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Abstract

We explore the behavior of gravitational solitons in classical theories with
pathological vacua. We first focus on non-tachyonic non-supersymmetric
string theories and the construction of brane solutions in the corresponding
effective theories, which do not admit a maximally-symmetric vacuum. We
then turn to metastable vacua and the holographic interpretation of the vac-
uum bubbles that may be produced therein by quantum tunneling. Finally,
we discuss self-similar collapse solutions, with an eye to analogies with the

settings considered in the preceding chapters.



Introduction

In the discussion of solitonic objects within a physical system, the basic no-
tion of a vacuum hosting them is rarely put into question, if it is considered
at all. This assumption is certainly justified in most contexts. In the quan-
tum case, the existence of a ground state is necessary to grant the absence
of tadpoles, and thus finite transition amplitudes. For a classical system,
however, the requirement is arguably less precise and typically more philo-
sophically motivated. The very expression isolated object implicitly carries a
prejudice about the existence of an “emptiness” that the object itself is able
to contrast in some sense - it appears contradictory to speak of a “something”
without a notion of what is left when that very “something” is removed. A
“vacuum-less” classical theory — in any one of the varied forms in which a
system can have a lacking, or at the very least, a pathological background
— invites to meditate upon this question that is thus elevated beyond mere

semantics.

In this work, we report on research results concerning several practical in-
stances when this general phenomenon is realized in varied contexts. All of
these relate specifically to gravitational physics, both quantum and classical,
and thus the discussion concerning isolated objects is specified as one about

black holes, branes, and similar gravitationally-dominated solitons.

Chapter [1| is dedicated to one essential example of contemporary interest,
which is provided by the low-energy effective gravitational theories of some

non-tachyonic non-supersymmetric string theories in ten dimensions [1-9].



Here String Theory provides strong reasons to expect that the original quan-
tum theory be meaningful, but its ground state is strongly affected by the
known quantum corrections. In practice, the effective theories develop un-

bounded Einstein-frame dilaton potentials of the runaway type,

V(¢) ocexp(yp), >0, (1)

so that they are driven dynamically away from the maximally symmetric
Minkowski vacua where the string theories were originally defined. Never-
theless, such theories do allow form-fluxed solutions of the AdS x S type,
leading one to conjecture that these are in some way the realisation of brane-
like objects, possibly related to the D-branes that can be identified from the
worldsheet theory |10]. Part of our contributions to this topic [11] concern
specifically the delicate question of extending these candidate near-horizon
geometries into full-fledged brane-like profiles, under the limitation that these
profiles certainly cannot, as would otherwise be the norm with supersymme-
try, interpolate between the AdS x S throat and a maximally-symmetric
infinity. In fact, the results suggest that in the full brane geometry space
ends abruptly at some finite radius, dissolving into a characteristic type of
singularity where the potential of eq. drives the dilaton to oo within a
finite geodesic distance. The challenge is to interpret this singularity in such
a way that it can physically substitute the original role of empty space — in
particular to identify whether some new principles can replace the now lost
boundary conditions and eliminate spurious parameters in the solutions. As

the standard notion of asymptotic charges, including mass, cannot be relied



upon, one is led to inquire whether generalized replacements to such observ-
ables can still be constructed. The limited extent to which this program has
been pursued to date suffices to see glimpses of a curious picture for these
non-supersymmetric string theories, where the ground state lacks a smooth
spacetime, but a sufficiently large stack of charged branes can still support

a finite “pocket” of smooth space.

In Chapter 2 instead, we retrace the analysis of [12]. This work focused
on the holographic interpretation of a metastable AdS vacuum and its de-
cay to a true AdS vacuum through nucleation and expansion of a vacuum
bubble [13, 14]. In this case, the “isolated” object is the bubble itself, which
admits a brane-like description, although it is immersed in the highly unusual
background of an unstable empty space. In this case, the resulting physi-
cal puzzle is whether the celebrated AdS / CFT correspondence can apply
throughout the decay process, and if so, how it should be modified to account
for the absence of a stable AdS infinity. Through the Ryu-Takayanagi con-
jecture [15], information-theoretical parameters of the boundary theory, such
as the entanglement entropy, map to geometrical properties of the bulk; cor-
respondingly, the work demanded a thorough examination of the geometry of
an expanding bubble of true vacuum in a metastable AdS. This geometrical

angle of [12] will be our primary focus.

Finally, Chapter [3|is devoted to the study of self-similar collapse in the clas-
sical Einstein-axion-dilaton system, following [16], [17]. Starting from [18], a
fascinating area of research in classical gravitation arose from the observation,

originally motivated by numerical investigations, that critical gravitational



collapse — that is to say on the threshold between collapse into a black hole
and diffusion — generically develops a space-time self-similarity of some kind.
A long series of works [19-26] has further refined the details of a deep and
multi—faceted link between initial conditions on the verge of black hole for-
mation and scale-invariant spacetimes, for several matter models, numbers
of dimensions and symmetries of the collapse. A strong analogy with parallel
phenomena in Statistical Mechanics drives many questions and approaches.
In particular, there is a long-held interest into power-law scalings of observ-
ables when approaching criticality and in the corresponding exponents as
candidate “critical exponents for gravity”. Our works [16] [17] were targeted
mainly at the specific case of the gravitational collapse of the axion-dilaton
system in four and five dimensions, including the classification of continu-
ously scale-invariant geometries and their properties as attractors for critical
collapse. Determining the existence, number, and quantitative parameters
of these solutions proved a highly non-trivial task. The association with the
topic of the present thesis is in this case not much physical in nature, but
rather mathematical: the equation of motions that determine a self-similar
solution are similar, both in the form of the resulting ordinary differential
equations and the specifics of the boundary conditions, to the equations that
determine the profile of a brane in the absence of valid boundary conditions
at infinity. The rich and unpredictable structure of the solution space for
self-similar collapse in the axion-dilaton system can thus shed light on the
equally opaque problem of isolated objects in a vacuum-less theory that we

outlined previously.
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Chapter 1

On Black branes in

non-supersymmetric strings

Despite years of activity, how to effect supersymmetry breaking in String
Theory in a controllable fashion remain a puzzle of key importance. Surely
for phenomenological applications, but not only. Different mechanisms have
been detailed over the years, and the advantages and flaws of each scenario
have been extensively investigated [27-38]. A generic undesirable feature is
the emergence of instabilities that accompany, in one form or another, the
breaking of supersymmetry, which can be of different degrees of severity. The
state can be a local minimum of the potential, in which case it is typically a
metastable, or false vacuum, which decays via a quantum tunneling process,
but a more drastic instability occurs if the effective gravitational theory sim-

ply has no viable equilibria to offer, and its own dynamics drives the state



outside the regime of validity of the effective theory itself, specifically to high
curvatures or high values of the string coupling. At best the vacuum is then,
so to speak, highly stringy, and does not seem to conform to meaningful
smooth spacetime. This extreme situation of vacumlessness for the classi-
cal theory could be termed “spacelessness”, since we do expect a dynamic
tendency toward smooth spacetimes to disappear at equilibrium, or in other
words for curvature radii to be dynamically driven to shrink towards the
string scale. However, strictly speaking these scenarios transcend the range
of applicability of the effective field theory, and concern settings where past

experience leaves some definite room for surprises.

In this chapter, we focus on a specific class of non—tachyonic string models
where supersymmetry is broken at the string scale or not present altogether.
We can collect the three relevant models [1-4} 619] under the name of non-
supersymmetric non—tachyonic string theories (NT), since the present
analysis, which is limited to low—energy bosonic profiles, is insensitive to this
otherwise important distinction. Generally, one builds a non-supersymmetric
string theory starting from worldsheet amplitudes and consistency condi-
tions. A special projection compatible with modular invariance thus results
in the SO(16) x SO(16), while when open and/or unoriented sectors bring
along a more sophisticated world—sheet construction and a space-time pic-
ture in terms of orientifold planes and/or D-branes. In the supersymmetric
case these objects are mutually BPS, with “brane supersymmetry break-
ing” [6-9] they are individually BPS but not mutually so, and finally in the
U(32) string they are also individually not BPS. In all cases, the form charges

of these filling objects must cancel, but broken supersymmetry manifests it-
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self via a vacuum energy reflecting an overall residual tension, and a similar
effect emerges from one-loop corrections in the SO(16) x SO(16) model. In
all these cases the effective Einstein-frame action features a vacuum energy
that scales like a power of g, = e?, and thus an (Einstein-frame) exponential

dilaton potential |39]

V(¢) =Texp(yv¢), ~>0. (1.1)

Consequently, in such effective theories there are no maximally-symmetric
vacua at all, but non-maximally metric solutions do exist. However they
transcend, in some regions, the regime where the effective field theory can

be safely applied.

For the SO(16) x SO(16) heterotic model of [1], [2] the string—frame effective

action is

St = g [ 0o v=a (e (R aoor - az) 1) a2

o 12
where H3 = dB; is the Kalb-Ramond field strength, and a positive value for
T arises from one-loop corrections, and was computed in [1]. Tts detailed
value, however, is of limited interest for now, as are terms involving other
gauge fields, which we have omitted. The dynamics of the effective action

(1.2) becomes more transparent upon conversion to the Einstein frame:

1 1 5 H?
E _ 410 — _ - 2 _Tez? — —¢73 . 1.
Shot _2/%0 / x\/—g (R 2(8¢) e e D (1.3)

It is then clear that eq. (1.3)) has no Minkowski solutions due to the runaway
dilaton potential. In fact, there are no maximally-symmetric (AdS;o or dSyg)
solutions either, since the constant curvature can only shift the potential by

a constant.
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On the other hand, the relevant non-supersymmetric string theories that we
can group under the umbrella term of orientifold models, as we have said, as
the so-called “0'B” U(32) theory [3, 4] and the Sugimoto USp(32) one [5],
which is the prototype of the “brane supersymmetry breaking” scenario of [6-
9]. Leeavng aside other gauge fields, the effective theories of these models
are actually identical, and are given in the string frame by

1

S5 =
or 2/{%0

d"z\/—g (e_2¢ (R+4(09)%) — 1—12F32 - Te_¢) . (1.4)

where F3 = dC5 is now actually a Ramond-Ramond field strength. In this
case, the T' term reflects a residual tension at the (projective) disk level, and
is correspondingly weighed by a e~¢ factor. Since it is not a loop effect for
closed strings, T' can be estimated much more easily:

16

T = (2k3,) 64 Tpy = o (1.5)

counting essentially the cumulative tension of 16 D9, 16 D9-branes, and a
balancing orientifold plane. In any case, in the Einstein frame we recover an
equally problematic gravitational theory:

1

SE —
or 2
2K7

1 F2
d"z /=g (R — 5(8@5)2 — Ter? — e¢1—;) , (1.6)
about which similar remarks on instability can be made.

In [11], we made the case for streamlining this discussion by extending our
consideration to a larger parametric class of such Einstein-frame systems in

a general dimension D and in presence of a p-form potential, given by the

action
1 4 H?
_ dD — _ - T v _ Lo pt2 1.
5= g eV (R D200 - T =) (0
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whose parameters are the spacetime dimension D, rank p, coupling T" > 0,
and exponents 7 > 0 and a. The aforementioned effective models are special
cases of the general action ([1.7). In fact, both heterotic and orientifold
D = 10 models afford a double representation in this general action, if one

considers the dualization of the form field, which flips the sign of «:

D Heterotic (RR) | Orientifold (KR)
p=1l|v=3a=-1| y=35a=1
p=5| v=2a=1 y=3 a=-1
The actions spanned by are thus key examples of classical “vacuum-
less” theories in the sense we have outlined before. It is not excluded that
a symmetric vacuum be recovered somehow at the string level, but it must
lie outside of the range of applicability of the effective action itself. If this

were not the case, this vacuum would be realised as a solution of the latter

respecting maximal symmetry, which impossible for these systems.

Still, these effective theories are not necessarily to be discarded, since they
arise from tightly constrained string construction, and moreover they hold
definitely much interesting physics to be worthy of investigation. One can
for example study time-dependent backgrounds for cosmological purposes,
as in [40-43]. Alternatively, there is an interesting structure of static com-
pactifications. Moreover, it was first recognized in [44] that the orientifold
models support AdSz X S; backgrounds stabilized by a Kalb-Ramond 3-form
flux, while the heterotic model allows instead an AdS; x S3 geometry with

a Ramond-Ramond 7-form flux. The D1-branes of the orientifold model and

13



the NS5-branes of the heterotic model might thus find a place in supergravity.

In [11] we constructed the parametric generalisation of these solutions to the

action (L.7). It is a fluxed AdS,2 X S, geometryﬂ, withg=D —p—2:

ds® = L*dshgs,,, + R°dSY;

Hy 19 = ¢ Volaas (1.8)

¢ = ¢o

p+2

where Volags,,, is the volume form on AdS,, with radius L. The constants
L, R, ¢, ¢y are all determined by a single flux parameter n, not necessarily

an integer, which is defined as

1
n=— [ ¢®H,=ce"”R7. (1.9)
Qq Js,

Physically, the solution rests on the balance between the effects of form
flux and of the runaway potential. This equilibrium fizes a unique value for
the dilaton and curvature radii, and thus, unlike the supersymmetric fluzed
AdS X S counterparts, there is no additional string coupling modulus. This

balance, and therefore the solution, exists if and only if

a>0, ¢>1, (g—1)y—a>0. (1.10)

'We note that in fact the sphere may be replaced with any compact Einstein manifold

14



Under the conditions (1.10]), the solution reads
n
geRe’

vya [ (@=1)(D—=2)\" 29T
gg | _((1+§(P+1))T) an?’

e _ ( o+ (p+1)y ) (z>3 n?
(¢ —1)(D-2) a 2y’

12— g (p+1‘(p+1)’y+04) _ R’
¢g—1 (g—=Dvy—a A

(1.11)

with g, = e®. Not only can one read off the features of the allowed AdS x S
flux vacua, but one can also gain some physical intuition about those that
could be expected but are nevertheless forbidden. For example, there is no
AdS; xS3 in the orientifold model, corresponding to D5-branes, nor AdSs xS,
in the heterotic model, corresponding to NS1-branes, even though both these
brane species are believed to be present at the string level. In these cases,
with a < 0, the tadpole dilaton potential and the flux are acting in the same
direction on the dilaton itself, which is thus driven to ¢ — —o0, and no
equilibrium is possible. The expectation (currently unverified to the best of
our knowledge) is that corresponding configurations, if they somehow exist,

lie well into the stringy regime, even for large flux n.

In [11] we explored the consequences of pushing the above observations a bit
further - that the vacua just described, which balance tadpole potential and
form flux pressure, may be near-horizon geometries to brane stacks. It is
important to again stress the delicate nature of this claim in the absence of
a vacuum in the effective theory. The nature of a possible “full profile” for

the brane stack geometry, if such a construction is even sensible, constitutes

15



a highly non-trivial puzzle.

1.1 Black brane equations in non-supersym-

metric strings

The actions of the family offer manifold possibilities for the search for
useful solutions of particular symmetry, each bringing along particular com-
plications. Therefore, it is essential to narrow the focus to a very specific
subset of configurations. We will restrict first of all to geometries with the
symmetries of p-branes, fluxed by the H, o form, and which are “extremal”.
In this a prior: context, by extremal we mean that it enjoys full parallel
Poincaré symmetry ISO(1,p) = RY x SO(1,p). This may eventually be
relaxed to R x ISO(p) for a “non-extremal” brane. With the addition of
transverse rotational symmetry, one is left with configurations invariant un-

der the group
ISO(1,p) x SO(q), ¢q=D—p—2. (1.12)

The general such profile can be written in the following form:
ds® = &) d , + > dr® 4 ) RY dSY

¢ =¢(r), (1.13)

H,o(r) = h(r)Vol,ia, Vol, o = e®HDamFelr) getly A dgr

in which we considered an electric flux for the form. We can nevertheless

encompass magnetic charges as well within this same form simply by effecting

16



the duality transformation p+2 < ¢, « — —a directly on the original action,
so (1.13) is fully general. The equation of motion for H, o stemming from
action (|1.7)) within the ansatz ((1.13) is immediately solved:

n
Hp+2 = ead(r) (Ro eb(r))

qV01p+2 s (114)

where Ry is an arbitrary constant with units of length, convenient so as to
keep (") dimensionless, and which will ultimately drop out of all observables.
One is thus left with determining the non-trivial dynamics of the warp func-
tions a(r), b(r), c¢(r) and the dilaton ¢(r) through the remaining equations
of motion. In truth, however, is actually still too general, since the
gauge transformations corresponding to r diffeomorphisms are available to

remove a degree of freedom from the metric functions.

There are several convenient choices at this point, but the most effective in
this context is to employ the gauge freedom to impose a linear constraint
involving the warp functions, with the specific relationship being determined
so as to reduce the field equations to a particularly compact form. Let us
review the procedure for the case at hand. The field equations are first
computed for the action and the ansatz (|1.13])). Then, collecting the
warpings and dilaton in a vector @(r) = (a(r),b(r),c(r),®), one observes

that the equations of motion take the form
a"+ad'-Dd' = F(a), (1.15)

where D is some constant “drag matrix” and F'(@) are arbitrary force terms.
It should be clear that it is generically of interest to perform a change of

basis so that D is in diagonal form if possible, or otherwise at least in Jordan
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normal form, before taking a decision on the gauge constraint. In the par-
ticular situation of action this procedure is especially fruitful, as the
4 x 4 drag matrix D is diagonalizable with three zero eigenvalues, so that
the eigenvector to the non-zero eigenvalue can be the one eliminated through
gauge freedom. This reduces the equations of motion to a purely Newtonian

system for the remaining three fields, say o(r):
7" = F(v). (1.16)

In fact, one can also recognize, after inserting a possible kinetic matrix K
(which in Lorentzian signature is not positive-definite), that the force terms

themselves stem from a potential:
ou

~55

K" = (1.17)

Through these instructions one is led to the following parametrization in

terms of the three variables v(r), b(r), ¢(r):

ds> = e W0 ded 4 2P dr? 4 e® R A0,
¢=o(r), (1.18)

i) Volyip,  Volypp = e 020 @l A dr.

