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Abstract

Via a series of Kaluza–Klein (KK) and Scherk–Schwarz (SS) compactifications we relate BPS attractors 
and their complete (in general non-BPS) flows to a Minkowski vacuum in gauged supergravities with van-
ishing scalar potential in 4, 5, and 6 dimensions. This way we can look at a class of extremal non-BPS black 
holes and strings from IIB string theory viewpoint, keeping 4 supercharges on the horizon. Our results im-
ply the existence of a dual 2d N = (0, 2) superconformal field theory (SCFT) that originates from a parent 
N = (4, 4) theory living on a D1–D5 system.

This is achieved starting from the BPS black string in 6d with an AdS3 × S3 attractor and taking two 
different routes to arrive at a 1/2 BPS AdS2 × S2 attractor of a non-BPS black hole in 4d N = 2 flat gauged 
supergravity. The two inequivalent routes interchange the order of KK reduction on AdS3 and SS reduction 
on S3. We also find the commutator between the two operations after performing a duality transformation: 
on the level of the theory the result is the exchange of electric with magnetic gaugings; on the level of the 
solution we find a flip of the quartic invariant I4 to −I4.
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1. Introduction and summary of results

Dimensional reduction between black hole solutions in string theory has led to important de-
velopments of the field [1–6]. The relation between supersymmetric black (st)rings and black 
holes in ungauged supergravities in 6d/5d and 5d/4d was crucial for the microscopic under-
standing of black hole entropy [7,8] and has therefore given us a tool to look into the quantum 
regime of black hole physics. Here and in a companion paper [9] we explore similar relations 
between supersymmetric black objects in 4, 5, and 6 dimensions, this time in gauged supergrav-
ity. In particular here we look at the dimensional reduction for gauged theories with a vanishing 
scalar potential, such that one has the same bosonic lagrangian as in ungauged supergravity with 
asymptotically flat black hole solutions. This is interesting to do because the gauged theory has a
different set of BPS vacua with respect to the ungauged one, even if the full spectrum of bosonic 
solutions is the same [10]. We find that one needs to use Scherk–Schwarz (SS) instead of Kaluza–
Klein (KK) reduction in order to preserve some fraction of supersymmetry on the horizon in the 
lower-dimensional gauged theory. In this way we find a string theory interpretation to the BPS 
attractors of non-BPS black holes [10] and strings [11] and thus we can understand better their 
field theory duals.

It has been understood that SS reduction of a theory of ungauged supergravity leads to 
a gauged supergravity with a vanishing scalar potential in the lower dimension [12–20]. We ex-
ploit this fact1 and connect the BPS attractor of black strings in 6d, AdS3 × S3, with BPS black 
string and black hole attractors in 5d and 4d gauged supergravities. Depending on the choice of 
signs for the charges and gauge coupling constant in the SS reduction, we can end up with 1/2 
BPS attractors in gauged N = 2 or fully BPS attractors in ungauged N = 2 supergravity2 (in the 
limit where the SS reduction becomes KK). The 1/2 BPS attractors are the near-horizon geome-
tries of extremal non-BPS black holes and strings in 4 and 5 dimensions [10,11] (see [21–28]
and references therein for extensive results on extremal non-BPS black holes and their horizons). 
We find preserved supersymmetry on the horizon only in case of SS reduction on the internal 
space S3 and KK reduction on the AdS3. Since the starting 6d attractor can be seen as a string 
theory background of type IIB on K3 or T4 corresponding to a D1–D5 system, the resulting 4d 
attractors also have a string theory interpretation.

As shown on the flow chart below, we take the starting geometry AdS3 × S3 and follow two 
inequivalent paths down to AdS2 × S2 in 4d, both of which can preserve supersymmetry. Path I 
is to first KK reduce along the circle inside AdS3 and only then perform the SS reduction from 
S3 to S2, while path II is the inverse – first SS on S3 and then KK on AdS3. The two inequivalent 
paths from 6d to 4d give the same bosonic lagrangian but different solutions, which we show to 
be related by a duality transformation up to a flip of sign in the quartic invariant I4. The same 
duality transformation is also a symmetry of the bosonic lagrangian, while in the fermonic sector 
it interchanges electric and magnetic gaugings, leading to a nontrivial commutator between the 
two reduction paths.

1 Strictly speaking, there is a distinction between two classes of SS reductions: reductions over a circle with dual-
ity twist and the case of twisted tori or twistings of other manifolds, as explained in detail in [19]. Here we perform 
a reduction with a duality twist over a circle, to be defined more precisely in the next section.

