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Abstract

Via a series of Kaluza—Klein (KK) and Scherk—Schwarz (SS) compactifications we relate BPS attractors
and their complete (in general non-BPS) flows to a Minkowski vacuum in gauged supergravities with van-
ishing scalar potential in 4, 5, and 6 dimensions. This way we can look at a class of extremal non-BPS black
holes and strings from IIB string theory viewpoint, keeping 4 supercharges on the horizon. Our results im-
ply the existence of a dual 2d N = (0, 2) superconformal field theory (SCFT) that originates from a parent
N = (4, 4) theory living on a D1-D5 system.

This is achieved starting from the BPS black string in 6d with an AdS3 x S3 attractor and taking two
different routes to arrive at a 1/2 BPS AdS, x S? attractor of a non-BPS black hole in 4d N = 2 flat gauged
supergravity. The two inequivalent routes interchange the order of KK reduction on AdS3 and SS reduction
on S3. We also find the commutator between the two operations after performing a duality transformation:
on the level of the theory the result is the exchange of electric with magnetic gaugings; on the level of the
solution we find a flip of the quartic invariant /4 to —Iy.
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1. Introduction and summary of results

Dimensional reduction between black hole solutions in string theory has led to important de-
velopments of the field [1-6]. The relation between supersymmetric black (st)rings and black
holes in ungauged supergravities in 6d/5d and 5d/4d was crucial for the microscopic under-
standing of black hole entropy [7,8] and has therefore given us a tool to look into the quantum
regime of black hole physics. Here and in a companion paper [9] we explore similar relations
between supersymmetric black objects in 4, 5, and 6 dimensions, this time in gauged supergrav-
ity. In particular here we look at the dimensional reduction for gauged theories with a vanishing
scalar potential, such that one has the same bosonic lagrangian as in ungauged supergravity with
asymptotically flat black hole solutions. This is interesting to do because the gauged theory has a
different set of BPS vacua with respect to the ungauged one, even if the full spectrum of bosonic
solutions is the same [ 10]. We find that one needs to use Scherk—Schwarz (SS) instead of Kaluza—
Klein (KK) reduction in order to preserve some fraction of supersymmetry on the horizon in the
lower-dimensional gauged theory. In this way we find a string theory interpretation to the BPS
attractors of non-BPS black holes [10] and strings [11] and thus we can understand better their
field theory duals.

It has been understood that SS reduction of a theory of ungauged supergravity leads to
a gauged supergravity with a vanishing scalar potential in the lower dimension [12-20]. We ex-
ploit this fact! and connect the BPS attractor of black strings in 6d, AdS3; x S3, with BPS black
string and black hole attractors in 5d and 4d gauged supergravities. Depending on the choice of
signs for the charges and gauge coupling constant in the SS reduction, we can end up with 1/2
BPS attractors in gauged N = 2 or fully BPS attractors in ungauged N = 2 supergravity (in the
limit where the SS reduction becomes KK). The 1/2 BPS attractors are the near-horizon geome-
tries of extremal non-BPS black holes and strings in 4 and 5 dimensions [10,11] (see [21-28]
and references therein for extensive results on extremal non-BPS black holes and their horizons).
We find preserved supersymmetry on the horizon only in case of SS reduction on the internal
space S and KK reduction on the AdS3. Since the starting 6d attractor can be seen as a string
theory background of type IIB on K3 or T# corresponding to a D1-DS5 system, the resulting 4d
attractors also have a string theory interpretation.

As shown on the flow chart below, we take the starting geometry AdS3 x S3 and follow two
inequivalent paths down to AdS; x S? in 4d, both of which can preserve supersymmetry. Path I
is to first KK reduce along the circle inside AdS3 and only then perform the SS reduction from
S3 to S?, while path II is the inverse — first SS on S3 and then KK on AdS3. The two inequivalent
paths from 6d to 4d give the same bosonic lagrangian but different solutions, which we show to
be related by a duality transformation up to a flip of sign in the quartic invariant I4. The same
duality transformation is also a symmetry of the bosonic lagrangian, while in the fermonic sector
it interchanges electric and magnetic gaugings, leading to a nontrivial commutator between the
two reduction paths.

