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Abstract: We investigate Quantum Electrodynamics (QED) of water coupled with sound and light,
namely Quantum Brain Dynamics (QBD) of water, phonons and photons. We provide phonon degrees
of freedom as additional quanta in the framework of QBD in this paper. We begin with the Lagrangian
density QED with non-relativistic charged bosons, photons and phonons, and derive time-evolution
equations of coherent fields and Kadanoff-Baym (KB) equations for incoherent particles. We next
show an acoustic super-radiance solution in our model. We also introduce a kinetic entropy current
in KB equations in 1st order approximation in the gradient expansion and show the H-theorem for
self-energy in Hartree-Fock approximation. We finally derive conserved number density of charged
bosons and conserved energy density in spatially homogeneous system.

Keywords: Quantum Brain Dynamics; Water; Phonon; Acoustic Super-radiance; Kadanoff-Baym
Equation; Entropy

1. Introduction

The physical mechanism of memory involving our subjective experience in a brain is
still an open question. According to generally accepted understanding in neuroscience [1],
learning and memory are both linked to synaptic plasticity, which are represented at a
neuronal level by long-term potentiation (LTP). However, there is a logical gap in this type
of explanation because while synaptic membrane components are transient, memories of
events and experience can last many years, even a lifetime. Therefore, a mechanism behind
memory-related synaptic activity must be physically converted into a more enduring form,
e.g., at a molecular level within post-synaptic dendritic spines, shafts and cell bodies. A
specific memory code was proposed in a computational paper [2] to involve phosphory-
lation of neuronal microtubules (MTs) using the CaMKII enzyme. This is inspired by a
mechanism present in communication technology, whereby a code converts information
from one form of representation to another. The CaMKII-MT interaction was hypothesized
to provide such a biomolecular code for memory in brain neurons and a conclusion was
drawn that the information capacity of neuronal MTs is enormous and can easily explain
the number of bits of information that could encode all sensory input data over a human
lifetime. However, there could be an even more fundamental physical mechanism of
information encoding in the human brain that could surpass that proposed by Craddock et
al. and can act at the quantum level [3], which would also be of fundamental importance
to our understanding of higher cognitive functions such as qualia [4]. The phrase ‘higher
cognitive functions’ is meant to represent an evolutionary development not specific human
activities. Qualia are universal but subjective instances of conscious experience such as the
perception of redness of an apple or bitterness of the taste of an espresso. It is generally
argued that qualia are perceptions of the human mind whose physics-based explanation
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so far has eluded scientists and hence has been termed the hard problem of consciousness
by Chalrmers [5]. Currently, the most generally accepted view of memory encoding is by
long-term potentiation of synaptic connections being strengthened when activated by a
signal being transmitted between neurons [6]. The hypothesis formulated by Craddock et
al delves deeper into this issue by proposing a specific encoding of information in terms of
phosphorylation patterns on neuronal microtubule surfaces implemented by the enzyme
CaMKII which has been experimentally validated as an active motor protein involved
during the process of memory formation [7]. Here, as first suggested by Umezawa et al. 8],
we explore the possibility of an even more fundamental approach to memory formation
in terms of quantum fields generated by the brain. To the best of our knowledge, there
is no other specific physics-based theory of memory encoding which would explore a
fundamental mechanism at a quantum level with a possible exception of OrchOR [9] which
links it to quantum wave function collapse due to gravitational self-interactions involving
tubulin units of microtubules. Our model can be viewed as somewhat related to this
perspective since we consider microtubules as the fundamental substrates of the quantum
fields but we also include phonons and photons as well as the water environment, all of
which makes it a more realistic setting for this physical model. It is important to note
in this connection that several properties of memory in a brain different from computer
memory are observed [10], namely sequential patterns, auto-associative recalling, storage in
a hierarchy, memorized patterns in an invariant form. Memory is diffused in a whole brain,
as a result memory is robust against lesions in a brain [11,12]. To explain these features of
memory, Pribram proposed the holographic brain theory as a candidate of theory of mem-
ory and perception [13,14]. Holography, a technique to record 3-dimensional information
on medium invented by Gabor [15], can describe various properties of memory in a brain
as listed above. Jibu and Yasue, who collaborated with Pribram, studied Quantum Brain
Dynamics (QBD), that is Quantum Field Theory (QFT) of the brain involving water electric
dipole fields and photon fields [16], known as Jibu—Yasue approach distinguished from
Penrose-Hameroff approach [17].

Quantum Field Theory provides a fundamental approach to describe the nature [18].
It is applied to a variety of phenomena in elementally particle physics, nuclear physics,
cosmology, condensed matter physics and furthermore biology. QFT is distinguished from
Quantum Mechanics since QFT describes both macroscopic matter in classical mechanics
and microscopic degrees of freedom in Quantum Mechanics. QFT approach to memory in
a brain is originated with the monumental work by Ricciardi and Umezawa in 1967 [19]
by adopting the concept of spontaneous breakdown of symmetry (SBS). Memory is rep-
resented by vacua emerging in SBS, or macroscopic ordered patterns described in the
framework of QFT. The theory is further developed by Stuart et al. [8,20], namely non-local
memory storage, stability of vacua for long-term memory, metastable states for short-
term memory, and memory recalling mechanism due to excitation of Nambu-Goldstone
quanta emerging in SBS, which are described in Takahashi model. They proposed quantum
degrees of freedom, corticons and exhange bosons, to describe quantum phenomena in
a brain. What concrete degrees of freedom for corticons and exchange bosons are was
not given in this stage. In 1968, the Bose-Einstein condensation in biological systems
involving coherence with long-range correlations is proposed by Frohlich, referred as
Frohlich condensation [21,22]. In 1976, Davydov and Kislukha proposed a soliton solution
propagating along the alpha-helix structures of protein chains and DNA, called the Davy-
dov soliton [23]. The Frohlich condensation and the Davydov soliton solution emerge as
static and dynamical properties, respectively, in a non-linear Schrédinger equation with an
equivalent quantum Hamiltonian [24]. Around the same time, Pribram proposed the holo-
graphic brain theory [13,14]. Del Giudice et al. proposed to apply QFT to biological systems
in 1980s [25-29]. In 1990s, Jibu and Yasue, collaborators of Pribram, proposed quantum
concrete degrees of freedom in a brain, namely water rotational dipole fields and photon
fields [16,30-36]. When water dipoles are aligned in the same direction, the spontaneous
breakdown of rotational symmetry occurs and new vacua in SBS representing memory
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storage in a brain emerges. Excitation of incoherent photons on the vacua represents
memory recalling in this theory. Vitiello showed that a huge memory capacity is achieved
in the vacua by regarding the brain as an open system and adopting two-mode squeezed
coherent states for Nambu—Goldstone bosons [37]. Vitiello also showed that squeezed
coherent states are isomorphic to fractals in the nature [38,39]. For example, trajectories on
logarithmic spirals are written by both damped and amplified oscillators with the closed
system Lagrangian which is transformed to the Hermite Hamiltonian. In imposing the
quantization on positions and momenta, and rewriting creation and annihilation operators
of particles, the quantum states are described by two-mode squeezed coherent states in
time-evolution. Quantum states composed of Nambu—Goldstone bosons in an open system
evolve among squeezed coherent states corresponding to fractal. Holographic approach is
also proposed by adopting coherent waves of super-radiance [33,40]. Combining QBD and
holography, we can describe holographic memory storage in QBD involving properties of
diversity, non-locality, stability, sequential patterns, auto-associative recalling, storage in a
hierarchy, and memorized patterns in an invariant form [40].

Whether or not our brain can be described by the language of holography will be
investigated by external stimuli to brain. Beauchamp et al. have shown a recent experi-
ment using invasive stimulation to change our visual subjective experience [41]. We can
also propose non-invasive approach. Non-invasive stimulation to our brain has been
proposed for several decades [42], starting with transcranial magnetic stimulation (TMS)
by Barker [43]. There are several non-invasive stimulation methods, such as transcranial
electric stimulation with direct current [44] and alternating current [45], photonic approach
involving near-infrared photons [46,47], and ultrasound approach [48-50] applied to treat
neuropsychiatric diseases. The ultrasound-mediated drug delivery and biomarker release
are also proposed as the ultrasound therapy [51]. The ultrasound therapy is adopted to
destruct tumors and generate anti-tumor immune responses. When we adopt ultrasound
approach, we need QFT of phonons [52-56] which should be extended for non-invasive
neural stimulation of water-phonon-photon systems. We will further adopt reservoir
computing or morphological computation [57-59] as a control theory of holograms via
ultrasound by developing QFT in a hierarchy representing multiple layers, such as scalp,
skull, dura, celebrospinal fluid covering our neocortex.

We aim to provide a theoretical formulation of water coupled with phonons and
photons in QBD. This paper provides the extension of our previous approaches to QBD
involving phonons, quanta of sound. We can trace a full dynamics of coherent sound
fields and incoherent phonons in a brain, where sound fields decay to incoherent phonons
in non-equilibrium QFT approach, for example. First we introduce the Lagrangian den-
sity of charged bosons as water degrees of freedom, phonons and photons. We refer to
Keppler’s approach to describe glutamate by charged Bose fields [60]. We describe water
degrees of freedom by charged Bose fields. We also refer to [61] to represent phonon fields.
Time-evolution equations of coherent fields and quantum fluctuations are derived in this
framework. Next we derive an acoustic super-radiance solution in our model by assuming
coherence inside a microtubule [27]. Green’s functions for quantum fluctuations obey the
Kadanoff-Baym equations [62-64] for charged bosons, phonons and photons. We also
introduce a kinetic entropy current for incoherent charged bosons (water), phonons and
photons in 1st order approximation in the gradient expansion, and provide a proof of H-
theorem for Hartree—Fock approximation of interaction. Finally we provide time-evolution
equations in spatially homogeneous systems and show concrete forms of conserved charge
and energy. Our theory will be extended to the control theory of holograms in QBD using
external ultrasound waves. Using reservoir computing or morphological computation
theory, we can develop a non-invasive method to manipulate our subjective experiences
and check whether or not our brain adopts the language of holography.

This paper is organized as follows. In Section 2, we provide background and moti-
vation of application of QFT to biology, especially a brain. In Section 3, we introduce a
Lagrangian density of QBD with phonons and show 2-Particle-Irreducible effective action.
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In Section 4, we show an acoustic super-radiance solution in this model. In Section 5,
we show a summary for a kinetic entropy current in 1st order approximation in the gra-
dient expansion and the H-theorem for self-energy in Hartree-Fock approximation. In
Section 6, we write time-evolution equations in spatially homogeneous system and show
conserved charge and energy density. In Section 7, we discuss our results. In Section 8,
concluding remarks and perspectives are provided. The natural unit with the light speed,
the Planck constant 7 and Boltzmann constant set to be 1 is adopted. The metric tensor is
N = diag(1, —1, —1, —1) with space-time subscript u, v = 0,1, 2,3 and spatial subscript
i,j,k=1,2,3.

2. Quantum Field Theory to Brain

In this section, we provide background and motivation to apply Quantum Field Theory
(QFT) to a brain.

In conventional neuroscience, the synaptic plasticity between neurons describes mem-
ory in a brain. However, the synaptic plasticity is transient, and synaptic connections
change in a few days [65,60]. In addition, this type of memory might not be robust against
lesions in a brain since memory will be lost when one of the synaptic connections is de-
structed. If we adopt the synaptic plasticity, we cannot explain memory in a single cell
organism [67]. We then need cytoskeletons inside cells to explain the mechanism of memory
and information processing in a single cell organism. One of the candidates in cytoskeletons
corresponds to microtubules. Phosphorylation in microtubules in [2] can be described
as bits, which can be enhance the memory capacity in a brain compared with that of the
synaptic plasticity.

However, the phosphorylation in microtubules appears in local events. We require
diffused non-local features of memory in a brain. Non-locality of memory is suggested by
Lashley [12] using lesions of brains of rats. Even if parts of the brain are damaged, rats
can perform tasks. We require the processes to extend microscopic events to macroscopic
features of the size of the brain. We might need tryptophan mega-networks for macroscopic
events [68]. Or, we can also consider water molecules coupled with photons and phonons
covering the whole brain, in which local memories in phosphorylation of microtubules
are converted to optical information, such as holography. We then need coherent light
(and sound) to achieve interference patterns in holography. Quantum Brain Dynamics
(OBD) adopts water degrees of freedom and photons, and suggests that the new vacua
emerging in spontaneous symmetry breaking where water dipoles are all aligned in the
same direction. As diamond crystals and magnets emerging in breakdown of symmetry
are stable at a room temperature, aligned water dipoles might be stable. The Exclusion
Zone (EZ) water around hydrophilic surfaces is discovered in experiments [69-71]. The
EZ water corresponds to the coherent water as suggested by Del Giudice et al. [72]. The
size of domains composed of the EZ water is the order of 50 um. This value corresponds to
the inverse of energy difference 1/1 =2/21 —0/2] = 4 meV (I: the moment of inertia of
a water molecule) between excited states of rotational motion with angular momentum
squared = 2 and the ground state with angular momentum zero, which suggests the
significance of the molecular orientations of water. The EZ water with the size 50 pm might
emerge around hydrophilic surfaces in and around neurons.

When we adopt the new vacua for aligned dipoles, we can propose holographic
approach in the framework of QBD [40]. Holography adopts recording of interference
patterns of two incident coherent lights imposed with different angles on holograms.
The holograms need not to be patterns composed of curves for interference of waves,
such as sine curves. We can also use binary patterns with small and large transmittance,
called binary holograms [73-75]. Holographic memory storage with two patterns of
aligned dipoles in coherent domains and water dipoles in the random orientations can be
used as binary holograms. Both light or sound holography are possible with changing
transmittance of light or sound for water system. These binary holograms with stable
vacua involving aligned dipoles and states of random dipoles will be more stable than
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interference patterns with sine curves. Holographic memories are robust against damages
of parts, which suggests that the whole image will be reconstructed by undamaged parts
in holograms. Memory retrieval is achieved by imposing photons (or phonons for sound
holography) on the holograms with the same angle as coherent lights (or sounds) in
recording. Finite number of excitations of photons cannot break the vacua of aligned
dipoles [18]. Human memories are modified by recalling and thinking. To rewrite the
holograms involving the vacua of aligned dipoles, we require to impose coherent light
or sound fields involving condensation of an infinite number of photons or phonons on
holograms. Or we need to impose coherent lights or sounds in the different angles on
holograms where multiple memories are recorded in the same recording media composed
by water molecules. Changing the angles of incident photons or coherent light, our memory
retrieval will be modified.

