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Abstract We update our previous results for (pseudo-
)scalar mesons at zero temperature and finite quark chemical
potential and generalize the investigation to include (axial-
)vector mesons. We determine bound-state properties such
as meson masses and decay constants up to chemical poten-
tials far in the first-order coexistence region. To extract the
bound-states properties, we solve the Bethe-Salpeter equa-
tion and utilize Landau-gauge quark and gluon propagators
obtained from a coupled set of (truncated) Dyson-Schwinger
equations with Nf = 2 + 1 dynamical quark flavors at finite
chemical potential and vanishing temperature. For multiple
(pseudo-)scalar and (axial-)vector mesons, we observe con-
stant masses and decay constants for chemical potentials up
to the coexistence region of the first-order phase transition
thus verifying explicitly the Silver-Blaze property of QCD.
Inside the coexistence region the pion becomes more mas-
sive and its decay constants decrease, whereas corresponding
quantities for the (axial-)vector mesons remain (almost) con-
stant.

1 Introduction

In the analysis of experimental heavy-ion collisions, elec-
tromagnetic radiation from the hot and dense fireball plays
a pivotal role. Once the real or virtual photon is produced
in the reaction, it escapes the medium almost undistorted
and can therefore serve as a probe for the state of matter in
the early stages of the collision. Due to their quantum num-
bers, vector mesons couple to the electromagnetic current
and therefore in particular the light ones, ρ, ω, and φ are
expected to contribute substantially to the observed dilepton
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spectrum. The study of the in-medium properties of vector
mesons has thus received considerable attention, see, e.g.,
Refs. [1–3] for reviews.

The region of the QCD phase diagram with low tempera-
tures and large densities is the realm of cold nuclear matter.
The properties of vector mesons, in particular their spectral
functions have been studied in a range of approaches with
focus on the medium effects of their pion cloud as well as
medium effects due to the coupling of the ρ meson to nucle-
ons via resonance excitations [1–3]. A very recent study in
this direction takes into account quantum fluctuations via the
functional renormalization group approach to a low-energy
effective theory [4,5].

Less studied is the direct impact of non-vanishing chem-
ical potential on the quark and gluon structure of the ρ, its
chiral partner a1 and the φ meson and the resulting changes
in their mass and decay constants. This is the topic of this
work. Based on previous results for the chemical-potential
dependence of the quark propagator and the resulting behav-
ior of the masses and decay constants of pseudo-scalar and
scalar mesons at finite chemical potential [6] we improve the
approach and generalize it to also accommodate for vector
and axial-vector mesons. Working at zero temperature, our
study is complementary to a recent study of the thermal prop-
erties of vector mesons at and around the crossover at finite
temperature [7].

One of the most interesting questions associated with
the zero temperature, finite chemical potential axis of the
QCD phase diagram is the Silver-Blaze property of QCD:
For baryon chemical potentials smaller than the mass of the
nucleon minus its binding energy in nuclear matter, there
can be no excitations from the QCD vacuum and therefore
all observables have to retain their vacuum values. This can
be shown analytically for the case of finite isospin chemi-
cal potential, but is also extremely plausible for the case of
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finite baryon chemical potential [8,9] and has been demon-
strated for heavy quark masses in the lattice formulation of
Ref. [10]. How this works in the case of pseudoscalar and
scalar mesons has been studied in Ref. [6]. Here, we will
see that a similar mechanism is in place for the vector and
axial-vector mesons.

The paper is organized as follows: In Sect. 2 we discuss
the truncation of Dyson-Schwinger and Bethe-Salpeter equa-
tions that we use in our study. More details can be found in
Ref. [6]. In Sect. 3 we present our updated results for the
chemical-potential dependence of masses and decay con-
stants of pseudo-scalar and scalar mesons as well as results
for the vector and axial-vector mesons. We conclude in
Sect. 4.

