
(a) (b)

Figure 4.3: (a) Width evolution of a non-paraxial supergaussian (w0 = 0.56 µm, order = 50, λ =
400 nm). Measured widths (indicated by points) do not lie on predicted curve for M2 = 4.05.
(b) Intensity plot of the same supergausssian. Red lines indicate the full angular spread of the
beam 2∆θ = 0.91 rad.

solely a function of order, so the theoretical beam quality should be the same as the N = 50

supergaussian from Section 4.5, M2 = 4.0466. Applying the ISO method, the width measure-

ments can still be fitted to a hyperbolic function (Fig. 4.3(a), top curve). However, the resulting

M2 factor more than doubles to a value of 9.28. While the covariance matrix gives the correct

result for M2 in the z = 0-plane, the values quickly diverge as soon as propagation starts. At

z = 2.9 µm, the covariance method gives, M2 = 43.5, which is off by a factor of five at least.

The limitation to paraxial beams might be lifted when defining the beam matrix through a

non-paraxial version of the Wigner function [110], but a thorough investigation would be in

order here. In summary, our covariance method and the ISO method fail for non-paraxial

beams, as expected.

A one-dimensional description applies to simple coherent beams whose two-dimensional

profile can be written as a product, E (x)E (y), e.g., two dimensional HG modes. We now

discuss the generalization of our covariance method to a wider variety of paraxial beams,

including beams with general two-dimensional profiles and incoherent beams.

Offset beams

In some optical simulations and all laboratory measurements one cannot assume that the beam

is perfectly centered on the beam axis, i.e., ⟨x⟩ ̸= 0 and ⟨θ⟩ ̸= 0. In this case, the covariance

matrix takes the more general form:

Q (z) =

[ 〈
x2
〉
− ⟨x⟩2 1

2 ⟨xθ + θx⟩ − ⟨x⟩ ⟨θ⟩
1
2 ⟨xθ + θx⟩ − ⟨x⟩ ⟨θ⟩

〈
θ2
〉
− ⟨θ⟩2

]
=

[
a b
b c

]
. (4.21)
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The corresponding generalized formulas for the matrix elements are

a =
1

n

∫
x2|E|2dx−

(
1

n

∫
x|E|2dx

)2

, (4.22)

b =
iλ

2π

[(
1

n

∫
x|E|2dx

)(
1

n

∫
E∗ ∂E

∂x
dx

)
−
(

1

2
+

1

n

∫
xE∗ ∂E

∂x
dx

)]
,

c =

[
λ

2π

]2 [(
1

n

∫
E∗ ∂E

∂x
dx

)2

− 1

n

∫
E∗ ∂

2E

∂x2
dx

]
,

n =

∫
|E|2dx.

As before, these can be used to find M2 and other beam parameters using Eqs. (4.16, 4.18).

One can save some computational effort by noticing that the second and first integrals in a and

c, respectively, also appear in b.

Simple astigmatic beams

So far, we have presented our method in one transverse dimension x for clarity. This one-

dimensional analysis is straightforward to generalize to two-dimensional simple astigmatic

beams; those that have circular and elliptical cross sections, respectively. To apply our co-

variance method to simple astigmatic beams, one first would find the principal axes of the

elliptical transverse profile and denote these by x and y. Along these directions, the total field

is separable, E (x, y; z) = Ex (x; z)Ey (y; z), and each transverse direction can be separately

analyzed by our covariance method. The result would be two values, M2
x and M2

y , from which

one can define an effective beam quality M2
eff =

√
M2
xM

2
y . See [79] for details.

General astigmatic beams

We now propose a route to adapt our covariance method to find the beam quality of more

general two-dimensional paraxial fields, E (x, y; z) ̸= Ex (x; z)Ey (y; z). Unlike simple astig-

matic beams, the principal axes of their transverse cross sections can rotate while the beam is

propagating [122]. Part 2 of the ISO standard [123] derives an effective beam quality M2
eff in

terms of moments of the Wigner function in the four-dimensional phase-space. Essentially, the

state is a generalized ellipse in this four-dimensional space and M2
eff is the area of that state.

Analogous to the generalized P matrix in Part 2 of the ISO standard, a generalized Qxy (z)

matrix would be a 4 × 4 matrix:

Qxy (z) ≡
[
Qx Dxy

Dxy Qy

]
. (4.23)
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Here, the block diagonals are the standard 2 × 2 Q matrices Eq. (4.6): Qx ≡ Q and Qy is

analogous. The x and y are arbitrary orthogonal transverse directions unconnected to the

beam state. The two off-diagonal blocks are identical and given by

Dxy (z) =

[
⟨xy⟩ ⟨xθy⟩
⟨yθx⟩ ⟨θxθy⟩

]
. (4.24)

Note, the D blocks involve one variable from each direction and thus do not require the two

orderings (e.g., ⟨xθ + θx⟩) that are essential for the 2 × 2 Q matrix. With this generalized

covariance matrix, M2
eff = 4π

λ
4
√

detQxy (z). Unlike the P matrix in the ISO procedure, Qxy (z)

is found directly from the electric field E (x, y; z).

Incoherent beams

We now consider generalizing our covariance method to incoherent beams. We tested our

covariance method with beams that are coherent superpositions of HG modes. If the beam is an

incoherent mixture of beams, one would need to use a density matrix formalism, or equivalently,

a coherence matrix to represent the beam in single z plane, ρ (x, x′) ≡ E (x)E∗ (x′). Here, the

bar indicates an ensemble or time average, as is standard in statistical optics. We leave the

details for future work, but in short the expectation values in Qxy (z) would then be ⟨v⟩ = Tr [vρ]

and the beam quality M2 would be found from Q as before, from Eq. (4.9). This approach

would complete the presented covariance method. However previous work have shown how to

obtain M2 for an incoherent mixture of beams [76,100], we refer the reader to such references

for further details.