Tegmark suggested that coherence cannot be maintained in physiological condi-
tions [76]. However, his expected value for coherent time is extremely short ~ 1072 s. The
problem of his analysis is first to adopt the mass of a water molecule as ~ 18 x 940 MeV.
To investigate the macroscopic vacua of aligned water dipoles in QBD, we need to adopt
the inverse of the moment of inertia ~ 4 meV, or the mass of polaritons emerging in water
fields and photon fields. Furthermore, time scales for decoherence are divided by the
number of surrounding Na ions 10°, which is a strange procedure. He lacks the idea that
the brain is an open system, with continuous energy supply to physiological system. In
the Frohlich model, the physical system connected with an energy supply and a heat bath
is considered as significant component [24]. The Frohlich condensates might emerge in
microtubules [77,78]. In the open system, the balance of decoherence and error corrections
for quantum coherence can be used to maintain coherence of the physical system with
continuous flow of external energy. His estimations lack these types of analysis, as a result
the his estimated value of the coherence times are unrealistically small. His criticism of
the quantum coherence in microtubules has been strongly rebutted by Hagan et al. [79].
Moreover, in a recent experimental paper [80], evidence was presented for the presence of
long-lived (5 ns) collective quantum excitations in microtubules.

In the analysis for quantum systems, we can adopt Schrodinger equations in quantum
mechanics for the atomic and molecular system. We then need to describe absorption
and emission of photons and phonons. Cooperative behaviors of many-body systems
for atoms and molecules can be described by QFT involving Gross—Pitaevskii equation
extended from the one-body Schrodinger equation. The QFT approach includes both mi-
croscopic quantum mechanical degrees of freedom and macroscopic cooperative behaviors
of quanta. We consider effective charges for molecules involving their polarization and
dipole moment [60], where we can also adopt vanishing charge. Our approach includes
any effective charges where we can change several charge parameters for quantum states of
water molecules, such as rotations, stretching, vibrations, and so on. These water molecules
are coupled with photons and phonons, or cooperatively coherent light and sound. We
especially describe aspects of sound with quanta, phonons in this paper. This paper is
the extension of our QBD approach with including phonons. Our approach adopts both
coherent photon and phonon fields and their quantum fluctuations which are required for
a full understanding the Frohlich condensate [81]. Furthermore non-equilibrium collective
behaviors for phonon condensates described in [82] are also included in our approach.

3. Lagrangian Density and 2-Particle-Irreducible Effective Action

In this section, we provide a Lagrangian density for charged bosons, phonons and
photons, show 2-Particle-Irreducible Effective Action and derive time-evolution equations.
We adopt the background field method [83-86]. Using the Lagrangian, we can derive
the Gross—Pitaevskii equation as extension of Schrodinger equation to describe collective
properties of water molecules. The equation describes various quantum states of water
molecules, including conformational states related with strongly bonded or less bonded
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states observed in ranges of wavelength from 1300 nm to 1600 nm as shown in [87], and
rotational degrees of freedom in wavelength 310 pm, for example.
The Lagrangian density is given by,

1 1
L = —Z]-"W[A—i—a]}"w[A—i-a]—E(a?‘ay)z
Pyp— / . . 2
+y* (l—l—e(AO—i-a ) + (Vi leéil"‘az)) )l[]

[aQ\ (9Qh) (90, 20; )’ l..
2 [(3%) (3 (32)] 4] (33) - omste]

—aL ¥ YV QLp +igar (P (0ip) — (9™ )¢ — 2iey* p(A; + ai))Q;T
— QoL PV Qb +igor (YT (9) — (3™ )y — 2ieyp* P(A; +a;)) Qi )

with electromagnetic tensor Fy, [A] = 9, A, — 9y A, with background photon fields A,
and quantum fluctuations a,, complex charged Bose fields ¢* and ¢, acoustic phonon
fields sz = —Q,;, optical phonon fields Qé = —Q,,, gauge fixing parameter ¢, ele-
mentary charge ¢, sound velocity matrix v, ;; including eigenvalues of velocity squared
for transverse and longitudinal modes for acoustic phonons (v% and v?), frequency ma-
trix () ;; including eigenvalues of frequency squared for transverse and longitudinal
modes for optical phonons (Q% and )?), coupling constants between charged bosons
and acoustic longitudinal phonons g,; and transverse phonons g,r, and coupling con-
stants between charged bosons and optical longitudinal phonons g,; and transverse
phonons g,r. Longitudinal phonons are coupled with the gradient of density of charged
bosons V;(ip*1p), while transverse phonons coupled with the flow of charged bosons
(P (i) — (0;9*) ¢ — 2iep*P(A; + a;)). Our Lagrangian is based on Quantum Electrody-
namics for non-relativistic charged bosons. We can also charge ¢ to any effective values. We
include phonon degrees of freedom in QBD theory in this paper to investigate coherent
sound emitted from microtubules as super-radiance as shown in the next section and
provide non-equilibrium theory for incoherent phonons. Both acoustic and optical phonons
are introduced as quantum fields and coupled with density of water molecules and flow of
water molecules.
The above Lagrangian is invariant under the type I gauge transformation given by,

P(x) — ei“(x)lp(x), P*(x) — e*i“(")lp*(x), Au(x) = Ay(x) + éaytx(x), ay(x) — ay(x). (2)

Topr|

We shall set gauge fixing 2’ = 0 and ¢ = 1. Closed-time path formalism is adopted to
describe non-equilibrium quantum dynamics [88,89]. Starting with the Lagrangian density
in Equation (1), we can write 2-Particle-Irreducible (2PI) Effective Action [90-92] as,

A/ ﬁl’l lpl 1,5*/ Qtll QOI A/ D] = /cd4x£[A/ ai/ ll_)/ lp*/ Q_IZ/ QO]

i | ; _ -
—i—ETr InD! + ETr(lDo D) +iTrin A~ + Tr(in, ' A)

1 e o~ =
+§r2[Al +ﬂ1‘, l)br l/)*/ Qar QO/ A/ D]/ (3)
where C represents the closed-time path contour in path ‘1’ from —oo to co and path 2’ from
oo to —oco. The bar represents expectation values ¢ = (¢) = Tr(R) for an arbitrary density
matrix R. When we set R ~ e~ /T with Hamiltonian # and temperature T = 310 K, we
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can include contributions of finite-temperature medium. The D(x, y) represents matrix of
Green'’s functions for photons and phonons given by,

Dij(x,y)  Daaij(x,y)  Dayoij(x,y)
(x,y) = Dir,ii(%,Y)  Daaij(x,¥)  Dao,ij(x,y) 4)

Dow,ij(x/y) Doa,ij(xry) Doo,ij<xry)

with definitions Dj;(x,y) = (Tc¢éa;(x)da;(y)) with time-ordered product T¢ and 6a; = a; — a;,
Da’y,ij(xry) = <T65Qa,i(x)5aj(y)> with Qg = Qqi — QaLi/ Daa,ij(xry> = <T65Qa,i(x)5Qa,j(}/)>/
Doo,ij(%,y) = (T0Qu,i(x)0Qy,j(y)) With 6Qy; = Qo — Q,,i and so on. In matrix notation of
closed-time path, Dy, ;i(x,y) represents,

D "(X y) — D;’lyl]( ’y) D;’zyl]( ’y) — ( <T§Qﬂ,i( ) a](y)> <~(5ﬂ]( )5Qa1( )> > (5)
B D3 (% y) D ii(xy) (0Qu,i(x)daj(y))  (T6Qui(x)da;(y))
with time-ordered product T and anti-time-ordered product T. The A(x,y) represents,
A(x,y) = (Tedp(x)op™(y)), ©6)
with 0y*) = p(*) — p(*). The iD; ! (x,y) represents the matrix,
- (a§ + M)(su —ZegaTl/_J*l/}(éij - aé%) —ZegoTl/}*l/_J (51] — aég’)
_ . 9;9;
Dy'(xy) = | —2egar§"$dj— — (9363 — v259%) 0
. 3;9;
—2eg, TP P 5ij — 7%1 0 - (8%(51] + Qer‘j)
xbe(x —y), 7)
— & [, Lw
iy (x,y) = &P"{I;% represents,
_ d V; —ie(A; +a;))?
ingH(x,y) = (za—0+eA0 ( ém i)

—~gat (Vi Qi (¥)) + igar (Qhr () + Qhr(y) ) (B — ie(Ai(x) +i(x)))
o1 (VuiQhr (%)) +igor (Qhr (x) + Qlr (1)) (i — ie(Ai(x) +ai(x) )dc(x—y), )

and * 2 represents all the 2-Particle-Irreducible loop diagrams corresponding to ®-derivable
loop expans10n technique in [64].

We adopt Hartree-Fock approximation for the The 2-loop diagrams in 122 is
depicted in Figure 1. We find local terms in Figure 1a mducmg mass shift of charged bosons
and photons and terms in Figure 1b inducing the coupling for phonon-photon exchange.
Non-local terms in Figure lc—g are deplcted to represent interaction among charged bosons,

ze

photons and phonons. leferentlatmg 2 by Green’s functions, we can derive self-energy.

The time-evolution equations are given by differentiating I';p; in Equation (3) by fields
a;(x), p*)(x), Green’s functions D(x,y) and A(x,y). They are given in Appendices A, C
and E.
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Figure 1. 2-Particle-Irreducible loop diagrams in Hartree-Fock approximation labeled by (a-h). The
diagrams (a,b) represent local terms, while diagrams from (c) to (h) represent non-local terms. Solid
lines, wavy lines and curly lines represent propagation of charged bosons, photons, and phonons,
respectively. The dark circles in vertices involve covariant derivatives such as 9; — ieA;. The light
circles in external lines represent background coherent fields Q,7, Q,1, Qur, Qor, ¥, and $*. The aT,
oT, aL, and oL represent acoustic transverse, optical transverse, acoustic longitudinal, and optical
longitudinal phonons, respectively.

4. Acoustic Super-Radiance

In this section, we show a solution of acoustic super-radiance, cooperative coherent
spontaneous sound emission from water, shown in Figure 2. We adopt a microtubule,
cytoskeleton involving a cylindrical structure, as a coherent sound source. We neglect
contributions of quantum fluctuations in this section. The size of coherent domains can
estimated as 15 nm [27]. This size corresponds to the inner diameter of microtubules. Hence
microtubules are regarded as devices achieving coherent domains. We can derive acoustic
super-radiance from coherent domains in microtubules emitted in a radial direction in
Figure 2. It might be observed around microtubules with continuous external energy
supply from mitochondria [93].

super-radiance

Lt AP Q0 Cooperative decay
& 9 0000

L o

Figure 2. Acoustic super-radiance emitted in a radial direction via a microtubule.

We use Equations (A2) and (A6) in Appendix A by assuming e =0, g,1 =0, o7 =0,
and g,. = 0 only for interaction between water and transverse acoustic phonons. The
relation (A2) is rewritten by,
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I B VL N _
<laxo + ﬁ - 21guTQaT,ivi + U(x)> 1/’(") =0, )
where we added potential energy term U(x) representing water molecular states. The
relation (A6) is rewritten by,

(33 — 0107 Qurs + igur (F° Vi — (Vg )§) = 0. (10)

We adopt two-energy level approximation for water molecular states, namely the
ground state and the 1st excited state. Water absorbs the various ranges of wavelength of
photons [94], which correspond to various water molecular states including symmetric
and anti-symmetric stretching modes with ranges of wavelength from 1300 nm to 1600 nm,
and rotational motions with the order of a few meV with the wavelength ~ 300 um,
for example. We can set U(x) in Equation (9) representing energy of rotational motion
of water molecules or mean field energy for molecular stretching, and so on, given by
approximations of interaction with photons and phonons. Since water absorbs both light
and sound [87], water is also regarded as coherent light and sound sources. The Equation (9)
covers those water molecular states, while the dynamics of coherent sound fields is given
by Equation (10).

Using the calculations in Appendix B, we arrive at the amplitude of coherent phonon
fields Q given by,

_ 0 1
Q= gﬂl {cosh(x _ TO)] , (11)
7T T

where the Q) represents the energy difference between the ground state and 1st excited
state, the N represents the number of water molecules, the g is given by ¢ = mg,7Jo1
with Equation (A28) related with transition dipole moment of water molecules, and
TR represents,

2n 1
= — - 12
= 20N N (12)
and 1) = —tgIntan 2. Due to N water molecules cooperatively decaying in 1/N time

scale, the coherent sound field has intensity of the order of N? instantly, representing
acoustic super-radiance. Substituting the mode () corresponding to water molecular states,
N representing the number of water molecules in the states, and g for transition of water
molecules in Equations (11) and (12) by their concrete values, we can derive the amplitude
of coherent sound fields and the time scale of the acoustic super-radiance for each water
molecular state.

5. Kinetic Entropy Current and the H-Theorem

In this section, we summarize the introduction of a kinetic entropy current and the
H-theorem for 1-loop self-energy in Hartree-Fock approximation. We refer to the preceding
works in [95-101]. The detailed calculations are given in Appendix D.

We finally arrive at,

dus" = (PP) + (Dia(c)) + (Dia(d)) + (Dia(e)) + (Dia(f)) + (Dia(g)) + (Dia(h)) > 0, (13)

where (PP) represents the photon-phonon exchange via water molecules. The total entropy
current s¥ is given by Equation (A216). The H-theorem is proved in the Hartree—Fock
approximation for Kadanoff-Baym equations in 1st order in the gradient expansions.
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Entropy production stops in the condition,
o) = — (14)

0o_ B

with temperature T and chemical potential y, = ¢ (A - T) for distribution function of

charged bosons f(p), and,

Fr0) = LK) = fanr®K) = Fant(K) = fout(K) = four (6) = ——, (15)

eT —1

with distribution functions for transverse photons fr, longitudinal photons f;, transverse
acoustic phonons f,, 7, longitudinal acoustic phonons f,, 1, transverse optical phonons
foo,r and longitudinal optical phonons f,, . The system composed by charged bosons,
photons and phonons evolve in time with entropy producing processes.

6. Time-Evolution Equations in Spatially Homogeneous Systems

In this section we show time-evolution equations in spatially homogeneous system
and show concrete forms of conserved charge and energy density.

