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Abstract In this work, we examine the orbit equations orig-
inated from Zipoy’s oblate metric. Accordingly, the solution
of Einstein’s vacuum equations can be written as a linear
combination of Legendre polynomials of positive definite
integers l. Starting from the zeroth order l = 0, in a nearly
newtonian regime, we obtain a non-trivial formula favoring
both retrograde and advanced solutions for the apsidal pre-
cession, depending on parameters related to the metric coef-
ficients. Using a Chi-squared statistics, we apply the model
to the apsidal precessions of Mercury and asteroids (1566
Icarus and 2-Pallas). As a result, we show that the obtained
values favor the oblate solution as a more adapted approach
as compared to those results produced by Weyl’s cylindric
and Schwarzschild solutions. Moreover, it is also shown that
the resulting solution converges to the integrable case γ = 1
in the sense of the Zipoy–Voorhees metric.

1 Introduction

Since the explanation of the perihelion advance of Mercury
by Einstein in 1915 as an application of general Relativity
(GR), it has been considered one of the fundamental lab-
oratories for testing extensions of standard GR and other
gravitational models such as e.g, the modification of newto-
nian Dynamics (MOND)[2], Kaluza–Klein five-dimensional
gravity [3], Yukawa-like Modified Gravity [4], Horava–
Lifshitz gravity [5], brane-world models and variants [6–
12], the parametric post-newtonian (PPN) framework and
beyond, and approaches in the weak field/slow motion lim-
its [13–26]. As largely known, in GR, the coordinate sys-
tems are overall physically equivalents and to obtain new
prospects on applications in astrophysics, the diffeomorphic
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transformations cannot be allowed to happen. Hence, for any
other solution of Einstein’s, which is not diffeomorphic to the
Schwarzschild’s solution, it will produce a different nearly
newtonian dynamics.

An interesting work published by Zipoy [27] investi-
gates quasi-oblate spheroidal and prolate coordinates by cal-
culating the vacuum Einstein’s equations to study general
properties of the metrics such as their topology, asymptotic
behaviour, singularities and stability. Moreover, he found that
those metrics present a nearly newtonian solution from a lin-
ear combination of Legendre polynomials. Bearing in mind
that the astrophysical phenomena depend on the form of
objects, different metrics must provide different aspects of
the background physics of the phenomena in a lower gravi-
tational field regime, as compared to the strong Einstein grav-
ity. We use the term nearly newtonian in the sense of [28],
and [29], as an intermediate strength of the gravitational field
between GR and newtonian gravitational field in such a way
that there is no constraints a priori on the field strength but
only on the related movement (geodesic) equations. Need-
less to say, whenever the presuppositions of the weak field
regime and the slow motion condition are applied and the
expansion parameters of the metric are set, it leads naturally
to the post-newtonian regime [30].

This paper also aims at investigating how different space-
times may describe an astrophysical phenomenon with depar-
ture from a spherical geometry. In the second section, we
make a brief review of Zipoy’s work on oblate static metric
and the “monopole” solution that resides on the zeroth degree
of Legendre polynomials with a calculation of the related
orbit equation. In the third section, the calculations of a non-
standard expression for the perihelion shift are shown with
a comparison with the standard Einstein’s result and Weyl’s
axial metric. We also apply the model to analyse the apsidal
precession of the asteroids Icarus and 2-Pallas of the inner
and outer solar system, respectively. Finally, we make the
final remarks in the conclusion section.
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2 Zipoy quasi-oblate metric

2.1 Form and general solution of Zipoy’s metric

We consider the effects in a single plane of orbits, which
is compatible with the observed movement of the planets
around the Sun limited roughly to the plane of their orbits.
Considering the Sun in the center of the circular base of a
cylinder and a planet (or a small celestial object) as a particle
with mass m orbiting its edge, it can be described by Weyl’s
line element [31]

ds2 = −e2(λ−σ)(dρ2 + dz2) − ρ2e−2σdφ2 + e2σdt2, (1)

where the coefficients λ = λ(ρ, z) and σ = σ(ρ, z) are
the Weyl potentials. This metric is diffeomorphic to the
Schwarzschild’s metric and is asymptotically flat [27,31–
34].