1 Strictly speaking, there is a distinction between two classes of SS reductions: reductions over a circle with dual-
ity twist and the case of twisted tori or twistings of other manifolds, as explained in detail in [19]. Here we perform
a reduction with a duality twist over a circle, to be defined more precisely in the next section.

2 Here and in the following sections we mostly focus our discussion on the 1/2 BPS attractors coming from the SS
reduction as the fully BPS ones in ungauged supergravity are already well-known and understood.
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The fact that we find preserved supersymmetry in our analysis is a crucial point, which al-
lows us to claim that the dual field theories on the horizon of the black strings/holes are also
supersymmetric. This means that we have a supersymmetric version of the AdS/CFT correspon-
dence and can trust the black hole microstate counting even if the full black hole/string geometry
is non-BPS. We confirm this by verifying that the central charge and macroscopic entropy of
the non-BPS black string and black hole, respectively, can be recovered correctly from a dual
field theory description based on the D1-D5 field theory3 [7] (see also Section 5.3 of [29] and
references therein for more details).

KK on AdS3

SU(1,1|1)x
SU(1,1) x SU(2) ]/—\[ SU(1,1[1) x SU(2) ]

SU(, 112)x
SU(1,1]2)

KK on AdS3

SU, 1]2) x
SU(2)

Note that the SS reduction of the full black string geometry in general does break fully su-
persymmetry, and BPS-ness is restored only on the black string/hole horizon as shown in the
symmetry algebras above. Thus the corresponding “SS reduction” operation that one needs to

[ SU1, 1]1) x SU2) ]

SSon S3

3 Note that the IR limit of the D1-D5 field theory is an N = (4,4) 2d SCFT and is dual to the black string attractor
in 6d with a symmetry algebra SU (1, 1]2) x SU(1, 1|2). In our considerations we already start with N = 2 supergravity
in 6d, where we only have 8 supercharges and therefore a symmetry group SU (1, 112) x SU (1, 1) x SU(2). This does
not change the fact that there secretly are more fermionic symmetries in 6d, which are not present anymore after the
reduction. Apart from this subtlety in 6d that should be kept in mind, the other supersymmetry groups cited in this paper
are strictly valid and cannot be extended.
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perform on the D1-D5 branes also breaks supersymmetry, and the resulting theory has a restored
N = (0,2) superconformal symmetry only at its IR fixed point. We show that the most naive
expectation for the “SS reduction” operation on the D1-D5 theory, namely that states charged
under the original SU(2)r are projected out, agrees with the value of the central charge from
the AdS/CFT dictionary at leading order. It remains an open question whether one can define
more precisely the exact operation of “SS reduction” on the D1-D5 system and perform other
nontrivial checks on it.

The plan of the paper is as follows. First we make some general comments and explain con-
ceptually the difference between SS and KK reductions in Section 2. We thus gain some more
intuition before proceeding to the supergravity details in Sections 3 and 4, where we explictly
construct the reduction from 6d to 5d and from 5d to 4d along the two different paths outlined
above. Then in Section 5 we construct an explicit duality transformation that relates the two final
solutions and thus derive the commutator between KK—SS and SS—KK. We finish the main part
of the paper in Section 6 with the dual conformal field theory picture. The fact that we manage
to relate the different attractor geometries gives a suggestion how to derive the dual field theories
starting from the original D1-D5 theory, on which we make some more general comments and
finally conclude with Section 7.

2. Scherk-Schwarz vs. Kaluza—-Klein reduction

There are plenty of comprehensive references discussing in detail KK and SS reductions (or
duality twists) [1,15-17,20], showing explicitly the relation between the supergravities we are
interested in. We can however sketch the basic mechanism, which for our purposes is very simple.
One can generate Fayet—Iliopoulos (FI) terms in the lower dimensional theory simply by allowing
for a reduction ansatz for the gravitino of the form

W, (R) = e W, (x) @2.1)

where X = x, y are the original coordinates, and g is an arbitrary constant. This choice is always
allowed in the supergravity theories we consider since the R-symmetry group contains a U (1)
subgroup and therefore the phase in (2.1) is a symmetry of the lagrangian. For a nonvanishing
g this choice breaks the R-symmetry group (in our case SU (2)g) to a U (1) subgroup. Note that
here one can easily get back to the standard KK reduction by taking the limit g = 0. To see how
one gets additional FI terms in the lower dimensional action it is enough to consider the kinetic
term for the gravitino