First we shall rewrite Kadanoff-Baym Equations (A65), (A68), (A97), (A102), (A105),
(A109), (A112), (A116) and (A126), in Appendix C. We use statistical functions F(X, p) =

12 21 12 21 12 21 12 21
¢ (X,p)JZFG (er) s FL(X’ k) = DL (X’k);DL (X,k)/ PT(X/ k) = DT +DT ’ Paa,L(Xr k) = DM,LJFDW’L

2 2 4
D12 +D21 D12 +D21 DlZ +D21
,T ,T _ L L _ T T _
Fua,T(X/ k) = “ 7 “ s Foo,L(er) - = 7 2 ’ Foo,T(X/k) - = 7 2 ’ dua,F,T -
d12 +d21 d12 +d21 . 21 12 . 2 12
—el—l and dyo p 7 = 25—, spectral functions p = i(G* — G'#), pp, = i(D;' — D}?),

~ i(p2A 12 — (D2l 12 — /(D21 12 — (D2l
T = Z(DT - DT )/ Paa,L = Z(Daa,L - Dua,L)' Paa,T = Z(Dtm,T - Duu,T)' Poo,L. = 1<Doo,L -
12 — i(p2 12 — (421 12 — (421 12
Doo,L)' Poo,L = Z(Doo,L - Doo,L)/ dﬂﬂ,,ﬂ,T - l(dua,T - dua,T)f and dUO,P,T - Z(doo,T - doa,T)' Spec—
tral functions represent which states particles are occupied, while statistical functions repre-
sent particle number density or how many particles are in the states. We also use statistical

y12 +221 1112 +H21 1112 +H21
parts of self—energy F = w, Ip = M, Hpr = M, Iy rr =
12 21 12 21 12 21
Hnor\l,aa,L + Hnor\l,aa,L H _ Hnonl,nn,T + Hnonl,aa,T H _ Hnonl,ua,L + Hr\onl,uo,L
- 2 aa,F, T - 7 ’ 0o,F,L - 7 ’
12 21 12 21 12 21 12 21
H _ Hnonl,oo,T+Hnon1,uo,T U _ uaa,T+uaa,T _ uoo,T+uaa,T V _ Vaa,T+Vaa,T
00, F,T — 7 s Yaa,F,T — 7 s Yoo, F,T — 7 s Vaa,F,T — 7 s
and V, _ VurtVr and spectral parts &, = (22! — %12 ) 11,; = i(T13 = —
oo, F,T — 2 ’ p p o nonl nonl// *o,L — nonl, L
12 _ F1721 _ 12 _ 17121 _ 12
Hnonl,L ) 4 Hp,T - i (Hnonl,T 1FInonl,T)’ Haa,p,L - l (Hnonl,aa,L Hnonl,aa,L ) 4
— (17121 _ 17112 —_ (1721 _ 717112 — (717121 _
Hua,p,T - I(Hnonl,aa,T Hnonl,aa,T)’ Hoo,p,L - I(Hnonl,oo,L Hnonl,oo,L)' Hoo,p,T - I(Hnonl,oo,T
12 — (1721 12 — (1721 12 _ (21 12
Hnonllgg,T)r uﬂﬂ/P,T - l(uau - uuu)/ uOO,P/T - 1(uoo - uoo )/ VLM,P,T = 1(Vua - Vau ), and

— (2l _yl2
Voo,p,T - l(Voo Voo )
The Kadanoff-Baym equations for charged bosons for real F and X and pure imagi-
nary p and %, are,

{ic(;l(p) — Tioe — RezR,F} + {ReGg,Xp} = %(sz — 0%p), (16)
{icgl(p) Yo — ReZR,p} +{ReGg,%,} = 0, (17)
with,
iGyl(p) = p°— % — &aL <3x,iQf1L) — 8oL (ax,iQéL) +287piQhr + 2807pi Qb (18)

Here the subscript ‘R’ represents retarded parts for Green’s functions and self-energy. For
example, its real part is given by ReGg = 4 (G!! — G*2). The local self-energy for charged



Entropy 2024, 26, 981 11 of 50

bosons is given in Equation (A228) in Appendix E. The statistical and spectral parts in
self-energy are given in Equations (A231) and (A232) in Appendix E.

Next, Kadanoff-Baym equations for photons and phonons are derived from (A65),
(A68), (A7), (A102), (A105), (A109), (A112) and (A116). For statistical and spectral parts,
we can derive,

{iD()_l (k) — I — ReHR,L, PL}P + {REDR/L, HF,L}p = %(PLHp,L — PLHF,L)/ (19)

{iDo—l(k)—Hloc—ReHR,L, pL}P+{ReDR,L, My, = O, (20)

with iDy 1 (k) = k2 — €122 ang,

m

{iDg" (k) = Thioe — Rellg, 7 + Rely 1 + Rellgo 1, FT}P
+{ReDg 1, IIg,r — Ugar,r — Upo,r,T} p
= H(FrIl,r — prllpy) — 3 (Frlaspet — p1Uasrr) — +(Frlsopr — prloor,r),  (21)
{iDS !(k) — Mjoc — Rellg 1 + Rellyg g 7 + Relo v, T/ PT} ,
+{ReDg 1, Ty — Usapr — Unop7} p = O. 22)

For acoustic phonons, we can derive,

o 1
{IDQ/;QIL - ReHaa,R,L/ Fuu,L }P + {ReDaa,R,L/ Haa,P,L}p = 7 (Faa,LHaa,p,L - Paa,LHuu,F,L)/ (23)

{iD(;,;a,L - ReHaa,R,L/ Paa,L }P + {ReDaa,R,L/ Hua,p,L }p = 0 (24)
withiDy !, ; (k) = (K9)* — 2212,

{iDa,alu,T - ReHﬂa,R,Tr Faa,T}P + {ReDaa,R,T/ Haa,F,T}p
+ {ReVaa,R,T/ daa,F,T }p - {Redaa,R,T/ Vaa,F,T }p

1 1
= 7 (Faa,THaa,p,T - Paa,THau,F,T) - 7 (daa,F,TVaa,p,T - dﬂa,p,TVaa,F,T)r (25)
{iD(;,;a,T - ReHﬂa,R,T' paa,T}P + {ReDaa,R,Tr Haa,p,T}p
+{Revau,R,T/ daa,p,T}P - {REdua,R,T/ Vua,p,T}p =0, (26)

with iDy ala,T(k) = (ko)2 — v2k2. For optical phonons, we can write Kadanoff-Baym
equations by replacing the subscript ‘aa’ to ‘oo” in Equations (23)-(26) with iD;, olo,L(k) =
(k0)2 —0? and iDy ) (k) = (ko)2 — 2. We also use the auxiliary equations,

1

{iD(;,ala,T - ReHaa,R,Tr daa,F,T}P + {Redua,R,Tr Haa,F,T}p = ? (daa,F,THau,p,T - daa,p,THaa,F,T)r (27)

{iD()jula,T - ReHua,R,T/ daa,p,T}P + {Redaa,R,T/ Hua,p,T}P =0, (28)

with equations where subscripts ‘aa” are replaced by ‘o0’
Next we write time-evolution equation for coherent charged boson fields. It is written by,
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- [ (Fp P - e ), 9

which provides time-evolution of the density |(|>. Here we have used Equation (A4) and

Appendix F. We also encounter the constraint relation (A290) in Appendix F. We also use

Equations (A295) for coherent photon fields, (A297)-(A300) for coherent phonon fields.
Finally, using the above relations, we can derive the total charge conservation,

| —e(0f+ [Fen)| = o (30)

where we can derive the right-hand side in Equation (29) and time-derivative of || p F(X,p)
with integration of Equation (16) cancel. We can also derive the total energy conservation,

doEtor = 0, (31)
with total energy density Eit given in Appendix G.

7. Discussion

In this paper, we have investigated Quantum Electrodynamics (QED) for water cou-
pled with phonons and photons corresponding to Quantum Brain Dynamics involving
water, sound and light, and provided theoretical formulation in our model. Beginning with
Lagrangian density of charged bosons representing water molecular states, phonons and
photons, we have derived time-evolution equations for coherent photon, charged boson
and phonon fields, and Kadanoff-Baym equations for incoherent photons, charged bosons
and phonons. We have derived an acoustic super-radiance solution in our model. We have
introduced a kinetic entropy current in 1st order approximation in the gradient expansion
and shown the H-theorem for self-energy in Hartree-Fock approximation. Finally we
have given time-evolution equations in spatially homogeneous system and shown concrete
forms of conserved total charge and energy density.

We have adopted the similar Lagrangian density to that by Nguyen et al. [61] who
introduced interaction Hamiltonian between transverse phonon fields and flow of charged
bosons. They introduced the interaction Hamiltonian Hj like,

Hj ~ i/d3x((1/7*3i1/’ — (0:9")¥) Qaris (32)

and derived collective behaviors of charged particles, namely plasmons. However, there
is a serious problem in Nguyen’s model. Since 9;i is not a covariant derivative like
(0; — ieA;), the Hamiltonian is not gauge-invariant. Then we find that charge conserva-
tion is no longer satisfied in their model. Hence for our model in this paper, we adopt
gauge-invariant interaction Lagrangian involving covariant derivatives. Imposing gauge-
invariance in Lagrangian, we encounter phonon—photon interaction via charged bosons
in term ¥ A;Q,7; in Equation (1). Due to this term, the Kadanoff-Baym equations for
photons and phonons involve off-diagonal elements of Green’s functions like D, (x,y) and
so on. Photon-phonon energy exchange via water degrees of freedom (charged bosons)
is described by off-diagonal elements in our model. Entropy production by the energy
exchange is represented in Equation (A218). We encounter sound-light interaction via
water in our theory.

Acoustic super-radiance solution is derived in our model. We adopt an interaction
Lagrangian term between transverse acoustic phonons and charged bosons g,1(¢* (9;1)—
(079" ) — 2iep*p(A; + a;)) Q! in Equation (1). This term resembles photon—charged boson
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interaction term in Quantum Electrodynamics (QED) with non-relativistic charged bosons.
In QED theory, we can derive the super-radiance solution, cooperative spontaneous coher-
ent light emission, for photon—charged boson degrees of freedom [102-104]. In a similar
way to photon—charged boson system, we can derive acoustic super-radiance solution in
phonon—charged boson system, namely we encounter phonon-water cooperative proper-
ties. Even in vanishing charge e = 0, cooperative spontaneous decay of water molecular
states from 1st excited state to the ground state occurs, and then resultant coherent sound
emission emerges. Coherent sound might induce interference patterns of sound waves,
resulting in pressure gradient of water systems. Interference patterns might be adopted for
sound holographic information processing. Even in the tentative interference patterns in
sound holography, information processing might be possible in water system in a brain.
Sound holography might appear in pressure gradient in water systems, while optical holog-
raphy emerges in density distribution of ionic bio-plasma or ionized water since density
affects transmittance of coherent light. Hence sound holography might correlate with
optical holography via water degrees of freedom. Since our model involves both photon
and phonon degrees of freedom, we can investigate both sound and optical holography for
information processing in a brain.

The 2nd law in thermodynamics is investigated in this paper. The kinetic entropy cur-
rent for Kadanoff-Baym equations for incoherent photons, charged bosons, and phonons
is introduced and the H-theorem in Hartree—Fock approximation is shown. Entropy pro-
duction occurs in photon—phonon energy exchange in Equation (A218). Equation (A218)
means that entropy production due to this term ceases when photon distribution fr is
equal to phonon distributions f,, T and fo, 1, not necessarily Bose-Einstein distributions.
Even in out of equilibrium states, phonon distribution tends to approach photon dis-
tribution. This means that both distributions might correlate with each other in out-of-
equilibrium states. In the presence of only Equation (A218), the system never approaches
thermal equilibrium state. To achieve Bose-Einstein distribution, we need contributions
in Equations (A219)-(A224). Equation (A219) (Diagram (c) in Figure 1) represents photon—
charged boson interaction, where charged bosons come in, photons are absorbed and
charged bosons go out, and its inverse processes take place. Similarly, Equation (A220)
represents photon—-charged boson interaction induced by coherent sound waves, and
Equations (A221) and (A222) represent phonon—charged boson interaction. Equation (A223)
represents photon—charged boson interaction induced by coherent charged Bose fields. Coher-
ent charged Bose fields collapse to incoherent charged bosons. Equation (A224) represents
photon—-phonon—charged boson interaction induced by coherent charged Bose fields. Even
in the presence of Equations (A223) and (A224), total charge for coherent charged Bose
fields and incoherent charged bosons is conserved. All the contributions for non-local terms
in %2 in Figure 1 have been made to induce entropy production. Entropy production stops
only when distributions are the Bose—Einstein distributions.

Charge and energy conservation law can be shown in spatially homogeneous system.
In Section 6, we have given time-evolution equations for coherent charged Bose fields,
photon fields and sound fields, and Kadanoff-Baym equations for incoherent charged
bosons, photons, and phonons. Self-energy is derived by differentiating IFTZ by Green’s
functions in Figure 1. Diagrams (c), (d), (e), and (f) never change the charge density
for coherent charged Bose fields —edg||> = 0 and that of incoherent charged bosons
—edp [ » F = 0. Diagrams (g) and (h) change —e||? or —e |’ p F. Although coherent charged
Bose fields collapse to incoherent charged bosons, total charge can be shown to be conserved
by similar analysis to that in Appendix in [101]. Similarly we can derive conserved total
energy density in a similar way to derivation in [101,105,106].

)

7 as shown in

For Hartree-Fock approximation, we will encounter an additional
Figure 3. It is expressed by equation,
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(1)
il e - . . ij
TZ = —% /C,z,w Qur,j(w) [21@((821‘ — zeAi(z))A(z,w))A(w,z)DT](z,w)] + (a — o). (33)
In the presence of diagram (i) shown in this figure, we just modify self-energy for £!2(p)
and I1'2(k) by,
(©+()+0)12(y)  — _L/ 12(,,
z (p) w2 .G =k
~ 2
2 ((p+2Q)-k kKZ—-2p-k
x l4<(p+ZQ) - 2 ) 2k 4 { kzp Cpr@m|, (34)
(0)+(d) +(9),12 ¢ 2 (P+20)-K)% 21
I 0) = 5 | [ (p+2Q)" - SEE )62 G (), 35)
and,
1 6T 2¢%¢, - - %
> 5_1-2 = AT / (ReZEg,ij(p)E(p) + Er,ij(p)ReGr(p)) (pj +2Qj),  (36)
QaT m-Jp
1 6T, 2¢2¢,1 _ _ -
250, _Tofp(Re':‘R,ij(P)F(p)+5F,ij(p)ReGR(P))(Pj+2Qj)/ (37)

with Q = m(g,7Qar + $o7Qo7). We also set,
FlO+ @ +E)+0)

10T, aReZg)+(d)+(e)+(i)(p) p)
254~ /p< o ReGr(p) |, (38)

in Equation (A296). Even in the presence of diagram (i), we can prove the H-theorem since
positive coefficient ((p + 2Q)2 - ((p+2Q)- k)2 / kz) > 0 is given, and show charge and
energy conservation by using the relation (A296) for the sum of diagrams (c), (d), (e) and (i).

QG,T7 C?OT
(i)

Figure 3. Additional 2-Particle-Irreducible loop diagram labeled by (i) in Hartree-Fock approximation.
The dark circles in vertices involve covariant derivatives. The light circles in external lines represent
background coherent fields Q,7, Q7.

Application to control theory can be proposed in our model. To investigate whether
our brain adopts the language of holography, we manipulate holograms composed of water
media in a brain and check how our subjective experiences will change. To manipulate holo-
grams non-invasively, we can adopt external electromagnetic fields, photons, ultrasound,
and so on [42]. Adopting our model involving phonons, we obtain the control theory
of non-invasive neural stimulation by external sound waves. Sound waves were found
to induce changes of water conformational states in experimental study [87]. The sound
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perturbations with frequency 432 Hz and 440 Hz affect populations of ice-like (strongly
bonded) water and vapor-like (less bonded) water shown in near-infrared spectroscopy
with bandwidth related with symmetric and anti-symmetric stretching of water molecules.
Hence we might be able to manipulate the density distributions of water molecules, namely
transmittance of light or sound required in holographic memory storage. We then adopt
reservoir computing or morphological computation approach [57-59] to control holograms,
using sound. For example, to manipulate holograms of visual cortex involving water
molecular distributions induced by pressure gradient, we calculate input external sound
waves in scalp and impose the sound waves on scalp. Sound waves in target neocortex
change pressure gradient or water molecular distributions, namely holograms of water
media. Our model provides the control theory by developing QED theory with phonons in
a hierarchy representing multiple layers such as scalp, skull, dura, celebrospinal fluid, and
neocortex, as shown in [107].