4.7 Conclusion

The work in this chapter has mostly focused on the simplest case, a paraxial coherent one-

dimensional profile. In Section 4.6, we discussed the generalization of our covariance method

to a wider variety of paraxial beams, including beams with general two-dimensional profiles

and incoherent beams. We also showed that both our covariance method and the ISO method
fail for non-paraxial beams, as expected. A one-dimensional description applies to simple

coherent beams whose two-dimensional profile can be written as a product, E (x)E (y), e.g.,

two dimensional HG modes.

In summary, we have demonstrated how one can compute the beam quality factor M2 as well

as angular width, waist width, and waist location for a beam from its electric field distribution

in a single arbitrary plane. The conventional method, prescribed in the ISO standard [79], relies

on finding the beam width in ten prescribed propagation planes. Since each width calculation

requires three integrals of the intensity distribution, the ISO method requires thirty integrals

in total. In comparison, our covariance method requires only six integrals (see Eq. 4.22) of the

electric field distribution. Moreover, it eliminates the need to fit a function, a key step in the

ISO method. Further, our covariance method eliminates the need for an initial estimate of the

Rayleigh range and waist location.
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Since there are now many tools to measure the electric field profile of a beam, our covari-

ance method is amenable to use in laboratories and could be incorporated in optical test and

measurement products. That said, we envision our method will be particularly useful for ana-

lyzing the electric field output of optical simulations and could be directly built into common

simulation software. In this way, we expect our covariance method to calculate beam quality

will streamline optical research and development.
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Chapter 5

Theory and experiment for
resource-efficient joint
weak-measurement

This chapter is based on Martinez-Becerril, A. C., Bussières, G., Curic, D., Giner, L., Abrahao,

R. A., and Lundeen, J. S. (2021). ‘Theory and experiment for resource-efficient joint weak-

measurement’. Quantum, 5, 599.

5.1 Weak measurement: a resource to obtain information
on quantum incompatible observables

Modern quantum measurement techniques have pushed forward our understanding and ability

to manipulate quantum particles. Often, fundamental and practical measurements involve

the product of two or more observables of a quantum system. In particular, correlations of

incompatible or non-commuting observables A and B, defined by [A,B] ≡ AB − BA ̸= 0,

are central to our understanding of entanglement [124, 125] and the Heisenberg uncertainty

principle. A ‘joint’ measurement of A and B refers to the measurement process which outputs

the expectation value of the product of the two observables ⟨BA⟩ = tr (BAρ), where ρ is

the density matrix of the system. The standard procedure to perform a joint measurement

would be to measure observable A, then measure B. This fails for incompatible observables

since the first measurement collapses the state of a particle into an eigenstate of A, erasing the

information about B and randomizing its value.

In contrast, weak measurement decreases the disturbance caused by the measurement pro-

cess and thereby mostly preserves the quantum state of the system, thus allowing one to

obtain correlations between any chosen set of general observables, including incompatible

ones [43, 126–132]. To perform such a measurement, the observable is weakly coupled to a

separate read-out system (the ‘pointer’) that indicates the average result of the measurement.

Even though this approach refers to an individual system, weak measurement requires repeat-

ing the measurement on identically prepared systems, and averaging. This compensates for

the little information that is extracted in a single trial. Weak measurement is a type of non-
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destructive quantum measurement that minimizes disturbance of the measured system [46]. As

shown in Ref. [133], as one decreases the disturbance caused by the measurement process, one

also decreases the ‘predictability’ of the measurement. Weak measurement has a broad range

of applications from amplifying tiny signals [134–136] to fundamental studies on the meaning

of a quantum state [137, 138]. Particularly relevant to this work are Refs. [43–45, 127], which

showed that if two observables are weakly measured, the average measurement outcome is sim-

ply the expectation value of the product of those two observables, ⟨BA⟩. Remarkably, this

holds even if A and B are incompatible, which would make BA non-Hermitian and, nominally,

unobservable.

Joint weak-measurement

More recently the weak measurement formalism was expanded to deal with composite sys-

tems and performing a measurement of the product of two or more observables, known as a

joint weak-measurement. Joint weak-measurement has proven to be useful, for example, in

experimental realizations of the Cheshire cat [139, 140], the Hardy’s paradox [141, 142], the

study of quantum dynamics, and to give insight into the role of time ordering in the quantum

domain [143, 144]. The ability to jointly measure incompatible observables has also shown to

have many applications in the field of quantum metrology [145–150]. Joint weak-measurement

of multiple observables enables sequentially probing a quantum system for characterizing its

quantum evolution [131,151]. Another example is the test of the Leggett-Garg inequalities for

sequential measurements of multiple observables in a single system [152].

Known methods for the realization of a joint weak-measurement are resource-intensive.

Specifically, they require either interactions that involve three or more particles or a separate

read-out system for each observable. With a few exceptions [141], due to the absence of two-

particle interactions, even single-observable weak measurement resorts to a strategy of using

internal degrees of freedom (DOF) as the read-out systems [43–45,127]. For example, one can

measure the polarization of a photon by using its position DOF as a read-out [153]. For a

joint measurement, this strategy is particularly limiting given that quantum particles have a

limited number of DOF. For instance, for a photon there are just four DOF: polarization, and

a three-dimensional wavevector (which, in turn, incorporates frequency-time and transverse

position-momentum). Due to this limitation, joint weak-measurement experiments have never

progressed beyond the product of two observables [129, 133]. To overcome this constraint, the

present work theoretically introduces and experimentally demonstrates a technique to perform

a joint weak-measurement of multiple observables using a single DOF as the read-out system.

We implement our technique to directly measure quantum states. This is a type of quantum

state estimation where the state is fully determined by the shift of the pointer. Quantum

state estimation has become an invaluable tool in the subject of quantum information, which

requires verification of the quality (i.e., ‘fidelity’) of resource quantum states. The experimental

demonstration of the direct measurement of the wave function opened up new research lines

in quantum state estimation. The directness of the method means that one can obtain the

complex amplitudes of a quantum state, in any chosen basis [137]. An important aspect of
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direct state estimation is that no optimization or complicated inversion is involved. Solving

such problems is one of the key goals of current research in quantum state estimation [154–156].