P2 F(0) (R )

Under this choice, which was already well-known in some specific cases[45-
47), the Einstein field equations and the dilaton equation of motion admit a
very elegant mechanical formulation. Writing x! = (¢,v,b), they are equiv-

alent to the equations of motion stemming from the action:
I

B dy’ . dx’

18



with

_4

D2
Ky = _ﬁ , (1.20)

a(D—2)
p
2
n —1
U(x) = —Tebx' — n_zqeLg Ny Q(q—2)€L§q)XI : (1.21)
Ry Rg

Li=(v, 2,—2q/p),
L = (—a, 2,—2q(p+1)/p), (1.22)

L\ =0, 2,-2D-2)/p).

In addition, the Hamiltonian constraint manifests itself as a zero energy
condition:
B dXI dXJ

This type of formulations for brane equations have been given the name of
“Toda systems” because they are similar — though emphatically not identica]ﬂ
— to a three-site Toda chain, since the potential U is a sum of exponential of

linear combinations of the degrees of freedom.

From now on, we shall employ units such that 7"= 1. While this may appear
to potentially obscure a 7" — 0 limit in which supersymmetric results are
recovered, in actuality solutions to the 7" > 0 system are not continuously

connected to the T'= 0 case. The supersymmetry breaking associated to the

2in particular, it is worthy of note that the considerations of general integrability of the
Toda lattice do not, regrettably, extend to the specific exponentials of the potential ((1.21)).

As we will be able to see further, however, the system is integrable in some limits.

19



T-term always has drastic consequences that can not be taken to be small

perturbations.

The kinetic matrix K, has a negative eigenvalue, corresponding physically
to the negative energy associated to the gravitational field. This brings an
inconvenience in comparison to usual mechanical systems, where one can

bound the dynamics to a subregion of configuration space:

U(r)ﬁi—f-[(i—f—i—U(r):O, (1.24)

so that even with the constraint, any point in x space is in principle accessible.

1.2 The AdS x S vacua

Let us review briefly how the AdS, 2 x S, solution of (L.§), is con-
structed in the context of the Toda system . In fact, let us seek out
all solutions where the dilaton is a constant, and we shall recognise that
the aforementioned fluxed vacuum is the unique such solution. If one writes

#(r) = log gs(r), and defines the S, radius R(r) = Rye’™), then the poten-
tial ((1.21]) reduces to

R\ % o -
U(x) = e* (E) (g7 —n’g; "R +q(¢— 1)R?) . (1.25)

Now, gs can only be a constant iff

0,,U =0= —ygl + an’g, "R =0 (1.26)

20



which implies that R must be a constant as well, so that the spherical factor
of the solution has constant radius. We also observe the requirement that

a > 0. In any case, one learns that
Q
gt = —n®R7%, (1.27)
Y
We can substitute ((1.27) within the R equation of motion:

OrU=0= g+ (p+1n?¢;°R™* — (p+q)(¢g— 1R 2=0 (1.28)

= (142 g~ - () e <0 o
e (0D =g 1)"5 L
~ o = (o)) s 0

which is, up to factors of T, equivalent to that in . Note also that
the factors of Ry have dropped out, consistently with gs being an observ-
able. Thus, the dilaton is stabilized to a fized value, and in contrast with
usual supersymmetric solutions it is not an additional free parameter of the
solutions but depends essentially only on the charge parameter n. The same
is true for the sphere radius, which can be now easily explicitly determined
from equation ([1.27)). Physically, the particular values arise as a balance of
the tadpole dilaton potential (the T-term), the geometric tension due to the
sphere’s curvature (the g-term), and the radiation pressure from the form

flux (the n-term) in (R, gs)-space.

Before proceeding with our comments, let us first show that under these
conditions v(r) must necessarily trace the profile of an AdS,;» space. From
equation (|1.25]) one can already immediately see that with a constant ¢ and

b the potential is proportional to €?. The behaviour of v(r) under such
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a potential can be more easily read from the constraint ((1.23)), which also

implies the v equation of motion in this context:

0= H(r) = 2Ky + U(x) = __r

v+ CPe? 1.31

p+1 ( )
for some constant C2?. A solution is only possible if C? > 0, in which case
the profile is given by

1
v(r) = —log(r — ry) — log Z%C’. (1.32)

Returning back to the metric ansatz (1.18)), the line element reduces to
2q

2 -2, 9 p RN\ #*» 2 102
ds” = ¢z (r —mro) 7l dwy, + (0 + 1)C2(r — 10)? <R_o) A R
(1.33)

where R = e’R, is the constant sphere radius, and ¢, is a constant which is
irrelevant as it can be reabsorbed with an z# rescaling. The change of radial

coordinate pP*! = (r — rg) is sufficient to reveal the AdS metric:

plp+1) ( R\ *F cda® +dp> o,
=—__ 7 — £ 1+ RO, 1.34
(5 U+ peag (1.34)
We thus learn that, provided C? > 0, the radius L of the AdS,,, factor is
pp+1) (R
=" = ) 1.35
(5 (1.35)

In particular the ratio of curvatures is given by
24
L* _plp+ DRy | pese
E - TR p (136)

The constant C? can be recovered by going back to the potential (1.25)), and
employing relation ((1.27)) and equation ([1.29)), so that after some algebra:

20 28 eaggrpyp (Pl@—1D((¢ — 1)y —a)
U=e*R,” R V( Gt ) (1.37)
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which implies first of all that the solution can only exist under the additional
condition that (¢ — 1)y —a > 0. If it is satisfied, then the final AdS to S
radius ratio is

L2 (p+)((p+)y+a)

B D17 —a) (1.38)

and the actual form of the constant term in v(r) is as follows:

U Zglo (£> +lo (L> (1:39)
o—p g Rq g p+1 .

Let us review our conclusions. We have shown that the only solutions to the

Toda system with constant dilaton is the AdS, 2 X S, vacuum, and that it is
unique. It therefore only depends on the original parameters of the general
effective action, which is to say p, ¢, v, «, T, and the additional charge
parameter n which had become embedded in the Toda action (1.19) itself.

In addition, the stabilised solution exhibits the following scalings:

-2
gs~mn (g—1)y—«

_a N S
R ~ gs 2 ~Y n(qfl)’}’*a (140)
L 0
A
where, since we recall (¢ — 1)y — a > 0, the solution is indeed weakly-
coupled and low-curvature for large flux n, so that the effective theory itself
is applicable. For example, the case of RR-fluxed 1-branes in the D = 10
orientifold models, encoded by p =1, ¢ =7, v = %, a = 1, has the particular
scalings
3 L 1

gs~n 4, R~nis, == (1.41)

N,
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Notably, the ratio of curvature radii is a flux-independent constant, but unlike
the supersymmetric case it is different from one. The heterotic NS5 branes,
instead, which have p = 5,¢ = 3,7 = g, a = 1 (magnetic frame) display the
scalings:

5 L2
gSNn Rr\/né —_—
’ T R2

N

=12. (1.42)

Normalized equations

Returning to the full set of brane equations, let us show that is actually
possible to “factor out” the AdS x S solution so as to obtain a normalized
system which is independent from both Ry and n. The former parameter is
of course fully unphysical, while the latter only effects overall rescalings of
the fields and the radial coordinate, as we will show shortly. First, consider

the change of variables:

o) =00 + onas, 80) = B +log( TR} (1)
_ _ q Raas Laas
v(r)=V(r)+vy=V(r)+ ]—jlog( e > + log (p n 1) (1.44)

where Rags and Lagg are the radii of the AdS, 5 xS, solution. Note that the
uppercase fields ®(r) and B(r) are equal to the respective lowercase fields
with their constant AdS x S values subtracted, but V(r) is defined by only
subtracting the constant part of the AdS x S solution, without accounting for
the logarithmic dependence. Since these new fields are related to the older

ones by a simple additive shift, they will obey the same action:
S = /er’fK,JX’J ~U(X), X(r)=(®(r),V(r),B(r)), (1.45)
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and the same zero-energy constraint:
XK X7 +U(X) =0, (1.46)

where the potential is simply the pull-back U(X) = U(x(X)). Substituting
this ansatz into the specific reduced form of potential of equation , and
making use of the relationship which holds between gs aqs and Rags,
the U(X) potential reduces to:

«

+g,aa5 N 0q(g—1) <—> e

—24 Y _9gB—
U(X)oce 2pB+2V(_67‘I>__6 2gB—a®

where the proportionality constant includes powers of n and g5 aqs. The only
non-trivial dependence on n is in the coefficient of the last term. However,
because of the scaling

Gonas™ ~ e (1.48)
from equation ,the coefficient is actually n-independent. Thus, one can
conclude that

U(X) e f(B,®) (1.49)

where f(B,®) is specifically an Ry and n-independent linear combination of
three exponentials, though the constant coefficients are unwieldy to report
explicitly. It then suffices to rescale the r coordinate by a suitable factor
so as to eliminate the n and R, dependence in the overall proportionality

constant.

The final system is thus rendered universal across all flux numbers, and the

conclusion is that therefore all brane stacks of a given p in a given theory
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are qualitatively identical, simply related by rescalings, and that the analy-
sis that follows is really unaffected by this value. This also implies that no
qualitatively distinct behaviours occur for very small or very large flux num-
ber (of course, only at the classical level). From a practical standpoint, the
large symbolic complexity of the various constants in the normalized system
means it is only a viable option with the help of a computer algebra system
and/or for the purpose of numerical studies. In the following dissection of
the Toda system we will not employ this frame, choosing instead to continue
carrying factors of n and Ry, but with the implicit understanding that these

parameters do not affect the problem at an essential level.

1.2.1 Radial perturbations and throat egress

We seem to be presented with a somewhat unusual problem: a candidate
near-horizon AdS, 2 x S? solution is available, but a full brane solution, of
which the former would be the near-horizon limit, is unknown. Short of
approaching the complete, non-linear equations of motion (which we shall
attempt in the following sections) there is a simpler test to estimate the
likelihood that the AdS, 2 X S? metric connect smoothly to a complete brane
metric. As we shall now show, important information is encoded in the

perturbation theory of a candidate near-horizon metric.

Let us assume an existing full p-brane profile for a gravitational theory, given
for the sake of clarity as a Toda system solution y!(r). Let us also assume

that the brane is “extremal” with the meaning employed so far, so that it has
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a near-horizon metric which possesses an AdS,., factor. Since in the Toda
parametrization the AdS horizon is located at r = —oo, the brane solution
generically admits an asymptotic expansion for 7 — —oo of the following

form:
X' (r) = Xhasxs(r) + - - (1.50)

where ... includes generic terms subleading to the AdS x S solution as r —

—o00. The precise nature of these subleading terms is of particular interest.

As one begins tracing the geometry from the horizon at r = —oo and moving
outwards to increasing r, the subleading component will allow to interpolate
from the throat profile to the outer portion of the brane metric. We term
this process throat egress, and the subleading mode through which it is
effected an egress channel. In [11] we attempted to reverse-engineer stan-
dard extremal brane solutions within this picture, with the aim of extracting
a useful criterion. We have observed that, when known examples are rewrit-
ten in the Toda chart and expanded near the horizon to subleading order,

the egress channel is always realized as a negative power of r:
XI(T) = XIAdeS + AI(_T))\ + 0((_T))\) y T 0 (1'51)

where A’ is a constant vector, and the exponent A < 0. This is true for
example for extremal Reissner-Nordstrom black holes with an AdS, x S?
near-horizon metric, and for type-II D5-branes and their AdSs x S° throat,
though the value of X\ is dependent on the specific type of solution.

Now, recall that both x(r) and yaasxs(r) are solutions, by the initial assump-

tion. Therefore, inserting the expansion ({1.51]) into the equations of motion
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implies that the egress channel A/(—r)* must then be a solution to the lin-
earization of the equations around the AdS x S background. This yields a
necessary condition for a given solution to be a candidate near-horizon limit
of a full brane profile: its linear perturbation theory must allow a mode scal-
ing like (—r)*, X\ < 0. If this mode is not present, egress is impossible and

the throat cannot be completed into a full brane profile.

We perform this test on the AdS,;2 X S, solutions of Section in the
non-supersymmetric models. We study the radial perturbation theory of
the near-horizon throat and verify the existence of at least one viable egress
channel. Specifically, perturbing the AdS x S background with a general

power-law mode

XI(T) = XIAdeS + 6(_7"))\7 e<1,r<0 (1.52)

the spectrum of A eigenvalues must contain at least one which is negative.

Note that this perturbative study with radial dependence has partial, but
not complete, overlap with the scope of previous investigations that focused,
for example, on the stability in AdS time of modes generically carrying S9
angular momentum, see for example [48; 49]. The present discussion is lim-
ited to modes with no angular dependence. In any case, as the system is
(pseudo-)mechanical, the perturbation theory can be extracted by expand-

ing the potential ([1.21) to quadratic order. Because of the factorization

U(x) =eU(x), x=(b), (1.53)

to that order the v perturbations and the (¢, b) perturbations will not mix, so

that they can be considered separately. For what concerns v, let us perturb
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the constraint (|1.23)) first, keeping in mind that (¢,b) are constant in the
background:

2

D ysu = O, Udv = 2Udv = QLUQ(SU, (1.54)
p+1 p+1

= 5v=A(—r)"", (1.55)

where everything is computed on AdS xS. We thus observe that a mode with
A = —1 is always present, independently of all other parameters, and would
appear to be viable as an egress channel. However, this mode is merely a
generator for a gauge freedom of the Toda system, namely r translations, or
equivalently the arbitrariness in the location of the AdS horizon ry. Indeed,
performing an infinitesimal translation on the AdS x S solution generates

such a term:
v(r) = —log(—r) +vg = v(r +€) = —log(—r) + ; + vy, (1.56)

and thus, it can always be reabsorbed by a gauge transformation. Physical

modes are therefore limited to the x = (¢, b) sector.

The linearized equations of motion for x reduce, on the background AdS x S,

to
0*U
2K -y = — - X 1.57
X x93 X (1.57)
. L.
=x"= _ﬁHOX (1.58)

which defines the constant matrix Hy. To solve equation (1.58]), one can

employ the change t = log(—7):

d? d\ . .
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so that modes are of the form ¥ ~ (—r)* where ) is an eigenvalue of the

4 x 4 matrix

1 —H,
M = . (1.60)
1 0

Since the characteristic polynomials of M and Hj are related as follows:
Pr(N) = Py (A — M%) (1.61)
The four eigenvalues A\, i = 1,2 of M can be extracted from those of Hy,

)

say hi, ho:
1++1—4h;

ho= M- O, = ap= YD

(1.62)

As for the explicit form of hq, ho, they do not easily yield to simplification

for general values of the parameters. Nevertheless, they are as follows:

L 14 /T—4hy,
)\1,2 = 9 -,
- (1.63)
RO Vir(Ho)® — ddet(Hy)
12 = )
’ 2

with the trace and determinant of Hy being

a(y(a+7)(D—=2)?-16)+16y(p+1)(¢—1)
8(p+1)((g—1)y—«) ’

0y (D~ 22((p+ 1) + o) (164

4p+1)2((g—1)y —a)

tr(Hy) = —

det(Hy) =

Note that tr(Hy) < 0 with the known bounds on the parameters, which guar-
antees that at least one of hy, hy has negative real part. This in turn means

that amongst the A\ there will always be at least one eigenvalue with nega-
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tive real partE|. Therefore, all AdS x S solutions of the general action (|1.7))
do possess at least one viable egress mode, which means that the possibility
exists for a more general solution for which AdS X S is a near-horizon limit.
This is a significant and non-trivial result, and is a necessary condition for
bringing forward an interpretation of these vacua as near-horizon metrics for

brane-like geometries.

In the specific case of the AdS3 x S; (purported D1-brane stack) of (|1.41)),

solution to the orientifold models, the eigenvalues are computed as

L, 1+£+13 . 1++5
N=—p— M=

(1.65)

thus sporting two candidate egress modes. And for the AdS; x S3 (would-be
NS5-brane stack) of the heterotic models, they are

2 2
)\i:i—\/j )\izli\/j 1.
7 37 2 37 (66)

again with two viable modes.

1.3 Dynamics of Lorentzian Toda-like systems

In the previous section we observed that egress from the throat is possible.
Therefore, it is possible to explore the question of global extensions of the

AdS x S throat into a full r-dependent profile. This condition, that AdS x S

3There is no general guarantee for the )\f to be real. In fact, there exist values for the
parameters such that the eigenvalues have an imaginary part. However, in the physically-

relevant cases that we have investigated in [11], the )\;t are all real.
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is recovered for r — —oo, constitutes only half of the necessary boundary
conditions for uniquely determining the solution; the rest would be provided
by imposing that the metric approaches a constant-dilaton D-dimensional
Minkowski space (or AdSp or dSp) as r — oo. This, however, is impossible
as such a background is not itself a solution. Thus, we are naturally invited

to consider a classification of possible final states of r-evolution.

These may either occur as r — 400, or as singularities presenting for a finite
r = rg. For what concerns solutions that can be extended to r — 400, we

distinguish two sub-cases:

o lim, ,o ¢(r) = ¢ finite, in which case the final state must be AdS, xS,
as previously proven in Section [1.2] except with the flux changed in
sign as the volume form on the AdS space is flipped. The case of
interpolating between two antipodal, oppositely-charged near-horizon

geometries is not physically relevant.

e lim, ,, ¢(r) = £oo. If the vector x(r) in general becomes unbounded
for large r, the potential of eq. (1.21)) will be asymptotically U(y) ~
+Aexp(£Blx|)

1.3.1 Prototype Equation

To better map out the complex dynamics of the Toda system (1.19)), it will

prove very convenient to first perform a cursory examination of its fundamen-
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tal component, which takes the form of a simple, one-dimensional ordinary
differential equation:

y' (1) = 2e¥™) . (1.67)

Many of the limiting regimes of the system reduce ultimately to equation ([1.67)),

which we therefore call prototype equation, or to its first-order equivalent:
y'(r)? = 4e¥") + 4E . (1.68)

Depending on the sign of the mechanical energy F, the solution is readily

found:
(

log(e? csc?(e(r —rg))) E = —¢é?

y(r) = § —log((r — r0)?) E=0 - (1.69)

log(€? csch?(e(r —rg))) E = €
\
Some comments are in order. To begin with, all solutions display at least

one singularity, of the specific asymptotic character
y~ —log((r—r*)?), r—r*, (1.70)

which is independent from E. E < 0 solutions have infinite identical branches,

™

of finite extent T5 each bound on both sides by such a singularity at
r* =rg+mn, n € Z. Instead, £ > 0 solutions have two mirrored branches,

one from r = —oo to a singularity at r* = ry, and another from rq to +oo.