8. Concluding Remarks and Perspectives

We have provided a theoretical formulation of the application of QED to the descrip-
tion of memory formation in the human brain where we extended previous quantum field
theory models to account for the active role of water molecular states coupled with both
photons and phonons in order to provide a more realistic representation for the mechanism
involved. It is well-documented that the organization of water molecules in biological
systems is much more orderly than in a fluid state and that this organized state of water,
called Exclusion Zone (EZ) water [70] interacts in a distinct way with photons and phonons.
Almost all of the water molecules in a living cells are present as EZ water [71].

Beginning with Lagrangian density, we have derived time-evolution equations for
coherent fields and the Kadanoff-Baym equations for incoherent particles. Next, we
have derived an acoustic super-radiance solution in cytoskeletons involving cylindrical
structures in a brain like microtubules. We have shown the Kadanoff-Baym equations
for incoherent charged bosons, photons, and phonons. We have also introduced a kinetic
entropy current for Kadanoff-Baym equations and shown the H-theorem for self-energy in
Hartree-Fock approximation. Finally, we have shown time-evolution equations in spatially
homogeneous system and provided concrete forms of conserved charge and energy density.
Our approach will be applied to systems composed of water coupled with sound and
light, and specifically applied to a control theory of memory and consciousness physically
represented by holograms of water system by external sound waves in non-invasive
ultrasound neural stimulation.
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Appendix A. Time-Evolution Equations

We show time-evolution equations in this appendix.
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Time-evolution equations are derived by differentiating 2P effective action in Equation (3)
by expectation values of fields and Green'’s functions.

For % ) = lapr - =0, we can derive the relation,
a |gicg | AT |zim
ie Tk T . Tk T
FFulA] = —o lllﬂ (Vi—ieA)p — (Vi +ieA;) " )P
+(Vy,,i — ieA;) AN (xq, x) — (Viyi +ieA) A (x,x2) ]
X=X Xp=x
- - o 16T
—(2e8a1Qat,i + 26807 Q0T,i) (1,0 P+ A”(x,x)) - Q(SAZZ-- (A1)

The above equation corresponds to one of the Maxwell equations. The right-hand side
represents 3-dimensional charge current including both contributions of coherent fields
and those of quantum fluctuations given by Green'’s functions. The term } ‘511;2, includes
contributions from loop expansion of 2PI diagrams required to achieve charge and en-

ergy conservation.
P |gi—
- 211
(Vi—ieA;)* e*Dj(x,x)
2m 2m

—|—2zgaTQuT( —ieA;) + 21g0TQ0T( —ieA;)

16T
_egﬂT(DflyizT,u(x x) + DafyT 1z<x' x)) - egOT(Dfly})T,zz(x x) + DoyTzz(x' x))] lIJ( ) + Eﬁ = 0. (A2)

For

= 0, we can derive the Gross-Pitaevskii equation,
0

— 8a(ViQh1) — &o1.(ViQhp)

. 0
[lw +€A0+

This equation for charged bosons includes coupling with both photons and phonons.
Their contributions are given by coherent fields A,, Q},, Q!,, Q' and Q' and their

quantum fluctuations represented by Green’s functions D1!(x, x), D%T (), D;}YT q(xx),
D%T ;(x,x),and D1 oyT,ii fOT transverse parts represented by ‘T for photons labelled by v
acoustic phonons labelled by a and optical phonons labelled by 0. The term 5 g ]PE includes
contributions for quantum loops. For 5%’1 I 0, we can derive the relation,
al=
.0 (V;+ieA;)? 2D} (x,x) _ _

—izgtedot : o - o — 8a(ViQur) — gor.(ViQor)

*ZigﬂTQiT(Vi + ieAi) - ZigoTQéT(Vi + ieAZ-)

11 141,
_egﬂT( 'yaT ll(x x) + Da'yT ”(X, x)) - egOT(D'yoT,zz(x x) + Do"/T zz(xfx)) l[J ( ) + EW = 0. (A3)

This equation is just the complex conjugate of Equation (A2).
Using Equations (A2) and (A3), we can derive the relation,

059+ 5 Vi[5 (Vi e — (Vi + ieA) 7))

) 16I 10T -
+2igur Vi Qur§"§) + 2igor Vil Q¥ D) + 55 35S0 = 0 (A

where we have used V,Qfﬁ = 0and V,QZT = 0. The above relation is used to prove the

charge conservation law. The 1*1p represents the density of charged bosons. The terms

0Ty p _ 1003 7
59 25y ¥ are

with V; represent the divergence of 3-dimensional current. The term +%
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written by Green’s functions idgA'! (x, x), so that total density ¢*$ + Al (x, x) is conserved
in time-evolution in spatially homogeneous system as shown in Appendix E.

751—‘2-1’1 = 7‘51—‘_21)1 = 1
For 50 0 and 50Ls 0, we can derive,
- Y 1 T
2 _ 292 ] ok 11 102 _
(38— 010?) Quri + 8 Vi ($ 9+ A" (1)) + 5 o = (A5)

and,

(38— 0397) Qurs + igar (F° (Vith) — (Vip*)p — 26" )
} 1 4l
n=x| 206Q.

+z‘gﬂ[<axl,i A A (x1, x) _ o (A6)

— (axZ,j + iEAi)All(x, xz)

X1=X

We find that the longitudinal parts are coupled with the gradient of the density of charged
bosons *P + All(x,x). In case the gradient is nonzero, coherent phonon fields Qg ;
emerge. We also find that the transverse parts are coupled with the flow or current of
charged bosons. If the current is nonzero, coherent phonon fields Q,7 ; will appear.

For H_Zipl =0 and ‘5r.2}’ L = 0, we can derive,
(5Q0L 5Q0T

oy 1 4T
(3% + Q%) QoLi T+ 8oL Vi (l/l P+ Al (x,x)) + 5 5Ql:2 = 0, (A7)
oL

and,

(3 + OF) Quri + igor(F" (Vi) — (Vith*)§ — 2ie A" §)
} 1 6T,

— (O, + ieA) A (x, x7) E@ = 0. (A8)
[

tigor [(axl,i e A A (xy, %)

X1=X

Comparing Equations (A5) and (A7), we find that the main difference is the part (a% —v? 6]2)

and (93 + Q%) in the 1st terms. This is originated from the difference of the dispersion
relations for acoustic and optical phonons. Similarly we also find the difference in 1st terms
in Equations (A6) and (AS8).

Finally we can derive the Kadanoff-Baym (KB) equations [62-64,92] for incoherent

charged bosons, phonons and photons. For ‘SI;ZAPI ~ =0, we can derive,
i=0

—iAT +ingt —iE = 0, (A9)
with iA; 1 given in Equation (8), A given in Equation (6), and £ = %%. For ‘SEZDPI o 0,
al=
we can derive,
—iD"'+iDy! —ill = 0, (A10)

with iDy ! given in Equation (7), D given in Equation (4), and IT = i %. The KB equations

can trace time-evolution of quantum fluctuations with Green’s functions representing
statistical and spectral properties of incoherent charged bosons, phonons and photons. We
shall investigate KB equations in detail in Appendices C and E.

Appendix B. Derivation of a Solution of Acoustic Super-Radiance

We shall derive a solution of acoustic super-radiance.
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We begin with Equation (A2) rewritten by,
9 v? - - _
ﬁ + ZzguTQuT/iVi + U(.'Xf) l/J(x) = 0, (All)
with potential energy U(x). We also use Equation (A6) given by,
0 — 019} ) Quri +igar (§" Vi — (Vip")p) = 0. (A12)
(9 -t
Next we shall expand $(x) as,
x) = Lbu () (), (A13)
n
where ¢, (x)’s are normalized eigenstates satisfying the relation,
v? oo -
( 27111 U(x)) bn (X) = Euy (x)/ (A14)

with eigenvalues E;. The Equation (A11) is written by,

2
a 30 (Z:bn (Pn ) = ( vl +U> (Ebn > +21gaTQaTzzbn V‘Pn( ) (A15)

We shall use,
ba(x°) = e B x, (0). (A16)

The normalization condition is written as [ |§|*> = ¥, |bx (x°)[? = &, [xx(x°)[* = N with
the number of water molecules N. We shall consider the case |V3pu| > |Vidul|, | Vo]
and Q,7,1,Qur2 ~ 0. The x3 axis represents the cylindrical axis of microtubules. We show
coherent sound emission with circular waves in x!-x? plane in this section.

Here we use two-energy level approximation for energy eigenvalues Eg for the ground
state and E; for 1st excited state. We expand Q,73 as,

- 1 0_ X * 1 0_ X
QaT,3 /1 ) 2 (q?, K€ i(wyx”—k-x) + q:;,kel(wkx k )), (A17)
with fkl e = [ d’;sz and wy = |k|or. Substituting Q,r3 in Equation (A15) by

Equation (A17), multiplying ¢ (x), integrating by [ = [ d°x and using Equation (A16),
we can derive time-evolution equation for xo(x°) as,

:9X0 _ . 1 —i(wx®—k-x) x i(wex®—kex)
Gt = 20 | foen (e ES )
* —iQx0 *
X [95i(Vap) e ™ + gi( Vo) x|, (AlS)
with energy difference between 1st excited state and the ground state ) = E; — E. Sim-

ilarly, multiplying ¢; (x), integrating by [ and using Equation (A16), we derive time-
evolution equation for xo(x°) as,

9X1 _ 1 —i(wx®—k-x) x i(wex®—kex)
950 = 8T /x /kl,kz 2 (%’ke " Fae )

% [91i(Vago)x0e ™ + ¢1i(Vagi)x . (A19)
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We shall extract only the resonant mode (wy = ) representing rotating-wave approxi-
mation in Equations (A18) and (A19). We then rewrite Equations (A18) and (A19) by,

.9X0

— * —iKeX [ g% 2
1550 = & /kl,kz;wk:() 93,x /x e " *(¢oiVap1)x1, (A20)
/SR, / 05 x / eV 30) Xo- (A21)
ox0 K= " Jx
Next using the relation,
. 1 . 4
/xe—zl-x(a% _ vaajz) /kl o3 (qslke—l(wkx‘)_k-x) + qé,kel(wkx()_k-x))
_i 1 il k-
= ™ f e (koA 1)) e R
+ / e~ x /kl o (—iwkaoqg,,k — iv%(klalqglk + k282q3lk)>e*i(“’kx07k"‘) + other terms
x ,
= (—iwlaoqg,,l — iva(lla1q3,1 + 1282%/1)) Lg,e_"“""0 + other terms, (A22)

where momentum 1 represents 1 = (I 152 0), and L3 is the size of the system in x3 direction,
we can rewrite Equation (A12) by,

(—iwd0qs1 — i07-(110193,; + 202431) ) Lye—@1*’ 4 other terms
—igar [ e 1> [ffimoxi‘)(o((PTV%Po) +e 70 X x1 (95 V)

(A23)

(Here we consider the case |wiq3 k| > 9043 x|-) Taking only the resonant mode, we arrive at,

93k PRLCUET P Ll A I
9x0

dx1 ox?2
Next we adopt dipole approximation ¢’X* ~ 1 where wavelength of sound is larger
than the size of the system like a microtubule. We then rewrite Equations (A20), (A21),

2
[Y
Lo
Wy

xox [ e gigarVagn.  (A24)
X

Wy L3

and (A24) by,
X0 _ gT/ 7 /(4)*1’V3¢1)X1 (A25)
dx0 “ kL k201 =0) 3k X 0 ’
X = e a5k [ (671930000 (A26)
0x0 KZw =0 " Jx ! ’
and,
Max . V5 [(11993x | 2093k 28,1 / .
4 — — L = — - - . A27
( 0x0 + Wy ox1 tk ox?2 lka3X0X1. X¢01V3¢1 (A27)
We shall define,
AY
]7’117[2 = /(Pnl J(Pnz/ (A28)
X m
= , A29
0 = [l o (A29)
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and use the relation,
_ o0 1 1
- 0%n / dys( v? — —
/kl,kz;wk:() o 7Y (y 2 | @np
02
= -, A
i (A30)
withy = % (k)2 + (k?)2. From Equations (A25)-(A27), we then derive the relations,
aXO _ . *
50 = TimgarQox, (A31)
d .
a%(l) = —imgar Q10X0, (A32)
09 iQ) «
PR —mmgaTthOXl' (A33)

Here the Jy; and Jio are related with transition dipole moment since Equation (A28) is
the matrix element of the momentum —iV3 ~ dX3/dx? ~ [X3, H] with position X3 and
Hamiltonian .

Next we set @ — —iQ and assume real Q and Jy; = J19, we arrive at,

%)

5 = s, (A34)
%)

55 = %0 (A35)
e19) Q

50 mgxéxl, (A36)

with ¢ = mg,7Jo1. We can derive density and energy conservation law as,

d

s (P +1al?) = o (A37)
a (1 Q
5 (394 gup (WP = 1aP) = o (A3

Setting real R = 2x}x1 and population difference Z = |x1]? — |x0/? R and Z satisfy,

0Z = -—239R, (A39)

R = 2¢Q7Z, (A40)
_ 80

Q9 = 47TL3R. (A41)

We can then use the conserved quantitiy,
N2 =72+ R?, (A42)

where N is the number of water molecules in particular conformational states. We shall
then set Z = N cos8(x?) and R = N sin8(x?). We derive the following relations from the
above equations,

%0 = 28Q, (A43)

0]
%Q Amls

Nsin6. (A44)
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From Equation (A43), we can derive,
XO
0(x%) = 6y + / 124 Q. (A45)
fo
Moreover we rewrite Equation (A44) as,
QN

90+ L5110 = 82T ing, (A46)

47‘(L3

where Ly 1Q represents the term for emission of sound. We consider the case Ly 1> 9.
Using Equation (A43), the above equation is rewritten by,

.
~ §°ON .
dof = 5, Sin 0. (A47)
The solution of the above equation is,
20
0(x%) =2tan! (exp (ganxO) tan 9;) (A48)
Then we finally arrive at,
1 gON -\
Q= 5609 =1 [cosh(TR )} , (A49)
where TR represents,
2n 1
= —=— X — A
TR gZQN e N’ ( 50)
and 1p = —TrIntan 92—0. Since N water molecules decay in 1/N time scale cooperatively,

energy of coherent sound is the order of N? instantly. We have derived an acoustic super-
radiance solution in our model.

Appendix C. Kadanoff-Baym Equations

In this section, we write Kadanoff-Baym equations for incoherent charged bosons,
phonons and photons.

