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Abstract

Quantum computers are expected to be a transformative technology for many do-
mains of science. They promise to bring the most pressing questions of scientific
discovery into focus, where the inherent limitations of conventional computing
approaches fall short. One domain that should be an early beneficiary of quan-
tum computation is quantum chemistry, which is concerned with resolving the
electronic structure of molecular systems. The wavefunction describing a quan-
tum many-body system lives within an exponentially vast vector space and direct
treatment is typically intractable for classical platforms. By contrast, the state
of a quantum computer describes a many-body system and is therefore a better
representation of the problems we aim to solve. While the theoretical value of
quantum computation is clear, there is still a staggering amount of progress to
make before we see this novel computing paradigm providing solutions to prob-
lems of a sufficient scale to be considered scientifically relevant. Today, quantum
hardware is very noisy, and the period of time over which we are able to sustain
its fragile quantum state — the coherence time — is remarkably short. To extract
useful information from current and near-term devices, the field of quantum error
mitigation has seen rapid expansion with the goal of distilling utility from these
noisy devices. Furthermore, to alleviate the burden on quantum hardware, hybrid
algorithms leveraging the strengths of both quantum and classical resources have
been developed which, alongside subspace techniques, extends the reach of current
quantum computers. This thesis presents novel work at the intersection of these
fields, with the development of improved hybrid algorithms, subspace techniques
and error mitigation strategies, complemented by practical implementations that
validate the methodology developed herein. We suggest that this approach reveals
a path towards quantum advantage as hardware matures in the coming years, pro-
viding solutions to vital questions in chemistry.



Impact Statement

In this thesis we investigate algorithms for the near-term application of quan-
tum computers. This involves the development of a flexible quantum resource
management framework, allowing one to reduce the number of qubits required to
represent a problem of interest and thus alleviate some burden on the quantum
compute. While there is a tradeoff between the subspace size and an incurrence
of error, the methodology presented herein facilitates the treatment of chemical
systems at a scale that would otherwise lie outside the reach of current quantum
capabilities. Moreover, our theoretical advances are complemented by practical
validation on IBM Quantum superconducting hardware, necessitating the metic-
ulous implementation of quantum error mitigation techniques. We perform a
comprehensive benchmark of many contemporary techniques on the problem of
ground state preparation for hydrogen chloride, HCI, to identify effective error
mitigation strategies. The optimal strategy is then adopted in calculating the dis-
sociation curve of molecular nitrogen, Ny, consisting of ten separate simulations
on quantum hardware. The results are compared against a suite of off-the-shelf
classical techniques and proves to be one of few instances of a quantum simulation
remaining competitive or even outperforming classical methods of a similar com-
putational cost. Our robust simulation methodology is also applied to the ground
state preparation of an antiferromagnetic Heisenberg model on a single cell of the
Kagome lattice. This problem was posed for the IBM Quantum Open Science
Prize 2023 and entries were assessed on solution novelty and final energy error
obtained from the provided quantum hardware. The qubit subspace approach
developed in this thesis achieved an error ratio of 0.078% and achieved first place
globally [1]. Finally, we simulate the time evolution of an Ising model over two/-
four cells of the heavy-hex lattice, consisting of calculations up to 35-qubits in
size. This tests the efficacy of a novel error mitigation strategy combining two
contemporary techniques: Echo Verification and Clifford Data Regression. In all,
the work presented in this thesis assesses the near-term outlook and practicality of
quantum computation and provides a flexible qubit subspace framework that shall
scale as quantum computers mature, so that we may address systems of increasing
complexity with the endpoint of industrial and/or scientific relevance. With the
realization of large-scale quantum computation, the societal and economic impact
will be profound and shall have implications in many application domains such
as drug discovery and the design of improved catalysis, batteries, solar cells and
nanotechnology, driving advancements in next-generation technologies.
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Novel Contributions

This thesis presents a number of novel contributions to the field of quantum algo-
rithms and error mitigation, particularly related to qubit subspace methods, the
variational quantum eigensolver (VQE) and simulations of quantum systems on
quantum hardware. In addition to showcasing several hardware demonstrations of
successful quantum simulations in the domains of molecular electronic structure
and condensed matter, the main contributions are as follows:

e Hardware-Aware Adaptive Circuit Construction A hardware-aware
modification to the Adaptive Derivative-Assembled Pseudo-Trotter VQE
(ADAPT-VQE) algorithm is introduced. While ADAPT-VQE dynamically
constructs compact and problem-specific ansatz circuits, the modification de-
veloped herein incorporates hardware-awareness to minimize the cost of tran-
spilation for quantum hardware. This is achieved by incorporating qubit-
connectivity constraints from the target quantum device into the circuit
construction, thereby reducing circuit depths post-transpilation. Such an
approach is essential for maximizing the performance and reliability of sim-
ulations on noisy intermediate-scale quantum (NISQ) hardware. A detailed
account of this development is provided in Section [I.4.5]

e The Stabilizer Framework for Qubit Subspace Methods This the-
sis develops a stabilizer-based framework for the efficient implementation
of qubit subspace techniques, including Qubit Tapering and the Contextual
Subspace method. By leveraging the symplectic representation of Pauli op-
erators, many core operations reduce to standard binary logic, enabling scal-
able and efficient computation. Situating the Contextual Subspace method
within this stabilizer formalism facilitates its application to large-scale Hamil-
tonian systems, thereby overcoming a key limitation of earlier approaches.

The relevant aspects of the symplectic formalism are introduced in Section
and the stabilizer subspace projection is detailed in Section [2.3] In Sec-
tion a new algorithm for detecting contextuality is proposed, which sub-
stantially outperforms the existing method and achieves a speedup of several
orders of magnitude. Section demonstrates the integration of the Con-
textual Subspace method into the stabilizer framework and includes the first
simulations using the Contextual Subspace Variational Quantum Eigensolver
(CS-VQE). These noiseless simulations, presented in Section , leverage
the ADAPT-VQE algorithm to solve subspaces, in contrast to prior work
which relied on direct diagonalization.

Moreover, this thesis presents the first demonstrations of CS-VQE deployed
on real quantum hardware for a range of molecular and many-body systems.
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These include the ground state preparation of hydrogen chloride (HCI, Sec-
tion , the computation of the potential energy curve for molecular nitro-
gen (Ny, Section and simulation of the field-free Heisenberg model on a
Kagome lattice (Section [5.3).

The symmer Python package |10] was developed to support the work pre-
sented in this thesis and provides an easy-to-use symplectic implementation
of the Contextual Subspace method. The project secured Unitary Fund
support and has received recognition from the broader quantum computing
community.

Quantum Error Mitigation Benchmarking This thesis presents a thor-
ough benchmarking of many error mitigation strategies in Section [5.1, com-
posed of different combinations of Measurement-Error Mitigation, Symme-
try Verification, Zero-Noise Extrapolation and Echo Verification. With HCI
ground state preparation taken as the testbed system, the goal was to iden-
tify optimal strategies to get the best performance from the available quan-
tum hardware.

Circuit Tiling and Batching To address variability in qubit noise and
improve statistical efficiency on NISQ hardware, this thesis introduces a cir-
cuit tiling/batching technique. This approach improves shot efficiency and
passively averages over non-uniformity in qubit performance by distribut-
ing logically equivalent circuits across different regions of a quantum chip.
Introduced in Section [4.5] the technique has been successfully applied to sev-
eral simulations on hardware, including those of the Ny molecule (Section
, the Kagome lattice Heisenberg model (Section , and time evolution
under the Ising model (Section [5.4). An implementation of this methodol-
ogy is provided in the evtools Python package [8], which was developed to
support the Echo Verification protocols also presented in this thesis.

Novel Echo Verification Error Mitigation Techniques This thesis pro-
vides the first work conducting comprehensive noise modelling of the Echo
Verification method under both depolarizing and more general Pauli noise,
as discussed in Sections [.7.1] and [£.7.2] respectively. A novel approach
is introduced for estimating depolarization rate based on the postselection
probability and purity of an ancilla qubit, enabling more precise characteri-
zation of quantum noise and could also find use as a quantum benchmarking

tool (Section {4.7.1)).

In Section [4.7.4) we also explore various strategies for multi-ancilla Echo Ver-
ification, allowing the simultaneous estimation of several observables. Moti-
vated by the theoretical insights gained from Pauli noise modelling of Section
[4.7.2] a new hybrid error mitigation strategy is proposed, combining Echo
Verification with Clifford Data Regression. This combined technique, pre-
sented in Section [4.8] offers improved mitigation of coherent and stochastic
errors. The practical utility of this technique is demonstrated through a
benchmarking study in Section [5.4] where we simulate time evolution of the
Ising model on heavy-hex lattices up to 35-qubits in size.
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Chapter 1

Near-Term Quantum
Computation for Quantum
Chemistry

Now I go to the question of how
we can simulate with a computer
the quantum mechanical effects.
Can you do it with a new kind of
computer — a quantum computer?
... It’s not a Turing machine, but
a machine of a different kind.

Richard Feynman [11]

1.1 The Qubit

Digital computation operates on the basis of binary information, whereby ‘bits’
— the logical unit of information — may be concatenated to store and manipu-
late more complex expressions. Each bit assumes one of two distinct values, 0 or
1, which can be realized physically by any system exhibiting two distinct states,
such as an electrical signal that might be on or off. Alternatively, one can search
for more exotic two-level systems in which to embed binary information, such as
energy levels in a quantum mechanical system; examples of this are provided in
Table [1.1] Engineering bits into such small-scale systems renders the informa-
tion stored within susceptible to quantum mechanical effects, revealing a wealth
of powerful computational possibilities. For example, while we still possess two
orthogonal states |0) and |1), the principle of quantum superposition allows us to
form linear combinations of these discrete values a |0) + 3 |1) where |a|*+|8]> = 1.
In part, this encodes the probabilistic nature of quantum physics, the Born rule; if
one takes a measurement of their quantum bit - or qubit - then a value of 0 or 1 will
be observed with probability |a|? or |3|?, respectively. This is made richer by the
fact that the amplitudes «, 8 € C may in fact be complex quantities, allowing us
to harness quantum interference and further diversify our computational toolkit.

The normalization criterion above implies that o = €0 cos(f), B = 1 sin(6)

13



NEAR-TERM QUANTUM COMPUTATION FOR QUANTUM CHEMISTRY

for some parameters 0, ¢g, 1 € R and therefore

) = a|0) + B]1)
= €0 cos(6) |0) + e sin(f) 1) (1.1)

= ei¢°(cos(9) |0) + @179 5in(9) |1) )

Looking at the final line of Equation (|1.1)) above, one notes that by factoring out
one of the phases associated with « or §, we can make it global and therefore not
measurable. For this reason, global phases are unphysical and can be disregarded;
it is only the relative phase between basis states, in this case ¢; — ¢y, that we are
able to probe via quantum measurement. Relabeling ¢ <— ¢; — ¢g, our quantum
state can be expressed without loss of generality as [1)) = cos(6) |[0) + ¢ sin(6) |1).
We find that just two parameters 6, ¢ € R are sufficient to fully characterize the
physical state of our qubit, which evokes the popular geometrical representation
of a qubit as a point of the unit 2-sphere as per Figure [1.1}]

Qubit Platform  Physical Realization of Two-Level System

Superconducting Qubits are represented by two energy levels in a super-
conducting circuit containing a Josephson junction. They
are controlled using microwave pulses and operate at the
millikelvin temperature range to maintain coherence.

Ion-Trap Qubits are embedded in two stable hyperfine levels within
the electronic ground state of an ion. The ion is held in
place using electromagnetic fields (Paul traps) and control
is achieved through laser pulses or microwave radiation.

Neutral Atom Neutral atoms (i.e. not ionized) are cooled and trapped
using lasers (optical tweezers), while qubits are stored in
two stable hyperfine energy levels at the ground states
of the atom. To enable coupling between qubits, neutral
atoms may also be excited to high-energy Rydberg states
where they more readily interact.

Photonic Qubits are encoded in properties of individual photons,
such as their polarization (horizontal vs. vertical) or the
path they travel. These qubits are especially useful for
transmitting quantum information over long distances,
such as in quantum communication.

NV-Centre A nitrogen-vacancy (NV) centre in diamond is a type of
defect in its crystal structure; qubits are stored in the elec-
tronic states associated with this defect. These systems
can be controlled with microwaves and measured via flu-
orescence; they remain stable even at room temperature.

Table 1.1: Different example two-level systems for realizing a qubit

14



NEAR-TERM QUANTUM COMPUTATION FOR QUANTUM CHEMISTRY

The orthonormality of |0), |1) allows us identify them with unit vectors in C?,

canonically 0 (1) 1) = (0) (1.2)
=1y =11 '

)= () (13)

Vector states of this form live on the surface of the so-called Bloch sphere,
named after 20" century physicist Felix Bloch. However, this is far from being the
most general notion of a qubit state. In fact, the full interior of the Bloch sphere
encodes quantum information, but in order to describe it we need to formalize our
language surrounding qubits. In the above, we viewed single-qubit quantum states
as unit vectors in C?; more generally, quantum systems live in so-called Hilbert
spaces. Speaking abstractly, a Hilbert space is defined to be a complex vector
space with a notion of angle/overlap between vectors, which could be thought of
as a generalisation of the dot-product in standard Euclidean space. This is called
an inner-product and is commonly denoted by angled brackets (-,-), so that for
vectors 1, ¢ the quantity (1, ¢) € C provides some sort of comparative metric
that relates vectors to each other in the Hilbert space. If (¢, ¢) = 0, then the
vectors are orthogonal with respect to the chosen inner product. Inner products
also induce what are called norms — a notion of vector magnitude and are denoted
|| - |]. Specifically, the norm of a vector is ||| = /|(¥,¥)| € R and the distance
between vectors is evaluated as ||y — ¢||.

In this work we refer to Hilbert spaces with the script face .7#°. This provides
a very general framework in which to describe complex vectors and may even
accommodate infinite-dimensional vector spaces. In quantum computing, one may
typically make the restriction to finite dimensions for practical uses, but bear
in mind that the flexibility of Hilbert space results in broad applicability. For
example, when describing open quantum systems — a useful tool in quantum error

so that

Figure 1.1: The Bloch sphere representation of single-qubit quantum states.
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mitigation — one might need to describe the coupling of a quantum computer with
its environment to understand how to mitigate against the resulting undesirable
effects. Dealing with infinite dimensional space comes with its own difficulties,
but this is thankfully circumvented for much of quantum computing research.

With this abstract Hilbert space framework in place, we now need a way of
talking about mappings between vectors [¢)) — |¢), which one might also view as
a transformation of the global space # — ¢, such as a change of basis. The
mathematical terminology describing this is the linear operator, namely a map
O : A — F between vectors. In particular, it is the bounded linear operators
that are relevant here, ensuring that transformations are “well-behaved” in some
sense, which we denote again with script face as #(°). We shall call an operator
satisfying O = O Hermitian, which describe the “observable” objects in our
space that we will later want to measure, subsequently yielding properties such
as energy. It turns out that the space of bounded linear operators on a Hilbert
space is again a Hilbert space of a higher dimension, meaning it possesses its own
inner-product structure, induced norm and so on. In the finite dimensional case,
all linear operators are bounded, so this is an occupational hazard for infinite
dimensions that we need not concern ourselves with. As such, we may concretely
identify linear operators with complex matrices, with the familiar idea of matrices
mapping vectors onto other vectors.

We will remain on the abstract level for a moment longer, before settling into
the more grounded setting of quantum computing. So far, we have been thinking of
quantum states as unit vectors in a Hilbert space, visualized in the single-qubit case
as the surface of the Bloch sphere in Figure [1.I]above. However, consider how we
as an observer could possibly interface with the state of a quantum system, which
will typically be hidden from us. Instead, we will have an observable quantity
in mind and a goal of evaluating it with respect to some carefully prepared, but
unknown, quantum state. As such, one way of viewing a quantum state is as a
mapping from observables onto real numbers, or mathematically speaking a linear
functional w : Z(H#) — R. The vector states that we have encountered thus far
can be viewed in this way via the inner product O — (¢, O). More convenient is
the Dirac notation, where we write (1| O |¢) = (b, O¢) and will be the convention
going forward. However, another way to write this is ()| O |¢) = Tr(Op), where
p = V) (Y| € B(H) is the outer-product of our vector state [¢)). In this way, one
may also view the state at the level of the linear operators as a linear functional
mapping O — Tr(Op). For a finite two-level system such as a qubit, we can take
H = C? and B(#') = C**% although the framework accommodates more general
units of quantum information, including higher-level systems such as qutrits (3-
level) and qudits (arbitrary d-level, d € N).

The operator p has a few properties, for example the sum of its diagonal
elements is Tr(p) = 1, again revealing a probability distribution of measurement
outcomes. Furthermore, it is Hermitian (p = p') and positive semi-definite (p >
0), meaning all its eigenvalues are non-negative. These properties encompass
a broader class of operator p, namely the density operators () C B(H)
that need not possess the outer-product form above. In fact, the vector states
are a special case of density operator, distinguished by the additional property
v(p) = Tr(p?*) = 1, a quantity we shall henceforth refer to as the purity of a
qubit state. States for which v(p) = 1 are called pure and define one-dimensional
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projectors, while in general we will have v(p) < 1. We introduce the Pauli ‘spin’
operators o = (01,09,03) = (X, Y, Z) where

_ (01 . (0 —i ., (1 0
o =X = (1 0), oy =Y = (@ O)’ o3 =17 = (0 _1) (1.4)

and ¢ is the imaginary unit which, together with the identity operator oy = I,
form a basis of C**2. Note the Pauli operators satisfy XY Z = il. The general
expression for a single-qubit density operator over the Pauli basis is

1 1 L f14+2z -1y
p—§(l+r-0')—§(I+xX+yY+zZ)—§(x+iy 1—z) (1.5)
for real numbers r = (z,y,2), that give its cartesian coordinate in the Bloch

sphere. Note that the Pauli operators are Hermitian (X = XY = Y1 Z = ZT)
and traceless, (Tr(X) = Tr(Y) = Tr(Z) = 0), so p = p! and Tr(p) = 1 is satisfied
by the linearity of the trace operation.

The purity of this general state is given as

v(p) = i[(l +2)% +2(z —iy)(z +iy) + (1 — 2)*] = %(1 +27+y°+2%) (1.6)
and therefore the pure states are those with 22 + y? + 22 = 1. States for which
Tr(p?) < 1 are called mized, with the extreme case * = y = 2z = 0 found at the
centre of the sphere and is referred to as the maximally mixed state %[ with purity
v(31) = 3.

Realizing a qubit is one thing, but for quantum computation to be possible
we need to be able to manipulate its state by moving around the Bloch sphere;
to do so, we need a formal definition for what it means to transform a quantum
state into another. This motivates the notion of a quantum channel: a mapping
between spaces of density operators that describes the valid operations on our
quantum system. An appropriate definition is a map ¢ : Z(#°) — P(H) that
is completely-positive and trace-preserving (CPTP), i.e. p > 0= ®(p) > 0 and
Tr (p) =1 = Tr (P(p)) = 1, thus ensuring we remain within the space of density
operators.

Choi’s theorem on completely positive maps [12] gives us a convenient for-
mulation of a quantum channel: there exist operators K = {K;}1<;<s2, Where
K; € () and d is the dimension of J, satisfying > o, KTK = I (referred
to as Kraus operators) such that

O(p) = > KpK' Vpep(H). (1.7)
KeKk

The number of Kraus terms || defines the rank of this channel, which provides
a rudimentary metric for the purity of ®.

The rank-1 channel is a special case, whereby I contains just a single element
U and thus U'U = UUT = I. This is the definition of a unitary map, and due to
the cyclicity of trace it preserves both the norm and purity of a quantum state:
Tr(UpUT) = Tr(pUTU) = Tr(p) and similarly Tr(Up*UT) = Tr(p?). We can derive
a general matrix form of a single-qubit unitary operator

U:(iZ) (1.8)
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with complex entries a, b, ¢,d € C by asserting

1 0\ _ 4. (laf?+|c* ab+cd
(0 1)‘ UU_(Ea+Ec b]* + |d)?

t_ ja? + [b]? ac + bd
ou (ca+db lc]?+d)? )"

(1.9)

Inspecting the diagonal elements and subtracting pairwise across each row of
Equation (1.8), one obtains |¢[*> — |b]> = 0 = [b]* = |¢|?, while subtracting
cross-terms (i.e. top left of line one minus bottom right of line two and vice
versa) yields |a]? — |d|* = 0 = |a|* = |d|*>. Combined with the fact that
la]? + |¢|> = 1 = |b|> + |d|* and using the property |e?| = 1 for all angles 6 € R,
we may in general express the complex entries of the single-qubit unitary U as
a = cos(0)e’, b = sin(#)e?’, ¢ = sin(f)e?,d = cos(f)e®. Furthermore, following
the argument of Equation (1.1)), we may choose to impose o« = 0 without loss of
generality, as it can be removed as a global phase. To find a relation between
the remaining parameters 3,7, d, we look to the off-diagonals in Equation ;
for example, 0 = @b + &d = cos(#) sin(#)[e”® + ¢®=)]. Given that this must be
identically zero for all parametrizations, it must be the case that e’ 4 €07 =
and so, rearranging, e = —e®*) . Finally, all single-qubit unitaries may be
parametrized with three quantities 0, 5, v, with matrix representation

cos(0)  sin(0)e” ) |

U, 8,7) = (Siﬂ(@)ei7 — cos(6)e'P+) (1.10)

1.2 (Gate-Based Computation and Circuits

In the previous Section we introduced the density operator framework for
representing general quantum states. However, in quantum computation we are
more often than not interested in preparing a pure state on our quantum device.
The density matrix formulation is particularly useful when trying to deal with
quantum noise, since this typically affects the purity of our state and can no longer
be represented as a vector; this framework will be used extensively in Section
where we introduce an error mitigation technique that deals directly with the
purity. Until then, it will be convenient to restrict ourselves to the surface of the
Bloch sphere and return to the vector representation of pure quantum states |1},
which may be viewed as unit vectors in a Hilbert space.

In Equation we made a choice of basis in which to define our pure quantum
states. One might note that the canonical, ‘computational’ basis we chose is the
eigenbasis of the Pauli Z operator introduced in Equation , but we may just
as well have chosen the eigenbases of the X or Y operator, which are

1 1 .
+) = E(IW +I1), =) = E(!@ —[1)) (X basis)

1 ) 1
= E(|0>+1|1>)a |—i) = 7

In Table we show how each of the Pauli operators acts on these basis states,
noting how they act as logic gates on our quantum unit of information; for ex-
ample, with respect to the Z-basis, the X operator is equivalent to the classical
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State | X Y Z
0) 1) i|1) 0)
1) 0)  —i[0) —]1)
|+) +) —il=) =)
|—) == i) )
|+4) i|=i) [+ =)
|=i) | =i+ == [+

Table 1.2: The action of Pauli operators on the basis states in Eqs. (1.2)) and ((1.11)).

NOT operation 0 = 1. Geometrically, the Pauli XY, Z operations are reflections
through the axes of the Bloch sphere, where it is seen in Figure that each
x,1, z-axis is spanned by the eigenbasis of the respective Pauli. It is also possi-
ble to perform partial rotations around each axis, rather than the full 180°; the
rotation gates

X) = cos (0/2)1 —isin (/2) X,
R,(0) = exp ( — i Y) = cos (6/2)1 —isin (6/2)Y, (1.12)
R.(0) = exp ( — z§Z> = cos (6/2)1 —isin (0/2)Z

allow us to traverse the the surface of the Bloch sphere continuously.
It is useful to be able to transform between the different bases in Equations

(1.2) and (L.11) to probe different parts of the Bloch sphere in Figure [I.1] For
example, a unitary operator U satisfying U |0) = |4) would require

1 1
Uso = (0| U |0) = (0+) = —, Ui = (1|U0) = (1|+) = —=, 1.13
0.0 = (0] U|0) = (0]+) NG Lo = (1[U]0) = (1]+) 7 (1.13)
where we have used the definition of |[+) in Equation (1.11)). Similarly, to satisfy
U|l) = |—) we need

1 1
E’ Ui =(1[UN) =(1|-) =-— (1.14)

Uoa = (O U 1) = (0]-) = 7

and therefore yields the unitary U = \% <i _11
that we shall henceforth refer to as “Had” which takes a qubit in a discrete level
|0) or |1) and rotates into an equal superposition state.

We can follow a similar procedure to construct the matrix representation of a
unitary U mapping |+) — |+;) and |—) — |—;). However, we shall first derive the
matrix form of the product UHad and use the definition of the Hadamard gate to
extract U, together with the fact that Had? = I. This time, we need

. This is the Hadamard gate

1 i
O[U |+) = (0] UHad [0) = ? (1 U+) = (1] UHad |0) = EZ s
OlU|=) = (0] UHad [1) = 7 (1|U]=) = (1| UHad [1) = 7
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V2

so that UHad = L C 1.) and using the fact that Had®> = I we retrieve the

10
0

This is the phase gate S that induces a complex phase on the state it is applied
to. As an aside, a gate that we will not use within this work, but is hugely
important in fault-tolerant quantum computation |I|7 is the T" gate, which can be
obtained as the square root of the phase gate T = v/S. A pursuit of longer-term
quantum computation is to engineer error-corrected 71" gates as an element of a
standardized gate set going forward.

So far, our logical operators include many examples of single-qubit quantum
gates: XY, Z, R,, R, R.,Had, S, T, all of which correspond with rotations around
the Bloch sphere in Figure [1.1 However, single-qubit gates alone are insufficient
to exceed the capabilities of classical computation. For that, we need to look past
the Bloch sphere representation to be able to perform multi-qubit operations —
entangling gates that, when combined with the single-qubit operations, unleash
the full potential of quantum computation.

First of all, we need a robust language to talk about collections of qubits. A
convenient mathematical framework to describe the composition of many subsys-
tems is the tensor product space. Consider the general bipartite case in which
we have two Hilbert spaces %) and #%, with bases {|a) .}, {|b) 5} where
N4, Np are the respective dimensions. A tensor product is a bilinear map ® : 54 x
Hp — 4 ® A whose composite elements take the form

[)ap =D dapla), ® [b)g (1.16)
a,b

matrix representation U = (UHad)Had =

where o, € C. The dimension of the resulting composite system J¢ = 54 @ 73
is NoNpg. This may be extended to an arbitrary number of subsystems {74 };, with
dimensions N,, where elements of the composition ¢ = ), 74 may be written

) = Y it [Bodg @ [b1), @ [ba)y ® .. (1.17)
bo,b1,ba,...

with total dimension [, N,.

One can also tensor strings of Pauli operators together to address the individual
qubits in the composite system, P = Py@ P P,®. .. where P, € {I, X,Y, Z}. For
an N-qubit system, the set of all combinations of Paulis (including the identity)
up to multiplication by a complex unit {1,—1,7,—i} is called the Pauli group
Py C B(H). Explicitly,

Py = {aP \Vae{1,-1,i,—i}, P e {l,X,Y, Z}®N}. (1.18)

The above applies for any Hilbert spaces, even with differing dimensions be-
tween tensor factors. To bring this back into the context of two-level qubit systems,

'Quantum hardware is currently very sensitive to noise, but in the future large-scale error
correction will allow quantum computation to be resilient to hardware faults through the detec-
tion and correction of errors on-the-fly. This is different to error mitigation as discussed later in
Chapter
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we have % = C? Vb. In the bipartite case, adopting again the Z-basis {|0),]1)}
for each individual qubit, a general 2-qubit state has the form

[9) = @00 |0) 4 @ [0) g + @01 [0) 4, @ [1) g + 10 [1) 4 ® |0) g + am1 1) , @ [1) 5 (1.19)

where |ago|? + |ao1]? + |@10]? + |@11]? = 1. The power of tensoring qubits together
in this way is we now have access to states that cannot be expressed with the
two systems in isolation, meaning |¢)) # [¢) , ® |¢) 5 for any pure state on each
subsystem; the composite system is greater than the sum of its parts.

It is possible to go from the composite system back to one of its subsystems, say
PB(H3), via a partial trace over A, the unique linear map Try : B(H) @ H#p) —
B(Ap) satistying Tra(A @ B) = Tr(A)B for all A € B(#4),B € B(AB).
Similarly, we can trace over system B via Trp to obtain elements in Z(7%}).
Example demonstrates the existence of entangled quantum states, namely
those which cannot be described by pure states on the isolated subsystems. The
question is, how do we actually prepare such a state in practice?

s )

Example 1.1: Bell State Partial Trace

Take the Bell state
1
¥han =5 (1004 ®10)5 + 14 ® 15 ) (1.20)

our goal is to show that information is distributed across the two constituents
qubits and cannot be separated by means of a partial trace.

With pap = |¢¥) (4],

1

Tralpas) = 5 > (ila®In) ( 10) (0], ©10) (0] + |0} (1], ® |0) (1|5

1=0

—_

+ 11 (01, @ 11 015 + 1) (1, @ [1) (15
)(li)a @ In)

1
— 5 (10) (015 +11) 1l )
L,
(1.21)

However, recall from Section that this is the maximally mixed state,
implying qubits A and B are entangled.
There is a natural entanglement measure for bipartite systems, namely the
Von-Neumann entropy of the reduced density matrix of either subsystem:

S(pap) = —palog(pa) = —prlog(ps). (1.22)

The fact that each subsystem yields the same entropy is non-trivial and is
a consequence of the Schmidt decomposition. For our Bell state example,
we obtain S(pap) = log(2) ~ 0.693, which is maximal for a 2-qubit system.

J

It is clear that local operations on each subsystem are not going to cut it.
What we need is an operation that applies a single-qubit gate V' to a target qubit,

21



NEAR-TERM QUANTUM COMPUTATION FOR QUANTUM CHEMISTRY

labelled ¢, conditional on the state of a control qubit, labelled ¢. This would allow
the qubits to become correlated and means realizing the map

CV . A @ I —H. R I,
|1>c ® |x>t = |1>c ® V |I>t

where z € {0,1}. As a matrix, this looks like

(3 %) = %(Ie + Z.) @I + %(IC — Z.) @V, (1.24)
’ =Py =P_

where P, = %(I + 7) is the projector onto the +1-eigenspace of the Pauli Z
operator, since P, |0) =|0),P_|1) = |1) and P [1) =P_|0) = 0.

It is very common to take V; = X, otherwise known as the quantum NOT
operation, to produce the CNOT, or “controlled-NOT”, gate. The CNOT,, gate
has the action

|0>c ® |0>t = |0>c ® |O>t ’ |0>c ® |1>t = |0>c ® |1>t’

1), @ |0), = 1), @ |1),, 1), @ [1), — |1), @ |0),. (1.25)

We are now able to construct the Bell state of Example from quantum gates:
\%( 0),®|0),+1),®]1), ) = CNOT,,(Had.® I;)(|0),®|0),). For visual ease, it is
often more instructive to present sequences of quantum logical operations in their
graphical circuit form. A quantum circuit is characterized by a series of horizontal
lines (or wires), each representing individual qubits with the relevant sequence of
operations applied in blocks placed atop the wires. The gates are to be applied
left-to-right and, unless specified otherwise, it is assumed each qubit is initialized
in its zero state. To illustrate this, the Bell state preparation can be portrayed as

¢ — Had
=1 (10), ®10), + 1), ® [1), ).
t } f< |

A\

A more complete list of quantum gates, their circuit symbols and matrix repre-
sentations is provided in Table [1.3]

For brevity, throughout the remainder of this work we may drop the tensor
symbols ® when referring to collections of qubits. The following notations are all
equivalent:

|bo) ® [b1) ® |bz) ® -+ = |bobibs . ..) = |b) = [b) (1.26)
where b; € {0,1} and b is the integer corresponding with the binary expansion
b, ie. b =Y ,02V"1"" For example, |1) ® [0) ® [1) = [101) = [5). As an
aside, note the gate-based approach is not the only form of quantum computation;

quantum annealers are analog devices that are designed to simulate Ising models
in accordance with the adiabatic theorem [13].
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Example 1.2: GHZ State Preparation

The process for preparing Bell states can be continued to produce entangled
quantum states of arbitrary size N. The circuit

-

produces states |[¢n) = \%( )@Y+ 1) ®---®|1) ), noting the
N;i?nes Nt‘i?nes

Bell state is the N = 2 case. For N > 3 we obtain the Green-
berger—Horne—Zeilinger (GHZ) states. Preparing these entangled states over
increasing numbers of qubits can give a rough indication of the quality of
a quantum device, probing both the width and depth of quantum circuit it
can sustain.

A wuseful property of GHZ states is we know exactly what the expected
measurement outcome should be: 50% the all zero state and 50% the all
one state. Therefore, it is easy to quantify how close the quantum computer
is to the expected outcome. The relevant metric here is the state fidelity,
which for density matrices p, o is defined as F(p,0) = (Tr, /\/ﬁa\/ﬁ)z. If
p is a pure state, which is the case here with p = |¢n) (Y], then p is a
projector p* = p and therefore is its own square root, i.e. \/p = p. Then, if
o is the noisy state prepared on hardware, we can write

F(lon) (Wnl,0) = (Tr/|vw) (Wnl o [vn) (Unl) = (Ynl o o) -

Therefore, with |¢y) the N-qubit GHZ state as above, we obtain
F(lon) (nl,0) = 3[(0[c|0) + (1|0 |1)] + R[(0] o |1)], where R denotes
the real part of a complex quantity. This can be evaluated by taking
measurements of the noisy state o prepared in hardware. The diagonal
part £[(0] o |0) + (1|0 |1)] describes population statistics, while the offdi-
agonal R[(0| o [1)], evaluated through measurements in the |+) /|—) basis,
describes the coherence.

In Figure 4.2| we present the decay in GHZ population fidelity up to N = 27
qubits for a suite of IBM Quantum Falcon processors, which is calculated
as %(\/% + \/p_1)2 where pg, p1 are the relative frequencies with which we
measure the all zero and all one states in the diagonal Z basis, respectively.
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‘ Gate Circuit symbol Matrix representation
0 1
X/NOT ) —o— (1 0)
0 —i
v tr
1 0
4 —Z]— 0 -1
cos(0/2) —isin(0/2)
R L0 = <—isin(9/2) cos (0/2)
cos (0/2) —sin(0/2)
R, S (m(@/g) cos (6/2)
6—1’9/2 0
R, — R.(0) — 0 etif/2
1 1
Had/H Had|—/ —{H |} \%(1 o
1 0
s 5 (oY)
1 0
T . (0 eiﬂ'/4>
1000
—r 0100
CX/CNOT & 00 0 1
0010
100 0
—— 010 0
¢z 4 001 0
000 —1
1000
0010
SWAP i 0100
0001
10000000
01000000
. 00100000
. 00010000
Toffoli R 00001000
—o— 000007100
00000O0O01
00000O0T10

Table 1.3: Common quantum gates, their circuit symbols and matrix representations.
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1.2.1 (Gate Sets and Universality

The operations introduced in Section and listed in Table[1.3|are over-complete;
many of the gates can be obtained via products of others. This raises the question:
what is the minimal set of quantum gates one needs to be able to perform all the
operations they might desire? More succinctly, what is the minimal gate set
for universal quantum computation? Ideally, one would engineer their quantum
device to perform a small subset of gates to a high level of precision and build
more complex operations from combinations of this reduced set of native gates.

First of all, we need a definition for what constitutes universality in quantum
computation. The special unitary group SU(d) consists of unitary operations U
with dimension d x d having determinant det (U) = 1. A set of quantum gates G is
called universal if there exists dy € N such that for all d > dy and U € SU(d) there
exists an operation generated by G that is arbitrarily close to U. In mathematical
terms, the subgroup generated by G is dense in SU(d).

Earlier in this section we introduced the T gate, which is of particular focus
in fault tolerant quantum computation. Taken together with the Clifford gates
{CNOT, Had, S}, this forms a universal gate set often dubbed “Clifford + T”.
However, there are other examples of universal gate sets, such as { X, VX,R,, CZ}
found as the native operations on IBM Quantum Heron processors; the v X gate
here serves a similar purpose as the Hadamard gate, namely creating equal super-
positions albeit with an additional phase. The most compact set is { Toffoli, Had},
noting that the Toffoli gate alone is sufficient to capture all of classical computa-
tion — adding the ability to create superpositions through Hadamard gates then
graduates us to fully universal quantum computation [14, |15].

1.2.2 Quantum Measurement

The beguiling concept of measurement in quantum mechanics is central to the dis-
cipline. As we we shall discuss in Chapter [3| at greater length, quantum measure-
ment cannot be thought of in the same way as in classical, “Newtonian” systems.
In the classical picture, physical properties are presumed to exist independently of
observation and the act of measurement simply uncovers some preexisting truth.
In the same way that a ruler reveals the length of an object, it is not controversial
to believe that its length is present irrespective of whether we choose to measure
it. The same does not hold true of quantum systems. Instead, quantum systems
are fundamentally probabilistic and their state is described by a wavefunction, as
discussed in the former parts of this Chapter. The act of measurement induces a
non-unitary transformation referred to as wavefunction collapse, wherein the sys-
tem transitions from a superposition to a single eigenstate corresponding to the
observed quantity. This transition is not predicted by the unitary evolution that
governs the Schrodinger equation and consequently introduces a discontinuity that
is profound in both its conceptual and practical implications.

The measurement problem has inspired a wide range of interpretive responses,
each attempting to reconcile the apparent contradiction between the continuous
evolution of quantum systems and the discrete outcomes observed in measure-
ment. The Copenhagen interpretation 16, |17] treats wavefunction collapse as a
fundamental feature of quantum mechanical theory and posits the observer as an
inseparable element of the measurement process. By contrast, the many-worlds
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interpretation [18, |19] eliminates collapse by asserting that all possible outcomes
occur simultaneously in ever-diverging parallel universes, and measurement aligns
us to one of those possible realities. Regardless, the process of quantum measure-
ment is non-reversible and destructive, with further potential for learning anything
from the wavefunction being lost. This can occur intentionally through measure-
ment by an observer, or unintentionally through leakage into the environment,
thus causing a loss of coherence E]

It is often stated that the power of a quantum computer lies in the exponen-
tially vast space it can explore, but the nature of quantum measurement means it
is not in general possible to learn the internal state of the system. This makes al-
gorithm design very difficult; quantum algorithms need to be designed carefully to
circumvent the measurement problem, for example by exploiting quantum inter-
ference effects to isolate amplitudes of the wavefunction that have been designed
to encode the target solution. The Quantum Fourier Transform (QFT) is typi-
cally how this is achieved in practice and is a common circuit primitive found in
algorithms such as Quantum Phase Estimation (QPE).

We now describe the general framework of quantum measurement as adopted
for this work. Given a set of measurable outcomes, we shall associate with each
outcome m a measurement operator M,,. Suppose now that we have a quantum
state [¢), then the probability of observing outcome m is given by

p(m) = (Y| M}, My, [4) . (1.27)

Since the p(m) are probabilities they should sum to one, specifically > p(m) =
(Y| >, M M,, |¢) = 1 and consequently the measurement operators must satisfy
Yom M M, = 1, the so-called completeness relation. Post-measurement, the state
of our quantum system is now

¥) — M. [0}, (1.28)

p(m)

Define F,, = MIan, which satisfies Zm F,, = 1 from the completeness
relation above, encoding a probability distribution over measurement outcomes.
These F,, are positive operators, meaning (¢| Fy,, |¢)) > 0 for all vectors |¢) (which
do not need to be normalized). This positivity may be seen as (V| Fy, [¢) =
||ML,,, |) ||* > 0; the consequence is a non-negative spectrum, again speaking to
an underlying probability distribution. The terminology for this generalised mea-
surement scheme is a “positive operator-valued measure” (POVM), where each
F,, is referred to as a POVM element, which provides a highly flexible framework
and allows one to describe a very broad notion of what measurement means in
quantum mechanics. For example, the POVM formalism permits “weak” mea-
surements, which cause only a slight disturbance to the wavefunction, without
resulting in total collapse.

A special case arises when the measurement operators M, are projections,
i.e. M2, = M,,, which is the unique instance whereby the measurement operators
are themselves the POVM elements, namely F,, = M,,. To demonstrate projec-
tive measurements, suppose we have a quantum state 1)) = >  a,,|m). The

2A semantic point is that, in the case of decoherence, it only appears as though the wave-
function has collapsed as it is absorbed into the universal wavefunction encompassing all things.
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measurement operator corresponding with outcome m is given by the projector
M,,, = |m) (m|, noting that > |m) (m| = 1 as required. Then, the probability of
observing m is given by p(m) = (¥|m) (m|y)) = |a,|*>. We see that this encodes
the Born rule postulating the probabilistic nature of quantum measurement.
Typically, a quantum computer will facilitate measurement in a fixed basis,
usually that of diagonal Pauli Z operators. This means the expansion of |¢)
above should be viewed in the computational basis where |m) is identified with
a tensored binary bit string. However, we are often required to make measure-
ments in different bases in order to measure any given observable; to achieve this,
we need to perform a basis transformation prior to readout such that diagonal
measurements alone are sufficient to probe any desired measurement basis. This
is possible using just two quantum operations: the Hadamard and phase gates.
Observe that
7 = HadXHad = HadS"Y SHad. (1.29)

Therefore, to measure in the X basis we simply apply Had before readout, while
for the Pauli Y measurement we apply Had - ST; this is depicted in circuit-form in
Figure (1.2

X A
=] = --‘—|Had|—/7<
Y Z
R ..._ST_|Had|_/7(

Figure 1.2: Change-of-basis operations facilitating measurement in the Pauli X,Y
bases when only diagonal Pauli Z readout is available.