We can thus observe that initial conditions with either £ < 0, or £ > 0 but
y'(0) > 0 will develop a runaway singularity at a finite r and will not be able
to be continued further - we term these blowups. The remaining solutions

with £ < 0 and ¢/(0) < 0 are instead smooth towards positive infinity, and
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we call them drifts, as y will slowly approach —oo. We further refine the
nomenclature by specifying that the non-generic £ = 0 case is a logarithmic

drift, and £ > 0 is a linear drift, since y(r) ~ —2er asymptotically.

1.3.2 Single-term system

Let us consider a system of intermediate complexity between the prototype
equation and the Toda system, in which there are N degrees of freedom but

only one potential term:

ou
2X7 = o U= Aexp(Vix'). (1.71)
The indices I = 1,..., N and are raised and lowered with the mass matrix

K ;, which we assume is specifically of Lorentzian signature, with exactly one
negative eigenvalue, as is always the case for gravitational systems. One can

then, optionally, also study the combination with a zero-energy constraint:

XX+ U =0. (1.72)

First of all, one can effect a classification based on whether V;V! vanishes,

as several details are qualitatively distinct.

Non-null term

If V2= V;V1 # 0, then we can complete it into an orthogonal basis (V, Eqy),

1=2,...,N. We decompose x into this basis

yr i
x'(r) = %VI + 2( )(T)E(IZ.) , (1.73)
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with the factor of V? included for convenience. If one then plugs ((1.73)
into the equation of motion and dots with the basis vectors, one obtains the

equations

2 = —AVZe¥, (29) =0, (1.74)

from which it is clear that a blow-up can occur if and only if AV? < 0. The

direction of blowup is along the vector %

Now let us include the energy constraint (1.72)). In the basis, it reduces to:

(y/)Q _ _Av2 ey + Z27 Z]

—~
—~
<
=
~—
~
—~
il
=

(1.75)

Thus, y behaves according to the prototype equation with a mechanical en-
ergy given by the constant Z2. Limiting ourselves to the relevant case where
a blowup does occur, then as seen in Section the asymptotic form of y
will be independent from Z?2, which will only affect subleading terms. Such

a leading part will be of the following form:
I

vz P=To-T (1.76)

X'~ —log(p?)

In addition, by expanding the general solution (1.69) one can see that the
next corrections to y(r) are at most of order O((r — r()?) independently on
the value of Z2, so that we can write the more precise asymptotic form

I

14
X' = —log () 173

+ 7L = Zp 4+ 0(p?), (1.77)
for some integration constants ZI, Z! that are orthogonal to V. These
amount to a total number of 2(N — 1) free parameters in the blowup. All

higher orders are instead determined from these by further expanding the

equations of motion.
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Null term

If, instead, V! is null, we can complete it to a basis (V,Y, E;)),i=3,..., N,

with the following properties:
V.Y=1, Y*=0, V-E3=0, Y- -E;=0, Eu- Ej =3d; (1.78)
and decompose y as follows:
x(r) = z(r)V 4+ y(r)Y + 29 (r)Ey - (1.79)

The choice of vector Y is not unique, but we will see eventually that the
results are independent of this choice. Again inserting into the equations of

motion and contracting with the basis, we obtain the equations

2" = —Ae¥, y' =0, (z(i))” =0, (1.80)

and immediately the general solutionﬁ for x and y:

A
y=wyr—+vuy, T= —Q—eryO (e — 1 —yr) + 17 + 20 . (1.81)
1

We have made the unusual choice of integration constants to connect smoothly

to the special solution in the y; — 0 limit more transparently:
A b 2
Y=Y, T= —Zey‘)r +xr+x, (11 =0). (1.82)

Therefore, in the case of a null exponential term, no blowup is possible, and
the solution is smooth towards r — oco. Nevertheless, xy can grow exponen-
tially with r, and this will happen along the direction of £V, with the sign
this time determined by that of — A.

4The provided form is also valid for y; — 0 as a limit
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Let us now again include the Hamiltonian constraint (1.72). Inserting the

solutions and simplifying we see that the r-dependence cancels
Ae 42y + 22 =0, Z'= (") Ef;, (1.83)
or

Ae¥o + 72

1.84
o (1.84)

T =

It is therefore again true that the leading asymptotic behaviour of x is un-
affected by the constraint, which only involves corrections to the next order;
the difference in this case is that the asymptotic expansion is for r — oo,
instead of a singularity at finite r, and that the subleading terms are actually
determined by successive orders of the equations of motion. The leading part
asymptotics

A
X = —2—y26y1T+y° + O(r) (1.85)
1

are therefore complete in terms of free parameters, of which the only ones

are yo and .

1.3.3 Orthogonal two-term system

By providing an exact solution to the one-term Toda system, we have in fact
equivalently shown that it is integrable. Generally, two exponential terms
in the potential are enough to ruin integrability. However there is a rather
simple subcase which is actually of physical relevance. Consider the two-term

potential

U(x) = Ae"™x" 4 ApeVrd! (1.86)
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where the two vectors V and W are not null and orthogonal under the kinetic

matrix:

vivio£wWwt, viwl=o0. (1.87)

In this case, the system is exactly solvable through what should by this
point be a familiar technique. Complete (V,W) into an orthogonal basis

(V,W,E@), i =3,...,N and decompose the degrees of freedom:
X(r) = 2(r) = + y(r) = + 2V (") Ef; , (1.88)

from which we can plug into the equations of motion and contract with the

basis vectors. The result is
20" = —A|V?e, 2y = —A.W3Y, (z4) =0. (1.89)

The degrees of freedom are completely decoupled. As before, the x part will
be able to support a blowup iff A;V? < 0, and the y part iff A,WW? < 0. The

Hamiltonian constraint is
O=H,+H,+ 7%= (2 + (v)* + U + 22, (1.90)

a statement not as eloquent as it was in the one-term case.

1.4 Eventual evolution of brane equations

Let us return to the specific system (1.19)) of the three-site Toda system
describing a p-brane in a non-supersymmetric string theory, and apply the

notions accumulated in the previous sections.
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The first observation is that, as evidenced by a quick calculation, the n-term
(arising from form-flux pressure) and the g-term (arising from the curvature

of the sphere) are orthogonal for any values of the parameters
LWKEYLY — 0, vp,q. (1.91)

It can also be seen that neither of these covectors is ever null. Thus, the
n- and g-terms form an integrable two-term system of the type mapped in
section [1.3.3] This is in fact fully expected: this system is what would
be left after removing the supersymmetry-breaking tension and thus the 7-
term, and is therefore just the corresponding supersymmetric brane equation
involving a form flux and a gravity, which is known to be fully integrable.
We have then re-encountered this fact in the abstract language of the Toda

system formulation.

A second observation is less trivial, and depends on the specific parameters

of the models. The square of the T-term covector is

D—2 4(D —1)
L? = ? - 1.92

depending only on the dimension of spacetime and not on the dimensionality
of the brane itself. But what is truly remarkable is that this quantity vanishes

precisely for the orientifold models
3 2
D:10,fy:5 = L*=0, (1.93)

a fact whose specific significance still eludes us, but which implies that the
orientifold brane dynamics require a more delicate treatment. In the heterotic
models, instead

5
D:10,7:§ = [?=8, (1.94)
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so that the analysis is likely to be simpler.

1.4.1 Tadpole-dominated asymptotics

Let us consider eventual evolution asymptotics in which the dilaton tadpole
component of the potential dominates over the n-term and ¢-term, to thus

reduce to a system of the type of section [1.3.2] We would have a potential
U(x) ~ —exp(L;x') = —exp (’wb + 20 — 2%b> : (1.95)

and dominance is guaranteed in the following region of configuration space:
L > L% Ly > L0y (1.96)

Now, the coefficient of equation is A = —1. In the orientifold models,
Ly is null (see eq. ), which means that the solution will grow expo-
nentially as r — oo in the direction of —AL! = L’ — provided that the
integration constant y; > 0. To evidence that the dominance is preserved

asymptotically, one just then needs to verify that
L’=0>L"L', ?=0>LYL!, (1.97)

but this is always true, in fact

D -2 4 1

for all values of the parameters. Thus, in the orientifold models, and actually

in all models with L? = 0 which may appear in different dimensions, we
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will have an eventual evolution for » — oo with the following leading order

asymptotics for the fields:

eyO
X ~ Tf(T)LI’ Il = <D472% —2@;1): _D2_2> , (1.99)
where
ey >0
f(r)= . (1.100)
5 =0
The total radial arc length up to r = oo is actually finite:
Vi D) = exp( o pr)(—2) (14— (1.101)
Grr ~ €Xp| v » = exp 5 r D2 .
= / dr \/g;r < 00 (1.102)

which means, physically, that it is actually impossible to have an infinite
amount of space in the theory with the exception of the AdS throat itself
— one eventually must encounter one such “wall” where space ends, after a
finite geodesic distance. Because b(r) is asymptotically very negative, and
thus the radius of the sphere quickly shrinks to zero, we call such a singularity
a pinch off. There is no hope for this singularity to be a coordinate artifact,

since the dilaton (a scalar) always diverges to positive infinity.

Since, as seen previously, null L; blow-ups will form a two-parameter fam-
ily, the same is true for the tadpole-dominated pinch-off singularities in the
orientifold models. We note that these two parameters are physical, as they
cannot be changed with a residual gauge transformation, which would consist

in a constant shift in b(r) or v(r) by rescaling x* or Rj.

Let us have a look at the case where L? > 0, which includes the heterotic

models. Here one can have a proper blowup at a finite r coordinate, since
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AL? = —L? <0, and it will be in the direction of ﬁ—; o L!. For dominance to
be preserved in the blowup and thus the approximation to be self-consistent,
it is required that L2 be larger than both LY L and LY’ L’ but we have
already shown that the latter quantities are always negative. Therefore L? >
0 models allow for a tadpole-dominated singularity at some r = ry with

leading profile

4 p ' D-2

2 2
XN_1og<—L r o) )L’, L= (D2y, 20 _ 2 ) (1103)

We examine the geodesic radial length here as well:

een(s-3)~en{ () o 515))

(1.104)

or

1
vV Grr ™~ (7’—7’0)07 C—4(1+m> >0, (1105)

which is yet again integrable. Therefore, this singularity also lies at a finite
radial distance. In addition, it is again true that the sphere radius shrinks to
zero and that the dilaton diverges to positive infinity, so that L? > 0 models

also display a pinch-off singularity.

The heterotic pinch-off is at first glance a 4-parameter family according to
our analysis of the blowup of the prototype equation. However, two of these
parameters correspond directly to the constant terms in the expansion of b(r)
and v(r) near 1o, and they can be shifted with a suitable rescaling of z* or
Ry. They are therefore unphysical. We are thus left with a 2-dimensional
space of physically distinct pinch-offs.
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1.4.2 Flux/geometry dominated asymptotics

Consider, instead, the case in which during radial evolution the (n,q)-part
of the potential eventually dominates over the T-term,

2 —

% 3

This could happen if x diverges in a direction satisfying
LYY > L', o LY%" > Ly . (1.107)

If this is assumed as true, then we are justified in approximating y by means
of the solution to the system including only the (n, ¢)-terms, which as we have
observed is integrable. The n-term has negative coefficient, and (L™)? =
(4(1+p)(=1+¢q))/(p+q)+1/4(p+ q)a* > 0, therefore it is able to develop
a blowup in the direction of +L™. The g-term has a positive coefficient,
but (L@)? = —@ < 0, so that it is also susceptible to blowup, in the

direction — L@,

Generically, the two blowups will not be located at the same value of r, so
that we can assume that at the first singularity the leading part of y will
be either parallel to +(L™)! or —(L@)!. The n-term dominated blowup is

self-consistent, as divergence along +L™ will preserve dominance:
0< (L™M?> L(L") <0 (1.108)
while the same is false for the ¢g-term, since

4
_ (L(Q))Q _ —LI(L(q))I _ = (1.109)
q
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In other words, a ¢-term blowup is actually driving the system into a tadpole-
dominated region. Therefore, the Toda system surely does not allow such
asymptotic configurations at all. There is a much simpler physical picture of
this fact. When the T-term is excluded, the g-term-driven blowups include
regular Minkowski space. In fact, imagine a general ¢-term blowup of the

following asymptotic form:

(D]
Y~ — log((s)Q)Ei(—q)i2 + O(s) (1.110)

where s = r — rg. The assumption of the ¢-term blowup preceding that of

the n-term implies that the L™ which is

0
1
X'~ - 1logs @ + o(s) . (1.111)

1

The dilaton is trivially asymptotically constant. Omitting constant factors

the asymptotic metric is
ds® ~ da® + 5" Tds® 45 102, (1.112)

which after a change of variables into the arc-length p = s T (again, fore-

going irrelevant constants) is revealed as flat space:
ds* = dx® + dp* + pZng . (1.113)

The subleading part then includes information relevant to how the constant-
dilaton Minkowski metric can be asymptotically approached, like the tails of
the profile of a charged brane. It is then no surprise that with the inclusion
of the T-term such asymptotic solutions become forbidden. More informa-

tive is the fact that all configurations (solving the equations of motion or

44



otherwise) where the metric is asymptotically flat, with any behaviour on
the dilaton, take specifically the form above in the Toda system, and are
therefore never solutions in the presence of a dilaton tadpole. The relevance
is, for example, that one could posit on the basis of intuition a solution where
the metric is asymptotically Minkowski, but the dilaton slowly drifts to —oo
(say, as —logp) — it would appear to be the natural generalization of the
supersymmetric Minkowski with ¢ = —oo as a sort of pathological minimum
of the potential. This scenario is categorically excluded, as we will now show.
If a metric is asymptotically Minkowski, then we know that the parallel warp

factor %log gy must be asymptotically constant, thus

o(r)  q,,
Sl ]—)b(r) =k (1.114)

Under this condition, the rest of the metric describes flat R?™! if and only if
el = e 3" = V(r) = exp((g— 1)b+ (p+ k) . (1.115)
The differential equation ([1.115]) has solutions that are asymptotically

b(r) ~ —logér%r), (1.116)

which is precisely the profile of solution ((1.111). Combining with ((1.114]),
we see that also the asymptotics of v(r) must match. Therefore, these are

the only realizations of asymptotically Minkowski metrics, and only exist for

T =0.

As for the flux-dominated singularity, it is indeed possible, though unphys-
ical, as we will now argue. The dilaton diverges to —oo, and the S, radius

vanishes. The total arclength is finite, since

G ~ (1 —10)°, c=—2 ((L<n>)v _ %(Lm)b) _

4p+1) '

1.11
53 (1.117)
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Nevertheless, the solution has to be discarded on physical grounds. First of
all, it is by construction also a valid solution to the supersymmetric brane
equations. In that context, one is able to exclude it thanks to the boundary
conditions that are available. Since this singularity involves an increase in
the flux energy density and the associated gravitational effect, it is clear that
it appears going inwards towards a charged brane stack and not when moving

away from it.

It is indeed featured as a generic asymptotic solution if one integrates the
supersymmetric brane equations starting from some finite radius and go-
ing inwards, while retaining the assumption of parallel Poincaré symmetry
ISO(1,p). Such a symmetry is actually physically only realized for strictly
extremal branes. But in turn, extremality is a condition relating asymptotic
charges, and thus automatically encoded in asymptotic behaviour at r = oo.
When the supersymmetric brane equations with ISO(1, p) symmetry are in-
tegrated with the condition that Minkowski space is recovered as r — o0,
then such pathological singularities are excluded. In a vacuumless theory,
instead, this procedure turns rather opaque, and extremality appears to be
a much more elusive notion. The correct methodology, in any case, would be
to explicitly break ISO(1, p) — R; X ISO(p) by distinguishing a time warping
and a parallel space warping, and then verifying a posteriori when the orig-
inal symmetry is consistent, that is to say when it is preserved in evolution.
Indeed, the n-term blowup solutions just described do not extend to solu-
tions of such a more general system, and are thus physically untenable. In
the full split system, starting from non-extremal boundary conditions near

infinity and integrating inwards, the two warpings eventually differ and one
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approaches either a Rindler near-horizon, or a superextremal naked Reissner-
Nordstrom singularity. Only for an extremal solution do the warpings actu-
ally remain equal throughout evolution, thus justifying a posteriori the use

of the assumption of Poincaré symmetry.

For the sake of our discussion, however, we remain focused on AdS x S
as a candidate near-horizon for extremal branes, and therefore we will not
pursue this explicit investigation; it is sufficient to observe that the n-term
blowups are certainly to be discarded as physically-meaningful final states

when integrating outwards from an AdS x S throat.

1.4.3 Null and logarithmic drifts

One last situation to consider is for all three terms in the potential to be
negligible with respect to the kinetic energy (x')?. In that case, the equations
of motion and the zero energy constraint imply that the fields will drift

linearly in r along a null direction:
X'(r)=xir+ x5, (x1)*=0 (1.118)
The potential is suppressed if the following conditions hold:
Ll <o, L<o, L9y <o. (1.119)

This asymptotic solution class is certainly a subset of the following linear

drift configurations which ignores the Hamiltonian constraint:
ds? = 24 da? 4 *Tdr? + 2P R2AO?, ¢ = Pr (1.120)
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or, equivalently

iy’

o
ot R2p*6d02, ¢ = = log(p). (1.121)

ds® = pQ%dx2 +

These geometries are similar to a Kasner metric, but with a time-like singu-
larity. We shall now argue that these solutions are fully unphysical as well.
While one would intuitively expect to discover the Minkowski solution (fore-
going the T-term, of course) within this class, this is not the case. Indeed,
Minkowski requires A = 0, B = C', which leads to a contradiction already
when comparing the metric ((1.121]) with the ansatz (|1.18]). The special flat
space solution is instead obtained as a non-generic logarithmic drift where
the g-potential is only marginally suppressed. This is important conceptu-
ally, as it means that from the point of view of the radial equation of motion
integrated outwards flat space appears as a liminal solution, precisely on the
threshold of runaway and collapse under the tension of the sphere factor.
The Kasner-like solutions described above lie indeed on the other side of this
threshold, with the potential decaying too quickly. In the usual treatment,
these singularities can be excluded on the basis of the conical defect they
carry at r = oo, which has no associated physical source, and this fixes the
actual physical solution at large distance to be Minkowski space (or AdS or

dS in the presence of a cosmological constant).