2 Here and in the following sections we mostly focus our discussion on the 1/2 BPS attractors coming from the SS 
reduction as the fully BPS ones in ungauged supergravity are already well-known and understood.
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D = 6 N = 2
ungauged
AdS3 × S3

self-dual tensor

D = 5 N = 2
U(1)A1 gauged
AdS3 × S2

2 magn charges

D = 5 N = 2
ungauged
AdS2 × S3

2 elctr charges

D = 4 N = 2
U(1)A1 gauged
AdS2 × S2

2 magn,
1 elctr charge

D = 4 N = 2
U(1)A0 gauged
AdS2 × S2

2 elctr,
1 magn charge

SS on S3

KK on AdS3

KK on AdS3

SS on S3

The fact that we find preserved supersymmetry in our analysis is a crucial point, which al-
lows us to claim that the dual field theories on the horizon of the black strings/holes are also 
supersymmetric. This means that we have a supersymmetric version of the AdS/CFT correspon-
dence and can trust the black hole microstate counting even if the full black hole/string geometry 
is non-BPS. We confirm this by verifying that the central charge and macroscopic entropy of 
the non-BPS black string and black hole, respectively, can be recovered correctly from a dual 
field theory description based on the D1–D5 field theory3 [7] (see also Section 5.3 of [29] and 
references therein for more details).

SU(1,1|2)×
SU(1,1|2)

SU(1,1|1)×
SU(1,1) × SU(2)

SU(1,1|2)×
SU(2)

SU(1,1|1) × SU(2)

SU(1,1|1) × SU(2)

SS on S3

KK on AdS3

KK on AdS3

SS on S3

Note that the SS reduction of the full black string geometry in general does break fully su-
persymmetry, and BPS-ness is restored only on the black string/hole horizon as shown in the 
symmetry algebras above. Thus the corresponding “SS reduction” operation that one needs to 

3 Note that the IR limit of the D1–D5 field theory is an N = (4, 4) 2d SCFT and is dual to the black string attractor 
in 6d with a symmetry algebra SU(1, 1|2) × SU(1, 1|2). In our considerations we already start with N = 2 supergravity 
in 6d, where we only have 8 supercharges and therefore a symmetry group SU(1, 1|2) × SU(1, 1) × SU(2). This does 
not change the fact that there secretly are more fermionic symmetries in 6d, which are not present anymore after the 
reduction. Apart from this subtlety in 6d that should be kept in mind, the other supersymmetry groups cited in this paper 
are strictly valid and cannot be extended.
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perform on the D1–D5 branes also breaks supersymmetry, and the resulting theory has a restored 
N = (0, 2) superconformal symmetry only at its IR fixed point. We show that the most naive 
expectation for the “SS reduction” operation on the D1–D5 theory, namely that states charged 
under the original SU(2)R are projected out, agrees with the value of the central charge from 
the AdS/CFT dictionary at leading order. It remains an open question whether one can define 
more precisely the exact operation of “SS reduction” on the D1–D5 system and perform other 
nontrivial checks on it.

The plan of the paper is as follows. First we make some general comments and explain con-
ceptually the difference between SS and KK reductions in Section 2. We thus gain some more 
intuition before proceeding to the supergravity details in Sections 3 and 4, where we explictly 
construct the reduction from 6d to 5d and from 5d to 4d along the two different paths outlined 
above. Then in Section 5 we construct an explicit duality transformation that relates the two final 
solutions and thus derive the commutator between KK–SS and SS–KK. We finish the main part 
of the paper in Section 6 with the dual conformal field theory picture. The fact that we manage 
to relate the different attractor geometries gives a suggestion how to derive the dual field theories 
starting from the original D1–D5 theory, on which we make some more general comments and 
finally conclude with Section 7.

2. Scherk–Schwarz vs. Kaluza–Klein reduction

There are plenty of comprehensive references discussing in detail KK and SS reductions (or 
duality twists) [1,15–17,20], showing explicitly the relation between the supergravities we are 
interested in. We can however sketch the basic mechanism, which for our purposes is very simple. 
One can generate Fayet–Iliopoulos (FI) terms in the lower dimensional theory simply by allowing 
for a reduction ansatz for the gravitino of the form

�μ̂(x̂) = eigy�μ̂(x) , (2.1)

where x̂ = x, y are the original coordinates, and g is an arbitrary constant. This choice is always 
allowed in the supergravity theories we consider since the R-symmetry group contains a U(1)

subgroup and therefore the phase in (2.1) is a symmetry of the lagrangian. For a nonvanishing 
g this choice breaks the R-symmetry group (in our case SU(2)R) to a U(1) subgroup. Note that 
here one can easily get back to the standard KK reduction by taking the limit g = 0. To see how 
one gets additional FI terms in the lower dimensional action it is enough to consider the kinetic 
term for the gravitino