Differently from the works of [35–38] and [39], where the
authors use a mass distribution to model galactic relativistic
disks with Weyl’s exact solution of Einstein equations, we
investigated in [40] approximated solutions of this metric for
a test particle in the perihelion precession by expanding the
coefficient functions (or potentials) of the metric into a Tay-
lor’s series. As a result, e.g., we obtained the perihelion shift
of Mercury about 43.105 arcsec/century in accordance with
observations. Recently, an additional relativistic effect to the
apsidal precession of Mercury was proposed as a result from
“interacting terms” on the second-post-newtonian contribu-
tion [41] evincing that low-velocity limit regimes of GR is
still an import arena of research in the realm of the astro-
physical phenomena.

To obtain the quasi-oblate coordinates from Weyl coor-
dinates, a change of variable can be applied in such a form
ρ = a cosh v cos θ and z = a sinh v sin θ , and a is a length
parameter. The resulting line element is given by

ds2 = a2e2(λ−σ)(sinh2 v + sin2 θ)(dv2 + dθ2)

+a2e−2σ cosh2 v cos2 θdφ2 − e2σdt2, (2)

where (v, θ) are the quasi-oblate coordinates. Variations of
the coordinate v produce ellipsoids intertwined by hyper-
boloids built with the coordinate θ . Moreover, the exterior
gravitational field is given by Einstein’s vacuum equations

σ,vv + σ,θθ + σ,v tanh v − σ,θ tan θ = 0, (3)

σ 2
,v − σ 2

,θ − λ,v tanh v − λ,θ tan θ = 0, (4)

2σ,vσ,θ + λ,v tan θ − λ,θ tanh v = 0, (5)

λ,vv + λ,θθ + σ 2
,v + σ 2

,θ = 0 . (6)

where the notation (, v), (, θ) and (, vv), (, θθ)denote respec-
tively the first and the second derivatives with respect to the
variables v and θ . Noting that Eq. (3) is just Laplace’s equa-
tion in oblate coordinates, a solution of the coefficient σ can

be found. Firstly, a change of variables can be made with
x = sinh v and y = sin θ , and after using the method of
separation of variables, one can write σ(x, y) = P(x)Q(y),
and find

∂

∂x

[
(x2 + 1)

∂σ

∂x

]
+ ∂

∂y

[
(1 − y2)

∂σ

∂y

]
= 0, (7)

and their resulting separated equations

∂

∂x

[
(x2 + 1)

∂P(x)

∂x

]
− l(l + 1)P(x) = 0,

∂

∂y

[
(1 − y2)

∂Q(y)

∂y

]
+ l(l + 1)Q(y) = 0, (8)

where l are the degree of Legendre polynomials. The solu-
tions P(x) and Q(y) are given by the Legendre polynomials
of first kind and both Legendre polynomials of first and (the
complex) second kind, respectively. This set of equations and
solutions were also discussed in [42–44]. Due to the structure
of the line element in Eq. (2), we only need the coefficient
σ to produce a nearly newtonian gravitational regime by the
component g44 [28]. For this reason, we are only interested
in the solution for the coefficient σ . Following the results in
[27], for the “monopole” solution l = 0, one can obtain:

e2v =
(
r2 + a2 sin θ2

r2 + a2

)β2+1

, (9)

and the σ(r) potential is given by

σ(r) = −β arctan
a

r
, (10)

being 0 ≤ arctan a
r ≤ π , β = m

a and r = a sinh v. The quan-
tities a andm are length parameters, being β a dimensionless
quantity. Hereon, we consider only a and β as fundamental
parameters for our further analysis. This new change of vari-
able leads to the line element

ds2 = e2(v−σ)dr2 + e2(v−σ)(r2 + a2)dθ2

+e−2σ (r2 + a2) cos2 θdφ2 − e2σdt2. (11)

In this original work, Zipoy showed when r → ∞, the
Eq. (11) turns into an isotropic Schwarzschild line element
and the set of coordinates (r, θ, φ) turns the usual spherical
coordinates.