In our case, of course, we do not possess the luxury of the Minkowski solution,
as it does not satisfy the first suppression condition of at all. Let
us see which logarithmic drifts are allowed in the Toda system. Consider a
generic asymptotic logarithmic drift solution

X' (r) ~ xglogr + xq + o(r") (1.122)
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under which the zero-energy condition takes the form

2
Xy Lix!

T_2+U(T)+U(n)+U(q) =0, Ugy~rXe, .. (1.123)
This can only be satisfied at leading order if all the potential terms scale as

=2 or smalleif’] i.e.:
Livk< -2, L"xi<-2, Li\<-2, (1.124)

These equations can actually be shown to admit solutions. However, note
that as per our previous analysis of the prototype equation, logarithmic drifts
arise as special limits of blowup singularities. Therefore, they must be con-
nected continuously to them. A logarithmic drift where ¢, < 0 would be
connected to blowups that do not involve the T-term; as such, it cannot be
physical since otherwise it would also be in the supersymmetric case. Limit-
ing ourselves to ¢, > 0, which are necessarily T-term logarithmic drifts, note
that by the first condition in equation the radial arc-length is finite

just as it is for the blowups proper, since
VG = 1Tl < TR (1.125)

which is integrable. Therefore, a logarithmic drift offers no conceptual ad-

vantage and does not prevent the inevitable demise of space at finite distance.

5Tt should be noted that in principle one should also consider the (rather odd) possibility
that two potential terms are of the same order and do dominate over the kinetic energy,
and then these leading terms cancel each other. Only the (T',n) and (T, ¢) pair can cancel
due to the overall signs, and in each case one can verify that the condition for equality of
the exponents actually sets those exponents themselves to be subdominant to the kinetic

energy.
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As such, there is no benefit in considering them separately from the regu-
lar blow-ups, instead of including them implicitly as limits of the blowup

parameters.

1.5 The full brane profile

With these foundations in place, we are now in a position to speculate as
to the actual nature of D-brane stacks in the effective description of non-
supersymmetric strings, with a special eye to D1-branes in the orientifold
systems and N.S5-branes in the heterotic model. The more precise question
we would like to examine is whether there exist a “valid” and unique brane
profile, namely a static solution to the equations of motion with brane sym-
metries ISO(1, p) x SO(q) which has the near-horizon AdS, 2 x S, throat as
a limit, and whose behaviour on the other end of the radial coordinate is

somehow “physical”, in a way to be determined.

As seen in thorough detail, the standard definition of “physical” eventual
evolution, which is to converge to maximally-symmetric space, is impossible
to satisfy in this context. One must therefore replace this with a generalized
notion of non-pathological “far away”. We argue that amongst all choices
presented, only those that result in the tadpole-generated potential term be-
coming large must be considered: if the T-term is eventually negligible, then
that eventual evolution profile is also a solution of the supersymmetric equa-
tions, and must therefore be equally unphysical in the non-supersymmetric

case. The only possibility is then to conjecture that the tadpole-dominated
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Figure 1.1: A schematic depiction of the geometry of an extremal

p-brane geometry in a non-supersymmetric string theory, in the
radial and S? dimensions. The profile interpolates between an
infinite AdS, 2 x S? throat and a finite-distance pinch-off singu-

larity.

pinch-off singularities are to be taken as the most physically reasonable even-
tual evolutions of a brane profile. Let us try and provide a qualitative picture

of the consequences for the shape of branes in such theories.

Pinch-offs occur at finite radial distance, as observed. If a metric interpolates
between AdS x S and a pinch-off, then there is only a finite amount of space
outside of the throat. That amount of space scales with a positive power
the brane flux n, as shown in Section [I.2] This suggests a picture where the
brane’s form-charge is blowing up a pocket of smooth space with a small g,
balancing the force of the tadpole potential, which drives space to contract

and the dilaton to diverge to +00. As one moves outwards from the throat,
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the stress-energy density of the form-field becomes low enough that it is
overcome by the tadpole potential and space collapses into a pinch-off. The
physical scenario that is painted by these properties is that the vacumlessness
of non-supersymmetric string effective theories has a specific, non-obvious
character: empty space is naturally driven to shrink to string-scale curvature
radii, and thus the effective theory dynamically undermines its own validity.
Smooth spacetime only appears when out of equilibrium, in the presence of

additional objects, and exists only localized to those very objects.

1.5.1 Solution parameters

In the standard treatment of brane profiles in a context that admits a Min-
kowski vacuum, integration constants appear in the general asymptotically-
flat solutions that correspond to the physical parameters of mass (or better,
tension) and charges of the brane, plus possibly moduli of the flat vacuum
itself. The identification is transparent thanks in particular to the asymptotic
infinity, where they can be immediately matched to parameters in the fall-off
behaviour of the perturbation from the empty Minkowski solution at large
distance, by comparison with the corresponding linearized theory. Similar
notions can be defined in an asymptotically dS or AdS backgrounds, with
suitable modifications to the interpretations of these quantities. In a system
like the present one, where one only accounts for the effects of gravity and a p-
form field, a p-brane would possess exactly three such quantities in the tension
and form flux, appearing as the coefficients for the Newton and Coulomb

fields for large r, and the asymptotic constant value of the dilaton. An
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extremal brane satisfies a condition involving tension and charge, and is
parametrized by two values, say, the flux number n and the string coupling

at infinity g o.

No such luxury is allowed in our specific vacuumless scenario, as there is
no way to reach a large distance from the throat nor any linearized regime
around a certain infinite-size solution of higher symmetry. The brane charge
is embodied straightforwardly by the parameter n, and while the physical
meaning of tension is rather obscure without a Newtonian regime, one could
still argue that the presence of the AdS, s factor in the throat is related to
some form of extremality condition that fixes its value, so that it will not
appear as a parameter in the solutions with such initial conditions. Neverthe-
less, there are still residual parameters in the solutions to the Toda system.
We argue that these are to be taken as the generalization of the supersym-
metric flat-space modulus given by the vacuum string coupling, since they do
affect the radial evolution of the dilaton when exiting the throat and when

approaching the pinch-off.

While these parameters are fully encoded in the linearized perturbation when
approaching a Minkowski vacuum in the conventional picture, it is also true
that they are equivalently determined by perturbations of an AdS x S throat
when exiting it. In Section when we determined the egress modes for
the near-horizon throat, we have shown that not only does at least one such
mode exists, but that specifically the orientifold D1-branes and the heterotic
N S5-branes possess exactly two. These two coefficients match non-trivially

with the two parameters of distinct pinch-off singularities in both orientifold
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and heterotic models as determined in Section [[.4.I} While it’s impossible,
because of the highly exotic context, to extricate which are properties of the
branes and which are properties of the vacuum, one can still conclude that
two scalar “charges” exist parametrizing a two-dimensional space of brane

solutions.

A contrast arises upon comparison with the equivalent string theory picture,
where only the original background g5 in the supersymmetric theory exists
as a parameter. Our expectation so far has been that of the two pinch-off
parameters, one may be fixed by a “physicality” condition, by direct analogy
with the equivalent situation with supersymmetry, where the assumption
of no conical defects at infinity allows to fix an integration constant and
determine regular Minkowski space as the only physical asymptotic metric.
The remaining parameter would then match with the string theory original
modulus. However, so far the search for such a physicality condition has not

been fruitful.

1.6 Conclusions

In the present chapter, we have outlined the present state of affairs concerning
the determination of analogs of the supersymmetric classical brane profiles
for effective field theories of non-supersymmetric strings. Not all details
concerning these vacuumless brane solutions can be worked out at present.
Nevertheless, we were able to extract sufficient information to attain a partial

understanding of how physically-motivated “isolated” objects work, in what
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is essentially the minimal example of a vacumless effective theory of this type.

In a vacuumless effective theory, isolated objects in the original string theory
such as D or NS-branes may (depending on the coupling between the form
field and the dilaton) blow up finite pockets of spacetime via the pressure
associated with the flux. These pockets reach an end at some radial distance
from the brane stack, where the dilaton potential overcomes the flux density
and blows up, while the spacetime “boils away” in a pinch-off singularity
where ¢ — oo (see again Figure . The picture appears reasonable, and
provides a picture of the spontaneous compactification at work in the Dudas—
Mourad vacuum [50], but these considerations remain tentative since they

involve a regime that lies outside the applicability of the effective field theory.

We have identified two arbitrary parameters for such pocket solutions that
are independent of the flux number. We have conjectured that these replace
the single modulus of the dilaton at infinity of the supersymmetric case,
arguing that perhaps it may be possible to reproduce these two degrees of
freedom in the string configuration, or more likely to show how an additional

constraint reduces them to a single one.
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Chapter 2

Vacuum bubbles in AdS

Effective theories around metastable vacua provide a more subtle notion of
classical “vacumlessness”. More specifically, it is conceivable for a quantum
theory (especially gravitational) to display multiple maximally-symmetric so-
lutions that are stable to small perturbations, but which nevertheless have
different vacuum energy. In these case, a potential barrier may somehow pre-
vent the higher-energy vacuum from transitioning to the lower-energy one at
the classical level, and yet a decay may still occur via quantum tunneling.
The higher-energy metastable solution provides an unusual scenario where
a classical description based on it manages to capture most of the dynam-
ics quite accurately. Still, a semi-classical improvement introduces localized
events which occur with very low probability, but can bring forth nonetheless

catastrophic global consequences.

Such events are called vacuum bubbles [13| [14]. These are “pockets” of the
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true, lower-energy vacuum within a bulk of the metastable one, which are
bounded by a thin and highly-energetic membrane where the field values
travel across the potential barrier. In a semi-classical, or equivalently thin-
wall, approximation, they are first created by a quantum tunneling process
(nucleation), whose amplitude is well captured by a Euclidean instantonﬂ.
When their nucleated size is so large that the vacuum energy difference due to
the internal volume overcomes the tension of the surface membrane, bubbles
become classical object that expand approaching the speed of light, and

eventually replace E| the metastable space with the true vacuum.

In [12] we set out to give an interpretation for vacuum bubbles in terms of
the celebrated AdS/CFT correspondence[51], and propose holographically
dual notions for metastability and vacuum decay. In this work we focused
on such a scenario involving a metastable AdS vacuum, specifically AdS;3 for
the sake of simplicity. It should be clear that such a setup is very difficult
to produce within the context of a consistent theory of quantum gravity —
for metastability, one requires both broken supersymmetry and some non-

perturbative understanding of the dynamics. For example, we started from

“vacuum

!The instanton in Euclidean signature is also, confusingly, often called a
bubble”, because it possesses radial symmetry and a radial profile matching that of the

actual bubble.
2More precisely, if the metastable space is dS, only a fraction of it will eventually be

replaced with true vacuum, and it will always be possible to escape crossing the bubble
surface. A metastable Minkowski is always completely replaced, albeit in infinite time,

while a metastable AdS is erased in a finite time.
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a simple and surely academic example of a minimally-coupled scalar field
1
L=R-— 5(a<1>)2 —V(®), (2.1)

where V(¢) is a double-well potential, with two different minima where
V < 0. Such an effective Lagrangian, or one containing a sector of this
type, does indeed give rise to a truly stable AdS vacuum and a distinct,
metastable AdS of larger curvature radius. A sufficiently steep potential
wall between the two minima will then guarantee that the decay process will
occur through quantum tunneling and can be treated in a semi-classical ap-
proximation in the standard fashion[14]. However, extracting a Lagrangian of
the kind as an effective description to a string configuration, is a highly
non-trivial matter. Some interesting considerations were already made in
this regard in the preceding chapter, in particular in connection with the de-
cay of a metastable stack of D1-branes in non-tachyonic orientifolds in [16].
These provided an example of an AdS; — AdS3 transition with a possibly
accessible CFTy dual. One ought to consider also the D3-brane scenario
of [Kachru2002Brane/fluxTheory]. These may well entail some general
lessons, since the “bubble holography” program should proceed along lines

that are independent of fine details of the metastable setup.

The core of the proposed correspondence in [12] is that the expansion of a
vacuum bubble and the gradual replacement of a metastable AdS space with
a more stable one of higher curvature is dual to a renormalization group
(RG) flow between two conformal field theories, where the first has a higher
central charge and the second has a lower one. The leaping stone for the

holographic investigation of vacuum bubbles comes from the information-
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geometry program, specifically the connection between minimal surface ar-
eas and entanglement entropy [15]. This approach allows one to bypass the
specific construction of metastable configurations, as it is only really sensi-
ble to the presence of metastability and on the initial and final curvature
radii. That the transition is in particular an RG-flow through non-conformal
theories, seeded by a relevant deformation, is the less trivial statement. It
was suggested by the construction of an explicit example of c-function as
predicted by Zamolodchikov’s C-theorem [52]. The C-theorem in two dimen-
sional quantum field theories states, in brief terms, that a function C(g, i)
depending only the couplings g and on the scale p exists, which is mono-
tonically decreasing over all RG-flows, and which at fixed points of the flows
equals the CFT central charge c. Intuitively, such a c-function counts the
available degrees of freedom, extending the concept of central charge to non-
conformal configurations, and the C-theorem embodies the idea that theories

can only lose degrees of freedom under RG flows, not gain them.

For vacuum bubbles, the computation of minimal surface areas is approach-
able, and the Ryu-Takayanagi formula opens a portal to compute entanglement-
entropies of the boundary theory along the transition, and thus to examples
of physically-motivated candidate c-functions. The formula relates the areas
of minimal surfaces in the bulk of given holonomy with the entanglement en-
tropy associated with binary partitions of the boundary degrees of freedom.
For any given such partition, the entanglement entropy provides itself a quan-
titative tool to estimate the effective number of degrees of freedom, which in
the CF'T case reduces to the central charge, up to a multiplicative constant.

If all of the entanglement entropies are in addition monotonically decreasing
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during the bubble expansion, they all constitute candidate c-functions, and
support the existence of an otherwise inaccessible RG-flow. In fact, this is
what we shall ultimately conclude from our computations. The following
section are therefore devoted to the problem of computing some geometri-
cal quantities entering the Ryu-Takayanagi formula in the background of a

expanding AdS expanding in a metastable AdS space.

It is both convenient and more effective to perform these computations in
the lowest possible non—trivial dimension, thus focusing on the AdS;/CFTy
correspondence. First of all, the theory of minimal surfaces in asymptotically
AdS3 metrics reduces to the study of geodesics in asymptotically H, surfaces,
which allows the direct applicationﬂ of the insightful approach of integral
geometry, which we shall summarize in Section [2.2.1] In addition, for two-
dimensional conformal field theories one can resort to both the classic form
of the c-theorem and the universality of entanglement entropies, which follow
the Calabrese-Cardy formula [53} |54]. For a CFTy on a cylinder, which is
relevant to the AdS; x CFTy correspondence, an interval of angular size 26

has with its complementary interval the entanglement entropy

Sent = = (logsinf + A) | (2.2)

Wl o

where A is a divergent regulator that will be defined more precisely in the
following. Our purpose is to find the behaviour of the entanglement entropy,
interpolating between these known values at the initial and final CF'Ts, for

any value of 0 < 6 < 7, and verify its monotonic behavior.

3The formalism is significantly less transparent in higher dimension, though still func-

tional.
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2.1 AdS — AdS Bubble geometry

We first consider the anatomy of the vacuum decay process. We take two
AdS, vacua, AdS; of radius L_ and AdS of radius L. We imagine that the
AdS; vacuum is metastable, and susceptible to decay induced by tunneling
into the true vacuum AdS}. This implies that the cosmological constant of

AdS} is more negative than that of AdSj;, and thus L_ > L.

At the beginning, the space is AdS™. A quantum-gravitational tunneling pro-
cess creates a localized bubble containing a region of AdS™. For the current
purposes this initial nucleation size can be considered negligible. The differ-
ences in vacuum energy exert a pressure that drives the bubble to expand.
Quickly the bubble surface will both thin out and accelerate to ultrarelativis-
tic speed, replacing an ever increasing volume of AdS™ with AdS™. Because
of the particular geometry of anti-de Sitter spacetime, the bubble will actu-
ally reach infinity in a finite (in fact, bounded) time for any inertial observer.
Therefore a vacuum decay from a metastable AdS space has a distinct “final-
ization” event where the bubble actually reaches the boundary at infinity and
the space inside is fully replaced with AdS™. After finalization, it is difficult
to confidently talk about what the correct outcome is. We argue that since
stress-energy has leaked outside of the conformal boundary, one has to apply
explicit conditions for the boundary’s reaction if existence and uniqueness in
the bulk has to be preserved. In [12] we implicitly chose to assume that the
boundary never radiates any stress-energy back into the bulk, which means
the stress-energy carried by the bubble is simply lost and spacetime is pure

AdS™ from then on. If different boundary conditions are chosen, other out-
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comes are possible, see for example [55]. In any case, our interest is limited
to the expansion phase stretching between nucleation and finalization, and

the question of the outcome is less relevant.

In [12], we employed an approximation where the bubble’s surface can be
treated as infinitely-thin and moving at ¢ throughout expansion. While we
employed the name of “thin-wall” approximation, this is emphatically not
the same limit as the homonymous approximation in the classic literature
on vacuum bubbles [14]. In any case, if the bubble’s surface is indeed a null
hypersurface, specifically a cone, to construct the spacetime metric in the
expansion phase one must then perform a gluing of AdS™ and AdS™ on such
a hypersurface. It is non-trivial that such a gluing can be even effected, and

in fact the gluing surface being null turns out to be an essential requirement.