Ld+1 = �̄μ̂γ μ̂ν̂ρ̂∂ν̂�ρ̂ , (2.2)

together with the standard metric decomposition

ds2
d+1 = e−2φds2

d + e2(d−2)φ(dy + Aμdxμ)2 , (2.3)

chosen such that one goes from Einstein frame in (d + 1) dimensions to the Einstein frame in d
dimensions. The nonvanishing components of the vielbein and its inverse are given by

êa
μ = e−φea

μ, ê10
μ = e(d−2)φAμ, ê10

y = e(d−2)φ;
êμ
a = eφeμ

a , ê
y

10 = e−(d−2)φ, ê
y
a = −eφAa, (2.4)

where ea
μ and eμ

a are the lower dimensional vielbein and its inverse, and the label 10 signifies the 
flat index of the coordinate that is reduced upon.
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The lower dimensional gravitino terms that one finds from (2.2) become4

Ld = �̄μγ μνρ∂ν�ρ − ig�̄μγ μρ(e(d−2)φγ 10 − eφAνγ
ν)�ρ + . . . (2.5)

One can see that the first term in the brackets gives a (scalar dependent) mass for the gravitino, 
while the second term can be recombined into a covariant derivative Dμ�ν in the lower dimen-
sional theory, such that the gravitino carries charge proportional to g under the Kaluza–Klein 
gauge field Aμ. These two terms make the difference between gauged and ungauged supergrav-
ity in the simplest models and one refers to such theories as FI gauged ones. It is clear that both 
terms vanish when g = 0, leading back to the standard ungauged supergravity from KK reduc-
tions. A crucial point for us here is that in the SS reduction we have defined above the constant 
g is arbitrary and not governed by any higher dimensional dynamics. We are therefore free to 
fix it to any value, which is important in the next sections when we discuss how the explicit so-
lutions under consideration preserve supersymmetry. Anticipating our analysis there we already 
note that since the gravitini carry an electric charge proportional to g, the magnetic charge of the 
solutions we find carried by the KK gauge field is quantized in inverse units of g.

The explicit supergravity models we consider in the next section of course posses a larger 
number of fields, both bosonic and fermionic. However we only perform SS reduction on the 
gravitini, keeping the remaining fields uncharged under the KK gauge field. This means that 
our bosonic action is always that of ungauged supergravity, since all bosonic fields are KK re-
duced. Therefore the gauging of the gravitino does not produce any cosmological constant or 
scalar potential and we remain within the class of “flat” gauged supergravities as promised in the 
introduction.

The exact details of the SS reductions from 6d to 5d [1,16] and from 5d to 4d [5,15,20] are 
already known and we directly use them in the following sections.

3. 6d to 5d

3.1. Bosonic lagrangian reduction

We start from ungauged N = 2 supergravity in six dimensions.5 The N = 2 gravity multiplet 
contains two Majorana–Weyl gravitini and a self-dual antisymmetric tensor field [31]:

Ĝ
M̂N̂

, �A

M̂
, B

M̂N̂
, (3.1)

where A = 1, 2 runs over the fudamental of the R symmetry group Sp(1). The bosonic lagrangian 
has the following simple form [32–34]:

L6 =
√

Ĝ

(
−1

2
R + 1

6
H

M̂N̂P̂
HM̂N̂P̂

)
, (3.2)

where H = dB .

4 We ignore lower-dimensional half-spin fields that result from the reduction of the gravitino, i.e. terms that include �y .
5 We could have started with more general N = 4 supergravity, since the black strings of Strominger and Vafa [7] are 

to be found there. The theory we consider is still a truncation of the N = 4 so the reductions we perform in this section 
can be also thought of as starting from ungauged N = 4 in 6d and leading to flat gauged N = 4 in 5d. However, due 
to the N = 2 truncation we take we miss some other possible reductions of the larger N = 4 theory, i.e. the ones with 
nontrivial tensor reduction ansatz performed in [30].
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For the dimensional reduction of the fields to five dimensions we take the same field ansatz 
for both KK and SS reductions:

ds2
6 = z−1ds2

5 + z3(dx6 + L−2
6 A1)2, BM6 = L6A

2
M, (3.3)

where L6 is the length of the circle upon which we reduce. The presence of powers of L6 in 
the reduction ansatz is needed in order to get the proper normalization in five dimensions. The 
resulting lower-dimensional fields can be organized into an N = 2 5d gravity multiplet containing 
{GMN, A1