Further work demonstrated how to estimate a general quantum state by directly measuring the

density matrix [45,128], or by directly measuring phase-space quasiprobability distributions of

states, such as the Dirac distribution [157, 158]. Similarly, we apply our single-pointer joint

weak-measurement method to directly determine any chosen element of the density matrix.

Specifically, we obtain the density matrix of photon polarization states using a single pointer

for the two requisite observables.

The rest of the chapter is organized as follows. We start by describing weak measurement

in terms of raising and lowering operators. Then, we outline the theory of our technique

to perform a joint weak-measurement and introduce an important ingredient, the fractional

Fourier transform. Next, we present the experimental demonstration of our technique and an

application to quantum state estimation. Finally, we summarize our work and point out some

future possible directions.

5.2 Joint weak-measurement with a single read-out sys-
tem

For composite systems, one is interested in the average value of the product of observables such

as ⟨BA⟩. Universally, this involves correlations between two measurement outcomes (e.g., as

in Bell’s inequalities). In the von Neumann model, this corresponds to correlations between

pointer distributions. This is true for both strong and weak measurements. In the latter case,

the average outcome should be the joint weak-value,

⟨BA⟩w ≡ ⟨F |BA|I⟩
⟨F |I⟩

. (5.1)

A number of techniques have been proposed and demonstrated to observe the joint weak-value

in pointer correlations. We now briefly review these techniques.

First, we review the case of compatible operators A and B. These could be two differ-

ent observables of a single particle or observables acting on two different particles. Ref. [127]

proposed using a separate von Neumann interaction (i.e., Eq. (2.24)) and pointer for each ob-

servable (pointers 1 and 2 with creation operators a1 and a2 respectively). This was simplified

in [43] assuming an equal coupling strength γ for measuring each observable. The resulting

joint weak-value is given in terms of the product of the creation operators (a1 and a2) of both

pointers: ⟨a1a2⟩ = ⟨BA⟩w /γ2. This strategy of performing two separate weak measurements

was experimentally demonstrated in [141].

A more challenging case, and the subject of this work, is the one in which A and B

act on the same particle, but are incompatible e.g., two complementary observables such as

position and momentum. Furthermore, the product BA is not Hermitian, thus it is not

considered a valid observable in standard quantum mechanics. For example, naively replacing

A with BA in the von Neumann Hamiltonian, Eq. (2.24), results in non-unitary time evolution.
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However, in the weak regime, a measurement of A largely preserves the quantum state of the

particle allowing a subsequent measurement of B. The correlations between the outcomes

of the two measurements give ⟨BA⟩w. A technique along these lines was proposed in [44].

As with the compatible observable case above, it used a separate von Neumann interaction

and pointer for each observable (pointer 1 for B and pointer 2 for A). In [45], the required

correlation between the pointers was shown to be ⟨a1a2⟩ = ⟨BA⟩w /γ2 and experimentally

demonstrated in [128, 129]. In summary, for both compatible and incompatible observables,

the same technique works. The drawback of the technique is that it requires one pointer for

each observable.

In particular, this requirement of one pointer per observable is resource-intensive. In most

implementations of weak measurement, pointers are internal DOF of the measured particle.

For example, in [153] a photon’s polarization is measured by coupling it to the same photon’s

transverse spatial DOF. In absence of inter-particle interactions, this facilitates the use of weak

measurement, but quickly uses up all available internal DOF. In turn, this limits the number

of observables in the product and the number of DOF that can be used in the measured

system for other quantum information tasks. It is natural to ask: can we perform a joint

weak-measurement with a single pointer?

The main contribution of the present work is to introduce and experimentally demonstrate

such a technique. Our technique uses a sequence of two standard von Neumann interactions,

each given by Eq. (2.24). Unlike the previous techniques, the two interactions couple the

system to the same pointer. As in Section 2.5, the total initial state is |I⟩ |0⟩ . The first

interaction UA couples the pointer to A, while the second UB couples the same pointer to B.

The action of two von Neumann unitary transformations with equal interaction strength γ is

UBUA |I⟩ |0⟩ = eγB(a†−a)eγA(a†−a) |I⟩ |0⟩ =
∑∞
m,n=0

γn+m

n!m! B
mAn(a† − a)n+m |I⟩ |0⟩. This is

the final state of the total system after the two interactions.

Motivated by the techniques outlined above, which used correlations between two different

lowering operators ⟨a1a2⟩, we will aim to find the expectation of the product of two identical

lowering operators,
〈
a2
〉
. Thus, we must expand the pointer state after the interaction to

second order in the interaction strength γ. There are three second-order terms: m = n = 1;

m = 0, n = 2; and m = 2, n = 0. Along with the zero and first order terms, this gives

UBUA |0⟩ |I⟩ =

(
|0⟩ + γ(A + B) |1⟩+

γ2

2

(
2BA + A2 + B2

)
(
√

2 |2⟩ − |0⟩) +O
(
γ3
))

|I⟩ . (5.2)

Now we post-select the system on a final state |F ⟩. To second order in γ, the renormalized

pointer’s final state is
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|ϕ′⟩ =
1

⟨F |I⟩

(
⟨F |I⟩ |0⟩ + γ ⟨F |A + B |I⟩ |1⟩+

γ2

2
⟨F | 2BA + A2 + B2 |I⟩

(√
2 |2⟩ − |0⟩

))
. (5.3)

As per our aim, we now calculate the expectation value
〈
a2
〉

for |ϕ′⟩:

〈
a2
〉

= 2γ2 ⟨BA⟩w + γ2
(〈

A2
〉
w

+
〈
B2
〉
w

)
. (5.4)

This equation contains the weak value of the product observable ⟨BA⟩w but also other nontrivial

weak values,
〈
A2
〉
w

and
〈
B2
〉
w

. However, if we limit the two observables to be projectors, then

A2 = A and B2 = B. This turns the nontrivial weak values into single-observable weak values,

which we can replace with ⟨A+B⟩w = ⟨a⟩ /γ. Using this and rearranging Eq. (5.4) to solve

for ⟨BA⟩w we arrive at

⟨BA⟩w =
1

2γ2

(〈
a2
〉
− γ ⟨a⟩

)
. (5.5)

In this way, we have expressed the joint weak-value solely in terms of expectation values on

the pointer’s final state. However, an additional step is still necessary. While the expectation

value of a single lowering operator is easily measured in an experiment by measuring x and p

in separate trials, powers of lowering operators cannot be measured as easily. To solve this,

we express
〈
a2
〉

using a = x
2σx

+ i p
2σp

, where we have used σxσp = h̄
2 (which is valid since

the pointer is in the minimum uncertainty state |0⟩). Doing so, leads to the appearance of

cross terms such as xp+px, which do not correspond to a straightforwardly physical read-out

system observable.