We stress that the non-standard ingredient of this work
is the space-time itself: rather than some deformation of a
spherically symmetric field, we consider the “monopole”
Zipoy’s original metric vacuum solution as a model for the
local solar-system gravitational field on test-particle orbiting
its center. Hence, we do not use any energy-momentum ten-
sor to propose a general relativistic disk-like model by using
the Zipoy–Vorhees metric [27,45] which has been vastly
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explored in astrophysical literature [37–39] particularly for
galaxy modelling. The Zipoy–Vorhees metric is referred to
as γ -metric and the γ parameter can be identified in Eq. (9)
as γ = β2 + 1. The two possible non-chaotic (integrable)
solutions are when γ is “nearly-minkowskian” (γ −→ 0)

or “nearly-Schwarzschildian”(γ −→ 1). A larger discus-
sion on Zipoy–Vorhees metric and variants can be found in
[46,47,56]. It has been point out that the Zipoy–Vorhees met-
ric are a form of the static limit of the Tomimatsu–Sato family
of solutions [48,49], but the underlying source of that metric,
originally proposed by Voorhees, still remains an open prob-
lem. Moreover, Gibbons and Volkov [50] also explored the
oblate Zipoy–Voorhees metric, rather than just a deformation
of the Schwarzschild one, discussing the consequences of a
ring wormhole. The properties of the γ -metric and in partic-
ular the motion of test particles have been investigated also
in [51–59].

2.2 Orbit equation for the “monopole” solution l = 0

The monopole solution of Zipoy’s metric has a two-sheeted
topology (involving two asymptotically flat regions) with
both positive and negative θ and r coordinates. In order to cor-
respond to the distribution of matter in the known astrophys-
ical systems (time-like trajectories), we restrain the r coor-
dinate to its positive values with the θ coordinate resigned to
the plane of the orbits, since each sheet remains asymptoti-
cally Schwarzschil-dian, and the g33 component is positive,
there are no closed time-like curves. We consider a constraint
to restrain the movement of a test-particle to the plane of the
orbit setting the coordinate θ = 0. Hence, we have a con-
straint on velocities

v · v = gαβvαvβ = −1, (12)

where we denote vα = dxα

dτ
. Thus, we also denote the quan-

tities vr = dr
dτ

, vφ = dφ
dτ

, and vt = dt
dτ

. Moreover, using
Eqs. (11) and (12), one can obtain the following expression

−
(

r2

r2 + a2

)β2+1

e−2σ(r)
(
dr

dτ

)2

−e−2σ(r)(r2 + a2)

(
dφ

dτ

)2

+ e2σ(r)
(
dt

dτ

)2

= −1.

(13)

To proceed further, we need to know the conserved quan-
tities. This can be obtained using the Euler-Lagrange equa-
tions,

∂L
∂xμ

− d

dτ

(
∂L
∂ ẋμ

)
= 0, (14)

where L is the Lagrangian functional commonly denoted as
L = 1

2gμν ẋμ ẋν . For the interested case, we set the depen-
dence of ẋμ for the coordinates φ and t . Hence, one finds

(
dφ

dτ

)2

= L2e4σ(r)

(r2 + a2)2 , (15)

and also

(
dt

dτ

)2

= E2e−4σ(r), (16)

where we denote the conserved quantities L for the spe-
cific orbital angular momentum and E for the specific orbital
energy. With those previous results, we can rewrite Eq. (13)
in a form

−
(

r2

r2 + a2

)β2+1

e−2σ(r)
(
dr

dτ

)2

−
(
L2e2σ(r)

r2 + a2

)

+e−2σ(r)E2 = −1, (17)

and after a little algebra, one finds

(
dr

dφ

)2

=
[

1 − L2e2σ(r)

(r2 + a2)
+ e−2σ(r)E2

]

×e−2σ(r)

L2

(
r2 + a2

r2

)β2+1

(r2 + a2)2. (18)

Taking a change of variable u = 1
r , we can find an orbit

equation
(
du

dφ

)2

= −u2(1 + a2u2)β
2+2

+e−2σ(u)