M} plus a vector multiplet containing {A2
M, z} as already shown in [16] and the bosonic 

lagrangian reads:

L5 = √
G

(
−1

2
R + 3

8z2
∂Mz∂Mz + 1

8z2
F 1

MNF 1,MN + z

4
F 2

MNF 2,MN

)

+ 1

12
CIJKF I ∧ FJ ∧ AK, (3.4)

with nonvanishing C122 = 2 and permutations. The most general N = 2 lagrangian in 5d is 
usually written in terms of the quantity V = 1

6CIJKXIXJ XK = X1X2X2 = 1, see more details 
in e.g. [35]. Using this language we can reproduce the lagrangian (3.4) after identifying the two 
sections X1(z), X2(z) as follows:

X1 = z, X2 = √
z
−1

. (3.5)

This formalism is useful later when we consider the 5d to 4d reduction. Finally we observe that 
this lagrangian is also embeddable in the gauged N = 40 theory of Romans [36] (see also [11,
37–39]).

The above presented lagrangians describe the dynamics of the 6d/5d fields around flat space, 
i.e. the above reduction was made from 6d to 5d Minkowski space. Whether the reduction pre-
serves supersymmetry depends on the fermionic completion, which is discussed below.

3.2. 6d near-horizon solution

Our interest in the original 6d theory is related to the presence of an AdS3 × S3 backgound, 
which is fully BPS and corresponds to the near horizon limit of the self-dual string soliton [40,
41]:

ds2
6 = L2(ds2

AdS3
+ ds2

S3) , (3.6)

where:

ds2
AdS3

= 1

4

(
− cosh2 β dα2 + dβ2 +

(
dγ

J
+ sinhβ dα

)2
)

, (3.7)

ds2
S3 = 1

4

(
sin2 θ dφ2 + dθ2 +

(
dψ

K
− σ cos θ dφ

)2
)

. (3.8)

More precisely this metric corresponds to a near-horizon geometry of extremal BTZ with 
a parameter ρ+ = 1/2J in the standard notation and a sphere with coordinate6 ψ/K ∈ [0, 4π). 

6 We have rescaled the metric for the sphere with K and then changed the period of the coordinate ψ accordingly. This 
means the sphere is left untouched, but we have used slightly odd coordinate choice, which allows us to find more general 
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We leave the parameter σ = {+, −} unspecified since it gives the sign of a magnetic charge in 
5/4d. This is important when we discuss the supersymmetry properties after the reduction.

The BPS string in 6d further has a nonvanishing self-dual tensor field, given by

H = L2
(

Vol(AdS3) + Vol(S3)
)

. (3.9)

We now look more explicitly in the KK reduction along AdS and SS reduction along the 
sphere seperately and in each case show that the reduction preserves all or half of the supersym-
metries, respectively.

3.3. KK on AdS3

Performing a KK reduction leads us to an ungauged supergravity also in 5d, meaning that the 
bosonic lagrangian (3.4) is completed with the fermionic terms of ungauged N = 2 supergravity. 
This leaves the asymptotic Minkowski space fully supersymmetric. The near-horizon background 
we find here is obtained from the simple rules (3.3) upon reducing along γ in (3.7):

ds2
5 = L2

(
L

2J

)2/3

(
1

4
ds2

AdS2
+ ds2

S3), z =
(

L

2J

)2/3

, (3.10)

F 1 = L2

4J
Vol(AdS2), F 2 = −L

2
Vol(AdS2) . (3.11)

This is the fully BPS near-horizon geometry of the static BMPV black hole [1] in 5d N = 2
ungauged supergravity, i.e. it preserves 8 real supercharges.

3.4. SS on S3

The SS reduction along the sphere introduces slightly different fermionic completion of the 
bosonic lagrangian (3.4). Choosing the constant in the gravitino reduction ansatz (2.1) to be g1, 
we find the term g1A

1 in the gravitino covariant derivative, see [35] for the general FI gauged 
N = 2 supergravity in 5d. This leads us to a flat gauged N = 2 theory that is equivalent with 
the case of N = 40 supergravity also at fermionic level for abelian solutions discussed here. This 
way supersymmetry is completely broken for the asymptotic Minkowski space. Near the horizon 
we find the following 5d solution when we reduce along the direction ψ in (3.8):

ds2
5 = L2

(
L

2K

)2/3

(ds2
AdS3

+ 1

4
ds2

S2), z =
(

L

2K

)2/3

, (3.12)