To overcome this problem, we can use the Hermitian observable d which is an equally

weighted combination of x and p: d = σd√
2

(
x
σx

+ p
σp

)
. Here, σx, σp and σd are the standard

deviations of the pointer in x, p and d spaces, respectively. The d observable naturally appears

in a variety of quantum systems. In the Heisenberg picture in quantum optics, the x field

quadrature rotates to d after an eighth of a period of oscillation; this is equivalent to an x-p

phase-space rotation of Rπ/2, with R = 1/2 where R is the rotation order. Similarly, x rotates

to p after a quarter period (R = 1). Just as the Fourier Transform links x and p, the fractional

Fourier Transform (FrFT) was introduced to calculate the effect of a rotation order R on a

state in the Schrödinger picture [7]. In summary, there are established practical methods to

physically implement FrFTs and measure d.

The reason we have introduced this new observable is that the square of d will contain the

desired cross terms. Calculating d2 and solving for the cross terms we find

xp + px = σxσp

(
2
d2

σ2
d

− x2

σ2
x

− p2

σ2
p

)
. (5.6)
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Upon substituting Eq. (5.6) in Eq. (5.5), we obtain an expression for the real and imaginary

parts of ⟨BA⟩w:

Re
(
⟨BA⟩w

)
=

1

8γ2

〈
x2

σ2
x

− p2

σ2
p

− gtx

σ2
x

〉
, (5.7)

and

Im
(
⟨BA⟩w

)
=

1

8γ2

〈
2
d2

σ2
d

− x2

σ2
x

− p2

σ2
p

− gt

σx

p

σp

〉
. (5.8)

Note that every term in Eqs. (5.7, 5.8) is a ratio of two variables with the same units, therefore

each term is unitless. For the same reason, experimental scaling factors e.g., a magnification

in the x domain, cancel out. Hence, characterization of experimental scaling factors is not

required for the use of our technique.

In summary, Eqs. (5.7, 5.8) express the full complex joint weak-value for product observable

BA in terms of Hermitian observables on the pointer’s final state. As expected, the joint weak-

value appears in second order powers of x and p and our new observable d. This comprises

our proposed technique to weakly measure the product of incompatible observables using only

a single pointer.

5.3 Realization of a joint weak-measurement using a sin-
gle read-out degree of freedom

Figure 5.1: Experimental realization of a weak measurement of light polarization using the
transverse spatial profile as read-out system. The beam displacer shifts the transverse position
of vertically polarized light by δ. A weak measurement is characterized by δ ≪ σ, where σ is
the beam size of the Gaussian transverse profile.
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In this section, we present the experimental demonstration of our proposed technique using

photons. Specifically we perform a joint weak-measurement of incompatible polarization pro-

jectors. The experimental setup is shown in Fig. 5.2. The measured observable will be in the

photon’s polarization DOF. The pointer is the photon’s transverse x position with probability-

distribution given by the absolute square of the wave function in Eq. (2.22) with σx = 403 µm.

The photon source is a He:Ne laser at 633 nm with a power of 1.19 mW. The setup can be

divided into state preparation, weak measurements, strong measurement stages, and a read-out

apparatus section. In order to test our technique, we prepare a range of polarization states

|I⟩ = α |H⟩ + β |V ⟩, where |H⟩ (|V ⟩) is the horizontal (vertical) polarization. For state prepa-

ration, we use a polarizing beam splitter (PBS) followed by a half-wave plate (HWP), set at

an angle of θ/2 with respect to the |H⟩ polarization, and a quarter-wave plate (QWP) (see the

caption in Fig. 5.2 for setting details).

A von Neumann measurement of polarization can be performed with a birefringent crys-

tal (e.g., a BBO crystal) acting as a beam displacer, see Fig. 5.1. This optical component

transversely shifts the photon by ∆x = gt = 150 µm if the photon is in the |H⟩ polarization

state and leaves it unshifted if it is in |V ⟩. In this way, the crystal couples the polarization

observable A = |H⟩ ⟨H| to the photon’s transverse spatial position x that plays the role of the

pointer. The strong measurement regime is characterized by ∆x greater than σx, in which the

eigenstates of A are fully separated. Our experiment is performed in the weak measurement

regime where ∆x is less than σx.

In order to measure the product of two observables with our technique, the setup performs

two weak measurements in a row. Each von Neumann interaction (i.e., Eq. (2.24)) is achieved

with a separate BBO crystal. Both crystals are aligned such that they shift the transverse

profile of horizontally polarized photons in the horizontal direction x, leaving the transverse

profile in the y direction unchanged. Thus, they couple to the same pointer, the x DOF.

The first BBO implements a measurement of A = πH = |H⟩ ⟨H|. Before the second BBO,

there is a HWP oriented at 22.5◦. This effectively rotates the second measured observable to

B = π45◦ = |45◦⟩ ⟨45◦|, with |45◦⟩ = |H⟩+|V ⟩√
2

. These two measurements and their read-out

constitute an experimental application of our joint weak-measurement technique that uses a

single pointer. Lastly, a strong measurement of polarization observable πj (j = H or V ) is

performed.

In our experiment, we need the ability to measure three incompatible observables of the

pointer, x, p, and d. This is the read-out of the result of the weak measurement. As we

will explain, lens transformations will allow us to switch between these spatial observables,

transforming them to a final transverse position x′ on a camera. We measure the probability

distribution of the observables in Eqs. (5.7, 5.8) on a monochrome 8 bit CMOS camera with

a pixel width in x′ of 2.2 µm. To make room for the optical lengths required for the lens

transformations we add a 4f lens-pair to the imaging system (f1 = 100 cm and f2 = 120 cm).