To perform a gluing, one has to excise the gluing surface from both space-
times, then construct a bijection between the two newly created boundaries
so that their induced metrics match. Consider having to glue across a gen-
eral spherically symmetric hypersurface, defined by a time-dependent radius
R_(t) in AdS_ (given) and R, (t) in AdS; (to be determined). When gluing,
one would have to match lengths both in the d — 2 rotational directions and

the single remaining tangent direction:
95(R-(t)) = g5(R+ (1)), (2.3)
Gu(R-(O))VEVY = g (R O)VEVY, VE() = (1, RL(2),0,...) . (24)

Generically, these two conditions form an over-constrained system for the

radius, and the gluing cannot be performed. However, if the tangent vector
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V" is null, then the system degenerates and a solution can be found. Let us
show that explicitly by employing the following Schwarzschild-like chart for
both AdS. spaces

2 d 2 d 2

ds? = — (1 + T—Q) 1o+ a2, (2.5)
L1 (1 + g—i) 1+ Z

This chart is not global, but it does map the entirety of the decay process up

to finalization. Having placed the nucleation at (n,7) = (0,0), the two sides

of the null bubble surface are simply parametrized as

satisfying both gluing conditions. In other, more geometric terms, such a
null spherically-symmetric excision can always be glued, and the gluing is
determined by ensuring the areas of the spheres are matching. The advan-
tage of chart is that it allows to write the entire geometry in a single

expression involving a piecewise-defined curvature radius:

2 d 2 d 2
ds: = — (1 + £—2) 7172_ 5 + TTQ +r2dO?, (2.7)
a/ (I+z) 1him
L. r>n
Leg(n,r) = - (2.8)
L. r<n

The bubble metric breaks the original SO(2,d — 1) isometry group of AdS,
into the isotropy group of the nucleation event, which is the Lorentz group
SO(1,d — 1). These rotations and boosts keep invariant the bubble surface
and the AdS metrics on either side. The ring on the boundary where final-

ization occurs is also invariant.
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Figure 2.1: The quasi-conformal diagram of the AdS_,AdS, bub-

ble geometry.

2.1.1 Conformal Structure

Since the interest is in probing a holographic description, it is important to
gain an understanding of how the bulk and boundary are geometrically
related, and in which sense the relationship is exotic, in comparison to the
standard construction. Typically, the boundary theory lives in a space which
is the conformal boundary of the bulk, which in turn is formally defined as the
boundary of its conformal compactiﬁcationﬂ The glued geometry of ,

however, does not have a well-formed conformal compactification. It is pos-

4For the sake of precision it should be reminded that for infinite-time AdS space,
the caveat to the formal definition is made that the time dimension is not required to be
compact, as this is impossible for this space, and the same holds for the conformal boundary
itself. Compactness is therefore reduced to a limitation of closure and boundedness in the

spacial dimensions only.
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sible to perform the conformal compactification of both AdST sides, but no
matter how this is done, a hole is produced, located at the finalization events
when the bubble reaches infinity, where no suitable conformal structure can
be defined. Therefore we are left with a conformal boundary composed of two
semi-infinite cylindrical spaces, separated by a “conformal singularity” at the
finalization ring (see Figure 2.1). As we will see in section [2.1.2] this is not
an artefact of the “thin-wall” approximation but an unavoidable geometrical

limitation of vacuum transitions in AdS space.

In |12, we argued that this fact is to be interpreted holographically as a
hint that the boundary theory is undergoing a process that it is carrying
it from an initial CFT_, dual to AdS_ and with a larger central charge,
into a final CFT,, dual to AdS, and with smaller central charge, and that
the transition must happen by passing through non-conformal theories. This
non-conformal flight mirrors the temporary breakdown of the bulk conformal
structure on the geometric side. This general description then points strongly

at the possibility that this process is in fact a renormalization group flow.

2.1.2 Symmetry groups and smooth bubbles

Consider discarding the “thin-wall” approximation we employed thus far, but
maintaining full SO(1,d — 1) symmetry. The bubble would now have to be
described as a full spacetime-dependent field configuration, but because of
the number of symmetries, fields will only depend on a single variable. We

can isolate said variable by constructing an explicitly SO(1,d — 1)-invariant
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quantity, which is unique up to diffeomorphisms.

This is most convenient to do in a chart that makes the symmetries manifest.

Embed AdS, space in R*%! as the hyperboloid
XtX, =1, (2.9)

and call Y* the coordinates in this chart of the nucleation event. Then, the
following quantity
52 = (Xu - Y“)<Xu - Yu) (2'1())

is an explicit scalar of SO(2,d — 1), provided that Y* is transformed as a
vector as well. If, instead, Y* is kept fixed, £? is only invariant for the

isotropy subgroup of Y# which happens to be the sought SO(1,d — 1).

Having this special coordinate defined, we can write the general SO(1,d—1)-

invariant deformation of AdS space:
ds® = L*(£%)ds} s (2.11)

And the expansion of a smooth vacuum bubble can be formed by taking some
smooth L?(x?) interpolating between the radii when going from spacelike to
timelike separation:

lim L(x*) = L+. (2.12)

X*—=Foo
While this obviates the flaws of the approximation of a discrete jump, it
is not a particularly practical construction for the purposes of holography.
First of all, the bubble has finite extent at nucleation time, which means

the solution must be explicitly glued to a nucleation trajectory violating
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both the equations of motion and SO(1,d — 1) symmetry, for example the
Wick-rotated Euclidean instanton. In addition, this smoothing produces no
equivalent interpolation on the boundary, because of the following geometric

considerations:

o All of the level sets of £2 meet at infinity on the finalization ring on
the boundary. Physically, for an inertial observer the bubble’s wall,
even if initially thick, ultimately thin out to zero width approaching
finalization. All previous and later boundary points are not reached at

all.

e The conformal boundary structure of the smoothed bubble metric de-

termined by ([2.12)) is exactly the same as that of the thin-wall metric.

The smoothing actually complicates our following computations considerably,
without procuring a conceptual advantage according to the aforementioned
remarks. For the sake of producing concrete results, we will continue employ-
ing the “thin-wall” approximation, though we maintain that the procedure
sketched in this section would likely prove to be the correct methodology to

effect a smooth vacuum bubble.

68



2.2 Minimal curves in asymptotically AdS; spaces

2.2.1 Integral Geometry of the Hyperbolic Plane

For the purpose of our calculations, it is very useful to review the basics of
integral geometry, which is a handy mathematical tool in the context of the
information-geometry connection, most transparently in AdS;/CFT,. We

follow the treatment of [56] and [12].

Let v be a rectifiable curve in the Euclidean plane. Now parametrize a generic
oriented line by its angle ¢ and its signed distance from the origin p. Let
n(¢,p) be the the number of intersections of the line described by (¢, p) and

the curve ~, and consider the following integral over all possible signed lines:

[ aondono.p). (2.13)

Let us examine the properties of the quantity of eq. . If v is a finite line
segment, and since the quantity is invariant under isometries, it can only be
a function of the segment’s length. It is also easily seen to be additive over
curve concatenation, which implies first and foremost that for a line segment
it is actually proportional to the length, and for a rectifiable curve that it

must be proportional to the arc length. Therefore

length() = C’// do N dpn.(¢,p) . (2.14)
In the case of v being the unit circle,
2 |l <1
Ny = , (2.15)
0 |p| >1
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so that
1 27 1
27r:20/ dp/ d¢:>C:Z, (2.16)
—1 0

which therefore proves the Crofton formula for the arclength of curves in

the Euclidean plane:

length(y) = i// do ANdpn(¢,p) . (2.17)

The formula is suggestive because it appears to encode metric information,
embodied in the length functional, in terms of properties of the space of
oriented lines, or kinematic space. The core of the argument rests on the
isometries of the plane, which are reflected into kinematic space itself — thus,
it is conceivable that it can be repeated in two-dimensional spherical and
hyperbolic geometry, which enjoy the same number of symmetries. Let us
attempt to extend this same argument to the hyperbolic plane. For it to go
through, it’s necessary to replace the two-form d¢ A dp, which acted as an
[SO(2)-invariant volume form for kinematic space, with an SL(2, R)-invariant
two-form w on the space of hyperbolic lines. Thankfully, there is an elegantly
simple way to visualize this 2-form. We are seeking w on the kinematic space

of Hy such that

1
lensth(y) = ; /;< o, (2.18)

for any rectifiable curve v on H.

The set of ideal points, or conformal boundary, of the hyperbolic plane is
topologically a circle. An oriented line is identified uniquely by an ordered
pair of the two ideal points that it connects. In the Poincaré disk model,

we can parametrize using the positions u and v of these points on the unit
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Figure 2.2: An oriented geodesic of Hy in the Poincaré disk model,
with the ideal endpoints u, v marked. The curve is associated with

the boundary interval A = (u, v), with complementary A = (v,u).

circle, with the exclusion of all pairs with u = v (see Figure . We can then
define a mean position ¢ = % and a half-aperture angle ¢ = “Z*, which
establish a chart for the Kinematic space of the hyperbolic plane. Shifts of
¢ are rotations of the disk and therefore isometries, so that the sought form

must be

w=f(0)do A de. (2.19)

To fix f(0), take v to be a circle centered in the origin and of geodesic radius

r. Let < 5 be the half-aperture of a line tangent to the circle. Then ({2.18))

reads , y
27 sinh(r) = i/ dgb/ o f() -2, (2.20)
0 o
= 7(0) = —L sinh(r). (2.21)

de
In the diagram we see highlighted the right triangle with vertices on

the origin, the point of tangency, and the endpoint at infinity of the line.
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Figure 2.3: Displaying how the half-aperture 6 of a line is the

angle of parallelism for its distance r from the origin.

Therefore, 0 is the angle of parallelis for perpendicular distance r, and the
relationship

cot § = sinh(r) (2.22)

holds. Therefore, we are led to the determination of the correct 2-form for

the hyperbolic plane
1

sin? 6

o A do, (2.23)

W= —

with the corresponding Crofton formula

1
length(y) = 1 /}Cwnv. (2.24)

There is a very interesting geometrical structure at play, hinted at by the

®We remind briefly that the angle of parallelism II(x) for perpendicular distance  is
the angle that a line must make with a segment AB of length z to be exactly parallel (i.e.

meeting at infinity) to the orthogonal line to the segment passing through B.
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fact that if w is interpreted as a volume 2-form, then the kinematic space of
H, is naturally endowed with the structure of a de Sitter spacdl Consider

the hyperboloid model of H as a surface in R"? given by the equation
a'r, =—1,1">0. (2.25)

Lines in the hyperboloid model are given by intersection of (oriented) planes
passing through the origin; these will only intersect the hyperboloid if their
normal vector is spacelike. The mapping of each oriented plane into its
oriented unit normal determines a bijection between oriented hyperbolic lines
and the set

tx, =1, (2.26)

which is the natural embedding of de Sitter 2-space. In addition, since all
isometries of Hy actually descend from R'? Lorentz transformations, then we
know that the dS metric that kinematic space is endowed with is invariant
under hyperbolic isometries. Thus, the volume form of de Sitter space must
also be the Crofton form, up to a constant. Then the coordinates a and ¢

are simply recognized as a conformal closed slicing of dSs:

L

ds* = (2.27)

sin? 0
while the null chart (u,v) is in fact the well-known ruling of the one-sheeted

hyperboloid.

This can be generalized further. Imagine some surface which possesses some

notion of "lines” - for our purposes, we request that it is asymptotically flat or

SWhile of course dS; = AdS, up to exchanging time and space, the higher-dimensional

equivalent of K, is dS4, so that the de Sitter picture is more practical.
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hyperbolic, but may have some localized warping. We define the lines of the
surface as the geodesics extending to infinity in both direction. In particular,
in the asymptotically hyperbolic case a line is the geodesic between two ideal
points. Then we can attempt imposing that the Crofton formula holds for

all curves

1
length(y) = 1/ Wy, (2.28)
K

and determine whether a suitable w form exist. Indeed, appears to
be an integral transform from Crofton form on K to the length functional,
or equivalently the metric tensor, on the original surface, so that one may
consider the possibility of inverting the transform. Let us show how to effect
this inversion in the asymptotically hyperbolic case. First, we introduce a
radial cutoff a certain geodesic distance A > 1 from the origin, and consider
the length of the portion of a line inside of the cutoff. This defines a function

on kinematic space, which we parametrize with (u, v)-coordinates:
L(A) (u, U) . (2.29)

It can be defined as the shortest distance between the points u and v on the
cutoff surface. Now, we insert the line itself as the curve v into the Crofton

formula.

1
Ly (u,v) = Z/(* *)EKw(u*,v*)n(u,v,u*,v*). (2.30)

The intersection number is easy to compute: for very large A, given the
oriented boundary interval I = [u,v], and its complement I = [v,u], then
n = 1 if one of (u*,v*) is in I and the other in I, and n = 0 otherwise. We

can assume u* € I and v* € I by accounting for a factor of 2, and ([2.30))
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becomes

1 v u » »
Ly = 5/* / w(u®,v*), (2.31)

and differentiating with respect to v and v yields
0?L
Oudv
The identity (2.32)) is the sought inversion of the Crofton formula, allowing to

du A dv = w(u,v). (2.32)

compute the corresponding Crofton 2-form starting from an asymptotically
hyperbolic metric. We can omit the A subscript on the length, because it’s
easily verified that the second derivative in is finite for A — oo, even
though the length itself diverges. In aperture-center coordinates, this takes

the form

(85 — 93) L(9,0)dO A dgp = w(,0) (2.33)

DO | —

Let us display this inversion explicitly in the vacuum case of an exactly Hy
metric. Take again the cutoff to be at geodesic distance A from the origin.
The segment of line of half-aperture 6 stretching between two points on the
cutoff surface is twice the leg of a hyperbolic right triangle with a vertex in
the origin, an opposite angle of , and a hypotenuse of A. Thus, by hyperbolic

trigonometry its length is
L = 2sinh™'(sin @ sinh A) (2.34)
Now note that for any real x we have the asymptotic expansion for large A:
sinh ™ (x% + (’)(eA)> =logz+A+ 0O (e), (2.35)
so that the length can be expanded as
L =2(log(sinf) + A+ O (e7)) . (2.36)
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It is then clear that the Crofton form extracted through application of ([2.33])
is finite in the A — 0 limit:

doNdy — duNdv

sin®f  2sin?(%52)’

w = —0; log(sin())do A dp = (2.37)

and that it is indeed the Crofton form of Hs.

The framework described so far establishes a dictionary between the surface
with its asymptotically hyperbolic metric and its kinematic space with the
symplectic (and equivalently, Lorentzian) structure given by its Crofton form.
In turn, the Crofton form is a two-form on I that asymptotes to the volume
form of dS, for very large absolute de Sitter times:

_dfNdo

. )
sin® 6

sinf) — 0, (2.38)

since, of course, this is the limit in which lines become distant from the origin.

2.2.2 Holographic Integral Geometry

The previous discussion of integral geometry in the hyperbolic plane takes a
much more physical meaning in the context of the AdS/CFT correspondence,
specifically in a much more clear fashion in the AdS3/CFTy case, thanks to
the Ryu-Takayanagi|15] formula, which connects the area of specific minimal
surfaces in the asymptotically AdS bulk with entanglement entropies across
partitions of the boundary CFT. The precise statement of the formula for
AdS,2/CFT,, is as follows. Take a constant-time slice ¥ of the bulk, and
a corresponding boundary slice 9%, which has SP conformal structure. Con-

sider a p-dimensional region A of 9%, its complement A, and the boundary
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cycle OA separating A from A. Take then all possible p-dimensional surfaces
v in the bulk that are homologous to A; by this we mean both that they have
0A as a boundary and that A and v are connected by a continuous homology

of the closure of the bulk. Then, we have that

I
10 Min Area(y) = Sg(A), (2.39)

where Sg(A) is the entanglement entropy of the subsystem of the degrees
of freedom in A with those in A. For the equation to be sensible, the d-
dimensional area has to be regulated with a spherical cutoff at a large radial
distance A, and the entropy must also be correspondingly regulated with
a UV cutoff at momentum A. The CFT state on which the entanglement
entropy is computed is the one corresponding to the bulk metric in which
the minimal surfaces are sought, according to the holographic dictionary. We
recall that the entanglement entropy of a subsystem A of a larger system,
itself in a generic state given by the state matrix p, with its complement A

is given by the Von Neumann entropy of the reduced state:

Sp(A) = Svn(pa) = —Tr(palogpa), pa=Tralp), (2.40)

where Tr; denotes a partial trace over only the degrees of freedom of A. If
the overall system happens to be in a pure state, so p = |¥) (¥], then the

entanglement entropy is also symmetric:
Sp(A) = Sg(A) (2.41)

as can be easily observed by the Schmidt decomposition of |¥) over the state

sub-spaces of A and A. In this case, the name entropy of entanglement
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is accurate, as it is a quantitative measure of the amount of information

encoded strictly in the entanglement between A and A.

Through the Ryu-Takayanagi formula, entanglement entropy in a conformal
field theory maps to the area of minimal surfaces in the bulk. If the CFT
state is pure, the entanglement entropy will be symmetric, and thus the
bulk will have to be homologically trivial, i.e. devoid of horizons, so that
minimal surfaces of complementary boundary regions will have to coincide.
If instead the CFT is in a mixed state, for example thermal, that will mark
the presence of horizons in the bulk, such as a black hole, which separate
the two complementary surfaces. In such a way one can then provide a very
picturesque proof of the equality of the CFT state’s entropy and the area of
horizon divided by 4G[57].

The implications of this dictionary are manifold, but our attention is concen-
trated on the relationship with integral geometry. While we could perform
the following construction in any dimension, it is arguably significantly more
transparent in the case of AdS3/CFTy, where the minimal “surfaces” coin-
cide with geodesic lines, so we shall restrict ourselves to that dimensionality.
Combining the Ryu-Takayanagi formula with the inverse Crofton formula
one obtains a remarkable identity:

1 0*Sg(u,v)
() = 58 ™ dudw

allowing one to compute the Crofton form for the bulk’s kinematic space,

du A dv (2.42)

evaluated at the line stretching between boundary points v and v, in terms
of the entanglement entropy of the CFT interval from u to v. Since w in

turn allows by definition to compute lengths of arbitrary bulk curves, it is
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thus possible to reconstruct the whole geometry of the bulk entirely from the

information of entanglement entropy.

Also useful us that the equation (2.42)) involves only finite quantities indepen-
dent of a regulator. The finite form 4G w has, in addition, an information-

theoretical interpretation for the CFT as conditional mutual information,

see [56].