2 Bethe-Salpeter formalism

The homogeneous Bethe-Salpeter equation (BSE) for
(pseudo-)scalar and (axial-)vector mesons in ladder trunca-
tion is given by

�
(μ)
x, f (p, P) = −(Z f

2 )2 g2 CF

∫
q

γμ S f (q+)�
(μ)
x, f (q, P)

× S f (q−)γν�(k2)Dμν(k) (1)

with the shorthand
∫

q ≡ ∫
d4q/(2π)4 and the strong cou-

pling constant g2 = 4παs. The Casimir CF = (N 2
c −

1)/(2Nc) results from the color trace with Nc = 3. Z f
2 rep-

resents the quark wave function renormalization constant of
the quark flavour f ∈ {u, d, s}. The relative momenta of the
meson (p and q) entail the quark chemical potential1 μ

f
q and

are given by p = ( �p, p̃4) with p̃4 = p4 + iμ f
q . We consider

the meson to be in its rest frame, i.e., P = (�0, imx) with the
time-like total momentum P and the mass mx of the meson.
The index x thereby describes the meson type. We use the
momentum routings k = p − q and q± = q ± η± P for the
gluon and the quark momenta, respectively. The momentum-
partitioning parameters 0 ≤ η± ≤ 1 can be varied within the
boundary condition η+ + η− = 1. In the vacuum, Poincaré
covariance implies the independence of all observables on
the choice of η±. Numerically, this is satisfied on the per-
mille level. At finite chemical potential and for pseudoscalar
mesons we explicitly verified that this invariance holds for
chemical potentials up and into the coexistence region. For
larger chemical potentials and for heavier mesons η+ needs
to be adapted such that the integration in the BSE avoids the
complex plane singularities in the quark propagators.

1 In this work, we use a vanishing isospin μI and strangeness μS chem-
ical potential implying μu

q = μd
q = μ�

q and μs
q = μ�

q. Furthermore, we
often express the chemical potential by the baryon chemical potential
μB = 3μ�

q.

The homogeneous BSE depends on the dressed quark and
gluon propagators S f and Dμν as well as the dressed quark-
gluon vertex with dressing function �(k2). A detailed dis-
cussion of our truncation for the vertex as well as explicit
expressions for �(k2) and the corresponding choice of the
couplingαs can be found in Ref. [6]. For finite quark chemical
potential μ

f
q and vanishing temperature, the Landau-gauge

propagators can be written as

S−1
f (p) = i �/p A f (p) + i p̃4γ4 C f (p) + B f (p), (2)

Dμν(k) = PT
μν(k)

ZT(k)

k2 + PL
μν(k)

ZL(k)

k2 . (3)

Here, the four-dimensional transverse projector is split into a
partPT

μν(k) transverse to the assigned direction v = (�0, 1) of
the medium and a corresponding longitudinal part PL

μν(k).
The associated dressing functions of the gluon split into the
transverse (or magnetic) part ZT and the longitudinal (or
electric) part ZL. The gluon and quark (A f , B f , C f ) dressing
functions encode the non-trivial momentum dependence of
the propagators. For vanishing chemical potential the vector
dressing functions A f and C f as well as the gluon dressing
functions degenerate. For finite chemical potential this is in
general no longer the case.

The quark and gluon propagators are calculated from a
coupled set of truncated Dyson-Schwinger equations. In the
corresponding truncation, we use quenched lattice data for
the gluon as input and unquench it explicitly by including the
back-reaction of the quark onto the gluon. Furthermore, we
use an ansatz for the quark-gluon vertex. Details for this well-
studied truncation can be found in Ref. [11] and the review
Ref. [12]. In previous works this truncation was used for the
quenched case [13,14] as well as for different numbers of
quark flavors [15–18]. Also supercolorconductivity has been
studied using this truncation [19,20]. Two further approx-
imations were made in the preceding work of Ref. [6]: (i)
the chemical-potential dependence of the gluon is neglected
and (ii) a slightly modified quark-gluon vertex ansatz in the
quark DSE is used. We build upon this work and adopt these
approximations.

In the vacuum BSE we use the same tensor-structure
decomposition for pseudoscalar (x = P) and scalar (x = S)
mesons as detailed in Ref. [6]. In the medium we extend the
Bethe-Salpeter amplitude (BSA) to

�P(p, P) = γ5
{

EP(p, P) − i �/p P· p Gs
P(p, P) +

− iγ4 IP(p, P)} , (4)

�S(p, P) = 1D
{

ES(p, P) − i �/p Gs
S(p, P) − iγ4 IS(p, P)

}
,

(5)

including the additional structure Gs
x as compared to Ref. [6].