The 4f is positioned such that f1 is 100 cm after the crystals. This ensures that the spatial

wave function at the exit surface of the second crystal is recreated 120 cm after the f2 lens.

Our goal is to leave the camera fixed in place while different lenses are inserted in order to
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Read-out apparatus

Read-out apparatus

He:Ne laser

Strong measurement

HWP        PBS

𝑓1 = 100 cm 𝑓2 = 120 cm

CMOS camera

State preparation

PBS    HWP at 𝜃/2 QWP

29 cm

Swappable lenses

220 cm 120 cm

18 cm40 cm

100 cm

4f system 
output

4f lens-pair

29 cm

Weak measurements

BBO     HWP      BBO

𝑓𝑝= 100 cm              𝑓𝑑= 100 cm       𝑓𝑥= 12.5 cm 

Figure 5.2: Experimental setup for performing a joint weak-measurement of a photon’s po-
larization state using a single pointer, the photon’s transverse x position. We work with three
sets of pure polarization states |ψ1⟩ = cos θ |H⟩ + sin θ |V ⟩, |ψ2⟩ = cos θ |H⟩ + i sin θ |V ⟩ and
|ψ3⟩ = 1√

2

(
|H⟩ − ie2iθ |V ⟩

)
. State preparation : To produce such states, we use a po-

larizing beam splitter (PBS), a half-wave plate (HWP) set at θ/2 and a quarter-wave plate
(QWP). The QWP is removed for preparing |ψ1⟩, and it is set at 0◦ and 45◦ for |ψ2⟩ and
|ψ3⟩, respectively. Weak measurements : A first walk-off crystal (BBO) implements a weak
measurement of πj where j can be |H⟩ or |V ⟩. A HWP at 22.5◦ and a second BBO ef-

fectively perform a weak measurement of π45◦ = |45◦⟩ ⟨45◦|, with |45◦⟩ = |H⟩+|V ⟩√
2

. Both

crystals have their optical axes aligned to create walk-off along the x-axis, the read-out DOF.
Strong Measurement : A final HWP and a PBS implement a strong measurement in the
{|H⟩ , |V ⟩} basis. Read− out apparatus : A 4f lens-pair (f1 = 100 cm and f2 = 120 cm)
is required to obtain the probability distributions involved in Eqs. (5.7, 5.8) i.e., to determine
⟨BA⟩w. For p, we use a Fourier transform lens of focal length fp = 100 cm, for d, a Fractional
Fourier Transform (FrFT) lens of focal length fd = 100 cm and, for x, an imaging lens of focal
length fx = 12.5 cm. Each lens is set at the specified distance from a fixed CMOS camera, the
obtained images are used to calculate the required expectation values as described in the text.

measure x, p, and d.

To measure p, and d we use an optical FrFT of the spatial DOF. The special case of rotation

order R = 1 (a standard Fourier Transform), is already widely used; the transverse position x′

at one focal length after lens fp = 100 cm is proportional to p at any distance before the lens.

Hence, lens fp can be placed at any distance after the 4f lens pair as long as it is fp distance

from the camera. Less common is the optical spatial FrFT, which was introduced in [13,16,159]

(more details were given in Section 1.4). At a distance z after lens fd = 100 cm, x′ will be

proportional to the d observable a distance z before the lens. Here, z = fd tan
(
Rπ
4

)
sin
(
Rπ
2

)
.

For d, the phase-space rotation parameter R equals 1/2 making z = 29 cm. This d lens
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transformation fixes the distance of the camera from the 4f lens pair. Lastly, a single lens

(fx = 12.5 cm) placed 160 cm after f2 relays the image from the 4f lens pair. This ensures that

18 cm after fx, x′ on the camera is proportional to x at the crystals. The values of fx, fp, and

fd were chosen so that each measured x′ distribution spans many pixels. By switching in one

lens at a time, fx, fp, or fd, the camera effectively measures the corresponding observable.

A key experimental simplification is that we do not need to experimentally or theoretically

determine the proportionality constants between x′ at the camera and x, p, and d. The

imaging magnification between x and x′ is an example of such a proportionality constant.

Since they depend on the focal lengths and lens-camera distances, these constants are difficult to

experimentally determine precisely. Instead, Eqs. (5.7, 5.8) show that each observable is divided

by the width of the pointer’s initial distribution in that observable, e.g. p/σp. Consequently,

the units cancel and all calculations can be conducted directly in terms of x′, i.e. camera pixel

index.

The data acquisition consisted of taking five camera images per pointer observable (i.e., per

lens configuration). A background image, taken with the laser blocked, was subtracted from

each. The resulting image was integrated along the vertical direction y′, and normalized to

the brightest image obtained in that configuration. The resulting one dimensional probability

distribution P (x′), corresponds to the probability of detecting a photon in position x′ with

final polarization |H⟩ or |V ⟩. With the fx lens in place, this is effectively an x read-out. The

expectation values required for the joint weak-value from Eqs. (5.7, 5.8) can be obtained as

⟨x⟩ /σx = ⟨x′⟩ /σx′ , where ⟨x′⟩ =
∫
P (x′)x′dx′. For p and d, a similar procedure is followed.

As our first demonstration of the technique, we weakly measure the non-Hermitian product

observable π45◦πV for a range of input states, |I⟩. Specifically, we set the state preparation

HWP at an angle of θ/2 and the QWP at 45◦ in order to produce the state: |I⟩ = 1√
2

(
|H⟩ −

ie2iθ |V ⟩
)
. We increment θ from 0◦ to 180◦ in steps of 4◦. For each input state and each image,

the expectation values for the joint weak-value were evaluated according to Eqs. (5.7, 5.8). The

uncertainties were estimated by the standard deviation in the joint weak-value across the five

recorded images.

Curves for the real and imaginary parts of the joint weak-value are shown in Fig. 5.3.