1.2.3 Exponentiating Pauli Strings

Given a Pauli operator P € Py and some angle 6 € R, we would like to implement
the exponential Rp(f) = e~i5P as a quantum circuit; this can be achieved with
O(N) gates. We shall first assume that P consists of just Pauli I, Z operators,
i.e. Pe{l,Z}®N with the qubit positions acted upon by Z indexed with the set
T. Observe that

—i$ 797z ’b)

cos(0/2) —i(—1)*® sin(9/2)) |b)

— o is(=1)® ).

‘ (1.30)

where we have omitted the qubit positions that are identity. Therefore, we may
realize this operation by storing z(b), the parity of |b) over Z, in one of the qubits
and applying to it an R, gate, defined in Table

In Equation (1.30)), even parity results in a phase e whereas odd parity
yields e*®/2; these are obtained by application of R.(6) to each of |0, |1), respec-
tively. The parity computation is accomplished via a ‘cascade’ of CNOT gates
between adjacent qubits. We are now in a position to explicitly write down a
quantum circuit that effects the exponentiation of a Pauli string consisting of I, Z
operators, presented in Figure [1.3]

—i0/2
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D
Ay
D
3

Tz |ei3%%%2 -

] — S R.(0)

fan)
A\

Figure 1.3: Circuit to realize the exponential " where P consists of just Pauli I, Z

operators. The qubits set to identity are omitted from the diagram.

This is the basic building block for exponentiating an arbitrary Pauli string,
as we are able to make a change of basis from Pauli X,Y operators to a Pauli Z
via the basis change described in Section[1.2.2] Once this transformation has been
applied, the problem is reduced to that of before and we perform the same parity
computation and R, rotation. We end with the reverse transformation taking us
back into the original basis, with the complete circuit presented in Figure [I.4] At
most 4N + 1 single-qubit gates and 2(N — 1) CNOT gates are required to realize
the Pauli exponential (6N — 1 gates in total, meaning the depth-scaling is linear),
with the worst case encountered when P consists solely of Pauli Y operators acting
on all N qubit positions.

T}l
Iry S

1 T .5t H{ Had

o B Had 77;Q2®(IXUZYuIZ) -

D | Be(0)| 1= Ix; 2 A :

— — Had Had

| | z,]

Figure 1.4: Circuit to realize the exponential e’’” where P is an arbitrary Pauli string.

The qubits set to identity are omitted from the diagram.

It is noted that in the Trotterized circuits of the following Section there
will be many blocks of exponentiated Pauli strings of the form displayed in Figure
[[.4] and it is possible that gate cancellation will occur between adjacent blocks
where we have SST = Had? = 1. Furthermore, the implementation presented here
is not unique — different circuits yielding the same quantum states are possible.
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1.2.4 Trotterization and Hamiltonian Simulation

For operators A, B € B(s7), we have e8P = e4eB if and only if A commutes
with B (i.e. [A,B] = 0), contrary to the familiar rules of exponentiation for
numbers; in the more general case, the Lie product formula states

AP = lim <6A/”eB/”> . (1.31)

Alternatively, we may write e?e? = ¢ where the Baker-Campbell-Hausdorff
(BCH) formula expands the generator C' as

C=A+B+ AB+ 1—12[/1, 4, B - 1—12[3, A B +..., (1.32)
in which the commutators become increasingly nested for higher order terms in
the expansion [20] 21].

The technique of Suzuki-Trotter truncates the BCH expansion to yield an
approximation of the exponentiated operator sum. For example, given a sum of
operators y _, 0pAx, 0 € R, we may write the first-order Trotter expansion

. nr
e 2k Ok o <Helz?‘k> : (1.33)

k

where the exponentiated Pauli operator ei%A’“ may be performed in-circuit as
described in the previous Section using O(N) quantum gates. We refer to
the parameter nt € N as the Trotter number, which controls the accuracy of the
approximation (becoming exact as nt — 00).

Used in combination with Variational Quantum Algorithms (VQAs) of the
sort introduced later in Section [[.4] ny = 1 is often sufficient to achieve high
levels of accuracy since we expect the optimizer to counteract the Trotter error
via its circuit parameterization [22]. It has also been observed that the ordering
of Trotter terms has an impact on errors [23]; as such, there is contention over
Trotterized UCC and whether it is well-defined as an ansatz, since the ordering
of terms can induce variations in error beyond chemical accuracy, particularly for
strongly correlated systems [24].

In Hamiltonian simulation, the goal is the realize the time evolved form et of
some Hamiltonian H = ), H, in-circuit for the purposes of analyzing its spectral
properties through quantum computational techniques. Trotterization is a natural
way to achieve this, although one must be mindful of the error that accumulates
as we evolve for longer times. This is because, to first order

el =T e + o). (1.34)
l

We can combat this error, which is quadratic in time [21], by discretizing the
evolution into K time slices of duration 7 such that ¢t = K'7. Then, by observing
that e’ = (e1™)X one can approximate

K
e~ ( 1T eiHéT) (1.35)
4
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where K serves the same purpose as the Trotter number nt above.

In doing this, we have confined the error accumulated at each step to O(72) so
that the overall error is proportional to K72 = t2/K. Therefore, a finer discretiza-
tion results in a more accurate approximation, but reciprocally leads to increased
circuit depths. There are also higher-order Trotter expansions that can be defined
recursively [25, [26] and improves the error scaling to higher powers of 7; at order
2k for some k € N the error in each step is O(7%+1).

A branch of Hamiltonian simulation has pursued the development of stochastic
approaches to circuit compilation, initiated with the qDRIFT algorithm [27]. The
idea is that, while each circuit layer does not reproduce the Hamiltonian evolution
operator exactly, the process approximates the operator in expectation. This leads
to favourable asymptotic scaling that is decoupled from the number of terms in
the Hamiltonian. Since that seminal work, there have been several advances in
stochastic circuit compilation |28, 29] that produce incremental improvements in
circuit depth scaling.

Trotterization is not the only method of Hamiltonian simulation; there is a
rich class of algorithms based on the concepts of block encoding and Quantum
Signal Processing (QSP). The combination of these techniques gives rise to the
Quantum Singular Value Transform (QSVT) algorithm [30, 31], which applies
functions (typically Chebyshev polynomials) to the singular values of a block in
a unitary matrix. This is usually constructed as a walk operator and the work of
Low et al. [32] demonstrates how this can be achieved. Note that while the overall
walk operator is unitary, the matrix encoded within one of its blocks need not be
— a Hamiltonian matrix, which is Hermitian and not in general unitary, can be
encoded in a walk operator and subsequently subjected to some transformation. In
the context of Hamiltonian simulation, the time evolution may be realized via an
approximation of the exponential function by Chebyshev polynomials. QSVT is
more general than Hamiltonian simulation alone, however, and provides a unified
framework for algorithm design. For example, it encompasses algorithms such as
Unstructured Search (Grover’s), Eigenvalue Thresholding/Filtering and Quantum
Phase Estimation [33].

1.2.5 Circuit Transpilation

When constructing a quantum circuit, one needs to be mindful of the quantum
hardware that it will be executed on. The connectivity between qubits will vary
device-to-device and therefore if a circuit tries to entangle qubits for which there
does not exist a physical coupling channel, then we will run into problems. Take
for example the heavy-hex topology found on IBM Quantum hardware, viewed
in Figure [[.5] Each node of the graph represents a qubit, while edges between
nodes indicate pairs of qubits that may be coupled natively on the device. The
heavy-hex graph consists of qubit cycles of length 12. If a particular quantum
circuit calls for the entanglement of qubits that are physically separated across
the device, then we are faced with a dilemma.

Despite a physical connection not being available, it is in fact possible to
entangle distant qubits via the quantum SWAP operation, given in Table [I.3]
The effect of this gate is to exchange the quantum state of two qubits; therefore, if
we wish to entangle two non-adjacent qubits and there exists a path of connected
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Figure 1.5: The heavy-hex qubit topology found on IBM Quantum hardware.

qubits between them, then iterated application of SWAP gates on neighbouring
qubits will eventually bring the two states onto adjacent qubits, at which point we
may couple them as desired. However, SWAP operations are expensive; they can
increase circuit depths considerably, rapidly consuming the coherence time of the
device, as well as being incredibly noisy. SWAP gates are therefore to be avoided
at all costs for near-term quantum computation.

Circuit transpilation concerns the mapping of a quantum circuit onto a par-
ticular device layout. As discussed in the previous paragraph, if the entangling
structure is not natively supported by the target hardware, it is the job of the
transpiler to identify a way of routing qubits and performing SWAPs to arrive at
a physical realization of the circuit in question, ultimately yielding a set of instruc-
tions for the quantum computer to carry out. An effective transpilation routine
will attempt to minimize the depth of the resulting effective circuit by possibly
reordering qubits and decomposing gate blocks in different ways. In Figure [1.6
we demonstrate a small example of transpiling a 4-qubit cycle of entangling gates
onto a linear qubit layout, requiring two SWAP operations.

Moreover, a particular device will have a native gate set (as discussed in Section
that it must adhere to — the transpiler must also decompose the target gates,
which may not appear in the quantum computer’s gate set, in terms of operations it
is able to perform. We provide an example of this in Figure[1.7] which decomposes
the circuit of Figure when only CNOT and Hadamard gates are available on
the hardware.

As with many graph problems in mathematics, circuit transpilation is very
challenging to implement in a close-to-optimal way. Algorithms such as the SWAP-
based bidirectional heuristic search (SABRE) make an attempt to do so [34],
although there is a probabilistic element to this technique that results in a possibly
different circuit at each execution. Often, SABRE will be run multiple times and
the shallowest depth will be selected, however this is not ideal.
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SWAP SWAP
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do do

a1 — 41 do
qz a2 :E 43
43 43 qz

Figure 1.6: Transpilation of 4-qubit circular entanglement in a linear topology. Note
the ordering of qubits has changed at the end of transpilation.

do ¢ Had Had a1
Q1 M1 Had ¢ D Had Had b * o
Had |4+ Had T Had }éL{ Had | @3

Had [b{ Had |

fan)

q2

Figure 1.7: Transpilation of the circuit in Figure when CZ and SWAP gates are
not available, instead decomposing into CNOT and Hadamard gates.

1.3 Quantum Chemistry Preliminaries

Quantum computers are expected to be transformative in many domains of science,
offering computational speed-up over conventional algorithms to facilitate the elu-
cidation of physical systems that are otherwise classically intractable. Quan-
tum chemistry has been investigated as an application of quantum computing
for almost two decades [35]. Instances of the electronic structure problem are
intrinsically quantum mechanical, are challenging for classical methods at the
few-hundred qubit scale and are of scientific and commercial importance. Con-
siderable development of quantum algorithms for quantum chemistry has taken
place.

Progress in hardware has lead to many small demonstrations of quantum chem-
ical calculations on noisy intermediate-scale quantum (NISQ) devices. These
demonstrations evaluate both the practicality of quantum algorithms when de-
ployed on real hardware and also evaluate NISQ hardware against a real-world
application benchmark. Variational quantum algorithms have been studied ex-
tensively for their shallow circuits, making them appealing for NISQ applications
where modest coherence times limit the depth of circuits that can be executed
successfully. The current state-of-the-art, summarized by a representative sample
of Variational Quantum Eigensolver realizations in Table (which is the subject
of the following Section , show that much progress is required before quantum
computers can challenge their classical counterparts.
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The goal of quantum computing for quantum chemistry is to achieve quantum
advantage. This implies the existence of problems where all classical heuristics
fail to produce adequate results, while a quantum algorithm succeeds in render-
ing its chemical features to sufficiently high accuracy to be scientifically useful.
This means larger systems and/or basis sets H than are classically tractable, al-
though candidate advantage applications are not easy to find, as recently brought
to attention |36} 37] . The threshold of “chemical accuracy” is used as a typical
indication of success which, in NISQ demonstrations, is taken to mean the quan-
tum calculation achieves an absolute error below 1 kcal/mol (4 kJ/mol, 1.6 mHa,
or 43 meV) with respect to the numerically-exact result in the chosen basis. This
is an abuse of terminology as small basis set calculations will not typically be
chemically-accurate when compared against experiment, which is the ultimate ar-
biter of computational utility; it has been suggested that algorithmic accuracy is
more appropriate terminology [38]. The point of interest is whether NISQ devices
are able to achieve sufficient resolution such that, with realistic basis sets, we may
address chemically-relevant questions and many demonstrations fail to meet this
standard.

The NISQ hardware available today limits demonstrations to small basis set
calculations on small molecules that do not challenge the classical state-of-the-art.
Continued hardware development should enable a sequence of demonstrations of
increasing size whose endpoint is quantum advantage. Quantum simulations that
address small-scale versions of problems whose large-scale realization is believed
to be challenging or out-of-reach of classical chemistry methods are therefore good
targets. In the previous Sections [I.1] and [I.2] we introduced the general toolkit for
working with qubit systems; the goal now is to situate quantum chemistry within
this framework.

1.3.1 The Molecular Hamiltonian

Generally speaking, a Hamiltonian describes the total energy of a physical system
and is therefore comprised of terms relating to either kinetic or potential energy:

H=T+V. (1.36)

The explicit form of these operators is dependent upon the system they model;
in quantum chemistry, we are interested in a many-body system describing the
distribution of electrons around atomic centres. Specifically, we consider a system
of M nuclei with masses m; and positions R; € R3 i € {1,..., M}, and N
electrons with their positions labelled r; € R?, i € {1,..., N}.

The kinetic part splits into nuclear and electronic contributions, namely

T = Thue + Telec (137)
where
M hQ N h2
Toe=— o Ag, Taee = — > oAy, 1.
nuc sz R;y Lelec ' 2m6 i ( 38)

i=1 =1

3Basis set meaning the atomic orbitals chosen to represent a molecular system. The so-called
“minimal” basis set STO-3G (Slater-type orbital, 3 Gaussian functions) is used throughout this
work, however larger sets such as the Dunning correlation-consistent bases are necessary to
compare results with true chemical experiment.
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with m, = 9.10938356 x 10~*! kg the mass of an electron and 7 := 7 the reduced
form of Planck’s constant h = 6.62607004 x 10~3* Js. Here, A := V? is the Laplace
operator.

We may break down the potential term into its constituent parts by consider-
ing the possible interactions that may occur: nucleus-nucleus repulsion, nucleus-
electron attraction and electron-electron repulsion, leading to the decomposition

V= Vnucfnuc + Vnucfelec + V;lecfelec- (139)

In order to write out these terms explicitly we recall that Coulomb’s law stipulates
the electrostatic potential energy between two point-charges ¢, ¢ with positions
ri,T; is

4iq;
47T€0|7‘1' — ’l"j’

where ¢y = 8.85418782 x 10712 Fm™! is the vacuum permitivity. The charge of a
proton is e = 1.60217662 x 10~ C and —e for an electron, so the charge of an
entire nucleus ¢ containing Z; protons is Z;e. The repulsion terms are therefore
given as

M

Z Z;7 ;e al e?

‘/nuc—nuc = L 9 ‘/eec—e ec — - . 141

— 47T€0 ‘Rl—Rj‘ ! ! 2471'60’7"1'—7'3' ( )
1<) 1<J

and the nucleus-electron attraction is

nuc elec — Z; 47T€0|7’Z ‘ (142)

By making a change of units these terms can be simplified significantly; in
atomic units we set h = e = m, = 4mweg = 1, so that

R B

i=1 i=1 j=1

(1.43)

Currently, our molecular Hamiltonian encodes a huge amount of complexity.

An effective simplification is the Born-Oppenheimer approximation, which exploits

the mass between the nuclei and electrons being separated by several orders of

magnitude. Relative to the electrons, the nuclei are assumed to be fixed in space

so that Ty, = 0 and Viue_nue is constant. Superficially, the Vi elec term appears

many-body in nature; however, with all nuclei fixed the electrons simply experience

a static external potential v which is an aggregate of all the nuclei. In atomic units
this is given by

M

v(r;) = —

j=1

Zj
—_— (1.44)
7 — Ry
The molecular Hamiltonian under the Born-Oppenheimer approximation therefore
takes the form

H = Telec + ‘/elec—elec + Z U(’ri)‘ (145)
i=1
where Vc_nue has been omitted since it represents a constant shift in energy that
can be added back in at the end of computation.
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1.3.2 Fock Space and Second Quantization

The molecular Hamiltonian as presently formulated in Section is expressed
in the so-called first quantization. However, in quantum chemistry we deal with
collections of identical particles and so it is nonsensical to ask where a particu-
lar particle resides, as it is not possible to distinguish between them. Since the
first quantized form makes reference to individual electrons, it encodes redundant
information; it is, in a sense, an over-complete representation of the electronic
structure problem.

Rather than thinking about the behaviour of each particle as treated individ-
ually, a more sensible question is how many particles assume a certain state, or
mode, |-). This leads us to a different description of many-body systems, aptly
named second quantization. It was developed to rectify the redundancy found
in first quantization when treating systems of indistinguishable particles, which
moreover requires a complicated (anti)symmetrization procedure that is implicitly
baked into the second quantized theory.

The appropriate state-space is spanned by the occupation number basis where
|ng), indicates that n, € N particles occupy mode ¢. To manipulate the occupation
states, we introduce the annihilation and creation operators a, and a};, respectively,
whose action is to either insert or remove a particle into mode ¢. Specifically,

ag|ne), = /e lng — 1),
af|ne), = Ve +1Ing +1),

up to a possible sign-flip arising from the commutation relations of these operators,
depending on the type of many-body system in question. We may also define the
number operator N, := CL;[CLK which counts the number of particles in mode ¢:

Ny |ng) = abag |ng) = /mgal |ne — 1), = ng |ng) . (1.47)

The total number of particles in the many-body state

In) = (X [ne), = Ino,na, o, ) (1.48)
4

(1.46)

otherwise known as a Fock state, may then be counted by the operator N =
> ¢ Ny, so that N |n) = )", n, |n). Mathematically speaking, the Fock space F is
a direct sum of Hilbert spaces representing 0, 1,2, 3,... particle states etc. and
may therefore describe systems consisting of any number of particles. All the
number states may be obtained via application of creation operators to the so-
called vacuum state |vac.) :=10,0,0,...) describing a system of zero particles. For
example, [1,0,1,0,1,0) = agagai [vac.) (being mindful that there might a sign flip
if the creation operators are reordered).

For bosonic system such as photons, characterized by having integer spin, we
may have an arbitrary number of particles occupying the same mode. By contrast,
in the fermionic case — the setting of quantum chemistry, consisting of electrons
with spin—% — the Pauli exclusion principle applies and consequently no two par-
ticles may occupy the same mode. We are therefore restricted to n, € {0,1},
i.e. each mode is either occupied or unoccupied. The difference between bosons
and fermions does not stop here, however; they also manifest in the commutation
relations of their respective creation and annihilation operators.
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With by, bz the bosonic annihilation and creation operators, we have
[be, bi] = [b), 6] = 0, [bg, bL] = b0 (1.49)

Whereas, in the fermionic case with fy, fg the corresponding annihilation and
creation operators, we instead have

{fo. i} = {5 1 =0, {fe, £} = duas (1.50)

the difference is the anticommutator {A, B} := AB + BA found in place of the
commutator [A, B] := AB — BA.

Where we presented the generic action of these operators in Equation [1.46] it
was noted that a sign had possibly been omitted, which is relevant to the fermionic
case. Due to the antisymmetry found in the exchange of fermionic particles, the
true action of the annihilation and creation operators in this case is

Y

Se(n ...,ng,,ng—l,ng yee )y ngzl
Mm_{ IR b

0, e =0
(1.51)
fT‘n>: Sz(n)\...,ng,l,ng—i—1,ng+1,...>, ngz()
‘ O’ Ny = 1 ’
where s¢(n) = (—1)Zi;%) " counts the occupation of all modes below /. This

accounts for the exchange of particles and enforces the antisymmetry requirement.
In the bosonic case these operators commute and therefore no sign flip occurs.
Finally, we may rewrite the first-quantized molecular Hamiltonian given in

Equation (1.45)) as
1
0= Z hpvqf;fq + 9 Z hp,quf;J)rf;rfsfr (1.52)

p)q p1q7r7s

where the transformed Hamiltonian coefficients are obtained by integrating E| the
various kinetic and potential energy terms over first-quantized molecular orbital
basis functions ¢,(7) corresponding with the Fock mode ¢. Explicitly, this yields

hyq = /gb;(r) [ - %A + v(’r)] Gq(r)dr

Pp,grs = / ¢;(T)¢Z(’P/);@(r)gbs(r’)drdr’

| — 7|

(1.53)

where v(r) was defined in Equation ([1.44)) and we have again adopted the atomic
units [40].

4These integrals can be calculated efficiently over many choices of atomic orbital basis set
via a plethora of available codes. In this work we adopt PySCF [39] as our quantum chemistry
driver, which adopts the chemists’ notation and thus we transform into the physicists’ notation
for our applications, transposing array axes as 0,1,2,3 — 0,2,3,1.
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Example 1.3: Molecular Hydrogen Fermionic Hamiltonian

The molecular hydrogen (Hy) STO-3G Born-Oppenheimer Hamiltonian,
consisting of two electrons in four spin-orbitals, is parametrized with ten
coefficients:

1. The nuclear energy h™;

2. Three nucleus - electron attraction integrals h(()ne), L hgne);

3. Six electron - electron repulsion integrals h(()ee) Yy héee).

These coefficients are a function of the spatial separation between each hy-
drogen atom. For example, at the equilibrium bond length they assume

values (given in eV): A" = 19.591, A" = (-17.093,0.000, —6.420),
h(e) = (18.387,0.000,4.923, 18.084,0.000, 19.009).
All in all, the fermionic Hamiltonian for Hy assumes the form
H = h(nuc)
h(ne) (£ T
+hy - (fofo+ f1f1)
+ 1" (ffo = ffo + Flfs = f11)
+hg' - (fifa + 1)
B o (£t gt ot et
+ hg / (fofofofo+f1f1f1f1+fof1f0f1+pel"ms-)

+ b2 (F3 i fofo + FLE L fs + FEF fofs + FLFL £ fo + perms.)
+ 0§02 (f§ B fofe + FLF3f1fs + FF fufo + perms.)
+ 0512 (ffafafe + FLH fafs + J3 1L fofs + perms.)
+ B9 /2 (fififafo+ AL A fafs + F3fifofs + FL £ fofs + perms.)
+hE 2 ([ fafo + S3f3 fafs + f3 £ fofs + perms.),

(1.54)
with the Hartree-Fock state |1,1,0,0) = fI f{ |vac.). We note that “perms.”
above accounts for the 8-fold symmetry present, since permuting the 7, j, k, [
indices i <> j, k <> [, (i,j) <> (k,[) leaves the integrals invariant. Therefore,

these three actions generate the 23 = 8 allowed permutations, e.g. for
1,7, k, 1l =0,1,2,3 we have

(0,1,2,3),(0,1,3,2),(1,0,2,3),(1,0,3,2),
(2,3,0,1),(3,2,0,1),(2,3,1,0),(3,2,1,0)

all with the same integral value. Exploiting this fact can simplify the molec-
ular Hamiltonian construction greatly.

One can find further simplification by considering the molecular point group,
describing geometrical symmetry. For example, it is no coincidence that in
the equilibrium example above we find h{® = A® = 0; in fact, this will be
true for all bond lengths and the reason comes down to the preservation of
symmetry. In Chapter [2] we revisit the idea of simplifying problems through
symmetry arguments.
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Note the ordering of the annihilation /creation indices in Equation , where
we find p, ¢, s, r rather than p, ¢, 7, s. This is the physicists’ notation, but there is
an alternative chemists’ notation which results in differing index ordering, namely
the permutation p, q,r,s — p,r,s,q. Moreover, the form of the two-body integral
in Equation is different in the chemists’ convention, where the electron
positions are grouped on either of the Coulomb operator, rather than being split
across as in physicists’ [41, p. 67, 95].

The second-quantized formulation of the electronic structure Hamiltonian is
appealing as the fermionic antisymmetrization is baked into the Hamiltonian itself,
rather than needing to be asserted explicitly in the first-quantized form.

1.3.3 Hartree-Fock and Wavefunction Methods

Having now defined the problem that we are interested in, the goal of quantum
chemistry is to solve the Schrodinger equation

H ) =€) (1.55)

where H is the electronic structure Hamiltonian of Equation . While seem-
ingly inconspicuous, exact solutions are possible only in the simplest of cases. In-
stead, techniques for computing approximate solutions have been developed and
is a core pursuit of quantum computation as well. In this section, we introduce
some of the main algorithmic tools of conventional quantum chemistry that shall
serve as a benchmark against which the quantum computational techniques de-
veloped throughout this thesis will be assessed. In Table we list several such
methods, including their asymptotic scaling in terms of the number of orbitals,
and in Figure 1.8 we compare their performance when stretching the triple bond of
molecular nitrogen (Ny). This is a challenging system to describe correctly and in
this case highlights the deficiencies in the wavefunction methods that we describe
in the remainder of this section. First, we introduce Hartree-Fock theory, from
which all proceeding methods follow.

Wavefunction method Scaling Variational?
RHF/ROHF /UHF O(M*) Yes
MP2 O(M?) No
CCSD O(M") No
CCSD(T) oM7) No
CISD O(M?") Yes
FCI O(exp(M)) Yes
CASCI(Maet, Nact) O(exp(Maet)) Yes
CASSCF (Mact, Nact)  O(exp(Maet)) Yes

Table 1.4: A selection of wavefunction methods of varying complexity that we use to
benchmark the quantum algorithms developed throughout this thesis. The number of
orbitals is M and for the CAS methods (Mact, Nact) indicates an active space consisting
of Nyt < N electrons correlated in Mot < M orbitals.
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Figure 1.8: A comparison of the wavefunction methods listed in Table for dissoci-
ation of molecular nitrogen (N3), a common benchmark problem in electronic structure.
We present the CASCI and CASSCF methods for every valid active space consisting of
Nt electrons in M, orbitals.

Hartree-Fock Theory

Hartree-Fock (HF) is the hallmark of modern electronic structure theory and is the
foundation of many more advanced quantum chemistry methods. As mentioned
at the end of Section the molecular Hamiltonian of Equation [1.52]is defined
over a set of molecular orbitals ¢,(r), with the coefficients hy, 4, hy 4.5 of Equation
[1.53 obtained via integration over the coordinates r parametrizing these orbitals.
However, we did not discuss how the molecular orbitals are actually obtained from
the atomic orbital basis set in the first place; this is the purpose of the Hartree-Fock
method. In short, Hartree-Fock variationally optimizes the Hamiltonian energy
with respect to a single reference state (otherwise known as a Slater determinant)
via molecular orbital rotations U(k). We refer the reader elsewhere for details
surrounding the form of this unitary [42]. The particular reference state chosen for
Hartree-Fock is that with IV electrons filling M orbitals from the lowest canonical
molecular orbital energy upwards, which we may write as

N-1

HF) == ] af [vac.) =1,...,1,0,...,0). (1.56)

n=0
N M-N
Note that this formulation assumes alternating spin up/down particles, while some
use the convention of grouping all spin up occupancies on the left, and all spin
down occupancies on the right, giving a different form of the Hartree-Fock state:
[HF) = |1,1,...,0,1,1,...,0). Therefore, the Hartree-Fock optimization problem
M2 M2

may be written

enr = min (HF| U(k)'HU (k) |HF) . (1.57)

The resulting molecular orbitals obtained via the optimized orbital rotation U (k)
then defines the basis in which we write down the molecular Hamiltonian in Equa-
tion [1.52, There are also several variants of Hartree-Fock that treat spin up/down
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electrons in different ways. The simplest, restricted Hartree-Fock (RHF), asserts
that spins in the same spatial orbital be treated the same, with the open-shell
extension (ROHF) allowing a mismatch of valence electrons. Then there is the
unrestricted Hartree-Fock method (UHF) that treats the spin up/down electrons
as totally separate; this can produce improved results over RHF, although is prone
to symmetry breaking [43].

It should be noted that the Hartree-Fock optimization problem is non-linear
and is typically solved using iterative methods with direct inversion [44-47]. The
problem is in fact NP-complete [42, 48|, although the average-case complexity
means Hartree-Fock is broadly applicable across many problems of interest in
quantum chemistry. In evaluating (HF| U (k)T HU (k) [HF), the full two-body elec-
tronic structure Hamiltonian contains redundant information. Instead, it is possi-
ble to write down a one-body effective Hamiltonian known as the Fock operator.
Since Hartree-Fock optimizes for just a single Slater determinant it is an inherently
uncorrelated theory. The total number of determinants given N electrons in M
orbitals is (%), which grows at worst exponentially with the system size. The goal
of “post Hartree-Fock” methods is to then incorporate electron correlations into
the molecular wavefunction expansion by various means, which we discuss next.

Perturbation Theory

Perturbation theory provides an appealing approach to problems of many-body
physics as it allows one to model a complex system with Hamiltonian H in terms
of something simpler, say Hy. The missing contributions of the full system are
collected into a so-called perturbation term V = H — H,. The core assumption
of the theory is that we may access eigenstates of our “model” Hamiltonian H,
efficiently, with a view to use them as a basis in which to expand the desired
eigenstates of H. It is intuitively true that the closer Hy is to H — or, conversely,
the smaller V' is — the better our perturbative treatment of the problem will
be. In quantum chemistry, one typically selects the fermionic Fock operator,
whose eigenvectors are the occupation number states |n) = |ni,no,...) where
n; € {0,1} and ) . n; is the total number of electrons. Through subsequent
application of the Rayleigh—Schrodinger formulation of perturbation theory we
obtain the Mgller-Plesset (MPK) theory, where K € {2,3,4,...} denotes the
expansion order.

The true solution to the Schrodinger equation H |¢g) = € |tbg) is expanded as

a Maclaurin series
z : l z : 4
€) = 6(()) = €egFr + 6(() ),

£>0

o) = D [wd?) = [HF) + > [vi?)

>0

(1.58)

where the zeroth-order is the Hartree-Fock solution e(()o) = enr, |1Z)(()0)> = |HF)
and higher-order contributions e((f), |¢(()é)> are calculated in terms of the known
eigenvalues/states of the Fock operator Hy. Truncating the expansion order at
some K € N means evaluating the energy corrections e(()l), e ,e(()K). The most

commonly used perturbative method in quantum chemistry is the second-order
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Mpgller—Plesset theory, where eyps = epp + 6(()2) with the energy correction given

explicitly as
') = (HF|V |HF) (=0 here)
S (| VIHF) " (1.59)

6 =
0
€n — €HF

n# HF)
It is important to note the perturbed wavefunction is not normalized in the strict
sense, but rather it is intermediately normalized since (H F'|1) = 1. Furthermore,
perturbation theory is susceptible to non-variationality and breaks down if the
perturbation becomes large in relation to the model system.

Coupled Cluster Theory

In Coupled Cluster theory, we expand the wavefunction with respect to the Hartree-
Fock reference as [1)) = el |HF) where T is referred to as the cluster opera-
tor. 'This operator can be broken down into a sum over terms describing sin-
gle excitations afa, (T1), double excitations alala,a, (T3) and so on, such that
T=>.T,=T1+T,+... with

1
T, = th,qa;aq, T, = 1 Z tp7q7r7sa;gajzaras, etc. (1.60)
P.g PsgsTsS
for cluster amplitudes ¢, 4, ) q.r.s, - - - - Computing the exponential e is intractable

in the general case and is moreover non-unitary. Even when truncating the exci-
tations to singles and doubles, the expansion

= (T1 + T)* 1
6TH—TQ — Z ( 1 o 2) _ I+T1 +T2 + §<T12 +T22 + {T17T2}> —+ ... (161)
k=0 ’

is unwieldy to work with. Instead, coupled cluster solutions are better approached
via the similarity transformation H + e T He® and expanded with the BCH
formula introduced in Section [[.L2.4l Since the electronic structure Hamiltonian
contains no more than two-body terms, the expansion terminates at 4*"-order [49,
50]. The Coupled Cluster energy is then obtained as ecc = (HF|e T He® |HF)
and if we truncate the cluster operator 7" at some excitation order we get an
approximate ground state energy eccsprq.. Where the suffix SDTQ...indicates
single, double, triple, quadruple excitations etc.

Unfortunately, calculations in excess of double excitations are typically too
computationally demanding and so CCSD is usually as far as we can go via the
standard cluster treatment for systems of any respectable size. However, it is pos-
sible to add a perturbative triples correction to CCSD, resulting in the CCSD(T)
method that is widely considered to be the “gold standard” of quantum chem-
istry. Like perturbation theory above, the coupled cluster approximation is non-
variational, although a unitary formulation of Coupled Cluster theory has been
investigated extensively for quantum computing and reintroduces variationality
into the method |22 51-53]. Rather than exponentiating the cluster operator T'
as in standard Coupled Cluster theory, Unitary Coupled Cluster (UCC) exploits
the fact that 7 — T is antihermitian and therefore e7~7" is a unitary operator.
This is revisited in Section when we discuss chemically-motivated quantum
circuit design.
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Configuration Interaction Theory

First of all, we shall define by Ny, n the set of occupation (Fock) states [n) de-
fined over M modes and with N particles; practically, n is a binary bit string
with Hamming weight N (i.e. the number of nonzero elements). Now, the true
ground state of the molecular Hamiltonian in Equation (1.52]) will be of the form
[Y0) = D e Narx Tn In). This state may be identified exactly by directly diago-
nalizing the Hamiltonian H in the desired particle number sector, an approach
called Full Configuration Interaction (FCI) as it correlates every possible electron
configuration amongst the molecular orbitals. To ensure the diagonalization is
carried out in the correct sector, the Hamiltonian is projected into the desired
particle space via the projection operator Py v = >,y , 1) (n]. While diago-
nalizing the projected Hamiltonian Py y HPpr n [trcr) = erciPan |Yrcr) s easier
than solving the full problem (i.e. over every particle sector), it still requires expo-
nential classical resource. This is because, combinatorially, [Ny x| = (%), which
in general scales exponentially with increasing numbers of electrons and orbitals ]
To quantify the degree of electron correlation present for a particular problem, one
can define the correlation energy €...r = €rcr — €gr, Which captures the deficiency
of Hartree-Fock in describing correlation effects.

However, by restricting ourselves to a subset of determinants Ny, v C Narw
and forming the projection operator Py, v = > N o |n) (n|, we may project H
into a reduced subspace in which diagonalization is feasible with polynomially scal-
ing resources. A common choice is to select the electron configurations that may
be reached from either single or double excitations of the Hartree-Fock reference,

which we shall denote ./\/'S?V) and has size ]./\/’S]JD\N =M +NM-N)+1.

Diagonalizing the Hamiltonian in the space of single and double excitations yields
IP’ESB%H IPEEB\), |tcisp) = €cisp |Ycisp), where ecigp is referred to as the Configura-
tion Interaction Singles Doubles (CISD) energy. Another example are Complete
Active Space (CAS) methods, in which we consider every determinant within a
subset (Mact, Nact), indicating an active space consisting of N,y < N electrons
correlated in M, < M orbitals.

Some of the most cutting-edge methods of quantum chemistry look to choose
the configuration space in a better-informed way. For example, one can treat the
full system perturbatively to identify determinants that are in some sense “impor-
tant” and then diagonalize the problem in a subspace defined by the dominant
contributions in the perturbed wavefunction expansion; this is the approach of
Configuration Interaction using a Perturbative Selection made Iteratively (CIPSI)
[54, 55]. This falls under a class of so-called Selected Configuration Interaction
(SCI) methods, which are differentiated by how one assigns importance to each
configuration candidate.

An SCI technique that has seen recent success is Heatbath Configuration In-
teraction (HCI) [56-58]. This works by solving the Schrédinger equation in the
current configuration space (typically initiated with the Hartree-Fock reference),
yielding eigenstate |1), before contracting the Hamiltonian onto this state, H |1).
We then select the configurations therein whose coefficients exceed some thresh-

5Some sources state the FCI problem as having factorial scaling; that is, superexponential.
However, note that summing over every particle sector we get Z%:o (%) = 2M_ In the worst
case, where N = M /2, we obtain a scaling of O(2M~1).
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old ¢ to append to a growing configuration space. This process is iterated until
convergence, followed by a perturbation into the full space from the variationally
optimized HCI state. As § — 0 HCI approaches the FCI limit since all configura-
tions will be included.

A relatively new development in quantum computation is to use a quantum
device to sample configurations for inclusion in the classical diagonalization step,
a technique referred to as Quantum-Selected Configuration Interaction (QSCI)
[59, |60]. The motivation behind this is that state-sampling is classically hard
[61-65]; therefore, any possibility of quantum advantage from QSCI will necessar-
ily be virtue of the specific ansatz choice. Recent work from IBM utilized QSCI
to perform a 58-qubit simulation of the dissociation of molecular nitrogen (N),
where configurations were sampled on a 133-qubit IBM Quantum Heron proces-
sor and subsequently diagonalized across several thousand nodes of the Fugaku
supercomputer [66]. A series of works shortly followed suit [67-71] and marks a
shift towards a “Quantum-Centric” approach to supercomputing, as detailed in a
recent perspective on the topic in the context of materials science [72].

1.3.4 Fermion to Qubit Transformations

In Section[1.1]we introduced the concept of a Hilbert space .7, which encompasses
all the states our quantum system might assume. The computational space of N
qubits is 7 = (C?)®N which every finite dimensional vector space is isomorphic
to. Therefore, there will exist mappings ¢ : F — (C?)®" from the fermionic Fock
modes, i.e. the occupation number states |n), onto qubit states |b). Moreover,
such a mapping should preserve the fermionic annihilation and creation operator
anticommutation relations, which we wrote down in Equation (|1.50)).

Contrast this with the anticommutation relation of the pauli operators (ex-
cluding the identity) oy = X, 09 =Y, 03 = Z, we have {0y, 01} = 25;1. Whereas,
for a qubit mapping ¢ to respect the fermionic relations, we need

{a(fo).a(fr)} = {a(fo)' a(f)'y =0 VE#E, and {q(f),a(fe)'} = 0ur, (1.62)

which the Paulis do not satisfy on their own.

First of all, in order for a qubit mapping to satisfy same-site anticommutativity,
we may assume that ¢(f)% = 0, since this is the only value z satisfying z = —u.
This enforces the same behaviour seen for fermionic operators, whereby creation
in an already occupied mode or annihilation of an empty one causes the state to
vanish. First, we shall consider the possible forms of ¢( f) on a single qubit position.
Decomposing into the Pauli basis we may write ¢(f) = wl + X +yY + zZ. The
off-diagonal elements of ¢(f)? yield 2w(x — iy) = 2w(x + iy) = 0. Since we will
most certainly need X and/or Y operators to represent creation/annihilation of
fermions, we may assume w = 0. Turning now to the diagonal entries of ¢(f)? and
having asserted w = 0, we find the requirement 2% + y? 4+ 22 = 0. We may rewrite
this as (z +2@'y)(x —iy) = —2% and observe that, letting v := z + iy, we must have

T —1y = _5 . Therefore, the condition ¢(f)? = 0 is satisfied for any map ¢q whose
action on a single site has the form ¢(f) = x X + yY + zZ where

A2 2 72+ 22
Y=

T for any z € C,v € C)\ {0}. (1.63)
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We may constrain the above requirement further by looking also at the second
anticommutation relation of Equation for same-site spins, i.e. {q¢(f),q(f)'} =
1. To enforce this, we additionally need |z|*+|y|?+|z|* = 3. The most convenient
choice here is to take v = 1,z = 0, yielding ¢(f) = (X + ¢Y")/2. This expression
adheres to all the same-site anticommutation relations, however one very quickly
realizes that it currently commutes off-site, i.e. [¢(f¢),q(fx)] = 0 for ¢ # k. The
task now is to ensure the correct anticommutation relations for differing modes,
which can be achieved in several ways. Ultimately, this comes down to a decision
over how to store the parity information coming from the different modes. The
simplest approach is to append strings of trailing Pauli Z operators to the form
above; this results in the ubiquitous Jordan-Wigner transformation |73]

Xo+1Yy

q(fe) = 5

R Zpi1 Q@ Ly Q-+ QR LN_q. (1.64)

This is by no means the only way that the parity information could be rep-
resented. For example, the Bravyi-Kitaev map [74, 75| stores the parity in a de-
localized manner, resulting conversely in more localized observables than Jordan-
Wigner [76], since the latter can result in full-weight Pauli strings. There are
also additional approaches based on parity trees [77]. Despite all these various
approaches to qubit mapping, it should be noted that they act on the single mode
in question in the same way, i.e. via f — (X +14Y)/2; it is the surrounding qubits
and how they encode parity information that they differ. Note that the formula-
tion laid out above implicitly assumes that a single fermionic mode maps onto a
single qubit — if this condition is relaxed we are opened up to a wealth of qubit
mapping possibilities, for example compact schema |78, [79] or those that encode
the conservation of particle number [80].