2.3 Geodesics in the bubble geometry

The purely geometrical question that we have ultimately reduced to in the
discussion of the holography of bubbles is that of determining the (regulated)
length of geodesics of given endpoints, and in particular the absolute mini-
mum length when multiple local minima exist. This search is performed on
time-slices of the bubble geometry, which take the shape of two hyperbolic
planes of different radii of curvature L_ and L, which are glued at a circular
surface concentric with the cutoff. As explained above, the gluing is effected
in such a way that the surface has the same circumference as measured from
either plane, and this fixes all parameters except for one, which we can take
as the instantaneous radius of the bubble. More specifically, let C be the

circumference of the bubble. This determines the inner and “outer” radii:
C =2nLysinh(py) = 2w L_sinh(p_). (2.43)

The inner radius p, is the geodesic distance from the surface of the bubble

to its centre in units of L., while the “outer” radius p_ is the radius of the
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bubble’s circle if the bubble itself was not there, measured in units of L_.

Any of the two can be taken as a parameter, as they are related by (12.43)).

Directly attempting to solve the geodesic equation in the bubble geometry is
at best wasteful, and at worst flawed. This comes to be first of all because the
geometry is not smooth and the geodesic equation will not thus be a well-
defined differential equation. It is potentially manageable distributionally,
but this grows unnecessarily unwieldy. In addition, almost all points of the
geometry consist of a locally H? space, where geodesics are already known.

We take instead a different, more geometric approach.

We first work out a useful lemma, which we name the no-kink condition.
The statement is as follows: if a geodesic v crosses the gluing surface, the
angle v makes with the bubble as measured from the outer plane coincides
with the angle as measured from the inner plane. This means that if the
entire geometry is depicted with a conformal model, then the curve v will
appear graphically to not have a kink at the intersection. The proof is simple:
consider two points A and B on 7 on the two sides of the bubble, at a distance
less than € from the intersection. In the limit of € very small, the curvatures
of the two hyperbolic planes can be neglected, as can the curvature of the
bubble itself, while the kink angle is, of course, unchanged. In this limit the
glued geometry actually becomes the smooth Euclidean plane. Therefore, if
7 is a geodesic between A and B, it must be the straight line segment, which
means the angles on either side are equal. These angles are the same as those

measured in the original hyperbolic planes, which proves the lemma.

Geodesics of the bubble geometry must satisfy such a no-kink condition at
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the bubble boundary, and be otherwise straight hyperbolic lines of the corre-
sponding hyperbolic plane at any other point. Therefore, the minimal curve
from points v and v on the boundary will necessarily be a polygonal of hy-
perbolic straight segments satisfying no-kink, and our search may be limited

to such simpler curves. We can first of all distinguish two|Z| classes, or phases:

e Vacuum phase: the curve does not intersect the bubble. It will

therefore be simply the straight segment between u and v in H? .

e Injection phase: the curve enters the bubble at one point B (injection
point) and exits from another one at B. The curve is composed of the
H? segment uB, then the H? segment BB, and finally the H? segment
Bv. The position of B and B on the bubble is determined by the no-

kink condition.

u—

For each value of § = 5

Y. one has to determine the geodesic in each phase,

and the actual overall minimal curve will be the shorter one.

Note that if 6 is sufficiently close to 7, the vacuum phase does not exist as the
segment necessarily overlaps with the bubble. In particular, the threshold lies
where the vacuum curve is tangent to the bubble, which happens precisely

when 6 is the angle of parallelism #P*" for the outer radius p_. The vacuum

"We remark that multiple injections are certainly impossible. The finite segment be-
tween an exit and a re-entry point would be a straight segment between two bubble points
that is partially external to the bubble itself, which contradicts the fact that the bubble

is convex.
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Figure 2.4: A time-slice of the bubble geometry in a “double-
Poincaré disk” model. The blue curves are geodesics in the vac-
uum phase, and the red ones are geodesics in the injection phase.
The drawn red and blue curves tangent at infinity are of equal
length and mark the location of the phase transition between the

two phases.
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phase exists only if
cos(#) > cos(0P*) = tanh(p, ), (2.44)

and when this is violated, only the injection phase remains and must therefore
trivially be optimal. Nevertheless, we remark that does not imply that
the vacuum phase is minimal, and in principle the true phase transition may
occur at a larger cos# than cos #**", as we will verify a posteriori. The shape

of geodesics and the location of such a phase transition is depicted visually

in Figure 2.4

2.3.1 Injection geodesic

Let us work out the geodesic(s) in the injection class. This requires deter-
mining the location of the points B and B on the bubble so as to satisfy the
no-kink condition there. By symmetry, the segment BB will be concentric
with uv. Let C' be its midpoint, and O the origin. Define the half-aperture
Op as the angle BOC. Then the triangle OCB is a right triangle, with a
hypotenuse of p, (in units of L) and an angle at O of 5. The missing
angle at B is the angle a;, between the curve and the bubble, measured from

the inside. By hyperbolic trigonometry, this is
cosh p;, = cot ay, cot Op . (2.45)

Moving to the outer portion of the geodesic, it will be the segment in H?
from B to v. For the sake of the following argument, we temporarily reinsert

the disk of H? that had been excised back into the interior of the bubble, so
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as to work with a complete H?. First, extend the segment OB into a line,
then drop the perpendicular from v onto this line to obtain the point D. The
triangles ODv and BDwv are right with an ideal vertex, therefore the angle
DOv = 0 — 0p is of parallelism for the leg OD, and the angle DBv = agyt,
the outer angle between the curve and the bubble, is of parallelism for the

leg BD. Since OB = p_, we have
p_ =OD — BD = cosh™" csc(f — 05) — cosh™" csc(aoy) - (2.46)

It is sufficient to set a;, = gy to result in an equation for Og; after some

algebra one obtains:

v/1+ (cosh p; tanfp)2 = cosh(cosh™" esc(d — 0p) — p_) . (2.47)

Equation (2.47) cannot be solved in closed form, and requires numerical
methods. Let us establish some bounds on the variables. Without loss of
generality, thanks to symmetry, we may take 0 < 6 < Z. Equation ([2.46)

.
necessitates then that 0 < 6p < 6, if one imposes that |a| < 7.

The left-hand side of is equal to 1 at 8 = 0, and is finite and strictly
increasing in the interval 0 < fg < 0. The right hand side equals 1 at the
unique special point g = 6* such that csc(f — 0*) = coshp_. It is also
strictly larger for any other value of g, always convex, and diverges for
O = 6. All of this information implies that the condition will be satisfied
always for exactly two values of 6 on either side of 8*. The two solutions
are two distinct injection curves without kink, which would appear to imply
the existence of two sub-phases, a “grazing” one with a smaller g and a

larger impact angle o, and a “direct” one with the larger g and smaller
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a. In truth, as we will see shortly, the grazing solution is actually a local
maximum of the curve length over fp, and the direct solution is a minimum.
The grazing solution can therefore be discardedﬁ. Thus, we observe that
no-kink is really a necessary but not sufficient condition for a curve to be a
geodesic, and that indeed there is really only one geodesic curve in the class
of injecting polygonals, with the injection point given by the larger solution

0* < Op < 6 of equation ([2.47]).

2.3.2 Minimal Length and phase transitions

For each value of 6, one can compute the length of the geodesics in the
vacuum phase and in the injection phase, and verify which of the two is

shorter. The vacuum phase length can be read off from ([2.36)):
Leemm =2 (A+2logsing + O(e ™)) | (2.48)

while the length for the injection phase (which must necessarily be given as a
function of Az, in turn to be determined numerically from solution of the no-
kink condition) presents a more involved computation. One relatively easier
technique of many is to employ the hyperboloid model for the hyperbolic
plane. If H? is embedded as the surface X*X, = —1, X° > 0 in R"?
then the distance between the two points z# and y* in units of the curvature

radius is

d(X,Y) = cosh™ ' (=X"Y,). (2.49)

8In |12] we have worded this fact incorrectly by stating that the no-kink condition had
one unique solution. To be exact, the no-kink condition has two solutions, as we have just

shown, but only one of them is actually a geodesic.
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We have the following representation for the points B, B, v as vectors in the

hyperboloid models of H? , H?:

B = (cosh p,,sinh p, cos(fp), — sinh p, sin(0p))
BY = (cosh py,sinh py cos(0p), sinh p, sin(0g)) (2.50)
B" = (cosh p_,sinh p_ cos(0p), sinh p_ sin(6p))
= ( )

cosh A, sinh A cos(#), sinh(A) sin(#)) ,

so that it straightforward to compute the entire length through (2.49)) and

the asymptotic expansion (2.35):

[miection(9 )y = BB+ 2Bv = L cosh™ (=B} By,) +2L_cosh™'(=B"v_,)
(2.51)

= 2L_A

+2L_ log(cosh p_ — sinh p_ cos(6 — 6p))
(2.52)

4L, cosh™*(cosh? p, — sinh® p cos(20p))
+0(e™)

There is now a straightforward procedure to determine numerically the length
of the injection geodesic for given values of the parameters p, p_, #: first one
determines the larger 0} of the two solutions of equation through a
simple root-finding procedureﬂ Then, one simply replaces § — 67 into (2.52)).

The first interesting numerical phenomenon occurs at 6 = 0p,,, which is

such that the vacuum geodesic is tangent to the bubble. It is found that

9Care must be exercised in correctly bounding the search as 0% is often quite close to

0, where the right hand side of the equation diverges
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the minimal injection geodesic is shorter than the tangent vacuum geodesic.
In other words, the bubble offers a “shortcut” where diving briefly into the
bubble can prove optimal over traversing the exterior space undisturbed, if
said undisturbed path is within a certain distance from the bubble surface.
This is due to the new more highly curved AdS space within, where distances
between bubble surface points are shorter than they would be if the bubble
was not present. In any case, it physically means that from the point of view
of kinematic space, the bubble has an attractive effect that precedes it, being

able to engulf geodesics before they come in actual contact.

Let us sketch a “phase diagram” of sort based on this information. For
0 > Opar, the only existing phase is the injection one, which is thus optimal.
We also know that 6 = 0, the injection phase is still optimal over the
vacuum phase. Note, in addition, that for very small 6 it is quite clear
geometrically that the vacuum geodesic will be much shorter. Therefore,
there must be at least one critical value 0., in the interval 0 < Oui¢ < Opar,
where a phase transition between vacuum and injecting geodesics occurs.
Indeed, the numeric results do display the existence of such a threshold where
the lengths of the two possible geodesics are equal. From the point of view
of the pattern of the entanglement entropy, it is at 0., and not 0,,,, that

the bubble’s discontinuity occurs.

Such a discontinuity does not present itself in the entanglement entropy itself,

but in its derivatives. In particular, the Crofton form itself:
&L
~ Oudv

presents a J-function discontinuity at 6.4. This d-function wall, expanding

1
w du A dv = —§8§L di A d¢ (2.53)

87



to ever-larger cosf as the bubble grows in real space, can for all intents and
purposes be understood as the kinematic space equivalent of the bubble itself.
We can produce an even more clear understanding by examining numerical
results for w. In particular, since w is top-rank on KC, we can define its scalar

ratio with the vacuum Crofton form of H _:

o A do

sin? 6

w = deSZ— s u}dsZ’_ =L_ (254)

The quantity (2.54]) can be easily graphed, as we will do in Figure and is

also conveniently interpreted: in the initial and final states it has the constant

values
=1 AdS_
(2.55)

and it will interpolate between these values in some manner for intermediate

points.

2.3.3 Shifted bubbles

In the previous section we have proceeded under the assumption of a cen-
tered bubble, meaning that the vacuum bubble is concentric with the cutoff
surface. It may be useful as well to also have control over shifted bubbles
for which this is not the case. However, in a forward approach, computing
directly the entanglement entropy through the Ryu-Takayanagi formula, the
computation would quickly turn unwieldy. Thankfully, we now can travel a
shortcut through cutoff-invariant quantities. A centered bubble can be trans-

formed into a shifted bubble through the action of an asymptotic SL(2,R)
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isometry of the metastable H? , which is the asymptotic metric throughout
decay. These maps do no leave the cutoff invariant, of course, so that the
entanglement entropy transforms in a complex way, involving a mixing of
the infinite and finite. Not so, however, for finite quantities like the Crofton
form. The vacuum Crofton form wys, is SL(2,R) invariant, and the Crofton
form w of a general warped metric will transform covariantly as a 2-form.
This implies by that € is in fact an SL(2,R) scalar, meaning its trans-

formation simply involves the pullback of the change of coordinates.

Let us perform this transformation explicitly. SL(2,R) rotations about the
center of a round bubble are trivially symmetries of the bubble itself, so that
we can restrict to the study of simple hyperbolic translations, which have two
opposite boundary points as fixed points and the bulk diameter connecting
them as an invariant set. Without loss of generality, fix the coordinates so
that u,v = 0,7 are the fixed points of the transformation. After a change of

coordinates on the boundary
=y, (2.56)

the vacuum Crofton form can be written as

du N dv dx N dy
= =4 . 2.57
T T ) 20

The sought SL(2,R) transformations then must act separately on x and y,

leave the form invariant, and have fixed points x,y = 0, +00. It is quite easy

to see these must be simple scalings:

T= AT, Y= Ny (2.58)

89



Which in turn translates straightforwardly into the transformation rule of 6:

0 — cot™! (A cot (¢T+9>) —cot™? (A cot <¢T_6)> : (2.59)

With the explicit transformation in hand, it is now possible to write down
the transformation of the scalar Q from that Qeentra(0) of a centered bubble

to that Quuitea (0, @) of one in general position through a simple pullback:

Q(0, @)shitted = Qcentral (Cot1 <)\ cot (%)) — cot™! ()\ cot <—¢ g 6))

(2.60)

In turn, the Crofton form is reconstructed:

Wshifted = QshiftedwdSQ , (2'61>

which encodes the entire bulk geometry through the Crofton formula. If
desired, it is possible to also reproduce the entanglement entropy / geodesic

length with a cutoff by integrating the Crofton form:

L(ua U) = 4G/ / wshifted(u*a U*) ) (262)

with the limits of integrations chosen so as to both satisfy equation ([2.53|)

and reproduce the correct infinite part of the length with the cutoft:

L(u,v) ~2A+ O(1) (2.63)

2.3.4 Horocyclical limit

In the literature, a domain wall separating two different vacua is a more

common scenario than the spherical bubbles we have studied so far. By
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domain wall in the hyperbolic case (including AdS, Euclidean AdS, or AdS
time-slices indiscriminately) it is meant that, having established a Poincaré

half-space chart
_d2? 4 di?

ds? 5
z

: (2.64)

one takes the transition between vacua to happen at a surface of constant z:
z2=12z". (2.65)

Domain walls and spherical bubbles however are not disconnected classes.
The surface described by is geometrically a horosphere, also called
horocycle in two dimensions, which are hypersurfaces of vanishing intrinsic
curvature and constant extrinsic curvature. Horospheres are by all means to
be considered “spheres with their centers at infinity” as they can be obtained
as limits of regular spheres by simultaneously sending the radius to infinity
and the translating the center to the boundary. Since an expanding vacuum
bubble in AdS expands to infinite radius in a finite time as measured by an
inertial observer, this limit is quite physically relevant: for an observer in an
AdS far away from the nucleation point the vacuum bubble will appear, as
soon as it reaches them in a bounded time, as a traveling, intrinsically flat

domain wall.

Let us effect such a limit explicitly in the present formalism. We would like to
send the radius of the bubble, for example the exterior radius p_, to infinity
while simultaneously performing a shift to keep some point S on the surface
of the bubble fixed. If the bubble is centered, the tangent to the bubble at S
is the line of aperture-center coordinates (6, ¢) = (6par, 0), where again 0,

is the angle of parallelism for p,. The most useful form of this relationship
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in the present case is

cot Opay = sinh p_ . (2.66)

The tangent line will be shifted according to ([2.59)), namely

epar epar
Cot( 5 ) — Acot (T) , (2.67)

which means that if one sends A — 0 in such a way that

Asinh p_ — const (2.68)

as p_ — 00, the tangent line and the point S will be fixed and the limit will
be sensible. Without loss of generality, we may take the constant to be 1,
so that the transformed S will lie at the origin[} This limit transformation
turns the bubble into a horocycle with a center at infinity, in the boundary
point . It would be now possible to compute the relevant limit behaviours of
all the expressions for the geodesic lengths of the various phases obtained in
the previous sections, and these do indeed simplify greatly in this horocyclical
limit. It is however more instructive to simply recognize the well-known set
up that is reproduced in this limit, where calculations are more conveniently

performed.

2.4 Results

With the formalism set up so far, numerical investigation of the entanglement

entropy pattern of the boundary theories throughout bubble expansion is

10The arbitrariness in this shift constant geometrically relates to the fact that all horo-

cycles are actually congruent, in accordance with the loss of the size parameter p_.
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straightforward. For a central bubble, the entanglement entropy is as said
function of the interval half-aperture # and to the parameters of the geometry
of the time-slice, which are the two AdS curvature radii L+ and the current

size of the bubble, given as the exterior r

2.4.1 Bubble S¢,; as a c-function candidate

Now that the necessary formalism has been set up, one can perform a nu-
merical analysis of the holographic entanglement patterns during a centered
bubble expansion and make some important observations. As noted in [12],
for any given interval size 20 and for all values of the other parameters the
entanglement entropy is monotonically decreasing when considered as a func-
tion of the bubble radius py or p_. This non-trivial fact implies that for any

0<bd<I

5, the entanglement entropy itself acts as a candidate c-function

for the dual process to the bubble expansion. The thin-wall approximation
produces the artifact of Sen (6, p—) being non-smooth in p_, in fact it is a
constant in the interval 0 < cosh p, < cscl.y, where the vacuum phase is
still dominating, after which it is strictly decreasing. In particular, if one
takes the interval to be half of the boundary 6 = 7, then 6 = 0 and the
entanglement entropy is actually always strictly decreasing. The schematic

nature of these results is reported in Figure [2.7]
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Figure 2.5: Finite part of geodesic length for sample values of
the parameters, plotted against half-aperture . Observe that
the injection phase becomes optimal at the smaller aperture 6.

than the 0p,, at which the vacuum geodesic becomes tangent to

the bubble.
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Figure 2.6: The evolution of the Crofton form factor €2 in kine-
matic space for an expanding bubble, for sample value of the
parameters (in this example, the final AdS, radius is % of the
original AdS_ radius). As seen, 2 = 1 for all § > 6, since the

AdS_ vacuum geodesic is optimal. Then, a d-function wall (not

depicted) occurs at 6 = 6., expanding with the bubble, while

1

5 expected

the value of Q inside smoothly approaches the value

for the AdS, vacuum.
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Figure 2.7: The finite part of the entanglement entropy for a
central bubble as a function of the bubble’s inner radius p_, for
sample value 2 of the ratio of cosmological constants. Several

curves are plotted for various half-apertures 6.