Lay1 =Ty 09,05, (2.2)
together with the standard metric decomposition
s, = e 2Pds3 + 2979 (dy + Adxt)? (2.3)

chosen such that one goes from Einstein frame in (d 4+ 1) dimensions to the Einstein frame in d
dimensions. The nonvanishing components of the vielbein and its inverse are given by

A

_ —® a ~10 __ (d—2)¢ ~10 _ (d-2)¢p.
e =e e e, =e Ay, e, =e ;

a

I w

5 A _ (=2 5y

e(’f:eqbe,/f, eip=e¢ d=2¢ ¥ — _e%A,, 2.4)

where el‘i and eff are the lower dimensional vielbein and its inverse, and the label 10 signifies the
flat index of the coordinate that is reduced upon.
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The lower dimensional gravitino terms that one finds from (2.2) become”

Lg=V,y"P3,W, —igW,yH° @ 2?y10 _edA pyw, + . (2.5)

One can see that the first term in the brackets gives a (scalar dependent) mass for the gravitino,
while the second term can be recombined into a covariant derivative D, W, in the lower dimen-
sional theory, such that the gravitino carries charge proportional to g under the Kaluza—Klein
gauge field A . These two terms make the difference between gauged and ungauged supergrav-
ity in the simplest models and one refers to such theories as FI gauged ones. It is clear that both
terms vanish when g = 0, leading back to the standard ungauged supergravity from KK reduc-
tions. A crucial point for us here is that in the SS reduction we have defined above the constant
g is arbitrary and not governed by any higher dimensional dynamics. We are therefore free to
fix it to any value, which is important in the next sections when we discuss how the explicit so-
lutions under consideration preserve supersymmetry. Anticipating our analysis there we already
note that since the gravitini carry an electric charge proportional to g, the magnetic charge of the
solutions we find carried by the KK gauge field is quantized in inverse units of g.

The explicit supergravity models we consider in the next section of course posses a larger
number of fields, both bosonic and fermionic. However we only perform SS reduction on the
gravitini, keeping the remaining fields uncharged under the KK gauge field. This means that
our bosonic action is always that of ungauged supergravity, since all bosonic fields are KK re-
duced. Therefore the gauging of the gravitino does not produce any cosmological constant or
scalar potential and we remain within the class of “flat” gauged supergravities as promised in the
introduction.

The exact details of the SS reductions from 6d to 5d [1,16] and from 5d to 4d [5,15,20] are
already known and we directly use them in the following sections.

3. 6d to 5d
3.1. Bosonic lagrangian reduction

We start from ungauged N = 2 supergravity in six dimensions.” The N = 2 gravity multiplet
contains two Majorana—Weyl gravitini and a self-dual antisymmetric tensor field [31]:

A A
Gurn Yy Base 3.1)

where A = 1, 2 runs over the fudamental of the R symmetry group Sp(1). The bosonic lagrangian
has the following simple form [32-34]:

(1.1

where H =dB.

4 We ignore lower-dimensional half-spin fields that result from the reduction of the gravitino, i.e. terms that include Wy .

5 We could have started with more general N = 4 supergravity, since the black strings of Strominger and Vafa [7] are
to be found there. The theory we consider is still a truncation of the N = 4 so the reductions we perform in this section
can be also thought of as starting from ungauged N =4 in 6d and leading to flat gauged N =4 in 5d. However, due
to the N =2 truncation we take we miss some other possible reductions of the larger N = 4 theory, i.e. the ones with
nontrivial tensor reduction ansatz performed in [30].
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For the dimensional reduction of the fields to five dimensions we take the same field ansatz
for both KK and SS reductions:

dsg =z7"ds3 + 27 (dxe + Lg A", Bue = LeAy, (3.3)

where Lg is the length of the circle upon which we reduce. The presence of powers of Lg in
the reduction ansatz is needed in order to get the proper normalization in five dimensions. The
resulting lower-dimensional fields can be organized into an N = 2 5d gravity multiplet containing
{Gun, A}W} plus a vector multiplet containing {A2 . z} as already shown in [16] and the bosonic
lagrangian reads:

S~ 1 3 M L ILMN | 252 12 MN
£5= G<_§R+8_128MZ3 Z+8—Z2FMNF +ZFMNF
1
+EC11KFI/\FJ/\AK, (3.4)

with nonvanishing C12; = 2 and permutations. The most general N = 2 lagrangian in 5d is
usually written in terms of the quantity V = %C 1k XX XK = X' X?2X? = 1, see more details
in e.g. [35]. Using this language we can reproduce the lagrangian (3.4) after identifying the two
sections X!(z2), X2(z) as follows:

xX'=z  x2=y7 " (3.5)

This formalism is useful later when we consider the 5d to 4d reduction. Finally we observe that
this lagrangian is also embeddable in the gauged N = 4° theory of Romans [36] (see also [11,
37-39)).

The above presented lagrangians describe the dynamics of the 6d/5d fields around flat space,
i.e. the above reduction was made from 6d to 5d Minkowski space. Whether the reduction pre-
serves supersymmetry depends on the fermionic completion, which is discussed below.

3.2. 6d near-horizon solution
Our interest in the original 6d theory is related to the presence of an AdS3 x S? backgound,

which is fully BPS and corresponds to the near horizon limit of the self-dual string soliton [40,
41]:

dsg = L*(dsz g, +dsgs) . (3.6)
where:
2 1 2 2 2 dy 2
dspgs, = ) —cosh” 8 da” +dp~ + <7 + sinh B da) , 3.7
2 1 24 442 2 (d¥ :
dsg = 1 sin“ 6 d¢” +do~ + (7 — o cosf d¢) ) (3.8)

More precisely this metric corresponds to a near-horizon geometry of extremal BTZ with
a parameter p4 = 1/2J in the standard notation and a sphere with coordinate® v /K € [0, 47).

6 We have rescaled the metric for the sphere with K and then changed the period of the coordinate v accordingly. This
means the sphere is left untouched, but we have used slightly odd coordinate choice, which allows us to find more general
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We leave the parameter o = {+, —} unspecified since it gives the sign of a magnetic charge in
5/4d. This is important when we discuss the supersymmetry properties after the reduction.
The BPS string in 6d further has a nonvanishing self-dual tensor field, given by

H=12 (Vol(AdSs) + VOZ(S3)) . (3.9)

We now look more explicitly in the KK reduction along AdS and SS reduction along the
sphere seperately and in each case show that the reduction preserves all or half of the supersym-
metries, respectively.

3.3. KK on AdS;

Performing a KK reduction leads us to an ungauged supergravity also in 5d, meaning that the
bosonic lagrangian (3.4) is completed with the fermionic terms of ungauged N = 2 supergravity.
This leaves the asymptotic Minkowski space fully supersymmetric. The near-horizon background
we find here is obtained from the simple rules (3.3) upon reducing along y in (3.7):

, (L 23 4 , , L\2/3
dss =1L (—2J) (ZdSAdSZ +dsgs), z= <—2J) , (3.10)
L? L
1_ 2__—Z
Fl=15 Vol(AdS), F? = ——Vol(AdS)) . (3.11)

This is the fully BPS near-horizon geometry of the static BMPV black hole [1] in 5d N =2
ungauged supergravity, i.e. it preserves 8 real supercharges.

34 SSonS3

The SS reduction along the sphere introduces slightly different fermionic completion of the
bosonic lagrangian (3.4). Choosing the constant in the gravitino reduction ansatz (2.1) to be g1,
we find the term g1 A! in the gravitino covariant derivative, see [35] for the general FI gauged
N = 2 supergravity in 5d. This leads us to a flat gauged N = 2 theory that is equivalent with
the case of N = 4% supergravity also at fermionic level for abelian solutions discussed here. This
way supersymmetry is completely broken for the asymptotic Minkowski space. Near the horizon
we find the following 5d solution when we reduce along the direction v in (3.8):

5 s L 2/3 5 1 s L 2/3
dSS =L (ﬁ) (dsAdS3 + stSZ)’ = (ﬁ) , (312)
F'= L Vol(S?), F? = —EVOZ(SZ) ) (3.13)
do0 K 2