The experimental values closely follow the expected curves calculated from the nominal input

state |I⟩. However, they do not agree within error. These deviations are likely due to imper-

fections in the waveplates. These imperfections will also propagate to the alignment of the

displacement axes of the BBO crystals since the waveplates are used in the alignment process.

Such imperfections have been shown to be the dominant source of systematic error in similar

past experiments [128, 160]. Nonetheless, the results demonstrate the validity of our proposed

technique using a single pointer.
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Figure 5.3: Joint weak-value of the product of incompatible observables π45◦πV with a post-
selection on the state |H⟩. The input state is |I⟩ = 1√

2

(
|H⟩− ie2iθ |V ⟩

)
obtained by setting the

preparation HWP at θ/2 and the QWP at 45◦. The real and imaginary parts of the weak value
are displayed with markers, while solid lines correspond to the joint weak-value, Eq. (5.1). The
error bars are calculated solely from measurement statistics and correspond to the standard
deviation. The standard deviation of the error bars can be decreased by increasing the number
of trials for each measurement as well as mechanically stabilizing the setup upon swapping
different lenses.

5.4 Direct measurement of a quantum state

We now move to a more sophisticated demonstration of our technique, the direct measurement

of each element of the density matrix of polarization states. Such a direct measurement was

introduced in [45,128]. An important advantage of this direct state estimation approach is the

number of measurement bases it requires. To obtain a given element of the density matrix, this

method requires joint weak-measurements in two complementary bases independently of the

dimension of the quantum system. This contrasts with standard quantum state tomography,

which requires O(m) bases for an m-dimensional system. The direct estimation approach

determines the density matrix of a quantum system element-by-element. One can envision a

scenario where the off-diagonal elements of a system’s density matrix (known as coherences) are

monitored (via direct estimation) as a way to detect decoherence [161]. Unlike in Refs. [45,128],

which used two pointers for the joint weak-measurements, here we use only a single pointer

(measured in three different bases) for the same task.

A joint weak-measurement of the product πiπ45◦πj , with i, j = H or V (with no post-

selection) gives the element ρ(i, j) of the density matrix. This is schematically shown in Fig. 5.4.

As shown in [45], the average outcome of a weak measurement without post-selection is the

‘weak average’ (rather than the weak value), which is equal to the expectation value of the

measured observable ⟨C⟩ = tr [Cρ]. Thus, the direct measurement procedure results in a joint
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Figure 5.4: Schematic of the use of a joint weak-measurement for the direct measurement of
the density matrix of photon polarization.

weak-average, ρ(i, j) = 2 tr [πiπ45◦πjρ]. Therefore, by varying the first and last projectors, the

density matrix can be directly determined element-by-element.

To measure the density matrix experimentally, we changed the HWPs settings to scan over

the projectors πi and πj . As shown in [45], the final observable in the product can be measured

either weakly or strongly. The last PBS implements a strong measurement. For each pair of

projectors, we measure the required expectation values in Eqs. (5.7, 5.8).

We test our direct measurement with three sets of pure polarization states. A general

polarization state |ψ⟩ = α |H⟩ + β |V ⟩ has density matrix ρ ≡ |ψ⟩ ⟨ψ| = |α|2 |H⟩ ⟨H| +

αβ∗ |H⟩ ⟨V | + βα∗ |V ⟩ ⟨H| + |β|2 |V ⟩ ⟨V | . The states sets can be found by use of Jones ma-

trices of half and quarter-wave plates (which can be found for example in [3]). Such states sets

are |ψ1⟩ = cos θ |H⟩ + sin θ |V ⟩, |ψ2⟩ = cos θ |H⟩ + i sin θ |V ⟩ and |ψ3⟩ = 1√
2

(
|H⟩ − ie2iθ |V ⟩

)
.

For all cases, the first HWP varies the parameter θ scanning the interval [0◦, 180◦]. The QWP

is removed for |ψ1⟩, and it is set at 0◦ and 45◦ for |ψ2⟩ and |ψ3⟩, respectively. The polarization

states are visualized in the Poincaré sphere in Fig. 5.5a. For achieving such a representation

one can visualize some states and interpolate continuous trajectories. For example, for |ψ1⟩ and

θ = 0, π/4, π/2, 3π/4, the corresponding states are |H⟩ , |45◦⟩ , |V ⟩ , |−45◦⟩ respectively. These

states can easily be identified on the Poincaré sphere leading to a trajectory of states along

the great circle passing for such states. For |ψ3⟩ and θ = 0, π/4, π/2, 3π/4, the corresponding
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Figure 5.5: The polarization states used to test the method can be visualized in frame (a).
These states are located on the three great circles (labeled 1, 2 and 3) in the Poincaré sphere

passing through the states |H⟩ , |V ⟩ , |45◦⟩ = |H⟩+|V ⟩√
2

, |−45◦⟩ = |H⟩−|V ⟩√
2

, |R⟩ = |H⟩−i|V ⟩√
2

and

|L⟩ = |H⟩+i|V ⟩√
2

. In frames (b) to (d), we show experimental elements of the density matrix

ρ of the polarization states |ψ1⟩ = cos θ |H⟩ + sin θ |V ⟩, |ψ2⟩ = cos θ |H⟩ + i sin θ |V ⟩ and
|ψ3⟩ = 1√

2

(
|H⟩− ie2iθ |V ⟩

)
, respectively. Solid lines correspond to the theory. States following

path 1 corresponds to linear polarization (no QWP in the setup), states along paths 2 and 3
were obtained by setting the QWP at 0◦ and 45◦, respectively. Error bars are calculated using
the standard deviation in the joint weak-value across the five recorded images, as previously
employed in Fig. 5.3.

states are |L⟩ , |45◦⟩ , |R⟩ , |−45◦⟩ respectively.