2.5 RG picture and Conclusions

Motivated by the results obtained through the procedure outlined in this
chapter, in [12] we proposed a holographic dictionary for AdS_ — AdS,

vacuum bubbles, whose full layout is as follows:

e A metastable AdS_ bulk is dual to an “unstable CFT”, which is to say

a conformal theory which admits an IR-relevant deformation.

e The quantum-gravitational nucleation of a bubble of true AdS, vacuum

in AdS_ is dual to turning on an IR-relevant deformation.

e The dynamical expansion of the vacuum bubble in the bulk from the
center towards the boundary is dual to the subsequent renormaliza-
tion group flow that the boundary theory undergoes, passing through
non-conformal theories. In the boundary, the “bubble” is nucleated
initially for zero momentum and then expands in momentum space,
moving against the direction of the RG decimation. There is a 1-to-1

correspondence between bulk bubble radius and RG scale.

e The final step, when the vacuum is fully replaced with AdS, , is dual to
the convergence of the boundary RG flow to a final fixed point, which
is the CFT, dual to that bulk.

The computation of the entanglement pattern for shifted bubbles of Sec-
tion [2.3.3] in addition, allowed us to propose a more precise conjecture on

the relationship between the position of the nucleation event and the relevant
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deformation. Briefly stated, the rotational symmetry implies that a centered
nucleation must correspond to a relevant operator A that is uniform on the
boundary. Therefore, e.g., for any local CFT_ operator A(¢) (with ¢ the
cylindrical chart on the boundary),

(AA(9)) (2.69)

is independent of ¢. On the other hand, an off-centered nucleation would
produce a non-uniform operator, for which the above quantity depends on
¢ (see Figure . As a shift is effected, a dependence on the half-aperture
f, which acts as a momentum scale, is accompanied by a dependence on ¢,
which is a position variable. The resulting transformation of the dependence
can be fully spelled out in terms of the transformation of (6, ¢) of eq. ,

seen as a chart for dS, kinematic space undergoing an SO(1, 3) boost.
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CFT

relevant deformations

Figure 2.8: Pictorial representation of the “shifted renormaliza-
tion” scenario. Just as both nucleation and expansion of a shifted
bubble are related by SL(2, R) bulk isometries, and the final AdS
is invariant, so in the boundary the relevant deformation and
subsequent RG flow are related by kinematic space isometries

SL(2,R) mixing position and momentum, and the final state is

an SL(2,R)-invariant CFT,.
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Chapter 3

Self-similar collapse

In a seminal paper[1§], a curious gedankenexperiment in classical gravitation
was performed, in the simplified simplified setting provided by a massless
scalar field minimally coupled to gravity in four dimensions. The experi-
ment consisted in straddling the boundary separating initial conditions that
lead eventually to the formation of a black hole from those which do not,
and ultimately result in diffusion and flat spacetime. The author’s original
methodology was to modulate spherically-symmetric initial field amplitudes
with an amplitude parameter p, and to study the corresponding evolution
numerically. A sufficiently small value of p cannot lead to collapse, since the
resulting lies within the linearized regime of the theory, while a sufficiently
large value of p must necessarily lead to collapse, as the Schwarzschild cri-
terion is satisfied. Therefore, there must be (at least one) critical value p.

that separates these two phases. By analogy with Statistical Mechanics, the
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corresponding time-evolved configuration is termed critical collapse.

Two suggestive phenomena are observed in relation to critical collapse:

e The exactly critical solution displays an asymptotic discrete space-time

self-similarity, so that there exist an event xj, and a real parameter A

such that the fields are invariant under a transformation (z# — xf) —

A(z" — zfj) as z* approaches xf. This periodic repetition is usually

called Choptuik echoing.

e The near-critical collapses display power-law scalings of observables

with the “order parameter” (p — p,). For example, in numerical simu-

lations the mass of the resulting black hole would scale as

M (p_p*)’y‘

This phenomenon is called Choptuik scaling and v (which was about

0.37 in the specific case of |18]) is called the Choptuik critical ex-

ponent.

These fascinating observations appeared to point to a Statistical Mechanics

framing of classical gravitational collapse, or at the very least are qualita-

tively reminiscent of statistical arguments. It was implicitly argued that,

if the emergence of scale invariance and power-law scaling when approach-

ing critical collapse were analogous, in any way, to the emergence of similar

features near a critical point of a statistical system, it should be possible to

translate corresponding notions into classical gravity and produce non-trivial
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statements. A very natural conjecture would be the universality of critical ex-
ponents, namely the expectation that v be independent of dimension, matter

content, and configuration of initial conditions.

A long series of similar experiments were performed in the following years.
The critical collapse of a complex scalar field was examined in [58], and |59~
62| instead focused on a radiation fluid. Non-linear sigma models are other
relevant systems whose critical collapses were studied in detail, albeit limit-
edly to the hyperbolic plane and the sphere [25]. All these studies confirmed
self-similarity properties, thus also making the connection between critical

collapse and self-similarity worthy of further investigation.

Universality, in its most naive formulation, appeared a real possibility af-
ter [60] extracted the value v ~ 0.36 for the critical exponent in the spheri-
cally symmetric gravitational collapse of a radiation fluid. Within the avail-
able precision, this result seemed indeed consistent with Choptuik’s one ob-
tained for a real scalar. The identification was however invalidated shortly
thereafter, when it was understood that perturbation theory of the self-
similar solution [61] provided a more convenient channel to compute . The
authors treated the convergence in time of the critical collapse to the self-
similar spacetime as akin to a renormalization group flow into a conformal
fixed point, and via this approach could prove the following result. Let the
field configuration hy be a self-similar solution, and consider the spectrum of
scaling dimensions of its perturbations. In other words, perturb the system
letting

ho — ho +€h_,, (3.2)
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where under a scale transformation x* — Ax*, hg is invariant and h_, scales
as A7". Explore then all values k € C such that a smooth solution exists
to first order in e. Then the k* with largest real part will mark the most

relevant mode, and the Choptuik critical exponent will be

B 1
~ Rex*’

v (3.3)

We report a summary of the proof in Section [3.2.1]

3.1 Ciritical collapse and scale-invariance

Let us consider in more detail the thought experiment mentioned in the pre-
vious section. Take gravity coupled to some continuous stress-energy source
in d spacetime dimension (a field, or a fluid), limited to spherical symmetry
for the sake of simplicity. It is always possible to choose some initial stress-
energy distribution that results in collapse into a black hole, by satisfying the
Schwarzschild criterion. Now, we may construct a one-parameter family of
related initial conditions simply by modulating field amplitudes h(t, ) with
a multiplier p:

h(0, ) — ph(0, 7). (3.4)

Now, it is clear that both the total initial mass and the local mass density are
growing functions of p. Therefore, sufficiently large values of p always lead
to a black hole collapse. However, if p is sufficiently small, then a linearized
theory must be an accurate description of the physics. In a free theory

perturbed by small couplings gravitational collapse is impossible. Therefore,
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there is always a finite range of small p such that the final state does not

include a black hole at all.

We argue there must therefore be a critical value p, which is such that initial
conditions with p < p, have no final-state black hole, and those with p >
p« do. The interesting puzzle concerns what happens exactly at p = p,.
If we assume, as will turn out to be useful, that the final state changes
continuously with p when crossing the critical threshold, or in other words
that the critical point is “stable”, then it stands to reason that the black holes
of the supercritical collapses must become small as one approaches criticality,
so as to connect continuously with the empty subcritical final states. The
conclusion, however, is that the final state of a critical initial condition cannot
possess any kind of length/mass scale, since the only one present in collapse
is the black hole mass. Thus, critical collapse must eventually display some

kind of scale invariance.

A critical final state would have to be a static, scale-invariant, non-empty
spacetime of zero mass. This is of course too restrictive a set of requirements,
and the conclusion is that critical collapse may not have a final state at
all, and a naked singularity must appear that prevents continuation of the
solution past its future lightconeﬂ We thus begin to understand from first
principles the qualitative structure of critical collapse. As one approaches
the naked singularity in critical collapse, the solution approaches one that is

spacetime self-similar, namely there exists a chart z* such that scalar fields

!This is not in contradiction with the standard singularity theorems, since the critical

initial conditions are non-generic.
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repeat periodically:
P(Azt) = ¢(a"), (3.5)

for some specific 0 > A > 1, while tensor fields scale with the appropriate
power of A. The point z# = 0 is then the aforementioned naked singularity.
This phenomenon of asymptotic echoing is general, and the periodic solution

that is approached is said to be discretely self-similar.

It is possible on special locations of parameter space for the echoing to be

promoted to full scale invariance, i.e. continuous self-similarity (CSS):
p(Ax") = AMp(at), for any A >0, (3.6)

where M is a generator of an internal symmetryP]

3.2 Continuous self-similarity

A configuration of a classical metric theory is continuously self-similar if two

conditions are met:

1. the metric possesses a homothetic Killing vectors £, that is to say

LeGab = 2Ga - (3.7)

2We may not allow M to be the identity as in the discretely self-similar case, because

the only continuously self-similar solution with no mixing with internal symmetries is
the trivial Minkowski vacuum. Thus, only theories with internal symmetries may have

non-trivial CSS
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2. The scalar sector is scale-invariant up to an internal global symmetry

of generator M, that is to say

L' = Mg’ (3.8)

Given any spacetime event x, the curve
exp(—sé)r, 0<s< oo (3.9)

is actually always of finite length, as can be seen from equation (3.7)). This
means the limit point

lim exp(—s&)z (3.10)

s—r00
which is “always a finite distance away” is either a smooth point of the
spacetime itself, or must house a singularity. However, it is easy to see that
if the metric is smooth at the limit point, then it is flat to first order in
the distance from the point, which implies by equation that it actually
must be flat everywhere. Therefore, any non-trivial CSS metric has such a

homothetic singularity in the fixed point of the dilations.

A CSS solution has two null conical horizons where £2 = 0, which are precisely
the past and future horizons of the singularity. Consider the boundary-value
problem of determining a CSS solution. Assume an initial condition is taken
on some complete Cauchy surface that the singularity is in the future of.
The initial surface can safely intersect the past horizon without passing the
singularity, which means this first horizon, the homothetic horizon, is
merely a coordinate artifact. However, the Cauchy surfaces may not continue

past the future horizon while keeping the homothetic singularity in the future.
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Therefore, the second surface is actually a Cauchy horizon, and CSS solutions
may not be continued past it. Qualitatively, a CSS solution has a structure

similar to that exemplified in Figure [3.1]

3.2.1 The link with perturbation theory

Let us review how [61] prove the relation (3.3) between the most relevant
mode of the perturbation theory of a CSS solution and the Choptuik critical
exponent. The core argument is rather simple. Imagine an initial condition

h(to, ), to < 0 which is sufficiently close to criticality, i.e.
h(to,r) = ho(2) +€F(r), e<1. (3.11)

During time evolution ¢y — ¢, with both ¢y < 0 and ¢ < 0, this solution will
initially approach the CSS configuration ho(z), but then it will diverge again
along the unstable manifold. This is possible to derive also by applying linear
perturbations to the initial conditions (3.11): after sufficiently large time the
perturbation will be dominated by the most relevant mode:

h(t,x) = ho(2) + €C (ti) ) o). ti <1,  (312)

0 0
where C' is some O(1) constant involving the coefficient of the most relevant
mode in the initial generic perturbation. Now, if a black hole forms due to the
perturbation, then collapse will happen at a time such that the perturbation

is of the same order as the unperturbed part. This occurs at the time

t
= R (3.13)
lo
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2 <0

z2=0

b< —=z

Figure 3.1: Conformal diagram of a CSS solution with important

loci marked.
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and since, generically, h_.«(z) = O(1) for z = O(1), then the radius rs of

the horizon itself will scale in the same way

1

Py~ € R (3.14)

which matches the definition of the Choptuik critical exponent, so that we

may conclude
1

Rex*

Y (3.15)

3.3 The axion-dilaton system

The Einstein-axion-dilaton system in d dimension appears in (Einstein-frame)
low-energy effective theories from type IIB string theory configurations. It
consists of a non-linear o-model over the hyperbolic plane H? coupled mini-
mally to gravity

S:/ddx\/—_g(R—%) . (3.16)
Where the complex field 7(x) is limited to the half-plane Im7 > 0. A more
traditional presentation is recovered by decomposing into the real fields of

axion and dilaton as 7 = a + ie~?:

S = /ddx & (R — %e_% ((0a)® + (0¢)2)) : (3.17)

¢ originates as the string theory dilaton, while a is the Ramond-Ramond 0-
form potential of type-1IB string theory. It’s also noteworthy for comparison

with the literature that other equivalent presentations can be obtained by
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performing a target-space biholomorphic transformation. For example, if one

performs a Cayley transform from the half-plane model to the Poincaré disk:

1+ F(x)

= 3.18
(@) = 1 p (318)
then the action is presented with explicit phase symmetry F' — e F":
2dFdF
S:/ddaz\/— (R— —> : 3.19
ST 1)

This is the form in which the system appears, in four dimensions, in the sur-
vey of o-models in [25]. We will employ primarily the half-plane action (3.16]),

though we will make use of the Cayley transform in some computation.

The system enjoys the global internal symmetry of the target-space isometries
PSL(2,R), acting as
at +b a b

, a,bc,de R, det =1. (3.20)
cT +d c d

T —

As is well-known, PSL(2, R) is divided into three non-trivial conjugacy classes,

up to reflections, classified by the trace a + d:

e Elliptic elements with |a +d| < 2 are H? rotations, with one fixed

point in H?2, and generate compact one-parameter subgroups.

e Parabolic elements with |a + d| = 2 are holorations of H?, with one

ideal fixed point, and generate a non-compact one-parameter subgroup.

e Hyperbolic elements with |a + d| > 2 are H? translations, with two

ideal fixed points, and generate a non-compact one-parameter sub-

group.
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By expanding equation (3.20]), we can display the generic infinitesimal form

of the transformations:
or = oo + o7+ 0627'2 , o; € R, (321)

and by comparing the roots of the polynomial with the mapping of fixed
points, the classification is in terms of the sign of the discriminant A =
a? — 4agay. Elliptic elements have A < 0, parabolic elements have A = 0,
and A > 0 is the hyperbolic class. It is useful to choose “canonical” rep-
resentatives from each class of minimal complexity. All hyperbolic elements

are conjugate to a scaling of 7:
T — e, (3.22)

for some A € R (geometrically, X is the geodesic distance that points are

translated by). All parabolic elements are conjugate to a real translation
T—>7T+a, acR. (3.23)

The half-plane chart is however not particularly convenient to display elliptic
elements explicitly. Arguably the simplest elliptic element is obtained by
performing a Cayley transform, then a simple rotation of angle ¢ around
the origin, then transforming back. The result is the following hyperbolic
rotation around 7 = 2:

cos(g)T + sin(

0
2
—sin g)T + Cos(

T — (3.24)

N D ~—

)

As detailed in Section , a configuration (g, 7) of the axion-dilaton system is

continuously self-similar (CSS) if the metric admits a homothetic Killing
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vector ¢ satisfying equation (3.7, and the axion-dilaton field 7 is invariant

under rescalings up to a PSL(2,R) element, which is to say
Lem =10, = ap + ayT + apT? (3.25)

where the «; act globally, in the sense that they do not depend on the space-
time point. Such spacetimes are thus invariant under a specific combination
of dilations and an internal transformation of the scalar sector. Up to an
overall conjugation by PSL(2,R), the CSS configurations are then classified
into Elliptic, Parabolic, Hyperbolic according to the class of the compensat-

ing transformation, and can be brought to a canonical form corresponding

to the infinitesimal versions of the transformations (3.22)), (3.23)), (3.24)):

wT Hyperbolic

LeT = w Parabolic (3.26)

\ £(1+472) Elliptic
where the real parameter w stands in for the infinitesimal form of the original
parameters A, a or 6. Without loss of generality, w > 0, since one may

always apply the discrete S-duality symmetry 7 — —% which preserves the

condition ([3.26)) up to a switch in sign w — —w.

Let us determine a general explicit ansatz for a spherically-symmetric CSS
spacetime. Since & and rotations commute, it is possible to construct a
function 2z on spacetime which is both rotationally and scale-invariant. In
addition, a radius 7 such that the (d — 2)-spheres have volume r?~2Q;_, can

be constructed in the standard fashion. Finally, we define a time coordinate
=-—rz. (3.27)
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By equation (3.7]),  has scaling dimension 1, and therefore so does t. If one

writes a generic spherically-symmetric metric in the (¢,r) chart
ds* = (14 u(t,r))(=b(t,r)*dt* + dr®) + r*dQ3_, (3.28)

then the spacetime will be scale-invariant if the warp factors themselves are:

r

u(t,r) =wu(z), b(t,r)=>5b(z), z= -3 (3.29)

This must be appended with an appropriate ansatz for the axion-dilaton.

Consider this field as a function 7(¢, z) and decompose its value on the surface

t = —1 in terms of a scale invariant function f(z) as follows:
f(2) Parabolic, Hyperbolic
7(—1,2) = : (3.30)
—ii 5 Elliptic

Then, the axion-dilaton at any other time is determined uniquely by expo-

nentiating the scale transformation (|3.26]):

p

(=)« f(2) Hyperbolic
7(t,2) = { f(2) + wlog(—t) Parabolic - (3.31)
() (2) o
—Zm EHlptIC

In conclusion, the general spherically-symmetric self-similar spacetime is

uniquely described by the scale invariant functions

uw(z), b(z), f(z) (3.32)

with u, b real, and f(z) in the unit disk or the upper half-plane depending

on the class.
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If, in addition, the equations of motion stemming from the action (3.16|) are
satisfied, then we can speak of a CSS solution. The field equations and the
axion-dilaton equation take the general form:

9 10,70%T B
2(Im7)2’ VT Im7

- a{aTab}T’

Rap = 0. (3.33)

The equations can be then specified to the CSS ansatz in the various classes,
to obtain ordinary differential equations for b, u and f in the variable z. Any

solution to these equation determines an on-shell CSS spacetime.