Results from the vacuum suggest that this addition will not
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change the meson masses by much, but may be relevant
for the decay constant [21]. We will see later, that this is
indeed the case. The flavor dependence of the amplitude is
suppressed in our notation. For the vector (x = V) and axial-
vector (x = A) in vacuum we work with the tensor decom-
position detailed in previous works (see, e.g., Refs. [22–24]):

�
μ
V(p, P) = iγ μ

� F1V(p, P) + γ
μ
� /P F2V(p, P)

+ (pμ
�1D − γ

μ
� /p) P· p F3V(p, P)

+ (iγ μ
�

[
/P, /p

] + 2i pμ
� /P)F4V(p, P)

+ pμ
�1D F5V(p, P) + i pμ

� /P P· p F6V(p, P)

− i pμ
� /pF7V(p, P) + pμ

�
[
/P, /p

]
F8V(p, P),

�
μ
A(p, P) = γ5

{
iγ μ

� F1A(p, P) + γ
μ
� /P P· pF2A(p, P)

+ (pμ
�1D − γ

μ
� /p) F3A(p, P)

+ (iγ μ
�

[
/P, /p

] + 2i pμ
� /P)F4A(p, P)

+ pμ
�1D P· pF5A(p, P) + i pμ

� /P P· p F6A(p, P)

−i pμ
� /pF7A(p, P) + pμ

�
[
/P, /p

]
P· pF8A(p, P)

}
.

(6)

The tensor decomposition is constructed such that the on-
shell (axial-)vector meson is transverse to its total momentum
P . The subscript � indicates transversality of w ∈ {γ, p}
w.r.t. the total momentum, i.e., w

μ
� = Tμν(P)wν .

In medium, the number of independent transverse ten-
sor structures increases from eight to 24 thus inducing con-
siderable numerical costs. Therefore we only consider two
BSA components F1x and F4x for the qualitative study of
this work. While F1x is the dominant BSA component of the
vector meson, F4x is the correspondingly dominant one for
axial-vector mesons. In medium the BSA components splits
up into a spatial FisV and a temporal Fi tV component imply-
ing two separate uncoupled BSEs to solve. The employed
tensor decomposition in medium is

�
μ
V(p, P) = iγ μ

�T F1sV(p, P)

+ (iγ μ
�T

[
/P, /p

] + 2i pμ
�T

/P)F4sV(p, P)

+ iγ μ
�L F1tV(p, P) + 2i pμ

�L P4γ4 F4tV(p, P),

�
μ
A(p, P) = γ5

{
iγ μ

�T F1sA(p, P)

+ (iγ μ
�T

[
/P, /p

] + 2i pμ
�T

/P)F4sA(p, P)

+ iγ μ
�L F1tA(p, P) + 2i pμ

�L P4γ4 F4tA(p, P)
}
(7)

with w
μ

�(T/L) = PT/L
μν (P)wν and w ∈ {γ, p}. So far the ρ

meson at finite temperature was investigated using only the
dominant BSA component F1V with an effective interaction
(see, e.g., Refs. [25–27]).

All amplitudes of the (pseudo-)scalar and (axial-)vector
mesons are normalized using the Nakanishi method [28] and
serve as input into the calculation of the pseudo-scalar and

(axial-)vector meson decay constants fx. In vacuum these
are given by

fx = Nc

imx

∫
q

TrD

{
j (μ)
x, f (P)S f (q+)�̂

(μ)
x, f (q, P)S f (q−)

}
,

(8)

where �̂
(μ)
x, f represents the normalized BSA and the current

j (μ)
x, f (P) is defined by

j (μ)
x, f (P) =

⎧⎪⎨
⎪⎩

Z f
2 γ5 /̂P for x = P

Z f
2 γ

μ
�

1
3 for x = V

Z f
2 γ5γ

μ
�

1
3 for x = A

. (9)

Equation (8) is evaluated for the on-shell momentum P2 =
−m2

x and is exact if the dressed quark propagators and the
meson BSA are exact. The factor 1/3 in the (axial-)vector
case has to be included because of the summation over the
polarizations.