The ZFTZ is given in Figure 1. Local terms are expressed by,

iy e d4xA(x, x) Dy (%, x) A51

> _—z%/c xA(x,x)D;i(x,x), (A51)
and,

ie /c d*xA(x, %) [gaT (Daqy1,ii (%, X) + Doyar,ii(x, X)) + 80T (Do, (X, x) + Doporii(x, %)) |. (A52)

~(a)
The lr% provides local self-energy of mass shift of photons and charged bosons. On the

T(b)
other hand, % provides the exchange between photons and phonons with density of

incoherent charged bosons A(x, x). Non-local terms are expressed by,
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il"éc) 2 . .
5 82 /C,Z,w [— 4((Vz,i —ieAi(z))A(z,w)) ((Vw,j - zeAj(w))A(w,z))Dij(z,w)
—2((V,,i —ieAi(z))A(z,w) ) A(w, 2) 9y, Dij(z, w)
—2A(z,w) (Ve — ieAj(w))A(w, 2)) 0., Dij(z, w)
—A(z,w)A(w,2)9;,i94,Dij(z, w)}, (A53)
ir'd _ _ _ _
% _232 /(; . w(gaTQaT,i(Z) + goTQoT,i(Z)) (gaTQaT,j(w) + goTQoT,j(w))
xA(z,w)A(w,z) D (2, w), (A54)
i $2r : ,
T B[ (Ve AR (E) A ) (Va e (@) A(w,2)
+((Vz,i —ieAr(2))(V,j + ieAr,i(w))A(z,w)) Aw, z)
+A(z,w) (Vi + ieA1,i(2)) (Ve — ieAr j(w))A(w, z))
—((V,j + ieArj(w))A(z,w)) (Vi + ieAT,i(Z))A(wrZ))} Dy, 1,i(z,w)
+(a— o), (A55)
iry SiL [ Az, w)A(w,2)3. B, D A56
T _7 Cow (er) (w,z) z,i%w,j au,L,ij(er) =+ (a — 0), ( )
il”gg) et - _
> “on Jer P*(2)p(w) Az, w) Dij(z, w) Dji(w, z), (A57)
i o
% —4(egar)? /Czw " (2)P(w)A(z,w) Dy ij(z, W) Dyg,1,ji (W, 2)
~A(egor)? || # (F(@)A( @)Dr(z @) Do i(w,2), (A58)

where (@ — 0) represents changing subscript “acouctic’ a to ‘optical’ o in the previous

()
T .
term. The sz represents charged bosons and photons, where incoherent charged bosons

come in, absorb incoherent photons and change their momenta, and its inverse processes.
()

lr% represents the contributions where incoherent charged bosons are coupled with inco-

(e
. = = r

herent photons and transverse coherent sound fields Q,71; and Q,7;. The sz represents
the process between incoherent charged bosons and transverse incoherent phonons. The
T®

IFTZ represents the process where incoherent charged bosons absorb longitudinal inco-

(8

herent phonons and change their momenta, and its inverse processes. The lr% provides
the interaction where coherent charged boson fields decay to incoherent charged bosons

)
s . . r
with incoming and outgoing photons. The % represents the process where coherent

charged boson fields decay to incoherent charged bosons with photons and phonons. These
processes can be seen by cutting symmetrical nonlocal diagrams in Figure 1 with the
vertical line.

Next we shall investigate the self-energy. Using II(x,y) = Ng?;zx) , We write,
M(x,y) = —ide(x —y) e (x) + Mo (X, y), (A59)

with,
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2211
%(51‘]‘ ZegﬂTAH (X, X)IPT’Z‘]' ZegoTAll (x, x)'PT,l‘]‘
Hloc(x) = Zeg,lTAH(x, x)PT,ij 0 0 ’ (A60)
ZegoTAn (X, x)PT,i]- 0 0
with PT,ij = (5,] — ala]/ai), and,
Hnonl(x/ y) - dlag(nlj (xr y)l Haa,ij (xr y)r Hoo,ij (xr y) )1 (A61)

where we investigate diagonal elements for non-local self-energy since off-diagonal ele-
ments are higher order in the coupling expansion of ¢, g,1, and g,7.
Next we shall investigate Equation (A10) in Appendix A or,

(iDgl - iH)D — 1, (A62)

where I is a unit matrix. Taking the 11 component (or 7y component) of the above equation
with Equations (7), (A61) and (A245) is written by,

2 (145 2 11
[_ (ayzc + ‘ (W)(X)' ;;A (x, x)) )51] - iHnonl,ij

—2egor (|1P|2 + AH) Pr1,ijDoqy jk = ik (x —y)- (A63)

Djx — 2egar (W”z + AH) Pr,iiDay jk

We shall take the 4y component in Equation (A62). We then derive the following relation,
—2ega7(||* + A™)Pr;Dj + [— (3%51']‘ - Uz,ijalz) — ilhonaa,ij| Day,jk = 0. (A64)

Introducing the d,, ;; satisfying,

- (3(2)5ik - Uz,jkalz) daakj — nonl aa,ik@aa kj = 10ij0c, (A65)
we find
—~2egar (|12 + A ) Pr Dy + idyyly Dy j = 0. (A66)
Then we find,
D1k = Fdagmsjesar (1912 + M) Prji Dy, (A67)

with the subscript T for transverse component. Similarly introducing d,, ;; satisfying,
- (3%5ik + Qz,z‘k) dookj — nonte0,ikdookj = 10¢Sij, (A68)
we find,
Doy ik = 2doosi P>+ A" ) PryD A69
or,Tik = ZdooTije8ot ( [P1” + T,j1 DT, 1k- (A69)

Using Equations (A67) and (A69), Equation (A63) is rewritten by,

(P12 + A
[— <82+(¢m)> — il |DL = ide, (A70)
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and,
201,712
e + A . . _ _
- <82 + # - lHnonl,T) Dt + 4l€gaT(|lp|2 + A) duu,TEgaT(hmz + A) Dt
+4iegor (1§ + A )doo,regor (112 +4) Dr = ide, (A71)
where we have used the projection Pr ;; with subscript “T” (transverse) and Py ;; = ;; —

Pr,;j with subscript ‘L’ (longitudinal) in Equation (A63).
Next we shall investigate,

D(iDO—1 - in) — L. (A72)
Taking 7y component in the above equation with Equations (7) and, we can derive
2(1512
(97 +a :
— <82 + (Wl)) 5]k - zl_[]»k

— Doy ij2e8ar (|1P|2 + A) Pr jk
— D027 (|1/3|2 n A) Prj = idyde. (A73)
Taking ya component in Equation (A72) with Equations (7), (A61) and (A245), we find,
—Djj2eg,r (|'75|2 + A) Prjk + Dyajij <— (5]‘1:3% - Uz,jkalz> - iHnonLua,jk) =0. (A74)
Using d,,,ij satisfying Equation (A65), we find,
2 AP
Dyaij = =Dixegar (191” + A) Pr a1 (A75)
Similarly taking yo component in Equation (A72) and using Equation (A68), we find,
2 _
Doyo,ij = ;DikegoT(|llJ|2 + A)Pridoo,1j- (A76)

Using the projection Pr,;; with subscript ‘T” (transverse) and Py ;; = 6;; — Pri; with sub-
script ‘L’ (longitudinal) in Equation (A74) with Equations (A75) and (A76), we can derive,

2 (.72
D, —<az+ W) —z'HL] — ise, (A77)

and,

(19> + A . . 7 ;
Dr|— <82 + <|1’b|m)> — illr | 4+ 4iDreg,r (|¢|2 + A) dga,TE8aT (|¢|2 + A)

+4iDregor (12 + A )dooregor (1§12 +8) = ide. (A78)
Next we shall take aa component in Equation (A62). We then derive,
_ZegaT (|1l_’|2 + A) PT,ijD’)/ﬂ,jk + (_ (8351] - UZ,ijalz) - ZTInonl,au,ij) Dau,jk = i(sikéc- (A79)

Using Equation (A75), and taking the projection on transverse and longitudinal parts,
we find,

[— (a% - UTaIZ) - iHnonl,aa,T} Dya,1 + 4iegar (W’\z + A) Dregar <|ll3|2 + A) daa,r = 10c, (A80)
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and,
{— (8% - UL312> - iHnonl,aa,L] Da = idc. (A81)
Similarly the oo component in Equation (A62) is written by,
= (38 + %) = iThoonton.7| Dao,r + diegor (1§12 + &) Dregar (1§ + A ) doo,r = ide, (A82)
and,
{— (ag + Q%) - iHnonl,oo,L} Dy = idc. (A83)

Taking the aa component in Equation (A72) with Equations (A61) and (A245), using
Equation (A67), and taking the projection on transverse and longitudinal parts, we find,

Dao;r [~ (93 = 0307 ) — iTnontan.r] + 4idag regar (1§17 + &) Dregar (1912 +4) = icc, (A84)

and,
Dan | (3 = 010F) — iTontaat| = idec. (A85)

Similarly taking oo component in Equation (A72) with Equations (A61) and (A245), using
Equation (A69), and taking the projection on transverse and longitudinal parts, we find,

Doo,T {* (a% + Q%‘) - Z.ITnonLoo,T} + 4idoo,TegoT (|¢7|2 + A) DTegoT (|ll7|2 + A) = i‘sC/ (A86)
and,
Door [~ (9§ +0F) = Mnontonr] = ide, (A87)

Next we shall introduce Uyg,i;(x,Y), Uoo,ij(X,¥), Vaa ,](x y) and Vq, i(x,y) as,

= 4(eger)? (1) 2+ A" (x,2) ) Priedaaia () (16 0) 2+ A (4,9) ) Pr (A88)

= 4(egor) (1) 2+ A1 (x,%) ) Priedon i (x,) ([$() 2 + A (v, 9) ) Pry (A89)

= 4(egar)? (190 + A" (x,%) ) PrDua (x,y) (1) |2 + 8" (y,)) Pry (A90)

= 4(egor)? (1$(x) 2+ A" (x,%) ) Pr.acDia () (1§ ) 2 + A" (v, >)7>T,l]-. (A1)

We expand the Fourier transformation D;;(X, k) = [ d*(x elk(x=y )Di]-(x, y) by relative
coordinate x — y with X = x+y by,

kik; k; k
Djj(X, k) = (51']‘ 5% )DT(X k) + 32 Du(X k), (A92)

1_[nonl,ij(X/ k) by HT(X' k) and I, (Xr k)r Dua,ij(X' k) by Dtm,T(Xr k) and Daa,L (X/ k)/ Doo,ij(X/ k)
by Doo,7(X, k) and Do 1. (X, k), T140,i(X, k) by Tag (X, k) and Ty, 1 (X, k) and T1,,i(X, k) by
Hoo,T (X, k) and Hao,L (X, k) .

We take up to 1st order in the gradient expansion of convolution in Fourier transfor-
mation [108-112] as,

/d(x—y)e"k'("*y)/dzM(x,z)N(z,y) = M(X, k) op N(X,k)

d 2
= M(X,k)N(X,k) + = {M N}P+o<<ax) ) (A93)
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with the Poisson bracket,

_OM AN aM 9N

M N = Sprax, ~ axrop,

(A94)
Using the gradient expansion or derivative expansion for the center-of-mass coordinate
X = xzﬂ, we expand time-evolution equations by derivatives and can neglect higher-

order derivatives. Taking the matrix notation in the closed-time path, taking the Fourier
transformation in Equations (A70) and (A77), we can derive,

2(15(X) 2 + A(X, X "
<kz_e<|¢< )lnj ( >)_1.HLUZ> op DI — gt (A95)
_ be
2(1B(X) |12+ A(X, X
DIt op (kz_e (I ( )|nj (X,X)) —mm) -3 (A96)

with the Pauli matrix 0; = diag(1, —1) and a,b,¢ = 1,2 in closed-time path. Taking the
difference of above two equations, we can derive,

; {kz (PP + AKX X))

m ,Dic} = i[HLO'Z op DL — DL op O'ZHLTZC. (A97)
P

Similarly, using the Fourier transformation U,, 7(X, k) and U,, (X, k) given by,
2017 2 11 2 3 \?
umz,T(X/ k) = 4(egtlT) (|¢(X)| +A (X/ X)) dau,T(X/ k) +0 X , (A98)

2
Upor(X, k) = 4(eg,1T)2(|1/_J(X)|2—i—A“(X,X))ZdOO,T(X,k)+O<<£<> ) (A99)

we can rewrite Equations (A71) and (A78) by,

- b
A(|p)>+A ’
(kz - # — illr0oz + iUy, 707 + 1Uogo, 10 op D%“C = o7, (A100)

21512 be
e +4) . . .
DHTb °p <k2 B # — 10zl + 10 Uga,T + leUoo,T> = o7, (Al01)

Taking the difference of the above two equations, we find,

; { 2 _ CIPPLaX) DaTc}p

m

= i[(ITr — Ugq,r — Upo,1)02 0p D7 — D1 op 0 (IIr — Uge 1 — Upo 7)™ (A102)

In Equations (A81) and (A85), we can derive,
0\ _ 212 _; ;
[(k ) — 2K — znaa,m] opDpr = ics, (A103)
0\ _ 212 ;
Daa, op [(k) — 2k zaznm,,L] — oy, (A104)
Taking the difference of the above two equations, we find,

2
1{ (ko) - U%kzr ZZ,L} = i[[144,002 0p DyaL — Dy, op Uznaa,L]ac- (A105)
P
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Using the Fourier transformation V,, 7(X, k) given by,

) 2 9 \?
Vao, (X, k) = 4(egar)? (1§(X) 2 + A (X, X)) Dr(X, k) + 0 ( (ax) ) (A106)
Equations (A80) and (A84) are rewritten by,
2
((ko) - v%"kz - iHaa,TU-Z) op Daa,T + iVau,TUz op dua,T = 0y, (A107)
0 2 2 2 . . .
Dagrop ((K) = 0341 — i0lliyr ) + idag1 0p 0Vaar = icz. (A108)
Taking the difference of the above two equations, we derive,

2
1{ (ko) - U%kzr Z;,T} = i[Haa,TUZ op sz,T - Dﬂa,T op o-znua,T]aC
P
_i[vau,To'z op dua,T - daa,T op U'ZVaa,T]ac‘ (A109)
The oo components in Equations (A83) and (A87) are rewritten by,
0)2 2 :
(k ) — O3 —illyo1 02| 0p Dooy = ics, (A110)
0N\ _ 2 ,
Doo,1 Op {(k ) 03 - ZUZHOO,L} = o (A111)
Taking the difference of the above equations, we find,
2
i{ (ko) -3, gg,L} = i[1g0,00%z ©p Doo,. — Doo,L OP UzHoo,L]aC' (A112)
P

Using the Fourier transformation V,, 7(X, k) given by,

2
Vo r(X,K) = 4(egor)? (IB(X) P + A1 (X, X)) “Dr(X, ) +O<<£<) ) (A113)

the Fourier transformation of Equations (A82) and (A86) are written by,
2
((ko) - QZT - iHoo,TUZ> op Doo,T + iVoo,TUZ op dao,T = 10, (A114)
0 2 2 . . .
Doo,T op (k ) - QT - ZUZHOD,T + 1doo,T op Uzvoo,T = 10z. (A115)
Taking the difference of the above two equations, we derive,
; 0 2 2 ac : ac
i (k ) —OF, Dy 7 = i[llgo,70z ©p Doo,T — Do, 1 0P 021100, T]
P