Our results are shown in Fig. 5.5b - d. The solid lines correspond to the real and imaginary

parts of the elements of the theoretical density matrix and the points are the corresponding

experimental joint weak-values. The latter should be equal to the real and imaginary parts of

the density matrix elements and indeed follow the expected curve for each element. As before,

deviations are thought to be the result of systematic errors in the polarization optics. This

direct determination of the density matrix demonstrates the utility of our technique for weak

measurement applications in quantum information.
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5.5 Towards a general joint measurement with one read-
out system

Before summarizing, we discuss some special cases and extensions of our technique. First, the

special case where B = A and the observable is general, i.e., not necessarily a projector. In this

case, the unitary evolution (Eq. (5.2)) of the two von Neumann interactions (i.e., Eq. (2.24))

is equivalent to a single unitary given by UAUA = eγA(a†+a)eγA(a†+a) = e2γA(a†+a). This

corresponds to a unitary of a single von Neumann interaction of the A observable with a doubled

interaction strength 2γ. By measuring x, p, and d on the pointer and using Eqs. (5.7, 5.8),

we can then find the weak value
〈
A2
〉
w

. This behaviour can be generalized so that a single

von Neumann interaction can be used to measure
〈
AN
〉
w

. To do so, one will need to measure

corresponding powers of observables on the pointer, e.g., xN as well as the N -th power of

hybrid observables such as d.

In the derivation of our technique, we focused on the case that A and B are projectors.

However, for general A and B, measuring the product of projectors is enough to obtain the

joint weak-value ⟨BA⟩w. This can be seen if we express A in its spectral decomposition

A =
∑
α απα. Here α is an eigenvalue corresponding to the eigenstate |α⟩, and πα = |α⟩ ⟨α|

[18]. Analogously, for B we have B =
∑
β βπβ . Therefore, BA ≡

∑
α,β αβπβπα. Thus, by

measuring each of the products πβπα and adding the results, the joint weak-value ⟨BA⟩w can

be obtained. In summary, our method can be used to weakly measure the product of general

incompatible observables A and B.

Our technique is also applicable to observables on separate quantum systems, e.g., A is mea-

sured on a first particle and B is measured on a second particle. The standard procedure for

weak measurement would couple BA to a single pointer using H = gBAp, which is Hermitian

now. This, however, requires a three-particle interaction which is challenging. Our method uses

a two-particle interaction on each system while still only using a single pointer. One would first

use the standard von Neumann interaction Eq. (2.24), to couple the pointer to A, then couple

the same pointer to B. This double coupling can be challenging to implement. Particularly, in

photons one would need an optical nonlinear effect at the single-photon level. As our technique

largely preserves the initial quantum state, potential applications include demonstrating con-

textuality [162–165], and tests of Leggett-Garg inequalities [152, 166–171]. Motivated by the

direct measurement of entangled systems [172, 173] and entanglement witnesses [174, 175], a

potential future research direction is the use of this technique for characterizing entanglement.

A possible extension of our technique is measuring the product of m observables of a quan-

tum system, using a single pointer. One would perform subsequent couplings between each

of the m observables, and the pointer. The product of the m observables will appear in the

expectation value of the m power of the lowering operator of the pointer ⟨am⟩. Performing

such a read-out potentially requires full-tomography on the pointer. The advantage of this

approach is that only two-particle interactions are employed, and a single pointer is required

for measuring the product of m observables.
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As an outline of future work, the technique introduced in this chapter can also be extended to

general types of pointers such as spin pointers. Indeed, previous work showed that the lowering

operator formalism can be extended to spin pointers (e.g., polarization) and spin lowering

operators [43]. To measure the product of N observables, one would need to sequentially

couple the N observables to the spin pointer. The product of the N observables will appear

as a coefficient of the N th excited state of the pointer (just as the product BA appears as

a coefficient of the second excited state in Eq. (5.2)). Thus the key requirement will be that

one needs N spin levels (i.e., N = 2S + 1, where S is the spin) to measure the product of N

observables. This shows that the method trades the resource of N dimensions in the pointer

for an N -particle interaction (Eq. (2.24)) or, alternately, N separate pointer systems as in

Ref. [43]. Instead of encoding the measurement information in many separate pointers as in

Ref. [43,128,141], we encode the information from the measurement in a single high-dimensional

pointer.

5.6 Conclusions

As the main contribution of the work on this chapter, we theoretically derived and experi-

mentally demonstrated a method to perform a joint weak-measurement of two incompatible

observables using a single pointer. We then employed this method to directly and individually

measure each element of a system’s density matrix. Since product observables are ubiquitous

in quantum information processing, our technique may be useful for probing and character-

izing such processors in situ without substantially disturbing them. Our work optimizes the

use of resources needed to perform a joint-weak measurement freeing degrees of freedom of a

quantum particle for quantum information tasks. We hope our technique facilitates the use of

weak measurement in complex dynamics and new studies in the quantum realm.
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Chapter 6

Conclusions

The spatial mode of a photon is probably the richest degree of freedom a photon possesses.

Complex high-dimensional states can be created in the spatial mode as well as transformations

on them. In this thesis, we have presented three projects which have in common the spatial

mode of a photon as underlying degree of freedom. Each result contributes in different areas

of classical and quantum information processing.

In Chapter 3, we have focused on a Multi-plane light converter (MPLC) as a system to

achieve modal transformations. We have experimentally demonstrated an MPLC can be re-

configured in time to implement an arbitrary unitary transformation in a two-level system. An

MPLC system is a linear optical network. As suggested from boson sampling, such a network is

complex enough to achieve quantum advantage in the case of much more modes than photons

in the network. This could be a possible future project as it has been demonstrated that MPLC

systems can implement high-dimensional transformations [1, 48].

We have focused on the state of a single photon as input state. When multiple photons are

used as inputs, multiple-photon interference will come into play. This presumably would make

the system harder to classically simulate, and harder to design. However, this is the ideal type

of systems that an experimentalist could have in order to further explore and use quantum

effects. In such a scenario, the design approach we have used would no longer suffice. It would

be needed a different approach where an MPLC system be treated as a quantum simulator.

In Chapter 4, we have demonstrated how one can compute the beam quality factor M2

as well as the other beam properties using solely the complex electric field in a single plane.

Such a method highlights M2 as a fundamental quantity that is conserved under free space

propagation. This clarifies the concept of such a parameter and explains why it is used to

characterize the propagation of a laser beam.