Checking our answers with the known black string near-horizon geometries in 5d, we find an
exact match with the solutions in Section 4.2.2 in [ 1 1]. It is also easy to check for supersymmetry
by again using the results of [11] in Section 5.2. We find one extra condition on the above solution
that fixes the arbitrary reduction constant g; in terms of the magnetic charge of the graviphoton,

1 40 K
gip =-1, — 81:—7- (3.14)

Kaluza-Klein charges. Alternatively, we could leave the metric in its usual form but choose a slight generalization of the
reduction ansatz, as done in [5]. These two choices are completely equivalent and do not lead to real change in physics
in either dimension.
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Fixing g1 ensures that the black string attractor obtained from the SS reduction is quarter-BPS in
the N = 4° theory or half-BPS in the flat gauged N = 2 supergravity, i.e. it preserves 4 real su-
percharges [11]. BPS-ness is achieved when the product of the two magnetic charges is negative:

L3
plp?=——— <0, (3.15)
8o K
which requires o = 41, and therefore g; to be negative. When o = —1 we have p' p? > 0and the

solution is non-BPS in the flat gauged supergravity and fully BPS in the ungauged supergravity
that we retrieve upon setting g1 =0, see [11].

4. 5dto4d
4.1. Bosonic lagrangian reduction

We now perform the second step in the reduction, starting from the bosonic lagrangian of
5d supergravity and reducing it to 4d in the two separate cases that we obtained in the previous
section. The 5d to 4d reduction is well-studied and we decide to be brief in the generalities,
referring to [5,15,20] for all details. The action (3.4) upon reduction gives the bosonic content of
4d N =2 ungauged supergravity with 2 extra vectormultiplets. The field content is therefore the
metric g,.,, 3 gauge fields A%l’z, and 2 complex scalars z!, z2. The full ansatz for reducing the
bosonic fields from 5 to 4 dimensions is the following:

ds? = e2?ds? + e * (dxs + A%, 4.1)
AL = A} +Rez! (dy + AD, 4.2)
X1 =262 Imz!, (4.3)

where the 4d fields are already in the standard 4d N = 2 conventions and on the left hand side we
have the 5-dimensional fields of (3.4). The resulting supergravity in four dimensions is defined
by the prepotential (derived from the 5d coefficients Cj k)

B C]jKXIXJXK B Xl(x2)2
B 6X0 X0
where the holomorphic sections X* are related to the scalars via z/ = X!/ X°. For this prepo-

tential and imaginary scalars, the period matrix of special geometry [42] is purely imaginary and
diagonal:

F

, 4.4)

Ioo = —Imz! (Imz?)? 4.5)
(Imz%)?

hi==- (4.6)

I = —2Imz'. 4.7

We need these values explicitly in order to find the conserved electric charges

On =Irxq*, (4.8)

which can be obtained from the original fields strengths F® = ¢® Vol(AdS,) via the period
matrix /.

Again, we stress that the above presented lagrangians describe the dynamics of the fields
around flat space. Whether the reduction preserves supersymmetry depends on the fermionic
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completion, which is discussed in the two cases below. Note that Minkowski does not preserve
any supersymmetry in the presence of nontrivial FI parameters (and conversely it is fully BPS
in the absense of gaugings), therefore the full black hole geometries are non-BPS even if the
near-horizon does preserve some supersymmetries in the gauged theories.

4.2. 8SonS3

Taking first the fully BPS black hole background in 5d from Section 3.3, we now perform an
SS reduction over the ¢ direction of S3. This leads to gauging of the gravitino with the KK gauge
field goA° with the expected arbitrary constant gg from the SS reduction. We are then left with
a flat FI gauged supergravity with prepotential (4.4) and only nonvanishing FI parameter gg (i.e.
the other gauge fields are not used in the gauging, g; = g2 = 0). Using the reduction rules above,
we identify

1/3
o L (L
2K \2J

and find the following 4d background:

L* iL? iL
ds] = ——(ds3 s, +ds2y), =—, #=—, 4.9
= ek Wan ThR). S =g TSk )
0 2 L L
F" =0K Vol(S°), F' = HVol(AdSz), Fe= ) Vol(AdS>). (4.10)
This is the near-horizon solution of a black hole with two electric and one magnetic charge,
2 3
p’=0kK, Q1=—L—, Q2=L—. 4.11)
8K 8JK

Looking at the supersymmetry properties of such class of solutions, analyzed in [10], we again
observe that there is one condition fixing the constant g¢ in terms of the magnetic charge,

1
-
This guarantees that preservation of 4 supercharges in the flat gauged N = 2 supergravity in 4d,
provided that the quartic invariant /4 is negative:

gop’=—1, — g= 4.12)

0 2 L\
Iy=-2 = . 4.13
4 p 01(02) U<16JK> (4.13)
Unlike the SS reduction of Section 3.4, the BPS condition /4 < 0 now translates into o = —1.