_i[Voo,TUZ op doo,T - doo,T op 0z Voo,T]aC- (Alle)

Finally we investigate the Kadanoff-Baym equation for charged bosons in
Equation (A9) or,

i(Ao—l—i)A — b, (A117)

a(ing! —ig) = . (A118)
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We define the gauge-invariant Green'’s function G(x,y) [113,114] as,

Glr,y) = e Wt @py,y), (A119)
and self-energy,

efie fyx dzy AV (Z)i(

x,Y)
= —id¢ (x - y)zloc + Znonl(xr y) (A120)

Z(xy)

Taking the matrix notation in closed-time path, multiplying ey A Equation (A117)

with Equation (8), and taking the Fourier transformation [ d(x — y)e'” (=) of relative
coordinate x — y, we arrive at,

i(Go—l - z(rz) oG = i, (A121)
where,
i (p) = 1 = & — gur (Vi) ot (TsQ ) + 2807 (90 ) + 2001 (1), (A122)

and the generalized Moyal product o in [112] represents,

MoN = MN + %{M,N}, (A123)
with,
IMAN 9MOAN dM 9N 2 \?

with % = a%i' electric field E and magnetic field B. Similarly Equation (A118) is written by,

Go i(Go‘l - azz) = o, (A125)

Taking the difference between Equations (A121) and (A125), we arrive at,

2 ) . . ‘_
i{PO - fim — 8alL (VX,iQZL> — 8oL (VX,iQf,L) + 28,7 (PlQaT,i) + 2ot (Pl QoT,i) — Zijoc(X), G”b}
= i[Znont0% © G — G 0 0:Znon] ™, (A126)
with,
2
e
Tioc(X) = %Dii(xl X) 4 €841 (Day,1,ii (X, X) + Do 1,ii (X, X)) + €801 (Do, 1,ii (X, X) + Doo 1ii (X, X)), (A127)
derived from Equations (A51) and (A52). In Equations (A121) and (A125), we can derive,

(G (p) — Tioe(X) — Zr(X,p)|Gr(X,p) = —1, (A128)
{icgl Y — g, GR} _— (A129)

11

with retarded Green'’s functions Gg = i(G'! — G'?) and retarded self-energy X = i(Z]! | —

212

=)+ The solution of the above equations is given by,

-1
Gr(X,p) = —

1 : (A130)
ZGO (P) - z“loc(X) - ZR(X/ P)
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Since we can write Gg (X, p) = i(G!! — G'2) = ReGg + 3 p with the pure imaginary spectral
function p = i(G*' — G'?) and real G?! and G'? and g = ReXp + 3%, with the pure
imaginary spectral part in self-energy X, we can derive the solution of spectral function p
by taking the imaginary part of the above equation.

Appendix D. Proof of the H-Theorem

We shall introduce a kinetic entropy current in 1st order approximation in the gradient
expansion in our model, and show the H-theorem for 1-loop non-local self-energy in
Hartree-Fock approximation. We adopt the method given in [95-101].

We begin with the kinetic entropy current for charged bosons. Taking the 1st order in
the gradient expansion, we can write time-evolution equations for (a,b) = (1,2) and (2,1)
in Equation (A126) as,

{pO - gim — &al (vX,iQ—sz) — 8oL (VX,iQéL) +2guT (piQaT,i) + 2goT (piQ_oT,i) - Zloc(X)fGah}

—{ReZR, G“b} n {ReGR,Z“b} —y2gl2 _gayl? (A131)
where we have used ReXp = %(Z;}ml — 22 ) and ReGg = %(G11 — G??) with retarded

self-energy L = i(Xll | — 12 1) and Green’s function Gg = i(G'! — G!?). The above
equation has a similar form as [98,101]. Using the Kadanoff-Baym Ansatz G2 = § f
G?! = £(1+ f) involving the spectral function p and the distribution function f, 22 = %,
2! = %, (1 + 7) involving the spectral part of self-energy ¥, and the distribution function

7 for self-energy, and neglecting higher order terms in the gradient expansion, we can use,
f +0 9 (A132)
TTE\ax )

which is due to Z*G!?2 — G212 « f —q = O(aix) in Equation (A131). Multiply-
ing In % for (a,b) = (1,2) component in Equation (A131), multiplying and In % for
(a,b) = (2,1) component in Equation (A131), taking the difference of the two, and integrate

. o d4p .
with [ )= I Ty, We arrive at,

G2(X,p)
H — 212 X 21 X _ 221 X 12 X 1 4 Al
aVscb /P< ( IP)G ( /p) ( IP)G ( rp)) nG21(X,p)’ ( 33)
with the definition of kinetic entropy current for charged bosons given by,
P d " " p  9ReGg X,
s?b(X) = /p(((%‘ + %51” + % ((ZguTQ{ZT + 2goTQ{,T)P]‘ — ReZzz))) 7 + WT alfl, (A134)
with,
olf] = A+ f)In(1 + f) = fIn f. (A135)

Next we investigate the kinetic entropy current for photons. Using the relations (A97)
and (A102), and the Kadanoff-Baym Ansatz Dsz = —ipTfT, D% = —ipr(1+ fr), D}Jz =
—ippfr, D' = —ipp (1+ f1), I = —ill, pyr, 1IF = —ill, p(1 4 97), 1112 = =1, 1 f1,
H%l = *in,L(l + "YL)/ u;i]" = 7iup,au,T'Yua,Ur UZ;,T = *iup,aa,T(l + %m,u)/ u(}g,T =
_iup,oo,T'Yoo,Ur and ugng = _iup,oo,T(1 + Yoo,u), with pr = i(D%l - D%"z)r oL = i(D%1 -
Di?), My = i(TF = T12), T, = (17 = T112), Upan,r = i(Uzy ¢ — Up2 1), and Uy, =
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(Ugg r — Ul2.) where p or subscript p represents spectral parts of Green’s functions and
self-energy and f and < represent distribution functions, we find,

T~ YT ~ Yaa,u ~ Yoo,U (A136)
and,
fL~ L. (A137)

Using a similar method to the above procedure of charged bosons, we can derive,

1 D?(X, k)
Dusmotont = 5 (ME(XK)DF(X,) ~ T (X, K)DE(X,K) ) In pixy A1
and,
DF(X,k)
aVsphoton T — /k<H1T2(X' k)D%l(X’ k) - H%l(Xr k)Dsz(X/ k)) In ———+ ( )
12(X, k)
—/ U2 (X, k)D3 (X, k) — UL (X, ) DE(X,K) ) In ;(X 0
T 7
D (X, k
/(uooT(X,k)D%l(X,k) U2 (X, K)DR(X,K) ) In g br (X0, (A139)
DF' (X k)

with the entropy current for longitudinal and transverse photons defined by,

1 dRell 10ReDg I1
K — p_ ZOREVRL\PL | 2 ORELRL ZTp L
sphoton,L /k |:(k > aky ) i + 5 aky ; U[fL]/ (A140)

o _ / g LORe(llgT — Uagrr — UoorT) | P1
photon,T k 2 ak}i i
I, r—U, - U,
laReDR,T 0,T ua,;.),T 00,0,T U'[fT]/ (A141)
2 dky 1

Wil’;h gL = i(H“1 Hu)quR,L = i(D}' = D), lfllR,T :12(H1Tl —1I17), Drr = i(DY' —
DT )’ U’MIR,T = l(uaa T uaa,T)’ and UDU,R,T = l(uoo,T - uoo,T)'
Next we investigate a kinetic entropy current for acoustic phonons. Using Equa-

tions(A105) and (A109) and the Kadanoff-Baym Ansatz D;gT = —104a,Tfaa,T/ a;T =
—i0aq, T(l + faa,T) ;liL = lPau,Lfaa L, [2,; L= —104a, L(1 "‘faa L) agT = duap TYd,aa,Tr
dﬁ T = _idaa,p,T(l + ')’d,aa,T)r H;iT = 1Huap TYaa,Ts Ha; T = lnaap T(l + Yaa, T) HaﬁL =
IHaﬂ,p,L’)’au,Lr H%,L = —ill,, .0, L(l + ’Yua,L)r ValuzT = 1Vau,p,T’Yaa v, and Vazal,T = IVua,p, (1 +

Yaa,v) With Paa,T = (DaZ;T - Dula T) Paa, L = (DZ;L - D;u L) daﬂp T = '(d% T d}j T)
Hagpr = (Hﬁ T H% 1) Hagpr = (Hﬁ L~ Hg 1)sand Voo = Z(VazalT - Valaz r) Where

p or subscript p represents spectral parts of Green’s functions and self-energy and f and
represent distribution functions, we find,

faa,L ~ Yaa,L, (A142)
and,
faa, T ~ Yaa, ) Yaa,v ~ Yd,aa, T/ (A143)

and we also find,

Yaa, T ~ Ydaa, T, (A144)
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by Equation (A65). Using the relations (A142)—(A144), and adopting a similar procedure
in Equations (A105) and (A109) to the procedure we adopted for charged bosons, we
can derive,

P) H (X, k)DZ (X, k X, k)D'2, (X, k 1D”“'LXk A145
P‘SaL_z HaL ) auL( ’ )_ ﬂHL( ) aaL( ’ )) 7}( ( )

and,
,T
aﬂsg,T = /(Haa T(X k)Dzm T(X'k) - ua T(X k) aa, T(X k)) In ————

21 Daa,T
7/( aa, T(X k)dau T(X k) aa T(X k)dmz T(X/k)) In Dﬂi’ (Al46)

where the entropy current for longitudinal and transverse acoustic phonons is defined by,

: ; 1 dRell 1 0dReD IT
iz _ 0 sH 200k L aa,R,L \ Paa,L aa,R,L aap, L
(X)) = /k[(k o+ ek - 5 ) R } olfuat], (A147)
; 1 dRel1 1 dReD, IT
I 0gH 2 1isH aa,R,T \ Paa,T aa,R,T Ylaap,T
X) = 2 k%5 kKol — = -
Sa,T( ) /k [( 0 + UT i 5 aky ) l + > aky l

1 /ReV, d dRed V,
( €Vaa R T YanpT €4aa,R,T WPT>‘| O'Uau T] (A148)

T\ Tk, ok,

Next we investigate a kinetic entropy current for optical phonons. Using Equa-
tions (A112) and (A116) and the Kadanoff-Baym Ansatz DOO T = —1000,T foo,T Dgg,T =
lPoo,T(l +f00,T)/ 3§,L = 1P00,Lfoo,L/ gglL = _IPOO,L(l +foo,L)/ d%ng = _idoo,p,Tr)/d,oo,T/
dgng = *idoo,p,T(l + r}’d,oo,T)f Hgg,T = 7iHOO,p,T,YOO,Tr H%,T = *iHoop T(l + Yoo, T)r H%L =
_iHoo,p,L')’oo,Lr Hﬁ, = iHoo,p,L(l + 'Yoo,L)r Voloz,T = iVoo,p,T'Yoo,V/ and VozolT = iVoo,p,T<1 +
’Yoo,V) with po 7 = (Dgg T Dgg,T) Poo,L. = 1(D§3 L~ D%?,L)/ daa,p, (d(Z;g,T - dtlnzy,T)/
oop,r = i(I035 7 = 1150 1), Moo = i(T135;, —T1g0 1), and Voo = i(vozol,T — Voor) Where
p or subscript p represents spectral parts of Green’s functions and self-energy and f and -y
represent distribution functions, we find,

foo,L ™~ Yoo,Ls (A149)
and,
foo,T ™~ Yoo,T, Yoo,V ™~ Yd,00,T (A150)
and we also find,
Yoo, T ™~ Yd,00,T (A151)

by Equation (A68). Using Equations (A149)-(A151), and adopting the procedure in
Equations (A112) and (A116) to derive the divergence of the entropy current, we arrive at,

Dy (X, k)
I/‘SoL - 2/ ITooL X k DooL(X/k) - ooL(X k) ooL(X k)) -

D21

—ooL 7 (A152)
00,L (X’ k)

and,
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sy = [ (HE2r(X0D3 1 (X,K) ~ T2 (X, KD (X)) In 5820

D
/ (XL (X, K) = Ve (X, a2 (X, k) ) In S0, (A153)

where the entropy current for longitudinal and transverse optical phonons is defined by,

1 oRell 1 0ReD IT
H — Ot _ 1 00,R,L '\ Poo,L 00,R,L “Loop, L A154
SO,L(X) /k |:(k 60 2 akﬂ ) i +5 2 aky :| [foo L] (A154)
1 dRell 1 0ReD, 1T
W _ ogn L 00,RT \ Poo,T | 1 00,R,T 11o0,0,T
srx) =2 [(k % "3 ok, ) L

d V.
1<ReVOO,R,T vopT  ORedgorT 00PT>] ool (A155)

o\ Tk, ok,

Next we shall write self-energy derived by differentiating Equations (A53)—(A57), and
Uz, 1(X, k), Upo 7(X, k), Vag (X, k) and V,, 7(X, k). Using Equations (A98), (A99), (A106)

and (A113), we find,
) 2
Usr(X, k) = 4legar 2<|¢ 1P+ / (X,p ) a7 (X (A156)
) 2
Uog,r(X k) = 4(egar 2<|¢ |2+/ (X,p ) (X (A157)
) 2
Uo,r(X,k) = 4{egor 2(|¢ I+ / (X, p) Aog,7(X (A158)
uoo T(X/k) = egoT 2<| |2+/ X P > doo T(X/k)/ (A159)
with the statistical function F(x,y) = w and its Fourier transformation

E(X,p) = [,e" 0 DF(x,y), and,

2
Varr(X, k) = 4legar)? ( 1P(X)* + / Xp>D2 (A160)

2
Vinr(X,K) = 4(egar Z(Il/? |2+/ (X, p) D7 (X (A161)
2
VooT(X,k) = 4(egor 2(| |2+/pp(x p ) DX (X, k), (A162)

Vals(0k) = e (19007 + [ F(X,m) DR(XK.  (Al63)
The Uaa (X, k), Upo,7(X, k), Vag (X, k) and Vo, 7(X, k) terms represent phonon—photon

exchange via charged bosons. Using the Fourier transformation of self-energy, we arrive at
the self-energy for charged bosons,

22(X,p) = 22X p) +2D2X, p) + 20X, p)

+Z(f)f12(X, p) + );(g)JZ(X’ p) + s (h), 2(X,p), (Al64)
=X, p) = ZONX p) + 22X, p) + 2O (X, p)