In Chapter 5, we theoretically and experimentally demonstrated a method to perform a joint

weak-measurement of two incompatible observables using a single read-out system. Our work

optimizes the resources for a joint-weak measurement. In our experimental implementation

of the method, the read-out system was a beam array, but this time with highly overlapping

beams. We used our joint weak-measurement method for reconstructing the quantum state of

a photon’s polarization. More specifically, we directly and individually obtained every element

of the density matrix of a photon’s polarization state.
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Appendix A

Derivation of the wave equation
for light

The starting point in Chapter. 1 was the wave equation for light. We now derive such an

equation starting from Maxwell’s equations. The derivation is based on Ref. [3].

Maxwell’s equations consist of four vectorial equations, two of such being for the curl and two

for the divergence of the electric E and magnetic fields H. For a dielectric, linear, nondispersive,

homogeneous and isotropic medium Maxwell equations read as follows:

∇×H = ϵ
∂E

∂t
, (A.1)

∇× E = −µ∂H
∂t

, (A.2)

∇ · E = 0, (A.3)

∇ ·H = 0. (A.4)

Here ϵ is the electric permittivity of the medium and µ is its magnetic permeability.

Let’s apply the curl operator to Eq. A.2 and use the following vector identity ∇× (∇×) =

∇ (∇·) −∇2. We obtain the following for the left hand side

∇× (∇× E) = ∇ (∇ · E) −∇2E (A.5)

= −∇2E. (A.6)

Where Eq. A.3 was used. Now, for the right hand side we obtain

∇× µ
∂H

∂t
= µ

∂

∂t
∇×H (A.7)

= ϵµ
∂2E

∂t2
(A.8)

where we noticed that the time and spatial derivatives commute i.e., ∇× ∂
∂t = ∂

∂t∇ and also

used Eq. A.1 to obtain an expression in terms of the electric field E only. Finally we equate
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the left and right hand sides,

∇2E − 1

c2
∂2E

∂t2
= 0, (A.9)

which is the wave equation we started from in Chapter. 1! Here c = 1/
√
ϵµ is the velocity of

light in the medium.
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Appendix B

Derivation of M2 for a general
superposition of HG beams

We now derive a general formula for M2 for a beam E (x) that is a superposition of HG

beams Em (x). This result is more general than the equations obtained in Refs. [99, 100,

176]. Mathematically Em (x) also describes the wave function of the energy states of a simple

harmonic oscillator in quantum mechanics. Thus we use the bra-ket mathematical formalism

to calculate expectation values as is standard in quantum mechanics. Consider a general state

|ψ⟩ described in the HG beam basis i.e., |ψ⟩ =
∑∞
n=0 cn |n⟩ where |n⟩ is the state of the HG

mode of order n and cn are complex coefficients satisfying
∑∞
n=0 |cn|2 = 1.

In the main text we found Eq. (4.9) as the basis of the covariance method. We use the

general form for the covariance matrix elements in Section 4.6, Eq. (4.22) to find M2 from |ψ⟩.
It is useful to use dimensionless position X and momentum P (rather than angle) operators

defined as follows X = x/2σx and P = pσx/h̄ = 2πσxθ/λ. In terms of these dimensionless

operators, Eq. (4.9) is rewritten as

M2 = 4
√

detQ (B.1)

= 4

√
(∆X)

2
(∆P )

2 − (⟨XP + PX⟩ /2 − ⟨X⟩ ⟨P ⟩)2

= 4

√(
⟨X2⟩ − ⟨X⟩2

)(
⟨P 2⟩ − ⟨P ⟩2

)
− (⟨XP + PX⟩ /2 − ⟨X⟩ ⟨P ⟩)2

= 4

√
⟨X2⟩ ⟨P 2⟩ − ⟨X2⟩ ⟨P ⟩2 − ⟨X⟩2 ⟨P 2⟩ + 2 ⟨X⟩ ⟨P ⟩Re ⟨XP ⟩ − (Re ⟨XP ⟩)2,

where we have used 1
2 ⟨XP + PX⟩ = Re ⟨XP ⟩ .

The calculation of the expectation values appearing in above equation can be done using the

ladder operators a and a† operators commonly used in quantum mechanics. These operators are

related to X and P according to the following equations X =
(
a+ a†

)
/2 and P = i

(
a† − a

)
/2.

The action of these operators on the |n⟩ states is given by a |n⟩ =
√
n |n− 1⟩ and a† |n⟩ =

√
n+ 1 |n+ 1⟩. Expectation values can now be easily obtained, for example ⟨P ⟩ is calculated
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as follows:

⟨P ⟩ =
〈
i
(
a† − a

)
/2
〉

=
i

2

∞∑
n=0

(
cnc

∗
n+1 − c∗ncn+1

)√
n+ 1

= − Im (B) , (B.2)

where constants A,B, C will be defined explicitly at the end. While
〈
P 2
〉

is given by

〈
P 2
〉

= −
〈
a2 +

(
a†
)2 − 2 ⟨n⟩ − 1

〉
/4

= −1

2

∞∑
n=0

Re
(
cnc

∗
n+2

)√
(n+ 1) (n+ 2) + 1/2

∞∑
n=0

n|cn|2 + 1/4

= −1

2
Re (A) +

C

4
. (B.3)

Following a similar procedure, one obtains ⟨X⟩ = Re (B),
〈
X2
〉

= 1
2 Re (A)+C

4 , and Re (XP ) =

− 1
2 Im (A).

Substituting these into Eq. (B.1) we obtain the following general expression of M2 for an

arbitrary superposition of HG beams:

M2 =
√
C2 + 8 Re (B2A∗) − 4|A|2 − 4|B|2C, (B.4)

where A∗ is the complex conjugate of A and

A =
∞∑
n=0

cnc
∗
n+2

√
(n+ 1) (n+ 2), (B.5)

B =
∞∑
n=0

cnc
∗
n+1

√
n+ 1, (B.6)

C = 1 + 2
∞∑
n=0

n|cn|2. (B.7)
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Marrucci, and Fabio Sciarrino. Quantum walks of two correlated photons in a 2D syn-

thetic lattice. npj Quantum Information, 8(1):34, 2022.
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