Example 1.4: Jordan-Wigner Transformation

To encode a single-excitation f;r f5 under the Jordan-Wigner transformation,
we directly apply Equation ((1.64)) to obtain

2(f)=IIXZZ222Z - +i-1IYZZZZZ ...

_ (1.65)
2(fs) = IIIIIXZZ - —i - IIIIIYZZ ...

and therefore

a(fifs) = alfatss) = 1|

V- IIXZZY I — 1 - 1IYZZXII — IIXZZXII—IIYZZYH]

(1.66)
We see that, in between the X,Y positions which (de)excite an electron
from one mode to another, there is a string of Pauli Z operations which
computes the parity of the intermediate modes.
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Example 1.5: Molecular Hydrogen Jordan-Wigner Hamiltonian

In Example we wrote down the form of the Fermionic Hamiltonian for
molecular hydrogen. We now continue the example by demonstrating how
we go from the fermionic form to a qubit Hamiltonian via the Jordan-Wigner
transformation.

Agyw(H) = (4™ + 8h8™ + 81T + bl — 2nl® + 4n$) + ). 1111
— (429 + BSD — S 4 2$9)) - (ZIII + 1Z11)
— (49 — BS + 20$) + B (1121 + 111Z)
+ . ZZIT
+ R 11Z7
+ R (Z11Z + 1221)
+ (D = B$D) (2121 + 1Z1Z)

+ 08 (YXXY + XYY X - XXYY - YYXX)
(1.67)

1.4 The Variational Quantum Eigensolver

The algorithms that can be successfully run on quantum hardware today are few
and far between. The long-term vision for quantum computing sees algorithms
such as Quantum Phase Estimation (QPE) doing the heavy-lifting. While the
measurement overhead for QPE is constant, i.e. O(1), by virtue of interference
effects provided by the Quantum Fourier Transform, the circuits end up being very
deep. This necessitates extended periods of coherence in order to complete each
circuit run before all the quantum information leaks into the environment. In the
near-term, this is simply not possible at scale — the few experimental realizations
of QPE succeeded only in simulating very small systems such as a 2-qubit example
of Hy [81]. Instead, noisy intermediate-scale quantum (NISQ) research has looked
toward algorithms requiring more modest coherent resource. The most extensively
studied of these is the Variational Quantum Eigensolver (VQE) [82], which offers
short circuit depths at the expense of increased measurement cost O(e?) for
a target error € > 0. In Table we provide a selection of significant VQE
experiments conducted in the chemical domain over the decade 2013 — 2023.

Conceptually, VQE is quite straightforward and is grounded in the variational
principle: given a Hamiltonian H with ground state energy €, all states |¢)) will
satisfy (¢| H [1) / (¥|¢)) > €. In other words, the ground state energy bounds
all expectation values from below and therefore we can never go below the target
energy. This means we can be confident that, as long as the energy is decreasing,
our solution will be getting better without fear of overshooting the target. There
are also methods for targeting excited states with VQE [113], [114].

While it is somewhat intuitive, we may prove the variational principle holds by
decomposing |1)) over the eigenbasis of H: [¢) =Y. a; [1);) where H |1;) = €; 1)
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and €y < €7 < €5 < .... Then, we have

ferent quantum states [¢)). However, the space of possible states is immense — in

(| H |¢)

)

€0

|
~—~—
=<w|¢)*zi21 v |

co (V[) + Y (e — €g)lu]”

2 eilaif

i>1

izl 3

>eo (Y[Y),

with equality naturally when |¢) = |vp).
The idea behind VQE therefore is to minimize the energy (| H |¢) over dif-

+Z€i|06i|2

(1.68)

order to traverse it we need to limit our search-space by restricting the classes

Year Reference System(s) Ansatz Max qubits Platform Hardware
2013  Peruzzo et al. |82 HeH™ ucc 2 SP In-house
2015 Shen et al. HeH™ ucc 1 qudit TI In-house
2015 Google Quantum Hy ucc 2 SC Google

2016 Santagati et al. Chlorophyll pair Parametrized Hamiltonian 2 Sp In-house
2017 Kandala et al. H,, LiH, BeHs Hardware Efficient 6 SC IBM

2017  Colless et al. Hy (excited states) Hardware Efficient 2 SC In-house
2018 Hempel et al. 55| Hy, LiH uce 3 TI In-house
2018 Kandala et al. H,, LiH (magnetism) Hardware Efficient 4 SC IBM

2019 Nam et al. H,O ucc 4 TI TonQ

2019 Smart & Mazziotti Hs custom 3 sC IBM

2019 McCaskey et al. NaH, RbH, KH UCC and Hardware Efficient 4 SC IBM, Rigetti
2020 Rice et al. LiH (dipole moment) Hardware Efficient 4 sSC IBM

2020 Google Al Quantum Hg, Hg, Hyo, Hyj2, HNNH Hartree-Fock 12 sC Google

2020 Gao et al. |95 PSPCz R, 2 SC IBM

2021 Kawashima et al. Hio qubit-CC 2 TI TonQ

2021 Eddinset al. H,O Entanglement Forging 5 SC IBM

2021 Yamamoto et al. Crystalline Iron Model UCCSD-PBC 2 SC IBM

2021 Oxazine derivatives YXXX 4 SC, TI IBM, Quantinuum
2022 Hy, CO Linear Response 4 SC In-house
2022 HeH™, LiH Hardware Efficient 4 SC IBM

2022 H, UCCSD 4 sSC IBM

2022 Ha, HeH™, LiH, H,0, NaH, CO; NAPA 6 SC IBM

2022 Hzst Entanglement Forging 6 SC IBM

2022 Cyclobutene Ring upCCD 10 SC Google

2022 CH4 UCCSD 6 TI Quantinuum
2022 Li;O 00-upCCD 12 TI TonQ

2022 H,, LiH, Fy UCCSD 12 sSC Zuchongzhi 2.0
2023 HCl Hardware Efficient 3 SC IBM

2023 H,, HeHt Hardware Efficient 1 qudit SC In-house
2023 CH3F pUCCD 11 TI IonQ

2023 H,O UCCD 8 SC IBM

2023 NH, BeH*, Fy SpacePulse 6 SC IBM

2023 Weaving et al. Nj Hardware-Aware ADAPT 5 sC IBM

Table 1.5: A decade of experimental realizations of VQE for quantum chemistry; the
list is not exhaustive. The works are listed chronologically by the date of initial preprint
availability, not the final publication date. The platform keys are silicon photonic (SP),
superconducting (SC) and trapped-ion (TT).
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of state we consider. This motivates the concept of an ansatz state, the literal
meaning of the German being to ‘approach’. Ideally, we would fix a family of
quantum states [(0)) = U(0) |1) described by some number of real parameters
0 = (6y,01,...); for the purposes of quantum chemistry, it is customary to take
the Hartree-Fock state as the reference |i.¢). The energy we wish to optimize
would then be a function of these parameters, E(0) = (¥(0)| H [(0)), and the
minimization problem is then better posed as Ey = ming F(0).

The overall VQE workflow is depicted in Figure [1.9] consisting of a quantum
subroutine that outputs an energy expectation value F(6y) at step k, embedded
within a broader classical optimization scheme that selects a parameter update
for the next iteration of the algorithm at k + 1. Each operator P, € Py in the
Pauli decomposition of the Hamiltonian H = Zle heP, where h, € R must be
estimated in separate prepare-and-measure routines.

% Estimate expectation value (¥(6;)| P |v(6)) m;

Measurement

0.304 distribution:

[thret) § 1| U(6k) |:| Be

11110000
11000011
00110011

|
RYRVRYENEY

(Pr) (o) ~ Wosx 2om (bl BePeBY b <J

shot

Energy Function

E(0r) = Y01 he (Pr)y o, [

:

Function

Gradient

Parameter ‘
update [A(6K)]| < €? d%(gzk) = E(Or; 00+ ) — E(Or; 00 — )
0, — 0

Return E(0y)

Figure 1.9: Variational Quantum Eigensolver workflow, involving the sampling of an
ansatz circuit [¢(0x)) on the quantum computer to extract an energy estimate that is
fed back into a classical optimizer. The unitary B diagonalizes P or, in other words,
it is a change-of-basis so that we may evaluate the expectation value of P using only
diagonal measurements (i.e. in Pauli Z basis).
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1.4.1 Evaluating Energies on a Quantum Computer

The essential routine of VQE is estimating energy expectation values by means of
circuit sampling. Ultimately, we need to compute the energy ((0)| H |1(8)) for
some ansatz state |¢(6)) and Hamiltonian observable operator decomposed over
the Pauli basis: H = EeL:l heP, where Py € Py, hy € R. The requirement of real
Pauli coefficients hy ensures the operator is Hermitian and therefore has only real
eigenvalues. This can be seen as, for H [¢)) = €|)) we have HT |¢)) = €|¢) and
therefore (H — HT) [¢)) = (e — €) [¢). If H = H' then it must be the case that
e —€ =0 = € =F¢, which can hold only if ¢ € R. The inner product is a linear
map, Sso

<H>¢(9) = (¥(0)| H |[¥(0))
= (V(0) > hePr[1(8))

(1.69)

M) =

he (V(8)] Pe |4(0))

(=1

Mh

he {Pe) g 0)

~
Il

1

and consequently we may assemble the full expectation value (H) “(6) by evalu-
ating its constituent Pauli terms individually. The consequence of this is that
expectation value estimation is easily parallelized to multiple quantum devices.
One may even run several such routines concurrently on different parts of the
same chip given a surplus of qubits.

The only missing piece is the evaluation of <Pg>w(9). However, as discussed
in Section [I.2.2] quantum computers typically only allow diagonal measurement,
namely in the Pauli Z basis. This means that all measurements extracted from
the device will be eigenstates of Pauli Z operators and therefore the expectation
value for terms containing X or Y factors will be incorrect if we proceed naively.
This is easily remedied by recalling the basis change operations Z = Had XHad =
HadS'Y SHad. Letting Zx,Zy be the sets indexing tensor factors of P, containing
a Pauli X or Y, respectively, the change-of-basis operator By, as previously seen
in Figure , takes the explicit form B, = ®IXUIy Had ®Zy ST, Application

of this to P, yields BngBg € {I,Z}®"N ie. it has been diagonalized. We can
also apply the change-of-basis to the ansatz circuit By |1(0)) and then sample
diagonal elements as normal, obtaining a set of binary measurement outcomes
M, = {bm}fxsﬁ‘it where Nyt is the number of times we sample the state. These
data are fed into a statistical estimator

Nshot
1
Eo(M,y) = N > " (bw| BiP.B] |bw) (1.70)
sno m=1

that reproduces the true value in expectation E(&) = (F%) ) with no biasﬂ
To evaluate an energy estimate for the whole Hamiltonian, this process is
repeated for each Pauli term independently (possibly in parallel, as mentioned

SWhile this estimator is unbiased, the presence of quantum noise introduces bias that we
attempt to counteract through error mitigation, discussed in Chapter
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above). This results in measurement batches M = { M}, and the overall Hamil-
tonian estimator follows by linearity:

E(M) = hiE(My)

=1
L (1.71)
- h b,,| B;P:B! |b,,) .
Nshot; em:1< | BeP,By |by,)

Just as in the individual Pauli case, this estimator is unbiased, E(€) = (H), ),

and the error is on the order (’)(LNS;i) [82] where L is the number of terms in
the Hamiltonian.

In fact, such a measurement scheme is not restricted to the Pauli basis. It is
applicable whenever we can decompose the Hamiltonian over components

H=> H, (1.72)

(=1

such that Hy is classically efficient to diagonalize, with U, the unitary diagonalizing
H,. The benefit of this is it is often possible to express the Hamiltonian using
fewer components H, than in the full Pauli decomposition and therefore reduces
the measurement overhead. This observation underpins all measurement reduction
techniques in quantum computation and plays out exactly as the Pauli case above,
just with a different change-of-basis operator U. We sample from the circuit
U |1(0)) and obtain an estimate ﬁ S Nevee (| UgHyU] |b,,) for each Hy.

Common choices for H, include qubit-wise commuting [115], commuting [116]
or anticommuting [117-120] clique covers of the Hamiltonian Pauli terms. The
downside of the latter two is the added coherent resource necessary to realize
the change-of-basis unitary U in-circuit, which usually precludes their practical
application. For quantum chemistry, where the number of Hamiltonian terms
grows as O(N*) with N the number of spin-orbitals (qubits), the commuting
or anticommuting grouping strategies yield a linear improvement in the number
of simultaneously measurable components H, in the decomposition of Equation
(L.72). This results in L = O(N?®) and thus an asymptotic improvement to the
measurement overhead [116} |118].

The qubit-wise commuting grouping strategy is an extension of the Pauli case,
where the diagonalizing unitary is of the same form as B, above. We simply
gather Hamiltonian terms for which By is the same (up to identity positions) and
measure them all simultaneously. Specifically, two Pauli operators P, () qubit-wise
commute if [P, Q@] = 0 for all qubit positions i € {1,..., N}. This is a stricter
condition than regular commutation, for example the Paulis X X and ZZ commute
but not qubit-wise. Owing to the negligible increase in circuit depth, this is the
measurement reduction strategy that we favour for all the quantum simulations in
this work. While it does not produce an formal asymptotic improvement like the
commuting or anticommuting cases above, it still saves an appreciable pre-factor
of ~ 3 [115] that makes near-term simulations more achievable.

49



NEAR-TERM QUANTUM COMPUTATION FOR QUANTUM CHEMISTRY

1.4.2 Calculating Gradients for Parametrized Circuits

Now that we are able to evaluate energy values on a quantum computer, as per
the previous Section we have an objective function to optimize in a VQE
routine. However, to accelerate the convergence of the optimizer we would ideally
like to be able to compute parameter gradients on the hardware as well.

In Section we expressed the ansatz state as a unitary U(@) applied to some
reference state |1.f). To expose an explicit dependence on the parameters 6, we
shall write U(0) = '4® for some operator A(6) = >, 0Py, with 0 € R, P, € Py.
We refer to A(0) as the ansatz generator and it is necessary for the parameters

0 to be real, else iA(0) would not be anti-Hermitian and thus ¢4 could not be
unitary.
Our ansatz state now has the form
0(8)) = €®) [thyer) (1.73)
and application of the chain rule yields
0 .
= [0(0)) = ib. [¥(0)) . (1.74)
00y
Combining this with the product rule, we have
0
— (H = 0)||[—iP.H +iHP 0
S (Mo = (WO [-iPH +iH P [0(6) -
=i([H, Pk]>¢(o) )

this is the formulation proposed by Grimsley et al. [121]. However, if one observes
that

ilH, Py] = %[(I —iPy)H(I +1iPy) — (I +iP)H(I — sz)}

(1.76)
— e—i%PkHei%Pk . 67%P’“H6_Z%P’“
then we recover the parameter shift rule of Parrish et al. [122], namely
0
8_9k <H>¢(9) = <H>6i%Pk¢(9) - <H>e—i?fpk¢(9) . (1-77)

Therefore, we may evaluate the expectation value (H) w(o) Op+7 and 0, — 7, with
the partial gradient with respect to 6, being their difference. The curious thing
here is that, while the parameter shift approach looks to be a finite-difference,
it is analytic. We opt for the latter method of gradient calculation; this allows
us to avoid storing a large collection of commutators in memory — each requiring
decomposition into qubit-wise commuting measurement groups — at the expense
of one additional expectation value calculation per partial gradient.

1.4.3 Ansatz Circuit Design

Choosing an effective ansatz circuit for VQE is a challenge in itself. It needs to
be sufficiently expressible to capture the ground state energy (or at least get sat-
isfactorily close to it), while not being so over-complete that the optimization be-
comes unnecessarily cumbersome. There is also the more insidious issue of barren
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plateaus, which arises from the curse of dimensionality whereby the optimization
landscape becomes locally flat, with the parameter gradient vanishing exponen-
tially with the system size [123 [124]. This is a critical problem for variational
algorithms; while many works strive to design anséatze devoid of barren plateaus,
there is a poignant question of whether their absence implies classical simulability
[125]. Some evidence supporting this statement has been presented, although it
is not yet entirely conclusive and nor does it disprove quantum advantage in the
near term. For example, it is still possible that advantage can be derived from
a particular ansatz choice, as state sampling is classically hard. It is also worth
noting that barren plateaus can be induced by noise [126], a further obstacle to
near-term quantum utility.

Hardware Efficient Circuits

Hardware efficient circuits are typically developed with a specific quantum device
in mind so that they may be natively implemented with no transpilation overhead.
They are designed to access the largest possible region of Hilbert space for the
shallowest circuit depths. A hardware efficient ansatz consists of two ingredients:
rotation layers and entangling layers. These building blocks will often be layered
many times, each repetition bringing with it a richer computational state-space.
There are several decisions that go into constructing such an ansatz: the choice
of rotation gates and the entangling pattern, which is usually dictated by the
qubit topology of the target hardware. For example, in Figure we display

e e e e e e

—— R, (01) — Ry(On41) o Ry(0an+1)
IR 00 |-y RO ) ey B (Barso) ot
_é_Ry<93) Ei o Ei Ry (On+3) ii & Ei Ry (0an+3) ii Oi
—g—Ry(94) & Ry(On-+4) > Ry (02n+44) S
;— Ry(65) EI 1 s> i Ry(On+s5) I; ! D ii Ry(Oon+5) I; ! Oi
—iRy(QN,g) IEG :E Ry(02n—3) :.® il Ry(03n—3) :.® E
R, (0 2) Hog— - Ry O o) g3 7y (o ) g
= By (On 1) b TRy (B2 1) S R, (05 ) by
—é—Ry(eN) . b R, (02n) b R,(0sn) ()i

Rotation Entangling Rotation Entangling Rotation Entangling
layer layer layer layer layer layer

Figure 1.10: A hardware efficient ansatz with R, rotation layers and linear entan-
glement. In general, a hardware efficient circuit might consist of different rotations
(possibly multiple types per layer) and entangling structures that ideally mirror the
device connectivity.
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a hardware efficient ansatz consisting of R, rotations and linear entanglement
blocks. Device coherence permitting, this pattern may be repeated as many times
L as desired. In this example, we note the number of parameters is LN, therefore
one should be wary of the added optimization burden when running variational
algorithms such as VQE. In fact, our level of caution should be even greater than
that taken just at face value, the reason being this is precisely the regime in which
barren plateaus manifest most profoundly.

As mentioned above, barren plateaus are symptomatic of vanishing parameter
gradients (which may do so exponentially fast), causing a local flattening of the
optimization landscape. For this reason, there is debate over the usefulness of
hardware efficient ansétze |127]. At short depths, the issue of barren plateaus
is avoided, however the variational flexibility is insufficient to achieve quantum
advantage. Conversely, deeper circuits access a vast expanse of the Hilbert space,
but are vulnerable to barren plateaus due to sheer system dimensionality. The
best we can hope for is a sweet spot between these two extrema.

A further point of note is that this barren plateau problem is not exclusively a
feature of the ansatz circuit itself, but also depends on the locality of the observable
being measured [127]. To illustrate this, in Figure we highlight the gates of
our hardware efficient ansatz that are supported for a highly localized observable.
We trace back through the circuit and find that only a reduced subset of gates
contribute to the measurement outcome. This backpropagation through time is
known as the light-cone of the observable.

For a local observable measured on a shallow circuit, one may find that the
light-cone expansion does not saturate all the qubits, resulting in a small effective
circuit and thus alleviating barren plateaus. However, if the circuit is sufficiently
deep, then eventually the light-cone will expand to fill the circuit, as seen in
Figure [I.1TI} Therefore, the severity of barren plateaus is a function of both the
circuit complexity and observable locality. We encounter a light-cone reduction
in Section [5.4] in which we simulate time evolution for the magnetization of a
single spin in an Ising model; for early times the circuit is shallow and therefore

—1 1 o T
—O— ———

—0 > — ——— —
—0— 0 ——

—0 &0 >—TF—— — ——
—O— 06 O 0~
—0 &0 &0 ®

— L6 —&——

—0 &0 b— —— — —
—O— e — ——

—0 b — ——

Figure 1.11: The light-cone for a local observable (in this case supported on just a
single qubit) over the hardware efficient ansatz from Figure Gates that have been
grayed-out are external to the light-cone and therefore have no influence on the measured
outcome.
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the light-cone is small, but as the system evolves the circuit deepens and thus
the light-cone expands. This is shown in Figures and where we plot the
number of qubits in the effective light-cone of the single-qubit Z observable. In
quantum chemistry, on the other hand, we can encounter complete nonlocality
(i.e. observables that act across every qubit), which is the worst-case scenario for
a hardware efficient ansatz. For this reason, it is necessary to develop circuits
tailored for the electronic structure problem.

Chemically Motivated Circuits

While hardware efficient circuits are convenient when it comes to executing them
on a quantum device, they do not take any of the problem structure into account.
For example, in quantum chemistry there are numerous symmetries that would
ideally be baked into the ansatz circuit. For example, the number of particles is
fixed, and therefore computational basis states that possess the incorrect hamming
weight are redundant. It is not possible for a hardware efficient ansatz to filter
these out, since by design they access the largest feasible region of the Hilbert
space. Instead, we need to design ansédtze to incorporate such symmetry at the
circuit level.

Recall in Section [1.3.3| we introduced the cluster operator T'=T1 + 15+ 13. ..
partitioned into terms relating to single, double, triple excitations etc. above the
Hartree-Fock reference |HF) = |1,1,...,1,0,...,0). Each of the cluster terms T;
may be written in terms of fermionic creation and annihilation operators

1
T, = ()2 Z tpl,,,.,p%aj)l . .CLITjnapn+1 Oy, (1.78)

P1;--5P2n

It was noted that we may construct a unitary formulation of coupled cluster theory
by observing that 7— 7' is antihermitian and therefore e’ T isa unitary operator.
Moreover, from Section we know how to map fermionic excitation operators
onto Pauli operators via a qubit transformation ¢, so ¢(T,, — T1) =i, Gén)Pé(”)
where PZ-(") € Py may act as X or Y on 2n qubit positions, with the other qubit
positions either identity or Pauli Z for parity calculation.

Truncating the cluster operator at some maximum excitation order, typically
to double excitations T} + T, we map onto qubits ¢(71 + T32) = >, HEI)P;U +
Yo HéQ)PE(Q) = >, 0P and Trotterize the exponential exp (Zz QZPZ) as per Sec-
tion for an approximate decomposition into exponentiated Paulis, which we
may realize in circuit form using the approach of Section [1.2.3] For variational
algorithms, it is often sufficient to Trotterize only to first-order since the opti-
mization over the ansatz parameters will counteract the induced Trotter error
[22]; explicitly, this is exp (Ze QZPZ> ~ [, exp (Gng). By initializing the circuit
in the Hartree-Fock state via an initial layer of X-gates in relevant qubit positions

at the beginning on computation, we obtain a circuit that respects the molec-

ular symmetries. This is known as the unitary coupled cluster singles doubles
(UCCSD) ansatz.
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Example 1.6: Molecular Hydrogen UCCSD

In Examples [1.3] and we built fermionic and Jordan-Wigner encoded
qubit Hamiltonians for Hy. We now go through the same exercise for the
cluster operator. Because of the spin parity symmetry, no single excitations
are valid (this is explored in Secion , leaving just one double excitation

aalaga; (and its various permutations) so that

T = tg,1 23[alalages — alalayao — alalaga; + alalayay). (1.79)

Mapping this via Jordan-Wigner, we get

t
qw (T — T = @'%[YYYX +YXXX+YYXY 4+ XY XX

—YXYY - XXYX - XYYY - XXXY].
(1.80)
Note all these Pauli operators commute and therefore Trotterization will
introduce no error. This is actually a consequence of a particular feature of

the Hy STO-3G problem, which we discuss in Example [3.1]

J

The issue is that the UCCSD circuit is usually too deep for practical applica-
tions, consisting of O(N*) variational parameters and a circuit depth of O(N?)
[128]. This motivated research into more compact symmetry-preserving circuits
based on simple primitives that may be replicated across the circuit, more in the
vein of hardware efficiency. Effectively, we need a gate that shuffles the positions
of occupied qubits, preserving the Hamming weight of each computational basis
state. We have already seen one gate that does this: the SWAP operation. Re-
call that this has the property of swapping qubit states between sites, namely
|0,1) = |1,0), while the |0,0) and |1,1) states are untouched. For the purposes
of a variational circuit, it would be desirable to have a continuous version of the
SWAP gate that mixes qubit occupancies together, in other words

0 0
cos(f) e sin()
e~ ¥sin(f) — cos(f)
0 0

SWAP(0, ¢) == (1.81)

o O O
— o O O

This is known as a Givens rotation and forms the basic building block of low-depth
particle-preserving ansatz circuits [129]. Note the discrete SWAP gate is recovered
for @ = w/2,¢ = 0. This gate is decompose as a circuit in Figure [1.12]

A more recent circuit design that makes use of the Givens rotation above and
has received recent attention [66] is the unitary cluster Jastrow [128], favoured
for its O(N?) parameter scaling while being chemically intuited. This question
of ansatz parametrization scaling evokes the previous discussion of the trade-off
in expressibility and alleviation of barren-plateaus in hardware efficient circuits;
we recall that very shallow circuits could be prone to classical simulability [125],
hence we might expect a lower bound on the number of variational parameters we
require for quantum advantage in electronic structure. Moreover, there is work
that suggests coupled-cluster circuit are also prone to the barren plateau issue
[130].
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Figure 1.12: A Givens rotation, referred to here as a continuous SWAP parametrized
by two angles 0, ¢.

1.4.4 ADAPT-VQE

Adaptive Derivative-Assembled Pseudo-Trotter (ADAPT) VQE [121] is a promis-
ing method of ansatz construction that retains some problem specificity while re-
sulting in dramatically reduced circuit depths compared with conventional chemically-
motivated approaches such as unitary coupled cluster with single and double ex-
citations (UCCSD) [22, 51]. The implementation we describe here is the qubit-
ADAPT-VQE [131] variant, the central component of which is a pool of Pauli
operators P. This pool could, for example, consist of the Jordan-Wigner encoded
excitation terms in UCCSD; the key observation is that we typically do not need
the full set of excitations in its entirety, and many of the Pauli terms are included
simply to enforce the fermionic anticommutation relations (see Section [1.3.4)).

While this is a theoretical requirement to correctly represent the problem in
the purest sense, in practice we find that fermionic anticommutation constraints
can be relaxed at the ansatz level while still obtaining high accuracy results. To
expand on this point further, after a mapping onto qubits via the Jordan-Wigner
transformation, single, double and triple excitations account for 4, 16 and 64 Pauli
operator terms, respectively. Furthermore, referring to Example [1.4] we see that
many of the Pauli terms generated from a fermionic excitation are qualitatively the
same, in that they map to the same computational basis states — not all of these
are necessary to reach the desired level of algorithmic accuracy. By selecting only
a subset of such Pauli terms, qubit-ADAPT-VQE can achieve massive reductions
in circuit depth.

The general ADAPT framework is provided in Algorithm [} From the operator
pool P, we build an ansatz circuit [¢) iteratively by appending the term that
maximizes some scoring function f at each step. In the standard approach we
take the partial derivative at zero after appending a given pool element P € P,
specifically

0 . .
F(P) i= =5 (Wl e " THET [}, (152

which may be evaluated either with the parameter shift rule [122] or by measuring
the commutator [H, P] [121], as discussed in Section [1.4.2] By calculating the
pool scores f(P) and identifying the maximal term, we extend [¢)) — €7 |¢)) and
re-optimize the ansatz parameters via regular VQE before repeating.

We note a few properties of ADAPT-VQE. First of all, the minimized energy
E,, will decrease variationally towards the ground state energy with increasing
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Algorithm 1: The qubit-ADAPT-VQE algorithm.
Input : Operator pool P, initial state |t)y), scoring function f : P — R,
score tolerance 65 > 0, convergence threshold 6. > 0 and
maximum number of iterations ny.x € N.
Output: Optimized energy F(0) = ((0)| H |¢(0)) and ansatz

[¥(0)) = TI1,, e [to).
n<+<0;

EO +~0 )
while (Af > 67) A (A > 6c) A (Nax > 1) do
Identify optimal pool operator:

[ N

Pn+1 < al“]gggljaﬂf(P;lbn)’a Af < ’f(Pn—O—lul/}nﬂ

Append term to growing ansatz:

|thnt1) = €0t Ptt o))

5 Optimize parameters through VQE:

0,1 < argmin F(0),
OcR*(n+1)

Epi1 < E(0,41),
Ac < |En+1 — En|

6 n<n+1;
7 end

n € N, since the ansatz becomes increasingly more expressible. However, the
ansatz complexity also increases so optimization becomes more demanding and, if
running the algorithm on a real quantum device, the increase in circuit depth at
each iteration will also induce a greater level of noise. Secondly, ADAPT-VQE is
resilient to the barren plateau problem [132], since each iteration of the algorithm
is effectively warm-started from the solution of the previous iterate. Finally, the
operator pool O is never exhausted, meaning it is possible to select the same term
more than once. This gives rise to the ‘Pseudo-Trotter’ description of ADAPT-
VQE, in the sense that it somewhat resembles the Trotter expansion of Equation
but with only select terms duplicated.

In Figure[I.13] we demonstrate a noiseless qubit-ADAPT-VQE routine for a 12-
qubit instance of molecular oxygen (O,) at its equilibrium bond length of 1.286A
(in STO-3G), in which we target its triplet ground state. The main point of note
is that the adaptive VQE algorithm surpasses the CCSD energy at a fraction of
the circuit depth compared with the full UCCSD circuit, just 4%. Once we hit
6% the algorithm achieves the target accuracy of 1.6 mHa, demonstrating that
ADAPT-VQE can achieve high levels of accuracy for drastically reduced circuit
depths as compared with full chemically-motivated constructions such as UCCSD.
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Figure 1.13: Example of ADAPT-VQE for a 12-qubit contextual subspace of molecular
oxygen, Oy STO-3G, in its triplet ground state at the equilibrium bond length of 1.286A.
The diamond symbols in the top panel indicate the energy at the end of each VQE
routine, given by the solid line. At each ADAPT step (delineated by the regions of
different colour) a term is selected from the pool of coupled cluster singles doubles
excitations and appended to a growing ansatz, hence the circuit depth increases and
thus the optimization becomes more difficult. Notice that ADAPT-VQE surpasses the
CCSD energy with a circuit that is just 4% of the total UCCSD ansatz depth, while at
6% it achieves chemical accuracy (1.6 mHa error).

1.4.5 Hardware-Aware ADAPT-VQE

The ADAPT-VQE algorithm allows us to incorporate chemical intuition into our
ansatz circuit for modest circuit depths, representing a middle ground between
hardware efficiency and full-blown chemically motivated circuits such as unitary
coupled-cluster with single and double excitations. However, unlike hardware
efficient ansatze, it does not necessarily respect the qubit topology of the target
system — at least, not in its current form.

To address this, we modify the standard pool scoring function above in Equa-
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tion to enforce hardware-awareness in the adaptive circuit construction,
thus minimizing the number of SWAP operations incurred through transpilation.
We achieve this by ranking approximate subgraph isomorphisms in the hardware
topology, described by a graph Gearget = (Niargets Etarget) Where Niarget is the set of
available qubits and Eiarger C /\/'tflfget is the edge-set indicating that two qubits may
be natively coupled via some nonlocal operation on the hardware. We define an
isomorphism between two graphs G and H to be a bijective map g : Ng — N3 such
that, if (u,v) € &g, then (g(u), g(v)) € E. In other words, an isomorphism is a
mapping from nodes of G onto nodes of H that preserves the adjacency structure.
Furthermore, two graphs are said to be subgraph isomorphic if G is isomorphic
to a subgraph of H; we use the VF2%T algorithm [133] as implemented in the
NetworkX Python package [134] for subgraph isomorphism matching,.

In order to reweight the standard score assigned to a given pool operator
P € P, we construct a weighted graph Gereuit = (Neireuit, Ecirenis) for the circuit
¢ 1)) and bias with respect to a notion of distance from the nearest subgraph
isomorphism, described in Algorithm [2l This works by iteratively deleting col-
lections of qubits n € N4 . from the ansatz circuit and any associated edges
in the corresponding coupling graph, terminating once a subgraph isomorphism
is identified. Here, d is the search-depth, which begins at d = 0 with no qubits
deleted and is incremented at each step; since the number of distinct n is (INC‘ZIC“‘”),
we truncate at some maximum depth D and any pool operator for which no sub-
graph isomorphism was found with d < D receives a score of zero. Otherwise,
with the function s(n) that sums edge-weights connected to the nodes n, our new
Hardware-Aware ADAPT-VQE scoring function becomes

rey= (1= el e e ) |, (153

where s(n) is the output of Algorithm [2) W =37 ce w is the total sum
of edge-weights and b > 0 is the biasing strength. This allows one to control the
severity with which non-subgraph-isomorphic circuits are penalised. While the
depth d does not explicitly appear in Equation (1.83)), since |n| = d we will have
more edge-weights included in s(n) for larger depths and hence will be penalized
more.

We test this new hardware-aware ADAPT objective function for 12-qubit
molecular nitrogen, No, at a stretched bond length of 2A: this system can be
challenging for many wavefunction methods. In Figure we compare error
against the number of CNOT gates in the transpiled circuit for our new scor-
ing function, versus the standard qubit-ADAPT-VQE approach. For the target
topology we choose a 12-qubit ring, which is found as a subgraph of the heavy-hex
topology presented in Figure [[.5] As described in Section [1.2.5] transpilation is
the mapping of a given circuit onto the target quantum device, which may not
natively support the required entangling operations and thus expensive SWAP
operations are incurred to compensate for discrepancies in the qubit connectivity.
The number of two-qubit gates required to transpile the ansatz circuit for the
chosen 12-qubit ring is seen to be dramatically reduced, while maintaining similar
errors compared with the hardware-agnostic approach. For fairness, both tech-
niques were transpiled using a basic level of circuit optimization (e.g. cancellation
of inverse gates).
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Algorithm 2: Hardware-aware ADAPT-VQE biasing function.

Input : Pool operator P € P, optimal state |¢)) from previous ADAPT
iteration, target topology graph Giarget = (MNiargets Etarget); bias
b > 0 and maximum search depth D € N.

Output: f(P), a score for the pool operator P.

1 For two graphs G, H the function VF27+(G, H) [133] returns True if G is
subgraph isomorphic to H and False otherwise;

2 Build the weighted graph Geireuit = (Neireuit, Ecirenis) for €F 1)), Here,
| NVeireuit] < [Miarget| Tepresent the circuit qubits and Eurenis € N2 40 ¥

indicate the presence of a nonlocal operation in-circuit, weighted by the
total number of occurrences. The sum of weights is

W - Z(uzvvw)egcircuit w

8 Ap Z (e P HET ) |, _, ‘standard’ score (L.82) ;
4 d < 0, the subgraph isomorphism distance ;

5 if VF2'(Geircuits Grarger) then

6 Already subgraph isomorphic — no biasing;

7 return Ay

8 else

9 while D > d do

10 d<d+1;

11 Order node collections m € N5 . of size d by their summed

edge-weights

=2 2w

nen u v w)Egcu‘cult
Tl u Oor n=v

12 for n € argsort, yxa s(n) do

13 Form the subgraf)lﬁmg( ) C Geircuit in which the nodes n have
been deleted from Geireuit;

14 if VE277(G(n), Grarget) then

15 | return Ay - (1 —s(n)/W)P

16 end

17 end

18 end

19 If the maximum depth is reached without finding a subgraph
isomorphism, the score is set to zero;
20 return 0

21 end

29



NEAR-TERM QUANTUM COMPUTATION FOR QUANTUM CHEMISTRY

51 % qubit-ADAPT-VQE [ 97
: de- Hardware-Aware
ADAPT-VQE |
0.6
4 - o
(V)]
-05 8
12-qubit £
i~ : target 2
> .
CASIE: topology 045
- . (@)
o : =
= (@]
o ok L 032
2 * S
: ©
27 3 -0.2 &
! @
**: 0.1
1-
Mok L 0.0

0 50 100 150 200 250 300 350
Number of CNOT gates in transpiled circuit

Figure 1.14: Construction of a 12-qubit contextual subspace ansatz for Ny at 2A.
We show the FCI error per ADAPT cycle against the number of CNOT operations in
the corresponding circuits transpiled for a closed loop of the 27-qubit Falcon topology
as in Figure We compare the standard qubit-ADAPT-VQE algorithm versus our
hardware-aware approach and observe considerably reduced depths. The ‘subgraph
isomorphism cost’ of embedding the ansatz graph in the target is computed as s(n)/W.
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Chapter 2

Exploiting Symmetry for
Resource Reduction

It is only slightly overstating the
case to say that physics is the
study of symmetry.

Philip W. Anderson [135]

The symmetries of a system serve as proxy through which we may probe many
of its features. In many-body physics, symmetries manifest as properties such
as particle number, total spin, spin parity, or topological characteristics. Often-
times, the presence of symmetry presents an opportunity for simplification in some
sense, effected by projecting the system onto a space in which its symmetries are
inherently conserved. Unfortunately, constructing such a projection is not always
easy; however, there are restricted settings in which one can do so in a scalable
manner. Mathematically, a symmetry of the Hamiltonian H is defined to be an
observable S satisfying [H,S] = 0; one may alternatively view this as the sub-
set of observables that are constants of motion under the Hamiltonian evolution,
governed by Heisenberg’s equation of motion %S(t) = i[H,S]. A special-case of
symmetry arises when S' is a Pauli operator, i.e. S € Py, which we refer to here
as Zo-type symmetry. Symmetries of this type have the consequence that that
they simulataneously symmetric with each of the constituent Hamiltonian terms
when decomposed over the Pauli group H = ) _ h,o. This may be seen as

H=SH=SHS =) heSoS=>Y hs(—1)sog. (2.1)

ocP ocP

Therefore, we must have h, = he(—1)17%S<l0 implying dis,el0 = 1 and thus
[S, o] = 0 for each Pauli term o in the Hamiltonian.

The Zo-type symmetries possess some useful properties that we will later show
facilitates a qubit reduction, thus bringing otherwise computationally-intractable
problems into reach of near-term quantum technological advances.

61



EXPLOITING SYMMETRY FOR RESOURCE REDUCTION

2.1 The Symplectic Representation

From an implementation point of view, it is beneficial to represent Pauli opera-
tors in the so-called symplectic representation. In this framework, operations over
the Pauli group reduce to the manipulation of bitstrings, thus facilitating efficient
computation via standard binary logic. Furthermore, we can make use of vec-
torization with Single Instruction, Multiple Sata (SIMD) processing to optimize
performance. The symmer python package [10], developed to facilitate the work
presented in this thesis, is constructed on top of this symplectic foundation.
Here, we identify an N-fold Pauli string P € Py with a pair of N-dimensional
binary vectors @, z € Z%', whose elements are given by
xn:{l’ Poe{X.Y} :{1, Poe{ZY} 22)

0, otherwise 0, otherwise

Thus, defining b = x|z € Z3" (where | denotes vector/matrix concatenation)
together with the map

o 73N — Py;

N1 (2.3)

b = Q) (X7 27),

n=0

we may reconstruct our Pauli operator P = o(b). In other words, the binary
vectors @, z indicate tensor factors in which there is a Pauli X, Z respectively, with
the additional factor ¢*# correcting for any incurred phases from the multiplication
X7 = —iY.

In this picture, a linear combination C' = Zthl ¢ P, of N-qubit Pauli terms
P, € Py may therefore be represented symplectically by a 2N x T binary matrix

by
B:=|: (2.4)
br

supplemented by a vector of coefficients ¢ := (¢;)L_; € CT. The operator C' may be
recovered as C' = Zthl cio(by). It will also be useful to decompose the symplectic
matrix into its X- and Z-blocks, where

I zZ1
X=|:|, Z=|:], (2.5)
rr zT
so that we may write
B=[X|Z]. (2.6)

In switching to the symplectic representation, many operations over the Pauli
group may be parallelized and implemented in a classically-efficient manner - we
shall now describe how to perform fast Pauli multiplications, check commutativ-
ity, identify Z, symmetry generators and factorize a given Pauli operator over a
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supplied generating set. All of these operations are implemented in the symmer
python package [10] for scalable manipulation of Pauli operators.