+y021 (X,p) + ¥(g).21 (X,p) + 3 (h)21 (X, p), (A165)
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the self-energy for transverse photons,
R2(x, k) = 192X k) + 192X, k) + 112 (X, k) + T2 (X, k), (A166)
12 (x, k) = 192X k) + 192 (X k) + 1182 (x, k) + T2 (X, k), (A167)
the self-energy for longitudinal photons,
M2(X,k) = 92X, k) + 1182(x, k), (A168)
2 (X, k) = 9% (X, k) + 1182 (X, k), (A169)
the self-energy for transverse acoustic and optical phonons,
A2 h),12
(X, k) = H:Ei?T (X, k) + H{Sa,)T (X, k), (A170)
21 h),21
2 ,(Xk) = T2k + 12 (X, k), (A171)
. h),
2Kk = TSRk + 52 (X k), (A172)
, h),
(XK = Tk + 11,7 (X k), (A173)
the self-energy for longitudinal acoustic and optical phonons,
M2, (X,k) = I02(XK), (A174)
2 (xk) = 17 (xk), (A175)
2, (xk) = 1), (A176)
2 (x, k) = 107 (k). (A177)

Differentiating Equation (A53) by Green's functions as £(x,y) = %% and II(x,y) =

8ily
6D(y,x) .
the relative coordinate x — y with [ d(x — y)e?"(¥=¥) x, we can derive the self-energy for
charged bosons,

with X(x,y) = ety dz"Aﬂf}(x,y), and adopting the Fourier transformation of

e? .k 2 K2 — 2P .k 2

o /k,l Sk1-pGP2(1) l‘l (pz - (pkz) )Dsz(k) + %D{z(k) , (A178)
(32 .k 2 k2 _ ZP Kk 2

_m /k,l ‘5k+l—p621(l) [4 <p2 _ (ka ) )D%l (k) + %Dil (k) , (A179)

where 0, = (27r)*6*(k 4+ 1 — p) and we have omitted the variable X, and we can derive
the self-energy for photons,

. 2 . k)?
NPRm = g | G (pz - (Pﬂ(z)> GR(pGP (1), (A180)
. 2 k)2
M0 = g [ ey (pz - (P}(z)> Gl (p)GR(), (A1)
. &2 12 —2p-k)’
1?2 (k) T2 / ,‘Skﬂp(kz)G”(p)Gﬂ(l), (A182)

c ¢ K2 —2p-k)?
I (k) /p , PR L. 2L e T tecTh) (A183)

k2
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The label (c) corresponds to diagram (c) in Figure 1. We find the convolution between
Green'’s functions for charged bosons G'2(I) and photons Di?(k) (and D}?(k)) in
Equation (A178). The self-energy in Equations (A178) and (A179) represents the inter-
action between charged bosons and photons.

Differentiating Equation (A54) by Green’s functions and using the Fourier transforma-
tion, we can derive the self-energy for charged bosons,

2

Z(d)’lz(p) — 42 fk,l Sevi—yp ((gaTQaT +goTQoT)2 _ (k'(gaTQ:ﬂi:ngoTQaT)) )Glz(l)D%z(k), (A184)
2

Z(d)'21(p) — 42 fk,l 5k+l—p((8uTQaT +goTQoT)2 . (k~(gaTQaTk-2FgoTQoT)) >G21 (l)D%l (k), (A185)

the self-energy for transverse photons,

. 2

Hgd),lZ (k) — *262 fp,l 5k+lfp ((gﬂTQaT + goTQoT)Z (K (gaTQaTi:ZFgaTQoT)) )G12(p)G21 (l)[ (A186)
. 2

I L T ((gﬂgﬂ + gorQor)? — (81 Qa1 Q) )Gﬂ (P)G12(1). (A187)

The label (d) corresponds to diagram (d) in Figure 1. We find the coupling between
charged bosons and photons with coherent transverse acoustic and optical phonon fields
Qir = QaT] and Q,r = QOT]Withj =1,2,3.

Differentiating Equation (A55) by Green’s functions as %(x,y) = % 3 A‘Sg ok and multi-
plying e /v 54" e find,
Sy) = S0, (00, Gl Dl (1,) + 94 (2niGlx, )DL £ (5,9))
8y, (G Y)D 1(1,%) ) + (9594, G (x,y)) DYy 1 (x,v)
(B0 G (X, 1)) Dy (4, %) + 23y, (G (x,y) Dot £ (x,9))
010G (x, 1)) DL £ (4,%) ) + 3 (3G (x,y) D, 1 (x,) ) | + (2 0), (A188)

Fourier transforming by the relative coordinate x — i and using D’ oo, (K) = (51] k{(’f ) Dy, 1(k),

we arrive at the self-energy for charged bosons,

kik;
O = g / Seri—p(pi 1) (pj + 1) 51]‘1:2]>G12(1)D33'T(k)

G'*(1)Dy3 7 (k) (A189)

G (1) D3 1 (k). (A190)
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We also find the self-energy for transverse acoustic phonons,
R0 = <2gir [ by (v - (kk2>) GH (G (p), (A9
mOP W = 2 [ dey (v - S Joracte), @)
and the self-energy for transverse optical phonons,
k) = —2¢% / Skti—p (p - (kkz)) G2 (G2 (p), (A193)
P W = 26 [ sy (v - S JoRracne. @)

Here the label (e) represents the diagram (e) in Figure 1.

Differentiating Equation (A56) by Green’s functions, we find the self-energy for

charged bosons,
§ht [ 0GR LK)+ [ e kG L(B)

83L/kl5k+lfpk2(321(l)D§;, (k) +80L/ Ser1—pk* G (1)DZ 1 (K),

and the self-energy for longitudinal acoustic and optical phonons,

') = =gl [ der WG OG()
HE' () = g [ der WGR0E ()
IR0 = gl [ 8 G GR(p)
IOE0) = ~gh [ 8 G 0E )

The label (f) corresponds to diagram (f) in Figure 1.
Differentiating Equation (A57) by Green'’s functions as £(x,y) =

2 JA(y x)

(A195)

(A196)

(A197)
(A198)
(A199)

(A200)

Oy with Z(x,y) =

- z . . . . .
ey A”Z(x, y), and Fourier transforming with relative coordinate x — y, we find the

self-energy for charged bosons,

SO = GO0 [ dponica | (1+ S ) DP@DR
+(1- 99 (bF@ 0w + DP()DF®)
9 DR@DER|,

SO = B0 [ byeaic| (14 L ) 0R@)D

(A201)

(A202)
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with eA representing e( A¥ — 9¥B/e) appearing in self-energy as the factor,
e B G ) ~ (a0 PO AP ), (A203)

with §(x) = eP®)|p(x)| and §*(y) = e~ PW) | (y)| involving the phase B(x) of §(x), and
we can derive the self-energy for transverse photons,

4 2
()12 e 2 (q-k) 12 12 21/
) = g0 [ gy | (14 G ) DR @) (60 + o) + G (—po+en)
. (Cl'k)z 12 12 21/
1 Tqae ) Pr (G (p+eA)+ G (—p+ed))|, (A204)
4 2
()21 e 2 (q-k) 21 21 12/
) = s lBF [ gy | (14 G ) DF () (¥ (p+ ) + 6P (p+e)
. k)2
(1= 1)@ (G p o)+ G(—p+e) |, (A205)
the self-energy for longitudinal photons,
4 2
()12 _ e o0 _(Q'k) 12 12 21/
mP k) = ——|j /p,q(sk_q_p[(l per )DT (9)(G2(p+eA) + GH (—p+eA))
. k)?
+(212k2) DP(g)(G™2(p +eA) + G*(~p +eA)) |, (A206)
4 2
()21 _ e o0 _(Q'k) 21 21 12/
Ik = il /p,q(sk_q_p[(l per )DT (9) (G?(p+eA) + G(—p +eA))
+(q'k)2D2l( )(G*(p+eA) + G2(~p+ea)) (A207)
q2k2 L \9 p p .

The label (g) represents the diagram (g) in Figure 1. We find the convolutional integral
for Green’s functions for charged bosons with momenta p shifted by =eA and Green’s
functions for photons. The self-energy labeled by (g) represents field-particle conversion
processes where coherent charged boson fields coupled with incoherent photons decay into
incoherent charged bosons.

Similarly, differentiating Equation (A58) by Green’s functions, we can derive self-
energy for charged bosons,

_ -k)?
M2 (p) = —4(egar)2[P(X) /kqépmkq(w(i‘lz ) )D%%q)D;Z,T(k)

)2
~egor POOP [ 0y-ancsey(1+ 19" ) DR)DE £ (8, (A208)

_ )2
ENAG) = —alegur OO [ byeasg(1+ L) DR 0)D2L 0

- k)?
e IR [ p-enicq (14 S DR )DL (6, (A209)

the self-energy for transverse photons,
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G2(p+eA)+ GH(—p +eA)

)2)Du

qzkz aa,T

2
2(egot) |¢|/5kqp(1+ qa’k 2)
2
P2k = —2(egar)l§P / Ok~ P(H 2)) Dae

qa’k
_ . k)2
2(egoT)2|1p|2/pq(5kqp(l+ (‘;Zkz) )Dgng(q)(Gm(ereA)JrGu(p+eA) ,(A211)

020 = 2egar 9P | gy

Gl (p+eA) + G2(—p+eA)

() (" (p+ea) )

D2 7(0) (G2 (p+eA) + GV (—p+ea)),  (A210)
(9)(G*(p +e) )
)

the self-energy for transverse acoustic phonons,

o k)2

) = 2eq 9 [ agop (14 0G| DR@)(GR0+ed) + Gl pren)), (a2
_ k)2

P W) = <2Aegar PR [ oigy (14 S ) D @ (U0 ea) + GBpren)), a1y

and the self-energy for transverse optical phonons,

_ - k)?

) = 2eqr 8 [ dgop (14 G ) DR @) (G2 +ed) + Gl pren)), a2ty
_ - k)?

W) = <2Aesar PR [ ogy (14 D ) DH @) (P10 ea) + GBpren)). (a9

The label (h) corresponds to diagram (h) in Figure 1. The self-energy labeled by (h) repre-
sents field-particle conversion processes where coherent charged boson field coupled with
photons and phonons decay into incoherent charged bosons.

Finally taking the sum of Equations (A133), (A138), (A139), (A145), (A146), (A152)
and (A153), defining s#(X) as,

st = S?b + Sghoton,L + Sghoton,T + SZ,L + SZ,T + S(PJI,L + Sf;,T’ (A216)
and using self-energy we arrive at,
ous = (PP) + (Dia(c)) + (Dia(d)) + (Dia(e)) + (Dia(f)) + (Dia(g)) + (Dia(h)) >0, (A217)

We can express,

2 D12421
T Drdza,r
vp) = e (1900 + [ F) [ (DRl - D3l r) n
T "aa,T
D242
Fategor 2(1BOOF + [ F) [ (DPy — D3al3s) n pRST > 0 (a218)
T “oo0, T
: Dlar (14 faq,) 44,00,
since (x — ) ln > 0in x,y > 0. Here we have used In D‘{‘; =In 7 ”; ~ In ——2Es =
9a,T aa, aa,
421
In d;‘gT with Equations (A143) and (A144) in 1st order approximation in the gradient

aa,T
expansion. The remaining terms in Equation (A217) are,
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(Dia(c))

(Dia(d))

(Dia(e))

(Dia(f))

(Dia(g))

(Dia(h))

v

Y

2 01 n)?
o e BB (620067 007 () - 7 (6P DF )
G2(p) G2 (1)D3! (1

G2 (p)G2(1)D}(k)
e

)2
iz [, et (#7 = ) (GR0)GH DR ) - 62 ()62 D)

G12(p) G2 (1)D3 (k)
G (p)G2(1)DE (k)

2

X In

(A219)

(k . (gﬂTQaT + goTQoT))2>

l 5k+l p gaTQaT+goTQOT - K2

G
(Gl% )G DR (k) = G (PGENDF®) In G e i

0, (A220)
(k-p)?
2gar e Okt1-p <P %

% (6™ (p)GH (1D 1(K) = G* (p)G1(1)Dg2 1(K) ) In

G'2(p) G2 (1) D21 (k)
G?1(p)GT2(1) D2, (k)
0, (A221)

2
% L, desii (GG DR () — G (p)GR() DI ()

- GR(p)GH (1)D2, (b
P (p)GEDE, (k)

4 2
AP AV] (q-k)
m |IIJ‘ /p,k,q 5pfeAfqu (1 + q2k2

% (DP(K)DF (9)G* (p) = DF ()DF (9)G™(p) ) In

4 k
%|¢| / p eA—k— q( illzkz) >

«(DEWDR()C () — DF (D3 ()G 2(p) ) 1n %

+(a—o)

(A222)

et o (q-k)?
gl [, ook g
DI2(k)D}2(5)G? (p)
D12 k D12 G21 _D21 k D21 G12 1 L L
«(PE®DE @G (p) = DF (RDE ()G () ) In T otz
0, (A223)

k
egor P10 [ byenrg (110 )

DF (k)Dazr(9)G* ()
DF (k) Dgg (1) G (p)

x (DR (k)DE2 1(9)G? (p) — DF (K)D2 1 (9)G™(p) ) In

+(a = o)
0, (A224)
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where we have used D¥?(k) = D3'(—k), Di?(k) = D?'(—k), D%,T(k) = D%;,T(—k),
D2, (k) = D21, (=k), D@2 (k) = D3} (—k), and D} (k) = D3} (—k), and (a — o)

aa,L 0o, T 00, T 00,L
represents changing subscript ‘a’ (acoustic) to ‘o’ (optical) in the previous term. We have

proved the H-theorem in Hartree-Fock approximation for Kadanoff-Baym equations in 1st
order in the gradient expansions. Entropy production in Equation (A217) stops when,

fp) = . , (A225)
1

pO—pe
e T

with temperature T and chemical potential ., and,

Fr(6) = LK) = fuur(®K) = fuar(6) = foor (k) = foor (k) = ——,  (A226)

eT —1

are satisfied. In addition, due to Equations (A223) and (A224), the chemical potential . is,
0
e = e<A0 — af) (A227)

Appendix E. Self-Energy in Kadanoff-Baym Equations

We write local self-energy and statistical and spectral parts in nonlocal self-energy for
Kadanoff-Baym equations.
The local self-energy for charged bosons is given by,

2
EoclX) = 5 [@Fr(X,0)+ FL(X,K)

—8(egar)” /]{(Redau,R,T(er)FT(X/ k) + daa,r,7(X, k)ReDg (X, k))

—8(egor)? /k(Redoo,R,T(X, k)Fr(X, k) + doo,r,7(X, k)ReDg 1(X, k)), (A228)

for diagram (a) and (b) in Figure 1 where we have used,

e§ar(Daar1ii + Dayrril) = —8(egar)? /k (Redyq,r TFr + daa,r TReDR 1), (A229)

e80T (Do r1ii + Doy rrii) = —8(egor)? /k(Redoo,R,TPT"‘doo,F,TReDR,T)' (A230)

Statistical part and spectral part in nonlocal self-energy for charged bosons are,