3.4 Equations of motion and boundary value

problem

Because the resulting equations of motion for critical collapse in the axion-
dilaton system are impractically complex, within the present section and the
following ones we will frequently omit the long explicit forms of these equa-
tions, preferring to focus more on the conceptual and methodological aspects.
We do remark that we have reported all the full forms of the equations of

motion and their perturbations in the works |16, |17].

The first hurdle is the computation of the Ricci tensor for the metric ansatz ([3.28))
in general dimension d. The computation starts with considering an auxiliary

2-dimensional metric
ds* = (14 u(t,r))(=b(t,r)*dt* + dr?) (3.34)
of which one readily determines the two-dimensional Ricci tensor and Christof-
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fel symbols. Then, the complete metric is interpreted as a warped product

of the auxiliary surface and the ¢-sphere, with ¢ = d — 2:
ds® = ds* + r?dQ7 (3.35)

so that its Ricci tensor can be written as a function of the auxiliary Ricci
tensor and Christoffel symbol, the sphere’s Ricci tensor R;; = (¢ — 1)hy;
and with the explicit full dependence on the unknown dimension through gq.
Through the same technique one can produce the g-dependent V? operator
to be used in the scalar equation. Finally, relation (3.31f) in the relevant class

is replaced into all occurrences of 7 in the equations of motion.

After imposing that all the fields are only functions of z, this provides us
with a system of ODEs of order 1 for b(z) and u(z) and order 2 for f(z).
However, it is relatively easy to remove u entirely. The ij equation (where

ij are indices on the sphere) is remarkably simple:

zb
(q—1)b°

while the tr equation will produce a more complex relation, depending on

the class, which will however allow to solve directly for u/(z) in terms of at

most first derivatives of the axion-dilaton:

u'(2)=U(f, [). (3.37)

After replacing equations (3.36)), (3.37)) back into the remaining equations of
motion, the u variable is completely removed with no increase in the order
for the remaining degrees of freedom. The final system, which is significantly

more complicated in form, is of total real order 5, being first-order in b(z)
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and second-order in the complex f(z). Schematically, it is

f'(z)=F(f, f,b),V(2) = B(f, ,b), (3.38)
where the explicit form of the functions F(f, f',b), B(f, f’,b) is omitted here

for clarity, though reported in full in [16].

The obtained equations of motion must retain a symmetry under global (i.e.,
z-independent) transformations of f(z) that induce a corresponding SL(2, R)
map in 7. These are
)

e’ f(z)  Elliptic

f(z) = 4 f(2) +a Parabolic - (3.39)

e f(2) Hyperbolic

In any case, since these changes on f(z) can be compensated by a global
SL(2, R) transformation of 7, one can conclude the existence of a one-parameter

group of global symmetries to the system of equations ([3.38)).

3.4.1 Boundary conditions

The system of ODEs just obtained presents multiple singular points in z,

independently on the dimension of spacetime and the class, located at
z =20,
z = z; such that b(z}) = 2y,
(3.40)
z = z_such that b(z_) = —z_,

z = +00.
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The singularities at z = 00 are physically simply the hyperplane ¢ = 0 and
are easily removed by continuing a solution across this plane. This can be
done without imposing any additional constraints, so that this singularity
introduces no information to the determination of global solutions. On the
other hand z = +0, that is to say r = 0, t < 0, is a coordinate singularity
akin to that at the origin of a polar chart. For a function F'(z) to be smooth

in spacetime on the z = 40 line, it’s necessary that

F'(0)=0, (3.41)
which means that the fields must satisfy the condition:

f(0)=0. (3.42)

It’s not necessary to impose 0'(0) = 0, because the first order equation of

motion of b already implies that this vanishes.

The singularity b(z) = 2, is actually an horizon where the sign of g;; flips.
It is, in fact, the surface where the homothetic Killing vector £ is null, and it
is itself tangent to £&. We call this null surface a homothetic horizon. This
horizon is a coordinate singularity and one can continue solutions across
it, but because of the requirement of scale invariance, this actually gener-
ates some non-trivial constraints. To extract them, physically it would be
possible to transform to a local frame which eliminates the coordinate sin-
gularity, imposing smoothness of the transformed fields, and to transform
back. However, it is much faster to work directly with the equations of mo-
tion themselves, which automatically include these notions. The b’ equation

is regular at the horizon, while the f” equation is divergent. If we perform a
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near-horizon expansion of the equation, of the kind

F7(2) = G(f(24), F'(z), b(zﬁ)% OB, B=bz)—z,  (3.43)

then the second derivative of f will be finite (a necessary and sufficient condi-
tion for regularity) if and only if the non-linear function G of the lower-order
fields at the horizon vanishes. This establishes a non-linear, complex-valued

constraint located at z;

G(f(z4), f'(24),b(24)) = 0. (3.44)

Before one proceeds up to z_, let us count the free parameters available.
The original system of order 5 has 5 integration constants. In addition, the
homothetic frequency w is a prior: unknown, for a total of 6. However, the
complex-valued condition (3.42)) removes two. In addition, b(0) is pure gauge,
and we can set b(0) = 1 with a rescaling of time, removing one additional pa-
rameter, and does away with other two degrees of freedom. Finally, we
can remove the last parameter by making use of the global symmetry
on f. We choose, for consistency with the literature, to fix the value of f at

z = 0 in terms of a single real parameter x in the following manner:

(

ro, 0<x9<1 Elliptic

f0)=<izy, zeR Parabolic - (3.45)

1+ixy, x€R Hyperbolic
\

Thus, the system with conditions of regularity at z = 0 and the homothetic
horizon is actually fully determined, and the solution set has dimension zero.

Such discrete points in the space of the only two physical parameters, w and

119



Tp, constitute the genuine CSS Einstein-axion-dilaton solutions. One may
picture this as a sort of non-linear version of an eigenvalue problem for the

homothetic frequency.

In any case, a straightforward procedure is required to perform the solution
search. We now sketch the methodology that we employed in [16], which
improves over previous techniques to reduce the dimensionality of the search
space. First, one defines a complex-valued function G(w,zy) through the

following procedure:

Compute f(0) through (3.45)), set b(0) = 1, and f’'(0) = 0 as previously

discussed. This completes a set of initial conditions.

e Integrate the equations of motion forward in z with the given w. Adapt
the time-step to the instantaneous magnitude of b(z) — z so as to have

increased precision when approaching the horizon.

e Stop the integration when b(z) — z < 0 and interpolate the integrated

points to determine the precise location z, of the horizon.

e Use the integrated solution to compute the constraint G(f(z4), f'(z1),b(z4))

and output its value.

The function G(w, x¢) vanishes if and only if there exists a CSS solution with
those values of w and zy. Therefore, the search for solutions has reduced to
the simple problem of determining roots in two dimensions to the complex-
valued G. Because of the low dimensionality, it is not only relatively agile to

determine a root, but actually easy to examine a range of values graphically
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and observe how many discrete solutions exist. We opted for producing
plots of G(w, z) with the contours Re G = 0, Im G = 0 marked in different
colours. The roots are then identified as intersections. Then a properly-
seeded root-finding procedure can determine the exact position of the solution

and provide an estimation of its accuracy.

No parabolic solutions

It is worthy of mention that although we have detailed the definition of a
parabolic CSS solution, this conjugacy class is a degenerate case that actually
does not, generically, contain solutions. This can be seen in several ways.

Assume (b(z), f(z),w) is a parabolic CSS solution. Note that
(b(2), f(2),w) = (b(2),Kf(2), Kw), K >0, (3.46)

is actually a simple dilation of the axion-dilaton 7(¢,r) — K7 (t,r), which is a
PSL(2,R) element and therefore a global symmetry. Thus, the transformed
configuration must also be a solution. This degeneracy implies that the
system is actually overdetermined. In other words, the G-function actually

only depends on one variable out of two:

Glw, z0) = G(1,22), (3.47)

w

but still has two independent components to be made to vanish, so that

generically, no zeroes exist.

In practice, it is possible nevertheless to numerically map G over this one

parameter and observe whether some unknown considerations or relations
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allow the degeneracy to be compensated and solutions may appear. In [17]
we have verified over a large range of dimensions 4 < d < 26 that this does
not, in fact, occur. In light of this, in all of the following we will not include

consideration of the parabolic class.

3.4.2 Results for four and five dimensions

In [16] we applied the methodology described so far to the elliptic and hyper-

bolic classes in d = 4,5, and mapped out continuously self-similar solutions.

In the four dimensional elliptic class, it was well known that a unique solution

exists [63, 64], whose parameters we have estimated to be
w=1.176, |f(0)] = 0.892. (3.48)

In figure [3.2| we reproduce the “phase plot” where curves of vanishing real
and imaginary parts of the function G(w; z) are represented with alternating
colours. Only one intersection can be identified. With this useful tool we

were able to provide strong evidence that no other critical points exist.

The surprise comes when moving to any of the other three cases to consider,
which are d = 4 hyperbolic, d = 5 elliptic, and d = 5 hyperbolic. In all three
of these situations, we have found multiple solutions. In Figures 3.4
we reproduce the phase plots that evidence these solutions. A peculiarity
of the hyperbolic phase diagrams is that they appear to have a series of
roots extending past the limits of numerical precision, in the region of small

Im{f(0)}, so that we find it likely that our survey of the hyperbolic d = 4,5
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Figure 3.2: The G phase plot for d = 4 axion-dilaton CSS solu-

tions in the elliptic class.

CSS solutions is incomplete. It is unknown whether this sequence is finite or
whether infinite hyperbolic solutions exist of increasingly smaller Im{ f(0)}.
For the Elliptic class in five dimensions, instead, we are confident that no

other solutions exist beyond the three that we have determined.

3.5 Perturbation Theory

The perturbation theory of the CSS solutions is significantly more compli-
cated than the determination of the solutions themselves, since the pertur-
bative modes enjoy neither the background’s scale invariance, nor the global

residual SL(2, R) symmetry. Nevertheless, it is feasible to tackle this problem
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Figure 3.3: The phase plot for d = 4 axion-dilaton CSS solutions
in the hyperbolic class.

numerically; in this section we present the methodology we employed in [17].

Let’s say a CSS solution is given in terms of the scale-invariant fields ho(z) =
(uo(2),b0(2), fo(z)). If one perturbs this with a generic, non-CSS perturba-
tion as follows:

h(t,z) = ho(z) + €hi(t, 2), (3.49)

inserts into the equations of motion and expands them in powers of
€, the leading coefficient will contain the CSS equations of motion, while
the next-order term will comprise the linear equations for the perturbation
hi(t,z), with the solution hy(z) entering in the coefficients. These will be
partial differential equations in two variables, for example z and ¢. However,
since the original equations of motion and hy are scale-invariant, so will be
the linearized equations for h;. Scale invariance of the equations means

equivalently that they are autonomous in log(—t). This suggests the use of
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Figure 3.4: The phase plot for d = 5 axion-dilaton CSS solutions

in the elliptic class.
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Figure 3.5: The phase plot for d = 5 axion-dilaton CSS solutions
in the hyperbolic class.

a Fourier-Laplace decomposition of the perturbations in log(—t):

hi(t,z) =Y (1) "h{"(2), (3.50)
where the sum may run over a certain subset of C. Within such a decompo-
sition, hgﬁ) modes of different £ decouple. Thus, because the equations for hq
are linear, one may as well consider these modes one at a time. Therefore,
without loss of generality one may assume the perturbation has a definite

scaling dimension, i.e.
h(t,z) = ho(z) + € (—t) "hi(2), (3.51)

where we have omitted the (k) superscript. The resulting linearized equations
are fully scale invariant, but they possess the additional unknown complex

parameter s.
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3.5.1 Linearized equations of motion

The first computationally intensive step is the determination of the linearized
equations of motion. In accordance with the previous section, we perturb the

scale-invariant fields u, b, f with a perturbation of scaling dimension —x:

u(t,r) = uo(2) + e (—t) "ui(z) , (3.52)
b(t,r) =bo(2) +e(—t) "bi(2) , (3.53)
f(t,r) = folz) +e(—t) " fi(2) . (3.54)
and the field 7(¢, r) is reconstructed from f (¢, r) in the same fashion as defined
before:
11— (=) f(t,r) -
Ty Plliptic
r(t,r) = T . (3.55)
f(t,r) Hyperbolic

These ansitze are inserted into the equations of motion, which are then ex-
panded up to first order in €. The first-order coefficients constitute linearized
equations for the perturbed fields. Just as it was possible to eliminate ug and
its derivatives in the background solution, it is possible to remove u; and its
derivative from the perturbed equations as well, in an identical fashion by
using the equations of motion to rewrite u(z) and u)(z) as a function of the

other first- and zeroeth-order fields.

This long but straightforward procedure, best performed with the help of a
computer algebra system, produces a set of ordinary differential equations for
the linear perturbations (b;(z), f1(z)). The system is of first order in the real

b1 and second order in the complex fi, for a total order of five, again. The
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coefficient themselves depend on the unknown parameter s, and the known

values from the background solution of w and the CSS fields (by(z), fo(2))-

Consider again the counting of degrees of freedom in the solutions. The
equations have 5 integration constants, to which the additional unknown x
must be added for a total of 6. At the singular point z = 0, for fi(2) to be
regular we must again impose f{(0) = 0, removing two degrees of freedom.
By rescaling time, we may completely eliminate the b; perturbation and set
b1(0) = 0, which takes away another parameter. At the homothetic horizon,
we impose as before the finiteness of f”(z), which holds iff both f and f{

are finite there, but this time expanding to higher order in 8 = by(z) — z:

"(8) = %G(ho) Lo, (3.56)
/18) = 3Gha) + 5 H (o, lr) + O(1), (3.57)

where hg, h; schematically represent the background fields and perturbations
evaluated at z,. It can be seen that G = 0 & G = 0, so that the original

constraint is not contradicted. Instead, we have the new genuine constraint
H(ho(z+), hi(z4)|k) =0, (3.58)

where H is by definition linear in the perturbations h,. This linear, complex-

valued constraint removes two more degrees of freedom.

In total, one unknown parameter still remains. We do not possess anymore
the luxury of residual internal transformation to remove the last degree of
freedom. However, note that since both the equations and the boundary

conditions for the hj(z) are R-linear, then if (h;(2),x) is a solution, so is
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(Chy(z), k), for any C' € R. Since we are not interested in determining h;
but simply «, this overall rescaling of the mode constitutes the last removable

parameter.

To conclude, the problem of determining allowed values of the scaling di-
mension —x is determined, and the “spectrum” (in a broad sense, as the

equations are actually not linear in k) is generically a discrete subset of C.

3.5.2 Numerical algorithm

Collect all unknowns in the boundary conditions in a real five-vector:

X = (Re f1(0), Im £1(0), Re fi(z4), Im fi(24), bi(z4)) - (3.59)

The problem can be stated precisely as determining the points in the six-
dimensional (k, X)-space so that a corresponding solution of the linearized
equations of motion exists. We define the five-vector-valued “difference func-

tion” D(k; X) through the following procedure:

e First solve the linear equation at the homothetic horizon H = 0 to
determine f{(z), which completes the boundary conditions at z = 0

and z = z,.

e Integrate forward from z = 0 to an intermediate point z,;q, and also

backward from z; to zpq.

e Output the difference between the two integrations for the five-vector

(b1, Re f1,Im f1, Re f],Im f]), evaluated at zyq.
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A smooth solution exists iff the difference function vanishes. Observe that
the function D(k; X) is linear in X, as the solutions to a linear differential
equations are themselves linear in the boundary conditions, and those in turn
are linear in X since the constraint defined by H is linear. If so, then it must
be that

D(k; X) = A(k)X (3.60)

where A(k) is a 5 x 5 matrix with non-linear dependence on X. If one were
to solve the equation D(k; X) = A(k)X = 0, a solution ray in X would exist
iff

det A(k) =0. (3.61)
Therefore, no high-dimensional non-linear search must be performed: all that

is necessary to determine modes is to find roots to the determinant (3.61)) in

the one parameter x (or two, if complex modes are also sought).

The matrix elements can be computed straightforwardly with 5 evaluations

of the difference function on unit vectors:
Aj(k) = D(k; €)', (3.62)

which therefore allows us to efficiently compute det A as a function of k.
Determining roots is then remarkably easy, and can be performed with a

simple algorithm such as bisection.

Being now able to identify the entire spectrum for x, we may now observe
that Re s is bounded from above. We can thus determine the mode x* of

maximum Re x, refine its precise value with further root-finding, and finally
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output an estimation of the Choptuik critical exponent:

1

7:Re/f*’

(3.63)

with a significantly reduced computational effort and increased precision

compared to performing several super-critical collapse simulations.

3.5.3 Results

The improved methodology that we have sketched in the previous sections
proves fruitful and can efficiently reconstruct the Choptuik critical expo-
nent for the CSS solutions determined previously. The estimate of the origi-
nal, well-known value for v for the unique four-dimensional elliptic solution

matches the known result in the literature [63]:
v = 0.2641. (3.64)

Our original contribution was the determination of v for the other critical
collapse solutions that we examined, namely in the four-dimensional hyper-
bolic class and in the five-dimensional elliptic and hyperbolic classes. The
most interesting result is that the Choptuik exponent is different for all these
solutions, even within the same dimension and the same conjugacy class. To
the best of our knowledge, this lack of universality for the critical exponent,
even for a given dimension and a given matter content, was not noticed pre-
viously. The analogies with Statistical Mechanics apparently do not extend
insofar as to encompass gravitational collapse, or perhaps a more sophisti-

cated formulation of universality is needed, one involving not only the raw
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critical exponent but also some parameters of the CSS solution. We have not

been able to identify this possible generalization so far.

The search for CSS solutions may have some lessons in store also for “vac-
uumless systems”, whose classical description is not encompassed by the
doubly—perturbative regime of String Theory, because curvatures or string
couplings become too large somewhere. The search for CSS solutions is af-
fected by unusual boundary conditions, against standard notions of a flat
asymptotic infinity and standard existence and uniqueness statements. It is
precisely these features of the problem that produce an exotic discrete so-
lution space akin to a non-linear operator spectrum. Still, the rationale for
the number of solutions in each dimension and class has not found, so far, a
convincing physical explanation. It is also important to note that there is no
argument granting that at least one solution exist in a given dimension and

within a given conjugacy class.
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