Example 2.1: Symplectic Representation from Pauli Hamiltonian

For illustrative purposes, we may write the 2-qubit Heisenberg XY Z Hamil-
tonian

1

where Jy, Jy, Jz; € R are coupling coefficients and h € R the strength of an
eternal magnetic field, in the symplectic representation:

bxx 1110 0 Jx
byy 1101 1 |
B = bZZ =(0 0|1 1 ,C = —— JZ (28)
by, 0010 21 g
by 00/0 1 h
—~ —~
X Z

We will revisit this example later.

2.1.1 Multiplication

Multiplication of Pauli operators reduces to binary vector addition in the sym-
plectic representation, however care must be taken to ensure phases are correctly
accounted for and is often omitted in much of the stabilizer code literature. Given
Pauli operators P, ) € Py, we may directly apply the map to evaluate their
product:

PQ = o(bp)o(bg)

N-1
— jTPEPTTQ 2Q ® X TP 77Pn X TQn 77Qn
n=0
N-1
= (PPEPTEQEQ ®(—1)xQ’”ZPv"Xva“XwQ’”ZZP’"ZZQv” (exchanging inner Z, X)
n=0
N-1
— TP EPTTQZQ (—1)%a=p ® X tPntEQn 7ZPnt2Q.n
n=0

J/

7i(mp®wQ)'(Z}:g9zQ>a(bp@bQ)
izP.(:cpéB:cQ)+:cQ'(ZP€BZQ)(—i)(wPEBwQ)'(zP®ZQ)U<bP @ bg)
(2.9)
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2.1.2 Commutation

Given two Pauli operators P,(Q € Py with corresponding symplectic vectors
bp,bg € 73V, define the canonical symplectic form

_ (0y 1y
0= (ILN ON) (2.10)

and the symplectic innner product
<bp, bQ> = bPng =xp - 2ZQ + zp - ZTq. (211)

Pauli operators commute when they differ on an even number of tensor factors
(excluding identity positions); this corresponds with mismatches between the X
and Z blocks of each operator. One may count these mismatches using the inner

product (2.11]), which yields a check for commutation:
[P,Q] =0« (bp,bg) =0 mod 2. (2.12)

Such operations are highly parallelizable in the symplectic representation.
Here, for example, we may check commutation between each term of two lin-
ear combinations L = ZthLl l,P,, M = ZtT;”l m; () by evaluating the inner product
of their symplectic matrices

(B,By) = X1 Z,,+ Z; X, mod 2. (2.13)

The resulting matrix will be of size T}, x Ty, and the (I, m)-th entry is zero (one)
when [P, Q] =0 ({F,Qn} = 0).

2.1.3 Extracting Symmetry Generators

Unless known a priori due to some knowledge of the underlying physical system,
identifying general symmetries of an arbitrary Hamiltonian H is usually infeasible.
However, in the restricted setting of Zs-type symmetry as introduced above, one
is able to fully characterize the set of such symmetries with surprisingly little
computational overhead.

Define by D(H) C Py the set of Zy-type symmetries of H, which forms a group
under Pauli multiplication; note this group may not be abelian, which we will later
see is important in qubit tapering and leads to further implications regarding
degeneracy of the eigenspectrum of H, discussed in Section 2.2 We shall then
denote by ¢(H) an independent generating set of D(H ), namely D(H) = ¢(H);
this set is not unique, since multiplication of the set by any Z, symmetry not
already contained in ¢(H) will produce a new independent generating set. We
now demonstrate that it is possible to identify ¢(H) in O(N?) time.

As described in [136], representing an operator C' symplectically yields an
efficient method for determining symmetry generators, i.e. a set of operators
S that generate the abelian subgroup S C Py of Pauli operators that commute
universally amongst the terms of C. Recalling the commutation equivalence (2.12),
the symplectic representation S of S must therefore satisfy the equation MQS T =
0. In other words, identification of S corresponds with characterisation of the
kernel, or null space, of M) = [Z ‘ X]
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MQ
This may be achieved by constructing the (7' + 2N) x 2N matrix and

Loy
performing column-wise Gaussian elimination over the binary field to obtain a

R
column-reduced echelon form H (equivalently, row reduction of the transposed

matrix). This implies the existence of an (invertible) matrix P such that

e

and consequently MOQP = R P =Q — MQQ = R; we shall denote by Z the
set indexing zero-columns of R. Taking ST = [QIO ‘ e } the matrix formed

from the columns of @ that correspond with zero columns in R, we therefore have
MQST =0 and we are done.

Example 2.2: Extracting symmetry generators

We return to Example and will identify a symmetry generator for the
2-qubit Heisenberg XY Z Hamiltonian. We first perform Gaussian row re-
duction to obtain a generating set for the Hamiltonian

0011 1 00 0

1111 0 10 0
MQ=|[11/0 0] — |0 0[1 1 (2.15)

1 0/00 000 0

0 10 0 0 0[0 0

> X

Then, transposing (to save Fertical space) and padding with the identity
matrix as in Equation ([2.14)), this is followed by an additional row reduction
(column reduction of the untraposed matrix)

1 0000|1000
01000[0100
T _

[QMH4}_001000010
001 00/00 0 1]

1 0000|100 O] (2.16)
01 000[0100
— 100 100/000 1
000000011
L —

Finally, we identify a single symmetry ZZ, which one may verify commutes
with each of the Hamiltonian terms in ([2.7)).

2.1.4 Decomposition Over Generating Sets

Given an independent set of Pauli operators B C Py, we might wish to determine
which terms of an operator C' may be reconstructed from products of elements in
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B; once again, this is possible in the symplectic formalism. We recall from Section
that multiplication corresponds with binary addition in this framework, so
the problem we wish to solve here is to identify a T" x |B| reconstruction matrix
R such that M = RB where B is the symplectic representation of B. Note that
B is invertible since its rows are linearly independent.

The interpretation of the reconstruction matrix is that, denoting Z; the indices
of non-zero entries in the i-th row of R, we will have P, =[] jer, Bj- This assumes
the set B is sufficiently expressible so as to reconstruct the term, however we will
demonstrate how our method produces a flag that indicates whether a term of C

has been successfully reconstructed from B.

B
Forming the (|B|+17") x 2N matrix M we identify a column-reduced echelon
C
form ol related by the invertible matrix P such that

B C
P=1{—, (2.17)
M D

just as we did in . This implies BP = C and M P = D; using the invert-
ibility of B and P, we obtain M B! = DC~! = R. Because B is independent,
we are able to write C' = []l‘g| ‘ 0\B|><(2N—|B\)} and consequently D = [R ‘ F}
where F'is a T' x (2N — |B|) matrix whose rows are zero when the corresponding
term of C' may be reconstructed in the supplied generating set. Non-zero entries
in F' indicate that B is not sufficiently expressible to fully represent the operator.

~

Example 2.3: 2-qubit XYZ Heisenberg Hamiltonian Reconstruc-
tion

We shall use the above algorithm to demonstrate that B = {X X, XY, Y X}
forms a generating set of the 2-qubit XYZ Heisenberg Hamiltonian ([2.7]).

11 1[11000
11 1/11000
T T _
BYIM=100101110
01001 10 1
00 0[0 00 0 0 (2.18)
.
SJtoor o o _[OIF]
01 0[{01101 1 | RT
00 1/0 111 0

The fact that F' contains only zero entries indicates the reconstruction was
successful and observe that R indexes the elements of B required to produce
each term of the Hamiltonian up to a phase:

XX S Bo, YY S BoBlBQ, ZZ S BlBQ,

(2.19)
ZI = ByB,, IZ = ByB,.
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2.2 Link Between Symmetry and Degeneracy

It should be highlighted that it is possible for elements of ¢(H) to anticommute
amongst themselves, despite forming a generating set of Pauli operators that com-
mute with the Hamiltonian. The presence of anticommuting symmetry genera-
tors indicates degeneracy of the energy spectrum, which we shall prove via the
equivalent statement that a non-degenerate spectrum implies a fully commuting
symmetry generating set.

First of all, we shall assume that [¢)) # 0 is the unique eigenvector (up to a
scaling) satisfying H |1)) = €|i) and that we have two symmetry elements A, B,
ie. [H, Al =0,[H,B] =0, with no assumptions of commutativity made between
them. We therefore have that A |¢)) and B¢) are also eigenvectors of H with
eigenvalue €, but since the eigenspace is non-degenerate it must be the case that
AlY) = al),Bly) = b|y) for scalars a,b € C; we may assume without loss of
generality that a = b = 1, since we may redefine A +— iA, B — %B and we have
Al) = Bly) = |¢). We shall now assume for contradiction that {A, B} = 0.
This implies

V) = AB ) = =BA) = = [¢) (2.20)

and therefore [¢)) = 0, contrary to our initial assumptions on |¢); therefore, A
and B cannot anticommute, and if they are Zs-symmetries then it must be the
case that [A, B] = 0 (since Pauli operators either commute or anticommute).

We note this result says nothing of the degeneracy for a particular eigen-
value in the case of a fully commuting symmetry generating set. For example,
consider the Hamiltonian H = (XX —YY + ZZ — I1)/2 with symmetry gener-
ators S = {X X, ZZ}; this system has a degenerate ground state energy ¢ = —1
with multiplicity 3 and corresponding eigenbasis {\/ii( |00) —|11)), |01), |10)}. This
arises as Z I — 17 also commutes with the Hamiltonian, but not with the symmetry
generating element X X.

In short, Zs-symmetries permute the eigenbasis, whereas it is possible for non-
Zo-symmetries to map eigenstates onto the zero vector, as above. This is not
possible for Zy-symmetries as S|y) = 0 = [¢) = S?|¢) = 0. Ultimately,
degeneracy of the eigenspectrum implies the presence of Hamiltonian symmetry,
while the converse is not in general true, since symmetries may coincidentally map
eigenstates onto themselves. However, we have shown the case of anticommutation
amongst symmetry elements, meaning the symmetry group is non-abelian, guar-
antees the existence of degenerate eigenvalues — although this observation does
not provide a constructive way of identifying such degeneracies.

2.3 Stabilizer Subspace Projection

Let G = ¢(H) be a generating set of Zy-type symmetries of the Hamiltonian H.
Now, recall the Clifford group consists of unitary operators U € # () (meaning
UUT = UU = 1) with the property UocU' € Py Vo € Py, i.e., U normalizes the
Pauli group. We may construct a Clifford operation U mapping each symmetry
generator to distinct single-qubit Pauli operators o,, where we are free to choose

pe{1,2,3}.
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Example 2.4: Anticommuting symmetries

In the absence of an external field, the Heisenberg Hamiltonian model has
the form

H=) (LXx9Xx® 4 ,y0y® 4 g,z070) (2.21)
<iyj>
where i,j € {1,..., N} are pairs of indices running over the sites of a spin

lattice. Such Hamiltonians on an odd number of spins (N = 2n+ 1) exhibit
anticommuting symmetry generating sets of the form {Z®V X®N1 meaning
every single eigenvalue will be degenerate (following the discussion of Sec-
tion [2.2)). Tapering may lift some degeneracy, which might have previously
caused issues for optimization etc.

Consider for example a 3-spin lattice, corresponding with the field-free
XY Z-Hamiltonian

H=J,(XXI+IXX + XIX)
+J,(YYI+IYY +YIY) (2.22)
+ (221 + 122+ Z12)

with anticommuting Z,-symmetries X X X, ZZZ. The eigenvalues are
&= —(Jo+Jy+J.)
€1= —€+ \/5\/(Jx — )P 4 (Il = TP 4 (= L) (2.23)

€g = — €g — \/5\/(Jx — JL P A (s = )P (= )P

with multiplicities 4, 2, 2, respectively.

Tapering out the X X X symmetry, we obtain a reduced 2-qubit Hamiltonian
H' = J,A—%2{A B}+J,Bwhere A= XX+XI+IX and B=ZZ+ZI+
17, whose eigenvalues coincide with those above but now with multiplicities
2,1, 1, respectively. The fact there is still a degenerate eigenvalue indicates
the existence of some non-Z, symmetry, in this case the operator XX +
YY + ZZ, as discussed at the end of Section [2.2]

J

More precisely, there exists a subset of qubit positions Zy., C Zy satisfying
|Zstan| = |G| and a bijective map f : G — Zyap such that

UGUT =69 vG eg. (2.24)

This is a powerful concept that provides a mechanism for reducing the number
of qubits in the Hamiltonian whilst preserving its energy spectrum. This is at the
core of qubit tapering [136, |137], in which it is observed that

G Hf| =0 = [0/ H]=0 VG eg, (2.25)

p

implying the rotated Hamiltonian H% := UH7U" consists solely of identity or
Pauli o0, operators in the qubit positions indexed by Zga.,. Taking expectation
values, one may replace the qubits Zg., by their eigenvalues v; = +1; each assign-
ment

v = (W)icz € {ELP T (2.26)
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defines a symmetry sector and at least one such sector will contain the true solution
to the eigenvalue problem. Note the other sectors still have physical significance
and may for example relate to solutions with different particle numbers or to
excited states.

A quantum state consistent with any such sector must be stabilized by the
operators l/iUI()i) and we may define a projection onto the corresponding stabilizer
subspace. In general, a projection is defined to be an idempotent operator P €
B(H), i.e. P =P; the projection onto the 4-1-eigenspace of a single-qubit Pauli
operator o, for p € {1,2,3} may be written

1
+.
Py = 5([ + ap). (2.27)
States with no component inside the chosen eigenspace are mapped to zero and

observe that
Pro Py = +6,4P; (2.28)

for ¢ € {1,2,3}.

Let 7.1, be the reduced Hilbert space supported by the stabilized qubits Zg.p
and Feq its complement such that 77 = ., ® .q. Given an assignment of
eigenvalues v € {+1}*%b we may project onto the corresponding sector via

P, = Q) B (2.29)

1€ Lstab

and subsequently perform a partial trace over the stabilized qubits Zg.,. This
is effected by the unique linear map Trg.y, : 7 — Heq satisfying the property
Treeab (A ® B) =Tr (A)B for all A € B(Hap) and B € B(Hieq).

Finally, we may define the full stabilizer subspace projection map

7Tg : B(H) — B(Hiea);

2.30
A Trga (BLUAU'P,) (2:30)

which, using the linearity of Trg.p, yields a reduced Hamiltonian
Hye o=l (Hr)
- Z Wol (2.31)

ocT

N-1 :
where o/ = UoU' = ®;., 0, and we have written o’ = o, ® o/ 4. The new

coefficients h. = hy [ [iez.,., vi differ from h, by a sign dependent on the chosen
q: 70
symmetry sector.

In qubit tapering U is taken as , with the corresponding basis G a gen-
erating set for a full Hamiltonian symmetry [136| [137]. Assuming identification of
the correct sector, the ground state energy of the (N — |G|)-qubit reduced Hamil-
tonian A% will coincide with the true value of the full system Hr.

This stabilizer projection procedure is straightforward with respect to the
Hamiltonian, since the stabilized qubits contain only operators with non-zero
image under conjugation with P,. However, suppose we were to take another
observable A € #(7) and wish to determine a reduced form on H(.q) that is
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consistent with the reduced Hamiltonian H%¢. This may be achieved by following
precisely the same process that was applied to H7, but the symmetry S will not in
general be a symmetry of A and therefore the ‘symmetry-breaking’ terms (those
which anticommute with the generators G) will vanish under projection onto the
stabilizer subspace, as per . Letting A C Py be the set of terms in the
Pauli-basis expansion of A, observe that

Ared — 7.‘_U(14)
= E h TI' Vo-stabP> Ored
ocA
= E he TI‘( ® Pyl X ® ]P)Vlo-quyz) Ored
ocA 1€Lstab 7/€Istab v
=0 arl =loaty (2.32)
= § hdaredTr H V”L P.qi
ocA =1 zeIstab
qﬁéﬂ
= Z ha’ red-
ocA
¢;€{0,p}
viel—stab

The resulting form is identical to , except we are explicit that the terms
surviving projection are only those whose qubit positions indexed by Zg.;, con-
sist exclusively of identity and Pauli o, operators; this is trivially true for the
Hamiltonian by construction.

Example 2.5: Tapering Diatomic Molecules

All molecular systems possess at least two Zs-symmetries which enforce
the parity of spin up or down particles. Additional symmetry arises from
the molecular point group that describes the geometrical symmetry of the
system. In the setting of diatomic molecules there are two relevant point
groups: the cyclic point group C., consisting of continuous rotations around
the inter-nuclear axis and the dihedral point group D.., that also includes
the reflection and inversion symmetries of the diatomic. Heteronuclear
molecules consisting of two distinct atomic centres, such as HCI, lie within
the former group, while homonuclear molecules such as Ny fall under the
latter.

The specific Zo-symmetries one exploits through tapering come from abelian
subgroups of the above point groups that describe a restriction to 2-fold sym-
metry. In particular, the relevant group generators of Cy, C C,,, are 180°
rotations around the bond axis, denoted Cy, and vertical reflections o,. In
the case of Dy, C Dy, we have the same rotational symmetry Cs, in addi-
tion to the group generators oj, corresponding with horizontal reflections,
and the inversion symmetry 7. In all, qubit tapering enables the removal of
four qubits from heteronuclear molecules (two point group generators Cs, o,
plus spin up/down parity) and five from homonuclear molecules (three point
group generators Cy, oy, ¢ plus spin up/down parity).
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Most importantly, this extends the stabilizer subspace projection to ansatze
defined on the full system for use in variational algorithms. It should be noted that
the above operations are classically tractable and can be implemented efficiently
in the symplectic representation of Pauli operators [138, [139].

We would be remiss not to draw attention to the likeness of with Positive
Operator-Valued Measures (POVM) [140]; indeed, the projectors define a
complete set of Kraus operators [141]. The stabilizer subspace projection proce-
dure is reduced to a matter of enforcing a partial measurement over some subsys-
tem of the full problem, for which the relevant outcomes have been determined
via an auxiliary method. We discuss this in the following Section [2.4]

2.4 Sector Identification via Reference States

Given a generating set of Z, symmetries S (these might be derived from physical
symmetries as in qubit tapering, or pseudo-symmetries in the contextual subspace
approach), it is key that one identifies the relevant symmetry sector. This is
defined by a vector of eigenvalue assignments v € {£1}*I5l to the element of S;
the states of the subspace specified by this symmetry sector are those subsequently
stabilized by the operators {vsS|S € S}. This defines a stabilizer subspace. We
remark that the linear algebra interpretation of this is that, for a given choice
of v, this specifies the eigenstate of each element of S and thus specifies a given
block in the Hamiltonian. This is because [H, S| =0 VS € S and thus H is block
diagonal with respect to the eigenstates of each symmetry operator in S as the
eigenstates of each S must be a joint eigenstate of H.

In qubit tapering, ¥ must be chosen such that the desired eigenstate lies within
a given subspace. Whereas, in the contextual subspace approach v is selected
such that it minimizes the ground state of a noncontextual Hamiltonian. In each
case finding v is non-trivial and was not addressed in the previous literature
[136], |137]. The number of eigenvalue assignment combinations is exponential
in the number of stabilizers being imposed over the target Hamiltonian, namely
2151 Tt should be noted that the sector identification problem is in general NP-
complete [142] |143|. For example, given a diagonal Hamiltonian the corresponding
symmetry generators form a generating set of the Hamiltonian itself; as such,
sector assignment is equivalent to fully solving the problem in this case. However,
we will show next that for some problems it is possible to choose the correct
symmetry sector based on knowledge of the underlying problem.

Given an eigenstate [¢0) of H with corresponding Z, symmetries S = ¢(H),
we formalize the assignment of v = (vg)ges with vg = (0| S |¢0). Note that, by
definition, [¢) is an eigenstate of each S € S since commuting operators share
a common eigenbasis. However, we will not in general know the eigenstate |¢)
a priori as this requires solving the problem. Instead, if one has knowledge of a
reference state |¢), the problem of sector identification can be solved subject to
non-zero overlap with the desired eigenstate, | (¢|@) | > 0.

There are two cases to consider when using a reference state |¢). First, when
|¢) is an joint eigenstate of the symmetry operators in addition to having non-
zero overlap with the desired eigenstate, one simply has to ‘measure’ the symmetry
elements in the reference state to determine v = ((¢| S |¢))ses. This leads to no
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ambiguity in the sector choice, which is the ideal scenario. Note if | (¢|¢) | = 0
then the wrong sector will be selected, as the wrong joint eigenstate has been used
to choose the sector.

Next, consider the case when |¢) has non-zero overlap with |¢)) but is not an
eigenstate of at least one symmetry operator S € §. In such a situation, whereby
|¢) spans both £1-eigenspaces of S, we assign the dominant eigenvalue if it exceeds
some predefined threshold 0 < ¢ < 1:

+1, (¢[Sp) =0
vs = -1 (9]S|9) <-4, (2.33)
0, otherwise

where § = 1 forces the exact-eigenstate case introduced previously. Any zero
assignments will then need to be determined via alternative means, either via
brute force search or some other optimization scheme if the reference state is not
sufficiently weighted towards either 4+1 eigenvalue. Note for § < 1 there is some
ambiguity in the sector choice and care must be taken as the wrong sector can be
selected in this heuristic approach even with | (0|¢) | > 0.

Given that we may decompose any Pauli operator S over its +1-eigenspace
projectors Py = 1(I+5) (introduced in the previous Section as S =P, —P_,

it is possible to rewrite the above expectation value
(@S o) = [P+olI” - |P_¢|*

2.34
= 1o+ 561 ~ 1o — 5912, 230

where ||¢]] = /] (¢]¢) | and we have used the fact P2 = P,. The significance
of this is that direct evaluation of the left-hand side involves multiplication over
O(M?) cross-terms of ¥ (defined over M basis states), whereas the right can be
implemented in O(M) operations (evaluating the product Sv) and therefore is
more suitable for efficient implementation.

The sector assignment problem is now reduced to the generation of a suitable
reference state that exhibits sufficient overlap with the desired eigenstate. We
re-iterate that the best scenario is if the reference state is an eigenstate of every
symmetry operators and has any non-zero overlap with the target eigenstate, as
this will result in always the correct subspace being selected. For many quantum
chemistry applications, the Hartree-Fock state provides such a reference for the
ground space. However, there are scenarios in which it may fail, for example if
the true ground state is fully excited away from the Hartree-Fock reference. In
such cases, one may refer to a hierarchy of increasingly precise classical quantum
chemistry methods such as Mgller—Plesset perturbation theory (MP2, MP3, ...)
(144} |145], Coupled-Cluster theory (CCD, CCSD, ...) [49|, Configuration Inter-
action (CID, CISD,...) [146] etc. in the hope that a sufficient overlap with the
ground is obtained at some point, suggested in [2]. The sector selection may then
be motivated using the resulting wavefunctions. We remark that if these these
methods produce reference states that select different symmetry sectors (equation
m ) compared to those predicted by Hartree-Fock, then there is strong evidence
to suggest Hartree-Fock is insufficient for selecting the correct symmetry sector.
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Example 2.6: Charged molecules

Direct diagonalization of the full second quantized Hamiltonian for charged
molecules such as HeH™ or Hs" is prone to identifying the incorrect sub-
space (the neutral species) if the eigenstate with the lowest eigenvalue is
taken. However, if we first taper the problem using the Hartree-Fock state
to determine the symmetry sector (Equation ([2.33))) we find that direct di-
agonalization now results in the lowest eigenvector being the correct ground
state. The reason for this is that two of the Z, symmetries tapered out in
such problems are the spin-up and spin-down parity operators. By fixing
the assignment of these symmetries it stops the neutral species from being
obtained as the minimum eigenvalue.

Importantly, we note that if an ansatz circuit is used, such as when using
the Variational Quantum Eigensolver (VQE) algorithm, assuming the ansatz
circuit is number and spin-parity preserving, the trial state will always re-
main in the correct sector/subspace. Such an example is the Unitary Cou-
pled Cluster ansatz [22], introduced in Section or those constructed
from single-particle Givens rotations of the form in Figure .

On the other hand, if the symmetries are not accounted for by the ansatz
then a state that is in the wrong symmetry sector could be obtained. In
this example, if a fully expressive hardware efficient ansatz is used, such
that any state in the Hilbert space could be obtained, then it is likely that
the neutral species will again be obtained, rather than the charged system
that we are aiming to simulate.

Example 2.7: H4; molecule

One of the simplest molecules that exhibits a breakdown of the standard
computational methods is Hy arranged in a planar ring. In fact, this sys-
tem has been used to benchmark different computational chemistry methods
[147H150]. Interestingly, when described in the STO-3G basis, the ground
state obtained via direct diagonalization has zero overlap with the Hartree-
Fock solution due to a difference in symmetry sectors (B, vs A,).The
ground state energies of Hp, and H,, are —1.8743 Ha and —1.8643 Ha
respectively. Tapering with the Hartree-Fock state incorrectly chooses the
Ay symmetry sector. For such cases, a user needs to be careful in choosing
the desired symmetry sector.

If the Hartree-Fock input state was used in this case as input for the Quan-
tum Phase Estimation algorithm it would be impossible to get the
minimum eigenvalue of the molecular Hamiltonian. This example highlights
that care must be taken even in the fault tolerant regime. The chosen ref-
erence state should always be selected such that it resides in the correct
symmetry sector, or at the very least selected to span multiple sectors (the

scenario when (¢| S |¢) # £1 in equation [2.33)).
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Chapter 3

Exploiting Contextuality for
Resource Reduction

What we observe is not Nature
itself, but Nature exposed to our
method of questioning.

Werner Heisenberg [152]

A long-held belief in physics was one of causal determinism, that all bodies
follow predetermined trajectories governed by a set of universal principles; it is
the physicists’s prerogative to discover these laws through acute observation of
their surroundings. This was first articulated in 1814 by Laplace, who imagined an
“intelligence which could comprehend all the forces by which Nature is animated...
for it, nothing would be uncertain and the future, as the past, would be present
to its eyes” |153, p.4]. Here, Laplace describes a Newtonian picture of Nature,
in which the properties of a system are determined for any desired time by the
position and momentum of its comprising particles. But, Laplace’s oracle was
later denounced a demon, rather than the intelligence he had first envisaged.
Another demon followed five decades later when Maxwell presented a thought-
experiment in 1867 that purportedly violated the second law of thermodynamics
[154]. However, what Maxwell’s demon really revealed was a subtle connection
between energy and information.

Advance forward another half century and we see physics undergoing a period
of turbulence in the fallout of the ultraviolet catastrophe, whereby classical elec-
tromagnetism predicted unbounded intensity of black body radiation [155] [156].
The ensuing decades saw a number of ad hoc corrections to the mechanics of the
day in order to reconcile such troublesome results. However, the resulting the-
ories were inconsistent and incomplete, serving more as heuristic appendages to
an otherwise insufficient description of Nature. This “old quantum theory”, as it
came to be known, was finally settled with the Heisenberg interpretation of 1925
[157] and concurrently the wave mechanics formulation developed by Schrodinger
[158]. While these theories were praised for their ingenuity, the following year
bought with it a shocking revelation in the form of Born’s rule [159], predicating
that quantum mechanics must be understood probabilistically and therefore de-
void of Laplace’s causal determinism. This notion was met with adversity by many
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prominent physicists of the time, including none other than Einstein, and came to
a head in 1927 at the prestigious Solvay conference where the pivotal Bohr-Einstein
debates were sparked. The debates consisted of a series of thought-experiments
designed to refute the other’s point of view, but Bohr emerged triumphant, vindi-
cating the Copenhagen interpretation of quantum physics and Heisenberg’s uncer-
tainty principle, that asserts a fundamental limit on the simulataneous knowledge
of both position and momentum [16]. The following decade saw further rebuttal
from Einstein, most notably the Einstein-Podolsky-Rosen (EPR) paradox of 1935
[160] which was left unresolved for three decades until Bell’s theorem [161] that
has since received extensive experimental validation.

The implication of Bell’s inequalities is a deficiency of realistic hidden vari-
able theories — the understanding that measurement uncovers some predetermined
property of Nature that exists independent of the observer — to capture quantum
mechanical behaviour. This is most concisely demonstrated by means of a simple
game. It starts with a 3 x 3 grid in which players must enter -1 values in each cell,
with the goal of satisfying the conditions that products along rows equal +1 and
products down columns equal —1. It does not take long to arrive at the conclusion
that this game cannot be won; an example of a possible configuration is presented
in Table [3.1] where one finds it is not possible to fill the final cell such that both
the row and column conditions are satisfied.

However, we may modify the game to instead grant players access to bipar-
tite Pauli operators. Now, we find it actually is possible to satisfy the success
criteria that rows multiply to +1 and columns to —1, owing to the richer al-
gebraic structure of the Pauli group. One such satisfying configuration may be
viewed in Table and, while seemingly inconspicuous, hides an unsettling re-
alisation. The entries {IZ,Z1,Z7Z X1,1X, XX, —-XZ,—ZX,YY} form a set of

- I jll\i\fsl I —

ro || =1 | +1 | =1 || +1

r3 || +1 | +1 | 7 X
[-1]-1] x ]

Table 3.1: It is not possible to fill a 3 x 3 grid with £1 values such that products along
rows yield +1 and products down columns yield —1.

L oo | & | e |
nll 1Z | ZI | ZZ || 11
|| XTI | IX | XX || 41
rs || —XZ | —ZX | YY || 41
-1 ] -1 ]-1]

Table 3.2: While it was not possible to fill the grid in Table relaxing the entries
to bipartite Pauli operators we find it is possible to complete the square such that row
products yield +1 and column products yield —1.
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observables that one could feasibly measure [[] in the laboratory, thus revealing a
set of £1 eigenvalue assignments and effectively superimposing our Pauli grid onto
the unsatisfiable grid above.
This presents a contradiction, noting that taking products across rows and
columns yields
rirers = +1 # —1 = ¢cac3. (3.1)

Newtonian mechanics is ill-equipped to resolve this observation; it may, however,
be reconciled with the concept of measurement contextuality. In this setting,
a context is defined to be a set of commuting observables, which each of the
rows and columns in Table forms. Commuting observables share a common
eigenbasis, the consequence of which being it is possible to perform simultaneous
measurements [163]. Contextuality of the type presented here is of the so-called
strong form [164H166]. This is a restricted setting compared to contextuality in
the Bell inequality sense [161} |167].

Since each row and column of Table specifies a different context, the final
measurement outcome is consequently context-dependent. Namely, the observer’s
choice to view a particular context has implications on the measured value. But
this directly opposes Laplace’s view that we are simple observers of the universe in
vacuo; instead, quantum mechanics suggests that the two cannot be disentangled,
that the observer and observee are inextricably linked.

3.1 Detecting Contextuality

Grids of the form in Table are referred to as Peres-Mermin magic squares
[168, |169]. Focussing on the upper left quadrant 7 = {IZ, ZI, X1, 1X}, the
remaining operators in row r3 and column c3 are products of elements in 7, or
in other words 7 is a generating set of the full grid; therefore, this reduced set
should be sufficient to reproduce the context-dependence demonstrated above. It
is instructive to consider the compatibility graph of 7, displayed in Figure [3.1]
where we find that commutation is non-transitive, one example being [[Z, ZI| =
(Z1,IX] = 0 but [IZ,IX] # 0. This property of Pauli measurements hints at
the root cause of contextuality; to better understand this phenomenon we shall
adopt a more rigorous mathematical language. First of all, it is instructive to
introduce the notion of determining trees to depict diagrammatically the product
decomposition(s) of an operator R over a set 7.

Figure 3.1: Compatibility graph of the set 7 = {IZ,ZI,XI,IX} shown with solid
edges and its complement anti-compatibility graph with dashed edges.

'The process of measurement in quantum mechanics is a difficult one to capture precisely
and carries with it a great deal of nuance [162]; the framework of measurement adopted for this
work is described in Section m
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By this we mean an acyclic undirected graph with a root node (uniquely char-
acterised by its connection with precisely two edges) labelled R that satisfies the
following criteria:

1. The ‘children’ nodes residing under a common parent must commute;
2. Each parent is the operator product of its children.

We refer to the leaves L € T of our determining tree as the nodes with only a
single adjacent edge, where m; € Ny denotes the multiplicity of each leaf (we
permit my = 0). If such a determining tree exists then we may write

R=TJLm (3.2)

LeT

Furthermore, given a value assignment v;, = 41 to the leaves L € T we can infer
the value assigned to R:

VR = H e H VL, (3.3)

LeT LeDgr

in which Dg == {L € T | my, is odd} is the determining set of R; since any leaf
whose multiplicity is even will make a +1 contribution in the product (3.3)) they
may be omitted, which is the motivation behind this definition.

YY -YY
XZ ZX XX 47
X1 1z zZ1 11X X1 11X zZ1 1z
(a) Determining tree for Y'Y over 7. (b) Determining tree for =YY over T.

Figure 3.2: Determining trees over the Peres-Mermin magic square of Table

As seen in Figure [3.2] it is possible to construct determining trees for both
+YY from the elements of 7, which moreover share the same determining set.
This is problematic, as any joint value assignment to the leaves of the tree infer a
contradictory assignment to £YY, which we observed previously with the incom-
patibility of row and column products in Table [3.1L This motivates the following
definition of strict contextuality:

We shall say that a set of Pauli operators T is contextual if and
only if there exists an operator R that admits determining trees for
both +R whose determining sets coincide, i.e. Dgr = D_pg.

We may reformulate this definition by noting that the determining set of a
product of Pauli operators P() is given by Dp UDg. Applying this observation to
the trivial statement —7" = — 17T yields D_; = D_; U Dr, so in the instance that
—1 admits a determining tree over 7 which additionally has empty determining set
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D_1 = @, we recover the above definition of contextuality. Another observation
is that symmetries of a particular set, discussed in Chapter [2| hold no bearing on
its contextual status, meaning they can be ignored when trying to assess whether
a particular collection of Pauli measurements exhibits contextuality.

With this in mind, we may write down a number of equivalent statements
of (non)contextuality. Suppose we are given a set of Pauli measurement terms
T C Py we wish to classify and let G = ¢(7") be an independent generating set of
its Zo-type symmetries, obtained efficiently via the algorithm described in Section
. With & = 7 N G the subset of symmetry elements present within 7, the

following statements are equivalent:

NC.1 7 is a noncontextual set of Pauli measurements;

NC.2 For A,B,C € T,if [A,B] =[B,C] =0but [A4,C] #0, then B€ S
(in other words, commutation transitivity violations must pass through the
symmetry subset);

NC.3 Commutation is transitive on 7T \ S;
NC.4 Commutation forms an equivalence relation over 7 \ S;

NC.5 T=8UC;---UCp where {C;,C;} =0 for C; € C;,C; € Cj, i # j and
[Ci, Cl/] =0 for Ci, Cz/ c Cl

NC.6 The compatibility graph of 7 \ S is comprised of disjoint cliques;

NC.7 The anti-compatibility graph of 7 \ S is multipartite complete.

Statement above is illustrated in Figure for maximal 6-qubit non-
contextual sets, providing a convenient graphical representation of strong mea-
surement contextuality.

In the interest of computational efficiency, it is necessary to devise a program-
matic approach to assessing whether an arbitrary Pauli set is contextual. Given
that we have identified strong measurement contextuality with the violation of
commutation transitivity, this provides a first algorithm for testing contextuality:
search through triples of elements to check whether they satisfy the transitivity
condition. If a non-transitive relation is found, the set is contextual, whereas if
no such violations are present it must therefore be noncontextual. This approach
was the first to be suggested [170] and scales as O(M?) where M = |S| is the size
of the set we wish to assess; this algorithm is implemented in the OpenFermion
Python package [171].

However, this scaling is not ideal and is impractical even for Pauli sets of mod-
est size. Instead, we propose an improved approach that leverages the symplectic
representation of Section . Recall that we may identify a set T C Py of size
M with a binary matrix 7' € Z2"*™ up to a reordering of rows. Then, with the
canonical symplectic form Q = X ® 1y of Equation and following the com-
mutation equivalence of Section [2.1.2] we may efficiently compute the adjacency
matrix A € Zy"M of the compatibility graph for the set 7 as

A=TQTT mod 2 (3.4)
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L=2,M=96

Figure 3.3: Compatibility graphs for maximal 6-qubit noncontextual sets. This high-
lights the decomposition into SUC; --- U Cr, where S is the symmetrical component of
the set, while the C; form disjoint cliques (Statement . Drawing on the equivalent
definitions of noncontextuality above, commutation transitivity violations are permitted
only when passing through a symmetry element.

by performing O(M?) XOR operations between N-dimensional binary vectors.
The entries of this matrix are

)1 Aoy,05 =1
Aij = {o oi0] =0 (3.5)

or, in other words, zero indicates commutation and one anticommutation between
Pauli operators ¢ and j. Construction of this adjacency matrix is the dominant
source of complexity in this new contextuality check.

Next, we drop any zero rows/columns from A; this corresponds with discarding
the globally commuting terms and therefore leaves us with an adjacency matrix A’
over the reduced set 7\ S. Now, suppose two different rows contain a zero in the
same column — for the set to be noncontextual these two rows must be identical,
since this implies they belong to the same equivalence class; otherwise, the system
must be contextual. This can be achieved by taking the bit-flipped matrix 1 — A’,
identifying the unique rows and summing down columns; if the resulting vectors
consists only of ones, the set is noncontextual, else it is contextual. The overall
complexity is O(M?), thus improving over the original implementation by a factor
of M, coming from construction of the adjacency matrix.

In Figure we benchmark these two contextuality test algorithms for 20-
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qubit noncontextual sets consisting of an increasing number of terms M. The
time-to-solution for the symplectic adjacency-based approach achieves a speed-
up of three orders of magnitude over the original commutation-transitivity-search
approach.

: P
101! E - 7

; 3212 x
10° - * speed-up

=

o
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|
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|

=
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o
I

Contextuality test time-to-solution [s]

10-5-§ g -=-=- ©(M?) scaling

] -7 —— Symmer
107°¢ - -§- OpenFermion

10! 102 103 10
M (number of terms in 20-qubit noncontextual sets)

Figure 3.4: Comparison of the contextuality test algorithm from Kirby & Love [170]
(implemented in OpenFermion [171]) versus the symplectic adjacency-based approach
presented here (as implemented in Symmer [10]).

3.2 The Noncontextual Hamiltonian Problem

Above we attributed contextuality as a property belonging to a set of Pauli mea-
surements 7. A Hamiltonian, on the other hand, is a weighted sum of such terms;
as it turns out, it is possible to derive an expression for the eigenspectrum of a
noncontextual Hamiltonian H oncon in terms of eigenvalue assignments to its sym-
metry generators (which one might view as the hidden variables describing the
system) [143,[172]. Recalling Statement [NC.5] we obtain a convenient partition-
ing of a noncontextual Pauli Hamiltonian 7 = SUC; U --- Uy, where the C; are
equivalence classes with respect to commutation — in other words, elements of the
same class commute and across classes they anticommute.

We consider a phase-space formulation of noncontextual quantum models as
a means to approximate the behavior of quantum systems using classical struc-
tures. Such an approach draws heavily on the conceptual framework introduced
by Spekkens [173, |174], in which quantum states are interpreted “epistemically”,
namely as distributions over a space of hidden variables subject to restrictions
on the knowledge that can be gained. Within this framework, we construct a
hidden-variable representation consisting of eigenvalue assignments to symmetry
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generators of a noncontextual set and a real-valued weighting of pairwise anticom-
muting representative observables selected from noncontextual equivalence classes.

The symmetry subset & C T can be expanded by taking pairwise products
within equivalence classes — since {C;, C;} = 0 for C; € C;,C; € C; with i # j, it is
the case that [C;C], C;C%] = 0 and we may define S’ = SUUL {CiCl ¢, Cl e ¢}
As before, in Section 2.3) S induces a symmetry group for which one may define
independent generators G and a Clifford operation Ug mapping the generators
to single-qubit Pauli operators; the inferred values over these qubits will again
be determined by an assignment v € {1}*l9] of eigenvalues, analogous to the
selection of a symmetry sector in qubit tapering. From each equivalence class C;
we select a representative C; and a weighting r;, yielding a vector » € R* subject
to |r| = 1.

This construction defines a reduced phase-space over which a joint probability
distribution can be formulated. Explicitly, the distribution

51/ v/ L
Pl r) = 2 ] i+ v, (36)
i=1

which is a special-case of the phase-space distribution given by Spekkens [175],
serves to capture the overlap between two hidden-variable configurations. Impor-
tantly, while this distribution is non-negative in our restricted setting, it belongs
to a broader class of quasiprobabilities, which in general may admit negative val-
ues as signatures of contextuality or nonclassicality [176]. However, the present
model intentionally avoids these features by construction, resulting in a strictly
noncontextual framework.