F 1 = L2

4σK
Vol(S2), F 2 = −L

2
Vol(S2) . (3.13)

Checking our answers with the known black string near-horizon geometries in 5d, we find an 
exact match with the solutions in Section 4.2.2 in [11]. It is also easy to check for supersymmetry 
by again using the results of [11] in Section 5.2. We find one extra condition on the above solution 
that fixes the arbitrary reduction constant g1 in terms of the magnetic charge of the graviphoton,

g1p
1 = −1, → g1 = −4σK

L2
. (3.14)

Kaluza–Klein charges. Alternatively, we could leave the metric in its usual form but choose a slight generalization of the 
reduction ansatz, as done in [5]. These two choices are completely equivalent and do not lead to real change in physics 
in either dimension.
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Fixing g1 ensures that the black string attractor obtained from the SS reduction is quarter-BPS in 
the N = 40 theory or half-BPS in the flat gauged N = 2 supergravity, i.e. it preserves 4 real su-
percharges [11]. BPS-ness is achieved when the product of the two magnetic charges is negative:

p1p2 = − L3

8σK
< 0, (3.15)

which requires σ = +1, and therefore g1 to be negative. When σ = −1 we have p1p2 > 0 and the 
solution is non-BPS in the flat gauged supergravity and fully BPS in the ungauged supergravity 
that we retrieve upon setting g1 = 0, see [11].

4. 5d to 4d

4.1. Bosonic lagrangian reduction

We now perform the second step in the reduction, starting from the bosonic lagrangian of 
5d supergravity and reducing it to 4d in the two separate cases that we obtained in the previous 
section. The 5d to 4d reduction is well-studied and we decide to be brief in the generalities, 
referring to [5,15,20] for all details. The action (3.4) upon reduction gives the bosonic content of 
4d N = 2 ungauged supergravity with 2 extra vectormultiplets. The field content is therefore the 
metric gμν , 3 gauge fields A0,1,2

μ , and 2 complex scalars z1, z2. The full ansatz for reducing the 
bosonic fields from 5 to 4 dimensions is the following:

ds2
5 = e2φds2

4 + e−4φ(dx5 + A0
4)

2, (4.1)

AI
5 = AI

4 + RezI (dγ + A0
4), (4.2)

XI
5 = 2e2φ ImzI , (4.3)

where the 4d fields are already in the standard 4d N = 2 conventions and on the left hand side we 
have the 5-dimensional fields of (3.4). The resulting supergravity in four dimensions is defined 
by the prepotential (derived from the 5d coefficients CIJK )

F = CIJKXIXJ XK

6X0
= X1(X2)2

X0
, (4.4)

where the holomorphic sections X� are related to the scalars via zI = XI/X0. For this prepo-
tential and imaginary scalars, the period matrix of special geometry [42] is purely imaginary and 
diagonal:

I00 = −Imz1(Imz2)2 (4.5)

I11 = − (Imz2)2

Imz1
(4.6)

I22 = −2Imz1. (4.7)

We need these values explicitly in order to find the conserved electric charges

Q� = I��q�, (4.8)

which can be obtained from the original fields strengths F� = q� Vol(AdS2) via the period 
matrix I .

Again, we stress that the above presented lagrangians describe the dynamics of the fields 
around flat space. Whether the reduction preserves supersymmetry depends on the fermionic 
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completion, which is discussed in the two cases below. Note that Minkowski does not preserve 
any supersymmetry in the presence of nontrivial FI parameters (and conversely it is fully BPS 
in the absense of gaugings), therefore the full black hole geometries are non-BPS even if the 
near-horizon does preserve some supersymmetries in the gauged theories.

4.2. SS on S3

Taking first the fully BPS black hole background in 5d from Section 3.3, we now perform an 
SS reduction over the φ direction of S3. This leads to gauging of the gravitino with the KK gauge 
field g0A

0 with the expected arbitrary constant g0 from the SS reduction. We are then left with 
a flat FI gauged supergravity with prepotential (4.4) and only nonvanishing FI parameter g0 (i.e. 
the other gauge fields are not used in the gauging, g1 = g2 = 0). Using the reduction rules above, 
we identify

e−2φ = L

2K

(
L

2J

)1/3

and find the following 4d background:

ds2
4 = L4

16JK
(ds2

AdS2
+ ds2

S2), z1 = iL2

8JK
, z2 = iL

4K
, (4.9)

F 0 = σK Vol(S2), F 1 = L2

4J
Vol(AdS2), F 2 = −L

2
Vol(AdS2). (4.10)

This is the near-horizon solution of a black hole with two electric and one magnetic charge,

p0 = σK , Q1 = − L2

8K
, Q2 = L3

8JK
. (4.11)