L2

(
1 + a2u2

)β2+3 [
1 + E2e−2σ(u)

]
,

(19)

and developing the previous equation, we have

(
du

dφ

)2

= −u2(1 + 2a2u2 + a4u4)(1 + a2u2)β
2

+e−2σ(u)C(u)

L2 (1 + a2u2 + 2a2u2 + 2a4u4)
(
1 + a2u2)β2

+e−2σ(u)C(u)

L2 (a4u4 + a6u6)
(
1 + a2u2)β2

, (20)

where we denote C(u) = 1 + E2e−2σ(u). Equivalently, we
can write(
du

dφ

)2

= α(u)u2
[

3a2C(u)

e2σ(u)L2
− 1

]

+α(u)a2u4
[

3a2C(u)

e2σ(u)L2
− 2

]
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+α(u)a4u6
[
a2C(u)

e2σ(u)L2
− 1

]

+α(u)C(u)

e2σ(u)L2
, (21)

where we denote α(u) = (1 + a2u2)β
2
. Hence, a more con-

venient form for the resulting orbit equation can be written
as

(
du

dφ

)2

= α(u)u2
[

3a2C(u)

e2σ(u)L2
− 1

]

+α(u)a2u4
[

3a2C(u)

e2σ(u)L2
− 2

]

+α(u)a4u6
[
a2C(u)

e2σ(u)L2
− 1

]

+α(u)C(u)

e2σ(u)L2
. (22)

It is noteworthy to point out that this equation is a highly
nonlinear type, even in the simplest “monopole” case with
l = 0 and θ = 0.

3 Analysis on apsidal precession

To work with Eq. (22), we attenuate the field strength by
analyzing the decaying terms and by the magnitude of the β

parameter, which is related to the coefficient σ by Eq. (10).
Firstly, we start truncating high orders of the variable u con-
strained to u4, since the effects O(u5) in solar system scale
are negligible [60]. Hence,

(
du

dφ

)2

= α(u)u2
[

3a2C(u)

e2σ(u)L2
− 1

]

+α(u)a2u4
[

3a2C(u)

e2σ(u)L2
− 2

]
+ α(u)C(u)

e2σ(u)L2
.

(23)

Due to the fact that the previous orbit equation still remains
strongly nonlinear, a general β parameter on α(u) compro-
mises the integrability of the equations of motion, which
makes unpracticable to get any closed analytic solution. We
can study approximate solutions if we impose that the param-
eter β is small, then the length parameter a must be large.
Moreover, for small values of the β parameter, the term α(u)

can be expanded as α(u) = 1 + β2a2u2 + O(u)4. Clearly,
the third order will produce terms of orders higher than u4 in
the main equation in Eq. (23), so the expansion in the term
α(u) is truncated up to u2. On the other hand, since E should
be the specific orbital energy, from the term C(u) we find
that E2e−2σ(u) >> 1. These two considerations lead us to a
more treatable orbit equation in such a form

Fig. 1 Pictorial view of the oblate coordinates in the plane (v, θ) with a
hyperboloid and centered ellipsoid. It is shown a reduction of the oblate
coordinates into a two dimensional plane with θ = 0. In this case, we
have a two dimensional ellipsoid where r → 0 is transformed into a
singular ring (in the sense of Riemann invariants are infinite). In the
case r → ∞, the elliptical plane approaches to a circular plane

(
du

dφ

)2

= u2
[

3a2E2

e4σ(u)L2
− 1

]
+ u4a2β2

[
3a2E2

e4σ(u)L2
− 1

]

+a2u4
[

3a2E2

e4σ(u)L2
− 2

]
+ (1 + a2u2β2)E2

e4σ(u)L2
.