Expectation values of observables defined within this phase-space are computed
analytically. In particular, Kirby & Love [143] proved that the expectation value
of a noncontextual symmetry generator is

(G pmy =vc VG EG, (3.7)
while the expectation value of a class representative is
<C,~>(V7T) =rVie{l,...,L}. (3.8)

As a consequence of the above, each hidden-variable configuration (v, r) may be
associated with a valid quantum state |1/, ) € S that is stabilized by the set of
operators {voG | G € G} U {C(r)} where C(r) = Y%, 7:C; is a normalized sum
over the weighted pairwise anticommuting representative observables. This holds

as
L L

<C(r>>(u,r) = ZTi <Ci>(u,'r) = ZT’LQ = |Ir’|2 = +1’ (39)
i=1 i=1
through application of Equation and guarantees compatibility between the
hidden-variable model and a subset of stabilizer states in the full Hilbert space.
Since G generates the symmetry group §” and for any C! € C; we have C;C! € &’
by construction, it holds that S C G and G C C,G = {C;P|P € ?} This
means we may instead sum over the completion of G, to obtain a formulation of a
noncontextual Hamiltonian:

L
Hnoncon == Z (hP + Z hP,iCi> P. (310)
=1

pPeG
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Putting everything together, we can express the expectation value of our non-
contextual Hamiltonian as

n(v,r) = <Hn0ncon>(u,r)

= (hp + é hp; (Ci>(y,r)) (P

= (3.11)
M
= Z (hp + th,m) H va,
PeG =1 GeGp

where Gp C G satisfies P = HGGQP G.

The noncontextual energy spectrum is therefore parametrized by two vectors:
the 1 eigenvalue assignments v, determining the contribution of the universally
commuting terms, and 7, encapsulating the remaining pairwise anticommuting
classes. In this sense, we may refer to (v,r) as a state of the noncontextual
Hamiltonian itself, abstracted from quantum states of the corresponding stabilizer
subspace. Optimizing over these parameters, we obtain the noncontextual ground
state energy

‘= min n(v,r) (3.12)
ve{£1}x9!
reRl:|r|=1
and call an element (v,7) of the preimage n7!(ef°) a noncontextual ground state
of Hyoncon- Let us denote by A, = | — €| the absolute error with respect to
the true ground state energy.

This framework may be interpreted as a hidden-variable theory for a noncon-
textual subtheory of quantum mechanics. The configuration (v, r) plays the role
of a classical state over a reduced observable set. The assumption of noncontex-
tuality means that no joint assignment is attempted for incompatible observables;
incompatibility refers to observables that are not captured by either the commut-
ing subset or equivalence classes and moreover there is a restriction on expectation
values of the latter due to constraints of the vector r. This aligns with the idea of
epistriction, wherein an observer’s access to ontic information is limited to com-
muting subsets of observables, precluding the types of correlations that would
violate classical realism [173].

Attempts to assign definite values to the full set of Pauli operators would rein-
troduce Kochen—Specker-type contradictions [177]. By narrowing the observable
algebra to a classically simulable subset, we avoid contextuality by construction
and define a subtheory whose energy landscape can be efficiently explored. In
this sense, the noncontextual formalism provides a reduction of the full quantum
problem and the epistemic constraints serve to isolate those features of the system
amenable to classical interpretation. Though approximate, the model attempts to
capture some of the structure present in a quantum system without incurring the
overhead of a fully contextual description; in the following Section [3.3], we discuss
how to relax noncontextual hidden-variable constraints to introduce contextual
features and thus improve the approximation variationally.

Taken as a classical optimization problem, minimizing the objective function
of Equation is NP-complete in general. Despite this, we expect typical
instances to be heuristically solvable by classical methods [143]. The same is
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true for both Density Functional Theory and Hartree-Fock; while in the worst-
case these problems are NP-complete, the average-case hardness renders typical
problem instances to be soluble in many cases of chemical interest [48]. If one fixes
the +1 eigenvalue assignments v — a case of identifying the correct symmetry sector
— the phase-space formulation of noncontextual optimization reduced to a convex
optimization problem over points of the unit (L — 1)-sphere.

In Example [3.1] and Figure [3.5] we demonstrate that minimal basis molecular
hydrogen (Hy STO-3G) describes a noncontextual system and therefore permits
a description by hidden variables. Figure |3.5b|illustrates the convex optimization
part of the phase-space formulation for varying bond lengths, noting that the
minimum over this landscape coincides exactly with FCI.

----- FCl energy
Hartree-Fock energy
Noncontextual energy

(b) Noncontextual energy landscape with re-
spect to the r» parameter present in the phase-

(a) Compatibility graph of the Hamiltonian, space formulation of the problem (3.11]). The
which possesses the noncontextual graph struc- noncontextual states have the form [i(0)) =
ture with L = 2 seen previously in Figure [3.3] XY XX 1100) and we plot (Hroncon) y (g)-

Figure 3.5: Molecular hydrogen, Ho STO-3G, under the Jordan-Wigner transformation
describes a noncontextual system.

3.3 The Contextual Subspace Method

In the previous Section |3.2| we introduced the noncontextual Hamiltonian problem
and how corresponding spectra may be characterized classically. In general, the
Hamiltonian of interest will exhibit contextuality amongst its comprising Pauli
terms 7 and is therefore not directly amenable to the noncontextual approxima-
tion above. However, if one can identify some partitioning of the Pauli terms 7 into
a noncontextual subset Tponcon and its contextual complement Teontext = T\ Tnoncons
we may augment the noncontextual approximation with quantum corrections de-
rived from the contextual Hamiltonian. In particular, this implies the form

H = Hnoncon + Hcontext (313)

with Hponcon as in Section [3.2]
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Example 3.1: Molecular Hydrogen is Noncontextual

Molecular hydrogen, or Hsy, has been described as the “Hello World” of
electronic structure [178]. In the STO-3G atomic orbital basis it consists
of just two electrons in two spatial orbitals, thus mapping onto a 4-qubit
problem under Jordan-Wigner. The vast majority of quantum algorithms
are first validated on this modest system; for example, early demonstrations
of Quantum Phase Estimation [81} [179]. However, we would argue that
it is not even a ‘quantum’ problem. In fact, its Hamiltonian describes a
noncontextual system at all bond lengths and thus can be described using
hidden variables. Perhaps a better test benchmark is the isoelectric HeH™
molecule, which actual does exhibit quantum (i.e. contextual) behaviour.
The Hy STO-3G noncontextual set (under the Jordan-Wigner transforma-
tion as per Example is T =8 UC; UCy where

S={IIII,ZZI1,Z1Z1,Z11Z 12 Z1,1Z1Z, 1127},
C,={ZIII,IZII,1IZ1,111Z}, (3.14)
C={YYXX,XYYX XXYY,YXXY},

whose compatibility graph is shown in Figure The noncontextual clique
rotation generator is obtained by multiplying any two elements across C;
and Cy, for example XY XX o« ZII1-YY XX (up to a complex phase). An
example circuit traversing the noncontextual energy landscape is:

) —{a o} —
1) 45" {Had | & &{Had 5|
0) —— Had |—® &— Had
0) —] Had ] & R-(0) & Had

In Figure we present the noncontextual energy landscape with respect
to the clique coefficient parameter r, equivalent to sweeping the parame-
ter € in the circuit above, relevant to the phase-space formulation of the
noncontextual spectrum in Equation (3.11).

While C(r), introduced in Section [3.2] is not a stabilizer in the strict sense
(it is not an element of the Pauli group), it is unitarily equivalent to one as a
linear combination of anticommuting Pauli elements. Similar to the symmetry
generators G, it is possible to define a unitary operation Us mapping C(r) onto a
single-qubit Pauli operator, following the approach of unitary partitioning [117-
120, |180]. However, unlike the Ug rotation, U is not Clifford as it collapses L
terms onto a single Pauli operator and can therefore introduce additional terms to
the Hamiltonian. Kirby et al. [166] cautioned that, in principle, this increase in
Hamiltonian complexity could be exponential in the number of equivalence classes
L, namely a scaling of O(2%). However, Ralli et al. [120] demonstrated that the
general scaling for this sequence of rotations (SeqRot) method is O(z%~!) where

€ [1,2]; that is, still exponential, yet the necessary conditions to obtain the
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worst-case ©* = 2 are contrived and have not been observed for any molecular
Hamiltonians investigated to date. Regardless, one may circumvent this poten-
tially adverse scaling entirely by implementing the linear combination of unitaries
(LCU) approach to unitary partitioning [118|, 119], which is only quadratic in the
number of equivalence classes O(L?) [120].

Appending C(7) to our set of generators G:=GU {C(r)} and defining U :=
UcUg, there exists a subset of qubit indices Zg.y, satlsfylng |Zstan| = |Q | and a
bijective map f : G — Ty, such that UGUT = ) for each G € G. We
reiterate that p € {1,2,3} may be chosen at will; the approach taken by Kirby
et al. [166] is to select p = 3 to enforce diagonal generators, i.e. o3 = Z. This
partitions the Hilbert space 57 = .1, ® F#eq just as in Section [2.3]

Suppose we have a quantum state |t ,)) that is consistent with €j°; since the

rotated state |¢2V r)) = U Y@ r)) must be stabilized by ap) Vi € Zan, the qubit
positions Zg,;, must be fixed. This implies a decomposition

|¢Eu,'r)> - |b(”77')>stab ® |<lp>red (315)

where |b(, ) represents a single basis state of ., and |p) € F#eq is independent
of the parameters (v, 7). The expectation value of the full Hamiltonian may be
expressed as

<H>¢(u,r) = 68': + <7Tg(Hcontext)>g0 ) (316)

where 70 (Heontexs) contains only the terms of the contextual Hamiltonian that
commute with all the noncontextual generators, just as in . It was observed
by Kirby et al. [166] that any term which anticommutes with at least one non-
contextual generator must have zero expectation value and our stabilizer subspace
projection captures this fact.

Inspecting , we may optimize freely over quantum states ¢, i.e., we are
not constrained by the noncontextual ground state within J#.q. In fact, we may
absorb the noncontextual ground state energy into the reduced contextual Hamil-
tonian

ﬁcontext = ESC -1+ Wg(Hcontext)a (317)
defining the contextual subspace Hamiltonian; this form is obtained naturally when
applying the stabilizer subspace projection to the full Hamiltonian, which auto-
matically includes the noncontextual energy by fixing the corresponding eigenvalue
assignments.

Now, we may perform unconstrained VQE to obtain a quantum-corrected es-
timate

C .__ 3
€y — |s&§2=192ed <Hc0ntext>4p (318)
of the true ground state energy with absolute error A, = |e§ — €g] < Ape. We

have equality when the stabilizers span every qubit position, which is the case
when |g| N since the generators must be algebraically independent: this means
the initial quantum correction is trivial as the noncontextual part determines the
entire system.

For instances of the electronic structure problem there is no guarantee that
will achieve chemical precision (A. < 1.6mHa ~ 4kJ/mol) and, indeed, it might
not improve upon the noncontextual estimate (although it will never be worse, due
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to the variational principle applying in this case). However, one can easily define
a subset of Tyoncon that is again noncontextual — this is achieved by discarding one
of the noncontextual generators G € G, along with the operators that it generates.
We now append the discarded operators to the contextual Hamiltonian, relaxing
the stabilizer constraint on the qubit position f(G) and permitting a search over
its Hilbert space. This process may be iterated until the noncontextual set is
exhausted and we recover full VQE. This means that CS-VQE will improve upon
the noncontextual energy using less quantum resource than full VQE — this is
more rigorously defined in the next section.

In summary, what we have described here is a technique of scaling the relative
sizes of the noncontextual (read classical) and contextual (read quantum) simu-

lations in a reciprocal manner. We can therefore trade-off quantum and classical
workloads in CS-VQE.

3.3.1 Expanding the Contextual Subspace

Now we describe the process of growing the contextual subspace more rigor-
ously. We select a subset of noncontextual generators F C G whose stabi-
lizer constraints we mean to fix/enforce and construct a new noncontextual set
T con = Tnoncon N F; the contextual set is expanded accordingly by appending
the terms not generated by F, i.e., T ovi = Teontext U (Tnoncon \ F). As before,
there exists a unitary operation Uz, a subset of qubit indices Zg, C Zgap and a
bijective map f : F — Zg, satisfying U]-‘GU;_— = az(gf(G)) VG € F (the rotation Ur
may or may not be Clifford depending on whether C'(r) is among the stabilizers
we wish to fix).

Denote by €)°(F) the ground state energy of the new noncontextual Hamilto-
nian 7 ... with absolute error A,.(F) > A,.. While this is weaker as an estimate
of the true ground state energy of the full system, at the very least we are guar-
anteed to recover the initial noncontextual ground state energy from performing
a simulation of the expanded contextual subspace [166], which we describe below.

The stabilizer constraints of F are enforced over the Hilbert space 7%, =
(C?)®Zix of qubits indexed by Zg,., whereas we may perform a VQE simulation
over sy, = (C?)®%im the Hilbert space of the remaining N — | F| qubits indexed
by Zgm = Zn \ Zsx. Invoking the stabilizer subspace projection map W,lj]/f with
the eigenvalue assignments v/ = (1;);ez,, yields an expanded contextual subspace
Hamiltonian

ﬁcontext(Jr) = 680<~F) -1+ 77—,(,]/]: (Hcontext)- (319)

Performing an |Zg, |-qubit VQE simulation over the contextual subspace we obtain
a new quantum-corrected estimate

eg(F) = min (Heontext(F))

) € Him

(3.20)

©
with an error satisfying A.(F) < A.. Recall that A, = A,(G) corresponds with
the contextual error when we enforce the full set of noncontextual stabilizers.
Observe that, when |Zy,| = N, we are simply performing full VQE over the
entire system — this occurs when we do not enforce the stabilizer constraint for
any of the noncontextual generators, i.e. F = (). Therefore, it must be the case
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that
A(F)—0 as |F| —0. (3.21)

Furthermore, given a nested sequence of generator subsets (F;); with F;,1 C JF;,
then A.(Fiv1) < Ac(F;) and the convergence is monotonic. In this way, CS-VQE
describes an interpolation between a purely classical estimate of the ground state
energy and a full VQE simulation of the Hamiltonian. In the context of electronic
structure calculations, this often permits one to achieve chemical precision at a
saving of qubit resource, as indicated by Kirby et al. [166] for a suite of tapered
test molecules of up to 18 qubits. We note in (3.21) that the quality of the
chosen ansatz and optimization procedure will limit the actual error one may
achieve in practice. This statement instead indicates that, for an appropriate
level of contextual subspace approximation, it is possible to construct a reduced
Hamiltonian whose exact ground state lies within some error threshold of the true
value.

Suppose we wish to find the optimal contextual subspace Hamiltonian of size

N’ < N. The problem reduces to minimizing the error A.(F) over the ( NI?}IV/)
generator subsets F C G satisfying |F| = N — N’. CS-VQE is highly sensitive
to this choice and remains a vital open question for the continued success of the
technique. For chemistry applications, we grow the contextual subspace until
the CS-VQE error attains chemical precision, which means finding the minimal
F such that A (F) < 1.6mHa. In general, we will not have access to a target
energy and so will not necessarily know when the desired precision is achieved;
instead, we might choose the largest contextual subspace accommodated by the
available quantum resource or iterate until the VQE convergence is within some
fixed bound.

Greedily selecting combinations of d < NN generators that yield the greatest
reduction in error is an effective stabilizer relaxation ordering heuristic, where iter-
ate k < N/d involves a search of depth d over N — dk elements, thus necessitating

lgédj (N ;dk) = O(N1) CS-VQE simulations. Taking d = 2 produces a good
balance between efficiency and efficacy [166], but there is room for more targeted
approaches that exploit some structure of the underlying problem. For example,
in quantum chemistry problems it could be that one should relax the stabilizers
that have non-trivial action near the Fermi level — between the highest occupied
molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Ex-
citations clustered around this gap are more likely to appear in the true ground
state and should therefore not be assigned definite values under the noncontextual
projection. This idea comes from the theory of pseudopotential approximations
[181], in which it is observed that chemically relevant electrons are predominantly
those of the valence space, whereas the core may be ‘frozen’, thus reducing the
electronic complexity.

Alternatively, one might define a Hamiltonian term-importance metric that
considers coefficient magnitudes [182] or second-order response with respect to a
perturbation of the Hartree-Fock state [183]. In relation to this, it is also not clear
which features of a molecular system mean that it might be more or less amenable
to CS-VQE; additional insight here would allow one to predict how many qubits
will be required to simulate a given problem to chemical precision.

It is not fully understood how CS-VQE relates to active space techniques more
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generally, but would be an interesting pursuit for future work. For example, the
downfolding technique of subsystem embedding subalgebra coupled cluster (SES-
CC) [184] presents a compelling approach that iteratively decouples excitations
0 = Ot + Texy into an ‘internal’ part that belongs to a chosen excitation sub-
algebra and its ‘external’ complement that may additionally be combined with
the double unitary coupled cluster (DUCC) ansatz [185]. This yields an effective
Hamiltonian HSE}DUCC) = (P + Qint)e 7>t He% (P + Qin) where P projects onto
the reference state and @i, onto the subspace of excitations generated by oy,. This
has a similar form to our stabilizer subspace projection ; indeed, it might
be possible to reproduce SES-CC under a qubit mapping within the contextual
subspace framework by identifying an appropriate noncontextual sub-Hamiltonian
and stabilizer subspace.

3.3.2 Noncontextual Projection Ansatz

Prior to this work, reduced contextual subspace Hamiltonians were solved
by direct diagonalization [166] — clearly, this will not scale to larger systems, with
the required classical memory increasing exponentially. Instead, they must be
simulated by performing VQE routines, but defining an ansatz for the contextual
subspace provided an obstacle to achieving this in practice.

However, having now placed the problem within the stabilizer formalism de-
scribed in Section we have already introduced (in Sections and the
tools necessary to restrict an ansatz of the form

’¢anz(0)> = eiA(G) ’¢ref> S %7 (322)

defined over the full system, to the contextual subspace (3.19). The approach
adopted here is equivalent to that which we defined for qubit tapering in ([2.32]).
To restrict a parametrized ansatz operator

A0) =) 0,0 — A(0) € B(Hiw) (3.23)

ocA

in line with the stabilizer constraints F C G we may simply call upon the stabilizer
subspace projection map Wll/],f once more, which yields a restricted ansatz state

(G (0)) 1= €40 [thres) € Hiiy (3.24)

where

A(0) =7 (A9)). (3.25)

Any rotated ansatz term U ].-a'U]T_- that is not identity or a Pauli o, on some subset
of the qubit positions indexed by Zg, will vanish.

The restricted reference state |t)rf) is obtained from an effective partial pro-
jective measurement of Ugr |thef) (see the discussion on POVMs in Section
with outcomes defined by v/, which yields a product state

PIIIU]'— |wref>
\/<wref’ U;:PV’U]: ’wref>

= |b(vm)>ﬁx ® |7/~Jref>sim (3.26)
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where we have explicitly demarcated the separability across %, and ;. The
post-measurement state \b(,,,,,)> € J, on the noncontextual subspace represents
a single basis vector and can therefore be disregarded, leaving just the state of
the contextual subspace — this we take as reference for our restricted ansatz. If
the unitary partitioning rotations are not to be applied, then the Uz rotation is
trivial over 7%, and we incur no expense in coherent resource. However, if one
does enforce the operator C'(r) over the contextual subspace, there might be some
non-trivial component of the rotation that must be applied in-circuit to ensure the
ansatz lies within the correct subspace; referring to Section [3.3.1], for the SeqRot
approach this will consist of at most O(N?) CNOT operations in-circuit, whereas
LCU is probabilistic due to the nature of block-encoding [119]. Given a hardware-
efficient ansatz, one may neglect this since the optimizer should compensate the
parameters accordingly.
We may now define the contextual subspace energy expectation function

E(G) = <Hc0ntext>,[,anz(g) (327)

with ﬁcontext as in Equation , at which point we have reduced the problem
to standard VQE, performed over a subspace of the full problem.

The molecular systems that were simulated to benchmark the noncontextual
projection ansatz for CS-VQE are given in Table [3.3] The molecule geome-
tries were obtained from the Computational Chemistry Comparison and Bench-
mark Database (CCCBDB) [186] and their Hamiltonians constructed using IBM’s
giskit-nature [187] with pyscf the underlying quantum chemistry package [39].

Before we evaluate the efficacy of our noncontextual projection ansatz, there
are a few features of Equation that should be highlighted. First of all,
from the discussion following Equation ([3.26)), we potentially apply some compo-
nent of the operation Ur in-circuit, introducing further gates that will contribute
additional noise. However, when the reference state is taken to be that of Hartree-

Molecular systems Number of qubits

Name Charge Mult. Full Taper CS-VQE

Be 0 1 10 5 3
B 0 2 10 ) 3
LiH 0 1 12 8 4
BeH +1 1 12 8 6
HF 0 1 12 8 4
BeH, 0 1 14 9 7
H,O 0 1 14 10 7
Fy 0 120 16 10
HCI 0 120 17 4

Table 3.3: The systems investigated to benchmark the noncontextual projection ansatz
(all in the STO-3G basis). The CS-VQE column indicates the fewest number of qubits
required to achieve chemical precision.
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Fock, we observed U |i)y) to coincide with the noncontextual ground state. This
is an artifact of the noncontextual set construction heuristic prioritizing diagonal
entries, used within both this work and that of Kirby et al. [166]. This need not
always be the case, but for the molecular systems investigated this allows us to
avoid performing Uz in-circuit and instead take the noncontextual ground state
as our reference. Since we choose to rotate the noncontextual symmetry genera-
tors onto Pauli o3 operators here, this may be prepared by applying a Pauli o; in
each of the qubit positions ¢ € Zgy, such that v; = —1 so that the corresponding
reference state is stabilized by the relevant operators l/Z'O':(;). This is visible in Fig-
ure [3.7] in which the VQE routine is initiated with the optimization parameters
zeroed, i.e. @ = 0, and since ¢*4(°) = 1 optimization begins at the noncontextual
ground state energy.

Secondly, application of the unitary partitioning rotations Us to the ansatz
operator A(€) may introduce additional terms by a worst-case scaling factor of
O(2E71) where L is the number of equivalence classes in Statement , al-
though the true scaling is rarely this severe as discussed in the introduction to
Section We obtained M = 2 for all of the molecules tested, in which case
SeqRot is identical to the asymptotically favourable LCU method. In fact, for
small M < N SeqRot may generate fewer terms than LCU (Ralli et al. presented
a toy problem with M = 3 in which this was the case [120]) and therefore our
choice of SeqRot here is valid given that the noncontextual set 7. construction
heuristic prioritizes the universally commuting terms S in Statement Dif-
ferent heuristics may lead to larger values for M, in which case we recommend an
adoption of LCU for implementations of CS-VQE.

Despite this, upon the subsequent projection of A(@), it is possible that a
significant number of terms will vanish. This is highly dependent on the quality of
the initial ansatz and how heavily it is supported on the stabilized qubit positions
Tsy. Figure presents circuit depths of the noncontextual projection ansatz as
a proportion of the base ansatz from which it is derived, in this case the unitary
coupled-cluster singles and doubles (UCCSD) operator. A net reduction in circuit
depth is observed, which is quite dramatic up to the point of reaching chemical
precision in the CS-VQE routine; in Table (3.4 we give the specific number of ansatz
terms before and after application of the noncontextual projection to UCCSD and
UCCSDT for the fewest number of qubits permitting chemical precision.

In order to identify a compact ansatz that closely captures the underlying
chemistry with minimal redundancy, we employ the ADAPT-VQE methodology
[121], 131} [188, [189] as introduced in Section [1.4.4 Recall that the algorithm
centres around an operator pool from which terms are selected in line with a
gradient-based argument and appended to a dynamically expanding ansatz whose
parameters are optimized at each cycle via VQE. The particular approach we
implement here is that of qubit-ADAPT-VQE [131], following on from iterative
qubit coupled cluster [190], which searches at the level of Pauli operators rather
than fermionic excitations [121].

To leverage ADAPT-VQE in the context of CS-VQE, we define an operator
pool O C Py and apply to it the stabilizer subspace projection to define a
reduced pool W,(j,f (O) for the corresponding contextual subspace. Projecting the
full pool in this way will ensure that any symmetries S present will be preserved,
since [U;HU}, U;SU}] = Ur|H, S| U} = 0, allowing us to incorporate some chem-
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Figure 3.6: Ideal CS-VQE errors (left-hand axis) and corresponding noncontextual
projection ansatz circuit depths as a proportion of the full UCCSD operator from which
it is derived (right-hand axis) against the number of qubits simulated.

ical intuition into the contextual subspace despite an abstraction from the origi-
nal problem; one could define a reduced pool directly, but care should be taken
to avoid the inclusion of symmetry-breaking terms that may needlessly increase
the complexity of the ADAPT-VQE procedure The algorithm is then executed
as normal, only terminating once the ADAPT-VQE energy is chemically precise
with respect to the FCI energy; for scalability, one should terminate computation
when the largest gradient in magnitude falls below some predefined threshold,
since the true ground state energy will not in general be known. In the Support-
ing Information, we provide a detailed description of the specific ADAPT-VQE
implementation used within this work.

For the following, we take our pool O to be the terms of the UCCSD opera-
tor for each of the molecules in Table before tapering and projecting into the
relevant contextual subspace. In Figure [3.7, we present the ADAPT-VQE conver-
gence data with expectation values obtained via exact wavefunction (statevector)
calculations (i.e. no statistical/hardware noise); chemical precision is achieved in
each instance. We used the adaptive moment estimation (Adam) classical
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optimizer and computed parameter gradients as per the parameter shift rule [122].
Adam has been adopted for previous research in VQE for its resilience to noise,
although it exhibits relatively slow convergence compared with other optimizers
[192] |193] such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) [194] and quantum
natural gradient (NatGrad) [195]; the latter might be preferable for future work.

The number of ADAPT-VQE cycles (and therefore the number of terms in
the resulting ansatz operator) is presented In Table , alongside the size of
the projected UCCSD operator pool used; one observes a significant reduction
in the number of terms. Extracting the optimal parameter configuration @,
from the wavefunction simulations in Figure|3.7] we subsequently assess the effect
of sampling noise on the simulation error with our ansatz circuit preparing the
optimal quantum state \z/;anz(emin)).

Number of terms in ansatz operator

Molecule | Zgy| UCCSDT UCCSD  ADAPT-VQE
(full/proj) (full/proj)
Be 3 (48/6) (48/6) 5
B 3 (48/12) (32/4) 3
LiH 4 (704/53) (192/53) 5
BeH™ 6 (646/191) (166/79) 11
HF 4 (92/57) (92/57) 4
Bel, 7 (1312/352) (224/96) 10
1,0 7 (1892/942) (324/238) 21
F, 10 (176/114) (176/114) 12
HCI 4 (348/40) (348/40) 4

Table 3.4: The number of Pauli terms |A| for a selection of (tapered) ansétze. The
|Zsim| column indicates the number of qubits in the contextual subspace over which
the ansatz is projected and each tuple (full/proj) gives the number of terms pre and
post projection. The final column gives the number of ADAPT-VQE cycles required to
achieve chemical precision, with the operator pool consisting of the projected UCCSD
terms; each simulation is plotted in Figure .

To achieve an absolute error of A > 0, one should expect to perform O(é)
shots (for each term of the Hamiltonian) [82]. Conversely, suppose we are allocated
a quantity S € N of shots — the obtained error should be of the order O(\/Lg)
In order to increase estimate accuracy, we collected the Pauli terms into qubit-
wise commuting (QWC) groups |116] using the graph-colouring functionality of
NetworkX [196]; such groups may be measured simultaneously.

In Figure 3.8 the number of shots S = 2" for n = 0,...,20 carried out per
QWC group is varied and we observe the root mean-square error (RMSE) over
twenty realizations of the ground state energy estimate, plotted on a log-log scale.
For clarity, note the only source of noise here is that which arises from statistical
variation of the quantum circuit sampling — we have not introduced hardware
noise in the form of imperfect quantum gates or decoherence.
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counts we see a plateau resulting from the optimal error |E(Opm,) —

Two error regimes are observed, one of which is quite trivial: at high shot-

€o| being

recovered. To assess the convergence properties outside of this limiting region, we
plot a line of best fit m-log,,(5)+ ¢ among the data not exhibiting such behaviour;
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Figure 3.7: Validation of the noncontextual projection approach to ansatz construction
for CS-VQE (B.24), used here in conjunction with ADAPT-VQE [121}, [131] [188, [189].
We plot (on a log;, scale) the absolute error of wavefunction simulations conducted
for the suite of trial molecules outlined in Table each shown to achieve chemical
precision; the horizontal axis indicates the algorithm step counter with each shaded
region a separate ADAPT-VQE cycle. Adaptive moment estimation (Adam) |191] is the
classical optimizer taken in the VQE routine performed over the contextual subspace for
each ADAPT-VQE cycle and the settings used are as follows: tolerance = 10™%, learning

rate = 1072, 8, = 04,02 = 0.999,¢ = 1078,

The parameter gradients 9E(8)/d6;,

required for both operator pool term selection and VQE, were computed using the
parameter shift rule [122].
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since the data is represented on a log-log scale, this corresponds with a decay in
error of O(S™). In each plot of Figure we obtain m & —0.5, meaning the
RMSE follows the predicted decay of (’)(\/Lg)

In every simulation bar Fy, chemical precision was achieved within § = 220 ~
10% shots per QWC group. However, our shot budget could be reduced by imple-
menting more advanced allocation strategies, for example according to the mag-
nitude of Hamiltonian term coefficients [197] or a classical shadow tomography
approach [198, |199).
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Figure 3.8: Each of the plots - correspond with - above and illustrate

the statistical effect of sampling noise at the optimal parametrization @p,;, determined
from the ADAPT-VQE statevector simulations in Figure We plot the root mean-
square error (RMSE) for twenty ‘realizations’ of the ground state energy estimate with
S < 220 shots executed via IBM’s QASM simulator; determining the line of best fit
m - log,o(S) + ¢ with respect to the log-log data indicates a decay in error of O(S™).
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Chapter 4

Quantum Error Mitigation

With fault tolerance the ultimate
goal, error mitigation is the path
that gets quantum computing to
usefulness.

IBM Quantum [200]

Current and near-term quantum devices are plagued by noise and hardware
error, limiting their capabilities considerably. Using a quantum computer today
is like carving a sculpture into ice — in the desert. The information simply melts
into the environment faster than you can use it. As such, the greatest challenge
facing noisy intermediate-scale quantum (NISQ) computation is the handling of
error, which manifests as imperfection in quantum logical operations or during
readout. Gate errors may be categorized either as coherent, arising for example
as imprecision in gate rotation angles and device miscalibration, or incoherent,
representing a coupling of the system with its environment. Coherent error is
hard to suppress since it leads to a systemic bias in the output, while incoherent
error is stochastic in nature and its average effect can often be well-described by
the depolarizing channel [201].

Error handling in quantum computation can be categorized as suppression
(QES), mitigation (QEM) or correction (QEC). The first of these is implemented
close to the hardware itself and attempts to deal with flaws in the operation and
control of the device. Mitigation, on the other hand, serves to reduce bias in some
statistical estimator of interest by executing ensembles of circuits that have been
carefully designed to exploit a feature of the quantum noise; this typically comes at
the cost of increased uncertainty in the resulting expectation values. Finally, error
correction schema engineer redundancy into the system, forming ‘logical qubits’
from many physical qubits such that errors may be detected and corrected on-
the-fly during computation. Quantum error correction is a longer-term pursuit of
the field and not in the scope of this research; instead, we turn here to techniques
of error suppression and mitigation to extract a signal from the noisy quantum
systems available to us today.

In Section we introduced the notion of a quantum channel, which describes
any operation one might perform on their quantum system. The general form was
given in Equation , courtesy of Choi’s theorom on completely positive maps
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. A special case is the unitary map, the rank-1 channel, which most of our work
up until this point has been concerned with (excluding quantum measurement, as
it is an irreversible process). However, the remainder of this thesis now aims
to deploy the algorithmic developments of the previous chapters on real quantum
devices. Consequently, one needs to deal with the inherent faults of these systems,
and to do so we need an appropriate language for quantum noise.

In the context of qubit systems, a convenient class of noise is described by
the Pauli channel, where each Kraus operator K; = /NP, for P, € Py =
{I,X,Y, Z}*Y is an element of the Pauli group, which forms a basis of Z(.¢),
and ), \; = 1,\; > 0. The explicit map is therefore

d2
®(p) =Y N\PpP; (4.1)
=1

and is interpreted as the stochastic application of a Pauli error p — P;pP; with
probability \;. Using the convention that P, = I®" a special case of the Pauli
channel is found when we set Ay = 1—9 +% and \; = [% for ¢ > 1: the depolarizing
channel. This may be described as a convex combination between the noiseless
state p and the maximally mixed state,

Bi(p) = (1~ 8)p+ I1. (42)
where the parameter 0 < § < 1 is the rate of depolarization. In geometrical terms,
the depolarizing channel represents a contraction of the Bloch sphere towards its
centre, as depicted in Figure 4.1, which is the point where the maximally mixed
state lies.

Recall in Example we introduced the notion of quantum state fidelity, a
metric for the similarity of two quantum states. It provides a way to quantify
how close an experimental quantum state is to the ideal or expected state. Given
two density matrices p, o, their fidelity is defined as F(p, o) = (Tr \ /\/ﬁa\/ﬁ)2,
a quantity satisfying 0 < F(p,0) < 1. If p = o, then we get F(p,p) = 1 since

V/Pp+/p = p; conversely if the states are orthogonal then F'(p, o) = 0. In other
words, high fidelity indicates that the two states are nearly identical, while low fi-
delity suggests they differ significantly. This concept is particularly useful for eval-
uating the performance of quantum devices, verifying the success of quantum op-
erations. By assessing fidelity, we can gauge how well a quantum system preserves
information and behaves as intended. For example, under the depolarizing channel

0=0

NS /A
TP

SN~

Figure 4.1: Geometrical interpretation of depolarizing noise on the Bloch sphere.
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of Equation , we see the fidelity of an initial pure state p = [¢) (| compared
with its depolarized form o = ®s(|v) () is F([¢) (¥], @s(|) (¥])) =1 -0+ 2.

In Figure [4.2| we observe the decay in GHZ state fidelity against the number
of qubits utilized for a suite of IBM Quantum Falcon chips. We superimpose on
top of this the expected fidelity for purely depolarizing noise and see the average
unmitigated results (solid lines) match quite convincingly up until 22 qubits, where
we exceed the longest connected path of qubits on the device and therefore incur
expensive SWAP operations. The depolarizing channel is an idealized model of
quantum noise and previous works have attempted to learn the depolarization rate
in order to mitigate error, for example with Clifford estimation circuits [201]. A
more elaborate noise learning scheme was presented in [202] and is, to date, the
largest calculation performed on quantum hardware.

100 A Applied
Measurement
Error Mitigation?
..... Yes
— No
80
X 60
2
K]
R
L=
N
5 4071  Device by colour:
ibm_geneva
ibomg_mumbai
—— ibmg_montreal
2004 — ibom_hanoi
—— ibmq_toronto
— ibm_cairo
—— ibm_auckland
— ibmaq_kolkata
0 1 —e— Falcon chip average
1 3 5 7 9 11 13 15 17 19 21 23 25 27

Number of qubits N

Figure 4.2: Decay in quantum state fidelity versus number of qubits in GHZ prepa-
ration across a suite of IBM Quantum Falcon chips. The dotted lines indicate fidelities
after mitigating against readout error, which recovers approximately 10% on average
(detailed explanation to come later in Section . We could not utilize more than
15-qubits on ibm_geneva due to a faulty qubit. The sharp drop to near-zero fidelity at
N = 22 is due to the longest connected path of qubits being of length 21; beyond this
point, we incur expensive SWAP operations that rapidly consume the remaining fidelity.

4.1 Statistical Tools

Quantum error mitigation typically exploits the properties of noise via ensembles of
measurements and is therefore statistically motivated. Before proceeding onto the
error mitigation methods we shall investigate in this thesis, we need to introduce
the statistical tools that will aid our endeavour.
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4.1.1 Estimators

The language we shall use to describe our QEM techniques is that of estimators.
Suppose that we are interested in some observable O (a Hermitian operator, i.e.
O = O) and have access to a general quantum state p; we wish to estimate the
quantity Tr (pO), but may only probe the state via some finite sample of quantum
measurements M = {m;}}, where m; € Z5. The way in which we collect and
subsequently combine our sample to approximate the desired observable property
defines an estimator & : M — R; the goal of QEM is to construct effective
estimators that are capable of suppressing errors and extracting some usable data
from the noise.

For example, we may define a naive estimator for the expectation value of a
Pauli operator P € Py. Given a pure quantum state [¢)), we may sample from
the quantum device in a compatible basis (i.e. one that commutes with P) and
obtain eigenstates |m;) such that P |m;) = m;|m;) where m; = £1 to estimate
the expectation value (P),, == (¢| P |¢)). The raw estimator is

ERp (M) = 2D mi =+ (P), (M = o0). (4.3)

Since any Hermitian operator may be decomposed as O = >, 0pP with op € R,
this allows us to extend our estimator to the full observable by linearity

SRAW = ZOpggAW, (44)
P

which shall form a baseline for our QEM benchmark.
We shall use the following metrics to assess the efficacy of QEM techniques:

var(€) = E(€2) — E(E)?

bias(€) = E(€ — (O) (4:5)

)
and the related quantity

MSE(E) = IE((S —(0),)?

(4.6)
= var(&) + bias(€)?,

or mean squared error. Taking O = H and |¢) the ground state of H, our objective
is to approximate E(E) ~ (Y| H [¢)) = (H),, = Epcr. The goal of QEM is to
reduce bias as far as possible (ideally within the threshold of chemical precision,
i.e. |bias(Eqrm)| < 1.6 mHa) while aiming not to amplify variance severely.

QEM typically involves some classical post-processing of the quantum mea-
surement data, possibly with a modification to the input circuits as we shall see
in the cases of zero-noise extrapolation (Section and echo verification (Sec-
tion 4.7). In this way, QEM is equivalent to a modification of the estimator £
by which we aim to estimate some observable O in a general state p; given a col-
lection of quantum measurements M obtained from some experiment, we desire
E(M) =~ Tr (pO), but due to hardware noise and various other factors there will
be non-sampling error that cannot be suppressed by simply increasing the size of
our sample.
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Although it would be preferable to run multiple instances of each quantum
simulation to evaluate E(£), this is not feasible given the length of time taken
to produce each energy estimate. Instead, we rely on the statistical tool of boot-
strapping, introduced in further detail in Appendix whereby we generate
resampled data from the empirical measurement outcomes. Since this obeys the
central limit theorem we may assume normality and evaluate the various statistics
we are interested in as usual.

4.1.2 Bootstrapping

To evaluate the uncertainty in our energy estimates we rely on the statistical
technique of bootstrapping [203]. Ideally, one would perform quantum experiments
many times to probe the ‘true’ population, but from a practical standpoint this
is not feasible due to the length of time required for each energy estimate (in
our case ~ 30 minutes for a shot budget of B = 10°%). Instead, we perform the
experiment just once and generate resampled measurement data from the empirical
distribution. This technique is widespread in statistics and makes the statistical
analysis very convenient, not least as we may assume normality under the central
limit theorem, which we verified using the normaltest function in SciPy [204] that
implements the D’Agostino-Pearson test [205].

The idea underpinning bootstrapping is that we may resample from the ob-
served measurement distribution to generate many additional theoretically-valid
distributions that recover the noisy value in expectation. Suppose that we measure
a quantum device Ngample times and obtain a random sample m = {my,...,m,} in
which the measurement outcome m occurs with frequency f,,. Our various QEM
strategies combine these measurements in some way to yield an energy estimate
E(m), but we would like to say something about the uncertainty in each estima-
tor without having to perform further experiments. More concretely, this defines
a random variable M with probabilities P(M = m) = Nsic - from which we may
resample. While this process generates no additional information, it allows us to
understand how emulated fluctuations in the data affect some estimator £ that
we are interested in; extracting resampled data sets m; with |m;| = Ngmple from
M allows us to obtain bootstrapped moments of £(m;).

We perform this process as many times as possible given the available compute
resource, say R € N repetitions, which allows us to approximate for example

R R )
var(€) ~ %Z > (&m,) - £m.)) (4.7)

r=1 s=r+1
this is how we obtained the variances in Table One might question whether
bootstrapping is well-motivated here. A priori, one has no reason to expect accept-
able agreement with the true population parameters, hence we ran 225 instances
of our quantum experiment applied just to the diagonal terms of the Hamilto-
nian (given in Table , necessitating only computational basis measurements.
We performed 10,000 circuit shots in each experiment, for a combined total of
2.25 x 10° point samples before assessing the quality of the bootstrapped distribu-
tions against the overall sample. The 225 quantum experiments provide a target
standard deviation o, indicated by the vertical line in Figure [4.4] and we compare
with this the bootstrap standard deviations obtained per experiment.
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In Figure we plot the result of our bootstrapping test and see reasonable
agreement with the true energy distribution obtained from the NISQ hardware;
the standard deviations all coincide with the experimentally-obtained value to
O(1073) (on the order of algorithmic accuracy), as indicated in Figure and
therefore we employ bootstrapping with confidence.
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Figure 4.3: The true distribution of energy estimates obtained from 225 quantum
experiments on ibmgq_kolkata, each consisting of 10,000 circuit shots. Overlayed are the
bootstrapped distributions for individual measurement sets to understand the relation
between bootstrapping and the true population; the colour gradient indicates how far a
given sample lies from the true (empirical) mean.
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Figure 4.4: Distribution of bootstrapped standard deviations o versus the experi-

mentally obtained value on ibmg_kolkata. We observe good agreement, with the boot-
strapped values correct up to 15 meV, nearly a third of algorithmic (chemical) accuracy.
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4.1.3 Regression

For a simple linear regression model consisting of data pairs (z;,y;), in ordinary
least-squares (OLS) one aims to find to find parameters a, 8 such that the resid-
uals r; = y; — fx; — « are minimized with respect to the objective function
S(a, B) = >, 72, the “sum of squared residuals” (SSR). However, OLS treats
all data pairs equally, whereas it would be desirable to account for variability in
the regression. Weighted least-squares (WLS), on the other hand, biases the fitting
procedure towards data of low variance. This is achieved by defining weights WW;
and modifying the objective function S(a, ) = >, W;r?; taking W; = % where
o? is the variance of y; it can be proved that this approach yields a best linear
unbiased estimator (BLUE) [206].