Looking at the supersymmetry properties of such class of solutions, analyzed in [10], we again 
observe that there is one condition fixing the constant g0 in terms of the magnetic charge,

g0p
0 = −1, → g0 = − 1

σK
. (4.12)

This guarantees that preservation of 4 supercharges in the flat gauged N = 2 supergravity in 4d, 
provided that the quartic invariant I4 is negative:

I4 = −2p0Q1(Q2)
2 = σ

(
L4

16JK

)2

. (4.13)

Unlike the SS reduction of Section 3.4, the BPS condition I4 < 0 now translates into σ = −1. 
Vice versa, when σ = +1, the solution is fully BPS in ungauged supergravity, where g0 = 0.

4.3. KK on AdS3

In this case we start from already gauged fermionic completion of the 5d lagrangian (3.4), 
but due to the KK reduction to 4d do not add extra gauging of the gravitino, therefore having 
the already fixed g1 and leaving g0 = g2 = 0. This is another type of flat FI gauged supergravity 
with the same bosonic lagrangian as in the case above. The solution following from the reduction 
rules along γ in AdS3 is very similar,
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ds2
4 = L4

16JK
(ds2

AdS2
+ ds2

S2), z1 = iL2

8JK
, z2 = iL

4J
, (4.14)

F 0 = J Vol(AdS2), F 1 = σ
L2

4K
Vol(S2), F 2 = −L

2
Vol(S2). (4.15)

This is the near-horizon solution of a black hole with two magnetic and one electric charge,

Q0 = − L4

128KJ 2
, p1 = σ

L2

4K
, p2 = −L

2
. (4.16)

We find that the quartic invariant I4 for this solution is:

I4 = 8Q0p
1(p2)2 = −σ

(
L4

16JK

)2

. (4.17)

Exactly as in the case above, this is a half-BPS near-horizon solution (BPS’ness guaranteed by 
the condition g1p

1 = −1 that we already satisfied in 5d). Just like the corresponding 5d attractor 
upon which we reduced, the BPS constraint I4 < 0 again gives σ = +1. The opposite choice, 
σ = −1, leads to a fully BPS solution in ungauged supergravity for g1 = 0.

5. Commutator between KK–SS and SS–KK

In the previous sections we showed how to obtain the half BPS attractor AdS2 × S2 in four di-
mensions by reducing the fully BPS black string near horizon geometry AdS3 ×S3. We followed 
two different paths where the two operations of KK on AdS3 and SS on S3 are interchanged. 
We can now address the question about the commutator between these two operations, and the 
answer can be found after the use of a duality transformation.

5.1. On lagrangian level

N = 2 D = 4 supergravity has symplectic transformations as electromagnetic duality group so 
that the fields can be organized into symplectic vectors. The vector describing the scalar degrees 
of freedom is:

� =
(

X�

F�

)
, (5.1)

where F� is defined via the prepotential as F� = ∂F/∂X�. A second symplectic vector is needed 
to describe the gauge degrees of freedom and contains electric and magnetic charges:

� =
(

p�

Q�

)
. (5.2)

It is also possible to define a symplectic vector containing the FI parameters:

G =
(

g�

g�

)
, (5.3)

where g� and g� correspond to electric and magnetic gaugings respectively (see [43] for more 
details on magnetic gaugings).
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We consider a symplectic transformation of the type:

M =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 a 0 0
0 0 0 0 b 0
0 0 0 0 0 c

−a−1 0 0 0 0 0
0 −b−1 0 0 0 0
0 0 −c−1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ (5.4)

This particular duality transformation is not only a symmetry of the equations of motion, but also 
a symmetry of the bosonic lagrangian. It leaves the prepopential (4.4) invariant, provided that

4b = a

c2
(5.5)

is satisfied. This is exactly the type of transformation that we need in order to match the two BPS 
attractors.

Let us now consider the FI parameters:

G =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0

− 1
σK
0
0

⎞
⎟⎟⎟⎟⎟⎠ , G′ =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
0

− 4σK

L2

0

⎞
⎟⎟⎟⎟⎟⎠ . (5.6)

It is clear that the symplectic rotation (5.4) does not map these two vectors, since it transforms 
electric gaugings into magnetic gaugings and vice versa, i.e. it transforms g0 into g0 and g1

into g1. Here lies the nontrivial part of the commutator between the two operations KK on AdS3

and SS on S3, which amounts to interchanging electric and magnetic gaugings.
Note that from the geometric point of view as a 6d compactification on a twisted torus, the two 

different theories arise due to an interchange in the order of shrinking the two different cycles 
of the torus. From this point of view one can see that there exists a third way of directly going 
from 6d to 4d by shrinking the two cycles simultaneously. This operation will lead to yet another 
fermionic completion of the same bosonic lagrangian.