(24)

With the fact that the variable u can be related with
the oblate angles in such a way r = ax = a sinh v,
from Eq. (10), we can write e−4σ(v) = e 4β arctan(csch v).
This allows us to study a closed positive infinite endpoints
(asymptotic regions) of the orbit where v = [0,+∞]. At
v → +∞, the ellipsoid approaches to a circular orbit and
at v → 0 it approaches to a ring singularity [27], as illus-
trated in Fig. 1. Then elliptic trajectories can be studied in-
between from their respective endpoints, since the potential
σ does remain finite. Hence, using Eq. (10) and examin-
ing the tendencies, close to circular orbits with v → +∞,
then σ(v) approaches 0, and the exponential term e−4σ(v)

approaches 1. On the other hand, close to singularity, one
can expand the related functions around zero (v → 0) of
the argument of the exponential that leads to −4σ(v) =
−2βsgn(1/v)π − v = −2βsgn(+∞)π = −2βπ , and the
exponential term approaches e−2βπ , where sgn denotes the
sign function. Thus, one can obtain two orbit equations in
such a limits, respectively,
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(
du

dφ

)2

+ u2 = E2

L2 + u2 a
2E2

L2 (3 + β2)

+u4a2
(

β2
[

3a2E2

L2 − 1

]
+

[
3a2E2

L2 − 2

])
,

(25)(
du

dφ

)2

+ u2 = E2

L2 e
−2βπ + u2 a

2E2

L2 e−2βπ (3 + β2)

+u4a2
(

β2
[

3a2E2

L2 e−2βπ − 1

]

+
[

3a2E2

L2 e−2βπ − 2

])
. (26)

A good estimate of an effective orbit equation can be
obtained by the asymptotic matched expansions given by
the sum of Eqs. (25) and (26) and their difference with an
“overlapped” orbit equation that results from setting β = 0
in the two previous equation obtaining the same unique form.
Hence, we can find the related orbit equation with singularity-
free flat region in a form

(
du

dφ

)2

+ u2 = A + u2B + u4C = G(u), (27)

with A, B and C respectively

A = E2

L2 e
−2βπ . (28)

B = a2E2

L2

[
β2 + (3 + β2)e−2βπ

]
, (29)

and

C = a2β2
[

3a2E2

L2 (1 + e−2βπ ) − 2

]

+a2
[

3a2E2

L2 e−2βπ − 2

]
. (30)

Using the method as shown in [5], we can work with the
previous orbit equations analytically and the deviation angle
δφ can be found using

δφ = π
dF(u)

du
|u0 , (31)

with the constraint F(u0) = u0 for a near circular orbit. The
function F(u) is denoted by

F(u) = 1

2

dG(u)

du
. (32)

With those informations at hand, we can evaluate F(u)

straightforwardly

F(u) = 1

2

dG(u)

du
= Bu + 2u3C, (33)

and the related algebraic equation

u0B + 2u0
3C = u0, (34)

with solution

u0 =
√

1 − B

2C
. (35)

By using Eq. (31), it lead us to the “Zipoy’s precession
formula” given by the deviation angle

δφ(zip) = −2π
a2E2

L2 (3e−2βπ + β2(1 + e−2βπ )). (36)

Hence, we have an analytic relation in a flat space avoiding
the asymptotic regions. Interestingly, besides the advanced
solution, this formula also provides a retrograde precession
in terms of the conserved quantities and initial parameters.
It is noteworthy to point out that the hyperbolic term persists
in the result evincing the propagation of the nonlinear effects
from the Einstein equations even with the breakage of the
diffeomorphic coordinate transformations.

To obtain the correct physical units, we use the known
forms for the specific orbital energy E = −GM

2γ
and the

specific orbital momentum L2 = μp, with μ = GM and
p = l(1 − ε2). The terms M , l and ε denote the central
Sun mass, the semi-major axis and the orbital eccentricity,
respectively. The Newton’s universal gravitational constant
is denoted by G. Since β is small, the hyperbolic exponential
can be approximated to e−2βπ ∼ 1 − 2βπ . It is important
to stress that high orders on β are neglected. Accordingly,
using Eq. (36), one can obtain

δφ(zip) = −3

2
π

a2GM

c2l3(1 − ε2)
(1 − 2βπ) . (37)

A more familiar expression for apsidal precession can be
obtained by using the orbital period P in days in such a way
we have the final form

δφ(zip) = −6π3a2

c2(1 − ε2)P2 (1 − 2βπ) , (38)

In order to use physical measurements, we adopt the inter-
national system of measurement Bureau International des
Poids et Mesures [74] setting one year 1yr = 365.256d, the
speed of light c = 299,792,458 m/s [26,74] and the mass
of sun M� = 1.98853 × 1030 kg. The period P is given
by P = T (24)(3600) and T is the sidereal orbital period
in days. In the case of Mercury, we use T = 87.969 days
(NASA Mercury Fact Sheet. https://nssdc.gsfc.nasa.gov).