() = )+ +29p) + 20 () + 28 (n) + =M (p),  (a231)
() = 2@+ +2 )+ =P () + 28 () + 2 (p),  (A232)

with the self-energy for diagram (c) in Figure 1,

2 . . 2 _
S R /k[4(p2—(kk§’) ) (tp—0ri + R Er(0)
+(k2 _lfzp-k)z <F(p—k)FL(k)+ip(pi_ )le(k>>‘|, (A233)
>, N2
= (p) = —;nz/kl‘l(Pz—(kkf) )(p(P—k)FT(k)+F(P—k)pT(k))

o (p(p —K)FL(k) + F(p —k)pL(k))], (A234)
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the self-energy for diagram (d) in Figure 1,
d 4e? (Q k) Lp(p —K) pr(k)
) = - (QZ— ” )(F(P—k)FT(k) + 2= ) (A235)
40 ([~ Q - k)?
200 = -2 [(@ - Ca ) et -0+ Ko - 0pr(h), (A236)

S8 (pted) = —

28 (p+ed) =

m2

with definition Q; = m(g,7Quti + 07Qo7.;), the self-energy for diagram (e) in Figure 1,

1 1

i (5~ P (p Rty 1P D e D),

1 1

- —4g§T/k<p2 - (plj)z) (F(p — Kk)Fao,r (k) + %p(’” —k) p““'ﬂ”)

L 1c)2
= 1 (2~ ) 0lp — s () 4 F(p — K)punr ()

)2
—4g5 /k <p2 - (pk;() ) (0(p = k) Foo,r (k) + E(p = k)poo,r (K)),

the self-energy for diagram (f) in Figure 1,

1 —k aa k
= (p) = —gﬁL/k kZ(F(p_k)P“”'L(k>+4p(pi )P ,lg()

_ggL /k k2 (F(P — k)Foo,L(k) + zlzp(p _ k) poo,lj(k>

29() = & [ K(e(p —BFun (k) + F(p = Do (k)

21 [ 1¥(p(p — DFao L (K) + F(p ~ B)pun, (),

the self-energy for diagram (g) in Figure 1,

p— k)ZkZ

2
i (Fﬂp—km(mim(ﬁk)m k>)

) (
2
+<1—((p:)£11§z)> (FL<P_k)FT(k)+ Lop=H) pTl(k))

4 1 1

4 i
(o1 K7 (FL(p Rk + 2220 ”L(k))]

1 1

€4 - - i §
sl | (1+ B rto - 6+ 51— o)
2
+<1 - el ><pT<p COE®M) + Fr(p— RpL(K)
— . 2
+<1_ (((1;_11‘())211:2) >(pL(p k)Er(k) + FL(p — k)or(k))

the self-energy for diagram (h) in Figure 1,

(1 n (((p —k)- k)2> (FT(p K Ep(k) + 2P = K) pr(K)

)

)

)

(A237)

(A238)

(A239)

(A240)

(A241)

(A242)
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2 (p+ed) = —a(egar)?P2 [ | (1+ 4 zk2> (p—K)E, m(k)+1”“;"‘”’%?("))]
4(egor) |1,L’|2 k <1+ = kzkz) T(p —k)F, OOT(k)+iWW>‘|’ (A243)
2 (p+eA) = —4legar) 912 J, (1+<p kzkz) (or(p — k)F M<k>+FT<p—k>pm,T<k>>]

—4(egor)*[917 Ji

(1+ =8 ) or(p — o (6) + Frp - k)poo,ﬂk))] L (A
Next we write local self-energy for photons. It is written by,
2
Me(X) = & [ FXp). (A245)
mJp
In Kadanoff-Baym equations for photons and phonons (21), (22), (25) and (26), we use,
Uaor7(X, k) = 4(egar)? <|1/3<X) *+ / F(X,p) | daarr(X,k), (A246)
uaa,p,T (X/ k) = 4(egaT)2 dau,p,T(Xl k)/ (A247)
UOO,F,T(X/ k) = 4(680T)2 |¢(X)|2 + /P F(X/ p) dOO,F,T<X/ k)/ (A248)
uoo,p,T(X/ k) = 4(egoT)2
Fr(X,k), (A250)

Vaapr(X, k) = 4(egar)? or(X,k), (A251)

)

( )

( )

(|¢<X>|2+ /p F(X,m)zdw,p,ﬂx,k), (A249)
Varr(X0) = alegar)(IFCOP+ [ F(x,p))

( )
Vurr(X) = dtegor?(19COP + [ FX,p) ) Fr(X,b), (A252)

2
Voopr(X,K) = 4<egoT>2(|¢<X>|2+ / F(X,m) pr(X,K). (A25)

We also use statistical and spectral parts in the self-energy for photons given by,

Mer(k) = TIER(K) + T + IG5 (6) + 118 &), (A25)
Mpr(k) = Tk + T (k) + 118 (k) + T (k), (A255)
Hep(k) =TI (k) + 1) (k) (A256)
() = T (k) + 118 (k), (A257)
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2m?

- 2m?

the self-energy for phonons given by,

aaPT k
aapT k
ooFT k
oopT k
g r,1 (k

aapL k

ooFL k

(k)
(k)
(k)
(k)
(k)
(k)
(k)
(k)

oopL k

Statistical and spectral parts of self-energy for photons for each diagram are,

22 ) (P -+ 0F() -

k )(p<p+k>P<p>—P<p+k>p<p>>, (A267)

for diagram (c) in Figure 1,

for diagram (d) in Figure 1,

2m2|l/) ) /

-p))?

K(k-p)?

_p(=p+eA)

lplpth)p (l )) (A266)

G
-

-~

) (Fr(k —p)(F(p+eA) +F(—p+eA))

i

2 ) (FL(k —p)(F(p+eA) +F(—p+eA))

_p(=p+eA)

64 _
o PP |

+Fr(k—p)(o(p+eA) —p(—p+ eA)))

i

(k (k -p))°

)2

p) ) (pL<k—p><F<p+eA> L F(—p+eA))

+FL(k—p)(p(p+eA) —p(—p+ eA))> ’

for diagram (g) in Figure 1,

) (pr(k —p)(F(p +eA) +F(—p+eA))

(A258)
(A259)
(A260)
(A261)
(A262)
(A263)
(A264)
(A265)

(A270)

(A271)
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P k) = —2(egar)2[H(X) 2 /p ( (ka P)(E(p+eA) + F(—p+eA))
1Pua,T(kP)( (P+€A P+€A >
+ .
4 1 i

(k —
~2esor P10 [ (14 S =B <ka PIF(p+eA) + F(—p+eA))

+ipm(k P)(p(P+eA p+eA) (A272)
100 = ~2egur?FO0F [ (14 S5 8B (gt p) (E(p-+e) + E(-p +e)
+Faar(k—p)(p(p +eA) - P+6A )
~2(egur (X |/(1+ kz“ 2 )pmk PIE(p+eA) + F(—p-+eA))
+Foo,r(k—p)(p(p +eA) —p(—p +eA)) (A273)
for diagram (h) in Figure 1,
2 2 1) 2
o =~ [ () - JEEER D),
2 2 1) 2
W = o [ S iy 0EG) - Fp-+ 060, (a274
6‘4
n&w = P /[(1—1(251‘(‘;”) (H(k P)(F(p+eA) + F(—p+e)
Lor(k—p) (p(p+eA) p(=p+eA)
1 ( P ))
. _ 2
—i-(ll((z((ll:_pp))z)(FL(k—p)(F(p—i-eA)+F(—p+eA))
RVAS) (p(ptem _elps eA))) ,
A (K — )2
K = sl [ [(1—“{(2((1‘(‘_;)2) (pT<k—p><F<p+eA>+F<—p+eA>>

+Fr(k—p)(p(p+eA) —p(—p+ eA)))

(k- (k—p))?

Kk—-p)2 (m(k —p)(F(p+eA) + F(—p +eA))

(A275)

+FL(k—p)(p(p+eA) —p(—p+ eA))) :

Here we find that statistical parts of self-energy of photons are symmetric for k — —k,
while spectral parts of self-energy of photons are anti-symmetric for k — —k.
Statistical and spectral parts of self-energy for phonons are,
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. 2
ke = =gt [ (9= gl ) (P p() - 25000, (4276)
. 2
Mgy r() = —2g§T/p<p2— (pk;() >(P(P+k)F(P)—F(P+k)P(P))r (A277)
R . 2
ner(k) = —2egur)lol” <1+((‘1‘<_‘;)2‘;)2) [FT<k—p><P<p+eA>+F<—p+eA>>
%m(ki— P)(p(PJ;eA) _p(—PZ%eA)) , (A278)
— . 2
0,00 = ~2Aegur P19 | <1+((‘;_‘;)2‘;)2) [pT<k—p><P<p+eA>+P<—p+eA>>
+Fr(k—p)(p(p+eA) —p(—p+eA))|, (A279)
for diagrams (e) and (h) in Figure 1,
. 2
00er() = ~2¢ir | (pZ—(pkl‘ ) )(P(wk)F(p)—i” vt k“ip)), (A280)
. 2
) = =263 [ (82~ P ) (oo () = Fp-+Rp(r), (A281)
J— . 2
I0er(k) = —2eger)l9P [ <1+((‘1‘<_‘;)2‘22) Fr(k—p)(F(p+eA) + F(—p +e))
+im(ki— p)(ﬁ(pteA) _p(—PlfeA)) , (A282)
J— . 2
1,1 (k) = —2(egor)?Il? /p (HM) pr(k—p)(F(p+eA) + F(=p+eA))
+Fr(k—p)(p(p+eA) —p(—p+eA))|, (A283)
Hre) =~ [ 1@ (Fip-+RE(p) - 3 2R, (A284)
m, 0 = —g /p 12(p(p + k)F(p) — F(p +K)p(p)), (A285)
Mest) =~ [12(F+r() - 2EREL), (A256)
k) = —g /p 12(p(p + K)F(p) — F(p + k)p(p)), (A287)

for diagram (f) in Figure 1.

Appendix F. Derivation of Time-Evolution Equations for Coherent Fields

We can derive time-evolution equations for coherent fields as follows.
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Using Equation (A4), time-evolution equation for |((X)|? is,

WlpP = a0 [ (Wﬂmmcmaﬂﬂf(”)
—L(P(P)Zﬁg)ih)(p) - p(f)z(pg)+(h)(;ﬂ)), (A288)
where we have used the relation,
Re(;lﬁ*?gi —éll"irl;) = —304<WF(P)+ReGR(p)W>
—/p(P(P)ZégH;h)(p) - p(f)zfcg)+(h)(r7)), (A289)

in Equation (A4) due to similar calculations to Appendix in [101]. Due to Equations (A2)
and (A3), we derive the constraint of A° as,

e<A0_aoﬁ> _ & (Ai_ai/5>2+26;1/k(2FT(k)+FL(k))

e % e
S ~ (a4 9B
+2e(gaTQaT,z + goTQoT,z) iT

481 (Doa r,1,ii + Dan,F,T,ii) + €80T (Doyo,r,T,ii + Don,F,Tii)

1 (1 oT, 1 5r2>
sl +t==) (A290)
2\poypr ¢ o
where we use Equations (A229) and (A230), and the relation,
1/16T, 160\ et
3 (#—](5#—]* + 1,!7*(51,5) = —.2 /p(ReGR<P +eA)Pp(p) + F(p + eA)RePr(p))
~8(egar)? [ (ReGr(p +eA)Prar(p) + F(p-+ eA)RePyo(p))
—8(egor)’? / (ReGr(p +eA)Pyo,r(p) + F(p +eA)RePyor(p)), (A291)
p
with definitions,
2
PP (x,y) = (D?jb(x,y)) , (A292)
Pit(x,y) = D§y(x,y)Dieri(x,y), (A293)
Pio(x,y) = DFy(x,y)Digri(xy). (A294)

_ap

e

Ch WP\ _ P4 B\ _e [
a(x(])z(Aie> = *a|¢| (Ale) *a/pPzF(sz)
16T,

_23<gaTQaT,i+goTQ_oT,i)<|1/_7|2+ /p F> — 5 5ar (A295)

Using Equation (A1), time-evolution equations for photon fields A; are written by,

with,

i PReZ I (p) AT ()
25Ai »

ReGR(p)> . (A296)
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The relations (A5)—(A8) are rewritten by,

azQaL,i
FEoa 0, (A297)
02Qur,i ;B 1 0T,
a( H) d +2€gaTW)’ <A — €> +2gaTPTl] / P]F+ 25Ql =0 (A298)
Qo1
a0y T Qi = 0 (A299)
2Qori B 10Ty
5 (xg); +03Q,r +26g0T( — 1> + 2807 Pr,ij / piF + 5 5 = 0, (A300)
where the subscript “T” represents transverse part and we use Pr;; = ((517 —0;9;/ 8%)
and relations,
1 5r2 2 = = —_ —_
250 —4e*8,1(8a7Qar,j + 801 Qor,7) p(Re':‘R,ij(P)F(P) + Er,ij(p)ReGr(p)), (A301)
aT
16T - _ _ _
3 5Q'i2 = —4¢°¢o7(3arQur,j + 801 Qot,j) /p (ReZg ij(p)F(p) + Erij(p)ReGr(p)), (A302)
oT
with definition,
Eij(x,y) = G(x,y)Drii(x,y), (A303)
= 1 —k k kik;
2ep) = [ (Fp-0r -+ 2RI (6, D) asow
Jk 4 1 1 k
kik;
Epii(p) = /k(P(P — k)Fr(k) + F(p — k)pr(k)) <f5ij - 11(2]> (A305)

Appendix G. Conserved Energy Density
The energy density in spatially homogeneous case is written by Etot = Econ + Eqf +

Epot,loc + Epot,nonl-
We can write each term by,

For = (a4 ) 5 Lgr(a - 22)

1 - - _ _
+3 ((aoQuT,z‘)z + (90QaLi)* + (20Qor,)* + (90Qo1i)* + QF Q0 + Q7 Q2 1>
- - 0; _
+2e(8a1Qar,i + 801 Qor,i) (Ai - f) Vi (A306)
_ 0 0\2

EPot,loc = S(EgaT)2<|lP|2+/F>< )/ ReduaRTFT“‘duaFTReDRT)
p

+8(egor)? <|ll_]|2 + /p ) ( > (Redyo,r, 7FT + doo,r,TREDR T)

- </k(2FT+FL)> (/p p), (A308)
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1
Epot,nonl = _5/(REZRP+RGGRZF)
p

1
—= 8 (2(R6HR,TFT + ReDR,THF,T) + RQHR/LFL + ReDR,LHP,L)

1y
6 Jk
+Renaa,R,LFaa,L + ReDaa,R,LHaa,F,L)

Z(Renaa,R,TFaa,T + ReDaa,R,THaa,F,T)

1
- 8 k (Z(ReHoo,R,TFoo,T + ReDoo,R,THoo,F,T)
+ReHoo,R,L Foo,L + ReDoo,R,LHoo,F,L)- (A309)

We have used Kadanoff-Baym equations in Section 6 with self-energy in Appendix E and
time-evolution equations for coherent fields in Appendix F. For diagrams (c) and (e) in
Figure 1, we have used the relation (A296). For diagrams (g) and (h) in Figure 1, we have
used similar calculations to Appendix in [101].
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