5.2. On solution level

We start from the scalar fields, that transform under (5.4) as:

(z1)′ = −a−1b

z1
, (z2)′ = −2a−1c

z2
. (5.7)

The two sets of scalar fields in (4.9), (4.14) rotate into each other if we set the three parameters 
to be:

a = ±128J 2K2

, b = ±2, c = ±4JK
. (5.8)
L4 L2
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Moving to the gauge sector we can write the two sets of charges (4.11), (4.16) as symplectic 
vectors:

� =

⎛
⎜⎜⎜⎜⎜⎜⎝

σK

0
0
0

− L2

8K
L3

8JK

⎞
⎟⎟⎟⎟⎟⎟⎠

, �′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
L2

4σK

−L
2

− L4

128KJ 2

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5.9)

These two vectors fail to transform into each other under duality only for a sign of one charge. 
This is where the equivalence between the two solutions breaks down, as expected since we 
showed that the two 4d backgrounds are BPS for opposite values of σ . The two BPS solutions 
are not exactly equivalent under duality, since an extra flip in the sign of the quartic invariant 
I4 → −I4 is needed.

6. The dual CFT picture and black hole/string microscopics

In the previous sections we were able to give a clear string theory interpretation to the super-
symmetric near horizon geometries of non-BPS black holes [10] and non-BPS black strings [11]. 
This we achieved starting from the 6d black string attractor AdS3 × S3, which corresponds to the 
near horizon geometry of the D1–D5 system on K3 or T4, and reducing it to lower dimensions. 
We now make use of AdS/CFT techniques to understand the properties of the field theories that 
are dual to the 5d and 4d solutions we presented.

Our starting point is the 2d N = (4, 4) SCFT [7] on R1,1 describing the D1–D5 system degrees 
of freedom, dual to the 6d black string background. Performing a KK reduction to the 5d black 
hole of Section 3.3 is equivalent to putting the (4, 4) theory on a circle preserving supersymmetry. 
This is by now a well-established fact that enabled the microscopic entropy counting of the black 
holes in 5d [7].

What about the meaning of the reduction to the 5d black string of Section 3.4 from a field 
theory point of view? We know that the operation of SS reduction along S3 breaks the SU(2) ×
SU(2) symmetry group of the sphere to U(1) ×SU(2) in the lower dimension (keeping the U(1)

subgroup of SU(2) due to the reduction ansatz). This is also true for the full geometry where 
in general supersymmetry is broken. On the horizon we restore the supersymmetry group to 
SU(1, 1|1) ×SU(1, 1) ×SU(2), i.e. with respect to the original attractor before the reduction we 
break the R-symmetry from SU(2)R to U(1)R and keep the SU(2)L only as a global symmetry. 
This is crucial to understand the properties of the dual field theory that follow from the AdS/CFT 
dictionary. We know that the operation of SS reduction breaks fully the supersymmetry of the 
D1–D5 system and leads to an N = (0, 0) theory that then flows in the IR to an N = (0, 2) SCFT 
on R1,1. This means that we have completely broken supersymmetry in the left-moving sector, 
and broken the R-symmetry to U(1)R in the right moving sector in the infrared.7

It therefore seems natural to expect that the operation of SS reduction projects out the states 
in the D1–D5 field theory that are charged under the original SU(2)R R-symmetry, therefore 
finding in principle a smaller number of massless fields in the N = (0, 0) theory as compared to 

7 Note that even the straightforward KK reduction from S3 to S2 breaks completely the supersymmetry on the left-
moving sector, but keeps the SU(2)R . This does not lead to a change in the underlying degrees of freedom of the D1–D5 
system.
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its parent N = (4, 4). The consequent flow to the N = (0, 2) supersymmetric fixed point should 
also change accordingly and due to the lack of supersymmetry along the RG flow it seems unclear 
how exactly this IR theory can be defined. However, as we show later in this section, the value 
of the central charge does not change, and in our naive picture this happens for a simple reason: 
the central charge in the D1–D5 system (see a detailed discussion in Section 5.3.1 of [29] and in 
[44]) counts the number of massless hypermultiplets in the large charge supergravity limit. The 
left moving hypermultiplet fields are inert under the SU(2)R, so they remain unaffected by the 
SS reduction and therefore we get the same central charge in the resulting N = (0, 2) theory.8

Going down to the 4d near-horizon geometries of Sections 4.2 and 4.3 we find the same field 
theory description, given by the new N = (0, 2) field theory on a spatial circle. One should then 
be able to extract the value of the Bekenstein–Hawking entropy of the black holes from their dual 
description. This is indeed the case, as we show now.