In medium the decay constant of the pseudo-scalar meson
splits into two parts [29,30] as discussed in our previous work
[6]. One arrives at

f s/t
P = Nc

∫
q

TrD

{
j s/t
P, f (P)S f (q+)�̂

μ
P, f (q, P)S f (q−)

}
,

(10)

with the corresponding current

j s/t
P, f (P) =

{
Z f

2 γ5
�/P/ �P2 for s

Z f
2 γ5γ4/P4 for t

. (11)

For the (axial-)vector meson in medium we can equally define
a spatial and temporal decay constant belonging to the spatial
and temporal BSA, respectively:

f s/t
x = Nc

imx

∫
q

TrD

{
j s/t,μ
x, f (P)S f (q+)�̂

μ
x, f (q, P)S f (q−)

}

(12)

In this equation the current for vector mesons is defined
as

j s/t,μ
V, f (P) =

⎧⎨
⎩

Z f
2 γ

μ
�T

1
2 for s

Z f
2 γ

μ
�L for t

. (13)

In case of axial-vector mesons a γ5 factor has to be included
in the the current.

3 Results

In this section, we discuss our results for the masses and decay
constants of light and strange (pseudo)-scalar and (axial-
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)vector mesons at non-vanishing chemical potential. In the
discussion, we denote by ‘coexistence region’ the region of
μB where both, the chirally-broken Nambu solution and the
chirally symmetric Wigner solution are available and attrac-
tive in the iteration process. The ‘spinodal points’ are the
end points of this region. For smaller chemical potentials the
Wigner solution is still present (see e.g. [31]) but is not iter-
atively attractive. For larger chemical potentials the Nambu
solution ceases to exist.

Note that in principle it is possible to determine the ther-
modynamic potential in our approach and therefore deter-
mine the boundary of first order transition within the coexis-
tence region. However, for the coupled system of DSEs that
we use in this work this is a non-trivial numerical task that
requires considerable additional effort. Since thermodynam-
ics is not the main issues of this work we postponed this task
to a future work.

All our results are calculated using the Nambu solution of
the quark DSE. The Wigner solution features poles close to
the time-like real momentum axis at very low masses, posing
technical problems in the Bethe-Salpeter equation which are
beyond current solution techniques.

In Ref. [6] we studied the areas of stability of the Nambu
and Wigner solution for the light quark at finite (light) chem-
ical potential and vanishing temperature and located the
coexistence region where both solutions exist and are sta-
ble. Here, in contrast to the previous work we additionally
use a non-vanishing strange-quark chemical potential and
investigate the simplest case μu

q = μd
q = μs

q. In the fully
back-coupled system, the first order transition of the up/down
quark sector at some critical chemical potential then neces-
sarily introduces non-analytic changes also in the strange
quark propagator (see e.g. [32] for an explicit calculation
of this effect). However, it is not clear whether the loss in
interaction strength due to almost massless (and screening)
up/down quarks is sufficient to reduce the strange quark
immediately to its Wigner solution. Instead it might be that
within some region of chemical potential the strange quark
still feels dynamical chiral symmetry breaking (however with
reduced strength) whereas the up/down sector is already in
the Wigner mode. Then at even larger chemical potential a
second first order transition in the strange quark sector would
occur. Whether this scenario is realistic is an open question
that remains to be studied.

In this work, however, we neglect the chemical-potential
dependency of the gluon by always using the (unquenched)
gluon propagator from the vacuum.2 Thus, any changes in the
light and strange quark sector induced by chemical potential
are not back-coupled to the respective other sector. There-
fore, we do expect to find two different coexistence areas

2 In Ref. [33] the influence of this approximation was studied for the
case of two color QCD.

Fig. 1 Vacuum normalized and regularized light (blue) and strange
(red) quark condensate for the chirally-broken Nambu (solid and dashed
lines) and chirally-restored Wigner (differently dashed dotted lines)
solution plotted against the baryon chemical potential μB. The bound-
aries for the appearance/disappearance of the Nambu and Wigner solu-
tion are denoted by vertical dotted lines in the corresponding color of
the flavor and called light and strange spinodals

for the light and strange quark. Indeed, this can be seen
in Fig. 1, where we show our results for the vacuum nor-
malized and regularized3 light

〈
�̄�

〉
�

and strange
〈
�̄�

〉
s

quark condensate plotted against the baryon chemical poten-
tial μB = 3μ�

q = 3μs
q. We also plot the boundaries of the

coexistence regions to guide the eye. We find these at:

Wigner: Nambu:
μB = 0.936 GeV, 1.730 GeV (light),
μB = 2.149 GeV, 2.516 GeV (strange)

(14)

Slight changes as compared to Ref. [6] are due to improved
numerics.