Vice versa, when o = +1, the solution is fully BPS in ungauged supergravity, where go = 0.
4.3. KK on AdS3

In this case we start from already gauged fermionic completion of the 5d lagrangian (3.4),
but due to the KK reduction to 4d do not add extra gauging of the gravitino, therefore having
the already fixed g; and leaving go = go = 0. This is another type of flat FI gauged supergravity
with the same bosonic lagrangian as in the case above. The solution following from the reduction
rules along y in AdS3 is very similar,
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L . iL? , L

ds? = ———(dsiys, +ds%), S =, 4.14
= qesg Whas, T =g T= @19
0 1 L’ 2 2 L 2
F* = J Wl(AdS»), F =0,z Vol(S57), F*= —3 Vol(S7). (4.15)
This is the near-horizon solution of a black hole with two magnetic and one electric charge,
00— L* L L2 » L “.16)
0= Tk P T4 P TR '

We find that the quartic invariant /4 for this solution is:

2

I.=8 1, .22 L
4=8Qop (p°) ' =—0 oK) 4.17)

Exactly as in the case above, this is a half-BPS near-horizon solution (BPS’ness guaranteed by
the condition g p' = —1 that we already satisfied in 5d). Just like the corresponding 5d attractor
upon which we reduced, the BPS constraint /4 < 0 again gives o = +1. The opposite choice,
o = —1, leads to a fully BPS solution in ungauged supergravity for g; = 0.

5. Commutator between KK-SS and SS-KK

In the previous sections we showed how to obtain the half BPS attractor AdS; x S? in four di-
mensions by reducing the fully BPS black string near horizon geometry AdS3 x S3. We followed
two different paths where the two operations of KK on AdS3 and SS on S are interchanged.
We can now address the question about the commutator between these two operations, and the
answer can be found after the use of a duality transformation.

5.1. On lagrangian level

N =2 D =4 supergravity has symplectic transformations as electromagnetic duality group so
that the fields can be organized into symplectic vectors. The vector describing the scalar degrees
of freedom is:

A
Q=<);A), 5.1)

where F is defined via the prepotential as Fo = 3 F/dX*. A second symplectic vector is needed
to describe the gauge degrees of freedom and contains electric and magnetic charges:

A
p
r= . 52
(5.) 62
It is also possible to define a symplectic vector containing the FI parameters:
A
8
G= , 53
() 63)

where g2 and g, correspond to electric and magnetic gaugings respectively (see [43] for more
details on magnetic gaugings).
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We consider a symplectic transformation of the type:

M=

0

0

0
e (5.4)

0

0

SO O OO
eoNeNoNeE el
[eNeNel e Nl

This particular duality transformation is not only a symmetry of the equations of motion, but also
a symmetry of the bosonic lagrangian. It leaves the prepopential (4.4) invariant, provided that

a
4b = — (5.5
¢
is satisfied. This is exactly the type of transformation that we need in order to match the two BPS
attractors.
Let us now consider the FI parameters:

0 0
0 0
a=| % | o= 8 (5.6)
8K 40K
2
0 0

It is clear that the symplectic rotation (5.4) does not map these two vectors, since it transforms
electric gaugings into magnetic gaugings and vice versa, i.e. it transforms go into g° and g!
into g1. Here lies the nontrivial part of the commutator between the two operations KK on AdSs
and SS on S3, which amounts to interchanging electric and magnetic gaugings.

Note that from the geometric point of view as a 6d compactification on a twisted torus, the two
different theories arise due to an interchange in the order of shrinking the two different cycles
of the torus. From this point of view one can see that there exists a third way of directly going
from 6d to 4d by shrinking the two cycles simultaneously. This operation will lead to yet another
fermionic completion of the same bosonic lagrangian.