We use 9 data points concerning observations on the per-
ihelion advance of Mercury in units of arcsecond per cen-
tury (arcsec cy−1) as shown in Table 1. We denote δφsch

for standard (Einstein) perihelion precession and δφWeyl
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Table 1 Comparison between the values for secular precession of Mer-
cury in units of arcsec/century(′′.cy−1) of the standard (Einstein) perihe-
lion precession δφsch [26] and the Weyl conformastatic solution δφWeyl .
The δφobs stands for the secular observed perihelion precession in units
of arcsec/century. In the fourth column, some observational values of
perihelion precession are available. The first data point was adapted
from [61] by adding a supplementary precession calibrated with the
Ephemerides of the Planets and the Moon (EPM2011) [62,63]

δφsch δφWeyl δφZipoy δφobs References

42.9781 43.105 42.9696 43.098 ± 0.503 [61–63]

43.20 ± 0.86 [64]

43.11 ± 0.22 [65]

43.11 ± 0.22 [66]

42.98 ± 0.09 [67]

43.13 ± 0.14 [68]

42.98 ± 0.04 [69,70]

43.03 ± 0.00 [71]

43.11 ± 0.45 [72,73]

for the resulting perihelion advance using the Weyl con-
formastatic solution [40,76], which comes from an axially-
symmetric motion of a test particle in Weyl’s line element
[31]. To control the systematics, we use GnuPlot 5.2 soft-
ware to compute non-linear least-squared fitting by using the
Levenberg–Marquardt algorithm for the goodness-of-fitting
to data. From this algorithm, we obtain the values for the
parameters and the related reduced chi-squared (χ2

red ). Since
Eq. (38) has a negative sign, and to obtain an advanced pre-
cession solution, we calculate its absolute value. We observed
that running the parameters freely, we find that the a parame-
ter has the same magnitude of the planetary semi-major axis
as it provides a ∼ −1.15806 × 1011, which its absolute
value is roughly close to observational value of Mercury’s
semi-major axis and β = 8.86038 × 10−6 and the result-
ing value for the shift angle is 42.9696 arcsec cy−1 for a
χ2
red = 0.0166 and a probability p > 0.95, which represents

a good fitting. It is worth noting that the negative sign for
the length parameter a is a relic from the hyperbolic geom-
etry that passed through the nonlinear effects of the initially
strong gravitational field. Interestingly, the lower values of
β indicates a Schwarzschild-like integrable system of the in-
between studied zone [75] which implies that such zone is
an island of stability.

In Table 1, we show the secular precession of Mercury
in units of arcsec/century comparing with standard result of
Schwarzschild solution and the cylindric Weyl solution for
the perihelion shift. The obtained perihelion shift δφZipoy

reproduces closely the observed perihelion shift with a bonus
that it naturally provides elliptical orbits which makes this
solution a better physical description for astrophysical pur-
poses according to the shape, the topology and the symmetry

Table 2 Comparison between the observational values δφobs for sec-
ular precession in units of arcsec/century and the values from the stan-
dard (Einstein) perihelion precession and the Zipoy solution δφmodel
for selected asteroid 1566 Icarus and 2-Pallas

Object δφobs (′′.cy−1) δφsch(
′′.cy−1) δφmodel(

′′.cy−1)

1566 Icarus 10.05 10.0613 10.029

2 Pallas −133.534 – −133.52

aspects of the gravitational field. An interesting case relies
on the asteroids astrodynamics.