3.1 Chemical-potential dependence of the meson properties

In Fig. 2 we display the pion mass and temporal decay con-
stant in vacuum and at finite chemical potential for two dif-
ferent levels of approximation of the Bethe-Salpeter ampli-
tude (BSA). We show results from the most elaborated BSA
truncation of Ref. [6] (dashed line, black) and the improved
truncation used in this work (solid line, red). A corresponding
colored symbol displays the results of the vacuum calcula-
tion. For our improved truncation this limit is smooth and
well defined, whereas it is ambiguous for the truncation used
in Ref. [6]. Therefore no symbol is shown for this case. It fur-
thermore turns out that the addition of Gs only has a small
effect for the pion mass, but has a significant quantitative

3 We regularize the quark condensate by subtracting the quark con-
densate at very high chemical potential, where the dynamical part is
expected to vanish:

〈
�̄�

〉reg
f (μB) = 〈

�̄�
〉

f (μB) − 〈
�̄�

〉
f (∞).
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Fig. 2 Pion mass (left) and temporal pion decay constant (right)
against the baryon chemical potential for different combinations of
tensor structures used in the BSE calculation. The colored symbols

represent the corresponding vacuum results. All results are obtained
with the chirally-broken Nambu solution. The vertical lines indicate
the boundaries of the light quark coexistence region

Fig. 3 Masses (upper) and decay constants (lower) for different light quark (left) and strange quark (right) mesons plotted against the baryon
chemical potential for the most elaborated tensor structure combination of the BSE in medium. The results are calculated using the chirally-broken
Nambu solution

effect of the order of 20% on the temporal decay constant, as
anticipated above.

Within the numerical precision the pion mass and tempo-
ral decay constant remain constant up to a baryon chemical
potential equal to the mass of a nucleon mN = 0.928 GeV in
medium. In this region, the mass and decay constant deviate
by less than 0.25% and 2% from their vacuum values. This
is constant within numerical accuracy. Consequently, we can
state that the pion properties fulfill the Silver-Blaze prop-

erty. Until the end of the coexistence region the pion mass
increases up to 14% compared to the vacuum value. For the
temporal pion decay constant from our improved truncation
scheme we find a 20% decrease compared to the vacuum
value.

In Fig. 3 we show the meson properties for multiple light
and strange quark mesons at finite chemical potential in our
improved truncation scheme. The K and K̄ meson behave
similarly as the π meson. But while the observed decrease of
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the decay constant is less pronounced for the K meson, the
contrary is true for the K̄ meson. Overall the kaon masses
increase by less than 3% while the decay constant decrease
by 15%. For the σ meson there is no significant qualita-
tive or quantitative difference between the different levels
of approximation of the BSA as used in Ref. [6] and here
(therefore we only display the updated result). The mass of
the σ -meson and the longitudinal and transversal ρ and φ

properties remain perfectly constant until the end of the cor-
responding coexistence area with a maximal deviation of less
than 0.5%. Again we note that the Silver-Blaze property is
very well satisfied.

The masses and decay constant of the temporal and spatial
projections of the ρ and φ meson have different values and
we find that only the spatial quantities have a smooth vac-
uum limit. The reason is that the temporal projections of the
BSA at finite chemical potential receive contributions from
several vacuum BSA components and therefore the vacuum
limit becomes ambiguous. The inclusion of the subleading
second tensor structure F4 reduces the difference between
the properties of the spatial and longitudinal projection of
the vector mesons drastically. Due to numerical reasons only
the spatial projection of the a1 meson can be calculated. The
mass of the spatial projection of the a1 meson remains per-
fectly constant until the end of the light-quark coexistence
region.

We wish to point out that previous works in the DSE/BSE
framework also find meson properties at finite chemical
potential which satisfy the Silver-Blaze property approxi-
mately [26,34–37]. These works use effective interactions
and a number of further approximations for the bound-state
calculation. Nevertheless, qualitatively they deliver similar
results than our approach at least up to the coexistence region.