5.2. On solution level
We start from the scalar fields, that transform under (5.4) as:

b 2a~!
@y =-27 &=L 5.7)
Z e

The two sets of scalar fields in (4.9), (4.14) rotate into each other if we set the three parameters
to be:

128J2K? 4JK
a::I:T, b==+2, c=+—1r0. (5.8)
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Moving to the gauge sector we can write the two sets of charges (4.11), (4.16) as symplectic
vectors:

oK 02
L
0 4o K
0 / —L
= 0 , I'= B L24 . 5.9

L2 128K J2
8K 0
L‘

8IK 0

These two vectors fail to transform into each other under duality only for a sign of one charge.
This is where the equivalence between the two solutions breaks down, as expected since we
showed that the two 4d backgrounds are BPS for opposite values of o. The two BPS solutions
are not exactly equivalent under duality, since an extra flip in the sign of the quartic invariant
Iy — —14 is needed.

6. The dual CFT picture and black hole/string microscopics

In the previous sections we were able to give a clear string theory interpretation to the super-
symmetric near horizon geometries of non-BPS black holes [ 10] and non-BPS black strings [11].
This we achieved starting from the 6d black string attractor AdS3 x S3, which corresponds to the
near horizon geometry of the D1-D5 system on K3 or T#, and reducing it to lower dimensions.
We now make use of AdS/CFT techniques to understand the properties of the field theories that
are dual to the 5d and 4d solutions we presented.

Our starting point is the 2d N = (4, 4) SCFT [7] on R!:! describing the D1-D5 system degrees
of freedom, dual to the 6d black string background. Performing a KK reduction to the 5d black
hole of Section 3.3 is equivalent to putting the (4, 4) theory on a circle preserving supersymmetry.
This is by now a well-established fact that enabled the microscopic entropy counting of the black
holes in 5d [7].

What about the meaning of the reduction to the 5d black string of Section 3.4 from a field
theory point of view? We know that the operation of SS reduction along S3 breaks the SU (2) x
SU (2) symmetry group of the sphere to U (1) x SU (2) in the lower dimension (keeping the U (1)
subgroup of SU(2) due to the reduction ansatz). This is also true for the full geometry where
in general supersymmetry is broken. On the horizon we restore the supersymmetry group to
SU(, 1|1) x SU(1,1) x SU(2), i.e. with respect to the original attractor before the reduction we
break the R-symmetry from SU (2)g to U (1) and keep the SU (2), only as a global symmetry.
This is crucial to understand the properties of the dual field theory that follow from the AdS/CFT
dictionary. We know that the operation of SS reduction breaks fully the supersymmetry of the
D1-DS5 system and leads to an N = (0, 0) theory that then flows in the IR to an N = (0, 2) SCFT
on R!. This means that we have completely broken supersymmetry in the left-moving sector,
and broken the R-symmetry to U (1) in the right moving sector in the infrared.’

It therefore seems natural to expect that the operation of SS reduction projects out the states
in the D1-D5 field theory that are charged under the original SU (2)g R-symmetry, therefore
finding in principle a smaller number of massless fields in the N = (0, 0) theory as compared to

7 Note that even the straightforward KK reduction from 3 to S2 breaks completely the supersymmetry on the left-
moving sector, but keeps the SU (2) g. This does not lead to a change in the underlying degrees of freedom of the D1-D5
system.
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its parent N = (4, 4). The consequent flow to the N = (0, 2) supersymmetric fixed point should
also change accordingly and due to the lack of supersymmetry along the RG flow it seems unclear
how exactly this IR theory can be defined. However, as we show later in this section, the value
of the central charge does not change, and in our naive picture this happens for a simple reason:
the central charge in the D1-D5 system (see a detailed discussion in Section 5.3.1 of [29] and in
[44]) counts the number of massless hypermultiplets in the large charge supergravity limit. The
left moving hypermultiplet fields are inert under the SU (2)g, so they remain unaffected by the
SS reduction and therefore we get the same central charge in the resulting N = (0, 2) theory.®

Going down to the 4d near-horizon geometries of Sections 4.2 and 4.3 we find the same field
theory description, given by the new N = (0, 2) field theory on a spatial circle. One should then
be able to extract the value of the Bekenstein—Hawking entropy of the black holes from their dual
description. This is indeed the case, as we show now.