Departing from a spherical geometry, we are able to study
precession of two asteroids as shown in Table 2. The first
one corresponds to the asteroid Icarus. This asteroid is a near-
Earth object (NEO) of the Apollo group with a very elliptical
orbit. It has been regarded as a relativistic asteroid with an
approximation even close to the Sun than Mercury and also a
Venus and Mars-crosser. Its observational value for the peri-
helion precession is 10.05 arcseconds per century with semi-
major axis 1.61258×1011m and a large eccentricity 0.82695
for an orbital period T = 408.781 days [26]. As a result, we
obtained the values for the parameters a ∼ −3.21987×1011

and β = 8.0222 × 10−6 that provide a value for the shift
angle 10.029 arcsec cy−1 for χ2

red = 0.00272 and p > 0.95.
In addition, as an example of retrograde precession, which

is not accounted for the standard Einstein perihelion formula,
we studied the 2-Pallas protoplanet, even though the avail-
able informations on 2-Pallas are still scarce. The 2-Pallas
asteroid is one of the largest asteroids in asteroid belt and
is a Jupiter-crosser. Its observational value for the perihelion
precession is −1333.534 arcseconds per century with semi-
major axis 4.14520 × 1011m and a large eccentricity 0.2812
for an orbital period T = 1686.43 days (available at https://
newton.spacedys.com/astdys2/index.php?pc=3.0, Asteroids
Dynamic Site-AstDyS). As a result, we obtained the values
for the parameters a ∼ −1.680 × 1013 and β = 8.0222 ×
10−6 that provide a value for the shift angle −133.481 arcsec
cy−1 for χ2

red = 1245.46 and p > 0.95. In the two previous
cases, the value of the β parameter remains the same and
unless we find a counterproof in the near future, its value
around ∼ 10−6 must remain the same for any large object in
Solar system (large asteroid, comets and planets). As shown,
the produced gravitational field in this space-time is not the
same as the Schwarzschild case. In this case, the Zipoy space-
time seems to be more astrophysically adapted as compared
to the standard PPN solutions and it naturally provides both
advance and retrograde precessions.

4 Final remarks

Our results in this paper constitute a fine example that the
non-linearities of a system of equations imprint qualitative
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effects on the orbits of their solutions. We have studied solu-
tions of vacuum Einstein’s equation of a quasi-oblate met-
ric obtaining a set of solutions that depends on the Leg-
endre Polynomials, based on Zipoy’s seminal paper [27].
In hindsight, the simplest studied case was the so-called
“monopole” solution for the zeroth order of Legendre poly-
nomials l = 0. Starting from the related Lagrange equa-
tions, we have obtained the orbit equations in the asymptotic
regions, which revealed to be a highly nonlinear set of equa-
tions. To obtain an analytical solution, we have studied a
closed positive infinite interval to get an elliptical pattern of
the orbits in-between in a flat space. As a result, we have
obtained a non-standard formula for the perihelion preces-
sion depending on the dimensionless parameter β and the
length parameter a. The β parameter was primarily fixed as
a low magnitude to allow us to study the orbit equation and
latter it was be found to be of the order of ∼ 10−6. In terms
of the γ metric, it is compatible with the condition for an
integrable system with γ −→ 1.

It is worth noting to point out that no a priori assump-
tions concerning the strength of the field (as a weak field)
were imposed. Moreover, the values of the length parameter
a were adjusted numerically using the Chi-squared statistics
for 9 observational datasets. We have shown that, as pointed
out by Zipoy, the length parameter can be attributed to a
physical meaning since it is closely related to semi-major
axis. Interestingly, the values converged to the same order of
magnitude of semi-major axis of Mercury. Differently from
the standard Einstein’s solution and the Weyl cylindrical one,
the precession formula from oblate coordinates provides nat-
urally both retrograde and advanced solutions for the perihe-
lion precession besides the fact that elliptical orbits are also
native in those coordinates, which reinforces the idea that
the topological nature of the problem is now an important
character and the strength of the gravitational field is highly
constrained by this topology. In summary, this analysis was
made in the realm of GR in a nearly newtonian limit with no
need of additional extensions or modifications of the stan-
dard gravity. As future perspectives, the extended analysis of
the deviation of light, radar echo and gravitational lens in the
oblate metric are currently in progress.
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