It should be noted that the constant behaviour of masses
and decay constants in the Silver-Blaze region up to a baryon
chemical potential of the mass of the nucleon minus its bind-
ing energy in nuclear matter is a highly non-trivial matter
that relies on subtle cancellations between the chemical-
potential dependence of the quarks, their interaction inside
the mesons and the Bethe-Salpeter amplitudes (to be dis-
cussed below), which together conspire to produce constant
masses and decay constants. To our mind, it is very satisfying
to find that this property holds in the functional approach.

3.2 Bethe-Salpeter amplitudes

We discussed the chemical-potential dependency of theπ and
σ meson BSAs in detail already in Ref. [6]. Here we recon-
sider these briefly and discuss updates due to our improved
truncation scheme and detail in addition the corresponding
behaviour of the BSAs of the strange (pseudo-)scalars and
the (axial-)vector mesons included in this work. A general
property of all BS amplitudes for non-vanishing chemical

potential is that they develop an imaginary part and they loose
their symmetry properties under charge conjugation [6].

In Fig. 4, we display the real part of all three medium-
BSA components of the π meson for fixed P2 = −m2

π plot-
ted against the relative momentum p between the quarks for
different chemical potentials. For a given chemical poten-
tial we furthermore plot amplitudes with different angles
p̂ P̂ between total and relative momentum. The spread of
the different line types is therefore a direct measure for the
angular dependence of the amplitudes. All three components
show a similar behavior: With increasing chemical poten-
tial all become larger in the infrared, they all spread more
in the mid-momentum region and do not react to chemical
potential in the ultraviolet momentum region. The strength of
the infrared increase, however, is different for the different
BSA components. While Gs almost doubles its magnitude
and is therefore comparable in strength to the leading BSA
component E at large chemical potential, I increases only
weakly. Together this underlines the importance of taking Gs

into account, especially at large chemical potential. For small
chemical potentials all BSA components connect smoothly
to the vacuum limit.

The K meson BSAs (not shown) behave qualitatively sim-
ilar as the π BSA’s but the changes are much less pronounced.
Most importantly, Gs remains weak and does not become
comparable to the E component. For the K̄ meson Gs even
decreases whereas I shows a stronger increase compared
to the K meson. The I - and Gs- BSA components of the
σ meson decrease marginally in the infrared and increase
their spread in the mid-momentum region for increasing
chemical potentials. All other mesons BSA’s and in partic-
ular those for the (axial-)vector mesons show a very weak
chemical-potential dependence in their real part, but a sig-
nificant dependence in their imaginary part. This can be seen
explicitly for the lading tensor component of the ρ meson in
the lower panel of Fig. 4. Thus, it is the imaginary part of the
amplitude that balances the variations in the quark propaga-
tor with respect to chemical potential and therefore provides
for Silver-Blaze property.

4 Summary and conclusions

In this work we have studied the masses and decay con-
stants of light and strange (pseudo-)scalar and (axial-)vector
mesons at finite chemical potential up to and into the coexis-
tence region of the first order chiral phase transition. To this
end we employed a coupled system of Dyson-Schwinger and
Bethe-Salpeter equations for the unquenched gluon propaga-
tor and N f = 2 + 1 quark flavours in a truncation which has
been discussed and probed already elsewhere [6].

For all meson types we find constant values for masses
and spatial decay constants at least up to a baryon chemical
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Fig. 4 Upper panel: Real part of the first and second normalized on-
shell mediumπ -BSA component Êπ (left) and Ĝπ

s (right) ploted against
the relative momentum p2 between the quark and the antiquark for var-
ious baryon chemical potentials μB far into the coexistence region.
The spread of the amplitude results from the dependence on the angle
between P and p. The results are calculated for the chirally-broken

Nambu solution only. Middle panel: Real part of the third normalized
on-shell medium π -BSA component Î π . Lower panel: Real (left) and
imaginary (right) part of the leading tensor component F̂ρ

1s of the rho
meson. For the real part, the chemical potential dependence of the BSA
is very weak, whereas much stronger variations are visible in the imag-
inary part

potential equal to the mass of the nucleon minus its binding
energy in nuclear matter. Thus the Silver-Blaze property of
QCD [8,9] is at work. Since all input ingredients into the
Bethe-Salpeter equation describing these mesons do depend
on chemical potential, it is a highly non-trivial matter that the
meson’s Bethe-Salpeter amplitudes adapt and conspire such

that observable quantities remain unaffected. To our mind,
it is very satisfying to find that this property holds in the
functional approach.
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