Starting from 6d, we know from [7] that the value of the central charge for the D1-D5 field
theory is”:

_ 3Rpgs;  3LA3(L)  3miL*

“T726; T 2Gs | Ge
This result follows from the standard AdS/CFT dictionary, but as already discussed above it was
derived independently on the field theory side in [7] (see again [29]). Going down along AdS3
puts the theory on a circle with momentum (see e.g. [46])
Lo— &= pp Raasy _ Raas, LAy Lt
24 4G3 16J2G3  16J2G¢ 8J2%Gg
where p4 is the horizon radius of BTZ in standard notation (see e.g. [9]) that translates for us
into p; = (2J)~'. The Cardy formula therefore leads to

6.2)

(6.3)

c ( c ) _ 7 Rads, _ 73t (6.4)

Searas =211 S (Lo — < - .
Cardy =T\ e \"0 ™ 54) = 747G~ 27Ge

If one is careful about dimensional analysis, this formula matches exactly with the Bekenstein—
Hawking entropy formula

(6.5)

for the black hole in 5d of Section 3.3 and both black holes in Section 4. We need the respective
5d and 4d Newton constants that can be derived from the (in this case more fundamental) 6d
Newton constant,
1 1 . 1

Ge¢ 2nGs 4nKGi 8n2KGs'
where there are two different normalizations of the Newton constant in 5d, depending on whether
we first reduce along AdS (Gs) or along the sphere (G’S). Going further to 4d we obtain that
G4 = G}, as the two reduction paths converge.

(6.6)

8 Interestingly, one can find the analogous reasoning on the gravity side by the argument that BPS states making up the
black hole entropy need to be rotationally (i.e. SU (2)) invariant [45].
9 Here and in what follows we have defined Ay, A3 to be the integral of the respective volume element:

Az(L):LZ/Val(Sz):4nL2, A3(L)=L3/V()I(S3)=2n2L3. (6.1)
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More explicitly, we find the 5d black hole to have
As(L(L)2D)'3)  72L4

Ry - = , 6.7
BH 4Gs 4JGs ©.7)
while for the 4d black holes
A>(L?/(4VTK)) wL*
st = 220 = (6.8)

4G4 - 16JKGy
These two expressions are equal to each other and also equal to the Cardy formula (6.4) of the
dual field theory upon imposing (6.6).

We also recover correctly the central charge of the 5d black string, given by the AdS/CFT
formula [47]

_ 3Raas;  3L(L/2K)'PAy(L/2(L/2K)'?)  3xL*
2G, 2G5 4KGS '
which matches (6.2) upon the identification (6.6).
This proves our expectation that the central charge of the N = (4,4) theory remains un-

changed even after projecting out states charged under SU (2) g to end up with the new N = (0, 2)
theory.

(6.9)

7. Concluding remarks

To briefly summarize our results, we followed two different dimensional reduction paths from
the black string attractor AdS3 x S3 to AdS, x S2. We looked explicitly only at the attractors,
but it is straightforward to write the reduction for the full flows to asymptotic Minkowski as done
in [1,5]. Our main point was to show supersymmetry on the horizon, for which zooming in on
the attractor geometry was enough.

Preservation of supersymmetry is the reason to claim that our example is a genuine case of
dual microscopic description. The usual check that we performed in the matching between the
Cardy and Bekenstein—Hawking entropy was already known to work for any extremal black hole
[48]. The fact that we keep supersymmetry on the horizon is the extra ingredient that keeps the
dual description under control. One can therefore hope to match the macroscopic and micro-
scopic entropy formulas also after taking into account quantum corrections. This would however
require a more detailed understanding of the resulting N = (0, 2) 2d SCFT, as well as looking at
higher derivative corrections on the gravity side, see [49,50] and references therein.

Apart from this main purpose of our work, we also showed that the operations of KK re-
duction on AdS3 and SS reduction S and their exchange do not commute. After the duality
transformation we constructed in Section 5 it turned out that if one path gives a standard electric
gauging in the 4d supergravity, the other one can be seen as magnetic gauging. The two different
reduction paths also lead us to different topological sectors of black hole solutions, exchanging
the quartic invariant I4 with its opposite value — /4.
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