Starting from 6d, we know from [7] that the value of the central charge for the D1–D5 field 
theory is9:

c = 3RAdS3

2G3
= 3LA3(L)

2G6
= 3π2L4

G6
. (6.2)

This result follows from the standard AdS/CFT dictionary, but as already discussed above it was 
derived independently on the field theory side in [7] (see again [29]). Going down along AdS3
puts the theory on a circle with momentum (see e.g. [46])

L0 − c

24
= ρ2+

RAdS3

4G3
= RAdS3

16J 2G3
= LA3(L)

16J 2G6
= π2L4

8J 2G6
, (6.3)

where ρ+ is the horizon radius of BTZ in standard notation (see e.g. [9]) that translates for us 
into ρ+ = (2J )−1. The Cardy formula therefore leads to

SCardy = 2π

√
c

6

(
L0 − c

24

)
= πRAdS3

4JG3
= π3L4

2JG6
. (6.4)

If one is careful about dimensional analysis, this formula matches exactly with the Bekenstein–
Hawking entropy formula

SBH = Ad

4Gd+2
, (6.5)

for the black hole in 5d of Section 3.3 and both black holes in Section 4. We need the respective 
5d and 4d Newton constants that can be derived from the (in this case more fundamental) 6d 
Newton constant,

1

G6
= 1

2πG5
= 1

4πKG′
5

= 1

8π2KG4
, (6.6)

where there are two different normalizations of the Newton constant in 5d, depending on whether 
we first reduce along AdS (G5) or along the sphere (G′

5). Going further to 4d we obtain that 
G4 = G′

4 as the two reduction paths converge.

8 Interestingly, one can find the analogous reasoning on the gravity side by the argument that BPS states making up the 
black hole entropy need to be rotationally (i.e. SU(2)) invariant [45].

9 Here and in what follows we have defined A2, A3 to be the integral of the respective volume element:

A2(L) = L2
∫

Vol(S2) = 4πL2, A3(L) = L3
∫

Vol(S3) = 2π2L3. (6.1)
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More explicitly, we find the 5d black hole to have

S5
BH = A3(L(L/2J )1/3)

4G5
= π2L4

4JG5
, (6.7)

while for the 4d black holes

S4
BH = A2(L

2/(4
√

JK))

4G4
= πL4

16JKG4
. (6.8)

These two expressions are equal to each other and also equal to the Cardy formula (6.4) of the 
dual field theory upon imposing (6.6).

We also recover correctly the central charge of the 5d black string, given by the AdS/CFT 
formula [47]

c = 3RAdS3

2G′
3

= 3L(L/2K)1/3A2(L/2 (L/2K)1/3)

2G′
5

= 3πL4

4KG′
5

, (6.9)

which matches (6.2) upon the identification (6.6).
This proves our expectation that the central charge of the N = (4, 4) theory remains un-

changed even after projecting out states charged under SU(2)R to end up with the new N = (0, 2)

theory.

7. Concluding remarks

To briefly summarize our results, we followed two different dimensional reduction paths from 
the black string attractor AdS3 × S3 to AdS2 × S2. We looked explicitly only at the attractors, 
but it is straightforward to write the reduction for the full flows to asymptotic Minkowski as done 
in [1,5]. Our main point was to show supersymmetry on the horizon, for which zooming in on 
the attractor geometry was enough.

Preservation of supersymmetry is the reason to claim that our example is a genuine case of 
dual microscopic description. The usual check that we performed in the matching between the 
Cardy and Bekenstein–Hawking entropy was already known to work for any extremal black hole 
[48]. The fact that we keep supersymmetry on the horizon is the extra ingredient that keeps the 
dual description under control. One can therefore hope to match the macroscopic and micro-
scopic entropy formulas also after taking into account quantum corrections. This would however 
require a more detailed understanding of the resulting N = (0, 2) 2d SCFT, as well as looking at 
higher derivative corrections on the gravity side, see [49,50] and references therein.

Apart from this main purpose of our work, we also showed that the operations of KK re-
duction on AdS3 and SS reduction S3 and their exchange do not commute. After the duality 
transformation we constructed in Section 5 it turned out that if one path gives a standard electric 
gauging in the 4d supergravity, the other one can be seen as magnetic gauging. The two different 
reduction paths also lead us to different topological sectors of black hole solutions, exchanging 
the quartic invariant I4 with its opposite value −I4.
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