To use WLS, clearly we need to be able to estimate the variances in our data,
but this is not always directly accessible. As discussed previously, running quan-
tum experiments multiple times to obtain the requisite distributions is impractical,
given the significant overheads already involved in such calculations Instead, we
opt to leverage the bootstrapping procedure of Section 2| above, which permits
us the use of WLS regression with no additional expendlture of coherent resource
(only classical postprocessing). As we shall see later on, this produces improve-
ments where regression techniques are required for quantum error mitigation, in
particular for Zero-Noise Extrapolation (Section and Clifford Data Regression

(Section [4.8]).

4.2 Measurement Error Mitigation

Measurement-error mitigation (MEM) (or readout error mitigation) aims to char-
acterize the errors incurred during the readout phase of a quantum experiment
[207]; it treats the state preparation itself as a black box and does not consider
errors that occur prior to measurement.

A naive, non-scalable, approach to MEM is to prepare-and-measure each of
the 2V basis states individually; given some |b;) with b; € ZY we perform mea-
surements to obtain a noisy distribution of binary outcomes | M§101sy> > Pij 1bj)
where p; ; = (b;] A|b;) denotes the probability of preparing the state |b> and
measuring |b;). The doubly stochastic matrix A =}, . p;; |b;) (bi] is referred to
as the assignment (or transition) matrix and lies at the core of this technique.

Now, suppose we wish to implement a circuit with noiseless measurement out-
put |flideal) = Y, m; |b;); since A |b;) = | ,uffgisy>, then by linearity we have

A ‘,uideal Z my; ‘/’Lnolsy = ‘,unoisy> . (48)

More realistically, what we will actually have access to is |finoisy), the output from
some quantum experiment. Therefore, by inverting the assignment matrix we
obtain a measurement-error mitigated distribution |gtigeal) = A~ | tnoisy)-

In its current form, it will not be possible to construct the assignment matrix
for large numbers of qubits. The “tensored” approach of Nation et al. [208] is
designed to assess the qubitwise measurement assignment error, namely evaluating
the probability ps that qubit k is erroneously flipped |0) = |1). The single-qubit
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assignment matrix for this process is

o 1|0> 1)
AW — o [ pkpk 1£kpk (4.9)

and we subsequently reconstruct the full N-qubit assignment error probability by
taking products over the relevant single-qubit transitions

N-1
Ay~ T A0 (4.10)
k=0
This expression makes some strong assumptions on the character of the read-
out errors, in particular that they are predominantly uncorrelated. On the IBM
Quantum hardware Nation et al. found this to be a reasonable assumption (using
ibmq_kolkata), with little difference observed between this tensored approach ver-
sus a complete measurement calibration until inducing correlations by increasing
the readout pulse amplitudes from their optimized values [208]. We note there
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Figure 4.5: Comparing raw and MEM measurement distributions against the ideal
output for 17-qubit GHZ preparation on ibm_auckland (the greatest number of qubits
possible without SWAP operations) with 2!° circuit shots. Only outcomes exceeding a
frequency of 1072 are plotted here; this contributes 72.7% and 84.5% of the raw and
MEM distributions, respectively. 77 relaxation results in a reduced frequency of |1)
measurement outcomes compared with |0) whereas they should be observed with equal
probability 50%. Note also that the most frequently occurring spurious measurements
differ from the correct |1) outcome by a Hamming weight of just one, i.e. a single bit-
flip.
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are alternative techniques that do make such assumptions on the nature of the
readout error, such as Twirled Readout Error Extinction (TREX), which leverages
the idea of twirled measurements [209)

The expression of A in terms of single-qubit readout errors requires just
2N quantum experiments to be carried out, versus 2 in a complete measurement
calibration. Furthermore, its form is particularly convenient as it is amenable to
matrix-free iterative linear algebra techniques [210]. The Python package mthree
developed through the work of Nation et al. is available in Qiskit; we utilized this
for our QEM benchmark and is the only technique presented here that we did
not implement ourselves. In Figure we present the measurement distribution
pre- and post-MEM for a 21-qubit GHZ preparation procedure on ibmg_kolkata,
recalling from Figure that we observed an increase from 29.3% to 47.5% in
GHZ state fidelity. The effect of T} relaxation is also visible in this plot, whereby
the |0) state occurs with considerably greater probability than |1) since the former
is energetically favourable.

To investigate this further, in Figure we plot the difference between prob-
abilities of observing 0 or 1 measurement outcomes, pg or p; respectively, for the
GHZ experiment of Figure [4.2l In the ideal setting we should have py = p; = 0.5
and therefore the difference should be zero. However, due to the effect of T} re-
laxation, we see a drift in favour of 0 measurements as the number of qubits is
increased in the GHZ state preparation. Interestingly, we actually see this effect
exacerbated further by measurement error mitigation, which perhaps comes as a
surprise. However, one should note that the MEM calibration circuits, i.e. prepar-
ing bitstrings |b;), trivially have a depth of one and therefore the calibration data
contains no knowledge of T} relaxation. Furthermore, since MEM is oblivious to
errors occurring during circuit execution, it cannot possibly rebalance the mea-
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Figure 4.6: Difference, pg — p1, between the probabilities of observing 0 or 1 measure-
ments for the GHZ experiment of Figure
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surement distribution towards the true distribution; additional error mitigation is
required to achieve this.

4.3 Symmetry Verification

An inexpensive method of error mitigation is to take known symmetries of the
Hamiltonian H and enforce stabilizer constraints on the measured binary strings
resulting from a quantum experiment; we shall refer to this as symmetry verifi-
cation (SV) |211H214]. Commuting operators share simultaneous eigenstates, i.e.
given an S satisfying [H,S] = 0 and [¢) such that H |¢) = €|i), we must have
S|) = s|) for some eigenvalue s of S. Therefore, after extracting a set of
measurements from a quantum device, we may discard outcomes that violate the
allowed symmetry.

This is not dissimilar to the themes presented in Chapters[2land [3} the existence
of symmetry offers opportunities for simplification, either in terms of a qubit
reduction (vis-a-vis tapering and contextual subspace) or restriction of the state-
space as is the case here. Indeed, both of these ultimately represent a reduction
in dimensionality, thus making the problem easier to solve. In the case of Z,
symmetry, i.e. Pauli operators that commute termwise across the Hamiltonian,
there is a choice to be made — does one taper the symmetry out of the Hamiltonian
entirely, ensuring that all states in the reduced space are valid with respect to the
projected symmetries, or do we retain some symmetry for the purposes of error
mitigation as laid out in this section? It is perfectly valid to do both; for example,
in the Bayesian phase estimation work by Yamamoto et al., [81] they decided to
taper two of the Z, symmetries present in the Hy problem of Example [4.1] while
the third was retained for symmetry verification.

If we opt to taper out the physical Z, symmetries of a Hamiltonian, we may
no longer use them for the purposes of postselection of allowed measurement out-
comes, as the reduced Hamiltonian has been projected into a subspace in which
they are enforced a priori. However, there still exist symmetries of a more general
nature that need not commute with each term individually, but do so with respect
to the full Hamiltonian. Examples in the setting of electronic structure are the
particle number and spin multiplicity operators

N
Sy =Y ala;, S.=5) -5y, (4.11)

=1

where S]T\,/i counts the number of up/down electrons, respectively. Under the
Jordan-Wigner transformation, these take the form

N
1 1 .
S N.[®N_§ 7. :—E —1)'Z;: 4.12
SN 2( - z>> Sz 4 ( ) 1) ( )

i=1

note how the latter differs from the up/down spin parity operators of Equation
(5-1). Furthermore, this expression assumes alternating spins, i.e. even/odd in-
dices correspond with up/down electrons.

An important point is that we may only mitigate errors of terms that commute
with the number and spin operators which, in the case of electronic structure,
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means only the diagonal ones; this may still yield significant improvements in
error since these terms have the greatest coefficient magnitude and errors here
will be amplified proportionally.

Given an ensemble of measurements {b}, we discard any binary strings b € Z%
that do not respect the number and spin symmetries; given that we know the
number of particles n in the system and the allowed spin values {sg,...,Sy—1}
where s; = s — i for quantum number s (multiplicity M = 2s + 1), we require
that Sy [b) = n|b) and S, |b) = s; |b) for some i € {0,..., M — 1}. For example,
a molecule in a singlet configuration has only one allowable spin value s = 0 and
thus valid quantum measurements are those in the kernel of S..

In Example [4.1] we illustrate this postselection for a simple molecular hydrogen
system, in which just two computational basis states are valid electronic config-
urations respecting the particle number, spin parity and point group symmetries
of the molecule. Complementing this example, in Figure [£.7] we observe how the
energy error is affected under depolarizing noise when applying symmetry verifi-
cation for Hs.

This postselected form of symmetry verification requires no additional coher-
ent overhead and only minor postprocessing, yet we observe respectable error
suppression from enforcing number and spin symmetries on the diagonal Hamil-
tonian terms. This can be seen in Table [5.3] where we prepare the equilibrium
ground state of hydrogen chloride (HCI) on superconducting quantum hardware.
It should be noted that there also exist techniques of symmetry verification in hard-
ware [211}, 212, |214], although such methods require additional coherent resource
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Figure 4.7: Molecular hydrogen (Hy) STO-3G equilibrium energy sweep over the ansatz

parameter 0, where E(6) = (1100| e 5 XY XX fro—i3XYXX |1100). We compare the depo-
larized energy against postselection of the valid measurement outcomes [1100) ,[0011)
as identified through Example

105



QUANTUM ERROR MITIGATION

and a high level of qubit connectivity, meaning it is challenging to implement at
scale on near-term hardware.

Example 4.1: Postselected Measurements for H,

We revisit molecular hydrogen, Hs, previously seen in Example 3.1 In
the minimal STO-3G basis set Hy consists of just four spin-orbitals, mean-
ing its state-space is spanned by the 2* = 16 computational basis states
|bob1babs) for b; € {0,1}. However, we know a priori several molecular sym-
metries that we can exploit to constrain the allowed set of valid bitstrings.
Firstly, we have the particlenumber operator Sy = 21111 — %(Z[[[—i—IZ[[—'—
I1Z1+ 1117); each hydrogen atom contributes a single electron, so the al-
lowed eigenvalue of the S, operator is s = 2 and we find 6 valid strings:
|0011) ,]0101) , |0110) , |1001) ,]1010) , [1100). Next we may impose the spin
parity operators ZI1Z1,1Z17, both with eigenvalue —1 since the molecule
is in a singlet configuration so the electrons must be paired, i.e. one up, one
down; this allows us to discard two additional strings: [0101),|1010). Fi-
nally, looking at the Hamiltonian terms from Example there is a third Z,
symmetry Z Z 11 that arises from the molecular point group, with eigenvalue
+1. After enforcing all these symmetries, we find just 2/16 of the available
basis states, [1100),]0011), are actually valid for Hy. This is a particularly
extreme example, as the Hamiltonian can be tapered to just a single qubit,
hence the two degrees of freedom we identified here. This may further be
viewed as a consequence of molecular hydrogen being noncontextual in the
STO-3G basis, as highlighted in Example 3.1} In Figure [£.7] we show the
effect of postselecting valid measurement outcomes.

0000 | 0001 | 0010 | 0011 0666 | 666+ | 6616 | 0011
0100 | 0101 | 0110 | 0111 Number 0160 | 0101 | 0110 | 64+
1000 | 1001 | 1010 | 1011 - 1660 | 1001 | 1010 | 0+
1100 | 1101 | 1110 | 1111 1100 | H6+ | 40 | 1

Spin parity

0600 | 6661 | 6610 | 0011 00006 | 660+ | 6646 | 0011
0100 | 0101 | 030 | 03313 | Point group [ 9199 [ 6363 | 0110 | 0+
1666 | 166+ | 1646 | 16+t ~ 1666 | 1001 | 1646 | 164+
1100 | 16+ | 146 | 1 1100 | 46+ | 1346 | 1

In Figure4.7|we show the effect of postselecting on these valid measurements
for a sweep over the ansatz parameter from the noncontextual state circuit

of Example [3.1]

4.4 Dynamical Decoupling

Dynamical decoupling (DD) is an error suppression (not mitigation) technique
that aims to prolong the coherence of a spin system. This is achieved via strobo-

106



QUANTUM ERROR MITIGATION

scopically applied control pulses which, if implemented carefully, can average over
the coupling effect between a spin system and its environment. The mechanism
underpinning dynamical decoupling predates quantum computing [215] but is a
natural application of the technique.

To illustrate DD, one may consider the effect of qubit dephasing and how 7-
pulses might be integrated into the control schedule to prolong the lifetime of the
qubit. In Figure 4.8 we illustrate the effect of dephasing noise on the Bloch sphere,
showing that a carefully timed pulse can restore the state to its original position,
although mistiming the spin echo, even if just a small discrepancy, will still result
in dephasing (possibly in the opposite direction), eventually causing the state to
decohere.

In our case, we apply periodic spin echos on idling qubits to suppress unde-
sirable coupling between the system and its environment [216, 217]. We use a
simple uniform sequence of 7-pulses to effect the decoupling; different sequences
with non-uniform spacing (such as Uhrig DD [218]) might yield improvements.

Figure 4.8: Illustration of dynamical decoupling, whereby the dephasing state is re-
stored to its original position on the Bloch sphere.

4.5 Circuit Tiling

Noise is not uniform across the qubits of a quantum processor, hence one will
observe considerable variance in the results when executing the same circuit on
different parts of the chip; to mitigate this, we execute many replica circuits across
the chip and average over the results, which has the added benefit of increasing the
effective shot-yield. We depict our circuit parallelization scheme in Figure for
the 27-qubit Falcon architecture, which extends similarly to the 127-qubit Fagle
device. One may view this as instance of ensemble averaging, often employed
when computational models exhibit severe sensitivity to the initial conditions.
This noise averaging process results in improved stability of the final energy
estimates, especially when used in combination with DD and MEM as introduced
above. This is particularly desirable if one wishes to make inferences from the
behaviour of these estimates under some noise amplification procedure, which is
precisely the case for ZNE, introduced in the following Section When perform-
ing regression, any uncertainty in the extrapolation data will propagate through
to the inferred values and thus increase the variance of the final energy estimate.

107



QUANTUM ERROR MITIGATION

This has also been observed when applying the error mitigation technique of ran-
domized compilation (RC) [219] in combination with ZNE, where it is argued that
small amounts of coherent error lead to substantial errors [220]. While RC con-
verts coherent error into stochastic Pauli noise by implementing the target unitary
in different ways, one might draw an analogy with the parallelization scheme pre-
sented here. Indeed, due to inconsistency in the noise channels for local qubit
clusters, the unitary performed in each sub-circuit will differ and may explain the
stable noise amplification observed in the following Section 4.6 ultimately leading
to reliable extrapolation and lower variance in the final energy estimate.

Figure 4.9: An example of circuit tiling over the IBM 27-qubit ‘heavy-hex’ topology
found in their Falcon series chips. The different colours indicate replica ansatz circuits
tiled across 5-qubit clusters. Not only does this increase the effective number of mea-
surements extracted from the hardware 5-fold, but it also serves as a form of passive
quantum error mitigation whereby noise is averaged over the device.

4.6 Zero Noise Extrapolation

The technique of zero-noise extrapolation (ZNE), also referred to in the literature
as richardson extrapolation, operates on the principle that one may methodically
amplify noise present in our quantum measurement output, obtaining a collection
of increasingly noisy energy estimates before extrapolating the data and inferring
the experimentally untouchable point of ‘zero noise’ , . There are many
methods of amplifying noise in our quantum circuits: some do so continuously
by stretching gates temporally, requiring pulse-level control over the hardware,
whereas others employ discrete approaches that either insert identity blocks of
increasing complexity (e.g. unitary folding) or replace the target gate with a
product over its roots.

It is the latter method we employ here. Given a quantum circuit U, some con-
stituent native gate GG and a noise parameter A\ € N, we shall replace each instance
of G in-circuit with the equivalent operation szl /G to yield a noise-amplified
circuit Uy. One may note that A = 1 corresponds with the unmodified circuit,
whereas we intend to infer a value for A = 0 by evaluating expectation values
Ey = (tref| UL PUy [thref) at integer values A € {1,2,3, ...} and extrapolating.

In particular, we take G = CNOT since this is the dominant source of error by
an order of magnitude, as seen in Table 5.1} In order to decompose CNOT into
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its roots, we define the two-qubit gate

CPhase(6) = 2[(1+ 2) & 1 + (1 — Z) @ P(0)]

T
0
1 0

0 e
(I ® H). In other words, the Hadamard gates applied on the target qubit diago-
nalize the CNOT gate and thus

where P() = e/?R,(0) = [ ‘9} and note that CNOT = (I ® H) - CPhase() -

YCNOT = (I ® H) - CPhase<§> (I ® H). (4.14)
The CNOT root-product decomposition is given as a circuit in Figure M(a).
When it comes down to implementation of zero-noise extrapolation on a quantum
computer, one must be mindful of which gates are native to said device and should
avoid circuit optimization routines since these may result in an unpredictable
scaling of noise. For example,the CNOT is the native entangling gate on IBM
Quantum Falcon series chips [} therefore, CPhase operations will be transpiled
back in terms of CNOT and R, gates at the point of execution, the decomposition
of which is given in Figure [1.10[b). Such considerations can wreak havoc on
zero-noise extrapolation if not controlled carefully.
An alternative approach is a local unitary folding scheme in which one inserts
CNOT pairs after each CNOT in the circuit, resulting in each being replaced with

!The CNOT was replaced by the echoed cross-resonance (ECR) gate on Eagle r3 chips, which
is equivalent to a CNOT up to single-qubit pre-rotations, and more recently the CZ gate has
been adopted for the latest Heron architecture.

A repetitions

___________________

C —eo—

_ |
(—— = —EHPO PO R E-

____________________

(a) Each CNOT gate may be replaced in-circuit with a product over
its roots, namely {/CNOT.; = H;CPhase.:(%)H;.

—r—  {r0
— P0) |— l

- R-(-3) D R-(5) -

(b) Since the IBM hardware takes the CNOT as its native entangling
gate, the CPhase decomposition of (a) is transpiled back in terms of
CNOTs at the point of execution.

Figure 4.10: Noise amplification method used for zero-noise extrapolation. Given a
noise amplification factor A € N, each CNOT is replaced by 2XA CNOTs, 3\ + 2 single-
qubit Z-rotations and two Hadamard gates.
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2A+1 CNOT gates, compared with the 2\ encountered in our CPhase approach. In
order for A — 0 to probe the zero-CNOT-noise regime, we would need to offset the
noise amplification/gain factors in the extrapolation to account for the additional
+1 CNOT of the former (as found through experimentation). By contrast, we
find the CPhase decomposition to avoid the necessity of this gain offset, making
for cleaner regression.

It should be noted that zero-noise extrapolation is not immune to coherent
error; as stated in the introduction to Chapter [4 this is the hardest form of
noise to combat since it manifests as a global bias that can be difficult to detect.
Incoherent error, by contrast, is stochastic and can therefore be captured via some
statistical process — such is the goal of quantum error mitigation. In Figure 4.11
we provide an example of coherent error appearing in the noise amplification of
numerous 3-qubit Pauli observables, indicated by the oscillatory behaviour and
thus suggestive of gate under/over rotation. This is a further consideration for
ZNE when ensuring the noise amplification is conducted in a controllable manner.
To produce these results we amplify to a value of A = 10, which is far more than
is typically necessary.

For our specific implementation of ZNE we shall assume that the individual
noise amplified estimates have been obtained via an estimator £, so that E, =
E(&,), which might have previously had some other QEM strategy applied. We
shall then evaluate estimates for A\ € {1,2,3,4} before performing weighted least
squares (WLS) regression (see Section with weights wy = 1/var(€,) to infer
a “zero-noise” estimate &;,ng = Fjy, thus penalizing highly varying points in the
extrapolation. In Figure 4.12| we compare WLS against ordinary least squares

0.4 - ]
0.2 \ 4
T V |
w
—0.2 o/ -
o4l — X — ZiX | — x1  — xz
— 1z 77X — Xz X7z
_0-6 T T T T T T T T
— XX  — Iy — YYZ
0.4 1 — XZX YZY 1
0.2 - / 1
2 00 AN To=s
i} \'/‘\
-02 SR - \\ ~
—0.4 v i / I
_0-6 T T T T T T T T
1 4 7 10 1 4 7 10

Noise factor A Noise factor A

Figure 4.11: Noise amplification for 3-qubit Pauli observables on the IBM Quantum
Falcon series chip ibm_cairo; we observe oscillatory behaviour that likely arises from
coherent error caused by device miscalibration, such as over/under rotation.
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Figure 4.12: Zero-noise extrapolation for ground state preparation of the HCl STO-
3G molecule at equilibrium, comparing weighted and ordinary least squares in addition
to possible bootstrapped fits. Each of the noisy estimates have had measurement-error
mitigation and symmetry verification applied.

(OLS) for ground state preparation of the HClmolecule (further details given in
Section and find that WLS yields the smallest bias in all cases. We note that
such a regression approach allows us to quantify the success of our extrapolation
via the coefficient of determination, or R? value, expressed as a ratio of residual
and total sum of squares [22§].

4.7 Echo Verification

Purification-based error mitigation techniques operate on the basis that in quan-
tum computation we are often interested in preparing some pure state |1)g) = U |0),
corresponding with a channel

p=U(|0)(0]) = U0) (0] UT = |tho) (to], (4.15)
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whereas in reality what is actually prepared on the noisy quantum hardware is
some mixed state

2N 1
P = Z Aipi (4.16)
i=0

where p; = |[¢;) (| and we assume \; > \; for i < j. The central observation
that purification-based methods exploit is

oM/ Tr (p™) = po (M = o0), (4.17)

and the convergence is exponentially fast. This is precisely the formulation of
virtual distillation [229], in which one prepares M copies of the mixed state p over
disjoint quantum registers and induces their product via application of a cyclic
shift operator. However, this permutation circuit is expensive and not feasible for
near-term applications; the error mitigation technique we investigate here — echo
verification (EV) [230], also referred to in the literature as dual state purification
[231] — is closely related but may be implemented at significantly reduced cost.
While the technique was first presented in the context of quantum phase estima-
tion (QPE) [232], it was subsequently extended to the NISQ era [233]. The idea
behind this method is that one prepares some quantum state, performs an inter-
mediary readout and subsequently uncomputes the circuit before postselecting on
zero measurement outcomes; this bears some resemblance to second-order virtual
distillation (M = 2) but with the state

(pp +pp) /2 Tx (pp) (4.18)

as opposed to form given in (4.17)), with the dual state given as p = V(]|0) (0|) =
Ut|0) (0| U [231].
In EV, one prepares the pure state

1 Sys anc Sys anc

) = —=(10)** @ |)™ + UVU|0)™ @ |- ) (4.19)
V2

before postselecting on zero-measurements in the system register. Here |£)*"

are basis states of a single ancilla qubit. This induces the desired expectation
value (V) = (0| UTVU |0)** on the ancilla qubit, whose noise-free reduced state

is p™¢ = |¢) (P[*™ for

|¢>anc —

\/%( H‘>anc + <V> |_>anc) (4‘20)

where po = [((0] ® I) |¢) |* = 1+<2V>2 is the probability of postselecting the zero
state in the system register, depicted in Figure . Note that po > 1/2. An
advantage of EV over alternative error mitigation techniques is that it naturally
identifies the light-cone [234} 235] of the measured observable due to a cancellation
of unsupported gates owing to its dual structure, illustrated in Figure [4.14) This
avoids the need to use techniques such a light-cone tracing [236] or the out-of-

time-order correlator (OTOC) [237].
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Figure 4.13: Echo Verification circuit for estimating the expectation value (V) =
(p| V'|¢p) where |p) = U |0) and U,V are unitary operators; for example, V' might be
a Pauli operator and U some ansatz circuit. This is related to a Hadamard test for
the measurement of UTVU with respect to the zero state, but is distinguished through
the addition of a postselection procedure. This projection onto the zero-space drives
the ancilla qubit into the state from which one may extract a noise-mitigated
estimate of (V).

The quantity (V') may then be extracted from the ancilla qubit by performing
X- and Z-basis measurements, which yield estimators £x, &5 satisfying

1—(V)?
E(Ex) = Tr (Xp™) = 1=y >2
L+ (V) (4.21)
E(E,) = Tr (zp™) = =)
z P 14 (V)?
and thus an unbiased estimator
Epv = E7(1+ Ex) ! (4.22)

of the expectation value (V) = E(Egy). By observing that £% + €% = 1, one may
rewrite the standard EV estimator (4.22)) in multiple ways [3]:

A (129

Epv 7 =sign(Ex)v/(1— Ex)(1 + Ex) L.

The estimator gy " requires only Z-basis measurements to obtain (V) when
E, > 0, while Sé(\f bias cannot be determined with X-basis measurements alone,
since the sign information is not accessible; supplementary Z-basis readings are
necessary to decide the £1 coefficient, although significantly fewer shots suffice to
indicate this sign. These alternative forms are not the same in practice due to dif-
ferences in how the noise channel affects X/Z measurements on the ancilla, which
is analysed formally in Section [£.7.2] As such, we may find significant dispar-
ity between &gy, Sé{v_ bias 55\7 bias with one possibly displaying better performance
than the others.
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Figure 4.14: Pictorial demonstration of how the Echo Verification structure naturally
identifies the light-cone for an observable. Gates lying outside the observable support
(indicated here with shading) are cancelled under application of the inverse circuit and
thus can lead to significant reductions in gate counts for highly localized observables.
For the purposes of near-Clifford noise learning we permit a handful of rotation gates
within the light-cone to assume non-Clifford rotation angles.

The only errors that are not suppressed through the EV process are those
occurring in the intermediary readout phase, since errors may propagate through
to the ancilla register and are not cancelled during the subsequent uncomputation.
However, there is one additional trick we may employ here; if the circuit is error-
free, then the state of the ancilla qubit is necessarily pure. In practice, the ancilla
will be described by a mixed state

p™ = (1 =€) [o) (ol + € 1) (¢1] (4.24)

where € is the infidelity, which we may characterise fully via state tomography.
Measuring the ancilla in the XY, Z bases we may reconstruct p = %(I +vx X +
wY + vzZ) where yp = Tr (Pp*°) and identifying the largest eigenvalue with
corresponding eigenvector |pg) we take this as an approximation to the pure state
)™ expected in the noiseless setting (Equation [4.20). Huo & Li [231] found
this additional state tomography procedure to be essential in obtaining accurate
results from echo verification. We later refer to this addition to EV as Tomography
Purification (TP).

Furthermore, from Equation we note that (X), > 0, but in practice it
is possible for negative value to appear from quantum experiments. In fact, the
noise can be so severe that the contaminated eigenvalue of p dominates, resulting
in spurious expectation values that can violate this non-negativity constraint max-
imally. This is a considerable problem when one considers the form , since
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this can result in division by zero, yielding a potentially infinite expectation value
estimate for (P) »- We may combat this by always choosing the eigenvalue with
positive (X) 4> even in the case when it does not hold the greatest weight. There
may also be an observed instability of the tomography purification method when
(Z) s ~ 0, whereby the error can be increased through this procedure. There-
fore, this additional step should only be executed when the raw expectation value
exceeds some threshold near zero, taking the standard EV result otherwise.

A potential modification for future work would be to flip the initial state of the
system register |0) — |1) via a layer of X gates and postselect on 1 measurement
outcomes. While this should theoretically be no different to initializing with |0),
the effect of T3 relaxation is for qubits to decay into the energetically favourable
|0) state (as was observed in Figure [4.5]), resulting in the erroneous postselection
of invalid measurements. By flipping the initial state, we should expect to re-
tain fewer measurements in the postselected data, but the probability of these
corresponding with successful circuit runs should be improved.

In the following Sections and we study the EV protocol under ap-
plication of several quantum channels so that we can understand how noise propa-
gates through to the ancilla qubit and subsequently identify improvements to the
technique. In Section we consider the simplest setting of depolarizing noise;
while it was previously argued that EV guarantees > 50% retention of circuit sam-
ples through the postselection procedure [231], we highlight a linear decay in the
success probability po with the rate of depolarization to a minimum of 2/d. This
explains observations of pg < 0.5 in our previous experimental benchmarking on
IBM superconducting hardware [3]. We then derive an estimator for the depolar-
ization rate, a quantity that is ordinarily inaccessible, in terms of the postselection
probability and ancilla purity, albeit with an adverse sampling overhead.

In Section we study a more general noise channel consisting of arbitrary
Pauli errors and discover a linear relationship between the error rates and noisy
expectation values. We also note in Section the limitations of the noise model
used in our analyses, given that application of the noise channel is delayed to the
end of the circuit as in Figure [£.13]

4.7.1 Echo Verification Under Depolarizing Noise

The standard formulation of echo verification, presented in the introduction to
Section [4.7], does not take into account the effects of systematic noise; our goal
is to modify the estimator to remove any bias arising from the presence of
depolarizing noise. We model this by passing the pure state p = |¢) (| as per
Equation through the quantum channel

d:ps (1 —5)p+gI®N, (4.25)

first introduced in Equation (4.2)), before application of the postselection projector
Mo = |0) (0|, ® lane With probability po(d) = Tr(Mo®s(p)) and observe the
propagation of noise to the ancilla qubit. Following this process, the mixed state
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of the ancilla qubit is

panc .:Trsys (Mo(bé(p))
’ Tr (Mo®5(p))
1—-6

= Spay LT T2 1+ ) (1) (=1 1) (+)] +

o
—1.
dpo(9)

(4.26)
By asserting Tr (p§*°) = 1 we find there is a linear dependency between the depo-
larization strength and the zero postselection probability

po(d) =po - (1-0)+ 2 (1.27)
where )
po = po(0) = % > % (4.28)

is the probability of successfully postselecting the zero state in the system register
for the noiseless scenario (4.20)); this has also been noted in another work [23§].

Therefore, it is possible to reduce the probability of success to any value po(d) = py
Ppoo—god'
the worst case scenario of (V) = 0 the probability of success will always be lower
than 50% for non-zero depolarization, whereas for | (V)| = 1 we may tolerate
0 < %(ﬁ) ~ 0.5 for large dimensions d and still retain > 50% of the samples.

In Figure we observe the decay in postselection probability for a
selection of Eagle r3 chips as the circuit depth increases under time evolution of
a 12-qubit Ising ring. Here, depth is taken to mean the number of echoed cross-
resonance (ECR) layers, the native entangling gate on the hardware. This also
serves to indicate the quality of each chip, with ibm_sherbrooke yielding the great-
est po(0) and v(p*°) values, whereas ibm_cusco is the poorest performer here; this
is in agreement with IBM’s error per layered gate (EPLG) metric, with stated
values of 1.7% and 5.9%, respectively at the time of writing. The convergence
of po(d) on the depolarizing limit of % indicates that the noise channel is itself
converging on the depolarizing channel, demonstrating that it describes the av-
erage effect of noise appropriately. This is problematic as it seems as though we
will quickly saturate the depolarizing limit for larger systems and deep circuits,
meaning the sampling overhead needs to scale inversely with the postselection
probability po(d) (4.27). More precisely, for an error tolerance € > 0 one needs
to retain O(e ) samples through the postselection procedure and so to achieve
P0(0) * Ngample = O(e7?) requires

In

with po > py > % given a sufficiently high rate of depolarization § >

Ngample = O 2(1—48)71). (4.29)

We now wish to derive a relation between the probability of success po(d) and
the ancilla purity v(p§"°), with the goal of estimating the rate of depolarization
0. In order to do so, we may write the depolarized form (4.26)) of the ancillary
system in terms of the noiseless expression (4.20); recalling p™ = [¢) (1|*"° where
)™ = o= ([4+)™ 4+ (V) |=)™) and by introducing the quantity «(é) := dp(f((S)’
one finds

P3¢ = (1= 2a(6))p™ + ()1 (4.30)
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Figure 4.15: Postselection probability and ancilla (4.26)) purity over time evolu-
tion of a 12-qubit Ising ring, averaged across the Eagle r3 QPUs ibm_cusco, ibm_nazca,
ibm_brisbane and ibm_sherbrooke; six circuit instances were tiled across these 127-qubit
chips. The circuit depth increases linearly with the time step, thus the depolarization
rate also increases and therefore we observe a decay in pg(d) which will converge on the
depolarizing limit of %l. This limit is not constant as the light-cone is small for early
times and is saturated from ¢ = 0.2s onwards.

Using the fact that v(p*°) = 1, it can be seen that the purity of the ancilla
state under depolarizing noise is quadratic in the newly introduced parameter
a(d):

Y(pF™) = 1 — 2a(6) + 2a(d)*. (4.31)

Solving this yields an expression for the depolarization rate in terms of the ancilla
purity and postselection probability:

5= o(0)(1 — 7(p§™))

V2 -1

(4.32)
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The significance of this result is that J is not ordinarily accessible. However, we
have shown that it is possible to approximate the depolarization rate from a num-
ber of quantities we are able to estimate through circuit sampling; the probability
of success po(d) is simply the proportion of measurements that survive the posts-
election procedure and the ancilla purity v(p§*°) may be calculated by performing
state tomography on the ancilla qubit, requiring just X, Y, Z measurements.

It is then possible to counteract the bias introduced by depolarizing noise, since

ancy __ 1—-0 1-— <V>2
Tr (X p5™) = o) ) ; s
T (24) = =5 V)

and therefore the standard EV estimator (4.22)) yields

Tr (Zp3™) 1-90

E(py)= ———10 27— . . 4.34
(Eev) = 151y (Z pane) Vi1 5(1—2/d) (4:34)
Finally, we obtain a depolarization-tolerant estimator
20
4
= 1+ ——-— 4.
gEV gEV( + d(l — 5)) ( 35)

such that E(£2y) = (V) regardless of the depolarization rate 9.

The difficulty is estimating ¢ with sufficiently high precision, given that the
dimension d grows exponentially and thus dominates this expression. The con-
sequence is the sampling overhead scales exponentially, which is demonstrated in
Figure where we observe the estimator error as a function of sampling
budget and error rate for a 12-qubit Ising ring in an idealized model of depolarizing
noise. This fact renders the above approach to EV infeasible in practice.

The next section presents analysis of EV through a Pauli channel to assess
whether some other feature of the method might be exploited to derive greater
suppression of estimator bias than the standard approach, while maintaining sim-
ilar levels of practicality.

4.7.2 Echo Verification Under Pauli Noise

We now consider the setting of Pauli noise. We explicitly partition the qubits into
the system Y9 and ancilla @) registers so that & = %) © # () and
we may write a Pauli P € %() across this division P = P®® @ P Since
the ancillary system contains just a single qubit we have we have £ = C? and
P ¢ {1 XY, Z}, while P& ¢ {I, XY, Z}®*N. We note it is also possible to
derive several approaches to multi-ancilla echo verification, whereby each ancillary
qubit allows the calculation of a single observable expectation value, which we
discuss in Section [4.7.4]

We shall associate with each Pauli operator P; € #(7) a probability \; that
the error p — P;pP; occurs; the corresponding noise channel therefore assumes
the form ®(p) == >, \iPipP; with >, \; = 1. We now wish to evaluate the mixed
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Figure 4.16: SI‘%V bias/error as a function of sampling budget and depolarization
strength ¢ in an idealized model of depolarizing noise for an Ising ring. It may be seen
in the top left of this plot that, for high levels of depolarizing noise with ¢ ~ 1, a very
large number of circuit shots is required to extract the expectation value faithfully.

state of the ancilla qubit under this channel. In echo verification we are interested
in the noiseless state

p= |1/1> (| where |¢> = %(m)(sys) ® |+>(anc) +Uvy |0>(sys) ® |_>(anc)>7
(4.36)

as per Equation (£.19). Letting My = |0) (0] @ I be the projector onto the zero
state of 7% we wish to evaluate Mo®(p)My in order to understand how noise
propagates from the system through to the ancilla qubit. There are four terms,
labelled below @ — @ so they may be addressed separately, that we need to
consider in the expansion of ®(p) for each index i:

P(p) = Z Ai[
@ «F10) (0] PP @ P ) (+ P+
@) «P™UtvU o) (0| UTVUPS @ P |-) (—| P+ (437)
@ P10 (0| UTVUPEY @ P ) (=] P+

(@) P UtvU |0) (0] P& @ P | =) (+] P

After application of the postselection operator My, in @ we have

M, sys sys anc anc
(D) 22 10y (0] P& |0) (0] P (0) (0] @ P |4) (+] P

(4.38)
— 5ZZ |0> <0’ ® Pi(anc) |_|_> <_|_| Pi(anC)

119



QUANTUM ERROR MITIGATION

where 07 is zero if Pl-(sys) contains any off diagonal Pauli errors X, Y while it is one
if Pi(sys) is of Z-type only.
Moving onto @, we find

@ & |0) (0| Pi(SyS)UTVU |0) (0| UTVUPZ.(SYS) 0) (0] ® Pi(anC) =) (| Pi(anc)
_ ’Fi|2 0) (0] ® Pi(anc) =) (—| Pz‘(am)
(4.39)
where we have defined T; = (0] U'VU P |0), which is not quite the desired

expectation value (V) due to the erroneous application of a Pauli error P |0)
resulting in the ensuing overlap calculation. We do note however that I'; = (V)

whenever P is of Z-type error since P |0) = |0) in this case, which will be
useful in the following evaluation of terms @ and @ as we may write 67T =
67T; = 07 (V). Explicitly,

(3) 2 10) (0] P |0) (0 \U*VUPSYS 0) (0] ® ™ |+) (—| P

Z ! (anc) (anc) (440)
= §7T:10) (0] ® P [ +) {~| P
= 57 (V)10 (0] ® P |+) (—| P

and
@ ﬂ) |0> \<0’ Pi(sys) |OZSO‘ PZ-(SyS)UTVU ’02 <0’ ® Pi(anc) ‘_> <+| Pi(anc)
67 X
5 - r; . ”

= 5iZFi |0) (0| ® P,™ | =) (+| P,™™

= 67(V)]0) (0| @ PL™ | =) (+| P,

Finally, conjugating Equation (4.37)) with the projection operator My yields

Mo®(p)Mo = [0) (0] ® Y AP {55 [+ (+] + |Tif? =) (|
: (4.42)
# 82 (1 (-1 1) (1) | i

and therefore we may read off the final state p**¢ of the ancilla qubit following the
postselection procedure. As a more convenient form, since Pi(am) e{l,X,Y, 7}
we may instead fix some Q = I,X,Y,Z and sum internally over the 22V Pauli
operators P; € {I,X,Y, Z}®W+1) guch that the corresponding P}anc) = (). This

yields the alternative form for the ancilla density matrix

=y Q( > Aim)Q

QE{I,X,Y,Z} iZPi<anc>:Q

i)
|

(4.43)

&
N

Mo + X XX + N Y Y + M\ Zp, 7]

o

=1
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where

1 Z 12\ /_ Z _ _
pz:%(@ ) (] 4 TP =) (=] 4 67 (V) [14) (=] + | ><+|})- (4.44)

anc )

Furthermore, by asserting Tr (p = 1 we may infer the postselection probabilities

zZ |2
Poji = w conditional on a particular Pauli error P; occurring.
Noting that Tr(PQp;Q) = (—1)%(re} Tr(Pp;), measurement of the ancilla
qubit in the Z-basis under this more general noise setting yields

Tr (Zp™) = ZTMZ/%‘)()\{ — A=A+ A
=1
d2
Y (4.45)
—2(V R N R . S GRS 4
< >ZZI5ZZ+|1—\Z|2('L % ’L+Z)
_2{V)
1+ ()2 7
where
2
Az= > (=N N +AD), (4.46)

i=1
P&9e(1,2)eN

The final line follows as I'; = (V') whenever P™ is strictly of Z-type error, which

the Kronecker factor §7 isolates. As we can see, the Z-basis measurement yields

the same as the noiseless scenario up to some damping factor Az, which comprises

a sum over rates of Pauli errors that are diagonal in the system register.
Considering now the X-basis, we have

%
Tr (Xp™) = Y Tr(Xp) (A +AF = A = )7)
i=1
a2
4 5Z _ |Fz|2 s ¥ v 7 (4.47)
= Z}—(Az +AT =N = A)
— oy +|Iu[?
1— (V)
= —— - Q
where
a2
4
Ax = DY N+ =N =),
i=1
Pi(syS) e{Lz}@N
p (4.48)
T
Qx = > (MN+XN =N =)
i=1

P g{1,2}eN
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Once again, the Pauli channel affects the expectation value linearly, however
in addition to the damping factor A% we find an additive error term Qy since
(67 — |T3|2) /(67 + |T4?) = —1 when P ¢ {I, Z}®N (where 6% = 0) and
therefore these off-diagonal error contributions do not vanish as they did in the
Z-basis measurement. For this reason, one could argue that the Z-biased vari-
ant EZ, of the EV estimator should perform optimally since all the
off-diagonal Pauli error is theoretically suppressed, while the standard &gy and
X-biased Eé(\f bias formulations may retain some off-diagonal noise contributions
that propagate through to the ancilla qubit and only contaminate the X-basis
measurements.

Finally, in the Y-basis

a2

4
Te (V™) =D Tr (Vo)A = A5+ A7 = A7) =0, (4.49)

=1

and thus Pauli errors alone do not lead to non-zero Y expectation value and must
therefore be a consequence of sampling noise or errors outside the Pauli channel.
Note that, by fixing Al = XX =AY = X = & Vi e {1,..., dff} except for
M=1-§+ C%, we obtain Ax = Az =1 — ¢ and Q2x = 0, thus the depolarizing
channel is recovered and yields the same result as in Section [£.7.1]

Also note that the purity of the ancilla qubit satisfies

WO A T (X + T (V) 4 T (Z (450)
where Tr (Y p**) = 0 and therefore renormalizing

Ex = Ex[1(p™), E2 > E2/7(p™™) (4.51)

recovers the property £% + £% = 1; this leads to a modified EV estimator that we
shall refer to as purity normalized.

The above observation, that application of the Pauli channel in echo verification
manifests as a linear relationship between the error rates and the estimation of
expectation values, leads us to conclude that we may attempt to learn the noise
factors Az, Ay, Qx through Clifford estimation circuits [201] [239]; we investigate
this in Section

4.7.3 Echo Verification Noise Model Limitation

We note that the noise model used for our analyses makes the assumption that all
noise can be applied to the final density matrix, illustrated in Figure [£.13] rather
than on a gate-by-gate basis. This really only holds true for Pauli noise applied to a
Clifford circuit, therefore given an arbitrary non-Clifford circuit this simplification
introduces some approximation error to the model. To illustrate this, consider
a Pauli noise channel ® : p — Zil A P;pP; and a Clifford gate C'. Then there
exists a permutation map 7 : Nz — Ng such that CP,CT = Pri) Vi € Ng2, and
therefore CP; = Pr;)C.
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Applying the noise channel before application of the gate C' yields

Cd(p)Ct = i NCP,pP,CT
id:21
= Z Xi Py CpCt Py
i;l
=) A PCpCTP
=1

= ¢'(CpCH)

(4.52)

where the modified channel @' differs from ® by a permutation of the error rates
associated with each Pauli error. Note the restricted setting of depolarizing noise,
as investigated in Section [4.7.1] is the one in which we have ® = ®. We can apply
this recursively to delay application of the noise channel to the end of the circuit.

This does not hold in general and so future work may wish to expand the
EV analyses presented here to a more general noise model. In Section we
investigate (near) Clifford approximations to the target circuit, motivated by the
findings of Section [4.7.2} refinement of the noise model may lead to even more
effective EV methods.

4.7.4 Echo Verification with Multiple Ancilla

In this section we discuss the overhead of multi-ancilla echo verification, where
each additional ancilla qubit allows a further Pauli observable to be estimated
concurrently, and derive two approaches to doing so. Suppose we have a collection
of Pauli operators {P,,}M_, whose expectation values we would like to evaluate
on a state [10) = U |0). The state of the ancilla register produced by the circuit in

Figure has the form

|0) = NS be%;}M (Po) |b) x (4.53)

where P, = Hn]\f:hbm:l P, is the product of Pauli operators P,, such that the
corresponding entry in b is equal to one, i.e. b,, = 1; the subscript |-) indicates
X is the chosen computational basis. Defining by X, the Pauli whose m-th qubit

position is Z when a,, = 1 and I when a,, = 0, we obtain

Wl Xalg) = — 3 (—1)70 (R (4.54)

0 befo,1)M

The problem is that, in order to isolate a single Pauli term P,, in the above
expression, one must sum over all X, such that a,, = 1, of which there are 2~1;
we note this does not incur any additional coherent resource and is purely classical
overhead. Specifically,

1—(P,)* 1
=o7 D (el Xale). (4.55)
Po ac{0,1}M:a,,=1
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A similar expression allows us to evaluate the Z expectation values and conse-
quently the EV estimator; the overall scaling for this approach is O (22 ~1) where
M is the number of ancilla.

An alternative approach, which avoids this adverse classical postprocessing
overhead, is to use multicontrols on the ancilla register as in Figure [4.17b] Now, it

is possible to prepare ancilla states of the form |p) = \/% < 0) + M (P |m) )

and extract the relevant expectation values with ease. However, the added gate-
cost is considerable and not appropriate for near-term quantum devices; in short,
the two approaches discussed in this Section offer a trade-off between easy circuit
construction with exponential classical post-processing, and low-cost processing
with more complex circuit structure.

s

=] =] [&]

;__ inEE 4§,=ﬂ10>

(a) This circuit construction is a simple extension of standard single-ancilla EV, but results in
a classical postprocessing overhead that is exponential in the number of ancilla M.

p

anc

[=]
N

:
1.
=] (=]
BEY

Py Ut

|

Q|

:UI

|
L

(b) This multicontrol variant avoids the adverse classical postprocessing overhead encountered
for Figure 4.17a} but at the expense of greater complexity in the circuit construction.

Figure 4.17: Multi-ancilla echo verification circuits for the simultaneous estimation of
multiple Pauli observables.
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4.8 Echo-Verified Clifford Data Regression

The findings of Section reveal the learnability of the effect of Pauli error
in echo verification (EV), which one may probe using Clifford Data Regression
(CDR) [239] to further suppress bias in the estimator through near-Clifford train-
ing circuits. The addition of CDR to the EV method produces a combined error
mitigation strategy that is greater than the sum of its parts, which we shall hence-
forth refer to as Echo Verified Clifford Data Regression (EVCDR); the general
workflow is outlined in Figure [4.18, We also present a practical showcase of the
EVCDR method at the end of this section, in which we accurately simulate the
time evolution of Ising models on heavy-hex spin-lattices consisting of 21 and 35
qubits.

The Clifford group consists of operators C € () satisfying CPCT €
PNV P e Py; in other words, Clifford operations are those that map the Pauli
group back onto itself, meaning it normalizes the Pauli group. Note also that the
Pauli operators are themselves Clifford, so &y C €(.%); additional gates that
fall within the Clifford group are S, H and CNOT, which are actually sufficient
to generate the full group.

Rotations R,/y,.(0) = exp(—i%X/Y/Z) are generally non-Clifford, but they
become Clifford at integer multiples of 7, i.e. with rotation angles 6 = %’r with
k € 7Z. Note that some works adopt a different rotation convention and therefore
angles might differ.

An important consequence of a circuit being comprised of just Clifford gates is
that it is efficiently simulable by classical means [240]; as an example, the symmer
Python package [10] includes a basic Clifford simulator that can evaluate Hamil-
tonian expectation values over thousands of qubits within seconds. Furthermore,
one may permit a small number of non-Clifford gates within the circuit while still
maintaining classical simulability; it is this fact that we shall exploit to learn the
Pauli noise present within the EV protocol.

We start with a target unitary U(@), with @ = (6y,0,,...) corresponding
with angles of rotation gates, for the state preparation step in EV (see Figure
. We may round the parameters 6 to the nearest multiples of 7 to obtain a
classically simulable circuit U(Q<d) € €' (#) where

. 2
pelifiord _ T d<_ . g) 4.56
p 5 roun . ( )

The resulting entangling structure will match that of the target unitary and thus
approximates the noise channel appropriately; this differs from the work of [201]
where all single-qubit gates were dropped, leaving just that entangling structure
in the Clifford estimation circuit. For a Pauli operator P whose expectation value
we wish to estimate, we will have C(@<Trd) = (0] UT(@<lifferd) pyy(gtifierd) |0) e
{—1,0,+1}.

We may improve the quality of our Pauli noise training data by permitting
a small number L € N of non-Clifford gates in the training circuits, chosen such
that we maintain efficiency in evaluating the relevant expectation values. In order
to do so, we select at random L parameters @ren—clifford — (g, 9, ) to leave
un-rounded in the circuit, noting that this may generate up to 2* terms in the
corresponding state and thus must be set such that the available classical resource
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Figure 4.18: Overview of the Echo Verified Clifford Data Regression (EVCDR) frame-
work. The results obtained from a standard Echo Verification routine are biased with a
linear noise damping factor that is learned via the Clifford Data Regression procedure.
This is achieved by randomly sampling near-Clifford training circuits by approximating
all but a few of the rotation gates by their nearest Clifford counterpart (for example, by
rounding gate angles to an integer multiple of 7). By evaluating the training circuits
both classically and on the quantum hardware we may learn the effect of the under-
lying noise channel and subsequently suppress error in the final energy estimate. We
may then reflect estimates from the true non-Clifford circuit through the Clifford fitting
curves to obtain CDR mitigated estimates that are then combined in the same way as
the standard EV estimator.
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may accommodate this overhead. We randomize over M € N selections ¢ =
(i1,...,11), ensuring to include only choices of parameters in the light-cone circuit
of U(0) (see Figure to avoid redundant data; we denote by Zjight—cone the
indexing set of such parameters. Letting U(0;%) be the near-Clifford circuit whose
rotation angles are rounded to the nearest multiple of 7, except for those having
indices 2 C Zyight—cone, and p(8, %) the corresponding reduced density matrix of the
ancilla qubit in EV, we obtain noiseless expectation values

C= {0(07 Z) ‘ 1 C :Z'—lightcone} (457)

and X/Z-basis noisy measurements

NX - {TI' (XIO<077'>) | 1 C Ilight—cone}v
(4.58)
NZ = {TI (Zp(@,z)) | 1 C :Zlight—cone}'

In the previous Section [4.7.2| we derived a linear relationship between the Pauli
error rates, defining learnable quantities Ax, Az, Qx, and the noisy expectation
values Ny, Nz. By fitting the data

1-C(#)° A\
{ (TW’NX('I’)) | 1 C Ilight—cone} (459)

2C(4) A\
{ <TC(7:)27NZ(7/)> |3 C Inght_cone} (4.60)

we obtain linear functions fx, fz via standard regression techniques, in particular
the bootstrapped WLS routine described in Sections 4.1.2f and 4.1.3]

Recalling the noisy estimators £, Ex that define the standard EV estimator
(4.22)), we may invert the Clifford fitting curves to obtain mitigated estimators
71 (E2), fx'(Ex) and subsequently our Echo Verified Clifford Data Regression
(EVCDR) estimator

and

Eevepr = f7(E2) <1 + f)?l(gx))l- (4.61)

In Figure we observe the intended effect of this process on the ibm_sherbrooke
system, where we execute concurrent EVCDR procedures across numerous qubit
clusters on the chip in batches. While there is significant variability in the noisy
data obtained from £x and &z, when reflected through the Clifford fitting curves
the estimates f5'(Ex) and f;'(€z) become focused and variance is suppressed.
Indeed, in performing calculations over restricted qubit subsets we find that it is
possible to invert the noise channel locally.
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Figure 4.19: 21-qubit example of near-Clifford circuit data used to learn (a) the
noise damping and additive parameters Ax,2x defined in Equation and (b) the
noise damping factor Az defined in Equation [£.46] corresponding with the evolution at
t = 0.15s in Figure Combining the ancilla expectation values provides an estimate
of the desired quantity; in (c) we see the effects of CDR applied to EV. As shown in Fig-
ure four 21-qubit clusters could be accommodated on the 127-qubit ibm_sherbrooke
system, and three batches were submitted to the Runtime service, resulting in the 12
fitting curves above. A maximum of 15 non-Clifford gates were permitted in each train-
ing circuit while still allowing efficient simulation. Non-Clifford rotations were selected
at random, while the remaining angles were rounded to the nearest multiple of 7. The
arrows define reflections through the Clifford fitting curves, yielding the final error mit-
igated expectation values per qubit cluster. The marginal distributions indicate the
estimated expectation values for the true, non-Clifford circuit before and after CDR
mitigation.
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Chapter 5

Practical Implementations on
Current Quantum Hardware

Quantum phenomena do not occur
in a Hilbert space, they occur in a
laboratory.

Asher Peres [241]

Much of the theoretical algorithmic speed-up from quantum computation as-
sumes access to an ideal machine — this is far cry from the current state of quantum
computation. Taking into consideration the myriad limitations facing this novel
computing paradigm, such as hardware noise, short coherence times and low qubit
counts with poor connectivity, any computational advantage vaporises. Before
Quantum Error Correction can be realised at sufficient scale to deploy algorithms
such as Quantum Phase Estimation, offering exponential speed-up over classical
counterparts, there are formidable engineering challenges to overcome. Further-
more, the whole hardware ecosystem needs to be designed such that quantum
computers are integrated into conventional high-performance computing platforms
to meet the demand for efficient detection and subsequent correction of errors on-
the-fly, requiring a highly optimized software stack. Until such challenges are
resolved, we remain in the so-called Noisy intermediate-Scale Quantum (NISQ)
era of quantum computation. The question of whether quantum “supremacy”,
“advantage” or “utility” will be possible with NISQ computers is predominantly
an open one.

In this thesis we developed a methodology for reducing the resource require-
ments of Hamiltonian systems, thus extending the applicability of current quantum
hardware to address larger problems. In the remainder of this work we present
several practical implementations in the application domains of chemistry and con-
densed matter, making use of the error mitigation toolkit developed throughout
Chapter [, While we make no claim of quantum advantage, we do suggest that
our methodology presents a route to advantage/utility in the near-to-mid term.
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5.1 Hydrogen Chloride Ground State Prepara-
tion

Broadly speaking, when applying error mitigation there is typically a trade-off

between the bias of an energy estimate and our uncertainty in the result. In this

section we explore this experimentally through a benchmarking of the following
quantum error mitigation techniques, introduced in the previous chapter:

1. Measurement-Error Mitigation (MEM, Section ;

[\

. Symmetry Verification (SV, Section [4.3));

3. Zero-Noise Extrapolation (ZNE, Section [4.6));

4. Echo Verification (EV, Section |4.7)).

5. Echo Verification with Tomography Purification (EV+TP, Section .

In particular, we investigate combined mitigation strategies comprised of these
techniques; the goal is to understand, for a fixed shot budget, the most effective
approach to mitigating errors, executed across a suite of IBM quantum hardware.

The problem we take as a testbed for this QEM benchmark is preparation
of the HCI molecule ground state, with the ultimate goal of measuring the cor-
responding energy to algorithmic accuracy (here, errors within 43 meV of full
configuration interaction). Of the numerous quantum chemistry experiments per-
formed on NISQ hardware to date, listed in Table [3, 5} 182-112], only a select
few have achieved this threshold.

The IBM Quantum 27-qubit Falcon series processors are equipped with the
universal gate set {CNOT, R,, X,+v/X} and, at the time of writing, eight such
devices were available to us. From the point of view of gate errors and coherence
these devices were the most reliable then available through IBM Quantum [ with
the greatest Quantum Volumes (QV) [242} [243]; in Table[5.1] we provide a snapshot
of the hardware specification at the point of execution of our Qiskit Runtime
programs.

Taken in the minimal STO-3G basis, the full HCI problem consists of 20 qubits
and therefore direct treatment is not yet feasible on current quantum computers.
In order for the hardware to accommodate our problem we layered the qubit
reduction techniques of tapering [136} [137] (Section and contextual subspace
2, 5] 120}, [166] (Section [3.3)).

Qubit Subspace Approach

As discussed in Example 2.5 heteronuclear diatomic molecules such as HC1 permit
the tapering of four Zy symmetries. Two of these arise from the preservation of
spin up/down parities; under the Jordan-Wigner mapping [73] these manifest as
Sup/down = Z®%up/down where the sets ZLip, Zaown index qubit positions encoding up
(), down () electron spin orbitals, respectively. These spin parity operators are
still Zy symmetries (i.e. single-Paulis terms) under the Bravyi-Kitaev mapping
[74], however their closed form is less convenient since individual qubits do not

'The more recent Fagle and Heron chips have surpassed the decommissioned Falcon series.
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Table 5.1: Breakdown of quantum hardware specification restricted to the chosen
qubit cluster at the point of executing the Qiskit Runtime programs. We provide the
Quantum Volume (QV), chosen 5-qubit cluster, T1/T2 times and gate duration/error
for entangling (CNOT), local (R., X,+v/X) and readout operations.

Coherence Gate Specification
QV  Chosen 5q Cluster  Type Time [uS] Type Time [nS] Error x10?
ibmg-montreal 128 {0, 1, 2, 3, 4} T1: 140.92+16.77 Entangling: 471.11 + 78.69 7.85+1.06
T2: 82.16 £39.10 Local: 35.56 4+ 0.00 0.22 +0.03

Readout: 5201.78 +£0.00 14.08 +2.52
ibmq_kolkata 128 {167 19, 20, 22, 25} T1: 150.92 +16.80 Entangling: 348.44 + 177.77 5.14 £+ 0.65

T2: 135.59 + 66.36 Local: 35.56 £ 0.00 0.17+0.04

Readout: 675.56 £0.00  10.68 +1.99

ibmgmumbai 128 {0, 1, 2, 3, 4} T1: 129.80 +£28.12 Entangling: 556.44 £ 136.77 8.63 £ 2.20
T2: 104.20 & 69.62 Local: 35.56 £ 0.00 0.31+0.17

Readout:  3552.00 £0.00 18.24 £0.91

ibm_cairo 64 {8, 11, 13, 14, 16} T1: 9559 +37.85 Entangling: 462.22 £ 296.50 9.17 £4.30
T2:  92.76 +69.45 Local: 24.89 £ 0.00 0.22 +0.06

Readout: 732.44 +£0.00 20.86+11.74
ibm_auckland 64 {8, 11, 13, 14, 16} T1: 162.99 +73.58 Entangling: 376.89 4 28.61 6.28 +1.22

T2: 123.67 +72.80 Local: 35.56 £+ 0.00 0.23 £0.03

Readout: 757.33 £0.00 8.30 = 1.55

ibmq_toronto 32 {5,8,09, 11, 14} T1: 113.96 £6.53 Entangling: 382.22 4+ 61.35 7.96 +0.83
T2: 171.38 +£19.39 Local: 35.56 £+ 0.00 0.28 £ 0.06

Readout:  5962.67 £0.00  12.04 4+4.30

represent distinct spin-orbitals. For our particular formulation of the 20-qubit HCI1
system with even (odd) indices encoding spin up (down) electrons we have

Sw =ZIZIZIZIZIZIZIZIZIZ]I,

5.1
Sdown = IZIZIZIZIZIZIZIZIZIZ. (5.1)

We also identified two additional Zs symmetries
Se, = IIIITITTZZIITIIIZZII, (5.2)

Se, =1I1IIIT1ZZZZIIIIZZZZII,

that arise from the abelian subgroup Cy, of the non-abelian point group Cy, (to
which all heteronuclear diatomic molecules belong) generated by reflections along
the molecular plane (o, symmetry) and rotations through an angle of 180° (Cj
symmetry). In all, with the symmetry generating set S = {S,, , Scys Sups Sdown |
qubit tapering permits a reduction of 20 to 16 qubits while exactly preserving the
energy spectrum.

Whereas tapering exploits physical symmetries of the Hamiltonian to remove
redundant qubits, it is possible to achieve further reductions by imposing pseudo-
symmetries on the system via the contextual subspace method, discussed in Sec-
tion [3.3 The qubit reduction is effected by enforcing noncontextual symmetries
on the contextual Hamiltonian, thus ensuring any quantum corrections are con-
sistent with the noncontextual ground state configuration. However, the choice
over which noncontextual symmetries to enforce is non-trivial. Here, we select
stabilizers that preserve commutativity with the most dominant coupled-cluster
amplitudes, thus maximising variational flexibility in the contextual subspace.
Using this heuristic, we are able to project onto a 3-qubit contextual subspace
yielding a dramatically condensed Hamiltonian

H=> WP, (5.3)
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where we provide the explicit coefficients h; € R and Pauli terms P, = q((]i) ®
q%i) ® qg) in Table . The exact ground state energy of this Hamiltonian lies
within 0.837 mHa (22.776 meV, close to half the target algorithmic accuracy)
of the full configuration interaction (FCI) energy (—455.157Ha, calculated using
PySCF [39]). Subtracting the relatively large identity term leaves a target energy
of —2.066 Ha; with respect to chemical precision, this represents a challenging
0.077% error ratio that we aim to capture via QEM.

For the purposes of symmetry verification (SV, Section 7 we also project
the particle and spin-quantum number operators of Equation into the con-
textual subspace. These are not Z, symmetries as they do not commute with
individual terms in the Hamiltonian and are therefore nontrivial in the contextual
subspace; the projection procedure respects commutation and therefore we may
use the reduced operators

1
Sy =17-111 — 117 — J(IZ1 + 1272 + Z11 + Z1Z),
5.4)

1 (
S.=;UZ1+127 ~ 711 — 217)

for error mitigation in our HCIl 3-qubit contextual subspace — as an exercise we
suggest the reader confirms that these operators do indeed commute with the
Hamiltonian described by the terms in Table [5.2] An interesting feature of this
reduced Sy operator is the identity term; the coefficient indicates the number of
particles that have been effectively enforced in the contextual subspace, in this
case seventeen out of the eighteen available electrons.

Index qo ¢1 g2  Coeflicient ‘ Index ¢y ¢q1 ¢qo Coefficient
0 I I T -453.090742 | 17 Y Y X 0.035219
1 I 7 7% 0.846721 | 18 I T X -0.015458
2 Z 1 Z 0.846721 | 19 I 7 X 0.015458
3 I 7 1 0.620754 | 20 Z 1 X 0.015458
4 Z 1 1 0.620754 | 21 Z 7 X -0.015458
5} I 1T Z 0.393828 | 22 I X X -0.009644
6 7 7 1 0.258369 | 23 I Y Y -0.009644
7 Z 7 7 0.238049 | 24 Z X X 0.009644
8 X 7Z 1 -0.061959 | 25 Z Y Y 0.009644
9 Z X 1 0.061959 | 26 X I X 0.009644
10 Z X Z -0.061959 | 27 X Z X -0.009644
11 X 7 Z 0.061959 | 28 Y I Y  0.009644
12 Y Y 1 -0.055599 | 29 Y Z Y -0.009644
13 Y Y Z 0.055599 | 30 I X 1 0.004504
14 X X X -0.035219 | 31 I X Z -0.004504
15 XY Y -0.035219 | 32 X I 1 -0.004504
16 Y X Y -0.035219 | 33 X I Z 0.004504

Table 5.2: The 3-qubit contextual subspace HCl Hamiltonian, terms ordered by coef-
ficient magnitude, we take as a testbed for the error-mitigation strategies investigated
in this work.
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Due to incompatibility with some of the error-mitigation techniques investi-
gated here, we do not implement any measurement reduction strategies such as
(qubit-wise) commuting decompositions or unitary partitioning [117, [119]. In-
stead, each Hamiltonian term is treated independently so there is zero covariance
between expectation value estimates and the overall variance is therefore obtained
as

Var(H) =Y~ h? - Var(P)); (5.5)

the statistical analysis is conducted with a bootstrapping of the raw quantum
measurement data.

Before proceeding onto the quantum error mitigation benchmark, there are
a few additional considerations to resolve. Firstly, one must identify a suitable
ansatz circuit that is sufficiently expressible to realize the desired ground state.
Secondly, we discuss the mapping of our circuits onto physical qubits, in particular
for echo verification since one should be mindful of the added qubit connectivity
constraints arising from parity computation stored on the ancilla qubit. Thirdly,
despite not implementing any shot reduction methods in this work, we still wish
to distribute the shot budget in an informed manner, preferably tailored to each
device; this is the final point of discussion before moving onto the results of our
benchmark.

We stress that, while eigenvalue estimation is a fundamental component of
the VQE algorithm, we are not running the optimization itself on hardware, only
the ground state preparation for means of benchmarking the QEM techniques
presented in Chapter 4l There are additional considerations to take into account
when running full VQE on quantum hardware. For example, the algorithm itself
exhibits a level of robustness against noise as the optimizer can effectively combat
hardware error due to the variational principle. The caveat here is that, since
it is not in general possible to measure the full Hamiltonian simultaneously, the
optimization may become non-variational due to state preparation discrepancies
when measuring different subsets of Pauli operators.

Ansatz Construction

Initially, we tested the noncontextual projection ansatz [2] derived from the 316-
term CCSD operator. The projection into the 3-qubit contextual subspace yields
a 6-term excitation pool from which we identify 4 operators via qubit-ADAPT-
VQE that permit chemical precision. Despite this dramatic reduction in circuit
depth from the full UCCSD ansatz, the resulting noncontextual projection ansatz
consists of 12 CNOT gates which we found to be prohibitive in achieving chemical
precision.

To remedy this, we abandon chemical intuition in the name of hardware ef-
ficiency. It is already known that an arbitrary 3-qubit quantum state may be
prepared on quantum hardware using at most 4 CNOT gates [244]. In fact, we
found that only 2 CNOT gates are sufficient in constructing a 3-qubit ansatz cir-
cuit that is sufficiently expressible for our electronic structure problem, presented
in Figure 5.1} In Figure[5.2) we present the outcome of a noiseless VQE simulation
over this ansatz to illustrate its expressibility.
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Figure 5.1: Hardware efficient HCI 3-qubit contextual subspace ansatz; the Y-rotation
gates are decomposed into native gates as R, = VXR.,VX. The optimal parametriza-
tion obtained from the statevector simulation in Figure m is: 01 = —0.06492667, 05 =
2.89836152, 3 = 0.26373807, 04 = —0.06709062, 85 = 0.01006833, 6 = —0.26585046.

—— Energy E(é) 15
—— HF energy _
10° 4 L S
MP2 energy 10 =2
_ Chemical accuracy T%
L) F05 @
= 2
j C
S 10714 VLY Vo oo 2
o ©
> —
S N L 0.5 o
c v 2
w -2 (O]
107 4
- -1.0 g
&
Fr—1.5
10—3 4
T T T T T T T T F-2.0
0 25 50 75 100 125 150 175
nfev

Figure 5.2: Noiseless 3-qubit CS-VQE simulation of the HCl molecule over the hard-
ware efficient ansatz presented in Figure The classical optimizer used is Adaptive
Moment (Adam) estimation with gradients calculated using the parameter shift rule;
we see that the ansatz is sufficiently expressible to achieve chemical precision.

Ancilla Readout Mapping for EV

The main bottleneck for echo verification is the ancilla readout step. Given the
limited topology of the available quantum systems (Figure and the structure
of our Ansatz (Figure , it is not possible to realize every 3-qubit Pauli Z mea-
surement basis ([1Z,IZ1,1Z7Z Z11,Z1Z,7ZZ1,7Z7ZZ) without the aid of SWAP
operations since at least one basis will always result in a closed loop of three
CNOTs, which cannot be directly implemented on the hardware. We identified
an optimal readout mapping that ensures just one measurement basis requires a
SWAP operation by selecting a cluster of five qubit of the form in Figure [5.3| and
implementing the readout as per Figure |5.4

Shot Budget Distribution

To ensure a fair comparison, we define a fixed shot budget B up front and distribute
according to the particular combined error-mitigation strategy. The optimal shot

distribution is in proportion with vp = |hp|y/var(P) where var(P) = 1 — (P)i
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Figure 5.3: The five-qubit cluster we require for echo verification in order to facilitate
readout in every possible measurement basis. There are 18 such clusters on the 27-qubit
Falcon chip (see Figure and we selected the optimal one with respect to gate and
readout errors.
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Figure 5.4: Ancilla readout mappings given qubit clusters of the form in Figure
Given the qubit topology of Figure and the form of our ansatz in Figure (where
qubits a, b, ¢ are the same as above with d the ancilla qubit), we may not entangle qubits
a and b since it would result in a closed loop of three CNOT operations that is not
expressible on the available quantum systems. We avoid this situation by introducing
a single SWAP operation (represented in-circuit as x—x) for Hamiltonian terms of the
form ZZ1I as in (f).

[245]; however, the state-dependency means this may only be evaluated in-circuit.
Therefore, we allocate 0.1%(b = 0.001) of the overall budget to determine a rough
estimate of the variance for each Hamiltonian term in order to rebalance the shot
distribution accordingly; after this preliminary step we are left with B’ = (1 —0)B
remaining shots. For example, defining V' = )", vp we allow

1. ZNE: BX(}” circuit shots for each Pauli term P per noise amplification factor

where A is the number of noisy estimates desired for the energy extrapolation
procedure.

2. EV: BZ,/‘”/P circuit shots for each Pauli term P, where the factor of % comes
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from performing both X and Z measurements over the ancilla qubit.

3. EV4+ZNE: % circuit shots for each Pauli term P per noise amplification
factor.

Since the shot budget is fixed, layering multiple error-mitigation techniques may
result in increased variance since fewer shots might be allocated to individual point
estimates. It is the goal of this work to practically evaluate this trade-off between
absolute error and uncertainty in the energy estimate, which has been noted in
numerous studies [230, [246].

Simulation Results

In Table [5.3| we report the results of benchmarking our suite of error mitigation

strategies for the 3-qubit HCI problem across every 27-qubit system currently

available to us through IBM Quantum with a shot budget of B = 10%; the order

in which each QEM technique (MEM, SV, ZNE, EV, TP) appears in the com-

bined strategy identifier indicates the order in which each method is being applied.

Table presents the average error suppression in relation to the raw estimate,
bias(SQEM)

calculated as
1—
( bias((S’RAw)

and change in standard deviation o across our suite of systems. When bias(Eqrm)
is near zero, the error suppression will approach 100%, whereas values close to
0% indicate little (or no) improvement over the raw estimator; negative values of
error suppression correspond with instances whereby the QEM strategy has had
a detrimental effect to the energy estimate, a highly unfavourable situation.

The shot budget yields a raw standard deviation of 2 < o < 3 mHa, quantified
via a bootstrapping procedure (discussed in Appendix. In Figure We plot

) x 100%, (5.6)

Table 5.3: Comparison of estimator bias and standard deviation o (given in mHa) for
various error-mitigation strategies performed across a suite of IBM Quantum 27-qubit
Falcon devices with a shot budget B = 105. The columns are ordered left-to-right
by decreasing average error suppression (detailed in Table , with the exception of
the raw estimate which is provided for reference. Note the following classical quantum
chemistry error benchmarks: HF - 21.621mHa, MP2 - 7.360mHa, Chemical Precision -
1.6mHa.
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Table 5.4: Average error suppression and change in standard deviation under each error
mitigation strategy evaluated across 27-qubit Falcon IBM Quantum devices. Ordered
by decreasing mean error suppression.

Error Suppression [%] Change in Std Dev

Mean Best Worst Mean Best Worst
MEM~+SV+ZNE 94.327 99.392 88.101 3.680 1.078  7.207
EV+TP 93.253 99.713 80.793 2.543 1.583  3.833
MEM-+EV+TP 92.661 98.601 75.508 2.113 0.789  3.472
MEM+ZNE 87.094 97.877 69.185 7.069 1.202 25.063
MEM+SV 82.678 96.643 67.108 0.638 0.519  0.758
SV+ZNE 79.799 94.938 52.882 4.270 0.385  8.594
MEM 76.505 96.704 65.358 0.669 0.517  0.762
SV 63.577 80.992 33.191 0.748 0.645 0.887
MEM+EV+TP+ZNE  59.767 99.758  -98.987 6.738 3.104  8.853
EV+TP+ZNE 34.012 95.721 -107.805 7.462 5.593  9.523
ZNE 33.384 52.230 18.303 6.699 0.642 24.689
MEM+EV+ZNE -10.180 93.343 -238.874 6.779 3.715  8.601
MEM+EV -18.002 75.430 -330.030 2.224 1.080  3.440
EV+ZNE -68.019  1.854 -298.966 7.235 5.453  8.989
EV -76.967 29.366 -393.687 2.620 1.896  3.726

the bootstrap distributions for a selection of the best performing QEM strategies
to illustrate the trade-off between estimator bias and variance in practice, serving
as a valuable comparison with previous theoretical analyses |230].

We observed that application of the MEM and SV techniques served to con-
sistently lower both the estimator bias and standard deviation, which can be
attributed to these approaches rectifying readout errors. Used in combination,
the MEM+SV strategy permitted a respectable reduction in bias while also sup-
pressing deviations with very little classical overhead.

Unlike MEM and SV, the ZNE and EV techniques necessitate modification to
the quantum circuits themselves; the former, a decomposition of each CNOT gate
into procedurally more complex circuit blocks, and the latter requiring a prepare-
readout-invert structure with a supplementary ancilla qubit. This amounts to an
increase in circuit depth for both techniques that must be taken into consideration
when using them. For example, EV doubles the circuit depth and therefore one
must ensure the primitive ansatz is executable within half the coherence time of
the device (minus the time required for measurement). On the other hand, the
increase in circuit depth arising from ZNE limits the permitted noise amplification
factors, although it is not recommended to go to large factors regardless. Both of
these methods can be seen to inflate the standard deviation.

By itself, EV performs very poorly (indeed, the worst four strategies were all
EV-based), but when used in combination with TP we are permitted dramatic
reductions in bias which exceed all other QEM strategies in the benchmark. The
dependence on tomography purification for the ancilla qubit was also observed in
Huo & Li |231] and is essential to obtain good results from echo verification. We
stress that, although state tomography is not scalable in general, here it is applied
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Figure 5.5: Bootstrapped distributions for some of the best QEM strategies identified
through our benchmark. The mean energy of each distribution corresponds with the
estimator bias.
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to a single qubit and hence does not contribute a significant cost in the number
of measurements required.

We found mixed success with ZNE-based strategies depending on which other
QEM techniques were deployed in combination. Applied on top of MEM and SV
we observed a significant improvement in error suppression. On the other hand,
performing noise amplification on the ancilla qubit for the purposes of EV pro-
duced disappointing results. These observations might be attributed to coherent
errors causing unpredictable noise amplification behaviour; this could have been
improved by including probabilistic error cancellation [222], converting coherent
error into incoherent error that may be extrapolated more confidently.

The Most Effective QEM Strategies

In this work we compared various quantum error-mitigation strategies for estimat-
ing the ground state energy of the HCl molecule on NISQ hardware. Indicated
by the benchmark results of Section [5.1], we identified three hybrid strategies with
the strongest performance:

e Echo Verification with Tomography Purification (EV + TP) yields
compelling error suppression (93.253% on average) although at an increase
in standard deviation (2.543 times the raw value on average); given a gen-
erous shot budget and sufficient qubit connectivity this strategy should pro-
duce reliably accurate results. Implementing echo verification requires heavy
modification to the ansatz resulting in doubled circuit depth, although the
errors incurred here are suppressed. Further layering measurement-error
mitigation produces a similar suppression in error although the increase in
standard deviation is slightly less (2.113 times the raw value on average).

e Measurement-Error Mitigation with Symmetry Verification (MEM
4+ SV) comes with very low overhead yet respectable error suppression
(82.678% on average) on top of a reduction in standard deviation (0.638
times the raw value on average). Furthermore, there is no required mod-
ification to the ansatz circuit since both techniques operate solely on the
binary measurement output. We recommend this strategy for restrictive
shot budgets or where qubit topology does not permit the readout block
needed for echo verification.

e Zero-Noise Extrapolation on top of Measurement Error Mitiga-
tion with Symmetry Verification (MEM + SV + ZNE) is sensitive
to many factors but used carefully can yield excellent results (94.327% aver-
age error suppression when we exclude the cases where extrapolation failed
in Figure . There are many approaches to implementing ZNE, even
extending to the pulse-level. On superconducting devices this might be
preferable since it offers fine control over noise amplification. ZNE produced
the largest inflation in standard deviation (3.680 times the raw value on av-
erage) and therefore a significantly greater shot budget would be necessary,
due to error propagation in the extrapolation and since we evaluate several
noise factors per expectation value.

As indicated by Table |5.4] each of these strategies achieved an average error sup-
pression exceeding 80% across the suite of 27-qubit IBM Quantum chips. Given
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the level of noise present on these devices, reflected in the raw energy estimates, the
high bar of chemical precision would necessitate a suppression of 98.783%. This
was obtained for three out of eight instances of EV+TP (on the highest QV=128
systems tbmqg-montreal and ibmgq_kolkata, plus the QV=64 system ibm_auckland,
with further device specifications given in Table and a single instance of
MEM+SV+ZNE (on the QV=128 system ibmg-mumbai), bearing in mind the
standard deviation exceeds the chemically precise region and an increased shot
budget would be necessary to counteract this.

From the empirical results presented in this work, it is clear that we must rely
heavily on methods of quantum error mitigation if we are to obtain usable results
from NISQ hardware. Through our benchmark on the IBM Quantum 27-qubit
Falcon processors, we have demonstrated the most effective combined strategies
which we intend to take forward in our future simulation work.

5.2 Molecular Nitrogen Dissociation Curve

For small problem instances, it is of interest to evaluate the performance of NISQ
devices against various classical heuristics. A standard benchmark problem for
many conventional quantum chemistry techniques is molecular nitrogen Ny [147,
247), which is of particular interest during bond-breaking. Density matrix renor-
malization group (DMRG) and coupled cluster calculations were performed on Ny
in the Dunning cc-pVDZ basis set [248], and more recently using heat-bath (HCI)
and quantum-selected (QSCI) configuration interaction [66]. In the dissociation
limit static correlation dominates |147] and single-reference methods such as Re-
stricted Hartree-Fock (RHF) break down; in this regime, the ground state wave-
function is not well-described by a single Slater determinant. Despite the inade-
quacy of the single-reference state, in the limit of all excitations post-Hartree-Fock
methods such as Mgller—Plesset Perturbation Theory (MP), Configuration Interac-
tion (CI) and Coupled Cluster (CC) are still exact; however, each method requires
truncation to be computationally feasible, which induces error. Furthermore, per-
turbation and coupled cluster approximations suffer from non-variationality [41,
p. 292, 320], which is observed in the minimal STO-3G basis for the Ny potential
energy curve (PEC) in Figure [5.10]

In such scenarios, multiconfigurational methods are commonly utilized such as
complete-active-space configuration interaction (CASCI) and self-consistent field
(CASSCF) [249], which account for all determinants that correlate electrons in a
specified number of active orbitals and thus have the flexibility to describe mixing
between nearly degenerate configurations (i.e. static correlation) [250]. In Figure
we include CASCI/CASSCF calculations, in each case selecting the active
space from MP2 natural orbitals; an occupation number close to zero or two in-
dicates the corresponding spatial orbital is mostly unoccupied/occupied and can
therefore be considered inactive, which naturally maximizes the correlation en-
tropy of the wavefunction in the active space. This yields improved treatment of
the bond-breaking behaviour for active spaces (60, 6e) and (70, 8¢), while coupled
cluster is more accurate around the equilibrium geometry where is is expected
to perform favourably. An issue with these CAS methods is that the computa-
tional cost scales exponentially with the size of the active space and dynamical
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correlations outside of the active space are excluded. The missing dynamical cor-
relation can be recovered, for example through low-order perturbations such as
complete-active-space (CASPT2) or n-electron valence state (NEVPT2) second-
order perturbation theory. A further problem with all these techniques is that the
quality of the calculation, namely the amount of correlation energy captured, is
substantially affected by the choice of active space [251], while keeping the problem
computationally tractable.

Another commonly used approach to treating bond-breaking is Unrestricted
Hartree-Fock (UHF), in which spin-up and spin-down orbitals are addressed sep-
arately. Sometimes, this can qualitatively describe bond dissociation; however,
solutions no longer exhibit the correct spatial/spin symmetry [43], i.e. they are
no longer eigenstates of the S? = ||S||? operator where S = (S,,S,, S.) describes
the axial spin components. Since the molecular wavefunction is important to
obtain observables other than energy, this represents a drawback of UHF as spin-
contaminated or symmetry-broken wavefunctions are inappropriate in such cases.

Qubit Subspace Approach

In this section we invoke the Contextual Subspace approach [2, 120, 166], as devel-
oped in Section [3.3] to quantum chemistry running on superconducting devices.
While we employed this technique previously for the equilibrium ground state
preparation of HCI on noisy hardware [3] in Section the variational circuit
was preoptimized classically. One other work utilized the Contextual Subspace
method on noisy hardware for the purposes of testing a pulse-based ansatz by
calculating equilibrium energies [112]. However, only the smallest of their simu-
lations, NH STO-3G in a 4-qubit subspace, was able to recover the Hartree-Fock
energy, with correlated wavefunction methods a more challenging target. By con-
trast, in this work we aim to calculate the entire PEC of Ny — not just a single
point estimate — with the Contextual Subspace Variational Quantum Eigensolver
(CS-VQE) running on a quantum computer; each VQE routine consists of many
state preparation and gradient calculations.

We may construct contextual subspace approximations for any number of
qubits between 1 — 14, given that we first taper the molecule so a contextual
subspace on 15 qubits corresponds with performing full-system VQE, as shown
in Figure 5.6, Not only does the contextual subspace method allow us to re-
duce the number of qubits required to represent a Pauli Hamiltonian, it also has
an impact on the number of terms and ¢;-norm of the resulting Pauli coefficients,
A =", ]hi|, as seen in Figure[5.7 This has implications on the sampling overhead
required in VQE, which scales asymptotically as O(A%e¢~2) to achieve a desired er-
ror € > 0 [245] [252].

It can be argued that reducing the number of qubits not only allows us to
simulate larger systems on quantum hardware, but may also render such systems
classically-tractable. However, the fact that A is additionally reduced, thus al-
leviating the quantum overhead further, provides a strong motivation for its use
as a quantum resource reduction technique. In addition, this feature will benefit
Hamiltonian simulation techniques such as qDRIFT [27], where there is an explicit
quadratic scaling dependence on A in the resulting circuit depths.
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The contextual subspace approximation is also compatible with more advanced
measurement-reduction methodologies; in previous work we studied its use in com-
bination with unitary partitioning [120], although we did not implement it for this
experiment as a unitary must be applied in-circuit to realize the measurement
of each anticommuting clique [117-119]. If combined with additional techniques
for reducing the number of terms in the Hamiltonian, such as tensor hypercon-
traction [253], this could present a compelling quantum resource management
framework.

Increasing the number of qubits in the contextual subspace increases the accu-
racy of the method. For N, in order to achieve algorithmic accuracy (terminology
introduced in [38] and taken here to mean errors within 43 meV of FCI, with chem-
tcal accuracy a common misnomer when working within minimal basis sets since it
implies agreement with experimental results) throughout the full PEC under the
contextual subspace approximation, we need 11/12-qubits motivated by the CCS-
D/MP2 wavefunctions, respectively. However, increasing the number of qubits in
the contextual subspace also increases the depth of the ansatz circuit and hence
exposes us to the vulnerabilities of hardware noise. In Figure of Section [I.4.5]
we presented the results of running noiseless qubit-ADAPT-VQE [121} |131] over
a 12-qubit subspace and observed the decay of error against the number of CNOT
gates in the ansatz circuit; such circuits are too deep to obtain satisfactory re-
sults on the available hardware. There is a trade-off between a sufficiently large
contextual subspace to represent the problem accurately and a sufficiently shallow
ansatz circuit such that the output is not overly contaminated by noise.

We were able to achieve algorithmic accuracy on quantum hardware in Section
for the equilibrium ground state of HCI [3], where just 3-qubits were sufficient
and hence a shallow ansatz was possible. A 12-qubit ansatz circuit would be too
deep — and consequently too noisy — to achieve this level of accuracy on current
hardware. Since algorithmic accuracy is too challenging a target for a 12-qubit
simulation on real hardware, we relax this requirement. Instead we choose a con-
textual subspace that is sufficiently large to challenge a set of classical methods
for Ny. We compare against RHF, MP2, CISD, CCSD, CCSD(T), CASCI and
CASSCEF for active spaces of varying size. In reproducing the PEC of Ny we find
that a b-qubit contextual subspace, while not algorithmically accurate, yields er-
rors that do not exceed 1 eV, as shown in Figure It should be highlighted that
the above classical techniques do not maintain algorithmic accuracy throughout
the PEC either.

Simulation Results

We perform Contextual Subspace Variational Quantum Eigensolver (CS-VQE)
experiments for ten points along the binding potential energy curve (PEC) of Ny
STO-3G, evenly spaced between 0.8A — 2A. The extrapolation data extracted
from various IBM Quantum devices used to obtain energy estimates is visible in
Figure 5.8 To improve the noise extrapolation beyond the experimental results of
Figure in Section [4.6] we calibrated the noise amplification/gain factors G(\)
using the one- and two-qubit gate error data extracted from the hardware at the
time of execution; this is why the extrapolation data do not lie on integer values in
Figures [5.9 and 5.8 For more reliable extrapolation, we employ inverse variance
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Figure 5.8: Noise fitting curves for ten evenly spaced interatomic separations of molec-
ular nitrogen. Standard deviations were taken over the converged data in VQE in order
to use weighted least squares in the linear/quadratic regression. We also plotted the
spread of possible extrapolation curves given the variance of each individual noise am-
plified estimate. The noise amplification factors themselves were calibrated using one-
and two-qubit gate error data extracted from the hardware at the time of execution.
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weighted least squares regression (linear or quadratic), so that highly varying data
points are penalised in the fitting procedure; the variances here are obtained from
the converged VQE data, as opposed to the statistical bootstrapping procedure
we used in our previous ZNE work [3]. In Figure [5.9) we present a full VQE routine
executed on the ibm_washington system, complete with the noise amplified data
that leading to the final extrapolated estimate.

The final PEC results for Ny STO-3G may be viewed in Figure[5.10} Alongside
our experimental results, we include the following classical benchmarks: RHF,
MP2, CISD, CCSD, CCSD(T), CASCI and CASSCF. The active spaces of the
latter two were selected using MP2 natural orbitals for fairness, since this is com-
parable to how the contextual subspaces are chosen as described above in Figure
5.6 We included active spaces of varying sizes, specifically (40,2¢), (50,4e), (60,6e)

0y {vx {00 HvX] zOHvxHeGF
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0, {vx {00 Hvx] (R-DHVXHEGF
103 R.(5) R.(0:) [ R.(5)
100, {vx HR-0) H VX ] & R.(0) foH{ RO HVX H R F
(a)
141 g Noiseless --e- G(A)=1.000
Ll % —e— G(A)=0 (linear fit) --e- G(A)=1.677
v e. G(A)=2.354
10 G(A)=3.030
3 -
— 81 o ™.
é . ‘.'o.... N &0 0
a 6 ,-‘ .“ 9:0.0:.9:0:0'" 0 ¢-00:-0:09.,.0 0 .0
O " ‘-%-.,._,. 0 P 0 .0.0-00:0:00:0:0-0:.0-%:.¢
w “ ‘9t
4 4
5 o--.-o,'_...o--o- ‘9.9 0 0:0::0:-0:0-0-0:%.¢
0_
20 A

Gradient
f1-norm
=
o

L
0 L T T T T T T
0 5 10 15 20 25
Optimization step
(b)

Figure 5.9: (a) ansatz circuit consisting of six variational parameters and (b) noise
amplified VQE routine for molecular nitrogen at r = 2A on ibm_washington. We also
include a noiseless routine for comparison and note the partial derivatives converge on
zero in the noiseless simulation, while they are prevented from doing so in the noisy case
indicated by non-zero gradient £1-norm, despite the optimizer having converged on the
ground state energy.
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and (70,8¢) where (Mo,Ne) denotes N electrons correlated in M spatial orbitals.
A crucial point to note when comparing our CS-VQE results to the CAS methods
is that, for an active subspace of M spatial orbitals, one needs 2M qubits to rep-
resent the problem on a quantum computer; therefore, our chosen active spaces
range from 8 to 14 qubits in size, while the contextual subspace consists of just 5
qubits. This is important to bear in mind when interpreting the results.

In Figure[5.10] we see the single-reference quantum chemistry techniques - RHF,
MP2, CISD, CCSD and CCSD(T) - struggling to capture the FCI energy for Ns.
This holds especially true in the dissociation limit where there is no agreement be-
tween the different approaches. While the conventional techniques yield relatively
low error around the equilibirum length at 1.192A (albeit not within the target
algorithmic accuracy of 43 meV), they incur large error at stretched bond lengths
due to a failure of restricted Hartree-Fock to describe static correlation. Further-
more, we see instances of non-variationality, which becomes apparent at 1.140A
for MP2, 1.706A for CCSD(T) and 1.728A CCSD. For the CAS methods, we do
not capture the bond breaking appropriately until the active space is expanded to
(60,6e) or (70,8e), corresponding with 12 and 14 qubit subspaces.

On the other hand, our 5-qubit CS-VQE hardware experiments produce mean
errors between 47 meV and 1.2 eV throughout the evaluated interatomic sepa-
rations and remain below 1 eV for all but two of the bond lengths (1.333A and
1.467A). From direct diagonalization (the CS-DD curve in Figure we see a
true error range of 0.5 eV to 0.8 eV along the Ny PEC. Our quantum simulations
outperform all the single-reference techniques in capturing the bond dissociation
behaviour; indeed, beyond an interatomic separation of 1.351A the 5-qubit contex-
tual subspace calculation yields lower errors than CISD and MP2, and outperforms
CCSD(T) after 1.834A, the ‘gold standard’ of quantum chemistry.

Turning now to the multiconfigurational approaches, our CS-VQE experiments
produce lower error than CASCI/CASSCF (40,2¢) and (50.,4e) for every bond
length, despite them corresponding with 8- and 10-qubit subspaces. In order for
CAS to capture the dissociation satisfactorily, it needs at least the (60,6e) space
to describe the triple bond between nitrogen atoms appropriately; this is precisely
what we find in Figure While the (60,6e) and (70,8¢) calculations do yield
improved errors, particularly towards the dissociation limit, we stress that they
correspond with 12- and 14-qubit subspaces. Contextual subspaces of the same size
yield considerably lower error than CAS in this instance (assessed through direct
diagonalization), albeit caveated with the added challenge of running hardware
experiments of that scale, which could prohibit us from achieving this in practice.

Our energy advantage in the dissociation limit can be attributed to the non-
contextual energy component of the CS-VQE simulations. Around the equilibrium
length there is negligible difference between the Hartree-Fock and noncontextual
energy, but as the bond is stretched we see the noncontextual approximation out-
performing Hartree-Fock, even before the inclusion of contextual corrections ob-
tained from VQE simulations. Interestingly, the noncontextual energy coincides
exactly with the CASCI/CASSCF (40,2¢) curve between bond lengths 1.328A and
1.909A. This is because the noncontextual problem can accommodate a ground
state that is multireference in nature, thus capturing the separated atom limit
more appropriately than the single-reference RHF state here. We note that the
CS-VQE optimization is still initialized in the Hartree-Fock state and therefore
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Figure 5.10: Binding potential energy curve for molecular nitrogen, No. The CS-VQE
data points were evaluated on IBM Quantum hardware, while CS-DD corresponds with
direct diagonalization of the five-qubit contextual subspaces. The quantum simulations
maintain good agreement with the full configuration interaction energy throughout the
entire range of interatomic separations, outperforming all the single-reference methods in
the dissociation limit and remaining competitive with CASCI/CASSCF at a considerable
saving of qubits. Discontinuities in the noncontextual energy coincide with peaks in our
molecular-orbital degeneracy detection function . Bars indicate standard error on
the mean.
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does not receive an unfair advantage from this feature of the method; instead,
the noncontextual contribution is included in the construction of the contextual
Hamiltonian as a constant shift.

Curiously, the noncontextual PEC is not continuous and these error improve-
ments are encountered in sharp decreases of energy, as seen in Figure for
interatomic separations 0.936A,1.328A and 1.909A. In order to probe this effect,
we search for degeneracy in the energy levels between molecular orbitals (MO),
which is known to cause issues for MP [254) 255]. This is achieved by detecting
near-zero energy differences between elements of u, a vector with length the num-
ber of orbitals M whose entries are the canonical MO energies computed through
Hartree-Fock. Our candidate MO degeneracy detection function is

(5.7)

S(s(pl,) = 5ﬁ f L Z erf [('uﬂz Zk 1 /‘ij)/ }

o 1) M
2(Dmax - ]‘) =2 (’L) 1<j1<<j; <M (/’L]z Zk’ 1 lu.]k)

where 0 > 0 acts as a filtering parameter determining the threshold of near-
degeneracy between energy levels, noting lims_,g M = 0,0 and thus for
9 = 0 this will detect exact degeneracy. The metric satisfies 0 < s5(p) < 1 and
for 6 < 0’ we have ss(u) < sg(p). The maximum depth Dy« < M allows one
to truncate the outer sum since the number of inner terms increases as (Mi_l); in
the Ny STO-3G case M = 10 so we may include all MO degeneracy contributions,
but for larger systems we may truncate for ease of computation. This may be
viewed in the lower subplot of Figure where peaks indicate the presence of
degenerate MOs. Encouragingly, these peaks coincide exactly with discontinuities
in the noncontextual energy approximation, thus giving us confidence that the
success of our Contextual Subspace techniques stems from its ability to describe
static correlation in the noncontextual component.

Finally, while we identified the occurrence of noncontextual discontinuities to
coincide with peaks in our MO degeneracy metric , one might consider the
converse implication of our noncontextual problem as itself a test for detecting
non-dynamical correlation. This is closely related to the Coulson-Fischer point,
characterized by a divergence between restricted and unrestricted Hartree-Fock
calculations [256], indicating a break-down of spin symmetry. The noncontextual
discontinuities are reminiscent of a similar discontinuity found for Hs in a work
developing “Holomorphic Hartree-Fock Theory” [150] and warrants further inves-
tigation in this setting for the Ny system. Furthermore, recall that we earlier
demonstrated in Figure that Hy STO-3G is described exactly by a noncontex-
tual theory, thus it could be instructive to investigate any possible connection to
the holomorphic HF theory.

5.3 Kagome Lattice Heisenberg Model Ground
State Preparation

The Heisenberg model provides an idealised quantum mechanical framework in
which to study properties of magnetic systems such as critical points and phase
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transitions. The N-site, spin—% Heisenberg Hamiltonian is defined here as

N-1
=-J Y o.cV—n) ol (5.8)
=0

(1,5)€E

with coupling graph specified by edge set £ C Zx?, Pauli matrices o) = (ag(f), crg(, ), ol ))

acting on site 4, interaction strengths J = (J,, J,, J.) € R? and external field
strength h € R. The most general case of J, # J, # J, is referred to as the XY Z
model, however there are restricted configurations that are of particular interest.
The one we consider here is the X X X model, characterised by J, = J, = J, = J.
For J > 0 the X X X model exhibits ferromagnetic behaviour, whereas for J < 0 it
may be antiferromagnetic. In this work we investigate the 12-site Kagome lattice
depicted in Figure and defined by the edge-set:

£€=1(0,1),(1,2),(2,3),(3,4), (4,5), (0,5),
(0,6),(1,6), (1,7), (2,7),(2,8), (3,8), (5.9)
(3,9),(4,9), (4,10), (5,10), (5,11), (0,11)}.

Its geometrical structure gives rise to some exotic physics. In the antiferromag-
netic setting of J < 0, each triangular subgraph permits two anti-parallel spins
while the third is necessarily frustrated due to these competing exchange interac-
tions [257], leading to a degeneracy of its energy spectrum. The Kagome lattice
is a candidate quantum spin liquid (QSL), being predicted to exhibit entangle-
ment, fractionalized excitations [258] and magnetic disorder, even at absolute zero
temperature [259).

In Figure -Vwe present the ground state energy F and modulus of magneti-
zation M, = \/N for varying J € [—1,1] and h € [0, 1]. We expect a
ferromagnetlc system to yield M, = 1 whereas, in the ideal antiferromagnetic set-
ting, all spins should cancel to give M, = 0. For the purposes of this example we
restrict ourselves to the field-free setting of h = 0 and furthermore take J = —1,
in which antiferromagnetic behaviour is encountered.

Figure 5.11: The Kagome lattice structure, consisting of hexagonal cells with joining
triangular elements; the spin-frustration manifests in the latter geometric property. We
isolate the central star-shaped lattice consisting of 12 spin-sites, highlighted above.
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Figure 5.12: The X XX model ground state energy and modulus of magnetization
for the 12-site sub-lattice highlighted in Figure [5.11] with varying coupling and field
strengths J and h.

Qubit Subspace Approach

For such Heisenberg-type Hamiltonians we always find a Zs-symmetry of the form
o®N which clearly commutes with each of the terms in (5.§)). In the absence of

an external field (that would otherwise contribute additional Hamiltonian terms

> Jg)), which is the scenario we find ourselves in for this Kagome lattice prob-
lem, there is an additional Zy-symmetry o®V; for odd-numbered lattices these
symmetries anticommute, as was discussed previously in Example Since we
consider here the even case, tapering allows us to remove two degrees of freedom,
reducing the full 12-qubit Hamiltonian H to a 10-qubit system that is isospectral,
i.e. its energy spectrum is preserved exactly up to a potential lifting of various
degeneracies. In our case, the ground eigenspace remains degenerate, indicating
the presence of some non-Z, symmetry.
Following Equation , the Clifford rotation
(D 200 e@V 200N

s jus
R=¢""4% 4% ¢

(5.10)
allows us to map the Zo-symmetries onto single-qubit Pauli operators Ro®N R =
09(30), Ro®N Rl = otV acting on distinct qubit positions. Since conjugation by a
unitary preserves commutation, the rotated hamiltonian RHR' will necessarily

consist of identity or o, operations in the qubit positions 0,1 onto which we
mapped the symmetry operators. We may therefore drop these qubits, defining
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an effective 10-qubit Hamiltonian

Hiper = — Z J- o

(i,5)€€

1,j¢{0,1}
+ o Y T+ — 1 Y (T4 02N )l (5.11)

(0,5)e€ (1,5)e€
—J, Z ®] a ON'=j'=1) 4 o2 a( )Uf?(N’*j’*l)]
Lj)eE

where ' = x — 2 denotes an index shift. We reiterate that this holds only for
the field free case of h = 0; for non-zero field strength there exists just a single
Zo-symmetry and therefore it is only possible to remove a single qubit in this
setting.

We now seek further reductions through the contextual subspace framework.
This involves identifying a set of operators & that we wish to enforce over the
Hamiltonian and will subsequently stabilize the resulting contextual subspace.
We construct S via some reference state |¢), with wave operator W such that
|) = W0), that ideally has non-zero overlap with the ground eigenspace and
select symmetry generators S that stabilize some maximal component therein, i.e.
by identifying

S = argmax (Y| Ps |¢) (5.12)

S:|S|=K

where Ps := ZLK [Ises( + S) projects onto the eigenspace spanned by the opera-
tors of §. The difficulty is finding a suitable |¢) in a scalable manner; while in the
chemical examples of Sections and we used standard electronic wavefunc-
tions such as MP2 or CCSD, for this condensed matter example we opt for a tensor
network approach. For the Hamiltonian H we prepare a matrix product operator
(MPO) by summing the individual terms of H represented as an MPO. During
this summation, we truncate to some maximal bond dimension to maintain scala-
bility. Once prepared, we apply a density-matrix renormalization group (DMRG)
calculation (using the python package quimb [260]) to the MPO to prepare the
reference state [¢). With a limited maximum bond dimension of Dy« = 17, the
reference state produces a relatively high overlap with the ground state, which we
see from Figure[5.13] Then, to identify S we simply truncate |¢/) and calculate the
symmetry generating set over the remaining terms, thus maximising the ¢;-norm
of the projected state in the resulting contextual subspace.

Through application of this process to Hiaper (0.11), we identify a reduction
from 10 — 5 qubits that preserves the ground state energy ezxactly, yielding the
following reduced Hamiltonian:

HCS: —[+7‘0'£0)
+ (I + N (oW + oW 4 oPe® 4 53 5W) (5.13)
(= oo + o+ 09 o0 — oDoPofD0th)

One might note the presence of a Zo-symmetry aé(” and therefore it is possible to

reduce the Hamiltonian to 4 qubits via a second round of tapering.
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Figure 5.13: DMRG energy and ground state overlap for increasing bond dimension
for the Kagome Lattice Heisenberg problem. We plot separate overlaps for each of the
two eigenstates in the degenerate ground space.

Through application of both qubit tapering and the contextual subspace method
we found that it is possible to reduce the full 12-qubit Kagome Lattice Heisen-
berg Hamiltonian to just 5-qubits while preserving the energy spectrum exactly.
From a simulation point of view, this is highly beneficial as it allows us to paral-
lelize three ansatz instances across the 16-qubits of ibmg_guadalupe to effectively
triple the number of samples extracted from the quantum hardware in addition to
averaging over noise, thus reducing variance in our energy estimate.

We also noted the presence of a Zy-symmetry oé‘”. It is therefore possible
to reduce the Hamiltonian to 4 qubits via tapering, although we elect to retain
this symmetry for the purposes of symmetry verification, as discussed in Section
4.3l The Hamiltonian form in Equation reveals projectors onto the +1-
eigenspaces of this symmetry; indeed, we note it is the —1 eigenvalue that will
permit the lowest energy due to the dominant 7 - a£0> term, thus we could drop
the +1-eigenspace projector and any corresponding terms from the Hamiltonian.
However, we instead opt to extract a noncontextual component from this Hamilto-
nian, achieved by retaining any single term corresponding with the 41-projector,
say (I + Ugo))agl)ag), while discarding the others. It is now possible to express the
contextual subspace Hamiltonian as

H/cs =
— I+ 730 — SQ + Sg + S[)SQ — S()S3 + 315253 — S()SlSQS3 (5 14)
+ Co(—=1 + So — S1 + SoS1) ’
+ C1(I + Sp)
where
So = 020)7 S = ‘79(51)‘7:5«2)7 Sy = 0:23), S3 = 0534), (5.15)

Co=0P, 0y =oWa®.

In particular, the Hamiltonian may be decomposed into a symmetry component
plus a sum over commuting cliques such that terms across cliques pairwise an-
ticommute. Calling Cy, Cy the clique representatives, since {Cy,C1} = 0 and
the S; commute globally amongst terms of the Hamiltonian, H{g exhibits the
noncontextual structure introduced in Section [3.2} Invoking Section the
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energy spectrum is therefore specified by eigenvalue assignments to the sym-
metry elements Sy, S1, Ss, 53, specifying a symmetry sector, and clique operator
C(ro,m1) = 10Coy + r1Cy with |rg|? + |r1|?> = 1. We may search the symmetry sec-
tors with R, rotations through binary relaxation of the eigenvalue assignments,
since R, (6;)|0) = cos(6;/2) |0) + sin(6;/2) |1). Treatment of the clique operator is
slightly different — in solving the noncontextual problem we optimize over clique
weights rg, 7y which in turn yields a rotation of the form in unitary partitioning
[117], the specific form of which is found by exponentiating products of clique
representatives /20 = R_ (0) with C,C; = —ioM P Therefore, we are able
to construct a simplistic ansatz

4
() = e [T e %7 |0), (5.16)

n=0

expressed as a circuit in Figure [5.14d, that should be fully-expressible, given that
it searches the noncontextual energy spectrum that we have deemed to capture
the ground state.

Simulation Results

All in all, we possess a reduced 5-qubit Hamiltonian whose ground state energy
coincides with that of the full 12-site Kagome lattice (Figure field-free Heisen-
berg X X X Hamiltonian and a simple ansatz circuit. We are able to parallelize
three instances of this ansatz across the 16-qubits available on ibmgq_guadalupe,
tripling the number of circuit shots obtained and averaging over hardware noise,
as depicted in Figures and [5.14D] In order to obtain the most accurate
energy estimates possible, we deploy a quantum error mitigation (QEM) strategy
consisting of measurement error mitigation (Section , Symmetry verification
(Section and zero-noise extrapolation (Section [4.6]).

The next practical consideration for our simulation is the measurement over-
head for our quantum experiments. Two Pauli operators P, @ (tensor products of
the single-qubit Pauli matrices I, 0,,0,,0,) are said to be qubit-wise commuting
(QWC) if [P, QW] =0 Vi € Zy; this is useful as the measurement outcome for
a collection of QWC Pauli operators may be inferred from only a single physical
measurement [116]. Conveniently, our contextual subspace Hamiltonian in Equa-
tion is expressible as a sum of just two QWC groups, thus reducing the
measurement cost significantly.

For the variational quantum eigensolver (VQE) routine itself, we choose the
Broyden-Fletcher-Goldfarb—Shanno (BFGS) algorithm [194] to perform the clas-
sical optimization over our six ansatz parameters (given explicitly in ) with
objective function E(0) = ((0)| Hes [1(0)). The parameter gradients are com-
puted in hardware using the parameter shift rule [122]:

0
00;

E(0) = B(0:0; + %) - 5(0:0; - %) (5.17)

In Figure [5.15 we present the results of our final VQE simulation, displaying the
absolute energy error for each of the noise amplified energy estimates and the
final zero-noise estimate both with/without symmetry verification. The norm of
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Figure 5.14: Mapping our noncontextual ansatz onto the available device topology.

the parameter gradient is also plotted alongside the parameter trace itself; we
observe a convergence on integer multiples of 7/2, indicative of a stabilizer state
solution corresponding with the discrete eigenvalue assignment one expects in
noncontextual optimization.

The error ratio at convergence was computed as the mean energy estimate for
points having a gradient norm less than twice the minimum value, in this case
optimization step 16 onward. Before application of SV, this represents an error
ratio of 0.360%, corresponding with an absolute error of 0.065, whereas post-SV
yields a suppressed error ratio of 0.078% with absolute error 0.014.

Finally, we calculate the resource usage that went into producing these results.
The simulation consisted of Nepergy = 38 energy estimates and Ngpaq = 26 gradient
evaluations over Npaam = 6 parameters. Each estimate requires Nzyg = 4 noise
amplified expectation value calculations over Nqwc = 2 QWC groups. For the
VQE routine presented in Figure [5.15( we set Nyt = 8192, although we also ran
simulations for Ny, € {256,1024,4096,8192} with both BFGS and conjugate
gradient (CG) classical optimizers. Altogether, the total number of circuit
executions performed on tbmgq_guadalupe is

Nresource = NshotsNQWCNZNE(Nenergy + 2Ngradearam)
= Nghots X 2800 (518)
=2.29 x 10"

The majority of this resource went into the gradient calculations; for larger systems
we could apply ZNE only to the energy estimates to reduce the overhead.
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Figure 5.15: Optimizer energy trace before and after application of symmetry verifi-
cation. Furthermore, the parameters converge on integer multiples of /2, indicative of
a stabilizer state.

5.4 Heavy-Hex Ising Model Time Evolution

To benchmark the Echo Verified Clifford Data Regression (EVCDR) method of
Section [4.8] we choose to simulate the Ising model on 2D spin-lattices

H=-JY 7@z —p> x© (5.19)
(a.b) a

where J,h € R parameterize strengths of the spin coupling and external field,
respectively; the ratio J/h dictates the Hamiltonian time evolution. The pairwise
site indices (a, b) run over nodes of the graph representing the nearest-neighbour
spin couplings, which we choose such that the corresponding lattice is subgraph
isomorphic with respect to the hardware topology; see the heavy-hex 4-cell in
Figure [5.16]
The quantity we aim to estimate is the time-dependent magnetization on a
single spin-site
M(t) = (0| e~ 1t 7Ot |0) . (5.20)
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For a number of time steps K € N with step-size 7, the Hamiltonian evolution at
final time ¢ = K7 is captured by a circuit [[i—, U(7) where

U(T) = H eiiJTZ(a)Z(b) H e*ihTX@)
(0] “ (5.21)

— eiHT +O(72)

The circuit formulation of U(7) is depicted in Figure [5.17, which propagates
the system through a time 7 with each succesive application. The error here is
the consequence of first-order Trotterization [21] and may be combated by taking
finer time slices 7, with the trade-off being increased circuit depth, as discussed
in Section [1.2.4f With each successive application of the time propagation circuit,

;ﬁ (Z) Eﬁ (%) Sﬁ (Z) S* (z)

(a) K =1 (b) K =2 (c) K =3 (d) K =4

— (Z) — (Z) — (Z)

() K=5 (f) K=6 (g) K=7

Figure 5.16: The heavy-hex 4-cell, consisting of 35 qubits. Figures (a)-(g) illustrate
the expansion of the light-cone for successive time steps K probing time t = K7, until
the spin lattice is saturated from K = 7 onwards.

I R.(2h7)
R, (2hr) k] R.277) |
—;—Rx(QhT) & R.(2J7) -
—g— R, (2hT) HDH R.(2JT) HD i
R, (2h7) & R.(277) [
R, (2hr) L& R.(207) |

(v
. —e
—e

_______________________________________

Repeat K times to probe time t = K7

Figure 5.17: A single time step circuit for simulating the Ising Hamiltonian in Equation
(5.19). Evolution for longer times is achieved via repeated application of this circuit
block. The rotation convention is R, (f) = exp (—i4X) and R.(0) = exp (—i42).
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Figure 5.18: Transpilation of non-native gates in Figure onto the target gateset
{X,vX,R,,ECR}, where ECR is the echoed cross-resonance gate.

the effective light-cone for local observables expands as illustrated in Figure [4.14]
In Figure we have indicated how this expansion grows from a single spin-site
on the heavy-hex 4-cell lattice with each successive time step K for our Ising model
time evolution problem. From K = 7 onward the lattice is saturated.

The following benchmark was deployed on the ibm_sherbrooke 127-qubit Eagle
r3 device, with the native gateset {X, v X, R., ECR} and a rated error per layered
gate (EPLG) of 1.7% at the time of execution. For each simulation we tiled
concurrent circuit instances across the chip in order to passively average hardware
errors and increase the effective yield from the 80,000 circuit shots performed
at each time step; the heavy-hex 2-cell permitted four circuit tilings (example
in Figure [5.19), while the 4-cell allowed just two. We performed Clifford Data
Regression (CDR) within each cluster to learn the effect of the local noise channel,
as opposed to pooling the data into a single CDR routine; this is visible in Figure
4.19, where each fitting line represents different clusters/batches to account for
the non-uniformity of device noise. Note that each CDR circuit received the same
shot allowance across three batches of five unique Clifford realizations, resulting
in fifteen separate backend submissions in addition to the standard EV one.

To mitigate the problem of vanishing success probability discussed in Section
and Figure [4.15] we allow a small number of bit-flips in the postselection
procedure; we implement this by forcing a neighbourhood of qubits around the
ancilla to be zero, while those outside the selected neighbourhood may deviate by
a predefined maximum Hamming distance. Although we may now be including
invalid measurements that will bias our output, we argue that it is a reasonable
assumption as a small number of flips will correspond with a small change to the
magnetization, particularly if the flips occur far from the measured spin-site.

We developed a bespoke implementation for the circuit construction, cluster-
ing, batching and final submission to the quantum backend on top of giskit
functionality [187]. Pauli operator manipulation and Clifford simulation was han-
dled using the symmer package [10] and the regression step in CDR made use of
statsmodels [262]. We have provided all the code and data on an online reposi-
tory [§] so that readers may reproduce the results presented here, or design their
own EV-based error mitigation workflows.
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Figure 5.19: The heavy-hex qubit topology of the devices utilized for this work:
tbm_cusco, ibm_nazca, tbm_brisbane and ibm_sherbrooke. The shaded areas indicate how
we tile four 2-cell clusters to increase sampling throughput on the device for the results
in Figure [5.20] The circular shaded areas indicate the ancilla qubits selected to probe
the spin magnetization of the adjacent site in the lattice region. For the larger 4-cell,
the results of which are presented in Figure [5.21] only two clusters may be packed onto
the device.

For this practical demonstration we compare these echo-verified estimators:
e Standard: the approach outlined in the introductory Section [4.7]

e Spectral Purification: described previously as tomography purification,
this is a modification to the standard estimator, whereby one decomposes
the state of the ancilla qubit p**° = g |¢o) (0| + A1 |p1) (@1 and selects the
dominant pure component, say A\g > A; (discussed in [3, 231]).

e Purity Normalization: through the observation ~(p**)? ~ Tr (X p**)* +
Tr (Y p)? + Tr (Zp*<)? where 7(p™¢) is the purity, one may re-normalize
the ancillary estimators Ex — Ex /v(p™°), Ex — E7/7(p™ ) to recover £% +
EZ = 1, the property used to form alternative EV estimators in Equation
(4.23).

e Clifford Data Regression: approximate the target unitary with near-
Clifford circuits that may be evaluated classically to learn the effect of noise
on the EV estimate, as detailed in Section [4.§ and pictured in Figure [£.18
The noise manifests as a linear relationship between the noisy and ideal
expectation values and can therefore be analysed via regression techniques.
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Heavy-Hex 2-cell simulation (21 qubits)

We first present the heavy-hex 2-cell results of Figure [5.20] consisting of 21-qubits
in total. With respect to the Ising model with J = 4,h = 2, we observe
the evolution of the magnetization of a single spin over 10 steps to a final time
T = 1/2 in increments of 7 = 1/20. Due to the light-cone reduction depicted in
Figure [£.14] we do not saturate the spin lattice until time step K = 5, while the
number of entangling ECR layers continues to increase linearly past this point to
a maximum of 113 at K = 10. We find that the standard EV approach yields
poor errors in excess of 0.1, while the purity normalized and spectral purification
modifications suppress the absolute error to within 0.1 and 0.01. EVCDR, on the
other hand, consistently produces the lowest errors in the range 0.01 — 0.0001.

Heavy-Hex 4-cell simulation (35 qubits)

Following the 21-qubit case, we now attempt the EVCDR technique on the heavy-
hex 4-cell defined over 35-qubits visible in Figure In the Ising model we take
J = 1,h = 8 and evaluate the evolution to a final time of 7" = 1 in 15 steps of
size 7 = 1/15. Here, the light-cone does not saturate the lattice until time step
K = 7, with the number of entangling ECR layers reaching a maximum of 173
at the final step K = 15. Once again, EVCDR offers the most consistent results
with absolute errors never exceeding 0.1 throughout the time evolution, with many
points dropping to order 0.01 in error. Visually comparing the results in Figures
and [5.21] it might appear that all the EV methods investigated here perform
better for the larger 35-qubit simulation; however, we draw attention to the scale
on the Y-axis where the 4-cell evolves between [—1, +1] while the 2-cell is contained
in [0.85, 1]. The error plot is more instructive, indicating approximately one order
of magnitude increase in error going from the 2-cell to the larger 4-cell.
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Figure 5.20: Evolution of spin magnetization for a single site in the 21-qubit heavy-
hex 2-cell Ising model of Equation with J = 4, h = 2, comparing various echo
verification estimators. We evolve to a final time 7' = 1/2 over 10 steps, corresponding
with a step size of 7 = 1/20. Error bars show standard error on the mean.
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Figure 5.21: Evolution of spin magnetization for a single site in the 35-qubit heavy-
hex 4-cell Ising model of Equation with J = 1, h = 8, comparing various echo
verification estimators. We evolve to a final time T' = 1 over 15 steps, corresponding
with a step size of 7 = 1/15. Error bars show standard error on the mean.
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Chapter 6

Conclusion and Outlook

In this thesis we developed a scalable framework for balancing quantum and clas-
sical workloads in the simulation of Pauli operator systems. Implementation ef-
ficiency comes from the utilization of the symplectic representation of Pauli op-
erators, whereby many operations over the Pauli group reduce to simple binary
vector manipulation, as demonstrated through the symmer software package [10]
that was developed to support this work. This quantum compute resource man-
agement system is based on the quantum foundational concept of strong measure-
ment contextuality and thus distinguishes itself from alternative qubit subspace,
embedding and active space techniques. The Contextual Subspace (CS) frame-
work [2, 13, 5, 120, [166] has been designed with noisy Intermediate-Scale Quantum
applications in mind, with the goal of augmenting the computational reach of
current and near-term quantum hardware to address larger physical systems. To
complement the theoretical results towards advancing the Contextual Subspace
methodology presented in Chapters [2] and [3] we also provided several practical
demonstrations of the Variational Quantum Eigensolver (VQE) on IBM Quantum
superconducting hardware which serves as a proof-of-concept and validation of
the technology. Experimental realization of CS-VQE required the development of
effective Quantum Error Mitigation (QEM) strategies, as discussed in Chapter
and implemented for several applications in Chapter [o]

In Section [5.1] we studied the problem of ground state preparation for hydrogen
chloride, HCI, which provided an ideal testbed to assess the efficacy of numer-
ous contemporary QEM techniques: Measurement-Error Mitigation (Section ,
Symmetry Verification (Section [4.3)), Zero-Noise Extrapolation (Section and
Echo Verification (Section . After identification of effective QEM strategies,
we then applied this in Section to the more challenging molecular nitrogen
system, Ny, whose triple bond causes problems for single-reference wavefunction
methods and is a commonly used benchmark problem [147, 247]. We simulated
the full bond dissociation of Ny on superconducting hardware and compared errors
against common single-reference methods as well as more competitive Complete
Active Space (CAS) approaches. We found that CS-VQE was able to achieve
comparable results with CAS techniques, but with a considerably reduced qubit
resource overhead. Then, in Section [5.3 we applied the same CS-VQE imple-
mentation used for Ny to a field-free Heisenberg model over the Kagome lattice,
whose geometrical properties cause spin frustration and other exotic physical ef-
fects. Our robust simulation framework achieved an error threshold of 0.078%
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and claimed first place globally in the IBM Quantum Open Science Prize 2023 [1],
for which the Kagome problem had been posed. Outside of VQE, in Section
we also simulated the Hamiltonian time evolution for an Ising model system over
the heavy-hex lattice that is native to IBM Quantum hardware. This problem
was used to demonstrate the efficacy of a novel QEM technique combining Echo
Verification and Clifford Data Regression, as described in Section

Despite our successes in applying VQE experimentally, there are some inher-
ent scaling limitations associated with the algorithm (and Variational Quantum
Algorithms in general) that mean future work will explore alternative approaches.
First of all, the measurement overhead is prohibitively high and scales with the
number of terms in the Pauli Hamiltonian; in chemistry, this scales as O(N?).
While there have been advances in measurement reduction schemes that aim to
combat this overhead |115-120], there are considerable concerns over whether this
is sufficient for VQE to have any hope of achieving the essential milestone of “ad-
vantage” in the development of quantum computing. Moreover, an additional
downside to VQE is that hardware noise enters the energy estimation procedure
and has a severe impact on error; this necessitates the heavy application of QEM,
which itself brings additional overhead in both coherent resource and classical
postprocessing. The final nail in VQE’s coffin comes from the difficulty in opti-
mizing the variational circuits to minimize Hamiltonian energy. While the circuit
depths in VQE are much shallower than, say, an algorithm like Quantum Phase
Estimation (QPE), chemically-motivated ansétze still require circuits at a depth
that is impractical for near-term applications. By contrast, shallower “hardware
efficient” circuits are hampered by the insidious issue of barren plateaus [123-125,
127]; note also that recent research suggests this is an issue for problem-inspired
circuit as well, although to a lesser degree [130].

Taking into account the above limitations of VQE, it is unlikely to provide
any form of algorithmic advantage in the chemical domain. As such, future re-
search will pursue alternative routes. One promising methodology is Quantum-
Selected Configuration Interaction [59] [66], which treats the quantum hardware as
an electron configuration sampling machine and subsequently the Hamiltonian is
projected into this subspace and solved via conventional High-Performance Com-
puting (HPC). Since HPC handles the diagonalization step, any potential source
of quantum advantage will arise from the circuit implementation being able to
preferentially sample “important” configurations more effectively than classical
approaches such as Heatbath Configuration Interaction [56-58]. State sampling is
a classically-hard problem, while it is a natural workload for a quantum computer
and thus a more hopeful application of the technology. Furthermore, since Con-
textual Subspace is a highly flexible framework that is not tied to any particular
solver such as VQE, it is fully compatible with QSCI and therefore we may en-
deavour to build a CS-QSCI technique that will facilitate the near-term simulation
of large chemical systems at such scale to be considered of scientific and industrial
significance.

Looking further to the future, even within the fault-tolerant regime of quan-
tum computing that would arise from the realization of large-scale Quantum Error
Correction, the CS methodology will still be widely applicable in allowing us to
exceed whatever the logical qubit count of the day might be. One may imagine
a CS-QPE algorithm that fully utilizes the capabilities of a fault-tolerant system.
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To reiterate, the power of the Contextual Subspace methodology lies in its adapt-
ability, being agnostic to the underlying solver (whether VQE, QSCI, QPE or
other), and the flexibility to balance quantum and classical workloads, wherein
the partitioning is motivated by the quantum foundational concept of strong mea-
surement contextuality. This will be especially important going forwards, as we
are already seeing the integration of Quantum Processing Units (QPUs) into HPC
platforms, where such load-balancing tasks are a common requirement in achiev-
ing optimal performance from increasingly heterogeneous computing platforms to
minimize slack in the scheduling of compute processes. In short, the Contextual
Subspace methodology, the theory for which has been advanced within this thesis
and validated experimentally through several practical implementations, provides
a framework that will scale naturally with the maturation of quantum hardware
in the coming years/decades and provide a viable route to achieving quantum
advantage.
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